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[57] ABSTRACT 

Methods and apparatus for recovering a desired signal from 
a composite signal. In one method, sample-based informa­
tion maximization techniques for blind deconvolution are 
utilized to learn a filter (22) which removes undesired 
dependencies from the composite signal. Entropy as an 
expectation over individual samples of the composite signal 
is maximized. In another method, dependencies of the 
composite signal are selectively removed by learning a first 
filter ( 42) that removes the desired dependencies and outputs 
a filtered signal. The filtered signal is used as the learning 
material for a second filter ( 44) such that the second filter 
learns to remove only the remaining dependencies 
(undesired dependencies) from the filtered signal. The com­
posite signal is applied to the second filter ( 44) which 
thereby removes the undesired dependencies. 

3 Claims, 1 Drawing Sheet 
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METHOD FOR RECOVERING A SOURCE 
SIGNAL FROM A COMPOSITE SIGNAL AND 

APPARATUS THEREFOR 

BACKGROUND OF THE INVENTION 

The present invention relates, in general, to signal pro­
cessing and, more particularly, to blind deconvolution. 

Signals are commonly processed using filters to suppress 
or enhance desired components of the signal or to remove 
undesired components of the signal. Typically, the signal to 
be processed comprises more than simply the original or 
source signal and the desire is to process the signal to 
recover the original or source signal. Often, however, little 
is known about the source signal. For example, there may be 
no knowledge of the source signal or the particular filters, 
e.g., room acoustics, transmission channels, or the like, that 
the source signal was subjected to. The filters create time 
delayed versions of the signal, such as, echoes, intersymbol 
interference, or the like (referred to as dependencies) result­
ing in the signal being a composite signal. 

Blind deconvolution refers to techniques utilized to 
remove dependencies from a composite signal to yield the 
source signal. The techniques are called blind because the 
source signal is attained without assuming any knowledge of 
the source signal or the dependencies. The signal may be a 
digital communications signal, an acoustical signal, an RF 
signal, or the like and the dependencies may include echoes, 
reverberations, intersymbol interference, or redundancies of 
the source signal, among other things. 

More particularly, blind deconvolution refers to removing 
dependencies from an unknown signal s. Unknown signal s 
is convolved with an unknown filter having an impulse 
response, a (which creates the dependencies) The resulting 
corrupted or composite signal x is: 

x = s*a, or 

La 

Xr = .L akst-k, 

k=O 

(Equation 1) 

where La is the length of filter a and the subscript t refers to 
time, for example, signal s comprises discrete samples x0 , 

x1 , ... , x,_1 , x, and t is the present time or most recent 
sample of signal x. (As used herein "*" denotes 
convolution.) When used with filter coefficients (as in Equa­
tion 1 ), the subscript refers to the delay from the current 
sample. 

2 
the output of the FIR filter, as discussed in "An information 
maximization approach to blind separation and blind 
deconvolution", Neural Computation, 7(6):1004-1034, 
1995. Bell and Sejnowski proposed to learn a filter w that is 

5 a restoring causal (or adaptive) FIR filter by using an 
information theoretic measure. The output signal from the 
FIR filter is passed through a nonlinear squashing function 
which approximates the cumulative density function of 
output signal. By maximizing the information transferred 

10 through this system, Bell and Sejnowski were able to learn 
a FIR filter, w, that removes dependencies. 

The Bell and Sejnowski approach chops the composite 
signal into blocks comprising a plurality of consecutive 
signal samples having a predetermined length, M. The 

15 filtering is formulated as a multiplication of a block by a 
lower triangular matrix having coefficients of filter w, fol­
lowed by the nonlinear squashing function (denoted herein 
as function "g"). When the information at the transformed 
information output block is maximized, dependencies within 

20 the block are removed. 
As demonstrated by Bell and Sejnowski, information 

maximization is equal to maximizing the entropy, H(Y), at 
the output, where entropy is the expectation, E, of the 
probability density function of the output. Maximizing the 

25 entropy is equivalent to maximizing E[lniJI], where J is the 
Jacobian of the whole system. The Jacobian, J, tells how the 
input affects the output and, in the method developed by Bell 
and Sejnowski, is represented as a matrix of partial deriva­
tives of each component of the output block with respect to 

