In the Matter of:

Arkema France vs. Honeywell International

Robert D. Lousenberg, Ph.D.

April 15, 2016

311 South Wacker Drive, Suite 300, Chicago IL, 60606 312.386.2000 - Fax: 312.386.2275

> Arkema France IPR2015-00916 Arkema France v. Honeywell Exhibit 1027-00001

Page 165

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

ARKEMA FRANCE,

Petitioner

v.

HONEYWELL INTERNATIONAL, INC.,

Patent Owner

VIDEOTAPED DEPOSITION OF

ROBERT D. LOUSENBERG, Ph.D.

Volume 2

Pages 165 - 323

Trial No. IPR2015-00915

Trial No. IPR2015-00916

Trial No. IPR2015-00917

U.S. Patent No. 8,710,282

Г

Page 166

1

1	Videotaped Deposition of ROBERT D.
2	LOUSENBERG, Ph.D., taken before KAREN K. KIDWELL,
3	RMR-CRR, and Notary Public, pursuant to the
4	Rules of the United States Patent and Trademark
5	Office, on the 15th of April, 2016, at the offices
6	of Alston & Bird, Bank of America Plaza, 101 South
7	Tryon Street, Suite 4000, Charlotte, North
8	Carolina, commencing at 9:00 a.m.
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

Page 167

1	APPEARANCES:
2	
3	On Behalf of the Petitioner:
4	BRINKS GILSON & LIONE By: ALLEN R. BAUM
5	ALLYN ELLIOTT 4721 Emperor Boulevard
б	Suite 220 Durham, NC 27703-8580
7	919.998.5720 abaum@brinksgilson.com
8	allynelliott@brinksgilson.com
9	and
10	BRINKS GILSON & LIONE By: JON H. BEAUPRÉ
11	JOSHUA E. NEY, Ph.D. (Via Telephone and Live Streaming)
12	524 South Main Street Suite 200
13	Ann Arbor, Michigan 48104 (734) 302-6000
14	jbeaupre@brinksgilson.com jney@brinksgilson.com
15	
16	On Behalf of the Patent Owner:
17	ALSTON & BIRD, LLP By: BRUCE J. ROSE
18	CHRISTOPHER DOUGLAS 101 South Tryon Street
19	Suite 4000 Charlotte, North Carolina 28280
20	(704) 444-1000 bruce rose@alston.com
21	christopher.douglas@alston.com
22	
23	Also Present: Ernie Magness, Videographer
24	
25	

			Page	168
	INDE	Х		
WITNESS/EX	XAMINATION	Pa	ıge	
ROBERT D.	LOUSENBERG, Ph.D.	Volume 2		
By Mr. E	Baum (Continuing)	1	.70	
By Mr. F	Rose	3	311	
	NEWLY MARKED	EXHIBITS		
Number	Descripti	on Pa	ige	
Exhibit 10)24 U.S. Patent 8,5	92,6302	221	
PRE	EVIOUSLY MARKED EXH	IBITS REFERENCED		
Number	Descript	ion Pa	ige	
Exhibit 10	003 International Pub WO 2009/138764 A1	2 lication No.	233	
Exhibit 10)05		262	
English language trans of Japanese Publicatio	translation ication No. JP			
	S59-70626			

DTI Court Reporting Solutions - Chicago 800-868-0061

www.deposition.com

1 FRIDAY, APRIL 15, 2016, CHARLOTTE, NORTH CAROLINA 2 PROCEEDINGS 3 -000-4 VIDEOGRAPHER: We are now on the record. 5 Today's date is April 15th, 2016. The time is 9:00 б o'clock exactly. This is the video deposition of 7 Mr. Robert Lousenberg taken by counsel for the 8 Petitioner. The location is Alston & Bird, Bank of 9 America Building, 101 South Tryon Street, Charlotte, 10 North Carolina. 11 My name is Ernie Magness, legal 12 videographer, representing Merrill Corporation, 13 Chicago, Illinois. 14 This deposition is taken in the matter of 15 Arkema versus Honeywell, Trial Number IPR2015-00915, 16 -00916, -00917, U.S. Patent Number 8,710,282. Case 17 number CH-080661. 18 Counsel, if you'll please introduce 19 yourselves for the record. 20 MR. BAUM: My name is Allen Baum for 21 Petitioner Arkema France, and I have with me Jon 22 Beaupre, Allyn Elliott and Joshua Ney. 23 MR. ROSE: Good morning. Bruce Rose from 24 Alston Bird for the Patent Owner. With me is my 25 colleague, Christopher Douglas.

