Internet Society

Symposium on
Network and Distributed
System Security

| February 22-23, 1996

San Diego,California

Cﬁlﬁ/IPUTER SOCIETY PRESS @ THE INSTITUTE OF ELECTRICAL AND

SOYEARS OF SERVICE - 1946-1996 ELECTRONICS ENGINEERS, INC.

Petitioner Apple Inc. - Ex. 1041, p. 1

;;Proceedings of the

[

Symposium on Network and Distributed
System Security

Petitioner Apple Inc. - Ex. 1041, p. 2 |

Proceedings of the

Symposium on Network and Distributed
System Security .

February 22 — 23, 1996 San Diego, California

Sponsored by
The Internet Society

@ COMPUTER SOCIETY

S50YEARS OF SERVICE » 1946-1996

Los Alamitos, California

Washington . Brussels . Tokyo

- . Petitioner Apple Inc. - Ex. 1041, p. 3

/

IEEE Computer Society Press A
10662 Los Vaqueros Circle Lt
P.O. Box 3014 (‘ o
Los Alamitos, CA 90720-1264)75 A

Copyright © 1996 by The Institute of Electrical and Electronics Engmeerg, Inc. /7 f,,.:

All rights reserved. i %f

(e

{
!

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may
photocopy beyond the limits of US copyright law, for private use of patrons, those articles in this volume that
carty a code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid through
the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE
Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They
reflect the authors’ opinions and, in the interests of timely dissemination, are published as presented and without
change. Their inclusion in this publication does not necessarily constitute endorsement by the editors, the IEEE
Computer Society Press, or the Institute of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Press Order Number PR07222
Library of Congress Number 95-82021
ISBN 0-8186-7222-6

Additional copies may be ordered from:

IEEE Computer Society Press TEEE Computer Society IEEE Computer Society
Customer Service Center 13, Avenue de I’ Aquilon Ooshima Building

10662 Los Vaqueros Circle B-1200 Brussels 2-19-1 Minami-Aoyama
P.O. Box 3014 BELGIUM Minato-ku, Tokyo 107
Los Alamitos, CA 90720-1264 Tel: +32-2-770-2198 JAPAN

Tel: +1-714-821-8380 Fax: +32-2-770-8505 Tel: +81-3-3408-3118
Fax: +1-714-821-4641 euro.ofc @computer.org Fax: +81-3-3408-3553
Fmail: cs.books@computer.org tokyo.ofc@computer.org

Editorial production by Mary E. Kavanaugh
Cover design by Danny M. Nessett
Cover production by Joseph Daigle
Printed in the United States of America by KNI, Inc.

@ The Institute of Electrical and Electronics Engineers, Inc.

Petitioner Apple Inc. - Ex. 1041, p. 4

s e i

Proceedings of the Symposium on Network and Distributed Systems Security

Table of Contents

General CRAIF’s MESSAGEoococvooioieeiiii it
Program Chairs’ MeSSAZe ...ttt
Organizing Committeeccc..ccc...... U YOO TSROSO TOUUTPRPUUTO
Program COMIMIILEEc...ccoicoiiiiiiiiiiaiet ittt
Privacy and Security Research Group ...

Session 1: Electronic Mail Security
Chair: Stephen T. Kent — BBN Corporation

Mixing E-mail with BABEL ...

C. Giilcii and G. Tsudik

An Integration of PGP and MIME ...

K. Yamamoto

Session 2: Distributed Object Systems
Chair: Danny M. Nessett — Sun Microsystems

A Security Framework Supporting Domain-Based Access Control in

DiStribUEd SYSIEITISoiiiiiiiiie ittt

N. Yialelis and M. Sloman

Panel — Scalability of Security in Distributed Object Systems ...,

Moderator: Danny M. Nessett — Sun Microsystems
Panelists: Bret Hartman — Odyssey Research Associates
Danny M. Nessett — Sun Microsystems
Nicholas Yialelis — Imperial College, London

Session 3: Distributed System Security
Chair: Michael Roe — University of Cambridge

A Flexible Distributed Authorization Protocolcccooiiiiiiii e

J.T. Trostle and B.C. Neuman

Preserving Integrity in Remote File Location and Retrieval ...

T. Jaeger and A.D. Rubin

C-HTTP — The Development of a Secure, Closed HTTP-Based Network on the Internet
T. Kiuchi and S. Kaihara

Petitioner Apple Inc. - Ex. 1041, p. 5

i

i

IEEE Computer Soqiety Press

Press Activities Board

Vice President: Joseph Boykin, GTE Laboratories
Jon T. Butler, Naval Postgraduate School
Elliot J. Chikofsky, Northeastern University
James J. Farrell I11, Motorola Corp.
Mohammed E. Fayad, University of Nevada
I. Mark Haas, Bell Northern Research, Ine.
Ronald G. Hoelzeman, University of Pittsburgh
Gene F. Hoffnagle, IBM Corporation
John R. Nicol, GTE Laboratories
Yale N. Patt, University of Michigan
Benjamin W. Wah, University of Illinois

Press Editorial Board

Advances in Computer Science and Engineering

Editor-in-Chief: Jon T. Butler, Naval Postgraduate School
Assoc. EIC/Acquisitions: Pradip K. Srimani, Colorado State University
Dharma P. Agrawal, North Carolina State University
Ruud Bolle, IBM T.J: Watson Research Center
Vijay K. Jain, University of South Florida
Yutaka Kanayama, Naval Postgraduate School
Gerald M. Masson, The Johns Hopkins University
Sudha Ram, University of Arizona
David C. Rine, George Mason University
A RK. Sastry, Rockwell International Science Center
Abhijit Sengupta, University of South Carolina
Mukesh Singhal, Ohio State University ... - - -
Scott M. Stevens, Carnegie Mellon.University
% :éﬁ,l?\;lighael Roy Williams; The University of Calgary
Ronald D. Williams, University of Virginia
Lotfi Zadeh, University of California, Berkeley

Press Staff

T. Michael Elliott, Executive Director
H. True Seaborn, Publisher
Matthew S. Loeb, Assistant Publisher
Catherine Harris, Manager, Press Product Development
Mary E. Kavanaugh, Proeduction Editor
Lisa O’Conner, Production Editér
Regina Spencer Sipple, Production Editor
Penny Storms, Production Editor
Robert Werner, Production Editor
Frieda Koester, Marketing/Sales Manager
Thomas Fink, Advertising/Promotions Manager

Offices of the IEEE Computer Society

Headquarters Office
1730 Massachusetts Avenue, N-W.
. Washington, DC 20036-1903
Phone: (202) 371-0101 — Fax: (202) 728-9614
E-mail: hq.ofc@computer.org

Publications Office
P.0. Box 3014
10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1264
Membership and General Information: (714) 821-8380
Publication Orders: (800) 272-6657 -— Fax: (714) 821-4010
E-mail: cs.books@computer.org

European Office
13, avenue de PAquilon
B-1200 Brussels, BELGIUM
Phone: 32-2-770-21-98 — Fax: 32-2.770-85-05
E-mail: euro.ofc@computer.org

Asian Office
Ooshima Building
2-19-1 Minami-Acyama, Minato-ku
Tokyo 107, JAPAN
Phone: 81-3-408-3118 — Fax: 81-3-408-3553
E-mail: tokyo.ofe@computer.org

Revised 11/15/95

@ IEEE Computer Society

IEEE Computer Society Press Publications

CS Press publishes, promotes, and distributes over 20 original and
reprint computer science and engineering texts annually. Original
books consist of 100 percent original material; reprint books contajn
a carefully selected group of previously published papers with
accompanying original introductory and explanatory text.

