

Fortinet-1018

IN THIS ISSUE:

• Wilding on Viruses. Edward Wilding, VB’s founding
editor, presents his own views on the war against viruses
and describes some of his experiences along the way.

• Polymorphism. The first part of a new series on viral
developments: How do polymorphic viruses work, and
how can we detect them?

• Norton Anti-Virus 3.0. The third revision, and VB’s
third review, of Symantec’s scanner - a definite improve-
ment, albeit with limitations.

Editor: Richard Ford

Technical Editor: Fridrik Skulason

Consulting Editor: Edward Wilding,
Network Security Management, UK

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS,
England. Tel (+44) 235 555139. /90/$0.00+2.50 No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form without the prior written permission of the publishers.

ISSN 0956-9979 NOVEMBER 1993

CONTENTS

EDITORIAL

Risky Business 2

VIRUS PREVALENCE TABLE 3

NEWS

Variations on a Theme 3
More 2600 Mayhem 3
Shattered Glass, Part III 3

IBM PC VIRUSES (UPDATE) 4

INSIGHT

Old Editors Never Die... 6

VIRUS ANALYSES

1. Satan Bug - Unleashed! 8
2. Carbuncle - A Nasty Infection 10
3. Quox 12

TUTORIAL

The Shape Shifters 13

FEATURE

1. The Nuke Encryption Device 16

PRODUCT REVIEW

1. Oyster - A Pearl of a Product? 18
2. Norton Strikes Again 21

END NOTES & NEWS 24

THE INTERNATIONAL PUBLICATION ON COMPUTER VIRUS PREVENTION, RECOGNITION AND REMOVAL

Fortinet-1018

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

2 … VIRUS BULLETIN NOVEMBER 1993

EDITORIAL

Risky Business

One example of a secure anti-virus policy is a strictly enforced regime of clean-booting, checksum-
ming and the scanning of all disks as they enter and leave the company. This procedure is tried and
tested and has been shown to work. Taking this a step further, hardware write-protection could be
implemented, along with access control mechanisms and disk validation software. These additional
measures undoubtedly provide a very high level of protection, but when taken to such extremes are,
for most sites, totally impractical.

In the real world, such measures are almost always unnecessary, and defence strategies tend to fall
between a ‘maximum overkill’ solution and no protection at all. The hardest part of designing an
anti-virus policy is deciding what precautions are needed.

One danger when planning security measures is that it is easy to become too focused on one particu-
lar issue. Viruses are just one of the many dangers which businesses face, and should be treated as
such. Therefore it seems logical to apply the usual risk assesment techniques when evaluating the
best way to protect one’s company.

Such risk analysis relies on being able to gauge the relative reliability of different countermeasures.
For example, disinfecting files is inherently less reliable than replacing them from either the original
master diskettes or a trusted backup - but by how much? Is the loss of security justifiable?

Consider the security requirements for a computer used to create the master copy of software which
will be shipped to a customer. The right way to protect this machine would be clean booting and
examining the machine with a checksummer - not a very usable solution, but a very secure one. This
approach is needed because of the consequences of a mishap: 1 million infected copies of Word for
Windows, for example, would doubtless cause a number of red faces.

However, when operating in a low-security (and often high threat) environment, little will be lost by
using less reliable prophylactics such as TSRs. Does a department filled with machines used for
word-processing need to be clean-booted and scanned once a day? Probably not.

The preceding discussion may seem obvious but it is very easy for a company to adopt an enterprise-
wide solution - the ‘one size fits all’ approach to computer security. A policy set up in this manner
will either be woefully inadequate for mission-critical systems or far too rigorous for most users.
Compare this with a made-to-measure solution, where the level of security depends on how much
each user actually needs. Both solutions will defend againt viral attack, but only one has the benefit
of leaving the user as much freedom as possible. Obviously individually tailoring each machine’s
protection may not be practical: the level of the granularity of the policy will depend upon the type of
company and the number of machines involved.

The bottom line in virus detection is price. If the actual cost of the countermeasures put in place
exceeds the cost of the hazard which they replace then clearly the protection is not needed. Unfortu-
nately the money spent on anti-virus software is only part of the expenditure necessary. Once the
software is purchased, there are many operational costs in maintaining it.

If a policy requires that a scanner is updated on 5,000 PCs once a month, the time taken to carry this
out must be entered into the equation. The next hidden cost is that of the man-hours taken up in
training users on safe computing practices. The list could go on. If an anti-virus policy is not cost-
effective, it is quite simply wrong.

All this is enough to make even the most stalwart IT Manager start muttering about camels and the
eyes of needles, but this does not need to be the case. Where complex theoretical analysis cannot
solve the problem, common sense usually goes a long way. You know the threat, you can evaluate
the risks, and you can balance them against the cost of your countermeasures. The most secure
solution is not always the right one.

You know the
threat, you can
evaluate the risks,
and you can balance
them against the
cost of your counter-
measures.

“

”

 VIRUS BULLETIN NOVEMBER 1993 … 3

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Virus Prevalence Table - September 1993

Virus Incidents (%) Reports

Form 21 42.9%

Spanish Telecom 5 11.6%

Flip 3 7.0%

Tequila 3 7.0%

Cascade 2 4.7%

Joshi 2 4.7%

V-Sign 2 4.7%

BFD-451 1 2.3%

DIR-II 1 2.3%

Exebug-1 1 2.3%

Helloween 1 2.3%

Italian 1 2.3%

New Zealand 2 1 2.3%

NoInt 1 2.3%

Quox 1 2.3%

Slow 1 2.3%

Vacsina 1 2.3%

Yankee 1 2.3%

Total 49 100.0%

NEWS

Variations on a Theme
Virus researchers worldwide have recently been given an
early Christmas present from the computer underground:
250 new viruses.

The new virus collection which is being circulated among
anti-virus vendors was sent to a number of different re-
searchers. None of the viruses in the collection are com-
pletely new per se, but each is a very minor variant of an
already existing virus.

The viruses all appear to have been modified in an attempt to
evade detection by McAfee’s Scan, and the changes made
are sufficiently small that many other virus scanners are
capable of detecting these variants. This follows the alleged
publication of a number of the search strings used by the
McAfee product on some virus exchange BBSs.

The virus collection has a number of features which make it
somewhat more intriguing than most unsolicited collections.

Firstly, all the variants are based on very old viruses -
typically two to three years old. Secondly, the naming
convention used by the author appears to be completely
arbitrary, almost as if the author had picked random words
out of a dictionary.

Finally (and most worryingly), the file was received with the
name PART1.ZIP, implying this is only the first instalment.
With many scanners already bursting at the seams, it will be
a test for research departments to keep up with this rate of
flow if this becomes a monthly occurrence.

Nevertheless, users of current anti-virus products should not
be alarmed by this news, as at this time none of these viruses
are known to be in the wild. A full analysis of the collection
will be published next month ❚

More 2600 Mayhem
The latest edition of the quarterly hacker magazine, 2600,
contains more advice for the would-be virus author. Mas-
querading as advice on how to armour a virus in order to
protect ‘your virus from evil detectors’, there is a one-page
article on basic encryption. Readers should note that 2600’s
code presents little threat to present scanner technology - any
new virus will evade a virus scanner.

The current edition also contains a transcription of the report
which the 2600 editor, Emmanuel Goldstein, submitted to
the House Subcommittee on Telecommunications and
Finance last June. It puts forth the traditional hacker
argument that hacking in itself is not a criminal offence,
even though the information and experience gained could
easily be used for criminal purposes ❚

Shattered Glass, Part III
According to a recent report by Central Point, a new
Windows virus has been released. The virus, internally
named as Cyber Riot, was sent to Central Point by a group
who have named themselves ‘The Chicago 7’.

According to the letter sent by the group, over 15,000 PCs
are infected with the virus, though there is no evidence to
corroborate this fact.

When the virus is executed, it first infects the file
KRNL386.EXE. When this file is next run (ie next time
Windows is started), every Windows program executed will
be infected. The Windows Kernel file is infected in a differ-
ent way to other files: since it behaves as a DLL to Windows
calls, the virus can ‘hook’ all WinExec system calls.

Cyber Riot contains a malicious trigger routine: if Windows
is loaded between April 29th and May 1st, the virus will
attempt to destroy all data stored on the fixed disk. The
trigger dates correspond to the dates of the Rodney King LA
Riots, hence the name of the virus. The main weakness of
the virus is that it needs to infect KRNL386.EXE in order to
function, limiting it to systems running Windows 3.1.
According to the virus authors, the Cyber Riot’s source code
will shortly be distributed among the computer underground,
making it highly likely that variants will be encountered ❚

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

4 … VIRUS BULLETIN NOVEMBER 1993

M Infects Master Boot Sector
(Track 0, Head 0, Sector 1)

R Memory-resident after infection

P Companion virus

L Link virus

C Infects COM files

E Infects EXE files

D Infects DOS Boot Sector
(logical sector 0 on disk)

N Not memory-resident

Type Codes

IBM PC VIRUSES (UPDATE)

Updates and amendments to the Virus Bulletin Table of
Known IBM PC Viruses as of 25th October 1993. Each
entry consists of the virus’ name, its aliases (if any) and
the virus type. This is followed by a short description (if
available) and a 24-byte hexadecimal search pattern to
detect the presence of the virus with a disk utility or
preferably a dedicated scanner which contains a user-
updatable pattern library.

Black_Jec.232 EN: This 232 byte variant does not work. The reason is simple - it infects EXE files, as if they were
COM files, and infected programs do not execute properly. Detected with the Bljec pattern.

Black_Jec.235, Black_Jec.284 CN: These two variants (235 and 284 byte long) are detected with the Bljec pattern.

Cascade.691 CR: Despite the fact that this virus is less than half the size of any other Cascade variant, there is no
doubt that it belongs to that family. It has been stripped down, with encryption and unnecessary
functionality removed. Detected with the Jojo pattern.

Cascade.1701.L CR: The encryption routine has been modified in this variant, presumably to avoid detection. Apart from
this, it is unremarkable.
Cascade.1701.L F607 0174 168D 5F23 BD82 0631 1F31 2F43 4D75 F8EB 0658 7472

Comasp.633 CN: Related to the Comasp.472 virus, which was originally reported under the name V472.
Comasp.633 01D6 31DB 8EC3 BB84 0026 8B0F 890C 890D 4646 4747 4343 268B

Digger.1512 CEN: Similar to the earlier variant, but 1512 bytes long.
Digger.1512 BB04 0051 B104 2ED2 0159 43E2 F65B 3D9B 1B74 08E9 80FB B89B

Dos 7 CN: Three small viruses (342, 376 and 419 bytes) which contain the text ‘MSDOS 7 (C)1993
ANARKICK SYSTEMS DOS 6 Antivirus sucks. It missed this one!’
Dos 7.342 8B04 7216 3B06 0001 740D 8B44 023D 1560 740D EB4A EB5E 90B4

Dos 7.376 8B04 72C2 3B06 0001 74B9 8B44 023D 1560 7402 EB3F 5756 BE23

Dos 7.419 8B04 72A6 3B06 0001 749D 8B44 023D 1560 7402 EB3F 5756 BE4D

Fred CR: A 657 byte virus. Awaiting analysis.
Fred 80FC FF74 1A80 FC4E 740A 80FC 4F74 05EA ???? ???? E85C 00E8

Hates CN: A 213 byte virus that does nothing of interest other than occasionally displaying the message ‘Jesus
Hates You’.
Hates B42C CD21 80FA 0A72 08BA 8000 B41A CD21 C3B8 0011 BB00 0EB9

Helloween CER: Several new variants have been reported recently. Two of them (1227 and 1447 bytes) are
detected with the Helloween pattern, two other variants (1839 and 1888 bytes) are detected with the
Helloween.1182 pattern, but the last variant (2470 bytes long) requires a new search pattern.
Helloween.2470 B440 EB02 B43F E816 0072 022B C1C3 33C9 33D2 B802 42EB 0890

Honey CN: The name of this 666 byte virus is derived from the text string ‘Honey, I’m home . . .’.
Honey 80BC 3D01 E974 09B4 4FE9 76FF B400 CD21 B802 428B 9C3B 0133

Jerusalem.2223 CER: This 2223/2225 (EXE/COM) byte variant is detected with the Acad-2576 pattern.

Lockjaw.Black_Knight, Lockjaw.808 P: Two new variants of this companion virus, 520 and 808 bytes long.
Black Knight 9C06 1E50 5352 3D00 4B75 03E8 0E00 5A5B 581F 079D 2EFF 2E08
Lockjaw.808 9C06 1E50 5352 3D00 4B75 03E8 0E00 5A5B 581F 079D 2EFF 2E28

Loren CER: This 1387 byte virus is one of the few viruses which can be considered a ‘real-world’ problem.
Loren 8907 4343 E2F5 58C3 502E 8B86 CE05 2E89 86DB 0558 C30E 1F8E

Murphy.Woodstock ER: A 1219 byte variant, detected with the Murphy_2 pattern.