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Page 169

Page 170

1	ROBERT D. LOUSENBERG, Ph.D.
2	being first duly sworn, testified as follows:
3	VOLUME 2
4	EXAMINATION (Continuing)
5	BY MR. BAUM:
6	Q. Good morning, Dr. Lousenberg.
7	A. Good morning.
8	Q. Have you discussed your deposition
9	testimony with anyone since yesterday?
10	A. No.
11	Q. Have you discussed your deposition at all
12	with anyone since yesterday?
13	A. No.
14	Q. Have you discussed the testimony that you
15	gave yesterday with anyone?
16	A. No.
17	Q. You haven't had any discussions with
18	counsel concerning your deposition yesterday?
19	A. Not concerning my deposition.
20	Q. What did you discuss with counsel?
21	A. Football schedule.
22	Q. Anything else?
23	A. Getting my boarding pass printed out.
24	Q. Anything else?
25	A. Well, we knew this question would come up.

We did discuss the price of tea in China. 1 2 Anything beyond the price of tea in China? 0. 3 Α. No. 4 Thank you. Do you have any experience Ο. 5 separating a solid from a liquid in a chemical б process? 7 Α. Yes. 8 Ο. And what is that experience? 9 One example, filtration, evaporation of Α. 10 the liquid from the solid. 11 Q. And is evaporation a means that a gas can 12 be separated from a liquid as well? 13 Α. Yes. 14 What types of equipment have you used to Q. 15 separate a solid from a liquid? 16 Α. Filtration equipment, distillation 17 equipment. 18 Any other types of equipment? Q. 19 Α. None that come to mind at the moment. 20 Can a centrifuge be used to separate a Ο. 21 solid from a liquid in a chemical process? 22 Α. Yes. 23 And how does that work? Ο. 24 It spins the sample at high RPM and the Α. centrifugal force increases the pull -- the 25

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Page 171

Page 172

1 separation force, and the denser material tends to go 2 to the bottom. And a centrifuge can be used in a 3 Ο. 4 continuous process; is that correct? 5 Α. Yes. In a chemical process including a reactor б Ο. 7 where ingredients are added to the reactor, is it 8 typical to include a stirrer in that reactor? 9 Α. Yes. 10 Ο. Why is that? 11 Α. To increase contact with the materials in 12 the reactor. 13 Ο. And when you increase contact with the 14 materials in the reactor, what happens? 15 You tend to create a more favorable Α. 16 reaction conditions. 17 Ο. What does "more favorable reaction 18 conditions" mean? Meaning the reaction will go further in 19 Α. 20 terms of conversion of reactants to products. 21 Will a stirrer help the reaction go faster Ο. 2.2 from reactants to products? 23 Α. Yes. Can one of ordinary skill in the art 24 Ο. 25 typically determine an effective reactant temperature

Page 173

1 with little experimentation? 2 MR. ROSE: Objection to form. BY MR. BAUM: 3 4 Strike that. Let me ask it again. Ο. 5 Can one of ordinary skill in the art typically determine an effective reaction temperature б 7 with little experimentation? 8 MR. ROSE: Objection to form. 9 THE WITNESS: How little? BY MR. BAUM: 10 11 Yesterday, I think you mentioned three Q. 12 data points. 13 Α. Yes. 14 I'd like you to take -- so let me Q. 15 strike -- strike that. Let's begin again. 16 So one of ordinary skill in the art could 17 typically determine an effective reactant temperature 18 with three data points? 19 MR. ROSE: Objection. Form. 20 THE WITNESS: Likely, yes. BY MR. BAUM: 21 22 Ο. I'd like you to turn to the '282 patent 23 which we were looking at yesterday. If you could 24 turn to column 12, please. You'll see there's a 25 reaction formula set forth in column 12. Actually

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Exhibit 1027-00010

Г

Page 174

1	there's two reaction formulas. Do you see that?
2	A. Yes. Are we talking about formulas 1 and
3	2?
4	Q. Yes, correct. Can you tell me what the
5	Formula 1 is?
6	A. Yes. That is 236ea.
7	Q. And can you tell me what reaction 2
8	relates to?
9	A. 245eb.
10	Q. So in reaction 1, is it correct that we
11	are reacting 236 one mole of 236 with one mole of
12	KOH to yield one mole of 1225 with one mole of KF and
13	one mole of water?
14	A. That is correct.
15	Q. And is it correct that in reaction 2, we
16	are reacting one mole of 245 with one mole of KOH to
17	yield one mole of 1234 plus one mole of KF and one
18	mole of water?
19	A. Correct. May I add that we do in a
20	general equation like this, unless it's specifically
21	known, the the co-efficients in front of the
22	reactants is taken to be 1. But in a lot of times,
23	it may not be the actual conditions may be
24	different. It's just written that way until
25	conditions are known for such a reaction.

