
WEST\264323411.3

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

FORTINET, INC.,
Petitioner

v.

SOPHOS LIMITED AND SOPHOS INC.,
Patent Owner

Inter Partes Review No.: IPR2015-00618
U.S. Patent No.: 8,261,344 B2

PATENT OWNER’S RESPONSE
INTER PARTES REVIEW OF U.S. PATENT NO. 8,261,344

Case IPR2015-00618
U.S. Patent No. 8,261,344

TABLE OF CONTENTS

WEST\264323411. 3 i

	
I.	 INTRODUCTION ... 1	

II.	 OVERVIEW OF THE ’344 PATENT ... 2	

III.	 CLAIM CONSTRUCTION ... 6	

IV.	 THE CHALLENGED CLAIMS ARE NOT ANTICIPATED OR OBVIOUS 8	

A.	 Bodorin Does Not Anticipate Claims 1 and 2 ... 8	

1.	 Bodorin does not disclose “providing a library of gene information
including a number of classifications based on groupings of genes” 11	

2.	 Bodorin does not disclose “identifying at least one functional block
and at least one property of the software” ... 15	

3.	 Bodorin does not disclose “identifying one or more genes each
describing one or more of the at least one functional block and the
at least one property of the software as a sequence of APIs and
strings” ... 18	

B.	 Bodorin Does Not Render Claims 10 and 13 Obvious .. 18	

C.	 Bodorin In View Of Kissel And Apap Does Not Render Claims 16 and 17
Obvious .. 20	

1.	 A person of ordinary skill in the art would not combine Bodorin,
Kissel, and Apap .. 24	

2.	 Bodorin in view of Kissel and Apap does not teach or suggest
“providing a library of gene information including a number of
classifications based on groupings of genes” ... 27	

3.	 Bodorin in view of Kissel and Apap does not teach or suggest
“identifying one or more genes each describing a functionality or
property of the software as a sequence of APIs and strings” 28	

4.	 Bodorin in view of Kissel and Apap does not teach or suggest
“combining a plurality of genes that describe the software, thereby
providing a set of genes” .. 29	

5.	 Bodorin in view of Kissel and Apap does not teach or suggest
“testing the set of genes for false-positives against one or more
reference files using a processor” .. 29	

V.	 CONCLUSION .. 32

Case IPR2015-00618
U.S. Patent No. 8,261,344

TABLE OF EXHIBITS

WEST\264323411.3 ii.

EXHIBIT DESCRIPTION

2001 Dr. Seth Nielson Deposition Exhibit: Copy of IPR2015-00618

Petition (copy not provided herewith to avoid duplication)

2002 Expert Declaration of Dr. Frederick B. Cohen

2003 Transcript of Dr. Seth Nielson Deposition (October 21, 2015)

2004 Brigham Young University 2005-2006 BS in Electrical

Engineering MAP Sheet

(https://registrar.byu.edu/advisement/pdf/05/393550.pdf)

2005 Brigham Young University Electrical and Computer Engineering

Course Offerings 2002-2014

(https://www.ee.byu.edu/grad/courses)

2006 Brigham Young University Computer Science Graduate Policy

Handbook Appendix (https://cs.byu.edu/graduate-policy-

handbook-appendix)

2007 Excerpt of Brigham Young University Computer Science Courses

(https://cs.byu.edu/courses)

2008 Brigham Young University CS 465 Course Description

(https://wiki.cs.byu.edu/cs-465/course-information)

2009 Brigham Young University CS 665 Course Description

(https://wiki.cs.byu.edu/cs-665/course-information)

Case IPR2015-00618
U.S. Patent No. 8,261,344

1
WEST\264323411.3

Pursuant to 37 C.F.R. § 120, Patent Owner hereby submits this Response to

the Petition seeking inter partes review of claims 1, 2, 10, 13, 16, and 17 (the

“challenged claims”) of U.S. Patent No. 8,261,344 (the “’344 patent”). This

Response is timely filed in accordance with the Scheduling Order as modified by

the Joint Stipulation dated October 8, 2015.

I. INTRODUCTION

The Board granted inter partes review of the ’344 patent because it found

the Petitioner established a reasonable likelihood of success in establishing that

U.S. Patent No. 7,913,305 (“Bodorin”) anticipates or makes obvious each of the

challenged claims, either alone or in combination with U.S. Patent No. 7,373,664

(“Kissel”) and U.S. Patent No. 7,448,084 (“Apap”). However, Bodorin falls far

short of teaching the challenged claim elements. For example, Bodorin does not

teach a library of gene information including a number of classifications based on

groupings of genes. The Petitioner’s argument does not even address this feature,

which is unsurprising as it is entirely missing from Bodorin. Bodorin also fails to

teach identifying functional blocks of software, as Bodorin examines computer

behavior instead of blocks of code. Additionally, the combination of Bodorin,

Kissel, and Apap is not one that would have been made by a person of ordinary

skill in the art, and even if it were, Kissel and Apap do not compensate for the

Case IPR2015-00618
U.S. Patent No. 8,261,344

2
WEST\264323411.3

aforementioned deficiencies of Bodorin and do not teach or suggest testing a set of

genes for false-positives against one or more reference files using a processor.