Submission of proposals: For guidelines on preparing CS Press
books, write to Manager, Press Product Development, IEER
Computer Society Press, P.O. Box 3014, 10662 Los Vaqueros Circle,
Los Alamitos, CA 90720-1264, or telephone (714) 821-8380.

Purpose

The IEEE Computer Society advances the theory and practice of
computer science and engineering, promotes the exchange of tech-
nical information among 100,000 members worldwide, and pre-
vides a wide range of services to members and nonmembers,

.Membership

Allmembers receive the monthly magazine Computer, discounts,
and opportunities to serve (all activities are led by volunteer
members). Membership is open to all IEEE members, affiliate
society members, and others interested in the computer field.

Publications and Activities

Computer Society On-Line: Provides electronic access to ab-
stracts and tables of contents from society periodicals and confer-
ence proceedings, plus information on membership and volunteer
activities. Toaccess, telnet to the Internet address info.computer.or
(user i.d.: guest). ’

Computer magazine: An authoritative, easy-to-read maga-
zine containing tutorial and in-depth articles on topics across the
computer field, plus news, conferences, calendar, interviews, and
product reviews.

Periodicals: The society publishes 10 magazines and seven
research transactions.

Conference proceedings, tutorial texts, and standards
documents: The ComputerSociety Press publishes more than 100
titles every year.

Standards working groups: Over 200 of these groups produce
IEEE standards used throughout the industrial world.

Technical committees: Over 29 TCs publish newsletters,
provide interaction with peers in specialty areas, and directly
influence standards, conferences, and education.

Conferences/Education: The society holds about 100 confer-
ences each year and sponsors many educational activities, includ-
ing computing science accreditation.

Chapters: Regularand student chapters worldwide provide the
opportunity to interact with colleagues, hear technical experts, and
serve the local professional community.

Petitioner Apple Inc. - Ex. 1041, p. 6

C-HTTP -- The Development of a Secure, Closed HTTP-based Network
on the Internet

Takahiro Kiuchi
Department of Epidemiology and Biostatistics
Faculty of Medicine, University of Tokyo
- 7-3-1 Hongo, Bunkyo=ku, Tokyo 113, Japan-

Abstract

We have designed "C-HTTP" which provides secure
HTTP communication mechanisms within a closed group
of institutions on the Internet, where each member is
protected by its own firewall C-HTTP-based
communications are made possible by the following three
components: a client-side proxy, a server-side proxy and
a C-HTTP name server. A client-side proxy and server-
side proxy communicate with each other using a secure,
encrypted protocol while communications between a user
agent and client-side proxy or an origin server and
server-side proxy are performed using current HTTP/1.0.
In a C-HTTP-based network, instead of DNS, a C-HTTP-
based secure, encrypted name and certification service is
used. The aim of C-HTTP is to assure institutional level
security and is different in scope from other secure HTTP
protocols currently proposed which are oriented foward
secure end-to-end HTTP communications in which
security protection is dependent on each end-user.

1. Introduction

In the medical community, there is a strong need for
closed networks among hospitals and related institutions,
such as coordinating centers for clinical trials or clinical
laboratories. Secure transfer of patient information for
clinical use is obviously essential. In addition, some
medical information has to be shared among some
hospitals, but it should not be made available to other
sites. This includes, for example, information concerning
multi-institutional clinical trials and documents for case
conferences although patients' names are usually not
specified in such information. In this paper, we discuss
the design and implementation of a closed HTTP
(Hypertext Transfer Protocol)-based network (C-HTTP)
which can be built on the Internet.

0-8186-7222-6/96 $5.00 © 1996 IEEE
Proceedings of SNDSS ’96

64

Shigekoto Kaihara
Hospital Computer Center
University of Tokyo Hospital
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

2. Design and specification of C-HTTP
2.1 Overview

C-HTTP is assumed to be used in a closed group of
institutions on the Internet, in which each member is
protected by its own firewall. C-HTTP-based
communication is made possible with the following three
components: 1) a client-side proxy on the firewall of one
institution, 2) a server-side proxy on the firewall of
another institution and 3) a C-HTTP name server, which
manages a given C-HTTP-based network and the
information for its all proxies. A client-side proxy and
server-side proxy communicate with each other using a
secure, encrypted protocol (C-HTTP). Communications
between two kinds of proxies and HTTP/1.0 compatible
servers/user agents within the firewalls are performed
based on HTTP/1.0 with current C-HTTP implementation
under way[l]. The DNS name service is not used for
hostname resolution as the original secure name service,
including certification, is used for the C-HTTP-based
network. A summary of the protocol specification is
described in the Appendices.

2.2 Security technology and key information

In C-HTTP, five kinds of security technologies are used.
They are: 1) asymmetric key encryption for the secure
exchange of data encryption keys between two types of
proxies and host information between a proxy and C-
HTTP name server, 2) symmetric key encryption for the
encryption of C-HTTP encrypted headers and HTTP/1.0
requests, 3) electronic signature for the request/response
authentication, 4) a one-way hash function for checking
data tampering and 5) random key generation technology.
In the C-HTTP name service, symmetric encryption is not
used because the amount of information transferred is
small.

Each client-side or server-side proxy has its own
private and public asymmetric keys and the C-HTTP
name server's public key. Proxies do not exchange their

Petitioner Apple Inc. - Ex. 1041, p. 7

public keys with each other directly. Instead, the C-HTTP
name server provides both client-side and server-side
proxies with each peer's public key. In addition, Nonce
values for both request and response are also generated
and provided by the C-HTTP name server, which will be
specified as initial values in Request-Nonce and
Response-Nonce headers contained in the first C-HTTP
request dispatched by a client-side proxy and in the first
C-HTTP response dispatched by a server-side proxy,
respectively. The C-HTTP name server manages its own
private and public asymmetric keys and the public keys of
all proxies which participate in the closed network. Two
data encryption keys (symmetric keys) for requests and
responses respectively are generated randomly during
each C-HTTP session.

An origin server which is compatible with HTTP/1.0 is
responsible for user authentication if necessary. It uses
the built-in HTTP/1.0 authentication mechanism.
Information concerning a user's ID, password and
security realm (HTTP/1.0) are encrypted by proxies and
are transferred only in encrypted form through the
Internet. Replay attacks are blocked by checking values of
the Request-Nonce header field of each request.