Nina.B CR: Very similar to the original Nina virus, and detected with the same pattern.

 VIRUS BULLETIN NOVEMBER 1993 … 5

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

OK CN: A 778 byte Russian virus. Awaiting analysis.
OK 2E88 44FF E2F7 5E59 C306 B833 35CD 2126 C607 CF07 C3B4 19CD

Phx CER: A 965 byte virus. Awaiting analysis.
Phx BA1A CA80 FC4B 747D 3D02 3D74 433D 74B9 7436 80FC 4074 05EA

Pixel.343 CN: Detected with the Pixel.277 pattern.

Pixel.846 CN: Very similar to the original ‘Buy Pixel’ variant, but one byte shorter in length. Detected with the
Amstrad pattern.

PS-MPC: As expected, new PS-MPC-generated viruses arrive regularly. Most of them are encrypted, and detected
by any scanner that can identify the standard PS-MPC encryption method. The encrypted variants
include: Flex (491, CR), 513 (513, EN), Sorlec.535 (535, EN), Skeleton (552, CEN), Sorlec.553 (553,
ER), 564 (564, CEN), 570 (570, CEN), Alien.571 (571, CER), 574 (574, CER) 616 (616, CEN), Shock
(620, CER), Alien.625 (625, CER), Soup (645, EN), Arcv-3.657 (657, CN), Dos3 (661, CEN) Z10.662
(662, CEN), Z10.704 (704, EN), Ecu (711, ER), Napoleon (729, CEN), Arcv-9.745 (745, CN), Toys
(773, CEN), Crumble (778, CEN), Arcv-10 (827, CER), Nirvana (835, EN), Grease (856, EN) and
Payraise.897 (897, CER). In addition, several non-encrypted variants have also appeared, but they can be
easily detected with a search pattern. They include 331 (331,CN), 349 (349, EN), T-Rex (410, CN),
Abx.420 (420, CN), Iron_hoof.459 (459, EN) Iron_hoof.462 (462, EN), 478 (478, CEN), Nuke5 (478,
CER), 481 (481, CEN) Page (570, CEN), 597 (597, CEN), Abx.1341 (1341, CN), Abx.1520 (1520, CN)
and Abx.2010 (2010, CN).
PS-MPC Gen1 A5A4 C686 ???? ??B4 1A8D 96?? ??CD 21B4 47B2 008D B6?? 02CD

PS-MPC Gen2 A5A5 A5A5 C686 ???? ??B4 1A8D 96?? ??CD 21B4 47B2 008D B6

Deranged A5A5 A5A5 8D96 E302 E838 018D B6A3 02B4 47B2 00CD 218D 9670

PS 349 A5A5 A5A5 B41A 8D96 5D02 CD21 8D96 9401 B44E B907 00CD 2172

PS 481 A5A5 A5A5 C686 5003 008D 96D5 02E8 6B00 8D96 DB02 E864 0080

PS 478 A5A5 A5A5 C686 0C03 02B4 1A8D 96E1 02CD 218D 96D5 02E8 6500

PS Nuke5 5053 5152 5657 1E06 3D00 4B74 03E9 1C01 2E89 16DE 012E 8C1E

PS T-Rex 9C50 5351 5256 571E 063D 004B 740E 071F 5F5E 5A59 5B58 9DEA

PS Abx.1341 A5A4 C686 6F06 FFB4 1A8D 9644 06CD 21B8 2435 CD21 899E 4006

PS Abx.1520 A5A4 C686 5F07 03B4 1A8D 9634 07CD 21B4 4790 B200 8DB6 F406

PS Abx.2010 A5A4 C686 4909 03B4 1A8D 961E 09CD 21B4 4790 B200 8DB6 DE08

Shiny CER: This 921 byte virus strongly resembles the PS-MPC-generated viruses, but it is not entirely clear
whether it should be grouped with them or not.
Shiny 80FC 1174 3480 FC12 742F 3D00 4B74 CB2E FE0E 9E03 804E 07

Storm.1172, Storm.1218 CR: 1172 and 1218 byte variants, detected with the Storm pattern.

Sylvia.1321 CN: This variant is 11 bytes shorter than the original one, but detected with the same pattern.

Timid.302 CN: Yet another variant of this ‘Little Black Book’ virus. Detected with the Timid.305 pattern.

Unexe CN: A 425 byte virus. Awaiting analysis.
Unexe FFE0 0E07 56BF 0001 81C6 3101 B906 00F3 A45E 5681 C637 01BF

VCS.Paranoimia CN: This 1077 byte variant is detected with the VCS pattern.

Xph CER: Two variants, 1029 and 1100 bytes long. Awaiting full analysis.
Xph.1029 3D00 4B74 0580 FC3D 756E 9C50 5351 521E 0657 5655 8BFA 4774

Xph.1100 3D00 4B74 0580 FC3D 7555 2EC6 0670 0401 8BFA 4774 4480 3D00

Xtac CER: A 1564 byte virus. Awaiting analysis.
Xtac 3DC8 BA75 04B8 0214 CF3D 004B 7405 EA?? ???? ??50 5351 5256

VCL.Ziploc P: This 710 byte ‘companion’ virus could be detected with a set of search strings, like other encrypted
VCL-generated viruses, but any scanner able to handle VCL-encryption should be able to detect it. The
virus contains a text string indicating that it destroys ZIP files.

WW.217.D CN: A minor variant of this virus, which was originally reported as just 217. There are now four known
variants of this virus, all 217 bytes long and detected with the 217 pattern.

Youth.640.B CR: 640 bytes. Detected with the Youth pattern.

Zherkov.2435 CER: A 2435 byte long variant of this Russian virus. Awaiting analysis.
Zherkov.2435 E800 005E 2E8A 44ED 3C00 7423 8BFE 83C7 2C90 B9BF 0851 57BB

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

6 … VIRUS BULLETIN NOVEMBER 1993

packed and dispatched it myself. In comparison with today’s
Virus Bulletin, it was amateurish, laughable. At the same
time, it had to be: we were breaking new territory.’

The first editorial contained the passage: ‘Rather like
Hitler’s V-1 “flying bomb”, no-one knows when or where a
computer virus will strike. They attack indiscriminately.
Virus writers ... must know that their programs, once
unleashed, soon become uncontrollable. It is, perhaps, the
saddest indictment of these people that they are prepared to
hurt anybody and everybody.’ Such purple prose was to
typify VB’s style for the next four years.

INSIGHT

Old Editors Never Die...
Mark Hamilton

If it is possible to trace Virus Bulletin’s success to one man,
it must surely be he who produced the inaugural edition in
1989: Edward Wilding, VB’s founding editor. During his
four years editing the journal, his position restricted him
from expressing his own views of the industry. Now, for the
first time, he goes ‘on the record’ with personal opinions.

Into the Hot Seat

After studying Politics and History at Leicester Polytechnic,
Wilding began his career as a typesetter with the Oxford
Times. Once he had become more experienced in newspaper
production techniques, his next move was to Elsevier
Science Publishers.

‘Initially, I was in marketing,’ he said. ‘I didn’t really click
there. It was all right but not quite my future - so, gradually,
I moved over to the Computer Fraud and Security Bulletin.’

During his time with CFSB he visited Compsec, Elsevier’s
annual computer security conference. Here, he began to
make the contacts which later helped him set up VB.

‘At Compsec I met and got to know several afficionados of
computer security. Viruses were a new thing, and Harold
Highland had come over to present a paper. I had a long chat
with him and the thought occurred to me that a bulletin on
the subject of computer viruses would be a go-er. However, I
didn’t actually instigate it; that was done by Sophos, who
asked, “Do you want to edit this thing?”.’ VB was finally
born over a few pints in the Eagle and Child, a favourite
haunt, with Sophos’ Karen Richardson and Jan Hruska.

‘I ummed and ahhed for quite a long time. I wondered if the
virus issue were here to stay; if the magazine could employ
me for a year (I stayed for four!). I asked myself: are viruses
a real threat? Are they here to stay? Is VB a saleable com-
modity? There was a lot of hype on the subject; would we be
tarred with the same brush, seen to be creating panic?

‘I started at VB in July 1989, a time when there were only a
pocketful of specialists. I had the impression that only about
three people in the world knew anything about the subject,
which was completely erroneous. There were hundreds of
extremely knowledgeable people about, but I relied very
much on a small team and was, perhaps, over-reliant on
such individuals as the technical editor.

‘The first issue went out in July; we had one subscriber, and
I worked over a weekend laying the magazine out. Copy had
come in dribs and drabs; it was unimpressive by any
standards, even feeble. When it was completed and printed, I

The Popp Scoop

Had Joseph Popp not sent out his AIDS Information Disk
that first December, Virus Bulletin might have had more
difficulty establishing itself. As it was, Wilding had a
‘scoop’, being editor of the only journal with full and
accurate details of the Trojan. The AIDS Incident, as it
became known, came at a good time for the magazine and
brought VB into the limelight.

‘The Bulletin had been born: this was its baptism by fire,’
Wilding recounts. ‘The AIDS disk went out in December,
and the January edition was the only publication in the world
with detailed analysis of what was happening. It wasn’t just
superficialities; we had obtained detailed technical analysis,
legal advice: information on the possible offence as it stood
in Britain. We had an editorial which discussed it in detail;
we put out a major alert to hundreds of companies within a
day of its arrival. These were faxed throughout Britain and
copies handed to employees on arrival at work.

‘Everyone cooperated. Jim [Bates] was hard at work getting
the thing stripped down, and always kept us informed. He
said, “Look, you should publish this in the Bulletin: it will

Wilding at VB ’93, being ‘hard and uncompromising’ with Central
Point’s Tori Case.

 VIRUS BULLETIN NOVEMBER 1993 … 7

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

be taken seriously there”. Popp didn’t do the magazine the
damage he did to a lot of PCs. He caused inconvenience, but
served ultimately to justify the magazine’s existence. That
was December, an exciting time, but it involved burning a
lot of midnight oil.’

The AIDS disk was not a virus, despite messages on CIX
and elsewhere suggesting otherwise, but it was an issue
Wilding felt the Bulletin should report. ‘There was a lot of
duff information going about, and Jim was the only person
who actually knew what the bloody hell the thing was - he
had taken it apart. Nobody else knew; that’s the truth of it. I
read CIX at the time and found there were many misconcep-
tions. People automatically assumed that because the disk
did something horrible, it must be a virus. VB tracked the
story right up to Popp’s extradition and his subsequent
return to the US. We followed it from start to finish; it
established the credibility of the magazine.’

Hard but Fair

Wilding had a reputation for being hard and uncompromis-
ing with manufacturers as well as with his writers. Looking
back on his tenure as editor, he firmly believes that the
manufacturers ‘by and large, do an honest day’s work for an
honest day’s pay.’

If uncompromising, he is unrepentant: ‘Okay, I had a
reputation for being hard on manufacturers. It’s only because
of some of their ludicrous advertising claims, or because
some are so arrogant about their abilities. If they set them-
selves up like that, they can expect to be put under the
microscope, and I think the Bulletin did consistently that.’

Writers and reviewers were briefed to screen products in
depth, and to produce fair and unbiased assessments. He
believes that, because Virus Bulletin conducts such detailed
reviews, ‘a product that got a mediocre review in VB could
actually get a very good review in other magazines’.

Wilding recalls once receiving a forty-page fax from an anti-
virus company, claiming unfair treatment by the Bulletin’s
reviewer. ‘It was ludicrous in the extreme,’ he told me. ‘I
would have liked to have had a shredder attached to the fax
machine!’ But his real ire was directed towards the self-
proclaimed ‘experts’ whom he has variously described as
‘quack doctors, snake oil salesmen and charlatans’.

Conference Call

In 1991, Wilding brought together some of the world’s
leading experts on computer viruses, including Yisrael
Radai, Steve White and Ken van Wyk, for the first Virus
Bulletin Conference in Jersey. It was a huge success, and he
repeated the formula, equally successfully, the following year
in Edinburgh. Wilding sees VB, with its magazine, its book,
and its conferences, as an established centre of excellence
and remains convinced that VB is the ‘only organisation in
the world that can pull these things off’.

Widened Horizons

His perspectives have changed and broadened since vacating
the editor’s chair at the end of last year and becoming a
consultant with Network Security Management, a company
which investigates, amongst other things, large-scale
computer fraud. He believes the commercial sector must
accept viruses as a business hazard, and that it can and
should look after itself by implementing suitable anti- and
counter-virus strategies: ‘If you’re going to deal with viruses,
work on the basis that they’re here, you’ve got no crisis. Just
clean them up as quickly and as efficiently as possible - it’s
a business problem, like any other.’