Accordingly, and for at least the reasons set forth below and explained in the

Declaration of Dr. Frederick Cohen (Ex. 2002), the challenged claims of the ’344

patent are neither anticipated by Bodorin nor obvious over Bodorin, either alone or

in combination with Kissel and Apap. The validity of the challenged claims should

be confirmed, and the inter partes review terminated.

II. OVERVIEW OF THE ’344 PATENT

The ’344 patent relates generally to identifying software by identifying

software characteristics, or “genes,” and matching the genes against classifications

provided by groupings of genes. Ex. 1001 at 1:8-14. The ’344 patent discloses a

system and method for classifying software including identifying a functional

block and a property of the software, identifying genes in the functional block and

property, matching the genes against gene classifications, and classifying the

software based on the classifications. Id. at 2:31-41.

In one example embodiment, illustrated below, a malware detection system

100 includes a memory 110, malware detection engine 120, and library 130. The

system 100 may also include a user interface that is not illustrated. Id. at 3:18-24.

Case IPR2015-00618
U.S. Patent No. 8,261,344

3
WEST\264323411.3

A specific method 200 for software classification by the system 100 is

illustrated in Figure 2:

Case IPR2015-00618
U.S. Patent No. 8,261,344

4
WEST\264323411.3

The analysis of a file begins at step 210. At step 220, a series of checks is

performed to determine whether the file should be analyzed further (e.g., if the file

is packed it may be more likely to contain malware and may be analyzed further,

whereas if the file passes a checksum test it may not be checked). Id. at 4:60-5:3. If

the file is to be analyzed further, properties are extracted from the file at step 230.

Properties include file size or file name, for example. Id. at 5:4-6. After properties

are extracted, the file is unpacked if necessary at step 240. Id. at 5:7-8. Next, at

step 250, functional blocks are extracted from the file. Functional blocks include

Case IPR2015-00618
U.S. Patent No. 8,261,344

5
WEST\264323411.3

sequences of application program interface (API) calls or string references, for

example. The functional blocks are extracted from the file’s binary code and

illustrate the function and execution flow of the program. Id. at 5:17-22.

At step 260, the extracted functional blocks are searched for genes, and a list

of genes present in the file is assembled. Id. at 5:29-30. A gene is described as “a

piece of functionality or property of a program. Id. at 5:32-33. A piece of

functionality is “described using sequences of APIs and strings, which can be

matched against functional blocks.” Id. at 5:33-35. The genes are compared against

a library of classifications of genes at step 270. A classification of genes is detected

for the file if all genes contained in the gene combination of the classification are

found in the list of genes identified in the file. Id. at 5:46-50. For example, a

functional block is shown in Ex. 1001 at 6:14-27. This functional block matches

three genes, each of which has its own piece of functionality described by its own

sequence of APIs and strings. Id. at 6:11-13, 6:28-42. The three genes together

form a classification. Id. at 6:43-45. For example, gene “Runkey” has as a piece of

functionality “set a run key” and includes the following sequence of APIs and

strings:

•“software\microsoft\windows\currentversion\run”

•RegCreateKeyExA

•RegSetValueExA

Case IPR2015-00618
U.S. Patent No. 8,261,344

6
WEST\264323411.3

Id. at 6:35-39.

Another example of a classification is as follows:

SockSend Socket based activity

RunKey Sets a run key

Exec Executes other programs

CopySys Copies itself to the system
directory

AVList Contains a list of AV (anti-
virus) products

IRC IRC references

Host References the hosts file

Id. at 5:60-66. This classification includes seven genes and matches an

IRC Bot malware file. Id. at 5:53-57.

An output, such as a report of significant identified classifications, is

generated at step 280. Id. at 6:1-10.

III. CLAIM CONSTRUCTION

During an inter partes review, a claim should be given its broadest

reasonable interpretation (BRI) in light of the specification. See 37 C.F.R.

§42.100(b). Under the BRI, words of the claim must be given their plain meaning,

unless such meaning is inconsistent with the specification. In re Zletz, 893 F.2d

Case IPR2015-00618
U.S. Patent No. 8,261,344

7
WEST\264323411.3

319, 321, 13 USPQ.2d 1320, 1322 (Fed. Cir. 1989). The plain meaning of a term

means the ordinary and customary meaning given to the term by those of ordinary

skill in the art at the time of the invention. MPEP § 2111.01 ¶ III. Phillips v. AWH

Corp., 415 F.3d 1303, 1312-13 (Fed. Cir. 2005) (en banc).

The Board construes “gene” as “a piece of functionality or property of a

program,” noting that “‘APIs and strings’ is still a limitation of the claims despite

being omitted from the definition of ‘gene.’” Decision at 6-7. The Decision

interprets the limitation “identifying one or more genes each describing one or

more of the at least one functional block and the at least one property of the

software and the at least one property of the software as a sequence of APIs and

strings” to require a gene to describe either a functional block or a property, but not

necessarily both. Id. at 8. Patent Owner respectfully disagrees with the Board that

the ’344 patent “assigns no special meaning or different meaning to property as

opposed to functional block.” Id. at 7. “Property” may not be explicitly defined,

but examples of properties are given (e.g., file size or name). Ex. 1001 at 5:4-6.

Indeed, Petitioner’s expert witness, Dr. Seth Nielson, has explained how one of

ordinary skill would understand “property” to mean something different from

“piece of functionality” (i.e., a property “defines something about (the) program”).