When a given institution wants to participate in a
closed network, it must 1) install a client-side and/or
server-side proxy on its firewall, 2) register an IP address
(for a server-side proxy, a port number should also be
registered) and hostname (which does not have to be the
same as its DNS name) for a firewall gateway, 3) give the
proxy's public key to the C-HTTP name server, and 4)
obtain the C-HTTP name server's public key. In the
present C-HTTP specification, there is only one name
server in a given C-HTTP network, although one can
define any possible combination of closed subnetworks
within the network.

2.3 C-HTTP-based communication
C-HTTP-based communication is
follows:

summarized as

1) Connection of a client to a client-side proxy

A client-side proxy behaves as an HTTP/1.0 compatible
proxy, and it should be specified as a proxy server for
external (outside the firewall) access in each user agent
within the firewall. In C-HTTP, as different from
ordinary HTTP, a session (virtual C-HTTP connection) is
established between a client-side proxy and server-side
proxy and, thus, it is not stateless. The session is finished
when the client accesses another C-HTTP server or an
ordinary WWW server or when the client-side or server-
side proxy times out. The following ad-hoc mechanism is
employed to define a session in stateless HTTP/1.0-based
communication between a client-side proxy and user

65

agent. Suppose that the HTML specified in Figure (a) is
retrieved and sent to a client-side proxy after a C-HTTP
session is established. In the client-side-proxy, the HTML
document is rewritten as specified in Figure (b) and
forwarded to a user agent. When one of these resource
names with a connection ID, for example, ,

"http://serverAin.current.connection/sample.html=@=62d

DfldfcZ1j8V!i" in Figure (b), is selected and requested by
an end-user, the client-side proxy takes off the connection
ID and forwards the stripped, the original resource name
to the server in its request as described in Figure (c).
When the connection ID is not found in the current

‘connection table in the client-side-proxy, the current

connection is disconnected. Thus a new connection is
established if the host is in the closed network and an
ordinary HTTP/1.0 request is dispatched otherwise.

2) Lookup of server-side proxy information (Appendix 3.
a,b)

A client-side proxy asks the C-HTTP name server
whether it can communicate with the host specified in a
given URL. If the name server confirms that the query is
legitimate, it examines whether the requested server-side
proxy is registered in the closed network and is permitted
to accept the connection from the client-side proxy. If the
connection is permitted, the C-HTTP name server sends
the IP address and public key of the server-side proxy and
both request and response Nonce values. If it is not
permitted, it sends a status code which indicates an error.
If a client-side proxy receives an error status, then it
performs DNS lookup, behaving like an ordinary
HTTP/1.0 proxy.

Both the request to and response from the C-HTTP
name server are encrypted and certified, using
asymmetric key encryption and digital signature
technology.

3) Request for connection to the server-side proxy
(Appendix 3. ¢)

When the C-HTTP name server confirms that the
specified server-side proxy is an appropriate closed
network member, a client-side proxy sends a request for
connection to the server-side proxy, which is encrypted
using the server-side proxy's public key and contains the
client-side proxy's IP address, hostname, request Nonce
value and symmetric data exchange key for request
encryption.

4) Lookup of client-side proxy information (Appendix 3.
d,e)

When a server-side proxy accepts a request for
connection from a client-side proxy, it asks the C-HTTP

Petitioner Apple Inc. - Ex. 1041, p. 8

Figure. Conversion of stateless HTTP to
stateful C-HTTP

a. The HTML document sent from a origin server to a
client-side proxy

<TITLE>SAMPLE</TITLE>

<BODY>

<A HREF =
“http://server.in.current.connection/sample.html">
Please click here.

<AHREF= ,
"http://another.server.in.closed.network/">

Another server.

< /BODY>

b. The HTML document rewritten and forwarded to a
use agent by the client-side proxy. The string,
"6zdDfldfcZLj8V!i", attached to the end of the URLs
is a connection iD

<TITLE>SAMPLE</TITLE>

<BODY>

<A HREF = -
"http://server.in.current.connection/sample.html=@
=6zdDfldfcZLj8V!i">

Please click here.

<A HREF =
"http://another.server.in.closed.network/=@=6zd Dfl
dfcZLi8Vii">

Another server.

< /BODY>

c. HTTP/1.0 request from the user agent (1) and
HTTP/1.0 request encrypted and wrapped in C-HTTP
request dispatched by the client-side proxy (2)

(M

GET "http://server.in.current.connection/
sample.html=@=6zdDfldfcZLj8V!i"
HTTP/1.0<CR><LF>

()

GET "http://server.in.current.connection/
sample.html|"

HTTP/1.0<CR><LF>

66

name server whether the client-side proxy is an
appropriate member of the closed network. If the name
server confirms that the query is legitimate, it then
examines whether the client-side proxy is permitted to
access to the server-side proxy. If access is permitted, the
C-HTTP name server sends the IP address and public key
of the client-side proxy and both request and response
Nosce values, which are the same as those sent to the
client-side proxy. The C-HTTP name server keeps both of
the Nonce values for thirty seconds. If not, it sends a
status code which indicates an error and the server-side
proxy refuses the connection from the client-side proxy.

5) Connection establishment (Fig. 2f)

When the sever-side proxy obtains the client-side
proxy's IP address, hostname and public key, it
authenticates the client-side proxy, checks the integrity of
the request and the request Nonce value and generates
both a connection ID derived from the server-side proxy's
name, date and random numbers (32 bits) using MD5,
and also a second symmetric data exchange key for
response encryption, which are sent to the client-side
proxy. When the client-side proxy accepts and checks
them, the connection is established.

6) Sending C-HTTP requests to the server-side proxy (Fig.
2g)

Once the connection is established, a client-side proxy
forwards HTTP/1.0 requests from the user agent in
encrypted form using C-HTTP format.

7) Forwarding requests to an origin server

Using HTTP/1.0, a server-side proxy communicates
with an origin server inside the firewall. From the view of
the user agent or client-side proxy, all resources appear to
be located in a server-side proxy on the firewall. In reality,
however, the server-side proxy forwards requests to the
origin server. It is possible to map any of the virtual
directories on the server-side proxy to any of the
directories in one or more origin servers inside the
firewall.

8) Origin server responses to the user agent through the
server-side and client-side proxies (Fig. 2h)

An HTTP/1.0 response sent from the origin server to
the server-side proxy is encrypted in C-HTTP format by
the server-side proxy, and is forwarded to the client-side
proxy. Then, in the client-side proxy, the C-HTTP
response is decrypted and the HTTP/1.0 response
extracted. If the transferred object is in HTML format, the
connection ID is attached to the anchor URLSs contained
in the document. The resulting HTTP/1.0 response is sent
to the user agent.

Petitioner Apple Inc. - Ex. 1041, p. 9 _

9) Request for closing the connection (Appendix 3. i,j)

A client-side proxy can send a request for closing the
connection. The server-side proxy returns a status which
indicates the connection is closed. On the other hand, if
the server-side proxy detects that a given connection
times out, it deletes the connection ID from the
connection list, informing the client-side proxy that the
connection is closed when an error status is returned in
response to the request.