30 each component of the input block. By computing the 
determinant of J and the gradient of lniJI with respect to the 
coefficients of the matrix (or weights of the filter), Bell and 
Sejnowski derived a stochastic gradient ascent rule to update 

35 

the filter coefficients over time (the adaptation rule). 
While the method proposed by Bell and Sejnowski yields 

a good result, it has its limitations. Learning an adaptive 
filter by the method of Bell and Sejnowski requires complex 
computations. Further, the Bell and Sejnowski method and 
adaptation rule is limited to FIR filters. Filters such as 

40 infinite impulse response (IIR) or recursive filter cannot be 
learned from the Bell and Sejnowski adaptation rule because 
of complex recursive relationships between components of 
the output block and components of the input block. IIR 
filters, however, provide a desirable advantage over FIR 

45 filters. IIR filters can model complicated and long impulse 
responses with a small number of coefficients in comparison 
to FIR filters and do so with less computational complexity 
than FIR filters. 

Blind deconvolution attempts to recover unknown signal 
50 

s by learning a filter w which reverses the effect of unknown 
filter a so that 

Accordingly, there is a need for a method of retrieving a 
source signal from a composite signal without assuming 
knowledge of the source signal or its dependencies that 
produces a good quality result without overly complex 
computations and which is applicable to a variety of adap­
tive filters. U=X*W, Of 

L 

Ut = .L WkXt-k 

k=O 

(Equation 2) 

would be equal to the original signal s. Blind deconvolution 
assumes that the samples of original signals, are statistically 
independent. As is seen from Equation 1, filter a spreads 
information from one sample s, to all samples x, ... , x,+La· 
Blind deconvolution attempts to remove these redundancies 
(also referred to as dependencies). 

55 Blind deconvolution is clearly an ideal tool to remove 
signal dependencies, such as echoes, of unknown delays and 
amplitudes. Because echoes are copies of the original or 
source signal delayed and summed to the original signal, 
they are redundancies that blind deconvolution tends to 

60 remove. While also advantageous in that blind deconvolu­
tion retrieves a source signal without knowledge of the 
signal, current blind deconvolution techniques have limita­
tions when processing certain types of signals, such as, for 
example, speech signals. 

A J. Bell and T. J. Sejnowski have shown that a suitable 65 

criterion for learning a finite impulse response (FIR) filter 
for blind deconvolution is to maximize the information at 

A key assumption made with blind deconvolution is that 
the original or source signal, s, is white; meaning that 
consecutive signal samples, s; and sj, are statistically inde-
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BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention will be hereinafter described with 
reference to the drawing figures, wherein like numerals 
denote like elements or steps and wherein: 

FIG. 1 is a flow diagram of a method for blind deconvo­
lution in accordance with the present invention; 

FIG. 2 is a block diagram of an apparatus for blind 
deconvolution of a signal in accordance with the present 
invention; 

FIG. 3 is a flowchart of a method for selectively removing 
dependencies from a signal in accordance with the present 
invention; and 

pendent for all times i and j, where i>'j. While this assump­
tion may be true for signals in digital communications, it is 
not true for many acoustic signals. For example, speech 
signals exhibit very strong inherent dependencies when 
i-j:A milliseconds, i.e., two consecutive samples of speech 5 

(s; and s) are dependent on each other, and this dependency 
has a scope of approximately four ( 4) milliseconds. Speech 
signals are comprised of vocal cord vibrations filtered by the 
vocal tract, thereby producing short term or inherent depen­
dencies within the speech signal. In addition to these short 10 

term dependencies, longer term or noninherent dependen­
cies (e.g. greater than approximately 4 milliseconds for 
speech signals) are often present in the signal, such as 
echoes due to room acoustics, transmission reflections, or 
the like. 

Blind deconvolution learns to remove time dependencies 
present within a signal that fall with in the length of the 
deconvolution filter w. Thus, while learning to remove 
dependencies, such as those due to echoes, blind deconvo­
lution also learns to remove the dependencies that are 20 

inherent to the speech itself. When processing a speech 
signal to remove echoes and recover the source signal, 
commonly referred to as echo cancellation, it is not desirable 

FIG. 4 is a block diagram of an apparatus for selectively 
15 removing dependencies from a signal in accordance with the 

present invention. 

to remove or filter out the inherent dependencies of the 
speech that are present in the source signal. The result of 25 

doing so is a filtered or whitened speech signal, which 
sounds like a high-pass filtered version of the original 
speech. 