Ex. 2003 at 30:18-25. Accordingly, Patent Owner does not concede that the

Board’s construction of “gene” is proper under the BRI.

Case IPR2015-00618
U.S. Patent No. 8,261,344

8
WEST\264323411.3

No other term was specifically construed by the Board. Other terms were

instead “given their ordinary and customary meaning, as would be understood by

one of ordinary skill in the art in the context of the entire disclosure.” Decision at

6. Patent Owner and its expert have used the Board’s construction of “gene” and

the “ordinary and customary meaning” of the other claim terms in this Response.

IV. THE CHALLENGED CLAIMS ARE NOT ANTICIPATED OR
OBVIOUS

A. Bodorin Does Not Anticipate Claims 1 and 2

Bodorin fails to disclose several elements of claim 1, as discussed below. It

is well-established that a “claim is anticipated only if each and every element as set

forth in the claim is found, either expressly or inherently described, in a single

prior art reference.” Verdegaal Bros. v. Union Oil Co. of California, 814 F.2d 628,

631 (Fed. Cir. 1987). Therefore, Ground 1 should be rejected and claim 1

determined to be patentable over Bodorin. Claim 2 depends from claim 1 and is

valid for at least the reasons discussed below with respect to claim 1.

Bodorin discloses a “malware detection system that determines whether an

executable code module is malware according to behaviors exhibited while [the

code module is] executing.” Ex. 1003 at Abstract. A block diagram of the malware

detection system 200 is shown in Fig. 2.

Case IPR2015-00618
U.S. Patent No. 8,261,344

9
WEST\264323411.3

The malware detection system 200 analyzes the code module 212 to identify

malware within the module 212. The management module 202 first evaluates the

code module 212 to determine the appropriate type of dynamic behavior evaluation

module 204 needed to evaluate the behavior of the code module 212. Id. at 4:21-

29. Once the appropriate dynamic behavior evaluation module 204 is determined,

the code module 212 is handed over to the dynamic behavior evaluation module

204. The dynamic behavior evaluation module 204 executes the code module 212

and evaluates and records the code module’s 212 dynamic behaviors. Id. at 4:33-

50. Specifically, the dynamic behavior evaluation module 204 records “interesting”

Case IPR2015-00618
U.S. Patent No. 8,261,344

10
WEST\264323411.3

behaviors exhibited by the code module 212 as the code module 212 executes.

Interesting behaviors are behaviors potentially associated with malware. These

interesting behaviors are compared against known malware behaviors. Id. at 4:51-

58. Example interesting behaviors are shown in Table A of Bodorin (Id. at 5:5-20).

To make the comparison, the code module’s 212 interesting behaviors are

recorded in a file, which is called the behavior signature 210. The behavior

signature comparison module 206 compares the behavior signature 210 against

behavior signatures of known malware. The known malware behavior signatures

are based on exhibited behaviors of malware. Id. at 5:21-43. If the behavior

Case IPR2015-00618
U.S. Patent No. 8,261,344

11
WEST\264323411.3

signature comparison module 206 completely matches the behavior signature 210

against a known malware behavior signature, the malware detection system 200

reports the code module 212 as malware. Id. at 5:44-49.

1. Bodorin does not disclose “providing a library of gene
information including a number of classifications based on
groupings of genes”

Claim limitation 1[a] recites “providing a library of gene information

including a number of classifications based on groupings of genes.” Patent Owner

respectfully submits that Bodorin fails to anticipate claim 1 at least because

Bodorin does not disclose providing a library of gene information including a

number of classifications based on groupings of genes. Ex. 2002 at 16-18.

As noted above, “gene” is being construed as “a piece of functionality or

property of a program” in this inter partes review. Thus, the claimed library of

gene information must include a number of classifications based on groupings of

pieces of functionality or properties of a program. A “piece of functionality is

described using sequences of APIs and strings.” Ex. 1001 at 5:33-34. As Patent

Owner’s expert notes, a single API and an associated string or strings is not a

sequence of APIs and strings, because a sequence is a plurality of APIs and strings.

Ex. 2002 at 24. The ’344 patent presents examples of “functionality” as sequences

of APIs and strings that define a software characteristic. Id. at 6:50-55. For

example, “CopySys” is a sequence of five APIs and strings defining a copy

Case IPR2015-00618
U.S. Patent No. 8,261,344

12
WEST\264323411.3

functionality. Id. at 6:28-34, 6:52-55. Each of the lines in the CopySys gene

contributes to a description of the overall functionality of the gene. This is evident

from a reading of Ex. 1001 at 6:30-34 and is what one of ordinary skill in the art

would understand according to Petitioner’s own expert, Dr. Nielson: “[CopySys is]

identifying multiple steps that would be involved in a copy to the system folder.”

Ex. 2003 at 33:7-13. A classification, then, is a grouping of genes including such

pieces of functionality (i.e., sequences of APIs and strings). For example, genes

“‘SockSend, RunKey, Exec, CopySys, AVList, IRC, and Host’ are combined to

form a classification for an ‘IRC Bot’ program.” Ex. 1001 at 6:57-60. The

classification is a combination of genes, and each gene in turn is a sequence of

APIs and strings that constitute a piece of functionality of a program.