3. Trial implementation

Trial implementation is under way using 1) RSA as the
asymmetric key encryption method (OSISEC RSA
library)[2], 2) DES as the symmetric key encryption
method (GNU DES library)[3], 3) RSA as the electronic
signature method (OSISEC RSA library) and 4) a one-
way hash function based on MD5[4]). As for random key
generation, programs included in the OSISEC RSA
library and GNU DES library are used for RSA
asymmetric keys and DES symmetric keys, respectively.

In the implementation, we employed the following
methods to enhance security.

1) Key protection

In C-HTTP, keys are stored only on the firewall of a
given institution. C-HTTP proxy software is provided as
source code, and the keys are designed not to be stored in
a separate "key file." A key generation program generates
a C program file, which contains key information for
proxies. It is more difficuit to steal keys using this
method than if they were stored in a separate file.

2) No simultaneous data transfer to both sides

Only after receiving all the data transferred from one
side, does a proxy server begin to forward it to the other
side, except for image and sound data. In this method, the
performance of data transfer is not good, however, the
data transfer is separated between the internal and
external sides. For the secure implementation of this
feature, the size of HTML documents and object bodies
should be limited and checked by each proxy. We plan to
implement routines which check the contents of object
bodies (especially concerning form data used in POST
method) in the future.

3) Closure of TCP connection after each transaction

C-HTTP itself is stateful, but the TCP connection is
closed after each transaction (request and response pair)
in order to reduce the possibility of it being intercepted by
attackers.

67

4. Discussion
4.1 Why HTTP?

It is possible to develop a secure application level
protocol available only to a closed group in the Internet,
making use of cipher technology. The reasons we chose
HTTP as the communication protocol for a closed
network are as follows: '

1) Flexibility of HTTP
Different application level protocols have been
developed for individual network services, such as FTP,

- SMTP, NNTP or GOPHER([5],[61,[71,[8]. HTTP has the

flexibility to be able to provide services similar to those
which have been provided by these protocols . For
example, file transfer by FTP is accomplished by the
object transfer mechanism of HTTP and, from a
functional viewpoint, the Gopher protocol can be
considered a subset of HTTP. Internet news and
electronic mail services are available with an HTTP-
based graphical user interface via gateways for protocol
conversions[9]. Electronic mail services within a given
group of institutions can be also developed using HTTP
and CGI (Common Gateway Interface)[10].

2) Hypertext-based user-friendly graphical interface

Using HTTP and the Hypertext Markup Language
(HTML), distributed multimedia information systems
with user-friendly graphical interfaces based on hypertext
can be easily developed[11].

3) User agents and servers available on almost all
platforms

HTTP has now gained widespread popularity and
various kinds of user agents and servers are available on
almost all platforms. Even if new protocols for closed
networks are developed which are superior in function or
flexibility, new clients and servers have to be developed
for compatibility, which is costly and an obstacle to their
universal acceptance.

4.2 Proxy-proxy vs. end-to-end secure HTTP-
based information exchange

As for hospitals, from which the Internet is available,
in-hospital networks are usually protected using a dual
home gateway and packet filter (firewall) and the Internet
can only be accessed through proxies on the firewalls.
The role of proxies in HTTP communication has been
considered as important in communicating over firewalls
and transferring information efficiently by caching. Other
secure HT'TP protocols are designed to be implemented in
origin servers and user agents in order to assure "end-to-
end" security protection12-15]. Our approach is aimed at

Petitioner Apple Inc. - Ex. 1041, p. 10

assuring proxy-proxy security and is fundamentally
different from theirs. '

All proposals for secure HTTP communications are
designed to be secure against the following attacks: 1)
network tampering, 2) replay attacks and 3) middle of the
man attack[12-15]. C-HTTP is also designed to be secure
against these attacks and, in addition, it has the following
enhancements for security protection.

l‘?

1) No end-user has any chance to obtain keys for
encryption or decryption.-

Much cost and time are necessary to decode ciphers
which have been used for a long time and are considered
confidential, such as DES or RSA, so an easier and more
practical way to obtain original information is not to
decode them, but to "steal a key" instead. It is not realistic
for hospital information managers to expect that all
individual end-users, including those who connect their
PCs to in-hospital LANSs, manage their keys in a secure
manner.

As currently proposed secure HTTP protocols aim at
providing end-to-end security mechanisms, responsibility
for security is attributed to each individual user. Secure
transfer of data exchange keys is performed by
exchanging public keys (in most cases with certificates)
between both parties. In this situation, once a private key
is stolen, it is possible to obtain information from WWW
servers outside the hospital.

Undoubtedly, the purpose of security protection is
secure commercial information services or on-line
shopping services which are provided by profit-making
companies for the masses. For commercial services, it is
reasonable that individual users (payers) are responsible
for "their own risks," but, as for patient information, it is
each hospital that should be responsible for "their
patients' risks." Each hospital should take measures to
assure security at the institutional level.

2) Name service

As C-HTTP includes its own secure name service,
which contains a certification mechanism, it is impossible
to know the IP address of a server-side proxy even if its
C-HTTP hostname (not necessarily the same as its DNS
name) is known and vice versa. The C-HTTP name
service is efficient because it can do name resolution and
host certification simultaneously.

3) Difficulty in accessing from outside the closed network
It is difficult to access any servers in a closed network
from outside. A cracker has to take the following steps:

a) To find the IP address and port number of a server-side
proxy

b) To get the public key of the server-side proxy in order
to send a valid C-HTTP request for C-HTTP connection.
¢) To make a TCP connection to a target server-side
proxy using a certain client-side proxy's IP address

d) To make the server-side proxy believe that request
comes from a legitimate client-side proxy within the
closed network. For this, it is necessary to know the
private key and C-HTTP hostname of the client-side

PIoxy.

There are other merits in favor of C-HTTP over other
secure HTTP protocols, although they are not the original
purposes of the development.

1) Easy installation

A C-HTTP based network is made available simply by
installing proxies on the firewall and registering their
information with the C-HTTP name server. Current
HTTP/1.0 compatible servers and clients can be used as
they are.

2) Simplicity

There are no negotiations concerning security options
or type and representation of objects in C-HTTP because
C-HTTP-based communication is performed only

* between two types of C-HTTP proxies and between a C-

68

HTTP proxy and C-HTTP name server. They do not
communicate directly with various types of user agents
and servers using C-HTTP. Negotiations concerning type
and representation of objects are done between an origin
server and user agent, using HTTP/1.0. As for these
negotiations, C-HTTP is transparent to both of them.
This makes the design and implementation of C-HTTP
simple.

3) Easy manipulation by end-users

End-users do not have to employ security protection
procedures. They do not even have to be conscious of
using C-HTTP based communications.

4.3 Disadvantages and limitations

Our proposal has some disadvantages and limitations,
and it should be used where its use is appropriate and
suitable, taking them into account.

