
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fortinet-1016 
 



Editor: Edward Wilding

Technical Editor: Fridrik Skulason

Editorial Advisors: Jim Bates, Bates Associates, UK, Phil Crewe, Fingerprint, UK, David Ferbrache, Defence Research  Agency, UK, Ray Glath, RG Software
Inc., USA, Hans Gliss, Datenschutz Berater, West Germany, Ross M. Greenberg, Software Concepts Design, USA, Dr. Harold Joseph Highland, Compulit
Microcomputer Security Evaluation Laboratory, USA, Dr. Jan Hruska, Sophos, UK, Dr. Keith Jackson, Walsham Contracts, UK, Owen Keane, Barrister,
UK, John Laws, Defence Research Agency, UK, David T. Lindsay, Digital Equipment Corporation, UK, Yisrael Radai, Hebrew University of Jerusalem,
Israel, Martin Samociuk, Network Security Management, UK, John Sherwood, Sherwood Associates, UK, Prof. Eugene Spafford, Purdue University, USA,
Dr. Peter Tippett, Certus International Corporation, USA, Dr. Ken Wong, PA Consulting Group, UK, Ken van Wyk, CERT, USA.

VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

CONTENTS

ISSN 0956-9979November 1991

EDITORIAL 2

TECHNICAL NOTES 3

KNOWN IBM PC VIRUSES
(UPDATE) 5

TOOLS & TECHNIQUES

Virus Verification and Removal 7

VIRUS ANALYSES

1. DIR II - The Much Hyped

‘Linking’ Virus 11

2. Music Bug 15

3. Form 16

FIAT LUX

A Pervading Myth: The ‘CMOS
Virus’ 17

ON COMPUSERVE

Troublesome Concubines in the
Anti-Virus Harem 18

SCANNER TACTICS

Living Together - Without
False Alarms! 19

PRODUCT REVIEW

Virus Buster 20

END-NOTES & NEWS 24

THE AUTHORITATIVE INTERNATIONAL PUBLICATION
ON COMPUTER VIRUS PREVENTION,

RECOGNITION AND REMOVAL

Fortinet-1016



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

VIRUS BULLETINPage 2 November 1991

EDITORIAL

A Little Knowledge is a Dangerous Thing

‘Give a child a hammer and all of a sudden things around him
will start looking like nails.’ (Anon.)

No MIS or DP manager in his right mind would hand out The
Norton Utilities to all PC users regardless of their need or
ability to use such powerful and potentially destructive
software. The misuse of Norton (or PC Tools or any other
powerful disk editor) could cause untold damage if its
distribution were not limited to technically competent staff.

Neither would it be wise to instruct general users as to the
existence or nature of certain of the more dangerous DOS
commands - most PC users in business run a limited set of
applications (text editors, spreadsheets, databases and DTP
being prevalent) and can remain happily oblivious to such
two-edged swords as FORMAT and FDISK. Even the humble
delete command dons a perplexing mantle when combined
with those cheeky wildcard characters ‘*.*’! Obviously, all of
the DOS commands are thoroughly outlined in the user
manual - be it from Microsoft or IBM or Digital Research. It
is fortuitous in this instance, therefore, that people rarely, if
ever, refer to manuals while using software - this is one of the
major reasons why software developers employ ‘walk-thru’
menus. The information and resources to cause untold
accidental damage are readily available within DOS itself but
are not clearly signposted as such.

The point here is that handing out powerful security and audit
tools to the masses, and providing superficial education about
the operating system to people who don’t need that informa-
tion, is a recipe for disaster. Instructions to use security tools
and techniques should be on a ‘need to know’ basis - PC
Support should know the exact locations of all such software
and its distribution should be extremely limited.

In the case of anti-virus software, many packages aim to
provide comprehensive virus detection and removal facilities.
‘Toolkit’ utilities of this sort provide programs to replace boot
sectors, edit specific areas of disk and even write protect
drives. Is it wise to place such power in the hands of users?
Even a simple scanner becomes a complex beast when you
examine the number of menu driven or command line options
that many developers have provided. Can PC Support be sure
that users will comply with their ex-cathedra statement to
boot from a write-protected system floppy disk? Do users
know what such a disk is, or why they should use it, or how to
prepare it? Do they even know the difference between drive
A: and drive C:?

It is sometimes difficult for technicians to appreciate the
relative ignorance of non-technicians - many developers of
security software still believe that mass populations can be

trained to use their products correctly and effectively. More
seasoned and forward-thinking observers knew a long time
ago that this belief was nothing more than a pipe dream.
Given that it takes a massive and concerted effort to educate
users in the most basic aspects of corporate security, training
a mass community in the use of relatively complex software
security packages is a wholly untenable objective.

Security managers in many organisations rightly conclude that
they are simply not prepared to trust end-users with any
degree of technical responsibility when it comes to combating
computer viruses. As a result, the tools and techniques for this
job are restricted to those capable of using them. This is an
elitist rather than populist approach - considering the wealth
of accumulated ignorance in any society it is entirely under-
standable and well conceived. This is not to belittle education;
if a problem can be explained in simple, straightforward and
readily understood terms then that is all to the good. However,
there is an enormous divide between understanding the basic
tenets of a problem and proficiency in dealing with it!

The strategy which is most effective and which has been
widely adopted combines three elements: central reporting;
specialist response teams (variously known as PC SWAT or
CERT, or simply PC Support) and risk analysis. Central
reporting effectively channels all enquiries and problems to
the SWAT team - qualified technicians who have studied the
virus problem and who are supplied with the requisite
information and tools to deal with any outbreak both swiftly
and correctly. Risk analysis is the process of identifying the
‘mission critical’ machines within the organisation. These are
the machines from which any loss of availability or integrity
would have a serious impact on the overall performance of the
organisation. A risk analysis of any organisation usually
shows that ‘mission critical’ PCs comprise a relatively small
percentage of overall IT resources. It is vital, however, that
these PCs are adequately protected and this may necessitate
the purchase of suitable defensive software.

One questionable strategy is that of equipping every single PC
with defensive software. This may be necessary in high
security environments but imposes burdens in terms of
financial outlay, support costs and inconvenience. Memory-
resident software may well cause memory clashes (with
Windows 3.0 or SHARE.COM for example), false alarms and
is critically dependent on user-compliance. Checksumming
software needs careful implementation and management -
particularly in an a shifting software environment. Memory-
resident software is prone to subversion by stealth viruses as
is checksumming software if it is run in an infected DOS
environment. Monitors and checksummers can be adminis-
tered - but not on 5,000 PCs in 60 or 70 locations!

Ultimately, put the diagnostic tools in capable hands and
purchase defensive software on the basis of considered risk
analysis. Finally, make friends with Symantec and the
Federation Against Software Theft...locate all unauthorised
copies of The Norton Utilities and delete them!



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

Page 3VIRUS BULLETINNovember 1991

TECHNICAL NOTES

Norton and The Cascade Message

In recent months VB and various anti-virus software manufac-
turers have received a number of calls concerning reports of
‘Cascade’ by the System Information (SI) program supplied
with Norton Utilities version 5.0. These spurious reports have
nothing to do with the Cascade virus and do not imply
infection by any virus.

The confusing message is displayed by SI in its list of
hardware interrupts, as a description of IRQ2 and refers to the
internal hardware of the PC.

PC-ATs contain two 8259A hardware interrupt controller
chips, each of which support eight system interrupts. The 8086
family of microprocessors has a single line to communicate
with the interrupt controllers, so IRQ2 on the first interrupt
controller accepts interrupt requests from the second control-
ler. Thus the two controller chips are connected in a cascading
manner - hence the ‘Cascade’ message.

The actual Cascade virus has been the cause of various
misinterpretations; the virus is also known as 1701 which also
happens to be a standard disk read error message! Perhaps
Hailstorm, Fall, Autumn Leaves or one of the many other
aliases for this virus should be adopted and standardised.

FDISK /MBR

Kevin Powis of Visionsoft has brought a little known and very
useful feature of FDISK supplied with MS-DOS 5 to our
attention. This feature will effectively remove many current
viruses which infect the Master Boot Sector (Track 0, Head 0,
Sector 1).

If a PC running MS-DOS 5 is infected by such a virus, the
user can boot from a clean write-protected system diskette
upon which is stored a copy of FDISK.

The FDISK program should then be run from the diskette
drive. By typing FDISK /MBR at the A: prompt, clean Master
Boot Sector code is written to the first physical sector on the
hard disk. Moreover, when this FDISK option is invoked, all
initialisation data in the 64 byte Partition Table stored in
physical sector 1 is left completely intact.

Note: this option should only be used if the Partition Table
in the first physical sector on the hard disk is present and
correct after the Master Boot Sector has become infected.
This may not necessarily be the case with future computer
viruses. [Such viruses may already exist. Tech Ed.]

Fortunately, most viruses which currently infect the Master
Boot Sector do not tamper with the Partition Table.

This feature, combined with the ability of SYS to remove DOS
Boot Sector viruses (those which infect the boot sector of the
active DOS partition), provides users of MS-DOS 5.00 with
simple standard tools to remove most boot sector viruses
without having to resort to formatting. This FDISK option is
only available under MS-DOS version 5 - it does not apply to
versions prior to 5.

It is still recommended that all PC users store clean write-
protected backups of the boot sectors of their fixed disks
on diskette.

Non-Compliance

Many resident scanners, monitors and standalone checksum-
ming programs provide the option for PC administrators to
customise the screen message which appears when these
programs detect virus activity. System administrators can thus
instruct the user to contact the relevant PC Support desk and
provide other information consistent with company policy.

Unfortunately, a user of unauthorised or stolen software, upon
seeing a virus alert reported on his screen may decide not to
report the incident to PC Support, particularly so if company
policy entails severe disciplinary action for illicit software
use. Subsequently such a user may attempt to disinfect his
machine which may result in compounded damage.

The problem of the non-compliant user is an extremely
difficult one to solve. At the recent Sysguard 91 conference in
London, Noel Bonczoscek of the Computer Crimes Unit
suggested that developers of memory-resident software might
consider incorporating a completely customised alert banner
into their monitors - upon detecting a virus the on-screen alert
could thus be configured in such a way as not to arouse the
suspicions of the ‘untrusted user’.

This is an interesting suggestion which merits consideration.

Using Virus Guard (from Dr. Solomon’s Anti-Virus Toolkit)
as a representative example, this resident monitor, upon
detecting a virus, currently flashes a message to screen which
states prominently:

Virus Alarm

Dr. Solomon’s Anti-Virus Toolkit has Intercepted a
virus:

Close everything down normally, then consult Toolkit
manual for remedy

However, Bonczoscek said that PC administrators might
prefer to configure a more subtle display along the lines of
‘Internal Error: Do Not Proceed, Contact PC Support/ Tel
Extension 203’.



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

VIRUS BULLETINPage 4 November 1991

This banner would have no reference to a suspected virus
attack or the anti-virus software that had detected such activity
but would be sufficient to ensure that the more naive user
contacted the appropriate support staff.

This is only one suggested (and, to our knowledge, untested)
proposal to encourage user-compliance. The potential pitfalls
of such a tactic are readily apparent - not least the fact that a
genuine operating system error would not direct the user to an
‘in house’ telephone extension! Any user recognising this fact
might well be capable of dealing with a virus attack in the first
place!

However, Bonczoszek’s underlying point is that computer
administrators should never assume that users will automati-
cally comply with company policy and report virus outbreaks
or other incidents. (To quote Thomas Harris: ‘Never assume
anything - you’ll make an ASS out of U and ME’). Compli-
ance auditing is one of the most complex tasks in computer
security - making sure that people understand the rules and
that they are following them is a formidable task and technical
solutions do not lend themselves easily to it.

Little wonder that the wisest and most experienced computer
security managers don’t allow users anywhere near detection
and diagnostic software - they know that either it will not be
used, or that it will be used incorrectly (often with dire
results), or that alerts and warnings will simply be ignored!