In contrast to the ’344 patent, Bodorin teaches classifications based on

groupings of APIs and strings (i.e., classifications based on functionalities, rather

than on groupings of functionalities, at best). Bodorin teaches identifying

interesting behaviors exhibited by an executing code module 212 and storing the

identified interesting behaviors in a behavior signature 210. Ex. 1003 at 21-23.

FIGS. 5A and 5B show example behavior signatures 500 and 512. Each interesting

behavior is represented as a behavior token 502, and each behavior (interesting or

otherwise) may be accompanied by one or more parameter values 504, 506, 508,

which may include strings as in 508. Id. at 7:16-46. Indeed, Petitioner notes that

Case IPR2015-00618
U.S. Patent No. 8,261,344

13
WEST\264323411.3

the “behaviors monitored in Bodorin include some of the very same API calls that

are the bases for ‘genes’ in the ’344 patent.” Petition at 20 (emphasis added).

These individual API calls are combined into behavior signatures and compared

with stored behavior signatures. Ex. 1003 at 5:27-43. The Petition does not show

that Bodorin discloses, teaches, or suggests using sequences of API calls and

strings to denote interesting behaviors. Thus, claim 1 requires three distinct

categories of information. Ex. 1001 at 6:11-42, 7:60-67. See also Ex. 2002 at 16-18

and Ex. 2003 at 31:2-33:13. Bodorin, by contrast, only discloses two (interesting

behavior, behavior signature), and does not disclose (or even suggest) anything

equivalent to the third category, the claimed “classifications.” Ex. 1003 at 5:27-43.

The ’344 patent does provide an example of at least one gene that includes a

single API: “Exec,” which includes the API “CreateProcessA.” Ex. 1001 at 6:40-

42. This does not contradict the arguments presented above, as Applicant explicitly

disclaimed such single-API genes in the amendment filed April 3, 2012 by

specifically defining a gene as “describing one or more of the at least one

functional block and the at least one property of the software as a sequence of APIs

and strings.” Ex. 1002 at 55 (emphasis added). Applicant explained that using

sequences of APIs and strings to describe software was an inventive concept. Id. at

59. The Examiner specifically noted the feature “identifying one or more genes

each describing one or more of the at least one functional block and the at least one

Case IPR2015-00618
U.S. Patent No. 8,261,344

14
WEST\264323411.3

property of the software as a sequence of APIs and strings” as being instrumental

in overcoming the prior art. Id. at 15. Thus, the distinctions between Bodorin and

the ’344 patent are reinforced by the prosecution history of the ’344 patent.

Additionally, despite the conclusory assertions of Petitioner (Petition at 4),

there is no disclosure, teaching, or suggestion anywhere in Bodorin that the

“behaviors” recorded by the dynamic behavior execution module 204 are

equivalent to “pieces of functionality” of a program. The behaviors are exhibited

by a code module 212 as it executes within a dynamic behavior evaluation module

204. Ex. 1003 at 4:51-54. As those of ordinary skill in the art will appreciate,

“behavior” and “functionality” are not equivalent terms. Ex. 2002 at 16-17. “The

same program may demonstrate different behaviors in different environments,” so

the same program, with the same underlying functionality, may exhibit different

behaviors in different environments. Id. Accordingly, the APIs and strings forming

“interesting behaviors” in Bodorin do not describe behaviors of the code module

212 alone, but instead describe behaviors of the code module 212 executing in the

dynamic behavior evaluation module 204. This behavior is not inherent to the code

module 212 as it requires the dynamic behavior evaluation module 204 and is

affected by the specific environment provided by the dynamic behavior evaluation

module 204. Id.

Case IPR2015-00618
U.S. Patent No. 8,261,344

15
WEST\264323411.3

Claim limitation 1[a]1 requires a number of classifications based on

groupings of genes. Genes are pieces of functionality or properties of programs.

Pieces of functionality are sequences of APIs and strings. Thus, claim limitation

1[a] requires three layers of organization – APIs/strings, genes, and classifications.

Bodorin teaches, at most, two. Accordingly, Bodorin does not anticipate claim

limitation 1[a]. Because claim limitations 1[d], 1[e], and 1[f] also require

classifications, Bodorin does not anticipate elements 1[d], 1[e], and 1[f], as well.

Ex. 2002 at 24-26.

2. Bodorin does not disclose “identifying at least one
functional block and at least one property of the software”

Claim limitation 1[b] recites “identifying at least one functional block and at

least one property of the software”. Patent Owner respectfully submits that

Bodorin fails to anticipate claim 1 at least because Bodorin does not disclose

identifying at least one functional block of the software. Ex. 2002 at 18-24.

The ’344 patent teaches that functional blocks include sequences of API

calls and strings that illustrate the function and execution flow of a program. Ex.

1001 at 5:17-20. The functional blocks are extracted from a program file’s binary

code. Id. at 5:21-22. The experts for the Petitioner and Patent Owner agree that a

functional block is a segment of a program or “chunk” of software with

1 The labeling of the claims as set out in the Petition is used herein for consistency.

Case IPR2015-00618
U.S. Patent No. 8,261,344

16
WEST\264323411.3

recognizable boundaries. Ex 1007 at ¶62, Ex. 2002 at 18-19, Ex. 2003 at 35:4-

36:11. This is consistent with the ’344 patent’s teaching that functional blocks are

extracted from a program file’s binary code.