With current blind deconvolution methods of signal 
processing, only when there is exact knowledge about the 30 

delays of the echoes, can this whitening effect be avoided. In 
theory, by forcing some filter coefficients to zero, or having 
taps only at multiples of the delay, the filter would learn the 
amplitude of the echo to cancel. In practical situations, 
however, this is not possible because, generally, there are 35 

multiple echoes. 
Other known techniques for echo cancellation, including, 

for example, adaptive filters trained by Least Mean Squares 
(LMS) and Cepstral processing, are also inadequate. 

Adaptive filters trained by LMS techniques are beneficial 40 

in that they can adapt to changing conditions, such as to 
moving or varying sources, and they produce a good quality 
result with relatively low computational complexity. 
However, training adaptive filters by LMS has limitations. 
LMS trained adaptive filter techniques require knowledge of 45 

the source signal but, often the only known signal is the 
composite signal. Thus, if the source signal is unknown, 
LMS trained adaptive filter techniques are of no use. 

Cepstral processing techniques permit processing of a 
composite signal without knowledge of the source signal. 50 

With Cepstral processing, the composite signal is processed 
through a series of Fourier transforms, inverse Fourier 
transforms, logarithmic and anti-logarithmic operations to 
reproduce the source signal. Although beneficial in that 
knowledge of the source signal is not required, Cepstral 55 

processing techniques employ complex computations and 
produce results of only moderate quality. Moreover, 
although knowledge of the source signal is not required, 
Cepstral processing requires knowledge of the delays of the 
echoes, and Cepstral processing techniques are not adapt- 60 

able to changing conditions. 
Accordingly, there is a need for a method of processing 

signals without knowledge of the original or source signal or 
its dependencies that retains "desirable" dependencies, such 
as dependencies inherent to the signal itself, while removing 65 

"undesirable" dependencies, such as non-inherent depen­
dencies. 

DETAILED DESCRIPTION OF THE DRAWINGS 

Generally, the present invention provides a blind decon­
volution method and apparatus for recovering a source 
signal from a composite signal. For example, signals used in 
digital communications can be processed using blind decon­
volution to remove dependencies such as intersymbol inter­
ference within the signal caused, for example, by the trans­
mission channel. Similarly, an acoustic signal can be 
processed using blind deconvolution to remove dependen­
cies such as echoes and reverberations, within the signal 
caused, for example, by the room acoustics. In accordance 
with one aspect of the present invention, a signal is pro­
cessed using a blind deconvolution method based on an 
adaptive filter learned from a sample-based adaptation rule. 

In accordance with another aspect of the present 
invention, a signal is processed using blind deconvolution to 
remove undesirable dependencies present within the signal 
while retaining desirable or inherent dependencies of the 
signal. According to this aspect of the invention, a signal is 
whitened using a first filter that removes the inherent or 
desired dependencies. The whitened signal is then used as 
the training material to learn a second filter. This second 
filter learns to remove only the undesired dependencies 
(because the undesired dependencies are the only dependen­
cies still present in the signal). The learned second filter is 
then applied to the original signal, wherein the undesired 
dependencies are removed while the desired dependencies 
are retained. 

Referring to FIG. 1, a flow diagram 10 of a blind 
deconvolution method for recovering a source signal from a 
composite signal is shown. In a first step (reference no. 11), 
a composite signal is provided to a deconvolution or adap­
tive filter. In a second step (reference no. 12), the adaptive 
filter learns its coefficients from individual samples of the 
composite signal. In a third step (reference no. 13), the 
learned adaptive filter is applied to the composite signal. In 
accordance with one aspect of the invention, in the second 
step (reference no. 12), the adaptive filter iteratively or 
continuously learns its coefficients from individual samples 
of the composite signal. 