Rage Change

An amended scan string to detect the Rage virus (VB, October
1991, p. 21) has been supplied by Andrew Busey of Microcom
Software Division Inc. The scan string contains no addresses
and should be used in preference to either of the previously
published patterns.

Rage B9FD 018A 2451 8AC8 D2C4 5988 24FE C046

Nobbled Nibble

A one-nibble error in the search pattern published for the
Liberty virus in last month’s VB effectively invalidated the
string. An amended and corrected pattern appears below.

Liberty B931 2833 D2CD 1306 BB5C 0653 CB2E
803E BCO6 0A74 4633 C08E

Anti-virus software developers should take note that the
original pattern for this virus (last published in July 1991)
should be maintained as essential scan data. This pattern was
extracted from an earlier version of the virus which is not
consistently detected by the pattern above. The pattern is
repeated here:

Liberty 0174 031F 595B 5053 5152 1E06 1E0E
1FE8

VIRUS BULLETIN

EDUCATION, TRAINING

AND

AWARENESS PRESENTATIONS

Education, training and awareness are essential as
part of an integrated campaign to minimise the
threat of computer viruses and Trojan horses

Virus Bulletin has prepared a presentation de-
signed to inform users and/or line management
about this threat and the measures necessary to
minimise it. The standard presentation consists of
a ninety minute lecture supported by 35mm
slides, followed by a question and answer ses-
sion.

Throughout the presentation, technical jargon is
kept to a minimum and key concepts are ex-
plained in accurate but easily understood lan-
guage. However, a familiarity with basic MS-
DOS functions is assumed. The presentation can
be tailored to comply with individual company
requirements and ranges from a basic introduc-
tion to the subject (suitable for relatively inexpe-
rienced users) to a more detailed examination of
technical developments and available counter-
measures (suitable for MIS departments).

The aim of the basic course is to increase user
awareness about computer viruses and other
malicious software without inducing counterpro-
ductive ‘paranoia’. The threat is explained in
comprehensible terms and straightforward,
proven and easily-implemented countermeasures
are demonstrated. An advanced course, aimed at
line management and DP staff, outlines various
procedural and software approaches to virus
prevention, detection and recovery.

The presentations, are offered free of charge
except for reimbursement of travel and any
accommodation expenses incurred. Information
is available from the editor, Virus Bulletin, UK.
Tel 0235 555139.



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

Page 5VIRUS BULLETINNovember 1991

KNOWN IBM PC VIRUSES (UPDATE)
Updates and amendments to the Virus Bulletin Table of Known IBM PC Viruses as of 20th October 1991. Hexadecimal patterns may
be used to detect the presence of the virus with a disk utility program, or preferably a dedicated virus scanner.

Type Codes

C = COM files E = EXE files D = Infects DOS Boot Sector (logical sector 0 on disk)

M = Infects Master Boot Sector (Track 0, Head 0, Sector 1) N = Not memory-resident after infection

R = Memory-resident after infection P = Companion virus L = Link virus

864 - CN: This virus adds 864 bytes in front of the files it infects. Awaiting analysis.
864 B04D B449 B742 473A 2575 153A 7D01 7510 3A45 0275 0BC6 4502

1876 - CER: This 1876-byte virus is probably of Polish origin. Awaiting analysis.
1876 8EC0 33FF 33C0 B9FF 7FFC F2AE 26F6 05FF 75F8 83C7 038B D72E

Best Wishes-970 - CER: This virus is detected by the search pattern for the Attention virus, but not by the pattern for the Best
Wishes-1024 virus. This variant is not able to infect .EXE files properly.

Black Wizard - EN: A variant of the ‘Old Yankee’ virus and detected by the pattern for that virus. This variant is 2051 bytes long and
plays a different tune than the original virus, but is otherwise similar.

Bulgarian 123 - CN: A simple 123-byte virus from Bulgaria, which does nothing but replicate. It may infect the same file repeatedly.
Bulgarian 123 B103 8D54 F4B4 40CD 21B4 3ECD 21B4 4FCD 2173 AFBB 0001 FFE3

Copmpl - CER. This is a 1111 (COM) or 1114 (EXE) byte Polish variant of the Akuku virus. The name is derived from the following
text, which can be found inside the virus ‘Sorry, I’m copmpletly dead’ (sic). The only effect of the virus is to play a tune.
Copmpl 80E6 0F8A D680 FA00 7407 80FA 0B76 06B2 02B4 0ECD 218C C88E

Copyright - CN: A 1193-byte virus from East Europe, which contains a fake Award BIOS copyright message. Awaiting analysis.
Copyright AB4A 75F2 E2EA 33C0 CD16 B800 06B7 0733 C9B6 18B2 4FCD 10E9

DIR-II - LCER: A 1024-byte ‘link’ virus from Bulgaria. ‘Infects’ all COM and EXE files in each directory on a single pass. If the
virus is resident, ‘infected’ COM and EXE files can be disinfected by renaming their extensions. (VB, Nov 1991).
DIR II BC00 06FF 06EB 0431 C98E D9C5 06C1 0005 2100 1E50 B430 E824

DM-400 - CR: This 400-byte virus does not seem to do anything but replicate. It contains the text ‘(C)1990 DM’.
DM-400 80FC 4B74 3380 FC56 7419 FE04 80FC 3D74 12FE 0480 FC3E 751C

Europe ’92 - CR: This 421-byte virus activates if the year is set to 1992, when it displays the message: ‘Europe/92 4EVER!’
Europe ’92 B450 CD21 8CD8 488E D8C6 0600 005A 891E 0100 8916 0300 53B8

Fake-VirX - CN: A 233-byte virus from Finland which activates on any Friday the 13th, when it displays the message ‘VirX 3/90’.
Fake-VirX 408B D5B9 0600 CD21 B801 575A 59CD 21B4 3ECD 21B8 0001 FFE0

Gergana - CN: Four variants of the Gergana virus, which are longer than the original with improved error handling.
Gergana-222 BF80 FFB9 3000 F3A4 E9C6 FD5E 81C6 0001 BF00 01B9 DE00 F3A4
Gergana-300 BF80 FFB9 3000 F3A4 E985 FD5E 81C6 0001 BF00 01B9 2C01 F3A4
Gergana-450 BF80 FFB9 3000 F3A4 E97E FD5E 81C6 0001 BF00 01B9 C201 F3A4
Gergana-512 BA00 FAB4 3FCD 21C3 B900 02B4 40CD 21C3 B801 572E 8B0E 5001

Gosia - CR: A 466-byte virus from Poland. It contains the text ‘I ♥ Gosia’.  ♥ is the ASCII character (03))
Gosia 0275 10AC 268A 2547 3AC4 7405 80CC 203A C4E2 EE9F 03F9 8B1D

Gotcha - CER: Two related viruses from East Europe, 879 and 881 bytes long. They contain the text string: ‘GOTCHA!’.
Gotcha 9C3D DADA 7428 80FC 3D74 0A3D 006C 7405 80FC 4B75 1306 1E50

Hero-394 - ER: Related to the 506-byte Hero virus, but does not damage the files it infects. Awaiting analysis.
Hero-394 B98A 0133 C0BF 0002 0305 83C7 02E2 F929 069C 03B8 0042 33C9

Hungarian-482 - CR: This 482-byte virus from Hungary activates on November 7th. If an infected program is run on that date it will
display the string ‘Format ...’ and proceed to format the hard disk.
Hungarian-482 5603 F7AC 0AC0 740A D0E8 B40E B307 CD10 EBF1 B901 00BA 8000



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

VIRUS BULLETINPage 6 November 1991

Iron Maiden - CN: A 636-byte virus, which contains the text ‘IRON MAIDEN’ near the end. It has not been fully analysed, but
contains destructive code (INT 26H calls). The original sample of this virus was also infected with the Polish W13-A virus.
Iron Maiden 2425 CD21 5F0E 1F8B 8557 02A3 0001 8AA5 5902 8826 0201 B41A

Leningrad - CN: Two viruses, 600 and 543 bytes long, first reported in Leningrad (now St. Petersburg), and probably written by the
same author. The 600 byte variant has not been analysed, but the other variant will activate on any Friday the 13th, and display the
message ‘That could be a crash, crash, crash!’. These viruses were described last month as Sov1 and Sov2.

Murphy-Brothers - CER: A 2045-byte Murphy variant. Contains the text: ‘Brothers in arms’. Detected by the HIV pattern.

Omega - CN: A 440-byte virus from Finland. It overwrites the beginning of the first two hard disks, trashing the Partition Table.
Omega B05C AA89 7E2E 83EC 15B9 1500 8BFC 8BF5 A4E2 FDE8 1D00 B915

Path - CN: A 547-byte virus from East Europe, which searches the path for files to infect.
Path B90D 0057 8A07 8805 4347 E2F8 C605 005F B801 43CD 21B8 023D

PC-Flu - CR: This 802-byte virus from Poland was made available with the original commented source code from the author. It
seems to be intended to bypass three specific anti-virus programs, Flushot, Vstop and Virblock, but this has not been tested.
PC-Flu 501F BB00 0180 3FE9 7537 4380 3F15 7531 4380 3F05 752B B800

PC-Flu-2 - CER: A 2112-byte variant of the previous virus using self-modifying encryption. No simple search pattern is possible.

Plovdiv, New Bulgarian 800 - CR: This virus is 800 bytes long, but the increase is hidden while the virus is active. It contains the text
‘(c) Damage inc.Ver 1.1, Plovdiv,1991’, but has not been fully analysed yet.
Plovdiv 80E2 1F80 FA1E 7506 2681 6F1D 2003 079D 5A5B EB02 CD32 559C

Polish Color - CN: A simple 376-byte Polish virus, which does nothing but replicate.
Polish Color 01BF 0000 B900 01F3 A45E 8BC6 BF00 00B9 0001 F3A4 5E8B C605

Polish Minimal-45 - CN: An attempt to create the world’s smallest virus. It overwrites the files it infects which cannot be disinfected.
Polish-45 023D CD21 8BD8 B440 BA00 01B1 2DCD 21B4 3ECD 21B4 4FEB DCC3

Polish Pixel - CN: Two Pixel variants from Poland, which contain crude self-modifying code. They are 457 and 550 bytes long, and
detected by the Pixel-277 pattern.

Rybka - CER: This is a variant of one of the Vacsina (TP-series) viruses. It may infect the same file over and over, increasing its size
by 1344 bytes each time. Detected by the Vacsina pattern.

Something - CR: A 658-byte virus, which attaches itself in front of .COM files. It appears destructive, containing code to delete files.
Something 8BD8 B9FF FF1E 5233 D22E 8E1E 8303 B43F CD21 725F 3D00 E873

SVC-1740 - CER: This 1740-byte virus is closely related to the 1689-byte variant (SVC 4.0) and is detected by the same pattern.

SVC 5.0 - CER: An improved version of the earlier SVC viruses, and fully ‘stealth’. Awaiting analysis.
SVC 5.0 5606 86E0 35FF FF8E C00E 1F33 FFB9 990B FCF3 A607 5E74 03E9

Vienna-726 - CN: A 726-byte variant, detected by the Vienna (4) pattern.

Vienna-Polish 634 - CN: This modified version is detected by the Vienna (1) pattern.

Vienna-776 - CN: A 776-byte variant. A similar 757-byte variant has also been found. Awaiting analysis.
Vienna-776 B44E BADD 0003 D6B9 0300 CD21 EB04 B44F CD21 7302 EB9F 8B84
Vienna-757 B44E BA5B 0003 D6B9 0300 CD21 EB04 B44F CD21 7302 EB9F 8B84

Voronezh-370 - CR: This virus is related to the Voronezh and USSR-600 viruses, perhaps their common ancestor.
Voronezh-370 0500 018B F0BF 0001 FC8A 0434 BB88 0546 47E2 F6B8 0001 50C3

W13-C - CN: A minor modification of the 507-byte W13-B variant. The only modification is that this variant sets the month field to
12, not 13, which makes all files created in December immune to infection. Detected by the W13 pattern.