The Petition does not identify any disclosure in Bodorin that identifies

segments or chunks of a program. Bodorin watches code as it executes and

identifies interesting behaviors. Ex. 1003 at 4:51-54. The Petition does not identify

what specifically constitutes a “functional block” in Bodorin, instead merely block

quoting Bodorin at 4:51-5:20 for the entire clause 1[b]. Petition at 23. Ex. 1003 at

4:51-5:20 is silent on identifying a segment or chunk of a program, let alone one

that illustrates the function and execution flow of the program. Petitioner’s expert

does state that the identified behaviors include API calls that illustrate the function

and execution flow of the program (Ex. 1007 at ¶62), but behaviors that illustrate

function and execution flow are not program segments that illustrate function and

execution flow. Likewise, identifying behaviors is not identifying functional

blocks. Ex. 2002 at 19-20 and 23-24. Identifying the functional block is identifying

a program segment that can illustrate the function and execution flow of the

program. Identifying the behavior is, in fact, identifying the function of the

program and using that information to make an observation about the program (i.e.,

identify the interesting behaviors). Id. Indeed, Petitioner’s expert explains that

programs written in different languages may produce the same interesting

Case IPR2015-00618
U.S. Patent No. 8,261,344

17
WEST\264323411.3

behaviors despite having completely different code (and therefore different

functional blocks). Ex. 2003 at 42:14-48:9.

Furthermore, experts for the Petitioner and Patent Owner agree that for

“execution flow” to make sense, more than one instruction must be involved (e.g.,

a series of instructions, a loop that repeats one or more instructions (thus being

essentially those repeated instructions in sequence), or a branch instruction

specifying where the program will go to find a next instruction). Ex. 2002 at 19-20,

Ex. 2003 at 35:20-36:11. Even if the “interesting behaviors” of Bodorin were

identified functional blocks of code, they would not illustrate the execution flow.

Bodorin teaches that each interesting behavior is represented as a single behavior

token and, optionally, one or more parameter values. Ex. 1003 at 7:23-27. Only

interesting behaviors are recorded, and other behaviors are not recorded. Id. at

8:12-16. In the ’344 patent, a functional block includes multiple instructions in

context, illustrating an execution flow. Ex. 1001 at 6:11-42. In Bodorin, individual

behaviors are isolated out of context and therefore cannot illustrate an execution

flow.

Claim limitation 1[b] requires identification of a functional block, which is a

sequence of API calls and strings extracted from a program’s code that illustrates

the function and execution flow of the program. Bodorin’s interesting behaviors

are not functional blocks and they do not illustrate the execution flow of a

Case IPR2015-00618
U.S. Patent No. 8,261,344

18
WEST\264323411.3

program. Ex. 2002 at 19-20. Accordingly, Bodorin does not anticipate claim

limitation 1[b].

3. Bodorin does not disclose “identifying one or more genes
each describing one or more of the at least one functional
block and the at least one property of the software as a
sequence of APIs and strings”

As discussed above, Bodorin does not disclose identifying at least one

functional block. Thus, even if a single API with optional string(s) used to identify

interesting behaviors is regarded as a gene (which Patent Owner does not concede),

it does not describe an identified functional block. Furthermore, a single API with

a string (or even multiple strings) does not describe a program flow as discussed

above. Finally, a single API and an associated string or strings is not a sequence of

APIs and strings, because a sequence is a plurality of APIs and strings. Ex. 2002 at

24. Accordingly, Bodorin does not anticipate claim limitation 1[c].

B. Bodorin Does Not Render Claims 10 and 13 Obvious

Claim 1 and its dependent claims are not anticipated by Bodorin for at least

the reasons presented in section IV(A), and claim 1 is therefore valid. As claims 10

and 13 depend on valid claim 1, they are also valid. Ground 2 should be rejected

and claims 10 and 13 confirmed for at least this reason.

Case IPR2015-00618
U.S. Patent No. 8,261,344

19
WEST\264323411.3

Furthermore, Bodorin does not explicitly teach “removing the software

when the software is classified as malware or unwanted software” (claim 10) or

“blocking access to the software when the software is classified as malware or

unwanted software,” (claim 13) as acknowledged by Petitioner. Petition at 27.

Petitioner cites to Bodorin’s description of prior art anti-virus software including

these features, noting that Bodorin explains that the malware detection system

described therein may be used in conjunction with current anti-virus software.

Petition at 27-29. Bodorin teaches that in such cases, the anti-virus software’s

signature scanning techniques should be used as a first step before turning to the

described malware detection system. Ex. 1003 at 4:8-12. This argument may

explain a motivation to combine anti-virus scanning (which includes virus removal

and blocking) and the system of Bodorin in the described order, but the argument

does not establish a motivation to re-run the virus scanner for removal and

blocking after using the system of Bodorin. See also Ex. 2002 at 27-31. Indeed,

given that a person of ordinary skill in the art as defined by the Petitioner’s expert

is a person of relatively low skill (e.g., having a Master’s degree in electrical

engineering and potentially no relevant background or training in computer

security or malware detection), it is doubtful that such a motivation can be found in

Bodorin. Ex. 2002 at 31 and 11-12, Ex. 2004, Ex. 2005, Ex. 2006, Ex. 2007, Ex.

2008, Ex. 2009, Ex. 2003 at 18:23-25, Section IV(C)(1) infra.