Page 175

1	Q.S	o is it your understanding that since
2	there's no i	ndication as to whether it's one mole or
3	two moles, t	hat each of the reactants and products is
4	present in t	he amount of one mole or a one-to-one
5	ratio?	
6	A. T	hat is one assumption or it could be
7	that that	we're talking about the actual chemistry
8	and not the a	actual stoichiometry of the reaction.
9	Q. A:	re the formulas
10	A. B [.]	ut
11	Q. G	o ahead.
12	A. T	hat's fine.
13	Q. P.	lease. I don't want to interrupt you.
14	A. 0	h. So yes, yes, it can be taken either
15	way. Unless	it's in context, it can be taken either
16	way.	
17	Q. 0.	kay. So you've spent a fair amount of
18	time reviewi:	ng the '282 patent in connection with
19	this matter,	correct?
20	A. R.	ight.
21	Q. A:	nd you're here to testify as an expert?
22	A. Y	es.
23	Q. W	ith regard to the '282 patent, correct?
24	A. Y	es.
25	Q. S	o reading Formula 1 in column 12, is that

1	the stoichiometric formula for preparing 1225 from
2	236?
3	A. The text does not say that one mole is
4	reacting with one mole.
5	Q. I understand that the text may not say
6	that. But what do you understand the '282 patent to
7	mean with regard to Formula 1 and the ratios of the
8	reactants in that stoichiometric formula?
9	A. I would understand it to mean one to one.
10	Q. Okay. So back to my original question.
11	Formula 1 describes reacting one mole of 236 with one
12	mole of KOH to yield one mole of 1225 plus one mole
13	of KF plus one mole of H2O, correct?
14	A. Correct.
15	Q. And Formula 2 discloses reacting one mole
16	of 245 with one mole of KOH to yield one mole of 1234
17	and one mole of KF and one mole of H2O, correct?
18	A. Correct.
19	Q. So if we speak now in terms of what's
20	happening in the reactor described in the '282
21	patent, the dehydrohalogenation reactor in the '282
22	patent, and we think about what's present just
23	what's present in the aqueous phase in view of
24	Formulas 1 and 2, if we have 50 parts of water and 50
25	parts of KOH as reactants, that will yield 25 parts

Page 177

1	of KF and 25 parts of KOH and 75 parts of water,
2	correct?
3	MR. ROSE: Objection to form.
4	THE WITNESS: There was a lot of numbers
5	there. I would need to hear the question again.
б	MR. BAUM: Okay. Could the reporter
7	please read back the question?
8	(Whereupon the Court Reporter read the
9	previous question.)
10	THE WITNESS: Oh. We're just talking
11	about the aqueous phase?
12	BY MR. BAUM:
13	Q. Correct.
14	A. And if 50 parts 50 parts of KOH and 50
15	parts of water, and are we saying 25 parts of KOH
16	will react to yield 25 parts of remaining KOH, 25
17	parts of KF and another 25 parts of water from a
18	reaction so there will be 75 parts of water, 25 parts
19	of KF and 25 parts of KOH? Is that an accurate
20	representation of what you asked?
21	Q. Yes.
22	A. Yes.
23	Q. Okay. So just to make sure we're on the
24	same page. So my question assumed a 50 percent
25	conversion rate and that's what you've

Page 178

1 Right, right. Now that's what I Α. 2 understand. 3 Okay. So --Ο. 4 Are we --Α. 5 Ο. Go ahead. б Can I correct my answer? It will not Α. 7 yield 25 parts of water. What parts in terms of 8 moles if we -- how are we defining parts? 9 Well, let's -- we can go back to moles. 0. 10 Why don't we start again? 11 Α. Okay. 12 Okay. So if we speak now in terms of Ο. 13 what's happening in the reactor described in the '282 14 patent, the dehydrohalogenation reaction in the '282 15 patent and we think about what's present -- just 16 what's present in the aqueous phase in view of Formulas 1 and 2 in column 12 of the '282 patent. 17 18 Α. Okay. 19 Ο. And we assume a 50 percent conversion 20 rate, is it correct that 50 moles of water plus 21 50 moles of KOH would yield 25 moles of KF, 25 moles of KOH and 75 moles of water? 22 23 I agree that the reaction --Α. Okay. 24 there's something I'm missing here to answer this 25 correctly. We started with 50 moles of KOH and how