W13-361 - CN: A member of the W13 group of Vienna-related viruses. It is detected by the W13 pattern, but does not function
properly, as infected programs (second generation) will never run. A 377-byte variant also exists which replicates without problems.

Words - CER: A series of 4 Polish viruses, 1069, 1085, 1387 and 1503 bytes long. The two longest variants use self-modifying
encryption, and no simple search pattern is possible for them. The other variants can be detected with the following pattern:
Words 8066 0EFE 5958 8BC1 5E5D 9DCF 528B D6B4 409C 2EFF 1E0D 005A

Yankee-1150 and Yankee-1205 - CER: Two stripped-down versions of the Yankee virus which only replicate.
Yankee-1150 CB5B 5383 EB44 C32E 80BF 0100 0074 0681 FCF0 FF72 E58C D848
Yankee-1202 CB5B 5383 EB45 C32E 80BF 0100 0074 0681 FCF0 FF72 E58C D848



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

Page 7VIRUS BULLETINNovember 1991

TOOLS & TECHNIQUES
David M. Chess

High Integrity Computing Laboratory
IBM Thomas J. Watson Research Center

Yorktown Heights, NY, USA

Virus Verification and Removal

The first line of defense against computer viruses consists of
programs that detect that something is probably wrong. These
include modification detectors, integrity shells, known-virus
scanners, access-control programs, and similar things. Their
main function is to alert the user of a machine that a virus,
some virus, is probably present. The important thing is the
alert; since something is likely to be wrong, the user should
stop what he is doing, and take action to correct the problem.
It doesn’t matter much at this stage what the alert says; a first-
line anti-virus system that always said simply ‘Something
virus-like may be going on!’ would be sufficient for most
environments, if it were usually right.

Once the alert has been given and the infected system taken
out of immediate contact with other systems, other kinds of
software become important. Before we can decide how to
clean up an infected system, and even where else to look for
infection, we need to know exactly what the infection consists
of. This paper is a description of one part of the second-line
toolbox, the virus verifier (and remover).

Virus Verifiers

A virus verifier is a program that, given a file or disk that is
probably infected with a given virus, determines with a high
degree of certainty whether the virus is a known strain, or a
new variant. This is, of course, important to know: if the virus
is different from any known strain, it will have to be analyzed
for new effects before we can be confident that we know just
what to do to clean up after it.

On the other hand, if the virus is identical to a known strain,
we already know what to do. It is particularly important to
perform verification in a program that attempts to remove the
virus infection from an object automatically, restoring it to its
original uninfected form.

In abstract, a verifier is a program that, given another program
as input, determines whether or not the given program is part
of the set of possible ‘offspring’ of a particular virus. For
many classes of viruses, including all the viruses actually
widespread at the moment, this is easy to do. Almost all
known viruses consist almost entirely of code that does not
change from infection to infection, except perhaps for a

simple XOR-type garbling, and data areas that are either
constant, or change in simple ways (or that can be ignored
entirely for the purposes of verification).

Given a suspect file F and a known virus V, it is therefore
always relatively simple to answer the question ‘is F a file that
could have been produced by infection with virus V?’. It is an
open question of some theoretical interest whether or not
some future virus might make this harder to do! Reliably
determining whether a file is infected with any virus at all is
of course known to be impossible, but we have no similar
constraint on determining the presence of a specific virus.

Trade-offs and Development Decisions

There are various concrete decisions and trade-offs involved
in writing a virus verifier; this section will list a few of them,
while the next sections will describe the verifier currently
being developed and used at the High Integrity Computing
Laboratory at IBM’s Watson Research Center.

A verifier may be an independent tool, or it may be integrated
into a virus detector. An integrated detector/verifier can be
quicker and more convenient, since there’s no need for a user
to find and run a verifier once the detector goes off. On the
other hand, since most copies of any virus detector will never
in fact detect a virus (most of the world’s computers are not
infected, after all), integrating a verifier along with the
detector is in some sense inefficient, in that it adds significant
code to the detector that may never be used. However, given
how much more expensive human time is than CPU time and
disk space these days, integrated tools are likely to be more
cost-effective in the long run.

Detection and verification will always be two different
activities, because it is very desirable for a detector to detect
small variants of known viruses as viruses, whereas a verifier
must be able to identify any variation as a variation. Detection
algorithms are typically run very often, and must be fast.
Verification algorithms, on the other hand, are run rarely
(only when a virus is detected), and speed is typically not a
major issue.

To determine whether or not a given object is infected with a
known strain of a virus, a verifier must know what the known
strain looks like. This may be done either with an actual copy
of the code of the known strain of the virus, or by using a
CRC or similar modification-detection algorithm. It’s not
generally desirable to include the entire code of a virus with
widely-distributed tools, for obvious reasons! On the other
hand, even a good difficult-to-invert digital signature algo-
rithm is not as reliable as a byte-for-byte comparision, and it
is vulnerable to a virus author intentionally creating a variant
that looks to the verifier like a known strain. (This can be
made more difficult through the use of cryptographic check-
summing and related technologies, at some increase in
runtime and complexity.)



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

VIRUS BULLETINPage 8 November 1991

Lastly, a verifier may use either special-purpose code, with
one or more routines being written in some compiled language
for each new strain discovered, or it may be written as an
interpreter for a high-level virus-description language.

A high-level language is generally simpler to program in
reliably; on the other hand, this is only true because it is less
expressive, which implies that there will be cases (exotic self-
garbling viruses, for instance) in which it will be necessary to
drop into the lower-level programming language again.

VERV - A Prototype Virus Verifier

At HICL, we are currently using and developing a virus
verifier called ‘VERV’ for PC-DOS viruses. The current
version can verify over 30 different viruses and variants,
which accounts for nearly all of the actual infections that we
see in day-to-day operation. As well as being used in the lab,
and as a research prototype, VERV is used by IBM’s internal
Computer Emergency Response Teams (CERTs), as part of
routine incident handling.

It is an independent tool at the moment; in the long run, we
expect to integrate it with our other anti-virus programs. It can
use either the CRC algorithm or a byte-for-byte comparison to
verify the identity of a virus. In the laboratory, we use the
byte-for-byte comparison to test new samples against old
ones. In the field, the CRC algorithm is used to verify the
virus in infected objects before applying cleanup measures.

VERV includes an interpreter for a small virus-description
language. Virus-description languages, for this and other
purposes, have been around for some time; Christoph Fischer
at the University of Karlsruhe, Morton Swimmer at the
University of Hamburg, Alan Solomon in the UK and no
doubt many others in the field, have worked on similar things
(a personal note; one motivation for publishing this paper is to
encourage others, who have perhaps done it better, to publish
their work).

VERV’s language is very simple and provides for lower-level
hooks (instructions to call special-purpose ‘C’ routines) when
a virus requires actions that cannot be described in the high-
level language.

The part of the language that is currently implemented
supports only virus verification; features to support virus
removal (‘disinfection’) as well have been designed, but not
yet implemented.

We will describe the language in some detail, not because it is
particularly interesting as a language, or because we think we
have it all correct and optimal, but rather so that other people
working on the same sorts of things can benefit from our ideas
and learn from our mistakes.

We hope this paper will help inspire continued discussion and
exchange.

VERV’s Virus Description Language

The file from which VERV reads virus descriptions consists
of a number of virus-description blocks. Each block has the
following structure:

One or more VIRUS records
A NAME record
One or more LOAD records
Zero or more DEGARBLE and related records
Zero or more ZERO records
One or more check records
Zero or more REPAIR blocks

For instance, the block for the Slow-1721 virus currently
looks like this:

VIRUS slow slow-1721
NAME the Slow-1721 virus
LOAD P-COM 0 6B4
LOAD S-EXE 0 6B4
DEXOR1 001E 06AD 0012 0000 ; Degarble the code
DEXOR1 00EB 0159 0061 0001 ; and the data area
ZERO 0012 1 ; Zero out the one-

; byte garble key
ZERO 0061 1 ; and the data-garble

; key
CODE 0000 00EA 38d5dc08 ; Code up to first

; data area
CONST 0144 014E 0ff22ad9 ; COMMAND.COM
CODE 015A 063C 74e00962 ; Code between data

; areas
CODE 0657 06AD ad3b0b41 ; After the second

; data area
; Randomizer

The VIRUS records simply give a list of one-word aliases for
the virus, that are used on the command line to tell VERV
which virus to look for. These aliases are not the full primary
name of the virus (that is given on the NAME record); they
are just short abbreviations that the user can use on the
command line.

A very useful extension here would be for VERV to support
virus families, so that a single command would cause testing
for all members of the Jerusalem family, or the Flip family,
and so on. When integrated into the virus detector, of course,
the detector will directly inform the verifier which virus or
viruses to test for.

The LOAD records describe where in an infected object of a
given type the virus can be found. The tokens on a LOAD
record are an object type, followed by either an offset and a
length, or the word SPECIAL and a number. The offset tells
VERV where, relative to the effective entry-point of that sort
of object, to start loading; the length tells how many bytes to
load. For viruses that are not always at a fixed offset from the
initial entrypoint, the SPECIAL keyword causes VERV to
invoke an internal routine, coded in C, to perform the loading.



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

Page 9VIRUS BULLETINNovember 1991

The Slow virus is an EXE-infector, and a prepending COM
infector; the LOAD records in this example tell VERV to load
the first 06B4 bytes of a COM-format file, and the first 06B4
bytes after the entry point of an EXE-format file. (EXE-
format files are those that begin with the letters ‘MZ’; DOS
loads these differently from COM-format files, which begin
with any other bytes.) Other object types supported include:

➤ E9-COM, for viruses that infect COM files by changing the
first three bytes to a long jump to the virus (E9 is the hex
code for a long jump),

➤ E8-COM, for viruses that infect COM files by changing the
first three bytes to a long CALL to the virus (E8 is a long
call),

➤ MBR, for viruses that infect hard disk master boot records
and diskette boot records, and fit in a single sector,

➤ DISKETTE, for other sorts of diskette infectors (those that
do not fit in a single sector),

➤ HARDDISK, for other sorts of hard disk infectors (those
that infect system boot records, and/or occupy more than
one sector).

A description block will have as many LOAD records as there
are types of object that the virus can infect.

The DEXOR1 records tell VERV to perform a certain
common type of degarbling: a one-byte XOR with data to be
found at a fixed offset in the virus. The details are not terribly
important here. A more general record, consisting of just the
word DEGARBLE followed by a number, causes VERV to
invoke an internal C-language routine to perform degarbling.

Once the loading and degarbling have been done, VERV has a
complete ‘virus image’ in its internal buffer. A command-line
switch (described later) can instruct VERV to save the
contents of this buffer to a file, for later examination.

The ZERO records describe variable areas within the virus,
that should be set to zero before checks are done. This is
really just a convenience, to reduce the number of check-type
records needed.

There are three basic types of check records, describing
different tests to be done on the degarbled and zero’d virus
image now in the buffer:

➤ CODE records describe areas of virus code. The numbers
given are the start and end offsets of the area, and the
expected CRC value of the data there. VERV uses a 31-bit
CRC, with a custom polynomial. This is not strongly
resistant to intentional reverse engineering; a more difficult-
to-invert algorithm may be desirable later on. If any CODE
areas are found to be different than expected, VERV will
report that this is not the usual strain of the virus.

➤ CONST records describe constant areas that should not
change, and whose values effect the actual running of the
virus. CONST areas are currently treated exactly like CODE
areas.

➤ TEXT records describe areas of the virus that are not
expected to change, but do not significantly affect the
operation of the virus. If a sample differs from the given
description only in one or more TEXT areas, VERV will
report a ‘text variant’ of the virus. This is useful for
message areas within a virus that are not actually used, or
that are simply displayed to the user. These areas can be
interesting in tracking how the virus is spreading, by
correlating incidents that involve the same ‘text variant’,
but they do not affect cleanup or prevention.