“In comparison with today’s
Bulletin, the first edition was

amateurish ... at the same time, it
had to be: we were breaking

new territory.”
He admits that he might view the virus issue too much from
the industry standpoint: ‘I remember receiving a call from
one woman who had had her data wiped out by a virus. Of
course she was a single user - it is always the poor little sods
who get hit the hardest. That sort of thing had a real effect.’
He also recalls, with a certain sadness, the number of people
who lost their jobs as a result of loading the AIDS Trojan
onto their work machines.

Wilding sees the biggest social danger as computer pornog-
raphy: ‘Computer porn - not the girlie-magazine type stuff,
but the really nasty, vicious stuff that’s going on - is far more
damaging to society than a virus can ever be. A virus will
only mess about with machines, but violent and degrading
images can mess around in people’s heads. Once you start
getting children seeing the material you can find...,’ he shook
his head in disbelief.

The Man Himself

Much of what he does at Network is confidential, but,
according to biographical notes in the company’s corporate
brochure, he is a consultant ‘specialising in computer
forensics, the submission of computer-related evidence, and
the use of analysis software to assist asset-tracing and
recovery operations’. He is clearly proud of his involvement
with the in-house software systems, claiming that the
company has the most advanced commercial investigative
facilities in the UK, possibly in the world.

Computers and related crime are not, however, his whole
life; he has disparate interests. He used to jump out of planes
for pleasure, but now has more sedentary pursuits: beer,
cigarettes, women and writing short stories (‘but not science
fiction!’). It is said that truth can be stranger than fiction -
and Wilding’s experiences in the anti-virus arena certainly
strengthen this assertion.

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

8 … VIRUS BULLETIN NOVEMBER 1993

VIRUS ANALYSIS 1

Satan Bug - Unleashed!
Jim Bates

The task of disassembling virus code is at best repetitive and
at worst completely demoralising. There are occasional
highlights when the efforts of the virus authors generate a
little amusement at the sheer stupidity of their designs, but
the usual feeling is one of tight-lipped disgust.

With most viruses, it is possible to get some slight feel for
the attitudes and competence (or lack of it) shown by the
writer, and there are even some stylistic patterns which smell
of collusion or plagiarism. This month’s virus is called (by
the writer) Satan Bug, and is reportedly in the wild in the
United States. One worrying aspect of the virus is that, from
both style and design, the odour of some inside knowledge of
the anti-virus industry is almost overpowering.

Multiple Encryption

As I have remarked before, most virus writers have a single
idea which they milk dry. In this case, the idea which is
thrashed to death is that of encryption and polymorphism -
concepts which the virus author has taken to such extreme
lengths that processing is noticeably slower when the virus
is memory-resident. Not only is the code encrypted and
randomised during infection, but the actual memory image is
similarly encrypted and randomised during each intercepted
DOS call. During a single access, the encryption/decryption
routines may be called over 500 times! It is this obsessive
attention to the alteration of the memory image (among other
things) which leads me to suspect the involvement of
someone within the anti-virus industry.

Detailed analysis of the code reveals that these features are
not the only way in which the virus author has attempted to
make life more difficult for the anti-virus software manufac-
turers. The design of the decryption routine will cause
problems for less complex scanners. In addition, the virus’
‘Are you there?’ call will only respond if interrogated by the
virus code itself.

The virus contains no trigger routine or payload, its only
action being to replicate. Due to programming errors, Satan
Bug will cause file corruption and system malfunction under
certain circumstances.

Installation

When an infected program is first executed, processing is
immediately transferred to the virus code. This begins with
an extended series of ‘junk’ instructions within which are
dispersed just a few instructions essential to the decryption
of subsequent code. In the sample examined, the junk code
consisted solely of single byte instructions and extended to

over 600 bytes before the true virus code was reached. Such
a large block of randomly generated junk code will in itself
be a sufficient indication to heuristic scanners that some-
thing is amiss. It is interesting to note that the decryption
point is located before the end of the actual decryption loop,
so that the first part of the loop must be executed before its
true extent is known. This will certainly disrupt the operation
of scanners which rely solely upon structure matching for
detection purposes.

Once the virus code has been decrypted, the virus resets its
segment registers so that the code appears to be located at a
standard offset. This is a sure sign of a programmer who
flunked classes after only one or two lessons, and does not
know how to manage segment manipulation.

Once this initial location is settled, the virus checks whether
the host file was an EXE or COM type and repairs the
header accordingly. The next process issues an ‘Are you
there?’ call to determine whether the code is already resident
and, if so, processing is returned to the host file.

Interpreting Intent

If the virus is not already resident, further checks are
instigated before final installation takes place. The code first
examines the environment to locate the COMSPEC variable
and checks to see if it is the standard COMMAND.COM
file. Unusually (there’s that smell again), if it is not
COMMAND.COM the virus does not become resident and
processing is returned to the host file. Otherwise, the current
memory block is checked to see if it is the last in the chain. If
it is not, no further tests are made and again the virus does
not become resident. This too is noteworthy in that only the
current block is checked.

If all these checks succeed, the virus steals a total of around
10K from conventional memory and relocates itself at the top
of memory before hooking the DOS Interrupt vector and
returning control to the host program.

At this point, the virus memory image is not encrypted but
any subsequent calls to the DOS service routines will change
this as various sections of the virus code are invoked.

Operation

When the virus is memory-resident, the virus intercepts only
four function calls: 3Dh (Open file), 4Bh (Load and Ex-
ecute), 6Ch (Extended Open) and the virus’ own ‘Are you
there?’ call, F9h.

On each of the first three function requests, the virus will
attempt to infect the target file if it has the extension COM or
EXE, and is greater than 1023 bytes in length. COM files
are identified simply by checking that the extension is COM,

 VIRUS BULLETIN NOVEMBER 1993 … 9

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

while EXE files are identified by the presence of the ‘MZ’
header at the beginning of the file. COMMAND.COM will
become infected when the virus is resident, and a special
provision is made to abort the environment test during
installation, if it is the host file.

If a target file is marked as Read-only, the virus saves its
attributes (for later repair) and clears them to allow write
access during the infection phase. A special exception is
made during the Load and Execute intercept to avoid
infection during a spawn (subfunction 3).

“This will certainly disrupt the
operation of scanners which rely

solely upon structure matching for
detection purposes.”

Once the target file has been located, the date field is
checked before it is opened to see if it has had a value of 200
added to the year field - this is the virus’ infection marker.

Who’s There?

The infection process is the usual one of appending the virus
code to the file. Interestingly, instead of arranging for either
the initial instructions (COM files) or the entry pointer (EXE
files) to be modified to point into the virus code, Satan Bug
will trace the program path and insert a jump later in the file.

As I have already mentioned, the virus code is encrypted and
a sequence of junk code instructions are generated to lead
into the decryption routine. By limiting the junk code to
single byte opcodes, the virus writer has unwittingly
provided an easy way of identification for this virus and,
with a reasonable scanner, no real difficulty in identification
should be encountered. There is no attempt at stealth, so
even all but the most archaic of integrity checkers should be
able to detect the presence of the virus.

Although the virus remains in memory in unencrypted form
immediately after installation, the first intercepted function
request will invoke a complex series of code generators and
encryption routines, such that the memory-resident code is
changed. This happens each time an interception is made
and causes the virus code to change its appearance con-
stantly. Even the ‘Are you there?’ call will cause changes to
be made, but a more important point is that the call is
supplemented by a regressive check on 166 bytes of the
calling code. This ensures that it is the virus making the call
and not some anti-virus program attempting to emulate it -
still more evidence pointing to a possible ‘inside job’.

There are several bugs in the code, as well as faults in the
design, which will cause system malfunction under specific
circumstances. The usual effect will be for the system to
hang for no apparent reason, but there may occasionally be
truncation or corruption of some program files.

There is a single text message within the virus code (‘Satan
Bug - Little Loc’), obviously so that investigators will name
the virus author’s handiwork correctly. This message is not
displayed during virus operation.

Targeting

Just prior to attempting infection, the virus makes two final
checks on the target file. The first of these checks an 8 byte
block of code against offset 6 of the targeted file and, if there
is no match, infection proceeds with the normal modification
of the program entry point.

If there is a match, the initial instructions will remain the
same and the virus calculates an offset before inserting a
jump into the appended virus code. The relevant 8 bytes are
as follows:

 22h, 19h, 35h, 93h, 59h, 57h, 54h, and 80h

The second check is against code taken from the end of the
target file. This involves searching the last 75 bytes of the
file for a specific sequence of bytes and, if found, they are
overwritten with zeros. The sequence in question begins:

F1h, FDh, C5h, AAh, FFh, F0h

The purpose of these checks is unclear, but is likely to be a
deliberate targeting of anti-virus programs or self-checking
routines. Any readers identifying their own code are asked to
let me know the relevant details and I will happily pass my
notes and disassembly on to them.

Satan Bug

Aliases: None known.

Type: Parasitic appending.

Infection: COM and EXE files.

Self-recognition on Files:

200 is added to the year field of
infected files.

Self-recognition in Memory:

Via an ‘Are you there?’ call. The
memory-resident handler checks
caller’s ID before returning.

Hex Pattern: Highly polymorphic. No simple search
pattern is possible.

Intercepts: DOS INT 21h - subfunctions 3Dh
(Open File), 4Bh (Load and Execute),
6Ch (Extended Open) and F9 (Virus’
‘Are you there?’ call).

Trigger: None.

Removal: Delete and replace infected files under
clean system conditions.

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

10 … VIRUS BULLETIN NOVEMBER 1993

Following the Path

The ‘Standard’ companion virus takes advantage of this
hierarchy. However, a refinement to this technique has been
developed which has all the benefits of the standard tech-
nique, but fewer of the drawbacks.

When a ‘Path’ companion infects a file, it renames the ‘host’
file with a non-executable extension. Then, a file with the
same name and extension, containing the virus code is
created in its place. When the user executes the infected
application, the virus code, and not the host file, is executed.
It becomes memory-resident, carries out whatever operations
it is programmed to run, and loads the original application.

Path and Standard companion viruses differ, in that:

• Path companions do not rely on the fact that DOS has an
order in which it will execute files

• Standard companion viruses make no alterations whatso-
ever to the host file, whereas Path companions change at
least the name of the infected file.

It is much more difficult to spot the presence of a Path
companion than a Standard one. Companion COM files are
always placed in the same directory as the host file, although
sometimes the virus will mark these files as hidden. The
presence of two files, both with an executable extension, is
enough to arouse suspicion. Unfortunately, it is possible for
a Path companion to hide the files by marking them with the
Volume attribute, thereby making them invisible to DOS -
unless searching on a sector-by-sector basis.

This is the story of all companion viruses apart from one.
The virus writers have not been idle: Carbuncle is a com-
pletely new type of companion virus.

Inside the Carbuncle

Carbuncle is a non-memory-resident virus, consisting
essentially of a COM file 622 bytes long. Like so many
viruses encountered nowadays, Carbuncle is the result of the
experiments by the so-called computer underground. The
sample I received even had the assembler source code
attached! The documentation from that source stated:

The PC CARBUNCLE VIRUS - a companion virus
for Crypt Newsletter 14

The PC Carbuncle is a ‘toy’ virus which will
search out every .EXE file in the current
directory, rename it with a .CRP [for Crypt]
extent and create a batchfile. The batchfile
calls the PC Carbuncle [which has copied
itself to a hidden file in the directory],
renames the host file to its NORMAL extent,
executes it, hides it as a .CRPfile once again

VIRUS ANALYSIS 2

Carbuncle - A Nasty
Infection
Eugene Kaspersky

One of the least common methods of infection employed by
virus writers is that of the companion virus. This infection
technique is possibly the least destructive available, as none
of the code which makes up the ‘host’ executable is altered.
This is because a companion virus infects a file by creating
an additional program which is executed instead of the
intended file.

The genus ‘companion viruses’ can be firther subdivided,
into several subgroups, depending on exactly how the
viruses function. The most common type of companion
virus operates by searching for files with an EXE extension
(generally using the DOS FindFirst and FindNext func-
tions). This type is never memory-resident, and utilises a
‘single shot’ approach. However, certain companion viruses
[for example, Batman, VB, March 93, pp. 12-13. Ed.] are
capable of becoming memory-resident, and generally
intercept Int 21h. Whether or not they are memory-resident,
companion viruses almost always work by creating a file
with the same name as the infected executable file, but with
a COM extension.

A Faithful Comrade...