Case IPR2015-00618
U.S. Patent No. 8,261,344

20
WEST\264323411.3

C. Bodorin In View Of Kissel And Apap Does Not Render Claims 16
and 17 Obvious

Bodorin in view of Kissel And Apap fails to teach several elements of claim

16, as explained below. Additionally, Petitioner’s proposed combination of

Bodorin, Kissel, and Apap is not obvious to one of ordinary skill in the art. Thus,

claim 16 is valid. As claim 17 depends from claim 16, claim 17 is valid for at least

the reasons discussed below with respect to claim 16. Ground 3 should be rejected

and claims 16 and 17 confirmed.

Kissel discloses methods and systems “for detecting the presence of

malicious computer code in a plurality of e-mails.” Ex. 1004 at Abstract. Kissel’s

system operation is shown in Figs. 3A-3B.

Case IPR2015-00618
U.S. Patent No. 8,261,344

21
WEST\264323411.3

Case IPR2015-00618
U.S. Patent No. 8,261,344

22
WEST\264323411.3

Emails are examined at step 31 as they arrive at a gateway 2. If an email is

judged to be definitely harmless at step 32, it is sent to the server at step 33. If not,

it is put into a delay queue 5 for a prescribed amount of time at step 34. Then, a

feature vector 80 is calculated at step 35. The feature vector 80 contains feature

instance entries 90. If a feature instance 90 corresponds to a blocked feature

instance deemed to be indicative of malicious code in library 6 at step 36, the email

is blocked at step 37. Ex. 1004 at 5:1-60. If the feature instance 90 does not

correspond to a known blocked feature instance, additional processing is

performed to determine if the feature entry 90 crosses a suspicious or malicious

threshold at steps 38-41. If the malicious threshold is crossed, the library 6 is

updated at step 42 with the feature instance 90. Ex. 1004 at 6:7-54.

Example feature instances 90(1) and 90(2) within a feature vector 80 are

shown in Fig. 4.

Case IPR2015-00618
U.S. Patent No. 8,261,344

23
WEST\264323411.3

The feature instances 90 are hashes calculated from features of an email. Ex.

1004 at 4:49-62 and 5:25-30. Email features that can be tracked by Kissel include

the following:

Contents of the subject line of the e-mail.

A hash of each e-mail attachment (or, not as commonly

due to the normally large size of an e-mail attachment,

the entire attachment itself).

The name of each e-mail attachment.

The size of each e-mail attachment.

A hash of the e-mail body.

Parsed script within the e-mail body or within an e-mail

attachment.

A hash of parsed script within the e-mail body or within

an e-mail attachment.

Ex. 1004 at 3:34-46

In the case of parsed script (and a hash derived therefrom), code between

<SCRIPT> tags is examined and parsed to generate a tokenized representation of

the script. The tokenized representation includes keywords (e.g., var* and if*), but

removes the bulk of the code. Ex. 1004 at 3:47-4:3.

Apap discloses “a method for detecting intrusions in the operation of a

computer system”. Ex. 1006 at Abstract. Petitioner cites Apap for teaching

generating a model for normal behavior, employing an algorithm for detecting

Case IPR2015-00618
U.S. Patent No. 8,261,344

24
WEST\264323411.3

anomalous behavior, and training and testing the algorithm by comparing detected

anomalous behavior against normal behavior to generate detection and false

positive statistics. See page 37 of the Petition and Ex. 1006 at 5:10-20 and 15:44-

16:20.

1. A person of ordinary skill in the art would not combine
Bodorin, Kissel, and Apap

The parties agree that a person of ordinary skill is fairly unsophisticated,

being a person having “a Master’s degree in electrical engineering, computer

engineering or computer science; or a Bachelor’s degree in electrical engineering,

computer engineering or computer science with at least two years experience

working with hardware and software for computer and network security.” Ex. 1007

at ¶21, Ex. 2002 at 10. Such a person (e.g., a person having a Master’s degree in

electrical engineering and no relevant experience) may be almost completely

unfamiliar with computer security in some cases. For example, Dr. Cohen’s

discussion of the requirements for an example Master’s degree in electrical

engineering illustrate that it would have been possible for such a person to have

had no formal training in computer security whatsoever at the time the ’344 patent

was filed. Ex. 2002 at 11-12, Ex. 2004, Ex. 2005, Ex. 2006, Ex. 2007, Ex. 2008,

Ex. 2009. That is, one could have graduated with a Master’s degree in Electrical

Engineering having taken no computer security courses. Ex. 2002 at 12. Dr.

Case IPR2015-00618
U.S. Patent No. 8,261,344

25
WEST\264323411.3

Nielson agrees that “there would be some person with a master’s degree in

electrical engineering out there somewhere who could not do this.” Ex. 2003 at

18:23-25.

The combination of Bodorin with Kissel and Apap must be evaluated with

this person of ordinary skill in mind. As both experts note, “Bodorin does not

disclose updating the malware behavior signature store by testing the generated

behavior signature for false positives and storing the tested generated behavior

signature,” which is claimed in claim 16. Ex 1007 at 91, Ex. 2002 at 32. The

Petition asserts that a person of ordinary skill would find it obvious to look to

Kissel and Apap for a way to update the behavior signature store 208 of Bodorin.