The key technology used in the Internet is dedicated to
assure connectivity between the huge mumber of
computers, which may be added or removed at any time.
Such connectivity is attractive to commercial companies
and, in this context, it is necessary to develop technology
which assures secure communications between a huge
number of computers.

Our system is assumed to accommodate up to a few
hundreds proxies. This number is much smaller than that

Petitioner Apple Inc. - Ex. 1041, p. 11

needed for most commercial purposes. In addition, a new
proxy should be registered manually to the centralized
name server. For the management of huge number of
proxies, another mechanism for proxy management is

necessary.

4.4 Relations to other secure HTTP protocols

C-HTTP is not an alternative to other secure HTTP
proposals, but it can co-exist with them. Although the
current C-HTTP implementation assumes the use of
HTTP/1.0 compatible user agents and servers, it is
possible to develop C-HTTP proxies which can
communicate with other secure HTTP compatible user
agents and servers. If C-HTTP is used with these
protocols, which assure end-to-end or individual security,
both institutional and personal level security protection
can be provided. This means that even if individual
security management is not sufficient, data security can
be guaranteed. In this case, administrators of proxies on
the firewall can not know the contents of any information
exchanged.

There are commercial proxy servers which can
communicate externally using secure HITTP and
internally using either HTTP/1.0 or secure HTTP, such as
a NetScape Proxy Server. This feature is designed to
ensure that clients which do not support secure HTTP can
communicate with external secure HTTP servers in a
secure manner. Such a proxy server is oriented to be open
to any external clients or servers, although the access
restrictions and authentications can be set up in each
proxy server. A set of such proxy servers can constitute a
closed network if appropriate access restrictions and
authentications are set up in all of the members. However,
this method does not always meet our requirements as
follows:

1) Centralized management of a closed network

In the Internet, there is no "central” network manager.
The huge number of computers on the Internet makes it
impossible. In our closed network, we adopt centralized
proxies and network management. It may be troublesome
for each proxy manager in a hospital to set up his or her
proxy in order to make it accessible only to or from
"medical sites."

2) Closed network's own name service is necessary

It is desirable for us not to make computers dealing
with sensitive medical information known to the public.
It is one method to enhance security. On the other hand,
we have to inform medical researchers of the locations of
medical information resources using publicly available
media, such as medical journals or research protocols for
clinical trials.

69

Besides the above mentioned reasons, it is desirable for
us, or the medical community, to obtain license-free
software with source code. It is not always necessary for a
given closed group to adopt "standards.”" It can modify
C-HTTP or develop its own new protocol, based on C-
HTTP.

4.5 Privately-leased circuits plus the Internet vs.
the Internet alone

The Internet is expected to become available to almost
all major hospitals. Although a closed network can be
constructed using a privately-leased circuit, additional
investment for its construction is mecessary. If a closed
network can be constructed on the Internet, it would be
convenient, speedy and reasonable in terms of cost. In
addition, if a closed network is realized by privately-
leased circuits, it is not always easy to operate several
closed networks flexibly and simultancously.
Combinations of institutions may alter according to
several different purposes. For example, in multi-
institutional clinical trials, the hospitals which participate
in each trial usually differ and the length of each trial is
usually a few years.

5. Concluding remarks

Although C-HTTP is primarily developed for use in the
medical field, it can be used in other areas. Using C-
HTTP, a closed HTTP-based virtual network can be
constructed for closed groups; for example, the
headquarters and branches of a given corporation. This
kind of usage may not fit with the spirit of the Internet,
but if resources which might otherwise be invested in
private circuits are channeled into the Internet, it will
contribute to its further development.

6. References

[1] Berners-Lee T, Fielding RT, Nielsen HF. Hypertext
Transfer Protocol — HTTP/1.0. Internet Draft, 1995 (Work in
progress, available on the World Wide Web as
"ftp://ds.internic.net/internet-drafts/draft-ietf-http-v10-spec-
00.txt")

[2] Roe M, Hardcastle-Kille S, Williams P, Kirstein P. OSISEC
RSA Library, 1995 (Available on the World Wide Web as
"ftp://cs.ucl.ac.uk/osisec/IC-OSISEC-V2.3 tar.des")

[3] Young E. GNU DES library version 3.00. Free Software
Foundation, 1993

[4] Rivest R, The -MD5 Message-Digest Algorithm. RFC
1321,1992 '

[5] Postel T, Reynolds J. File Transfer Protocol (FTP). RFC 959,
1985

[6] Postel JB. Simple Mail Transfer Protocol. RFC 821, 1982
[7] Kantor B, Lapsley P. Network News Transfer Protocol: A

Petitioner Apple Inc. - Ex. 1041, p. 12

Proposed Standard for the Stream-Based Transmission of News.
RFC 977, 1986

(8] Anklesaria F, McCahill M, Lindner P, Johnson D, Torrey D,
Alberti B. The Internet Gopher Protocol (a distributed
document search and retrieval protocol), RFC 1436, 1993

[9] Yahoo. Computers and InternetInternet:World Wide
Web:Gateways, 1995 (Available on the World Wide Web as
"http://www.yahoo.com/Computers_and_Internet/Internet/Worl
d_Wide_Web/Gatways/")

(10] McCool R. The Common Gateway Interface, 1995
(Available on the World Web-as

"http://hoohoo.ncsa. uiuc.edu/cgi/overview.html")

(11] Raggett D. Hypertext Markup Language Specification
Version 3.0. Internet Draft, 1995 (Work in progress, available
on the World Wide Web as

"ftp://ds.internic. net/internet-drafts/draft-ietf-html-specv3-
00.txt")

[12] Rescorla E, Schiffman A. The Secure Hypertext Transfer
Protocol. Internet Draft, 1995 (Work in progress, available on
the World Wide Web as
"ftp//ds.internic.net/internet-drafts/draft-ietf-wts-shttp-00.txt")
{13]Hallam-Baker PM. Shen: A Security Scheme for the World
Wide Web. 1995 (Available on the World Wide Web as
"fip:/fwww.w3.org/hypertext/WWW/Shen/ref/
security_spec.html")

[14] Hickman KEB, Elgamal T. The SSL Protocol. Internet
Draft, 1995 (Work in progress, available on the World Wide
Web as
"ftp://ds.internic.net/internet-drafts/draft-hickman-netscape-ssl-
01.txt")

[15] Spero 8. Progress on HTTP-NG. (Available on the World
Wide Web as
"http://www.w3.org/hypertext/WWW/Protocols/HT TP-NG/http-
ng-status.htinl")

70

Appendices.

Appendix 1.

specification
Note that lines with an asterisk are encrypted and that

all specifications are described in the notation
(augmented BNF) used in the HTTP/1.0 specification[1].