When a user attempts to execute a file, he does not usually
specify the file’s extension - for example, when attempting
to run a file WORDPROC.EXE the user could simply type
WORDPROC, and DOS would search for files which
match this filename and have an executable extension.

There are usually only three types of file which DOS
considers to be executable, and these have the extensions
COM, EXE or BAT. In order to take account of the case
where there are several files all with the same name in a
particular directory, DOS has a built-in hierarchy of
‘executability’: DOS will execute a COM file rather than an
EXE file, and an EXE file rather than a batch file.

As an interesting aside, in DOS versions 3.30 or earlier, the
command interpreter will search for a COM file first, even
if a different executable extension has been specified. This
means that it is possible to type:

C:\> PROGRAM.EXE <enter>

but for DOS to execute the file PROGRAM.COM (if it
exists). Fortunately, DOS 4.00 or above operates marginally
more intelligently, and if the user specifies a particular file
extension, DOS will search for those files which match the
given specification exactly.

 VIRUS BULLETIN NOVEMBER 1993 … 11

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

and issues a few error messages. The host
files function normally. Ocasionally [sic], the
PC Carbuncle will copy itself to a few of the
host .CRPfiles, destroying them. The majority
of the host files in the PC Carbuncle-
controlled directory will continue to
function, in any case. If the user discovers
the .CRP and .BAT files and is smart enough to
delete the batchfiles and rename the .CRP
hosts to their normal .EXE extents, the
.CRPfiles which have been infected by the
virus will re-establish the infection in the
directory.

—Urnst Kouch, Crypt Newsletter 14

More detailed analysis reveals further information about the
operation of the virus. When it is executed, the system time
is checked. If this meets the trigger conditions, the trigger
routine is called (see below), otherwise control is passed on
to the infection routine. This routine creates a file with the
name CARBUNCL.COM, and assigns the attributes Read-
only and hidden to it. If this file is already present, it is
overwritten, although if it is already marked as Read-only,
the routine fails.

The virus then searches for any files with the extension EXE,
using the DOS FindFirst/FindNext function, and infects
them. Infection is carried out by renaming the target file’s
extension to CRP, and creating a companion batch file. As a
result of the infection, there will now be two files with the
same file name, but with the extensions BAT and CRP.

The companion batch file contains six lines of DOS com-
mands. If the file FILENAME.EXE was infected, the
companion FILENAME.BAT contains these lines:

@ECHO OFF
CARBUNCL
RENAME FILENAME.CRP FILENAME.EXE
FILENAME.EXE
RENAME FILENAME.EXE FILENAME.CRP
CARBUNCL

When the user tries to execute an infected file, the batch file
is executed instead. The first line of the batch file ensures
that the later commands are not echoed back to the screen.
Next, the main body of the virus (stored in the file
CARBUNCL.COM) is executed, and more files on the disk
are infected. The host executable is then named back to its
former executable extension, executed, and renamed to the
extension CRP for further use. The last action of this batch
file is to execute the main body of the virus.

As a result of this mode of infection, all executable files
within one directory are replaced by batch files of the same
name. Only one occurrence of the virus body needs to be
copied into a directory in order for all files in that directory to
become infected. This ‘one shot approach’ is reminiscent of
the link virus, DIR-II.

One advantage of this infection strategy is that it obviates the
necessity for the virus to be able to recognise files which are
already infected, as the virus only searches for files with the

extension EXE. Once a file has been infected, the host
executable will have been renamed to the execution CRP,
and will therefore not be re-infected.

Pulling the Trigger

The trigger routine is very simple: if the system time has a
seconds field value of less than 17, the virus searches for five
files with the CRP extension and overwrites them with the
body of the virus code. As a result, these files are not
recoverable, and should be deleted. If they are executed, they
will simply cause the virus to spread.

Fortunately, the virus is more of theoretical interest than an
actual threat to users - at least in its current form. The virus
is not difficult to detect, and contains the text strings ‘*.crp
CARBUNCL.COM BAT*.exe CRP’, which are used when
searching for uninfected files. In addition, the virus uses the
following text string when creating the companion batch file:

@ECHO OFF
CARBUNCL
RENAME

It also contains the ‘copyright’ string ‘PC CARBUNCLE:
Crypt Newsletter 14’

Conclusions

Carbuncle provides virus authors with yet another way to
infect files. The continual war between the computer
underground and the anti-virus software manufacturers
continues with no sign of lessening - at least for as long as
users continue to run DOS.

Carbuncle

Type: Not memory-resident, Companion.

Infection: EXE files only.

Length: 622 bytes.

Self-Recognition on Files:

None necessary.

Self-Recognition in Memory:

None necessary - the virus does not
become memory-resident.

Hex Pattern:

BA62 02B9 0000 B43C CD21 8BD8
B96E 02BA 0001 B440 CD21 B43E

or the text string

PC CARBUNCLE: Crypt Newsletter 14

Trigger: Overwriting of CRP files.

Removal: Delete BAT files and the file
CARBUNCL.COM, and rename CRP
files to the extension EXE.

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

12 … VIRUS BULLETIN NOVEMBER 1993

VIRUS ANALYSIS 3

Quox
Tim Twaits

The Quox virus (also known as Stealth 2 Boot) was first
discovered over seven months ago, but until recently
remained a very rare specimen. A recent sighting, however,
has prompted further investigation of its capabilities.

Operation

Quox is a simple Master Boot Sector infector which does not
contain any deliberate side effects; its only function is
replication. The virus code occupies a single disk sector of
512 bytes which replaces either the Master Boot Sector on
fixed disks, or the DOS Boot Sector on floppy disks.

When a system is booted from an infected disk, the virus
installs itself in the top 1K of base memory and hooks the
interrupt 13h vector (the BIOS disk services), before loading
and executing the original boot sector. The location of the
original boot sector depends on the type of disk: this is
usually the last sector on the disk for floppy disks, and the
last sector on the first cylinder for fixed disks.

The algorithm used to determine the location at which the
original Master Boot Sector is stored does not always
function correctly. The calculation made by the virus relies
on the manner in which the DOS FDISK program partitions
the disk. While most versions of DOS conform to the same
conventions, this is not universally true, as certain OEM
manufacturers (eg Amstrad DOS v3.2) make this calculation
in a proprietary manner. In these cases, the copy of the boot
sector may be written to an arbitrary sector on the disk. In
the event of the calculated location lying outside the physical
bounds of the disk, the infection routine is aborted.

Interrupt 13h

The virus intercepts disk read and write operations which
use the BIOS disk services. Any attempt to access the boot
sector of an uninfected disk causes the disk to be infected:
even inserting a floppy into an infected machine and typing
DIR will cause the disk to become infected. In a similar
manner, when an infected floppy is used to boot a clean
system, the fixed disk will become infected during the boot
process when accessed by DOS. Once active, the virus
effectively hides any changes to the boot sectors, and a
request to read the boot record is redirected so that the
original contents are returned to the caller.

General Failure Errors

The virus uses the same code to infect both Master and DOS
Boot Sectors. In an attempt to ensure that infected disks will
still function correctly, the virus does not change the data in

those areas of the boot sector used for the BIOS Parameter
Block and the Partition table. Therefore, if an uninfected
system attempts to read an infected disk, the parameters
DOS needs to access that disk will be present. This reduces
the space available for the virus to 392 bytes.

In order to gain extra room for code, the author has assumed
that the first few bytes of the BIOS Parameter Block are
superfluous. This assumption works - except with 1.4Mbyte
3.5-inch disks, where the modification may cause the disk to
become unreadable under DOS. The disk can still be read
while the virus is active but, on a clean machine, attempts to
access the disk will fail, giving the message ‘General failure
error’. This failure is due to an undocumented quirk of the
MS-DOS operating system.

Removal

Disinfection must be undertaken in a clean DOS environ-
ment (that is, having booted from a write-protected clean
system diskette). The virus can be removed from a fixed disk
using the FDISK /MBR command available in DOS 3.31
and above, or by using a disk editor to restore the copy of the
boot sector saved by the virus. It can be removed from a
floppy disk by formatting the disk or by copying a valid boot
sector from an uninfected disk of the same type. This latter
method can be used to recover data from disks rendered
unreadable by the virus.

Quox

Aliases: Stealth 2 Boot

Type: Master Boot Sector infector.

Self-recognition on Disk:

Checks Boot Sector for a sequence of
hexadecimal bytes.

Self-recognition in Memory:

Checks top of memory for a sequence
of hexadecimal bytes.

Hex Pattern: (at start of boot sector)

B902 00F3 A5A1 1304
8BD0 B106 D3E0 BE00

Intercepts: The virus hooks Int 13h for boot sector
infection and stealth.

Trigger: None.

Removal: Under clean system conditions use the
DOS command FDISK /MBR, or
identify and replace original Master
Boot Sector.

 VIRUS BULLETIN NOVEMBER 1993 … 13

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

TUTORIAL

The Shape Shifters

Whenever one casts an eye over any article in the popular
press on computer viruses, one will inevitably come across
the term ‘polymorphic’. What are polymorphic viruses? How
do they work? How can they be detected? This article will
take an historical look at polymorphic viruses; how they
developed, and where they might lead.

In the Beginning

In the beginning, most viruses were very simple, and the first
scanners operated by searching for part of the virus code.
Every different program stored on the hard disk consists of a
unique series of bytes. Therefore, it is possible to search for a
particular program by searching files on the disk for this
‘signature’. This pattern would be suitable for detection
purposes if it were chosen in such a way as to be unlikely to
appear in other pieces of code (eg, the code used for the
virus’ own ‘Are you there?’ call). Early virus scanners were
slow and inefficient; they searched blindly through every
byte of a file looking for the virus ‘signature’.

Falling Down

The first sign that things might not always be this simple
came when Cascade appeared. This virus encrypted all of its
code, except for a short decryption routine located at the start
of the virus. The encryption routine used by the virus is
shown below:

0100 E94700 JMP 014A

<HOST FILE CODE.....>

0149 01 DB 01
014A FA CLI
014B 8BEC MOV BP, SP
014D E80000 CALL 0150
0150 5B POP BX
0151 81EB3101 SUB BX, 0131
0155 2E CS:
0156 F6872A0101 TEST

BYTE PTR [BX+012A], 01
015B 740F JZ 016C
015D 8DB74D01 LEA SI, [BX+014D]
0161 BC8206 MOV SP, 0682
0164 3134 XOR [SI], SI
0166 3124 XOR [SI], SP
0168 46 INC SI
0169 4C DEC SP
016A 75F8 JNZ 0164

Cascade decryption routine.

The first instruction is a jump to the appended virus code,
which in turn copies the stack pointer before calculating its
own relative offset in memory (using the familiar CALL

Next_Address, which pushes the current value of IP onto the
stack, followed by a POP instruction). The next instruction
tests a marker stored in the file to see whether or not the file
is encrypted. This allows the virus author to develop the code
in an unencrypted form.

The main body of the decryption routine is stored in the
instructions from 015Dh to 016Ah. Here a loop is set up,
where consecutive bytes of the virus code are decrypted by
XOR-ing them with the two keys SI and SP. This continues
until the entire virus has been decrypted.

However, the essential elements of this code are only
important for their functionality; there are many different
instruction sequences which would decrypt the virus. Take
the example of the changes made to the decryption key by
the INC SI instruction. The position of this instruction is not
critical as long as it comes after the two XORs and before
the end of the loop. Thus, the virus could swap the position
of the INC SI instruction with the DEC SP instruction with
impunity: although the hex fingerprint of the code has
altered, its function has not.

If the virus author wished to be clever, he could have
substituted the command sequence POP BX with POP CX,
MOV BX, CX, or with any number of alternative instruction
sequences. It was only a matter of time until a virus writer
would utilise such techniques, whereupon every infection of
the virus would appear different. Thus the word ‘polymor-
phic’ was coined.

Mark Washburn and 1260

Probably the ‘breakthrough’ (if one can use such terms) for
the virus authors was the work carried out by Mark
Washburn. Claiming to be a genuine ‘virus researcher’,
Washburn developed a series of viruses which showed
beyond doubt that polymorphism worked.

Washburn wrote the V2P? series of viruses, starting with the
slightly polymorphic V2P1 (or 1260) virus and graduating to
the much more complex V2P6. With the development of his
ideas, Washburn secured himself a place in the history books
as the father of polymorphic viruses.

Washburn’s first polymorphic virus, 1260, used a very
simple algorithm to vary its appearance. Two typical 1260
decryption routines are shown in figure 1.