Petition at 44. However, a person of ordinary skill in the art as set forth in the

Petition “need have no background in computer security or malware detection, and

would have to somehow relate monitoring Windows registry access… to worm and

spam detection, which are largely about network-based events rather than within-

processor events… and relate this to dynamic code analysis, which has nothing

obvious to do with Windows registry access or detection of network-related spam

and worm attacks… to even consider such a combination.” Ex. 2002 at 33. This is

true in spite of the fact that a person with a Master’s degree in electrical

engineering may have no knowledge of any of these topics, and indeed may be

unaware of these topics altogether. Id.

Case IPR2015-00618
U.S. Patent No. 8,261,344

26
WEST\264323411.3

Petitioner’s asserted motivation to combine appears to be based not on the

point of view of a person of ordinary skill in the art, but on a maker of anti-virus

software. Petition at 44-45, citing Ex. 1007 at ¶¶91-94.

A major challenge for makers of anti-virus software is to

keep its anti-virus software up to date so that it can

recognize new malware before the new malware can

infect users’ computers. Thus, one of ordinary skill in the

art, in view of a system disclosed in Bodorin that

generates behavior signature from programs and

compares it against behavior signatures of known

malware in the malware behavior signature store, would

be motivated to keep the stored updated so that the

system can detect the latest malware. (sic)

Ex. 1007 at ¶93.

A maker of anti-virus software is not a person with a Master’s degree in

electrical engineering, but rather a person who is routinely engaged (and

presumably particularly knowledgeable) in developing malware detection systems

and methods. Such a person may make the combination of art suggested by

Petitioner, but a person of ordinary skill “is not asserted to be or shown to be or

have the skills or motivations of ‘makers of anti-virus software.’” Ex. 2002 at 41.

Case IPR2015-00618
U.S. Patent No. 8,261,344

27
WEST\264323411.3

When the knowledge of a person of ordinary skill in the art is considered,

the combination of Bodorin, Kissel, and Apap offered by Petitioner is apparent in

hindsight only. Ex. 2002 at 33. It is well established that improper hindsight cannot

be the basis for an obviousness rejection. MPEP § 2145. The combination is not

obvious, and the Grounds based on the combination should be rejected and claims

16 and 17 deemed patentable.

2. Bodorin in view of Kissel and Apap does not teach or
suggest “providing a library of gene information including a
number of classifications based on groupings of genes”

Even if the combination of Bodorin, Kissel, and Apap is within the reach of

a person of ordinary skill (which Patent Owner does not concede), it does not teach

or suggest every element of claim 16. As discussed above, Bodorin does not teach

“providing a library of gene information including a number of classifications

based on groupings of genes.” Ex. 2002 at 42. Nothing in the Petition alleges that

Kissel or Apap compensates for this deficiency, and the Petition does not cite to

Kissel or Apap for this element. Petition at 45. Indeed, neither Kissel nor Apap

teaches anything about providing a library of any kind, particularly one including a

number of classifications based on groupings of genes. Accordingly, claim 16 is

valid for at least the reason that claim limitation 16[a] is not obvious over Bodorin

in view of Kissel and Apap. Ex. 2002 at 42.

Case IPR2015-00618
U.S. Patent No. 8,261,344

28
WEST\264323411.3

3. Bodorin in view of Kissel and Apap does not teach or
suggest “identifying one or more genes each describing a
functionality or property of the software as a sequence of
APIs and strings”

As discussed above, Bodorin does not teach “identifying at least one

functional block” and “identifying one or more genes each describing one or more

of the at least one functional block… as a sequence of APIs and strings.” Ex. 2002

at 42. Furthermore, a functional block is a segment of a program (Ex 1007 at ¶62,

Ex. 2002 at 18-19, Ex. 2003 at 35:4-36:11), and a functionality is extracted from a

functional block (and is thus a subset thereof). Ex. 1001 at 5:29-32. “API function

calls are defined functionality of the software.” Ex. 2003 at 61:19-21. As Bodorin

does not identify a functional block of the software, Bodorin does not identify a

functionality that is a subset of a functional block. Additionally, a single API and

an associated string or strings is not a sequence of APIs and strings, because a

sequence is a plurality of APIs and strings. Ex. 2002 at 24. Ex. 2002 at 19-20 and

23-24.

The Petition does not allege that Kissel or Apap compensates for this

deficiency, and does not cite to Kissel or Apap for this element. Petition at 46-47.

Indeed, neither Kissel nor Apap teaches anything about identifying anything

describing a functionality or property of software as a sequence of APIs and

Case IPR2015-00618
U.S. Patent No. 8,261,344

29
WEST\264323411.3

strings. Accordingly, claim 16 is valid for at least the reason that claim limitation

16[b] is not obvious over Bodorin in view of Kissel and Apap.

4. Bodorin in view of Kissel and Apap does not teach or
suggest “combining a plurality of genes that describe the
software, thereby providing a set of genes”

As discussed above, Bodorin does not teach “identifying one or more genes

each describing a functionality or property of the software as a sequence of APIs

and strings” or “providing a library of gene information including a number of

classifications based on groupings of genes.” Ex. 2002 at 42. Instead, interesting

behaviors are identified and combined into behavior signatures. The behavior

signatures are not a grouping of sequences of APIs and strings. Ex. 1003 at 5:27-

43, Ex. 2002 at 16-18 and 24.