Normally, VERV performs its CRC calculation on each area
within the virus, and compares the results to the expected
values. A command-line switch (described in more detail
below) can be used to tell VERV to read a standard copy of
the virus from another file instead, and do byte-by-byte
comparison between the two. This is more reliable, but of
course it requires having a sample of the usual strain of the
virus present against which to verify.

Another example, illustrating the use of special C routines, is
the block for the 1701 virus:

VIRUS 1701
NAME the 1701 virus
LOAD E9-COM -1 06A5
DEGARBLE 1
CODE 0001 0026 19989c7e ; Degarble, MOV, jmp-in
CODE 0076 06A4 c03a91c5 ; Main code

Here, the ‘DEGARBLE 1’ record causes VERV to invoke an
internal routine to degarble the data in the buffer, using the
1701’s own algorithm. It would be possible to enhance the
virus-description language enough that the 1701’s degarbling
algorithm could be expressed in it directly. This would
complicate the language considerably, though, and would
somewhat lessen the advantage that a special high-level
language has over native C code; so far, we have decided
against such enhancements.

Repair

For many viruses and many infected objects, it is possible to
restore the object to what it looked like before it was infected,
or at least to a state in which it will function in just the same
way. Unfortunately, this isn’t always possible; the classic
example is the 1813 (Jerusalem) virus infecting an EXE-
format file. While it’s usually possible to undo the infection,
sometimes the resulting file is missing data that was in the
uninfected original, and it’s not always possible to tell that
this has happened. The best a Jerusalem 1813-remover can do
on the EXE file, therefore, is something that is quite likely to



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

VIRUS BULLETINPage 10 November 1991

work, but might not. In most cases, though, reliable repair is
possible and particularly in cases of widespread infections on
non-critical machines, repair is sometimes a cost-effective
option.

Our current design for a repair block in VERV calls for one
block per type of object that the virus may infect. Each repair
block consists of a header record ‘REPAIR <object type>’,
followed by one or more repair-operation records.

Currently defined repair operations include:

➤ a REMOVESTART record that removes the first so many
bytes from the file being repaired,

➤ a REMOVEEND record that removes the last so many
bytes, shortening the file,

➤ a COPY record, that copies so many bytes from a given
offset in VERV’s internal buffer (which initially holds an
image of the virus) to a given offset in the file being
repaired,

➤ RLOAD and RENDLOAD records, that load a given
number of bytes from a given offset (relative to the start or
end of the file) into VERV’s buffer,

➤ an RSPECIAL record, to cause VERV to invoke an internal
C routine to perform some function.

For instance, the repair blocks for the usual 1813 or Jerusalem
virus might look like this:

* Remove from a normal EXE file
REPAIR S-EXE
RSPECIAL 2 ; Check header length and

; adjust, give warning
REMOVEEND 0710
COPY 0043 0010 2 ; Fix initial SP
COPY 0045 000E 2 ; and SS
COPY 0047 0014 2 ; and IP
COPY 0049 0016 2 ; and CS
COPY 0051 0002 4 ; Length, adjusted above

* Remove from a normal COM file
REPAIR P-COM
REMOVESTART 0710 ; That was simple!

The RSPECIAL record would perform 1813-specific process-
ing, such as checking to make sure there is nothing in the file
past the end of the outermost 1813 infection (if there is, it
probably means that the 1813 virus has overwritten part of the
original file due to one of its many bugs), computing the
approximately correct EXE length for the repaired file’s
header and warning the user that EXE files that have had the
1813 virus removed from them do not always work correctly.

Some of these functions are so common that we will probably
incorporate them into the language itself at some point.

After repair is completed, VERV should restart processing on
the repaired file, to ensure that there is not another instance of
the virus present. Once VERV is integrated with a virus
scanner, the repaired file will be re-scanned automatically for
all viruses, and if one is found the file will be re-verified.

Repair processing is only performed if the user has requested
it on the command line and if VERV finds that the virus is
indeed exactly the known strain of the virus. In small infec-
tions, or in situations where correct operation of the objects
involved is particularly crucial, we continue to recommend
that infected objects be destroyed (files erased, diskettes
formatted and so on), and replaced from uninfected sources.

VERV Options

The functions of VERV’s command-line switches include:

➤ Reading the virus to be tested from an image file, instead of
from a normally-infected object; this can be useful, for
instance, in testing a boot-sector infector that has been
received as a binary dump of the boot sector rather than on
diskette.

➤ Overriding the default virus-description file (contained
within VERV.EXE itself), allowing easy testing of new or
experimental descriptions.

➤ Producing detailed progress messages and data displays
during processing, to help pinpoint differences found or
errors encountered.

➤ Specifying that, rather than using a CRC, VERV should
compare the relevant parts of the object to be tested with a
standard sample of the virus stored in an image file, or a
standard infected specimen.

➤ Producing a dump of the virus image, after all degarbling,
but before any zeroing has been done. This image can then
be used for storage, analysis, or transmission, or for later
use as input to VERV for byte-by-byte comparisons.

Status and Future Goals

VERV is currently in use by a small number of people within
IBM who deal with virus infections. Its availability has greatly
reduced the time spent by technical people in doing semi-
manual verification, and has therefore sped up the response
time to virus incidents. Adding a typical newly-analyzed virus
to VERV is generally quite simple, involving a few lines in
the VERV language, and sometimes a small piece of C code
to handle a new garbling algorithm.

Our near-term plans for VERV include support for families of
viruses, and the ability to verify a virus in a number of objects
at once. This will ease integration with our virus detectors;
when a detector detects a signature that corresponds to a virus,
or a family of viruses, in a number of files, it will be able to
verify the identity of the virus with a single call to VERV.



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

Page 11VIRUS BULLETINNovember 1991

Once the virus-removal language is implemented, disinfection
could be done at the same time (although we often recom-
mend replacement rather than repair).

The Ideal Scenario

If transmission bandwidth, CPU cycles, and disk space were
free, and programming were easy, every workstation would be
protected by a seamless ‘immune system’. Objects infected
with existing viruses would be detected automatically, the
identity of the virus verified and reported to a central location,
and the object destroyed or repaired, with minimal user
intervention. New viruses would be detected automatically
with some high degree of confidence, first-pass signature
patterns would be extracted automatically where possible and
communicated to a central clearing house, along with a
sample of the suspicious object. Viruses would very rarely, if
at all, spread widely.

One of our main focuses at HICL is studying what part of that
ideal scenario is feasible, in both current and future systems.
The prototype VERV is a small part of our experimentation
with parts of that system that are also immediately useful to
users in the near term. We would welcome similar descrip-
tions by others in the field, of work that they are doing in
similar directions.

© 1991, IBM Corporation, USA.

Virus Bulletin Conference 1992

Call For Papers

Abstracts of between 300 - 1,000 words are invited for
papers to be presented at the Second International VB
Conference in September 1992.

The conference will be in two streams: Stream one will
address the management of the virus threat within the
corporate environment, while stream two will concen-
trate on technical developments including virus disas-
sembly, detection and classification.

Abstracts are welcomed from individuals or groups
active in research, software or hardware development,
quality assurance, the law, corporate security manage-
ment, or any other field related to countering computer
viruses and malicious software.

Abstracts, should be completed by February 15th
1992 and should be sent to The Editor, Virus Bulletin, 21
The Quadrant, Abingdon Science Park, Abingdon, Oxon
OX14 3YS, UK. Fax 0235 559935.

VIRUS ANALYSIS 1
Jim Bates

DIR II - The Much Hyped ‘Linking’ Virus

Once again certain sections of the anti-virus industry have
been crying wolf. Global virus alerts and panic bulletins have
been posted on countless BBS forums - the end of computing,
we have been assured, is imminent. While this activity
undoubtedly does no harm to their sales figures, once again it
is the user who is left confused and frightened by unconfirmed
reports of uncontrolled infections in Eastern Europe by a new
virus. One report describes it as ‘A new, fast moving, and very
destructive virus ... uses a completely new technique ... cannot
be easily identified or removed’. Small wonder that normal
research work has been punctuated by frequent telephone calls
from concerned users enquiring about the imminence of the
annihilation of their programs and data.

Facts Not Fiction

The facts simply, are these: the virus uses a new infection
technique; it spreads rapidly within a machine environment by
virtue of its infecting whole directories; and (incidental to its
method of operation) it displays a certain stealth capability.
However, it is not ‘very destructive’, it is extremely easy to
identify and it can be disabled and removed with no risk to
existing files. Its potential for corrupting existing data is
limited to a single cluster (probably unallocated) on each
infected disk. All of this information, together with a simple
and effective disinfection technique, was gleaned from
disassembling and analysing a sample of the code and took
under 24 hours of research effort.

The virus comes from Bulgaria. It is known as DIR-II and the
fact that most researchers agree on this name is an indication
of how rapidly a sample was distributed amongst researchers
around the world. The fact that the sample was accompanied
by unconfirmed tales of the virus ‘running rampant’ in Eastern
Europe is probably the reason for the panic, as to date only a
single report of it being ‘at large’ (which subsequently turned
out to be false) has been received from my own contacts.

General Analysis

Since this virus does not attach itself to executable file
contents, the term ‘linking’ virus has been coined to differen-
tiate its infection method. The code is 1024 bytes long and is
written in assembler. It does not subvert any of the interrupt
vectors although it does collect one of the antique access
points designated for compatibility with CP/M. Access to the
system is gained by attaching the code to the existing device
drivers which handle part of the DOS file services.



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

VIRUS BULLETINPage 12 November 1991

The infection technique links a single cluster containing the
virus code to each file that is infected while preserving the
original location of the start of the file in an encrypted form
within the directory entry. This means that the actual contents
of each infected file are not altered in any way and can be
accurately and completely recovered.

The virus makes no attempt to encrypt its code and it is
therefore easily identified by even the simplest scanning
program when used ‘clean’ to scan suspected floppy disks.
However, it should be noted that if any other parasitic virus
occurs on such a disk, the scanning program will not find it
until the DIR-II infection has been removed.

The virus infects all EXE and COM files (including
COMMAND.COM). This virus will not propagate across a
network unless an infected file is copied to the file-server.

Installation

The virus code begins by setting up its own local stack and
then incrementing a single word data value. This word is not
referenced elsewhere in the code and may be a simple
infection counter. The Interrupt Table is then examined and an
address is collected from a position reserved solely to
maintain compatibility with CP/M type programs. This
address points to an entry point within the operating system
and after a small modification (to skip certain initialisation
code) it is stored via the local stack in the virus’ data area for
later use as the main link between the virus code and DOS.

A normal interrupt request is then issued to determine the
version of DOS and the virus then attempts to initialise a data
value. The attempt fails because of a bug in the code but this
does not affect the overall operation of the virus.

After modifying the amount of memory used by the virus, the
code examines the chain of device drivers and modifies all
those found to be resident within the DOS segment so that
they become linked to the virus code. Calculations are then
performed on specific memory allocations to determine
whether the virus code is being processed before
COMMAND.COM is loaded. This information is vital to the
successful installation of the virus in low memory.

Once the virus is installed as an extension of the operating
system, the addresses of the Strategy and Interrupt routines of
the device driver are collected into the virus’ data area for use
later. The next part of the installation routine is reminiscent of
some other Bulgarian viruses and begins by collecting the
Disk BIOS address from within the device driver. This is
stored within the virus’ data area but an additional routine
searches for any ROM modules and examines them for their
own Disk BIOS address. If found, this address is used in
preference to the one from the device driver.

The final part of the installation routine collects the name of
the host program and executes as a child process via the

normal LOAD and EXECUTE function of DOS. After
execution, any returned error code is collected and the code
exits normally to DOS. Provision is made for the execution of
COMMAND.COM since it is possible for the virus code to be
processed before this file is loaded.

Operation

Once installed, the virus code remains resident and is invoked
whenever DOS issues commands to the device drivers
associated with the Disk BIOS. Thus all disk accesses
requiring collection of the directory structures become routed
through the virus. The connection to the device drivers
functions in a similar way to the redirection of interrupt
services in other viruses - various commands are intercepted
and others are allowed to continue unchanged. In this case
only the Read, Write, Write/Verify and Build BIOS Parameter
Block (Build BPB) commands are intercepted.