Understanding the purpose of each instruction is not
necessary in order to comprehend Washburn’s strategy. 1260
uses the same eight instructions, placed in a random order,
to generate the decryption routine, but pads these instruc-
tions out with ‘Do nothing instructions’. The important
instructions in the 1260 detection routine are highlighted in
the figure. In essence, the 1260 virus XOR-ed each byte of

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

14 … VIRUS BULLETIN NOVEMBER 1993

Figure 1: 1260 Virus Encryption Routine: This diagram shows two examples of the 1260 virus’ decryption routine. Note that both files contain eight
of the same instructions - these set up the encryption loop. The other instructions are chosen at random, in such a way that they do not affect the contents

of the registers used for the decryption routine. This makes the virus impossible to find using a simple hexadecimal pattern search.

‘looks’ suspicious, it is very difficult to detect accurately and
reliably. Faced with such an insurmountable problem, how
could the anti-virus software vendors fight back?

Countermeasures

While virus writers were busy improving their handiwork,
development was also continuing within the industry.
Scanner developers had long since realised that it was
impossible to continue using a simple hex pattern to search
for viruses: it was slow, and could not keep up with the
rising complexity of the way viruses worked. It was time for
a change, but with an ever-variable target, onto what
properties could the virus hunters latch?

One of the principal disadvantages of using a simple hex
pattern search was that it did not utilise much of the infor-
mation which the developers knew about a virus. Consider
the algorithm which a simple parasitic virus uses to infect a
COM file. A JMP instruction is inserted at the start of the
host file, and code appended at its end. A simple hex pattern
throughout the entire file would reveal the presence of the
virus, but a much more efficient algorithm would be simply
to scan the beginning and the end of the file: that is, the
areas in which one knows the virus must be if it has infected
the file. The next generation of virus scanners took advan-
tage of this Achilles’ heel: rather than using a simple hex
pattern, the scanner would trace through a file, following the
executable path.

Jim Bates, author of the VIS Anti-virus Utilities, explained
that it was possible to search through a file looking at
structure, rather than at individual instructions. ‘Basically, a

the main virus body with two decryption keys, somewhat
like Cascade. In this case, the important instructions are
padded by ‘junk’ operations like DEC BX or CLC, which do
not affect the functionality of the decryption routine. An
explanation of the routine is given in the figure caption.

Clearly, looking for such a virus with a hex pattern search is
out of the question. However, it is reasonably easy to see that
this virus could be detected with a simple search algorithm.

The Mutation Engine

By far the best known polymorphic viruses are those which
use the Mutation Engine. This program is (contrary to
popular belief) not itself a virus: it is an object module,
which was designed to be added to a virus in order to make
it polymorphic.

The MtE uses all the tricks developed by Washburn, and
more. An experienced eye can pick out an MtE infected file
just by glancing at a DEBUG listing, but analysis reveals
that each individual infection appears to be completely
different. With the number of possible mutations of the code
running into billions, the MtE presented a problem of some
magnitude to scanner manufacturers when it first appeared.
Not only was it a polymorphic engine, rather than a virus,
but the code had been extensively circulated among the
computer underground. The MtE even included an example
virus which showed naïve users how it could be applied.

The coding of the MtE is much more complex than any of its
predecessors. Two short snippets of MtE-produced code are
illustrated in figure 2, and it is clear that, although the code

1260 Virus Encryption Code

MOV CX, 0514
MOV DI, 1527
MOV AX, 7EF7

decrypt: XOR [DI], CX
XOR DX, CX
SUB BX, AX
XOR [DI], AX
SUB BX, DX
NOP
NOP
CLC
INC DI
INC BX
DEC BX
INC DX
INC SI
INC AX
LOOP decrypt

INC SI
MOV AX, CE9B
CLC
CLD
MOV CX, 056F
NOP
DEC BX
MOV DI, 1527

decrypt: XOR BX, CX
SUB BX, CX
NOP
XOR [DI], CX
XOR DX, CX
SUB BX, AX
XOR [DI], AX
NOP
INC BX
CLC
INC AX
DEC BX
INC DX
INC DI
LOOP decrypt

 VIRUS BULLETIN NOVEMBER 1993 … 15

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

polymorphic virus has two big weaknesses,’ he explained. ‘Firstly, the virus
decryption code must always be unencrypted, and secondly, it must always
be in some kind of loop.’ Bates has developed code within VIS which can
examine files for viruses by taking advantage of the structural similarities
between different infections of the same polymorphic virus. This information
is then hard-coded into the VIS product.

Virus Description Languages

This idea can be taken much further by writing an interpreter which removes
the need for each polymorphic detection routine to be hard coded. The
problem with hard coding is that, although it executes extremely quickly, it is
time-consuming to develop and maintain. Consider again the code example
for the 1260 virus. Dr Jan Hruska, from Sophos Plc, explained that they have
developed code within his scanner which ‘understands’ the instructions
which make up machine code. ‘VDL [Virus Description Language] is
capable of examining where the initial instructions of a file lead. For
example, in the case of the 1260 virus, one knows that the first instruction of
an infected file must lead to a certain offset from the file’s end.’

Dr Alan Solomon, of S&S International, uses a variety of techniques to
detect complex polymorphic viruses. ‘The Toolkit describes viruses using
VIRTRAN. A typical VIRTRAN detection routine contains naming, detection,
identification and removal information. For the more complex polymorphics
I also use statistical analysis of the code, to ensure that the relative usage of
instructions fits the pattern.’ The latest weapon added to the Solomon
armoury is the addition of his ‘Generic Decryption Engine’, which is capable
of decrypting polymorphic viruses. In such viruses, it is usually only this
decryption code itself which varies between infections; the virus code
‘inside’ the encryption is static. This means that once the virus is decrypted it
is trivial to detect - with a very low risk of false positives.

The Future

The main problems which the industry faces
is that viruses are set to become still more
highly polymorphic. Will it always be
possible to scan for viruses? Solomon is
confident: ‘Detecting a polymorphic virus
can be tricky, but will always be possible. It
is like playing the game of “who can think of
the highest number”. The person who goes
second always wins!’

One thing which is highly likely is that more
polymorphic engines will be written.
Already there are several like the MtE - most
notably the Trident Polymorphic Engine
(TPE) and the NuKE Encryption Device
(NED) [See page 16. Ed.]. As these virus
construction tools become more widespread,
it is likely that users will start to find more
MtE viruses in the wild.

The anti-virus industry seems to be divided
about how things should proceed from here.
Is it necessary to decrypt the contents of
infected files so that a scanner can identify
the virus which lurks beneath the encryption,
or is it simply enough to inform the user that
a particular file is encrypted with the
Mutation Engine?

The argument for precise identification is
that if one intends to disinfect a file, it is of
paramount importance that the disinfection
routine has correctly identified the virus - if
not, disinfection will almost certainly fail.

With this in mind, a number of vendors have
developed code which allows the scanner to
‘strip back’ infected files and reveal the
unencrypted virus - thereby allowing the file
to be (where possible) disinfected. This is
precisely the rationale behind the Generic
Decryption Engine.

The counter-argument is that this procedure
is simply too time-consuming, and that users
do not care exactly which virus has infected
their machine - they simply want it eradi-
cated. This will have a speed advantage
when dealing with badly infected disks, but
means that disinfection of files infected by
viruses which utilise such polymorphic
engines will be impossible.

Whether or not such techniques are suffi-
cient to keep the tide of polymorphic viruses
at bay, one thing is certain: viruses of the
future will be increasingly polymorphic. Are
developers ready for the next generation of
the ‘Shape Shifters’?

Figure 2: The Mutation Engine: the first few bytes of two different MtE-generated
decryption routines. Note that, although it is easy to ‘see’ intuitively that this code is

oddly written, it is hard to write a program which will detect it reliably.

PUSH DX
PUSH AX
PUSH SI
PUSH DI
PUSH BP
PUSH BX
PUSH CX
MOV DI, F236
MOV AX, 1819
MOV DX, 0A69
MUL DX
MOV BX, AX
MOV AX, D456
MOV CX, DI
AND CL, 1F
SHR AX, CL
MOV BP, AX
MOV CX, DI
ROR AX, CL
MOV SI, AX
SS:MOV [DI+2349], AX
MOV CX, SI
ROL AX, CL
XOR AX, BP
...
Example 1

PUSH AX
PUSH DX
PUSH BX
PUSH SI
PUSH BP
PUSH DI
PUSH CX
MOV AX, 0620
MOV CL, 09
SHL AX, CL
ROR AX, 01
MOV BX, AX
MOV AX, 0192
MOV DX, F0C3
MUL DX
SUB AX, BX
MOV BP, AX
MOV AX, A60A
XOR AX, BP
MOV DI, AX
MOV AX, 09E6
MOV CX, BP
ROL AX, CL
MOV SI, AX
...
Example 2

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

16 … VIRUS BULLETIN NOVEMBER 1993

FEATURE

The Nuke Encryption Device
Edward J. Beroset
Datawatch Corporation

As computer virus detection capabilities have become more
sophisticated over recent years, so have the ways in which
viruses attempt to avoid detection. One of the most trouble-
some techniques employed by virus writers is that of
polymorphic encryption, and the most recent tool used to
accomplish this is the Nuke Encryption Device (NED). This
article follows on from the more general discussion of
polymorphism (pp.13-15), and looks in detail at how a
polymorphic engine functions.

Like the Trident Polymorphic Engine (TPE) and the Dark
Avenger Mutation Engine (MtE) before it, NED is distrib-
uted as a linkable object module with sample code illustrat-
ing its intended use as a virus encryptor. The object module
is 1524 bytes long, but the actual code size when linked is
1356 bytes. Although NED is not itself a virus, the inten-
tions of the author (he claims to be the same person who
wrote the Virus Creation Laboratory) are clear. Like the
VCL, NED is a rather sloppy piece of work, full of
unreferenced variables, duplicate variables, poorly written
code, and plain bugs.

Inside the Engine

Polymorphism is defined by Webster’s Dictionary as ‘the
quality or state of being able to assume different forms’, and
most of the code in NED is devoted to the purpose of
assuring that the decryptor is polymorphic. Some of the
tricks NED uses to accomplish this are:

• inserting ‘garbage’ between the decryptor loop and the
start of the virus code

• using ‘dummy’ instructions (e.g. NOP, ADD AX, 0000,
etc.) to vary the length of the decryptor code

• using different operations for encryption - ADD, SUB,
and XOR

• using either byte or word operands

• using either immediate values or preloaded registers for
the encryption value

Calling NED

The calling sequence for NED requires that registers be
loaded with a pointer to a buffer area, the start address and
length of the code to be encrypted, the offset of the virus to
be in memory when it actually runs, and the various flags
which control how NED operates. Dummy instruction
insertion, use of move variations (eg code other than simple
MOVs that accomplish the same effect), ADD/SUB substi-

tution, garbage code insertion, and data and code segment
equivalence assumption are selected by individual bits in the
SI register. NED then creates the decryptor and garbage code
(if selected), and encrypts the code into the specified buffer.
It returns the combined length of the decryptor, garbage
code, and encrypted code in the AX register.

The Generation Game

The encryptor takes advantage of the fairly consistent way in
which Intel processors’ instructions are encoded. All
instruction encodings are subsets of one general format: zero
to four prefix bytes, one to two opcode bytes, zero to two
MODRM (MODe, Register/Memory) operand specifier
bytes, zero to four address displacement bytes, and zero to
four bytes for an immediate constant. Of these components,
the opcode and MODRM bytes are the most important to the
functioning of NED.

Generally, opcode bytes define the type of operation per-
formed, while the MODRM bytes control addressing modes
and register use. In some cases, both the opcode and
MODRM byte specify the type of operation performed.

To illustrate this, the instruction ADD AX, 5528h may be
encoded as 81C0 2855. By altering a single bit in the
MODRM byte, the instruction becomes ADD CX, 5528h.
Replacing the low three bits of the MODRM byte with all
possible combinations from 000b to 111b enables the
registers AX, CX, DX, BX, SP, BP, SI, and DI to be
referenced. Replacing the high three bits in the MODRM
byte in a similar fashion cycles the opcodes through ADD,
OR, ADC, SBB, AND, SUB, XOR, and CMP.

Clearly, a program incorporating this information could
create machine instructions based on a ‘Chinese menu’
approach - take one option from column A and one option
from column B and combine in any manner. Extrapolating
this concept yields a program capable of generating a
coherent decryptor loop.

NED has three main functional components: a decryptor
generator, an encryptor, and a random number generator.
The random number generator and encryptor parts combined
represent about ten percent of the code, while the remaining
ninety percent is comprised of the decryptor generator.

When NED is called, it first makes a few random decisions
which affect how the decryptor loop is generated. This
process chooses whether to encrypt by the byte or the word,
which register is to be used as the loop counter, whether to
use an immediate value or a register for the encryption
constant, and (if the latter) which register it should be. The
only other decision made in this routine is whether to
initialise the loop counter or the memory pointer first.