The Petition does not allege that Kissel or Apap compensates for this

deficiency, and does not cite to Kissel or Apap for this element. Petition at 47.

Indeed, neither Kissel nor Apap teaches anything about grouping separate elements

describing a functionality or property of software as a sequence of APIs and

strings. Accordingly, claim 16 is valid for at least the reason that claim limitation

16[c] is not obvious over Bodorin in view of Kissel and Apap.

5. Bodorin in view of Kissel and Apap does not teach or
suggest “testing the set of genes for false-positives against
one or more reference files using a processor”

As Petitioner notes, Bodorin does not teach or suggest “testing the set of

Case IPR2015-00618
U.S. Patent No. 8,261,344

30
WEST\264323411.3

genes for false-positives against one or more reference files using a processor.”

Petition at 43. Kissel and Apap are cited for allegedly teaching these features.

However, they do not.

Kissel teaches a screening method that identifies email features and

determines whether they match entries in a features library 6. Ex. 1004 at 5:20-35.

If an email contains no features corresponding to entries in the library 6, the library

is updated with entries for the new features identified in the email. Id. at 6:7-10.

The entries generated by the method of Kissel include a message ID, a timestamp,

and a score which may or may not be above a malicious threshold. Ex. 1004 at

4:58-65 and 6:20-23. In contrast, Bodorin teaches that the malware behavior

signature store 208 is periodically updated with new behavior signatures. Ex. 1003

at 6:1-5. The behavior signatures in the store 208 represent behaviors exhibited by

a code module and represented as a behavior token 502 and one or more parameter

values 504 and 506, as shown in FIGS. 5A and 5B. Ex. 1003 at 7:16-27. The

entries of Kissel bear no relation to the behavior signatures of Bodorin and are

therefore unrelated to updating a library such as that disclosed in Bodorin (and,

indeed, unrelated to the claimed library of gene information). Ex. 2002 at 43-44.

Kissel, in essence, is cited for teaching updating something, but Kissel does not

update the same kind of data that is stored in the behavior signature store 208 of

Bodorin. Ex. 2002 at 43-47.

Case IPR2015-00618
U.S. Patent No. 8,261,344

31
WEST\264323411.3

Apap does not compensate for these deficiencies. Apap teaches examining

stored registry access data directly to train an algorithm that will subsequently be

used to monitor registry access directly in real time. Ex. 1006 at 10:1-11. Apap is

only cited for evaluating for false positives over “normal data,” which Petitioner

regards as a reference file. Ex. 1006 at 15:44-51, Ex. 1007 at ¶85, Ex. 2003 at

65:5-66:14. Apap does not teach or suggest that the stored registry access data is a

gene or anything resembling a gene. Ex. 2002 at 44.

Furthermore, none of Bodorin, Kissel, or Apap disclose, teach, or suggest

testing for false positives with a processor. The Petition does not cite to any

teaching of testing for false positives with a processor anywhere in any reference.

Petition at 47-49. Indeed, Kissel discloses “manual setting of the scoring

parameters,” directly refuting the use of a processor. Ex. 1004 at 8:56-62, Ex. 2002

at 44. It is possible to test for false positives without the use of a processor. Ex.

2003 at 68:17-24.

For at least the foregoing reasons, claim 16 is valid because claim limitation

16[d] is not obvious over Bodorin in view of Kissel and Apap.

Case IPR2015-00618
U.S. Patent No. 8,261,344

32
WEST\264323411.3

V. CONCLUSION

For the foregoing reasons, Patent Owner respectfully submits that the Board

should not find any claim of the ’344 patent unpatentable based on any ground set

forth in the Petition. The Petitioner has not met its burden to establish anticipation

of any claim of the ’344 patent. Moreover, the Petitioner has not met its burden to

establish obviousness of any claim of the ’344 patent.

Dated: October 28, 2015 Respectfully Submitted,

 / James M. Heintz /

James M. Heintz
Lead Counsel for Patent Owner
Reg. 41,828
SophosFortinetIPR@dlapiper.com
Phone: 703-773-4148
Fax: 703-773-5200

Gianni Minutoli
Reg. No. 41,198
gianni.minutoli@dlapiper.com
Phone: 703-773-4045
Fax: 703-773-5200

Nicholas Panno
Reg. No. 68,513
nicholas.panno@dlapiper.com
Phone: 703-773-4157
Fax: 703-773-5200

Case IPR2015-00618
U.S. Patent No. 8,261,344

33
WEST\264323411.3

Postal and Hand Delivery Address:
DLA Piper LLP (US)
11911 Freedom Drive, Suite 300
Reston, VA 20190-5602

Attorneys for Patent Owner Sophos Ltd.
and Sophos Inc.

Case IPR2015-00618
U.S. Patent No. 8,261,344

1
WEST\264323411.3

CERTIFICATE OF SERVICE

 The undersigned hereby certifies that a true copy of the foregoing instrument

was served on Petitioner, Fortinet Inc., by emailing a copy to counsel at the email

addresses listed below:

Jason Liu

jasonliu@quinnemanuel.com

Jordan R. Jaffe
jordanjaffe@quinnemanuel.com

IPR-FortinetSophos@quinnemanuel.com

Dated: October 28, 2015 /James M. Heintz/

James M. Heintz
Reg. 41,828
Jim.heintz@dlapiper.com
Counsel for Patent Owner