The Read and Write commands are intercepted before
processing by the device driver, while the Build BPB com-
mand is intercepted afterwards.

Build BIOS Parameter Block

The interception of the Build BPB command is implemented
to prevent possible corruption of the disk structure either by
DOS or by CHKDSK and similar utility programs. The BIOS
Parameter Block is of vital significance to DOS when
calculations are undertaken to ascertain the location and
volume of available space on the disk. Remember too that the
BPB is constantly being rebuilt as different disk types and
sizes are accessed.

After the device driver has completed the command, the virus
code regains control and copies the newly built BPB into its
own buffer. The contents of the request header are modified to
point to the virus copy of the BPB and the block itself has an
appropriate number of sectors (corresponding to the virus’
requirements) subtracted from its Total Sectors field. Thus, on
an infected machine, CHKDSK does not indicate any errors or
orphan clusters. Note however, that if an infected machine is
booted from a clean system disk, CHKDSK will indicate an
indeterminate number of cross-linked and orphan clusters.

Output and Output/Verify Commands

These commands, which are issued to the device driver when
directory sectors must be rewritten, are intercepted by a single
routine in the virus before the device driver receives them.

This routine begins by checking to see whether the media has
changed in the target drive (new floppy, etc.). If the media has
changed, the original output request is issued to the device
driver request and when processing returns, the virus contin-
ues with the disk infection routine. If the media hasn’t
changed, processing jumps to the sector infection routine.



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

Page 13VIRUS BULLETINNovember 1991

Input Commands

Intercepting the Input commands to the device driver involves
first checking to see whether the media has changed. If it
hasn’t then the sector infection routine is called - if it has then
the disk infection routine is invoked.

Infection Routines

The two infection routines are where this virus differs from
other types and it is important to understand the mechanisms
involved before describing the routines themselves.

On a single infected disk (hard or floppy) the virus code
usually reside in only one place - the final one or two clusters
on a disk. Differentiation between disk types is according to
how many sectors are allocated to each cluster on that
particular media. The routine that locates and places the virus
code in this area is referred to here as the disk infection
routine. Once a disk has been infected in this way, the other
infection routine is used to link the virus cluster to target files.
This is done by directly accessing the directory sectors on the
disk and modifying the directory entry for each suitable file.

‘’Far from being the dangerous and
frightening beast that these

‘experts’ imply, this virus is one of
that rare breed that can be removed

completely by any reasonably
literate user without the use of any

specialist tools whatsoever!’’

whether the target file has been deleted - although this has no
effect on the normal virus operation, it does make this the first
virus I’ve seen which actually ‘infects’ deleted files!

Disk Infection

This routine completes a simple series of calculations to
determine the number of the last available cluster on the target
disk. The relevant FAT entry is then inspected and if a bad
cluster is indicated the position is decremented and the routine
tries again.

Once a usable cluster is located, the FAT entry is marked with
an End of File (<EOF>) indicator and the virus code is copied
to that cluster. The <EOF> marker used is 0FFFEH instead of
the more normal 0FFFFH, this is perfectly acceptable to DOS
and enables the virus to detect whether the disk is already
infected. This is the only section of the virus code that might
cause damage to an existing file since no notice is taken of
whether the cluster is already allocated to a file. If the cluster
was allocated, the file to which it belonged will be irreparably
damaged. Deleting the file will temporarily free the virus
cluster but the disk infection routine will immediately re-
allocate it and the only side-effect will be that any subsequent
portion of the file’s cluster chain will become orphaned.

During the disk infection routine, the master encryption key
(based upon part of the virus cluster number) is generated and
stored within the virus code.

Sector Infection

This routine first calculates the size of the target directory and
then calls an infection toggle routine. The toggle process
examines each directory entry in turn to see whether the FCP
points to the virus cluster. If it doesn’t the existing FCP is
collected, encrypted and placed in the reserved area of the
directory entry. The true FCP field is then altered to point to
the virus cluster. If the entry is already infected, the reverse
happens and the virus disinfects the entry by repairing and
replacing the original FCP.

The process of switching First Cluster Pointers is incidentally
responsible for giving this virus a spurious stealth capability
since while the virus is resident, DOS operations will only
occur on disinfected files and cannot access the virus cluster.

This toggling of infection/disinfection provides a useful
Achilles’ Heel through which the virus can be de-activated
and made to clean up infected disks and machines. Classical
scholars will recall that the original Achilles only had one
vulnerable heel - this virus has two, and a glass jaw as well!
These flaws in the virus are described in detail later.

Observations

As noted above, scanning floppy disks on a clean machine
will instantly reveal the presence of the virus. In fact, if the

Only COM and EXE files are affected and modification
consists of replacing the First Cluster Pointer (FCP) of each
file entry with a pointer to the single virus cluster (thus
effectively cross-linking the files). The original FCP is then
encrypted and stored in a different section of the directory
entry which is apparently unused (marked as ‘reserved’ by the
reference books). This routine is referred to here as the sector
infection routine and it should be noted that regardless of size,
the whole of a target directory is infected in a single pass. It is
this process which makes the virus spread so rapidly within a
single PC [i.e. the intra-machine environment. Ed.].

It is interesting to note that the virus only examines the file
extension area of the directory entry and does not check to see



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

VIRUS BULLETINPage 14 November 1991

target disk is infected with the virus (rather than containing
just a single program containing the virus code), the result of
a scan will indicate all COM and EXE files in a particular
directory as infected, thus reducing the possibility of false
positive identifications from a single file which just happens
to contain a sequence similar to the recognition string.

However, the infection technique does pose some new
problems for users when dealing with infected machines and
disks. To explain these problems it may be easier to describe
various sequences of actions and their results:

Since without the virus being resident and active in memory
all infected files appear to point only to the virus code,
copying (on a clean machine) an infected file from an infected
diskette will result in the destination file being exactly 1024
bytes in length. This is regardless of the length reported by
any directory listing of the source diskette. If this copied file
is then executed, nothing will appear to happen (the DOS
prompt will just re-appear). However, the virus will load into
memory and activate and the files on the infected floppy will
now appear ‘normal’ to the system and may be freely copied
and executed.

Infection of the fixed disk in this way will almost invariably
lead to the infection of COMMAND.COM (or whatever the
command interpreter is named) and thereby ensure the
survival of the virus at the next reboot. If instead of copying
the original file from the floppy, it is simply run from the
diskette, the same result will occur - the virus will be resident
and active and infect the fixed disk (and probably
COMMAND.COM).

Detection

The virus employs no encryption and is easily detected on
disk. As with all cases of suspect virus infection the PC should
be booted from a clean, write-protected system diskette before
scanning commences. Note that the virus will be found in all
COM and EXE files in each directory scanned - if the
presence of the virus is detected in only a single file, a false
positive should be suspected.

The following hexadecimal pattern reliably detects the DIR II
virus:

DIR II BC00 06FF 06EB 0431 C98E D9C5 06C1
0005 2100 1E50 B430 E824

Disinfection

Once a machine becomes infected, COM and EXE files cannot
be backed up by copying them to an appropriate floppy disk
because doing so will infect the target diskette. Booting the
machine from a clean floppy is also no use because without
the virus active in memory, all infected files will only contain
the 1024 bytes of virus code.

This apparent dilemma is described in one panic message as a
‘Catch 22 situation’.

In fact the solution is simple and obvious. Far from being the
dangerous and frightening beast that these ‘experts’ suggest,
this virus is one of that rare breed which can be removed
completely by any reasonably literate user without the use of
any specialist tools (i.e. anti-virus software) whatsoever. The
removal procedure (which is astonishingly straightforward)
goes like this:

Boot the machine normally from its hard disk so that the virus
is resident and active, and then rename all COM and EXE
files to different extensions (perhaps .CO and .EX), thus:

C:>REN *.COM *.CO

C:>REN *.EXE *.EX

The result of this renaming process is that the virus fails to
identify the .CO and .EX extensions as suitable target files as
its own method of infection requires the presence of full COM
and EXE extensions. Note that this renaming process must be
undertaken in all directories.

The machine should then be rebooted from a clean system
diskette to remove the virus from memory and the renamed
files can be renamed back to their original COM and EXE
extensions - the machine is then clean. It really is that simple!

By following this procedure the execution route of the virus is
completely severed and the link by which the virus points to
COM and EXE files is broken. The final virus cluster which is
unallocated (i.e. an orphan cluster) can be recovered using
CHKDSK in the normal way.

There are two caveats to the above procedure. First, if your
machine uses something other than COMMAND.COM as a
command interpreter this file must be replaced under clean
conditions with a known clean copy. The name and location of
the command interpreter is usually displayed as the
COMSPEC variable which may be displayed by typing SET at
the DOS prompt.

Second, in order to determine whether your
COMMAND.COM file is infected, you should boot your
machine from a clean write-protected system diskette and then
copy the suspect file onto a separate floppy disk. If the file is
infected, the resulting copy will only be one cluster (usually
2048 bytes) long.

It should also be remembered that as the virus infects a disk, it
overwrites the last usable cluster on the disk whether it has
been allocated to another file or not. Thus it is possible for
one file to be corrupted by this process. Since the average user
has no way of knowing exactly where particular files reside,
he should use a scanner capable of exhaustively searching all
bytes of all files to check whether this has happened.



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

Page 15VIRUS BULLETINNovember 1991

VIRUS ANALYSES 2 & 3
Fridrik Skulason

In the Wild - Music Bug and Form

This article will examine two boot sector viruses, which are
fairly common ‘in the wild’, although less likely to be
encountered than the ‘New Zealand’ virus. Neither virus is
interesting from a technical point of view but publication of
more detailed analysis than hitherto available was prompted
by an increase in reports of infections in the field. Much of the
information presented here is derived from commented
disassemblies provided by Dr. Andrzej Kadlof of Poland.

Music Bug

The Music Bug virus contains a couple of text strings. One is
‘MusicBug v1.06 MacroSoft Corp.’; the other is ‘— Made in
Taiwan —’, and it appears to have been created there, although
it has now spread all over the world. Like the Azusa virus, the
Music Bug virus infected the computers of a Taiwanese
producer of VGA-driver software, which then distributed
infected, shrink-wrapped and write-protected diskettes to
unsuspecting users.

Music Bug contains a simple self-test algorithm - the very
first task performed by the virus is to compute a checksum for
a 144-byte area on the boot sector, which, surprisingly is not a
part of the virus code itself. If the checksum does not match
the expected value the virus will overwrite the first 64 Kbytes
of memory. As this area includes the virus code itself -
located at 0:7C00H, this will result in a system crash.

If the checksum is correct, the virus will read the rest of the
virus code, which consists of 7 additional sectors. This code is
carefully designed to allow up to 4 retries if the virus gets a
read error. It then creates a 4 Kilobyte ‘hole’ at the top of
RAM, by lowering the value stored at 40:13H, and moves
itself there.

The virus will then load the original boot sector and hook INT
13H - a normal practice for any boot sector virus. It next
checks the current day. If no real-time clock is installed,
nothing further happens. Otherwise, the current date is
compared to the date of the infection of the boot sector. If it
appears to have been infected at least four months previously,
a flag is set, which enables the ‘music’ effect. The author’s
idea was probably to increase the virus’ chances of spreading,
by making it stay silent for the first four months after it
infects a system.

The Patch

Another interesting facet of this ‘now you see it, now you
don’t’ virus, is that we can appeal to its ‘conscience’ by
changing just 7 bytes. If these changes are introduced into the
virus cluster on the disk, a subsequent reboot makes the
patched code automatically disinfect any infected files until
there are no more and thereby ‘self-destructs’ by becoming
completely disconnected from system operation. Using this
patch also has the effect of making the machine immune to
further infections of this virus from external sources as long as
the orphaned cluster at the end of the disk is not removed.

It would be irresponsible to publish exact details of the patch
here since eager pimplies would be queuing up to produce
version two [DIR II-II? Ed.]. An information sheet giving
details of the patches is available from the Virus Bulletin to
bona fide users.