Referring now to FIG. 1 and FIG. 2, which shows a signal 
processor 20 for processing a composite signal, in the first 
step (reference no. 11), a composite signal x is received by 
an adaptive filter 22. Composite signal xis a sampled signal 
comprising a plurality of individual signal samples x0 , 

x1 , ... , x,. Composite signal x further comprises a source 
signal and at least one dependency of that source signal. In 
the second step (reference no. 12), adaptive filter 22 itera­
tively learns its coefficients (represented by a dashed line in 
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FIG. 2), individual sample by individual sample of compos­
ite signal x. In the third step (reference no. 13), learned 
adaptive filter 22 is applied to composite signal x. Learned 
adaptive filter 22 filters the dependencies of composite 
signal x and outputs an output or deconvolved signal u 5 

comprising the source signal. 

With more particular reference to the second step 
(reference no. 12), adaptive filter 22 learns its coefficients 
through sample-based information maximization tech­
niques. In accordance with the present invention, individual 10 

samples of composite signal x are passed through adaptive 
filter 22. The output of adaptive filter 22, deconvolved signal 
u, is then subjected to a nonlinear function, g (reference no. 
24) which transforms deconvolved signal u. The resultant 
signal, transformed signal y, is provided to adaptive filter 22 15 

wherein adaptive filter 22 learns coefficients that remove 
dependencies of composite signal x. In accordance with the 
present invention, the information content of deconvolved 
signal u which passes through nonlinear function q is 
maximized, which is equivalent to maximizing the entropy 20 

of deconvolved signal u which passes through nonlinear 
function g. 

Nonlinear function g approximates the cumulative density 
function of deconvolved signal u. Thus, the derivative of 
g(u) approximates the probability density function of u. 25 

Adaptive filter 22 is learned by passing deconvolved signal 
u through nonlinear function g, and by determining filter 
coefficients w which produce the true density of decon­
volved signal u, which in turn produces uniform density at 
the output of nonlinear function g. This is equal to maxi- 30 

mizing the entropy of deconvolved signal u (or maximizing 
the information content of deconvolved signal u). 

Any nonlinear function which approximates the cumula­
tive density function may be used. For example, the hyper-

35 
bolic tangent (tanh) function is a good approximation for 
positively kurtotic signals, such as speech signals. In accor­
dance with an aspect of the present invention, nonlinear 
function g (reference no. 24) is defined by y,=g(u,), where 
g(u)=tanh(u) and t denotes time, i.e., u, is the current or most 

40 
recent sample of deconvolved signal u andy, is the current 

6 
maximizing an expectation over blocks of transformed sig­
nal y compared to maximizing an expectation over single 
samples of transformed signal y. Maximizing an expectation 
of a single sample yields a simpler case wherein the Jacobian 
is a scalar: 

, a y, a y, a y, A 2 1= y, =- = -- = y,wo = (1-y,)wo. 
axt aut axt 

(Equation 5) 

The stochastic gradient ascent rule can be derived by 
taking the gradient of ln(J) with respect to the weights. First, 
computing: 

a y; A a y, 
-=y+wo­
awo awo 

ay, 
= y, + wo(-2y,)­

aw0 

A ay, au, 
= y,- 2WoYt au, awo 

= Yr- 2WoYt.Yrxt. 

The adaptation rule for W
0 

is now readily obtained: 

a!n(y;J 1 a y; 1 
Llwo ex:--=--=- -2yrxt. 

8wo y; 8wo Wo 

(Equation 6) 

Because 

a rule for the other weights can be derived as follows: 

1 ay; 
Llw1 ex: ---;-a = -2yrxt-J 

Yt Wj 

where denotes proportionality. 

(Equation 7) 

or most recent sample of the output of nonlinear function g, 
transformed signal y. 

Contrary to the information maximization techniques 
employed by Bell and Sejnowski, the present invention 
maximizes entropy as an expectation over individual 
samples thereby simplifying the learning of the adaptive 
filter (or deconvolution filter). Further, by utilizing indi­
vidual samples of a signal to derive the adaptation filter rule, 
filters that could not be learned from an adaptation rule 
derived from blocks of the signal can be learned, such as, for 
example, IIR filters, non-linear filters, or the like. 

Preferably, the weight or coefficient changes for a number 
of signal samples are accumulated before making a change 

45 to the weight or coefficient. The preferred number of signal 
samples will vary based on application and can be deter­
mined through experimentation. 