 VIRUS BULLETIN NOVEMBER 1993 … 17

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

If the calling program has set the appropriate
flag, the code also generates a CS segment
override to address the data that immediately
follows the decryptor. The intent of this clearly
was to allow the infection of EXE as well as
COM files, but a bug in the code prevents
reliable infection of EXE files approximately
one time in sixteen.

To finish the decryptor loop, another subroutine
generates code which decrements the loop
counter and checks to see if it has reached its
terminal value. NED always decrements the
loop counter and the terminal value is always
zero. If the loop counter register happens to be
CX, the routine has a 50% chance of using the
LOOP instruction; otherwise it is treated like
any other register. If the loop counter is not CX,
it will be decremented by DEC instruction(s), or
an appropriate ADD or SUB. This routine also
generates the final command in the loop. This is
always a JNZ instruction.

The last code-generating routine simply
generates a short relative JMP instruction,
followed by a variable number of ‘garbage’
bytes ranging from zero to one hundred.

Once the decryptor has been written to the
memory buffer, the only remaining task is to
copy and encrypt the target code. This is done
with self-modifying code. The routine as written
is a simple LODSB; XOR AL, BL; STOSB;
LOOP construct. NED modifies the LODS/
STOS instructions to word size if required. The
XOR operation is substituted for the inverse of
the operation used by the decryptor, and is also
adjusted to use AX, BX for decryption routines
which operate one word at a time.

NED’s random number generation routine uses
the system clock as a raw source, performing a
few perfunctory mathematical transformations
on the clock tick counter in an attempt to make
the output more random. A statistical analysis
of over eleven billion iterations shows a
reasonably uniform distribution.

Closing Thoughts

In summary, although NED is the most recent
of the polymorphic encryptors employed by
virus writers, it is neither the most sophisticated
nor the most capable. The bugs and the rela-
tively large size of this module make it unlikely
that it will be widely used, but there is already
at least one virus which is known to use the
NuKE Encryption Device. One final thought is
that although NED is the latest polymorphic
encryptor, it is not likely to be the last.

Figure 1. A Simple NED Generated Decryptor
0100 MOV CX,5DFE ; load the loop counter in two steps
0103 XOR CX,5EFF ; which leave 0301h in CX
0107 MOV BP,0116 ; load the loop pointer
010A XOR WORD [BP],E9F0 ; do decryption with immediate value
010F ADD BP,0002 ; increment the pointer
0113 DEC CX ; decrement our loop counter
0114 JNZ 010A ; and keep going if there’s more 0116

; encrypted data starts here

Figure 2. A More Complex NED Generated Decryptor
0100 NOP ; dummy instruction
0101 JLE 0103 ; dummy instruction
0103 ADD AX,0000 ; dummy instruction
0106 MOV AX,66B3 ; load loop counter
0109 SUB BX,0000 ; dummy instruction
010C SUB BX,0000 ; dummy instruction
010F ADD AX,9F4F ; adjust loop counter to desired value
0113 MOV SI,0164 ; load pointer
0116 MOV BL,CD ; load decryption constant
0118 MOV BL,5D ; in two steps
011A ADD [SI],BL ; do the actual decryption
011C NOP ; dummy instruction
011D INC DI ; dummy instruction
011E DEC DI ; dummy instruction
011F NOP ; dummy instruction
0120 INC SI ; increment pointer
0121 INC AX ; dummy instruction
0122 DEC AX ; dummy instruction
0123 ADD BX,0000 ; dummy instructions
0126 DEC AX ; end the loop by decrementing counter
0127 JNZ 011A ; NED always uses JNZ to end the loop;
<here through 0163h is filled with garbage bytes>
0164 ; the actual virus code would begin here

A subroutine which generates dummy instructions is called after these
decisions are made and also after each decryptor loop component is created.
As with all code generating subroutines in NED, this dummy instruction
subroutine writes the instructions it generates to the next available location in
the buffer and then updates the buffer pointer. Its purpose is to insert one or
more valid instructions which have no practical effect on the subsequent
code. The different tricks employed by NED include moving a register into
itself, exchanging a register with itself, incrementing and then decrementing
the same register, complementing the carry flag twice, conditional or uncon-
ditional jumps to the next instruction, and the ubiquitous NOP instruction.

Two subroutines generate the code necessary to initialize the decryptor. The
first generates the code responsible for loading the loop counter register with
the initial value based on the size of the code and the encryptor. Any of the
eight general-purpose sixteen bit registers except SP may be used as the loop
counter. The second routine generates code which loads the pointer register
with an initial value that points to the beginning of the encrypted data.

If the original ‘coin toss’ decision was to use a register instead of an immedi-
ate value, the next subroutine called will generate code which loads some
constant value into either a byte or word sized register. In the case of byte-
sized registers, NED is capable of using any of the eight available on an Intel
80xx processor (ie, AL, AH, BH, BL, CH, CL, DH, DL). The loaded constant
is the number successively applied to each of the words or bytes in the
encrypted code.

Looping the Loop

The next subroutine creates the ‘heart’ of the decryption routine. This routine
generates an instruction which applies the above mentioned constant to the
contents of the memory referenced by the pointer. NED is not a very bright
animal and only knows three tricks - encryption using ADD, SUB, or XOR.

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

18 … VIRUS BULLETIN NOVEMBER 1993

PRODUCT REVIEW 1

Oyster - A Pearl of a
Product?
Megan Palfrey

BEST’s Oyster ‘computer immunisation system’ claims to
offer permanent protection against all viruses, known and
unknown. Virus Bulletin readers will know that such tall
claims are often reason enough for one to be wary of a
product, but could it be possible that BEST has found the
holy grail of the computer security world?

BEST’s approach to the virus problem is, as the title sug-
gests, file immunisation: that is, adding a protective ‘shell’
around a file, capable of ‘healing’ itself should the file
become infected. Such techniques have formerly been prone
to problems, and have certainly not offered a complete anti-
virus strategy. Therefore, with my interest well and truly
stimulated, I opened the package and began.

Component Parts

The review copy of Oyster was comprised of one write-
enabled 3.5-inch diskette, an 181-page manual, a fast
reference guide, six self-adhesive perspex badges with
‘Oyster Protected’ inscribed upon them, and various other
pieces of assorted ‘bumph’.

The first unpleasant surprise I had upon reading the docu-
mentation was that Oyster is copy-protected. Normally (and
quite rightly), VB does not review copy-protected software,
but as several Virus Bulletin readers have asked for a review
of the product, an exception was made.

Copy-protection goes against good security practice, as has
often been stated in VB. The foundation of a good data
security policy is that, in the event of a computer disaster,
one can always start again from a backup and/or master
disks. If software is copy-protected, this is impossible. For a
company distributing security software to take this approach
shows a lack of understanding of the issues involved: the
best protection available for computers is a regular backup.
BEST has since stated that it will change this policy -
potential customers should check before purchasing.

The package is made up of a virus scanner and an immuni-
sation program which claims to allow infected programs to
‘heal themselves’. Each element has its own acronym: files
are protected by COP (Coded Oyster Protection), which
‘heals’ infected files; the DATE feature (Direct Allow To
Execute), which allows only Oyster-protected files to
execute, and GOS (the Generic Oyster Scanner), which is
able to ‘scan and capture unknown viruses.’ The continual
use of these acronyms rapidly became confusing, and I was
repeatedly forced to refer to the manual for clarification.

Documentation

The documentation opens with an introduction to ‘the Oyster
way of life’, and explains that ‘Oyster is the first product
developed in the world that has found a universal solution to
the virus problem.’ After this extremely confident opening,
the manual goes on to give a brief introduction to computer
viruses and anti-virus software, before explaining the
product’s methodology and operation.

BEST is a Chilean company, and the original release of
Oyster was in Spanish. Unfortunately, the documentation
suffers from the fact that it is not a particularly well-written
translation, and contains many irritating errors. Although
there are appreciable difficulties translating such technical
material, BEST would do well to spend more time tidying up
the manual, in order to make it more readable.

The second problem with the manual is its love of acronyms
(see above) - it is confusing and unnecessary. Why not call a
spade a spade? However, these are small niggles compared
to the manual’s main flaw: it has no index. How a user is
supposed to search for specific information in a publication
of this size is not clear; such a shortfall must be rectified.

Installation

The installation routine is simple: the user simply places the
Oyster diskette into the disk drive and follows the on-screen
instructions. As Oyster works by immunising files against
further attack, a vital part of the procedure is to scan the
target disk for viruses. At no point (either in the manual or
on-screen) is the user advised to clean-boot the installation
machine. Still worse, the installation routine writes back to
the master diskette (presumably as part of the copy protec-

With over three thousand viruses now known, BEST’s scanner,
GOS, is lagging well behind the current development curve.

 VIRUS BULLETIN NOVEMBER 1993 … 19

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

tion scheme). Should a virus penetrate Oyster’s own self-
infection check, the user might unwittingly infect several
machines. This should be changed.

The installation proceeded relatively smoothly, with the
product explaining the changes it was making, and waiting
for a keystroke to continue. There appears to be a feature
somewhere in this routine: if no key is pressed, the routine
times out and proceeds anyway. This needs to be fixed.

Fortunately, these quibbles aside, installing Oyster pro-
ceeded without flaw. Now, according to the documentation,
my system was protected!

Functionality

Using Debug to examine a protected file revealed that it now
had a JMP instruction at the start of the file and some 6K of
code tacked to the end (the resultant file looked as though it
had been infected with a parasitic virus!).

Was the newly-added code checksumming the contents of
the host file? Tests showed that it was not, as I could alter
files protected by Oyster and execute them without being
alerted to this fact. This was a particularly worrying sign, as
there are certain viruses which infect executables by over-
writing code halfway through a file (eg 8888). Oyster
provides little protection against such a virus.

The TSR component of Oyster can be configured so that
only protected files are allowed to execute. As one of my
tests, I overwrote the start of a protected file with the two
bytes CD20h (the old CP/M ‘terminate’ instruction). Not
only was the immunisation bypassed on the file, but Oys-
ter’s TSR still allowed the file to execute. With these
unsettling results in mind, I started my tests, using a
specially selected virus collection.

Under Fire

The acid test of any product is not whether the reviewer
agrees with the methodology employed, but how the product
functions. Will it prevent infection on a user’s machine? As
Oyster is a file immunisation product, there is only one way
to test it: install the product, infect protected files, and see
how it behaves.

The first virus against which Oyster was tested was Cas-
cade. An infected file was copied onto the hard drive, and
the standard Oyster file protect procedure of scan and
immunise was carried out. The Oyster scanner, GOS, is not
very accurate (see below) and, rather alarmingly, was unable
to detect the Cascade infection.

When the file was later executed, Cascade became memory-
resident and active. From this point onward, whenever an
Oyster-protected COM file was run, the virus infected it.
However, when control was passed back to the host file,
Oyster was capable of detecting the changes made, and
returned the file to the state it was in directly before becom-
ing infected - right down to the last bit!

This was a pleasing result, but there were some drawbacks.
Most importantly, the machine now contained a file which
was infected inside the extra code added by Oyster. Many
virus scanners would now be unable to detect the virus, and
the user would continually re-infect his machine. The
manual does not deal with this eventuality.

The next sample used for testing purposes was a file infected
with the 4K virus. This is a stealth virus, and is extremely
difficult to detect once memory-resident. Could Oyster cope
with this much tougher challenge?

The 4K tests started off well enough - the scanner identified
the file as infected, warning that the test file contained the
‘100 Años o 4096’ virus. However, as the average user
would not scan every floppy brought near his machine, it is
important to test whether or not the virus could infect files on
the hard drive.

When an Oyster-protected file was run with 4K resident in
memory, Oyster displayed the message ‘Phase II virus
detected in file GOAT14CO.COM. Run FASE2 program to
remove the virus. (C) Continue (D) Dos’.

Referring to the manual, I was instructed to select the
‘Return to DOS’ option, and run the FASE2 program. Upon
execution this file was immediately infected by 4K, making
it unusable. After several abortive attempts to use the rescue
diskette to repair the problem, and with COMMAND.COM
on the host machine infected, I was flummoxed. Was Oyster
simply unable to cope?

Further tests showed that the problems were caused by 4K
hanging the machine before the Oyster code was run. If the
date of the PC was altered so that 4K did not crash, Oyster
functioned correctly, and disinfected all files. The possibility
of the virus malfunctioning does not seem to be dealt with
either in the manual or in the programs stored on the rescue
disk. Relying on the virus not to cause system instability is
not good enough - the rescue disk should be able to cope
with this eventuality.

Whenever a virus infects one of the Oyster executables, Oyster
captures the virus for later analysis.