The use of either the patching method or the renaming process
may also show which file was responsible for introducing the
virus if it was originally copied from an infected floppy. What
happens is this - all infected files maintain their integrity even
under infection. Disinfecting these files restores their original
condition and since the originally copied file consisted only of
the virus code, it will be restored along with the rest. Thus if a
scanner is run after disinfection and finds a one-cluster file
which contains the virus code at its beginning, this is almost
certainly the one that caused the problem in the first place.
Exhaustive scanning is desirable to locate the single file that
may have been actually damaged by the virus code.

The Big Myth

The myth that the Bulgarian viruses are somehow ‘cleverer’
than other common specimens needs to be exploded once and
for all - the DIR-II virus is not clever; it’s ingenious but
stupid, complex and totally impractical.

The Bulgarian (and other Eastern bloc) authorities should get
their acts together and introduce legislation to make this
childish pastime illegal. Any computer technology from these
countries carries a high degree of risk. If the authorities let
them play like this with software, who is to say that some of
them haven’t introduced malicious or mischievous code into
some machine ROM chips, or even safety-critical hardware.

Less Than Twenty Four Hours Of Research

The DIR-II code has obviously been painstakingly pared down
to fit into 1024 bytes, further tampering or optimisation of this
virus appears to be unlikely. I suspect that probably many
weeks of some individual’s programming and testing went
into this latest production, but however long it took him to
produce, his effort was negated in less than 24 hours of
research.

His brainchild is now nothing more than a curiosity.



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

VIRUS BULLETINPage 16 November 1991

Music Bug Removal

It is possible to remove the virus from infected diskettes with
the SYS command, and then recover the allocated clusters by
running CHKDSK, but the use of a virus-removal program is
recommended - in particular when removing the virus from an
infected hard disk.

The infected boot sector retains the location (head, track,
sector) of the original DOS Boot Sector. The virus collects
this data and points to this location after executing its own
code, thus enabling the true DOS Boot Sector to execute in
standard fashion. All the disinfection tool has to do is to read
this information, access the original DOS boot sector and
restore it to its rightful place. This process can also be
undertaken using The Norton Utilities or PC Tools. Cleaning
up the FAT is not necessary, as it can be done by CHKDSK.

The Form Virus

This boot sector virus from Switzerland makes noises, like the
Music Bug virus, and infects the DOS Boot Sectors of
diskettes and hard disks, but there the similarity ends.

When the Form virus is executed, it reserves 2 kilobytes at the
top of RAM and reads the second half of itself from disk. The
virus does not retry the read operation if it gets a read error,
but simply hangs the machine. This means that booting from
an infected floppy may often result in the machine hanging,
because a timeout error is somewhat likely at this point. The
virus will then read the original boot sector and attempt to
infect the hard disk.

Hard Disk Infection

The Form virus reads the Partition Table and locates the active
DOS partition. It will then read the DOS Boot Sector of that
partition and check whether it is already infected or whether
the sector size is something other than 512 bytes. If it is a 512
byte sector, the original DOS Boot sector is written to the last
sector of the partition and the second half of the virus is stored
in the preceding sector. Finally the virus overwrites the first
sector of the partition (i.e. the location of the original DOS
Boot sector) with the first half of itself. As the sectors used by
the virus are not allocated by the virus they have a chance of
being overwritten, but this will only happen if the partition
fills up completely.

Activation Day?

After having infected the hard disk the virus hooks INT 13H,
but if the current date is the 24th of any month, the virus also
hooks INT 09H - the keyboard interrupt. The new INT 09H

Finally, the virus simply passes control to the original boot
sector so that execution proceeds as normal.

Music Bug INT 13H Handler

Whenever INT 13H is called the virus checks when it was last
called. If it was less than one second before, the virus will
simply call the original INT 13H handler.

If the drive being accessed is A:, B: or the first hard disk in
the system, it is checked for an existing infection. The virus
reads the DOS boot sector and checks whether the word at
offset 40H matches the corresponding word in the virus - this
word is the checksum mentioned before. If it matches or if
some error occurs, the virus will not attempt to infect the
drive and instead it checks whether it should produce a sound.

The Music

Music Bug uses the system timer as a random generator to
determine whether it should play a tune or not. The chance of
that happening is close to 14 percent - 35/256 to be exact.

The tune it plays is a sequence of 36 notes, each of which is
selected at random from a list of eight basic notes. As the
random number generator is written, it may return the same
number several times in a row which produces a sequence of
36 identical beeps. The virus uses a timer-controlled delay to
compensate for variance in clock speed between different
processors.

After playing the tune the virus proceeds with the original INT
13H request.

Music Bug Infection

Music Bug infects the DOS Boot sector, i.e. the boot sector of
the active DOS partition on the hard drive. It also recognises
360 Kbyte and 1.2 Mbyte 5.25" diskettes, but will not attempt
to infect 3.5" diskettes. It assumes the diskettes always have
12-bit FAT entries and hard disks use 16-bit FATs, so it might
be quite destructive when this is not the case.

It searches the FAT for four consecutive empty clusters,
which may result in the allocation of 16 kilobytes or even
more, instead of the 4 kilobytes which are actually necessary
to store the virus code. The clusters are not marked as ‘bad’,
but instead as ‘End-of-file’. Running CHKDSK on an infected
disk will produce a message about lost clusters, and if
CHKDSK is instructed to fix the problem, it will make the
clusters available, probably resulting in the virus code being
overwritten later.

There is also a small mistake in the code which computes the
location of the first data sector, where the number of root
directory entries is shifted right by 4 bits, multiplying it by 16,
instead of 32.



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

Page 17VIRUS BULLETINNovember 1991

handler produces a click whenever a key is pressed - a
harmless, but annoying effect.

The INT 13H Handler

The Form virus only intercepts requests to read from Track 0
on drives A: and B: - in all other cases control is simply
passed directly to the original INT 13H handler. This will
generally result in the infection of diskettes the first time that
they are accessed.

Diskettes are infected in standard fashion. The virus attempts
to infect all densities of diskettes as long as the sector size is a
standard 512 bytes. As in the case of hard disk infections the
virus starts by verifying that the sector size is 512 bytes and
that the boot sector is not already infected. It then proceeds to
locate an unused cluster, marking it as ‘bad’ in the FAT and
moving the original boot sector there, as well as the second
half of the virus code.

This is all quite ordinary boot sector virus activity - indeed
there is very little remarkable about the Form virus, except
maybe the following text message which it contains:

The FORM-Virus sends greetings to everyone who's
reading this text. FORM doesn’t destroy data! Don’t
panic! Fuckings go to Corinne.

Form Removal

The simplest way to disinfect disskettes is to boot from a
clean write-protected system diskette, transfer data or
executables using the DOS COPY command and then format
the diskette. It is essential that this process is done in a clean
DOS environment. Do not use DISKCOPY as this is an image
copier and will copy the infected diskette exactly and in its
entirity - including the virus in logical sector 0 of the diskette.

The form virus can be removed from the active hard disk
partition using a method similar to that used to remove Music
Bug - simply by locating the original boot sector and writing it
back to its original location.

The FAT might need slight fixing to recover the lost clusters,
but that is not strictly necessary and should only be done with
virus removal tools which recognise the Form virus.

Finally...

For any boot sector virus to spread and do damage it must first
be executed. A machine will only become infected if you boot
from an infected diskette. Remind all PC users never to
leave diskettes in drives for longer than necessary.

ROM start-up code always tries to boot from the diskette drive
in preference to the hard drive and if an infected diskette is
present, the virus will be read into memory.

FIAT LUX

A Pervading Myth: The CMOS Virus

For the uninitiated, CMOS (the universally accepted acronym
for Complimentary Metal Oxide Semiconductor) is a hardware
feature which appears on virtually all personal computers. The
particular feature of CMOS that makes it so useful is that the
technology can retain information over long periods of time
with only a tiny power requirement.

The CMOS feature on most PCs consists of a memory chip
and associated service hardware which enables the contents of
the memory to be read or written by appropriate software. The
service hardware usually includes a crystal oscillator which
maintains a constant ‘heartbeat’ while power is applied. The
power requirement for this little cluster of chips comes from a
battery contained in the PC and this will maintain memory and
oscillator integrity for months (possibly even years).

On many PCs the battery is rechargeable and the normal
machine power supply enables a trickle charge circuit when
the machine is switched on, thus prolonging life even further.
The amount of memory actually available in PC CMOS
memory varies widely from machine to machine - on IBM
ATs it is 50 bytes.

CMOS enables the machine to retain information even when it
is switched off. Most machines use CMOS for two main
purposes: to retain configuration information which the
machine will need to recognise its various peripherals; and to
keep a running time value which is converted to a clock/
calendar setting. Thus when a machine is switched off, the
clock/calendar keeps running (courtesy of the oscillator and
associated circuitry).

Can CMOS Be Infected?

A description of CMOS is all very interesting, but its
relevance to the virus problem is not immediately apparent.
The major (hypothetical) concern is the fact that if
information can survive a power-down, a clean reboot which
(as hardened VB readers know) is essential to successful
computer virus detection and disinfection, might be
circumvented. Such a hypothetical ‘virus’ might gain control
of the machine before the standard bootstrap code.

The vague feelings of uneasiness about a virus located in
CMOS memory (and therefore active when you switched on
regardless of how you rebooted) has persisted among unin-
formed users and has actually been perpetuated by certain
people who should know better. So perhaps it is now appropri-
ate to shed a little light on this subject.

Any sort of information can be stored in memory, data,
program code, documentation, hardware flags and so on.



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

VIRUS BULLETINPage 18 November 1991

CMOS memory is no different to ordinary RAM in this
respect and could certainly contain executable code in the
form of a virus. However, there are additional factors which
make it extremely unlikely.

The CMOS memory is not connected to the normal bus of a
PC in the same way as normal RAM is. The memory chip can
only be accessed by its controlling software and even if
executable code were stored there it could not be executed in
situ!

The contents of CMOS are actually collected into the process-
ing area by access to two input/output (I/O) ports in the
machine’s standard configuration. This is similar to the access
that PCs gain to the Asynchronous Serial Communications
port and is limited to bringing one byte (or word) at a time
into main RAM. So, just as a program file can be received
byte by byte at the serial port (and may be executed later),
information from CMOS memory can only be collected
serially.

Obviously it is still possible for CMOS to contain executable
code but in order for it to be executed it must first be collected
(byte by byte) into main RAM and then executed! This would
require a specially written ‘loader’ program to collect the code
and then execute it. This loader program would occupy the
same place in our affections as the decryption routine in other
viruses - it would be obvious, detectable and (most important)
would need to be executed in order to collect the virus. So
we’re back to checking for executable code stored on disk!

Some other factors which render the ‘CMOS virus’ a virtual
impossibility are a lack of standardisation and inter-machine
propagation. Across different machines there is virtually no
standard for what CMOS memory actually contains and
whereabouts it is stored. Thus any virus written to be stored in
the CMOS of one machine would be likely to corrupt vital
information in another.

The final nail in the coffin of the CMOS virus myth is this -
how would such a virus propagate from machine to machine?
Once it started to write its code to disk in order to attempt
infecting another machine, it becomes no different to any
other virus and is immediately exposed to detection and
eradication.

To date, no virus has been reported that attempts to use the
CMOS for code storage; even if a working sample were
developed it would strictly be of academic interest. For
similar reasons, the less well known but equally fatuous myth
of the ‘Printer RAM virus’, should also be consigned to the
realm of fairy tales.

The next time some bewildered person tells you about the
‘CMOS virus’, smile at them gently and be kind. After all, it
certainly isn’t impossible but then neither is a trans-polar
circuit of the globe by bicycle - but would you bet on it?

ON COMPUSERVE

Troublesome Concubines in the Anti-Virus
Harem

In the course of testing virus scanners, VB’s evaluators have
become increasingly aware of incompatibilities and inconsist-
encies when more than one anti-virus package is installed on a
PC’s hard disk.