More particularly, whereas the Jacobian, J, of a block 
signal samples, M, would result in a matrix, the Jacobian of 
a single signal sample is a scalar. For example, the output 
from an FIR filter of a single sample at a given time is: 

L 

Ut = .L WkXt-k 

k=O 

y, = g(u,), 

(Equation 3) 

(Equation 4) 

where y, is u, after being subjected to the nonlinear function 
g. Because the entropy of transformed signal y is already an 
expectation, H(y)=-E[ln(fy(y))], it contains information 
about the whole transformed signal y. Nothing is gained by 

Thus, the adaptation rules of the present invention are true 
stochastic gradient ascent rules for each sample individually. 

50 On the other hand, the Bell and Sejnowski adaptation rules 
accumulate the weight changes in a block of M samples 
before doing an adjustment. Moreover, the Bell and 
Sejnowski adaptation rule has an adverse border effect 
because fewer samples of data (M-L samples) contribute to 

55 weights at the end of filter w compared to weights at the 
beginning of the filter (M samples), if M (the block length) 
is not much larger than L (the filter length). Looking at the 
signal one sample at a time, in accordance with the present 

60 

invention results in a more accurate adaptation rule. 
In accordance with an alternative embodiment, the 

sample-based information maximization techniques of the 
present invention may be utilized to learn filters other than 
a FIR filter. For example, a recursive filter can be learned by 
deriving an adaptation rule from individual samples of a 

65 signal. 
The output of a single sample from a recursive filter 

before the nonlinearity at a given time is: 
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Ut = WoXt + .L Wk Ut-k. 

k=l 

7 

(Equation 8) 

The quantity to maximize remains the same, E[ln(J)]. The 
Jacobian of the filter is now exactly the same as in Equation 
5. Also ay,law0 and the adaptation rule for W

0 
turn out to be 

the same as for the FIR filter of the present invention as 
discussed hereinabove. 

To derive the recursive filter adaptation equation for other 
weights or coefficients, wj, ay,lawj is first computed as 
follows: 

ay; a(J-y;)wo 

awj awj 

ay, au, 
=wo(-2y,)-­

au, awj 

au, 
= w0(-2y,)y,-. 

awj 

A difficulty is caused by au,law. which is a recursive 
quantity. Taking the derivative of Eq~ation 8 with respect to 
wj gives: 

aut aut- J 

8wj = Ut-j +WJ 8w
1 

( 
au,_2J) 

= Ut-j + Wj Ut-2) + Wj-­
awj 

tjj 

=.L 
k=l 

First, the following recursive quantity is defined in a 
fashion similar to using an LMS algorithm with adaptive 
recursive filters: 

The rule for wj is then obtained: 

(Equation 9) 

This recursive filter adaptation rule (Equation 9) neces­
sitates keeping track of a'j for each filter coefficient, wF 

Alternatively, an approximation of this adaptation rule 
(Equation 9) can be used. The approximation of this rule 
(Equation 9) leads to the same convergence condition. 
Convergence of the adaptation rule (Equation 9) is achieved 
when the weight change becomes zero, that is when: 

E[Ll.w1] = E[-2y,a:j] = 

holds for all j. This is true if E[y ,u,_J=O for all j, which is the 
convergence condition the adaptation rule obtained from 
Equation 9 by replacing a'j by u,_j yielding 

8 
Ll.wi -2yyut-J• (Equation 10) 

the preferred adaptation rule for the coefficients of the 
adaptive recursive filter. 

For an effective implementation of an adaptive IIR filter 
5 in accordance with the present invention, the training data 

(signal samples) is used sequentially, because the previous 
values of u,_j are stored in a buffer. In contrast to the IIR 
filter, the FIR filter can be trained by picking the training 
points randomly in the signal. 

10 It should be understood that the FIR and IIR embodiments 
discussed herein are not limitations of the present invention. 
Other filters, including nonlinear filters, can be learned in 
accordance with the present invention by deriving an adap­
tation rule from single or individual samples of a signal or 

15 
learning material. Furthermore, the form of filter learned is 
not a limitation of the present invention. For example, a 
direct, cascade, parallel, or lattice form of an IIR or FIR filter 
may be learned. 