Summary of the C-HTTP

1. C-HTTP request

Request-Line
Plain-Header

CRLF
*General-Header
*Request-Header
*HTTP/1.0-Request
CRLF - ‘
Digital-Signature

1.1 Request-Line

Request-Line=Request-MethodSP C-HTTP-Version
CRLF
Request-Method = "CONNECT"

| "REQUEST"

| "CLOSE"

C-HTTP-Version = "C-HTTP/0.7"

1.1.1 Request-Method
1) CONNECT

Used when a client-side proxy requests a C-HTTP
connection to a server-side proxy
2) REQUEST

Used when a client-side proxy sends a C-HTTP request
to a server-side proxy, to which C-HTTP connection has
already been established.
3) CLOSE

Used when a client-side proxy closes an established
connection to a server-side proxy

1.2 Plain-Header
Request-Plain-Header = Encryption-Algorithm
| Encrypted-Header-Length

{ Encrypted-Request-Length
| Signature-Algorithm
| Signature-Length
| Message-Digest-Algorithm
1) Encryption-Algorithm:
Used for specifying the encryption algorithm.
2) Encrypted-Header-Length:

Used for specifying header length.
3) Encrypted-HTTP-1.0-Length:
Used for specifying HTTP/1.0 request/response

Petitioner Apple Inc. - Ex. 1041, p. 13

length.
4) Signature-Algorithm:
Used for specifying the signature algorithm.
5) Signature-Length:
Used for specifying signature length.
6) Message-Digest-Algorithm:
Used for specifying the message digest algorithm.

1.3 General-Header

Request-Header = Client-Side-Proxy-IP
| Client-Side-Proxy-Name
| Server-Side-Proxy-IP
| Server-Side-Proxy-Name
| Server-Side-Proxy-Port
| Connection-ID | User-Agent-IP

1) Client-Side-Proxy-IP:

Used for specifying the IP address of a client-side proxy.
2) Client-Side-Proxy-Name:

Used for specifying the hostname of a client-side proxy.
3) Server-Side-Proxy-IP:

Used for specifying the IP address of a server-side
PIOXY.

4) Server-Side-Proxy-Name:

Used for specifying the hostname of a server-side proxy.
5) Server-Side-Proxy-Port: Used for specifying the port
number of a server-side proxy.

7) Connection-ID:
Used for specifying the connection ID.
8) User-Agent-IP:
Used for specifying the IP address of a user agent.

1.4 Request-Header

Request-Header = Request-Data-Exchange-Key
| Request-Nonce

1) Request-Data-Exchange-Key: Used for specifying a
data exchange key for response encryption when the
connection is established.

2) Request-Nonce: Used for specifying the Nonce value of
a request.

1.5 Digital-Signature

Digital-Signature = <Message digest of the remainder
of the request>

2. C-HTTP Response

C-HTTP-Version-Line
Plain-Header

71

CRLF

*General-Header
*Response-Header
*HTTP/1.0-RESPONSE
CRLF

Digital-Signature

2.1 C-HTTP-Version-Line
C-HTTP-Version-Line = "C-HTTP/0.7" CRLF

2.2 Plain-Header (the same as those in C-HTTP
Request)

2.3 General-Header (the same as those in C-HTTP
Request)

2.4 Response-Header (Note that headers used only in
responses are described.)

Response-Header = Status
| Response-Data-Exchange-Key
| Server-Side-Proxy-Public-Key
| Client-Side-Proxy-Public-Key
| Response-Nonce

1) Status:

Used for specifying the server's status in response to a
request.
2) Response-Data-Exchange-Key:

Used for specifying the data exchange key for response
when the connection is established.
3) Server-Side-Proxy-Public-key:

Used in the C-HTTP name server's response for
specifying the server-side proxy's public key.
4) Client-Side-Proxy-Public-Key:

Used in the C-HTTP name server's response for
specifying the client-side proxy's public key.
5) Response-Nonce:

Used for specifying the Nonce value of a response.

2.5 Digital Signature

Digital-Signature = <Message digest of the remainder of
the response>

Petitioner Apple Inc. - Ex. 1041, p. 14

Appendix 2. The summary of C-HTTP name
service protocol.

Note that lines with an asterisk are encrypted. C-HTTP
name service protocol is different from other parts of the
C-HTTP in the following points:

1) Only asymmetric key encryption is used for the
encryption.

2) There are no headers, which precede actual data. The
order of data

transferred is fixed and cannot be changed.

3) Random bytes are inserted every fourth byte of the
- request and response before encryption in order to avoid

the same encrypted requests or responses being repeated.

This is useful to make it impossible to predict the server-
side-proxy which will be connected after the name
request.

1. Notations

In the C-HTTP name service protocol, the notations
below are used for the description of the protocol.

1.1 Plain information

1) C-HTTP-NAME-SERVICE-VERSION:
Version of C-HTTP name service protocol

2) ENCRYPTION-ALGORITHM:
Asymmetric encryption algorithm used

3) ENCRYPTED-PART-LENGTH:
Length of encrypted part

3) SIGNATURE-ALGORITHM;:
Electronic signature algorithm used

4) SIGNATURE-LENGTH:
Length of electronic signature

5) MESSAGE-DIGEST-ALGORITHM:
Message digest algorithm

1.2 Encrypted information
1) REQUEST-TYPE:

Type of C-HTTP name request. Options available now
are "SERVER" for a server-side proxy information and
"CLIENT" for a client-side proxy information.

2) C-HTTP-NAME-SERVICE-STATUS:

C-HTTP name server's status returned to proxies.

Possible status is "OK" or "Disallowed."

3) CLIENT-SIDE-PROXY-IP:
IP address a client-side proxy

4) CLIENT-SIDE-PROXY-NAME:
A name of a client-side proxy

5) CLIENT-SIDE-PROXY-PUBLIC-KEY:
A public key of a client-side proxy

72

6) SERVER-SIDE-PROXY-IP:
IP address of a server-side proxy
7) SERVER-SIDE-PROXY-NAME:
A name of a server-side proxy
8) SERVER-SIDE-PROXY-PORT:
A port number of server-side proxy
9) SERVER-SIDE-PROXY-PUBLIC-KEY:
A public key of a server-side proxy
10) USER-AGENT-IP
IP address of a user agent
11) REQUEST-NONCE:
A request-Nonce value provided with both type of
proxies
12) RESPONSE-NONCE:
A response-Nonce value provided with a server-side
proxy

1.3 Signature
DIGITAL-SIGNATURE: Digital signature

2. Communications between a client-side proxy
and C-HTTP name server

2.1 C-HTTP name service request

C-HTTP-NAME-SERVICE=VERSIONcR><L >
ENCRYPTION-ALGORITHM:cr><LF>
ENCRYPTED-PART-LENGTH<cr><1F>
SIGNATURE-ALGORITHM-<cr>-LF>
SIGNATURE-LENGTH<cr><LF>
MESSAGE-DIGEST-ALGORITHM<cr><1Lr>
<CR><LF>

*REQUEST-TYPE<cr><Lr>
*CLIENT-SIDE-PROXY -IP<CR><LF>
*USER-AGENT-IP=cr><LF>
*SERVER-SIDE-PROXY-NAME «cr>-LF>
*SERVER-SIDE-PROXY-PORT<cr:<LF>