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

20 … VIRUS BULLETIN NOVEMBER 1993

Further tests showed that this failure was atypical: Oyster
could cope well with other viruses (Jerusalem, SBC, 1575
etc) and in each case returned infected files to their original
condition. These results are quite impressive, and show that
under certain circumstances Oyster can function very well
indeed. The problems encountered with 4K are still cause for
concern however. Regardless of the cause, BEST needs to
explain to users what to do in the event of failure.

As a final test, I tried infecting Oyster-protected files with
one of the ‘Trivial’ family of overwriting viruses. The result
was as I expected: the infected file was allowed to execute,
and Oyster was unaware of the virus’ actions.

Boot Protection

Boot sector protection was more effective. I attempted to
change one of the error messages on the Master Boot Sector
and was rewarded by a message from Oyster, stating that it
had detected the presence of an ‘altered boot sector’ and
would reboot the machine. Well done, Oyster.

The next test was to infect the hard drive with four different
boot sector viruses: Spanish Telecom, Form, Quox and
Swiss Army. In each case, Oyster spotted the infection
successfully, replaced the infected boot sector and forced a
reboot. The manual gives no explanation of how Oyster
avoids being ‘stealthed’, but the most likely route is that it
takes a ‘snapshot’ of important parameters at installation.
However it functions, it is unobtrusive and efficient.

At one point during testing, Oyster seemed to stop protecting
the boot sector, and I could infect and alter it at will. Oyster
still claimed that the drive was protected, but this was clearly
not the case. I could not get to the bottom of this problem,
and was eventually forced to restart all tests.

Scanner Evaluation

Oyster’s developers explained before the review began that
it is not principally a scanning product, and that the scanning
engine needs improving. Nevertheless, for an immunisation
product to be effective, it is of paramount importance that the
system is virus free before one tampers with files.

Oyster’s scanning component, GOS, claims it does not work
like traditional virus scanners, but ‘uses Oyster technology
to scan known viruses and capture unknown viruses’. As the
manual is bereft of technical detail, I simply ran the scanner
against the virus test-set.

The test results were disappointing: out of 72 infected files,
Oyster identified only 41, missing such well known viruses
as Cascade.1701, Flip and Yankee. Boot sector detection
was rather better: Oyster missed only the comparatively new
(although now in the wild) Quox virus.

The only way I could imagine the ‘capture unknown viruses’
might work was for the product to detect changes to pro-
tected files. Altering a file protected by Oyster and running
the scanner on it showed that this was not the case. A more

careful examination of the literature showed that the product
simply waits for one of its own executable files to become
infected. Since shipping the software, BEST has signed a
deal to include the Norman Data Defense Systems scanner
with the package. As this scanner has never been evaluated
by VB, I cannot comment on its efficacy.

Conclusions

The makers of Oyster have made a brave attempt to use a
different, less update-intensive method of virus protection,
and this is laudable. Sadly, BEST has chosen to use a
technique which is not very well-known, and has failed to
explain it adequately. Using only the information provided in
the documentation, Oyster did not live up to its extravagant
claims of being the ultimate preventative package. Enhanc-
ing the programs on the rescue diskette and the contents of
the manual would be a dramatic improvement.

Some of the features of the product are very impressive, and
for certain machines (such as those in a very high risk
environment) it may prove to be a valuable purchase. The
newly announced bundling with the Norman scanner should
improve matters quite considerably, but the product as sent
to VB falls short of the mark. Oyster could (and should) be
improved, as lurking beneath the murk lies some very
interesting technology struggling to make itself seen.

Technical Details

Product: Oyster
Developer: Business Engineering and Software Tools, Merced
152, 4° Piso, Santiago, Chile. Tel. +56 (2) 639 5759.
Fax. +56 (2) 639 8406.
Vendor: Pacific Associates Ltd., Lapwing 400, Frimley Business
Park, Camberly, Surrey, GU16 5SG. Tel. +44 (276) 62252.
Fax. +44 (276) 62250.
Availability: IBM PC XT or Compatible with 640K of RAM,
running MS-DOS version 3.3 or greater.
Version Evaluated: 2.1
Serial Number: 021CP0043
Price: £111 for a single PC. £5250 for a 100-user licence.
Hardware Used: 25MHz 80386SX Opus Technologies Desktop
machine, with 4MB RAM, one 3.5-inch (1.44MB) floppy disk
drive, one 5.25-inch (1.2MB) floppy disk drive, and a 100 MB hard
drive, running MS-DOS 5.0.

The Test-Set

Viruses used for testing purposes: 1575, 2100 (C+E), 4K (C+E),
777, AntiCAD (C+E), Captain Trips (C+E), Cascade 1701,
Cascade 1704, Dark Avenger (C+E), Darth Vader-200, Darth
Vader-344, Darth Vader-409, Datalock (C+E), Dir-II, Dos Hunter,
Eddie, Eddie 2 (C+E), Exebug Trojan 1, Exebug Trojan 2, Father
(C+E), Flip (C+E), Hallochen, Invader (C+E), Jerusalem (C+E),
Keypress (C+E), Liberty, Liberty-E, Macho (C+E), Maltese
Amoeba, Mystic, Nomenklatura (C+E), Nothing, PCVrsDs (C+E),
Penza, Pitch, Powerpump, SBC, Slow (C+E), Spanish Telecom 1,
Spanish Telecom 2, Spanz, Syslock, Tequila, Todor, Tremor,
Trivial-37.B, V2P6, Vacsina, Vienna, Virdem, W13_A, W13_B,
Warrier (C+E), Whale, Yankee.

Boot Sector Infectors: Aircop, Beijing, Brain, Disk Killer, Form,
Italian, Joshi, Korea, New Zealand 2, Quox, Spanish Telecom,
Swiss Army.

 VIRUS BULLETIN NOVEMBER 1993 … 21

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

The Norton user interface is well designed and allows quick and
easy access to the plethora of functions provided by the product.

PRODUCT REVIEW 2

Norton Strikes Again?
Dr Keith Jackson

The third major revision of Norton AntiVirus has just been
released, and correspondingly, this is the third time that VB
has reviewed the product (v1.0 was reviewed in January
1991, v2.0 in March 1992). NAV3.0 is the offspring of
Symantec’s acquisition of the Certus Novi product: has this
new blood improved NAV’s pedigree?

Documentation

The only manual which comes with the product is an A5
book. This is well-written, thoroughly indexed, contains a
decent glossary, and is easy to use. The sections which
discuss the various types of virus, and how to deal with
them, are very interesting (if somewhat brief), but I must
confess I found the rest of the manual rather boring. Much of
the information contained in the manual is of the type ‘Select
Print if you would like to print the entries’. Maybe I am the
wrong person to judge this aspect of the documentation; new
users may well appreciate its kindly style.

The documentation states that quarterly upgrades are
available for a ‘low yearly fee’. Note that this is somewhat
less frequent than rival products - though Symantec claims
that monthly updates are available if required.

Installation

Norton AntiVirus v3.0 was supplied on two 1.44 Mbyte
(3.5-inch) floppy disks. This immediately excludes those
users whose PC lacks such a drive. This aspect of the
product has gone downhill as new versions have been
introduced; v1.0 was supplied on both 5.25-inch and 3.5-
inch floppy disks, and v2.0 was supplied on two 720 Kbyte,
3.5-inch floppy disks. In addition, the software has increased
enormously in size: the hideously bloated version 3.0
requires 3.45 Mbytes of hard disk space!

I would have been pleased to see the problem of supplying
various types of floppy disk discussed somewhere in the
manual. It isn’t. If ever a product was required on dual
media, it is an anti-virus scanner, as it may be asked to
inspect various types of PC within a single company.

The installation program proved very easy to use. It asks the
user to choose a screen type, and then scans memory and all
available disk drives. The user is asked whether he requires
a full or a custom installation; then copying commences.
After this is completed, automated changes to the startup
files AUTOEXEC.BAT and CONFIG.SYS are offered.
Finally, users are encouraged to create a ‘rescue’ disk, which
contains information about the partition table and boot
sectors of the hard disk.

If the ‘full installation’ option is selected, all required
Windows component parts are installed. Curiously, a
Windows group is not created, although this is an explicit
option as far as custom installation is concerned. Beyond this
small detail I find it hard to fault the installation program.

Components

Once installed, Norton AntiVirus offers two distinct units: a
memory-resident component (referred to as ‘Automatic
Protection’) which can be tailored to monitor computer
activity, and the main executable program which provides all
features which are not memory-resident. A Windows
scheduler is incorporated so that virus scans can be carried
out at predetermined times.

Looking back through previous VB reviews of Norton
AntiVirus, there has been a tendency to use silly names for
certain aspects of the software. In v1.0, Symantec insisted on
using the phrase ‘virus definitions’, when what it meant was
the virus pattern/signature that their scanner used. The two
main components of Norton AntiVirus used to be called
Virus Intercept and Virus Clinic, both of which have (thank
goodness) been dropped. The new buzzword is ‘Virus
Sensor technology’, which is splashed all over the packag-
ing. However, when it comes to explaining what this actually
means (if anything), this phrase is missing from both the
Index and the Table of Contents. Treat it as hype.

The discussion of phrases used by Norton AntiVirus is an
introduction to the way that v3.0 uses the term ‘inoculation’
in a manner which I find downright misleading. I think I am
correct in stating that other anti-virus software developers
use this word to mean adding code to an executable pro-
gram, so that the program can itself recognise that it has

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

22 … VIRUS BULLETIN NOVEMBER 1993

been altered. Norton AntiVirus uses the word ‘inoculate’
when it really means checksumming: the manual states quite
clearly that ‘Inoculation doesn’t change a file or boot record’.

To illustrate how the total number of viruses known to
Norton AntiVirus has increased, v1.0 knew of 115 viruses
(142 variants), v2.0 of 341 (1006 variants), and v3.0 of 2350
(the distinction between variants seems to have been
dropped). Information on these viruses is contained in the
‘Virus List’. This is an excellent component which can
display a description for each virus and includes comprehen-
sive searching and printing facilities. The searches can be
constrained as desired to encompass all, common, program,
boot sector or stealth viruses.

Scanner Operation

The Norton AntiVirus scanner is very easy to use. When
execution commences, a menu of all available drives is
displayed, with hard drives highlighted. This default
configuration can be changed to include any combination of
disk drives, and options are available to scan a subdirectory
or individual files. A raft of other options is available, all of
which permit scanning to be carried out in any desired
manner, including ‘inoculation’ of files to test whether or not
they have been altered. Norton AntiVirus can also inspect
files which are compressed in the ZIP format.

“This clearly illustrates that the
scanner is not really doing a

thorough scan - most likely in an
attempt to avoid false positives”

When a scan commences, memory is scanned, followed by
the Master Boot Sector, any Partition Boot Sectors, and
selected files. Upon completion the results are displayed; the
user is led through a list of problems found, and an activity
log is written to disk. As with most other components, the
content of these two log files can be tailored to suit require-
ments by configuring various options. One useful feature is
that when a particular setup has been finalised, it can be
password-protected against alteration. This completed, a
user who does not know the password can still perform
scans, but only in the prescribed manner. One curious
feature is that scanning pauses if the left mouse button is
held down - I have no idea why.

All in all, I cannot fault the way in which the scanner
interface operates. It is clear, and easy to use. There are two
user interfaces, the DOS and Windows versions, and the
operation of each is remarkably similar. Indeed, apart from
the imposed Windows graphical style, it would be hard for
users to tell them apart. This is obviously a design decision
and it works very well. The on-line help is very useful for
both operating systems, but the Windows version is more
extensive. This may well be more a comment on the Win-
dows style of help than anything else.

Scanner Performance

Testing Norton AntiVirus against the viruses listed in the
Technical Details section proved to be revealing. When I
first ran the scanner it failed to detect 7 of the 223 test
samples: 1260, Casper, Maltese Amoeba, Power Pump,
V2P6, WinVir_14 and the boot sector version of Spanish
Telecom. Not bad, but not outstanding.

For security reasons, I usually store my virus samples with a
non-executable extension and use a scanner’s ‘do all files
option’. In the light of these results, I decided to rename the
infected files to an executable extension and redo the test.
Norton was now capable of detecting four more viruses:
1260, Casper, Maltese Amoeba and V2P6.

When initially tested against the Mutation Engine samples,
Norton AntiVirus detected just 6% of the 1024 test samples.
Again, when the extension of the Mutation Engine samples
was altered to COM, the detection rate increased to 100%.
This clearly illustrates that the scanner is not really doing a
thorough scan - most likely in an attempt to avoid false
positives. What is the ‘scan all files’ option doing? This
‘feature’ needs to be discussed in the manual.