Referring now to FIG. 3, a flowchart 30 of a method for 
selectively removing dependencies such as, for example, 

20 noninherent dependencies, from a composite signal is 
shown. In a first step (reference number 31), a first adaptive 
filter is learned from the composite signal. In a second step 
(reference number 32), the learned first adaptive filter is 
applied to the composite signal wherein a first portion of the 

25 composite signal's dependencies are removed. In a third step 
(reference number 33), a second adaptive filter is learned 
from the output of the learned first adaptive filter. In a fourth 
step (reference number 34), the learned second adaptive 
filter is applied to the composite signal wherein a second 

30 portion of the composite signal's dependencies are removed. 
Referring now to FIGS. 3 and 4, wherein FIG. 4 shows a 

signal processor 40, in the first step (reference no. 31), 
composite signal x, such as a speech signal, is received by 
a first adaptive filter 42. Adaptive filter 42 iteratively learns 

35 its coefficients from composite signal x (represented by 
dashed signal x in FIG. 4). In accordance with the present 
invention, learned first adaptive filter 42 comprises a blind 
deconvolution filter whose length is designed to only 
encompass the desired dependencies of composite signal x. 

40 By way of example, the inherent dependencies in speech 
have a scope of approximately four ( 4) milliseconds. An FIR 
filter of 32 taps (corresponding to an 8 kilohertz sampling 
frequency) may be learned to produce or output a signal 
which contains all dependencies having longer delays than 

45 the farthest tap of the FIR filter; these dependencies being 
the unknown or undesired dependencies (e.g., echoes in a 
speech signal). 

In the second step (reference no. 32), learned first adap­
tive filter 42 receives composite signal x and filters or 

50 removes the desired dependencies from composite signal x 
(e.g. the short-term or inherent dependencies of speech). 
Learned first adaptive filter 42 outputs a first filtered or 
whitened signal u1 which contains undesired dependencies. 

In the third step (reference no. 33), whitened signal u1 is 
55 provided to a second adaptive filter 44. Second adaptive 

filter 44 iteratively learns its coefficients from whitened 
signal u1 (represented as a dashed signal u1 in FIG. 4), i.e., 
the output of first adaptive filter 42. Second adaptive filter 44 
comprises a blind deconvolution filter whose length is 

60 sufficiently long to encompass the (undesired) dependencies 
remaining in whitened signal u1 (and whose length is greater 
than that of first adaptive filter 42). Accordingly, second 
adaptive filter 44 learns to remove only those dependencies 
not filtered by learned first adaptive filter 42, i.e., those 

65 dependencies beyond the range or outside the length of first 
adaptive filter 42, namely the noninherent or undesired 
dependencies. 
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In the fourth step (reference no. 34), second adaptive filter 
44 receives composite signal x and filters or removes the 
undesired or noninherent dependencies from composite sig­
nal x, leaving the desired or inherent dependencies intact. 
Second adaptive filter 44 outputs a second filtered or source 5 

signal u2 comprising, for example, the primary speech 
component and the dependencies inherent to the speech; 
thus, second adaptive filter 44 outputs source signal u2 that 
is not distorted by the whitening effect of blind deconvolu­
tion. 10 

It should be understood that the types of blind deconvo­
lution adaptive filters used in selectively removing depen­
dencies from a signal is not a limitation of the present 
invention. For example, the adaptive filter can be a FIR filter, 

15 
learned from the techniques of the present invention as 
described hereinabove or from previously known tech­
niques; an IIR filter; a lattice filter; or the like. In addition, 
the learning of the filters is not limited to information 
maximization methods. Other methods of applying blind 

20 
deconvolution such as Bussgang, Sato, Gray, or the like may 
be used. 