At the moment this problem is prevalent in the case of Central
Point Anti-Virus. Messages on Central Point’s forum on
Compuserve include a number of complaints about false
positives. Competitive scanners - including VISCAN, DOC-
TOR (part of Virus Buster, see pp. 18-21) and Vi-Spy - to
mention just three - are detecting the Flip virus in four of
Central Point’s anti-virus programs, namely: VSAFE.COM,
VSAFE.SYS, VWATCH.COM, VWATCH.SYS.

The reason for these false positives is that all of the Central
Point programs mentioned above contain the decryption code
for the Flip virus - the same code used by scanners to detect
real infections caused by this virus. This is indeed the only
safe code sequence to use in this case.

With PC Support and security managers using scanners from
diverse sources (many major PC users subscribe to as many as
five dissimilar scanners), the manufacturers of these products
should strive towards harmony rather than discord. QA should
include efforts to ensure that products do not clash i.e. false-
positive alerts should be tested for in as many competitors’
products as possible. (One company, S&S actually subscribes
to its competitor’s products to undertake such testing. Central
Point itself is known to subscribe to the VIS Utilities which
contain the aforementioned VISCAN.)

Furthermore, no product should contain virus identification
patterns in plain code (as Central Point’s product clearly
does) - search data should be encrypted.

In Central Point’s case, the reason for this company adopting
the same or a very similar encryption algorithm to that found
in the Flip virus is unclear - one theory is that it is being used
as a means to protect certain files. Whatever the reason, the
practice should be discontinued.

It is brave (or foolhardy) to ignore alarms on the supposition
that they are false. Suppose files which produce a string of
suspected false positive indications actually are infected by
the real virus?

Manufacturers should do their best to ensure that their
products co-habit in perfect harmony. In the anti-virus harem
which users maintain these days, offending scanners, like
troublesome concubines, are likely to be evicted and replaced
with more mild-mannered counterparts.



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

Page 19VIRUS BULLETINNovember 1991

SCANNER TACTICS

Living Together - Without False Alarms!

One of the most serious problems which has arisen as a direct
result of virus-specific detection methods is the nuisance and
loss of time caused by ‘false positive’ indications. These can
take several forms and all of them can cause significant loss
of time and money, especially to large corporate PC users.

Before looking at the various facets of the problem let us first
define what we mean by ‘false positive’:

Whether using a scanner, a resident monitor or some form of
file integrity checking, the positive identification of virus code
or virus-like activity is the name of the game. Unfortunately,
the information used to identify the virus is always incomplete
- unless the virus is non-encrypting and a complete copy of its
code is used for comparison! Thus, there will be times when
even the best packages indicate the presence of a virus when
in fact what they have found is innocent code which matches
their identification criteria. These inaccurate indications of
infection are known as ‘false positives’.

A common reason for false positive indicators is the use of
insufficiently specific search patterns. Another reason is when
two packages use similar patterns, at least one of which is not
stored (either on file or in memory) in encrypted form. A third
problem occurs on memory checking programs when a second
run is made after finding a virus in a disk file.

With integrity checking programs, slightly different problems
occur. The user must be aware of all of these problems in
order to optimise his response to the possibility of false
positives. Some of the most common problems can best be
explained by citing examples.

Pattern Clashes In Files

At least one anti-virus package stores its search patterns in
unencrypted form on disk. This has caused false positive
indications from other packages, particularly where the
identification of simple encrypting viruses is concerned. With
such viruses, the decryption stub used for primary identifica-
tion is drastically reduced and the chance of duplicate patterns
being extracted by different vendors is thereby increased.
Thus package A might identify a virus in package B simply
because package B did not take the elementary precaution of
encrypting its signatures before storing them on disk.

‘Unique’ Signatures

With most viruses, the extraction of a sufficiently specific
recognition pattern is relatively straightforward. With some of
the encrypting and randomising samples and certain viruses
written in high level languages things become a little more

difficult. It is here that vendors may trade off overall accuracy
and security in order to avoid what they consider an unaccept-
able level of false positive reports. The technology that each
vendor uses may thereby allow a greater or lesser risk of
clashing with other packages or producing erroneous reports.
Whether it is better to sacrifice security to avoid an occasional
false positive is entirely a decision for the user.

False Positives in Memory

In these instances, both package A and B might have their
recognition information stored securely on disk but when they
are loaded into memory the patterns must be decrypted before
use. As long as the package conscientiously ‘cleans up’ before
it exits all will be well. However, there are packages which do
not complete this cleanup process and in this case, running
package B immediately after package A (from the same boot
sequence) may produce a false positive in memory when B
finds a discarded but recognisable pattern belonging to A.

Another false positive in memory can be caused as the result
of a scanner finding a real virus in a file. When scanning files,
their contents are read into memory through the disk buffers
(and any cache system that may be present). Thus if a file is
read and found to contain a recognisable chunk of a virus, the
disk or cache buffers may still contain virus code (albeit not in
active form). An immediate re-scan may well detect this in
memory and display a false indication that the virus is
‘resident’ (i.e. operative) in memory.

Generic Integrity Checking Programs

If Program A collects and stores an integrity profile of
specific executable files, and then Program B is run to do
roughly the same thing, as long as both programs have made
no change to the files under observation there will be no clash.

However, there are (believe it or not) commercial programs
which will modify a file’s profile to indicate that it has been
checked. Some vendors even add integrity information to the
end of the file which can be referenced (only by their software
of course) as a future check on integrity. Temporarily
disregarding the fact that such methods are useless against
stealth viruses, any modification of file content, date/time or
attributes constitutes a violation of the file’s integrity which
any reasonable integrity checking program will detect!

If only Program A changes files in this way then as long as
Program A is run first, there should be no clash. However,
consider if both A and B use different versions of this method
- the first time each program check is run there will be no
problem reported. Subsequent checks will report integrity
violations only if their own modification is no longer visible
because the other program has added its own modification and
covered it up! Thus running B after A or A after B will have
the poor user running around in circles. There are even
commercial checking programs which manipulate the invalid
values of the date and time fields (just like some viruses)!



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

VIRUS BULLETINPage 20 November 1991

PRODUCT REVIEW
Mark Hamilton

Virus Buster

Virus Buster is an Australian package from Leprechaun
Software International. The package consists of a 320-page
perfect-bound paperback manual, two 360 Kbyte and one 720
Kbyte diskettes in video-cassette type packaging.

The software consists of three main programs, BUSTER,
WATCHDOG and DOCTOR and a number of complementary
files, three of which are simply included to install the package
on a hard disk or floppies. The installation process scans
memory and the destination disk before copying and installing
the constituent parts of the package.

Installation

The package refused to install onto the hard disk of my
Apricot 486, but it installed without any problem to the hard
drive of my Compaq DeskPro 386/16. An inauspicious start to
the review.

Alternatively, you can simply copy the 22 files into a sub-
directory, and using the instructions in the documentation,
configure the software to suit your preferences.

Buster

BUSTER is a checksumming program which detect changes in
files. The first time it is run, it creates an encrypted data file,
BUSTER37.DAT, which contains details of the file’s path
name, date, size, header and checksum. This information is
used by BUSTER for subsequent checks. By default, BUSTER,
checks all the normal executable file types, but you are able to
add to or remove from the list of these to suit your personal
preferences.

When BUSTER is re-run, any changes to the recorded details
to any of the files (or disk’s system area) are reported in a
pop-up window. You can add details of any new program;
change BUSTER’s record for a file; rename the file; wipe the
file; or, generically restore the file to its former self. BUSTER
is intelligent enough to know whether it can restore a particu-
lar change successfully and disables this option if it can’t.

On my Compaq Deskpro BUSTER completed its checks on
419 executable files (14 Mbytes) in just 2 minutes, which
works out at 118 Kbytes per second. It took less than one
second longer to create its database initially.

Like all generic checkers, it tripped-up over self-modifying
programs - such as some of the shareware text editors which

Guidelines

From the user’s point of view, it makes good sense to use a
number of different anti-virus packages in order that they may
each confirm the findings of the other. One of the major
reasons for such an approach is to limit the problems posed by
false positive indications. Unfortunately, the careless or self-
centred approach of many vendors means that their packages
may actually cause false positives in other packages.

To avoid the confusion and inconvenience caused by false
positives there are certain guidelines:

➤ Use several scanners from dissimilar sources. The more
search data that is available the better - this increases the
likelihood of detecting genuine infections while providing a
means to diagnose suspected false alarms. No single virus-
scanner can provide 100 percent protection!

➤ Always run scanning and integrity checks on a freshly
booted system. Boot from power off between subsequent
checks.

➤ Remember that false positives can result from scanning
with anti-virus software from dissimilar sources. Either
remove such software from the disk under inspection or
ignore any warnings limited solely to it.

➤ It would be highly unusual to find just a single occurrence
of a parasitic (program infecting) virus on a working hard
disk. Once a virus is invoked its main purpose is to spread,
so you would expect to find several occurrences within a
working environment. Floppy disks on the other hand, could
quite easily contain just a single infection.

➤ Avoid the use of integrity checking programs which add
modifications to actual file profiles. These are often
advertised as providing a checking system which will travel
with the file but they are worse than useless when used in
conjunction with other integrity checking software that
completes a reliable check.

➤ When a virus infection has been indicated, you should
attempt to verify its existence via other methods (integrity
checks versus scanning methods etc.). These include
checking along possible infection paths and testing with
other software.

You should also remember to check with the vendor of the
package - if there are any false positive problems, they are
likely to know about them and be able to put your mind at
rest. In any case they should be informed so that they can
make efforts to correct the problem (assuming it is a problem
they can address).

Finally, if a package continues to produce an unacceptable
number of false positive indications it should be discarded.
The whole point of anti-virus software is to save time and
worry - not generate it!



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

Page 21VIRUS BULLETINNovember 1991

checksum marker, a pop-up window appears and gives you the
option of not running the program, turning off WATCHDOG,
or continuing.

Possible Drawbacks

There are three disadvantages with this strategy. As with
BUSTER, there is a problem with self-modifying programs.
However, the way in which the WATCHDOG markers are
stored may prove a more serious problem.

Both PROTECT and WATCHDOG append the 4-byte marker
to the file and place it in the slack space at the end of most
files - the file’s directory entry is not altered to account for the
extra bytes. Therefore if a file is moved (by a disk
defragmentation utility such as PC Tools’ COMPRESS or
Symantec’s SPEED DISK utilities, for instance) or just copied,
the marker is lost.

Furthermore, it is becoming increasingly common for program
files to be constructed such that they fill disk clusters exactly.
This is done to counter the threat of infection by viruses such
as Nomenklatura which reside in slack space. These padded
files are not protectable by PROTECT/WATCHDOG since
there is no slack space. On most disk systems, 2 or 4 kilobytes
is the normal cluster size but DR-DOS 6’s SPEEDSTOR disk
compression system allocates disk space in multiples of 512
byte sectors - the generic Addstor and Stacker products have
similar characteristics. This reduces the number of files that
can potentially be protected since, statistically, more files will
fill 512 bytes than its multiples, 2048 or 4096.

Other Components

FIDO is a Windows 3 specific program which serves as an
interface to WATCHDOG while working in the Windows
environment. To install FIDO, you simply include a line
similar to ‘LOAD=FIDO.EXE’ in the [Windows] section of
your WIN.INI file.

VBCOPY checks files for viruses while they are being copied
and provides most of the functionality of the DOS XCOPY
utility. DISKLOK prevents the hard disk of a PC being
accessed after the PC is booted from a floppy and can
automatically replace Master and DOS Boot sectors thus
providing transparent protection against common boot sector
viruses. KEYLOK locks the keyboard during periods of
absence from a running PC. Both these utilities are included to
provide a medium level of security. All the utilities can be
configured using the INSTALL program which can be re-run,
at will, as a configuration utility. This, like PROTECT,
BUSTER, and DOCTOR has a full screen, menu-driven
interface with on-line help and is a genuine pleasure to use.