Scanning speed is more difficult to quantify, so comparative
results with other scanners are included. In its default mode,
the DOS version of Norton AntiVirus scanned the entire
contents of my hard disk (800 files, 11.3 Mbytes of which
were executable) in 33 seconds. If program files only were
tested, 324 files were scanned and the scan time dropped to
18 seconds. By way of comparison, Dr Solomon’s Anti-
Virus Toolkit scanned the same hard disk in 17 seconds, and
Sweep from Sophos took 20 seconds in ‘Quick’ mode, and
62 seconds for a ‘Full’ scan.

On the same hard disk, the Windows version of Norton
AntiVirus took 35 seconds to scan all files, and 19 seconds
for program files only. These figures are extremely close to
those reported for the DOS version which, given the usual
slowdown introduced by Windows, is very creditable indeed.
All in all, Norton AntiVirus compares well with rival
packages where scanning speed is concerned.

While a disk is being scanned, a horizontal bar indicating
the percentage completed creeps across the screen. In certain
circumstances (in both Windows and DOS), this horizontal
bar had only reached about half its range when the software
realised that it had completed its execution, and immediately
zoomed up to 100%. I first complained about this ‘feature’
when I reviewed version 1.0; it is still there in v3.0, and it is
still irritating. What is the point of a progress indicator
which is incorrect?

Detection of Alterations

The ‘inoculation’ features of Norton AntiVirus (checksum-
ming in more usual parlance) do not seem to be technically
explained anywhere in the documentation. The best I could
find was that ‘critical information’ (whatever that may be) is
recorded about a file or boot record for future reference. Such

 VIRUS BULLETIN NOVEMBER 1993 … 23

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

a trivial explanation is at best useless, and at worst, pur-
posely hides the fact that only parts of each file ‘inoculated’
are checksummed. My own tests show that inoculation can
detect the appearance of a new file, a change in file size, and
bit level changes made at the start of the file. However, it
does not detect any alteration made to the date/time stamp
attached to a file, or single-bit changes made later in the
body of a file. I do not know the point at which a file’s
contents cease to be monitored: technical information such
as this is not supplied.

Memory-resident Component

The ‘Automatic Protection’ part of Norton AntiVirus
(memory-resident is the more usual technical term) can be
set up in many different ways, by choosing different options
from within the scanner and then rebooting the computer.
The file used to perform memory-resident tests
(NAVTSR.EXE) can be loaded either as a device driver
(from CONFIG.SYS), or as an executable program (from
AUTOEXEC.BAT or the command line).

In its default state, the memory-resident component occupies
3.5 Kbytes of RAM, but this can soar to as much as 45
Kbytes if all possible options are selected. The documenta-
tion makes no mention of the execution overhead imposed by
the memory-resident software. I moaned about this when
reviewing v1.0, and again when reviewing v2.0, but inclu-
sion of basic technical detail seems to go against the grain,
and nothing has changed.

A performance overhead is inevitable, and users should be
given factual information in order to make up their own
minds as to whether or not the extra delay is justified. My
own tests show that the time taken to copy 45 files (1.8
Mbytes) from one drive to another increased from 28 to 49
seconds when ‘Automatic Protection’ was introduced. This
represents an overhead of 75%!

Other Features

The scheduler included with the Windows version of Norton
AntiVirus is excellent, and permits scans to be set up on a
one-time, hourly, daily, weekday, weekly, monthly or annual
basis. Any number and any combination of scheduled scans
can be specified, so that the way in which scanning is
performed can be fine-tuned - an excellent utility.

Norton AntiVirus also includes features that permit files to
be ‘repaired’ after they have been infected by a virus.
Infected files should be replaced rather than repaired, so the
efficacy of this feature has not been tested. If you are tempted
to use it, the manual states that it only fails in ‘rare in-
stances.’ Make of that what you will.

Conclusions

I have previously found Norton AntiVirus program design
and ease of use excellent. It remains so. The Windows
version is one of the most visually stunning anti-virus

software packages I have seen (on a par with Dr Solomon’s
artwork). However, the worm turns here, and it has to be
said that all this is merely garnish on the underlying func-
tionality. It really does look as if the marketing men have
taken over - for instance, when a scan under Windows is
undertaken, the coloured logo of three arrows chasing each
other rotates. Is this really necessary? Is it what the user
wants? Is it what the user needs? My own view of the
answers to these three questions is No, Yes, and No (people
seem to like pretty flashing pictures).

Notwithstanding my diatribe against some of the ‘more
artistic’ features of the user interface, it has to be said that
the scanning features are approaching those contained in the
best anti-virus scanner packages, both in terms of speed of
scanning and accuracy of detection. Norton AntiVirus also
offers the same scanning speed under either DOS or Win-
dows - a feat few packages can manage. Virus detection has
a few foibles but basically works well. These excellent
features are marred by a lack of technical detail in the
documentation (if this would frighten users, why not
introduce a second volume?), and the use of marketing
jargon in a misleading manner.

Symantec must be very confident that it is not going to have
many disgruntled customers if it feels confident enough to
offer a 30-day, no quibble, money-back offer. More software
companies should put their money where their mouths are
and include similar offers with their software products. I
hope (and believe) that Symantec will profit from this:
NAV3.0 seems to be much improved on its parents, and
Symantec’s purchase of Certus may well pay dividends.

Technical Details

Product: Norton AntiVirus

Developer: Symantec Corporation, 175 W. Broadway, Eugene,
OR 97401, USA, Tel: +1 (800) 444 7234, Fax: +1 (503) 334
3474, BBS: +1 (503) 484 6699 (or 6669).

Vendor(s): Most computer software retailers.

UK Support: Symantec UK Ltd., Sygnus Court, Market Street,
Maidenhead, Berkshire, SL6 4AD, UK, Tel: +44 (628) 592222

Availability: IBM PC, AT, PS/2 or 100% compatible running MS-
DOS v3.0 or higher and/or Microsoft Windows v3.0 or higher, with
a 1.44 Mbyte (3.5-inch) floppy disk drive, 512 Kbytes of RAM and
4 Mbytes of hard disk space available.

Version Evaluated: 3.00

Serial Number: None visible

Price: £149 for single user copy. 50 user licence £3725.

Hardware Used: A 25MHz 486, with one 3.5-inch (720K) floppy
disk drive, one 5.25-inch (1.2 Mbyte) floppy disk drive, a 120
Mbyte hard disk (split into three drives using Stacker), running
under MS-DOS v5.0 and Windows v3.1

Viruses used for testing purposes: This suite of 143 unique viruses
(according to the virus naming convention employed by VB), spread
across 228 individual virus samples, is the current standard test-set.
A specific test is also made against 1024 viruses generated by the
Mutation Engine (which are particularly difficult to detect with
certainty).

Full details of the test-set used are printed in Virus Bulletin, August
1993, p.19.

VIRUS BULLETIN ©1993 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX14 3YS, England. Tel (+44) 235 555139. /90/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

24 … VIRUS BULLETIN NOVEMBER 1993

END NOTES AND NEWS

ADVISORY BOARD:

Jim Bates, Bates Associates, UK
David M. Chess, IBM Research, USA
Phil Crewe, Ziff-Davis, UK
David Ferbrache, Defence Research Agency, UK
Ray Glath, RG Software Inc., USA
Hans Gliss, Datenschutz Berater, West Germany
Igor Grebert, McAfee Associates, USA
Ross M. Greenberg, Software Concepts Design, USA
Dr. Harold Joseph Highland, Compulit Microcomputer
Security Evaluation Laboratory, USA
Dr. Jan Hruska, Sophos, UK
Dr. Keith Jackson, Walsham Contracts, UK
Owen Keane, Barrister, UK
John Laws, Defence Research Agency, UK
Dr. Tony Pitt, Digital Equipment Corporation, UK
Yisrael Radai, Hebrew University of Jerusalem, Israel
Roger Riordan, Cybec Pty, Australia
Martin Samociuk, Network Security Management, UK
Eli Shapira, Central Point Software Inc, USA
John Sherwood, Sherwood Associates, UK
Prof. Eugene Spafford, Purdue University, USA
Dr. Peter Tippett, Symantec Corporation, USA
Steve R. White, IBM Research, USA
Joseph Wells, Symantec Corporation, USA
Dr. Ken Wong, PA Consulting Group, UK
Ken van Wyk, CERT, USA

SUBSCRIPTION RATES

Subscription price for 1 year (12 issues) including first-
class/airmail delivery:

UK £195, Europe £225, International £245 (US$395)

Editorial enquiries, subscription enquiries, orders and
payments:

Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire,
OX14 3YS, England

Tel (0235) 555139, International Tel (+44) 235 555139
Fax (0235) 559935, International Fax (+44) 235 559935

US subscriptions only:

June Jordan, Virus Bulletin, 590 Danbury Road, Ridgefield, CT
06877, USA

Tel 203 431 8720, Fax 203 431 8165

Symantec is now offering users a NetWare version of its Norton
AntiVirus product, which runs under both NetWare 3.xx and 4, and
provides file scanning on-access as well as on-demand. Prices start at £699
per server. Tel. +44 (628) 592222.

Patricia Hoffman’s VSUM ratings for August: 1. McAfee Associates
ViruScan V108, 96.4%, 2. Command Software’s F-Prot Professional
2.09f, 95.9%, 3. Sophos Sweep 2.53, 92.8%, 4. Dr Solomon’s AVTK,
91.7%, 5. Safetynet’s VirusNet 2.08a, 90.8%. NLMS: McAfee NetShield
1.52a V108, 95.2%, 2. Sophos Sweep NLM 2.53, 92.9%, 3. Dr
Solomon’s AVTK NLM 6.54, 88.0%, 4. Command Software’s Net-Prot
1.00s, 69.9%, 5. Cheyenne’s InocuLAN 2.0/2.18g, 65.8%.

Anti-virus through the ether! Got a virus? Nobody else can help? Why
not turn on your television and download a copy of Dr Solomon’s Anti-
Virus Toolkit? In one of the first deals of its kind, S&S International has
signed an agreement with the Italian state television channel RAI, enabling
anti-virus protection through teletext transmission. In order to receive the
transmissions, a copy of S&S’s Security Kit is needed, along with a low-
cost expansion board for the PC. Tel. +44 (442) 877877.

Fifth Generation is to cease production of its two anti-virus products,
Untouchable and Search and Destroy, following the company’s purchase
by Symantec. The two products will be discontinued during the first week
in November, but existing customers will continue to be supported by
Symantec for an as yet undecided period. At that time, they will be offered
an upgrade to Norton AntiVirus 3.0 at the normal upgrade price.

A former Princeton University doctoral student has been fined $500 for
hacking into the school’s computer system, according to a report in the
New York Times. The student, Luo-Qi, pleaded guilty after being
guaranteed that he would not be sent to jail - the maximum penalty for the
charge was a $1000 fine and six months imprisonment. He has since been
expelled from the university.

The DTI, in association with the British Standards Institute, and a
number of other companies, has released a ‘Code of Practice for Informa-
tion Security Management’, designed to help organisations secure their IT
resources. It is hoped that the code will be developed into a British
Standard by the middle of 1994.

Which book provides an instant one-shot reference on computer
viruses and anti-virus software? It can only be the Survivor’s Guide to
Computer Viruses, available from Virus Bulletin, priced £19.95. For
further information contact Victoria Lammer. Tel. +44 (235) 555139.

Triangle Software Division, of Datawatch Corporation, has announced
the upgrade of its anti-virus product, Virex for the PC. The program
now sports a new installation routine and enhanced TSR capabilities, and
can be purchased for $49.95. Tel +1 (919) 490 1277.

Oxford University has had another outbreak of the Spanish Telefonica
virus, more than two and a half years after the virus first appeared at that
institution. Two departments are reported to be affected. The university
has also had several incidences of the EXEBUG virus, which is particu-
larly worrying, because the virus prevents users clean-booting their
systems on certain machines.

Sophos’ next two Computer Virus Workshops are scheduled for 24th-25th
November and 26th-27th January. Prices are £295 for one day, and £545
for two. Contact Karen Richardson on +44 (235) 559933.

A Cautionary Tale: Fridrik Skulason has recently been sent a very
interesting request for help ... from a virus author. A Brazilian computer
science student wrote a new boot sector virus, purportedly to show his
friends how a virus worked. It subsequently escaped into the wild.
Unfortunately for the virus author, he had included his own name and
details in the virus. Understandably, he is not popular among Brazilian
computer users, and is desperate for a disinfection routine to be included in
the next release of F-Prot. Potential virus writers be warned!

This publication has been registered with the Copyright Clearance Centre Ltd.
Consent is given for copying of articles for personal or internal use, or for personal
use of specific clients. The consent is given on the condition that the copier pays
through the Centre the per-copy fee stated on each page.

No responsibility is assumed by the Publisher for any injury and/
or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or operation
of any methods, products, instructions or ideas contained in the
material herein.