The method of selectively removing undesired or nonin­
herent dependencies in accordance with the present inven­
tion is suitable for a variety of applications, including echo 25 
cancellation, restoration of audio data (e.g., recordings in an 
echoing hall), and generally for improving the voice quality 

10 

a!n(y;J 1 a y; 1 
Llwo ex:--=--=- -2yrxt 

8wo y; 8wo WQ 

where: 
x, is a current composite signal sample; 
y, is a current transformed output signal in accordance 

with the following equation: 

g is the nonlinear function defined by g(u)=tanh(u); 
u, is a current finite impulse response filter output 

signal sample; 
w0 is a filter coefficient with zero delay with respect to 

the current composite signal sample x,; and 
wj is a filter coefficient with delay j with respect to the 

current composite signal sample x,; and 

applying the composite signal to the finite impulse 
response filter for removing said at least one depen­
dency of the source signal. 

2. A method of recovering a source signal from a com­
posite signal comprising a plurality of individual signal 
samples, the composite signal including the source signal 
and at least one dependency of the source signal, the method 

in any application where the voice is recorded in echoing or 
reverberant surroundings (e.g., speakerphone in a room, 
hands-free cellular phone in a car). 

30 comprising the steps of: 
By now it should be appreciated that the blind deconvo­

lution methods of the present invention provide enhanced 
applications to adaptive filters. By providing sample-based 
information maximization, the method of the present inven­
tion simplifies the learning computations for adaptive filters 35 

and results in a more accurate filter adaptation rule than the 
methods of the prior art. Further, by providing sample-based 
information maximization, the method of the present inven­
tion provides for the learning of various types of filters. 
Further, by providing a method for selective removal of 40 

signal dependencies, the present invention enhances the 
applicability of blind deconvolution to signals having com­
ponents that a user does not want filtered out, such as the 
inherent dependencies in speech. 

While the invention has been described with reference to 45 

speech signals, it should be understood that the invention is 
not limited to the processing of speech signals. The refer­
ences and embodiments described herein are for example 
purposes to aid in the teaching of the invention. Additional 
uses, forms, and improvements of the invention will become 50 

evident to those skilled in the art. It should be understood, 
that the present invention is not limited to the embodiments 
described herein. It is intended that the appended claims 
cover all uses, forms, and modifications that do not depart 
from the spirit and scope of this invention. 55 

I claim: 
1. A method of recovering a source signal from a com­

posite signal comprising a plurality of individual signal 
samples, the composite signal including the source signal 
and at least one dependency of the source signal, the method 60 

comprising the steps of: 

providing the composite signal to a finite impulse 
response filter; 

providing the composite signal to an infinite impulse 
response filter; 

learning coefficients of the infinite impulse response filter 
from individual signal samples in accordance with the 
following equations 

a!n(y;J 1 a y; 1 
Llwo ex:--=--=- -2yrxt 

8wo y; 8wo WQ 

Llw J ex: - 2yrut-J 

where: 
x, is a current composite signal sample; 
y, is a current transformed output signal in accordance 

with the following equation: 

g is the nonlinear function defined by g(u)=tanh(u); 
u, is a current infinite impulse response filter output 

signal sample; 
w0 is a filter coefficient with zero delay with respect to 

the current composite signal sample x,; and 
wj is a filter coefficient with delay j with respect to the 

current composite signal sample x,; and 

applying the composite signal to the infinite impulse 
response filter for removing said at least one depen­
dency of the source signal. 

3. A method of recovering a source signal from a com­
posite signal comprising a plurality of individual signal 
samples, the composite signal including the source signal 
and at least one dependency of the source signal, the method 

learning coefficients of the finite impulse response filter 
from individual signal samples in accordance with the 
following equations 

65 comprising the steps of: 

providing the composite signal to an infinite impulse 
response filter; 
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learning coefficients of the infinite impulse response filter 
from individual signal samples in accordance with the 
following equations 

t aut 
aJ=awJ=ur-J+ 

a!n(y;J 1 a y; 1 
Llwo ex:--=--=- -2yrxt 

8wo y; 8wo Wo 

where: 

5 

10 
and 

12 
wj is a filter coefficient with delay j with respect to the 

current composite signal sample x,; 
a'j is a recursive output; 
y, is a current transformed output signal in accordance 

with the following equation: 

x, is a current composite signal sample; 15 

g is the nonlinear function defined by g(u)=tanh(u); and 

applying the composite signal to the infinite impulse 
response filter for removing said at least one depen­
dency of the source signal. 

w0 is a filter coefficient with zero delay with respect to 
the current composite signal sample x,; * * * * * 