Leprechaun also provides a small device driver, VBSAVER, of
around 200 bytes which is designed to circumvent infection by
stealth viruses which manage to avoid detection by most disk
scanners.

save their configuration information within themselves. In
such cases, BUSTER reports changes to both the date and
contents of the file. Provided you are aware of which pro-
grams exhibit this behaviour, you can safely update your
chosen generic checker’s database with a deal of confidence.

Watchdog

WATCHDOG is a dual-function memory-resident (TSR)
monitor program. It warns of attempts to modify executable
files, including those of the operating system, and to sensitive
disk areas, such as the Master Boot Sector. (However, under
working conditions it totally failed to prevent the infection of
the DOS Boot Sector of a WATCHDOG protected machine
with the Anthrax virus.)

WATCHDOG will conflict with such innocent programs such
as FORMAT or any aforementioned self-modifying program.
There is a companion program, PROTECT, which bulk-
immunises program files, by placing a checksum in the free-
space beyond the end of file.

When you run a program, with WATCHDOG resident,
WATCHDOG calculates a checksum for the program and it
looks for this marker. If it finds it and it agrees with the
calculated value, the program is executed without further
interference. If the checksums do not match, or if there is no

Doctor indicating a false positive in Central Point Anti-
Virus. A number of virus scanners have tripped over

CPAV - the fault lies with Central Point not Leprechaun!
(See text and article, page 18.)



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

VIRUS BULLETINPage 22 November 1991

Point has done nothing so far to resolve this major problem
(for more information see article on page 18).

DOCTOR fared quite well with the encrypted virus test which
was introduced last month. Apart from missing three of the 20
COM file Flip infections (it found all 20 Flip EXE infections)
and one of the 50 V2P6 infections, it detected all the rest. In
fact this product fared better than most as it found all the
multiple infections of the encrypting viruses known to be at
large, including Tequila and Spanish Telecom 1 and 2.

It had absolutely no problem detecting the various boot sector
infections and scored a straight 100 percent detection rate.

In its Turbo mode, DOCTOR proved to be one of the fastest
scanners I have come across. However, in its secure mode, it
took over ten minutes to scan all the files on the Compaq’s
hard disk.

In checking just the 421 executable files (approximately half
the total number of files) in its turbo mode, it sped along and
completed its checks in a shade over two minutes. Its secure
floppy test was completed in just under 11 seconds and in its
turbo mode, an astonishing two seconds!

When DOCTOR discovers what it thinks is a virus infected
file, it displays a large warning red box which provides details
of the file and the suspected virus, with a menu box beneath.
This gives you the option of changing the file’s name,
removing the virus, ignoring the threat or wiping the file
clean. One of the options dictates how wiping is achieved -

The virus alert includes a broadcast from the speaker - in
default mode this sounds like an American police car.

Tastes vary and the men from Oz have provided a sound
editor. Very thoughtful - but is it really necessary?

Buster, Leprechaun Software’s checksumming program
indicating the installation of new files which have not

yet been checksummed. The program searches for
unknown files. Notice the ‘EXACT COPY’ diagnosis

indicating a checksum match.

Doctor

In common with the other elements of this package that
feature a full screen, menu-driven environment, DOCTOR, the
scanner, can be run in batch mode. In full screen mode, it
shares a really annoying feature with BUSTER and PROTECT.
At the bottom right of the screen a continously repeating
sequence of product name, producer, telephone number (in
Australia) and two user-defined messages are displayed,
flashing, changing colour and generally causing annoyance. It
might be eye-catching, but I sorely wished I could disable the
wretched thing.

The interface is clean, easy to use, (although not too respon-
sive to a mouse click) and well thought-out. I was pleased to
discover that, although a text-mode application, the all-too
familiar mouse cursor blob had been replaced by a yellow
cross on a suitable contrasting background (red or brown).

DOCTOR’s has a respectable accuracy percentage, detecting
340 out of the 363 file infections of my current test-suite
(refer to Virus Bulletin, September 1991, page 18 for full
details of the test-set and test conditions employed).

Like so many scanners, DOCTOR fell foul of the notorious
Central Point Anti-Virus’ VSAFE and VWATCH program sets.
There have been a number of messages in Central Point’s
support forum on Compuserve from customers complaining
that other scanners were tripping over these files, but Central



VIRUS BULLETIN ©1991 Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Oxon, OX14 3YS, England. Tel (+44) 235 555139.
/90/$0.00+2.50 This bulletin is available only to qualified subscribers. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
by any form or by any means, electronic, magnetic, optical or photocopying, without the prior written permission of the publishers.

Page 23VIRUS BULLETINNovember 1991

Technical Details

Test Conditions: The testing for this review was
conducted on two PCs. The first, a Compaq DeskPro
386/16 running under DR-DOS 6 was used for the speed
tests. There are 27.5 megabytes in 920 files of which 421
files are binary executables and they occupy 14.6
megabytes.

For the floppy read speed tests, the 360 Kbyte Setup disk
for Microsoft C 5.1 was used. This contains a total of 12
files requiring 354,804 bytes, of which four (238, 913
bytes in volume) are executable.

The virus identification testing was conducted on an
Apricot 486/25 which houses the test library. For
specific details of the viruses used in all the tests, please
refer to VB, VB, September 1991 p. 18.

Product: Virus Buster

Developer: Leprechaun Software Pty Ltd, PO Box 184,
Holland Park, Queensland 4121, Australia.
Tel +61 7 343 8866, Fax +61 7 343 8733, BBS +61 7
849 8727.

European Office: VB Software, Church Street,
Cappawhite, County Tipperary, Eire, Tel +353 6275404.

USA: Toll-free number 800 521 8849.

Availability: IBM, PC, AT, PS2 or compatible running
MS-DOS version 2.1 or greater. Hardware requirements
include 256 Kbytes of memory and 700 Kilobytes of
hard disk space.

Version Evaluated: 3.75

Serial Number: 1048346920

Price: £95.00. (Plus £50.00 for yearly maintenance
including unlimited access to bulletin board update
service and technical support).

Editor’s Note

The hard disk speed results for Virus Buster shown in the
table opposite are not directly comparable to those shown
in the comparative scanner reviews which VB regularly
publishes. The file configuration on the test machine has
changed since the last comparative review - details of the file
configuration used for the tests on Virus Buster are shown
above. Floppy disk scan speeds and accuracy percentages
shown in the table opposite remain directly comparable to
those reported in VB, September 1991, pp. 16-17. All com-
parative reviews are conducted using exactly the same
processor and file configurations. In future, standalone
reviews such as this one of Virus Buster, results will become
comparable due to the use of a static set of executable files
against which timing tests will be run.

VIRUS BUSTER

Product and Version Virus Buster 3.75

Scanning Speeds  1

Test 1 (i) Hard Disk - Turbo 2m  2s
Test 1 (ii) Hard Disk - Secure 10m 57s
Test 2 (i) Floppy Disk - Turbo 2s
Test 2 (ii) Floppy Disk - Secure 38s

Scanner Accuracy  2

Parasitic Viruses - Turbo 340/363
Parasitic Viruses - Secure 340/363
Boot Sector Viruses - Turbo 8/8
Accuracy Perecentage - Turbo 93.8%
Accuracy Percentage - Secure 93.8%

Stamina Test - Encrypting Viruses  3

Multiple Test: Flip Fail
Multiple Test: Suomi Pass
Multiple Test: Tequila Pass
Multiple Test: Spanish Telecom Pass
Multiple Test: Group 2 Pass
Multiple Test: Group 3 Fail

that is to say whether the file is wiped according to Australian
Government Rules (whatever they might be - a form of rugby
played in Canberra?) or not. [The Government Rules are
explained on pages 119 and 161 of the manual. Ed.]

Conclusions

Virus Buster has obviously been designed and implemented as
a result of thorough technical research and development. It is
to be hoped that the men in cork-brimmed hats continue their
good work in producing a steady stream of regular updates of
this quality. This package is a rising star and looks set to
figure prominently in VB’s ongoing comparative reviews. It
isn’t quite what tinnies of XXXX are to sheep shearers
(essential), but it’s close.

1 This speed test is outlined in the test protocol described
in VB, April 1991, pp 6-7.
2 The test-set is outlined in VB, September 1991, p. 18.
3 This test to determine a scanner’s ability to detect
encrypted viruses was first conducted in VB, October
1991, pp. 7-11.



VIRUS BULLETIN

Subscription price for 1 year (12 issues) including first-class/airmail delivery:

UK £195, Europe £225, International £245 (US$395)

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, 21 The Quadrant, Abingdon Science Park, Abingdon,
OX14 3YS, England

Tel (0235) 555139, International Tel (+44) 235 555139
Fax (0235) 559935, International Fax (+44) 235 559935

US subscriptions only:

June Jordan, Virus Bulletin, 590 Danbury Road, Ridgefield, CT 06877, USA
Tel 203 431 8720, Fax 203 431 8165

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of
products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas
contained in the material herein.

This publication has been registered with the Copyright Clearance Centre Ltd. Consent is given for copying of articles
for personal or internal use, or for personal use of specific clients. The consent is given on the condition that the copier
pays through the Centre the per-copy fee stated in the code on each page.

END-NOTES & NEWS
S&S International has reported a clash between its FindVirus scanner and the DOS utility SHARE.COM. If SHARE is executed in advance of FindVirus
and if diskettes are subsequently examined in the drive from which the scanner was launched, FindVirus fails to examine the diskettes correctly and
reports zero files on disk regardless of actual content. S&S report that the problem has now been fixed.

The complete proceedings of the First International Virus Bulletin Conference, St Helier, Jersey 1991 are now available at a cost of £50.00 (excluding
postage and packing). The proceedings include slide sets and transcriptions. Contact Petra Duffield, Virus Bulletin Ltd.

The National Computer Security Association is hosting a two-day Anti-Virus Product Developers Conference on November 25-26 1991 in Washington
DC. Representatives from Symantec, McAfee Associates, S&S International, Novell and Certus are included in the line-up of speakers. An ambitious
programme aims to tackle ethics, certification, virus migration and epidemiology, networks, virus classification and a host of other topics. Information
from NCSA, AVPD Conference, 227 West Main Street, Mechanicsburg, PA 17055, USA. Tel 717 258 1816.

Writeguard is hailed as a ‘write-protect tab for your hard disk’. This hard card lives between the hard disk and the disk controller and switches are used
to write-protect specific tracks of the hard disk. The device aims to prevent boot sector viruses. The product supports ST5096, ST412, SCSI and IDE hard
disk controllers. Information from Marscot Ltd, UK. Tel 0383 416089.

S&S International has launched PC Armour, a memory-resident program with a 2 Kbyte footprint which can be configured to prevent unauthorised hard
disk access, unauthorised program execution and to enforce password protected access control. PC Armour supports IBM PC compatibles and networks.
Program authorisation is not yet available under Windows. Information from S&S, UK. Tel 0442 877877.

ViruGuard is a hard card which aims to provide ‘complete virus protection’. The card is said to trap all modifications to executable files, detect interrupt
changes, prevent disk formats, report data corruption, intercept direct BIOS calls and illegal DOS calls. Information from Ports of Trade, 6 Alcis Street,
Newlands, Cape Town 7700, South Africa. Tel 686 8215, Fax 685 1807.

Sophos has announced the launch of D-FENCE, a memory-resident utility which prevents the use of unauthorised disks. The program is designed to
ensure that only ‘authorised’ disks can be used on company machines. According to Sophos, D-FENCE is ‘the conceptual equivalent of equipping all PCs
with 4 inch drives. Nobody can use floppy disks until they have been virus-checked and converted to D-FENCE format.’ Information from Sophos, UK.
Tel 0235 559933.

Digital Equipment Corporation and Computer Security Consultants Inc., will hold a series of seminars on disaster recovery. The seminars take place on
18-20th November (Los Angeles), 10-12th December (Vancouver), 11-13th February (Orlando) and 27-29th May (San Diego). For information contact
CSCI, Inc., USA. Tel 800 925 CSCI.