<CR><LF>
*DIGITAL-SIGNATURE

2.2 C-HTTP name service response

ENCRYPTION-ALGORITHM :cr-<F>
ENCRYPTED-PART-LENGTH<cr><LF>
SIGNATURE-ALGORITHM <cr>-LF>
SIGNATURE-LENGTH<cr><LE>
MESSAGE-DIGEST-ALGORITHM<cRr><LF>
<CR-<LF>
*C-HTTP-NAME-SERVICE-STATUS :Cr:<LF>
*CLIENT-SIDE-PROXY-IP<«cR:<LF>

Petitioner Apple Inc. - Ex. 1041, p. 15

4

*UUSER-AGENT-IP<«cr>< P>
*SERVER-SIDE-PROXY-IP<CR><LF>
*SERVER-SIDE-PROXY-PORT«cRr><LF>
*SERVER-SIDE-PROXY-PUBLIC-KEY <cr:<LF>
*REQUE ST-NONCE«-CR\,:L}@
*RESPONSE-NONCE-<cRr><LF>

<CR><LF>
*DIGITAL-SIGNATURE

3. Communications between a- sever-side proxy
and C-HTTP name server

3.1 C-HTTP name request

C-HTTP-NAME-SERVICE-VERSION«cR><LF>
ENCRYPTION-ALGORITHM:cR><LF>
ENCRYPTED-PART-LENGTH<«cR><1F>
SIGNATURE-ALGORITHM<cRr><LF>
SIGNATURE-LENGTH:cRr><LF>
MESSAGE-DIGEST-ALGORITHM::cRr> <LF>
<CR><LF>

*REQUEST-TYPE cr: :LF:
*SERVER-SIDE-PROXY -IP-cr><LF>
*SERVER-SIDE-PROXY-PORT Cr><LF>
*CLIENT-SIDE-PROXY-NAME-<cr><LF>
*USER-AGENT-IP«cRr:<LF-

<CR><LF>

*DIGITAL-SIGNATURE

3.2 C-HTTP name service response

ENCRYPTION-ALGORITHM:cr><LF>
ENCRYPTED-PART-LENGTH:«cr:<LF>
SIGNATURE-ALGORITHM<cR><LF>
SIGNATURE-LENGTH<cr><LF>
MESSAGE-DIGEST-ALGORITHM:<CR> <LF>
<CR><LF>
*C-HTTP-NAME-SERVICE-STATUS:CR><LF-
*SERVER-SIDE-PROXY-IP<cRr><LF>
*SERVER-SIDE-PROXY-PORT <cr><LF>
*CLIENT-SIDE-PROXY-IP<CR><LF>
*CLIENT-SIDE-PROXY-PUBLIC-KEY <cr><LF>
*USER-AGENT-IP «cr><LF>
*REQUEST-NONCE-<cr><LF>
*RESPONSE-NONCE:cR><LF>

<CR><LF>

*DIGITAL-SIGNATURE

Appendix 3. Examples of C-HTTP

communication (a-h)

Note that lines with an asterisk are encrypted.
Components of C-HTTP-based communication are as
follows:

1) Client-side proxy
hostname: University.of. Tokyo.Branch.Hospital
IP address: 130.69.111.111

2) server-side proxy
hostname: Coordinating. Center. CSCRG
IP address: 130.69.222.222
port number: 8080

3) C-HTTP name server:
Name.Server.CSCRG
IP address: 130.69.222.111

4) User agent:
IP address: 192.168.123.123

a. Lookup of server-side proxy information (C-HTTP
name service protocol)

C-HTTPNS/0.1<cr><LF>

RSA(CR/ <LF>

T4<cr-<LF>

RSA<CR><LF:

32:CRe<LF:

MD5<cr><LF>

<CR=<LF>

*SERVERCR><LF
*¥130.69.111.111<cr>aF>
*192.168.123.123<cr><LF>
*Coordinating.Center. CSCRG<cr><LF>
*8080-CR: <LF>

“CR><LF>
*827ae79ba214769ea2998249bdb9aad7

b. Response from the C-HTTP name server, indicating
that the connection is permitted (C-HTTP name
service protocol)

RSA«cr:<LF>

203 :cr>LF>

RSA:cr: <LF-

32<CR><LF>

MD3.:cR:<LF>

<CR><LF>

*OK<CR><LF:
*130.69.111.111:cr><LF>
*192.168.123.123 <CRo<LF>
*130.69.222.222 <cR><LF>

Petitioner Apple Inc. - Ex. 1041, p. 16 4

*8080<Ccr><LF>
*effe0d7f480dad7cbbe9d0c309b2f04c89fe5e8e9f7bfc1854
b62f6babafa981clabdel9fd6¢702eec376f9deadf5422e851
bb1770¢ce600d246637459ab757b<cr><LF>
*8abd8353f«cr><r>

*ef23dc99<cr<Lr>

* CR>LF>

<CR><LE>

*51a2f15a51a7f64a5ada6aed0bc529ba

¢. Request for connection to the server-side proxy

CONNECT C-HTTP/0.7«cr><Lr>
Encryption-Algorithm: RSA<cr><r>
Encrypted-Header-Length: 298<cr><LF>
Signature-Algorithm: RSA<cr><r>
Signature-Length: 32«cr><Lp>
Message-Digest-Algorithm: MD5<cR><LF>

<CR><LF=>

*Client-Side-Proxy-IP: 130.69.109.111.111<cr<LF»
*Client-Side-Proxy-Name:

University.of Tokyo.Branch. Hospital<cr><Lr>
*User-Agent-IP: 192.168.123.123<«cro><LF>
*Server-Side-Proxy-IP: 130.69.222.222 «cr:<LF>
*Server-Side-Proxy-Name:

Coordinating. Center. CSCRG:cr: <LF-
*Server-Side-Proxy-Port: 8080 cr><LF>
_*Data-Exchange-Key-Request: #8Jk=d.n,&1i"s-cr><Lr>
*Request-Nonce: 8abd853f-cr-1Lp>

CCR»<LF>

*4d3b8ea8060046a38d 1a3aab34ce2cb8

d. Lookup of client-side proxy information (C-HTTP
name service protocol) N

C-HTTPNS/0.1«cr><LF:

RSA<«cr><LF>

83«cra P>

RSA«cr><LF>

32<CR><LF>

MD5<cr><LE>

<CR><LF>

*¥CLIENT<CcR><LF>
¥130.69.222.222«CR><LF>
*8080<cr><LF>

*University.of Tokyo.Branch.Hospital<cr><LF>
*192.168.123.123<cr><LF>

<CR><LF>
*d6cdf3£fc703270d62ad757853a4efdd4

74

e. Response from the C-HTTP name server, indicating
that the connection is permitted (C-HTTP name
service protocol) ’ ‘

RSA<«cr><LF>

202<crR><LF>

RSA<CR> <LF>

32<CR<LF:

MD35cr:<LF>

<CR><LF>

*OK<cRo><LF>
*130.69.222.222«cR><LF>
*8080<CR><LF>
*130.69.111.11 l<cr><LF>
*c02¢5351910eca0d1fbde540a0fc8e6b9ef7a83582d286b0
49¢690d67e¢95b74574{188207d6630a850b7789625c299¢4
7317290a3f082b2196037c60eel 1f7cb<cr><Lr>
*192.168.123.123<CrR><LF:

*8abd833f«cr: <Lr>

*ef23dc99cr-<LF>

“CR~<LF>»

*2bcd8b04e019a8510bc56902bede92bb

f. Response from the server-side proxy, indicating that
the connection is established

C-HTTP/0.7 :cr>-LF>

Encryption-Algorithm: RSA<cr><Lp>
Encrypted-Header-Length: 341<cr»<LF>
Signature-Algorithm: RSA<cr-<LF>
Signature-Length: 32<cr><LF>
Message-Digest-Algorithm: MD3<cr-<LF>
CR:+LF>

*Status: 200 OK<cr><LF>
*Server-Side-Proxy-IP: 130.69.222.222 :cr>1F>
*Server-Side-Proxy-Name:
Coordinating. Center. CSCRG<cr><LF>
*Server-Side-Proxy-Port: 8080<cr><Lr>
*Client-Side-Proxy-IP: 130.69.111.111cr><F>
*Client-Side-Proxy-Name:

University.of Tokyo.Branch.Hospital<crs<LF>
*User-Agent-IP: 192.168.123.123«cr><LF>
*Connection-ID: 6zdDfldfcZLj8Vli-cr-<LF>
*Response-Nonce: ef23dc99cr>Lr:
*Response-Data-Exchange-Key: a-3f(*d.bfs,<cr>- :LF:
“CRo<LF>
*36e2bfc5022208¢ca8c20307f60d15¢2e

g. Sending C-HTTP requests to the server-side proxy
REQUEST C-HTTP/0.7<«cr><LF>

Encryption-Algorithm:DES-CBC, f80a9%cb01a93a8df
“CR=<LF>

Petitioner Apple Inc. - Ex. 1041, p. 17

Encrypted-Header-Length: 349<«cr><Lr>
Encrypted-HTTP-1.0-Length: 31<«cr-<LF:
Signature-Algorithm: RSA<cr><r>
Signature-Length: 32<cr><Lpr>
Message-Digest-Algorithm: MD5<cr><Lr>
<CR><LF>

*Server-Side-Proxy-IP: 130.69.222.222«cr><Lr>
*Server-Side-Proxy-Name:
Coordinating.Center. CSCRG<cr><LF>
*Server-Side-Proxy-Port: 8080<cr><Lr>
*Client-Side-Proxy-IP: 130.69.111.111«cr><LF>
*Client-Side-Proxy-Name:

University.of Tokyo.Branch.Hospital<cr><Lr>
*User-Agent-IP: 192.168.123.123<«cr><p>
*Connection-ID: 6zdDfldfcZLj8Vli«cr><Lr>
*Request-Nonce: 8abd8540<cr><Lr>
*<HTTP/1.0 Request>

<CR><LF>
*2ec7d37d0ac2c15ddc455c45913affe6

h. Response from the server-side proxy, indicating
that the request is successful

C-HTTP/0.7<«cr><LF-

Encryption-Algorithm: DES-CBC,
aed28ffeal248ac3-cr--LF
Encrypted-Header-Length: 349.cr><Lr>
Encrypted-HTTP-1.0-Length: 4121-cr><LF:
Signature-Algorithm: RSA
Signature-Length: 32cr>-Lp>
Message-Digest-Algorithm: MD5<cr><LF>
<CR><LF>

*Status: 200 OK.«cr-LF
*Server-Side-Proxy-IP: 130.69.222.222cRr><LF>
*Server-Side-Proxy-Name:
Coordinating. Center. CSCRG-cr-<LF>
*Server-Side-Proxy-Port: 8080.cr>«LF:
*Client-Side-Proxy-IP: 130.69.111.111«cr><1F
*Client-Side-Proxy-Name:

University.of Tokyo.Branch Hospital<cr-«1r:
*User-Agent-IP: 192.168.123.123<cr><LF>
*Connection-ID: 6zdDfldfcZLj8Vli<cr><LF>
*Response-Nonce: ef23dc9a-cr-<Lr>
*<HTTP/1.0 Response>

“CR><LF>
*5471¢62cd0267fd02c4789fe679e5e¢b9

i. Request for closing the connection

CLOSE<SP> C-HTTP/0.7<cr><Lr>
Encryption-Algorithm: DES-CBC,
acd42bef76gf3b98 -cr:<LF>
Encrypted-Header-Length: 349<crs<Lr>

Signature-Algorithm: RSA<cr>1r>
Signature-Length: 32cr><LF>
Message-Digest-Algorithm: MD5«cr-ar>
<CR><LF>

*Client-Side-Proxy-IP: 130.69.111.111«cr><LF>
*Client-Side-Proxy-Name:

University.of. Tokyo.Branch. Hospital«cr><Lr>
*User-Agent-IP: 192.168.123.123 «cr><1r>
*Server-Side-Proxy-IP: 130.69.222.222 «cR><LF:
*Server-Side-Proxy-Name:
Coordinating. Center. CSCRGe<cr><LF>
*Server-Side-Proxy-Port: 8080<cr><Lr>

*Connection-ID: 6zdDfldfcZLj8V!i«cr»<Lr>

*Request-Nonce: 8abd8541<cr><F>

ZCR><LF>
*c37d7b17f13efce24e7a92e6859d0293

j- Response from the server-side proxy, indicating that
the connection closed

C-HTTP/0.7 <cr><LF>

Encryption-Algorithm: DES-CBC,
178dacfffdgf3b3a<cr-<F>
Encrypted-Header-Length: 349<cr>-Lp>
Signature-Algorithm: RSA<cr><r>
Signature-Length: 32<cr><LF>
Message-Digest-Algorithm: MD3<cr-<Lr
<CR»LF>

*Status: 200 OK<cr><LF>
*Client-Side-Proxy-IP; 130.69.111.111<cr><LF>
*Client-Side-Proxy-Name:

University.of. Tokyo.Branch. Hospital «cr><LF>
*User-Agent-IP: 192.168.123.123«Cr><LF>
*Server-Side-Proxy-IP; 130.69.222.222cr: <LF:
*Server-Side-Proxy-Name:
Coordinating.Center. CSCRGx<cr: <1F:
*Server-Side-Proxy-Port: 8080:cr><Lr>
*Connection-ID: 6zdDfldfcZLj8V!i-cr:«LF-
*Response-Nonce: ef23dcOb<crs<Lr>

<CR> ‘LF:
*03a606de822b52563a3171d8ebO0fcf80

Petitioner Apple Inc. - Ex. 1041, p. 18