Г

Page 179

1	much water?
2	Q. 50 moles of water.
3	A. Okay. Hypothetically, that is I don't
4	know what KOH concentration that is, but, okay, I
5	will in light of not recognizing what the actual
6	concentration is with 50 moles of water, I will agree
7	that 50 moles of KOH reacting to 50 percent
8	conversion will leave you with 25 moles will give
9	you 25 moles of KF, 25 moles of KOH remaining and
10	produce 25 moles of water.
11	Q. So that in the end, you would have a total
12	of 75 moles of water present?
13	A. Correct.
14	Q. Correct? So we've talked about what
15	happens in the aqueous phase and the reactor of the
16	'282 patent with regard to moles. Can we also talk
17	about what's happening in terms of parts by weight?
18	A. Yes, if we we can do that. But it is
19	much unless we've done we have the molecular
20	weights in mind, and that's typically not easy to do
21	in just a conversation. Typically, you would want to
22	be writing things down. Yes, we could. It could get
23	kind of confusing in asking those questions, but yes,
24	it could be done.
25	Q. Is it correct that whether you're looking

Page 180

1	at it from a molar concentration standpoint or a
2	parts-by-weight concentration standpoint, the
3	reactions of Formula 1 and 2 in column 12 of the '282
4	patent would result in the production of water?
5	A. Yes.
6	Q. And is it correct that whether you're
7	talking about the moles of reactant and product or
8	parts by weight of reactant and product, that you're
9	going to produce that water in the reaction of
10	Formulas 1 and 2 in column 12 in the '282 patent in
11	amounts equal to the amount of KOH and KF produced in
12	that reaction?
13	MR. ROSE: Objection. Form.
14	THE WITNESS: That question had a lot of
15	assumptions in it, and I would need to see it written
16	down to probably answer it correctly.
17	BY MR. BAUM:
18	Q. Would it help if you heard the question
19	again?
20	A. It might.
21	MR. BAUM: Can you read the question back,
22	please?
23	(Whereupon the Court Reporter read the
24	requested question.)
25	THE WITNESS: At 50 percent conversion, I

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Exhibit 1027-00017

Г

Page 181

1	believe that is correct.
2	BY MR. BAUM:
3	Q. So for every mole of KF produced in the
4	Formula 1 or the Formula 2 in column 12 of the '282
5	patent, you're going to produce 1 mole of water?
6	A. Correct.
7	Q. How many chemical processes would you say
8	you've designed in your career?
9	A. Designed that went commercial? Or
10	designed experimentally that maybe that were
11	documented but never implemented commercially, which?
12	Q. Either one.
13	A. I have had three chemical process
14	processes no, two chemical processes go
15	commercial. And I I don't know numerous.
16	Every year we were designing reactant, chemical
17	reactions.
18	Q. So on the order of ten, hundreds per year?
19	A. Not hundreds. More than ten.
20	Q. Okay. Looking at your CV, after your
21	undergraduate degree, you worked at Ballard Power
22	Systems?
23	A. Yes.
24	Q. From July, or excuse me, from 1991 to
25	1995?

Г

Page 182

1	A. Correct.
2	Q. And were you designing processes at let
3	me scratch that.
4	Were you designing chemical processes at
5	Ballard Power Systems?
6	A. I was doing chemical experiments and
7	reactions. If you equate doing chemical reactions to
8	make potentially new products as processes, then yes.
9	But if did I did I design processes from
10	implementation to commercial products at Ballard?
11	No.
12	Q. Did you design processes scratch that.
13	What did those processes relate to at
14	Ballard Power Systems?
15	A. Monomer synthesis and polymer synthesis
16	from those monomers and fabrication of membranes from
17	those polymers that were used in the electrode
18	assemblies of fuel cells.
19	Q. At Ballard Power Systems, did you have any
20	experience designing chemical processes for
21	manufacturing gases?
22	A. No.
23	Q. After Ballard Power Systems, I believe you
24	went back for your graduate work; is that correct?
25	A. Correct.

Page 183 1 And then you returned to working in Ο. 2 industry at DuPont; is that correct? 3 Α. At -- after graduate school and after my 4 Ph.D., I was hired directly into DuPont. 5 Ο. And from August of 2000 to April of 2007, б your CV says that you were senior research chemist in 7 fluoro products, fuel cells, R&D. 8 Α. Yes. 9 Can you generally describe the work that 0. 10 you did there? 11 Α. My first assignment was in fluoro products 12 in Fayetteville, North Carolina. There, I was 13 working on reformulating and making a more robust 14 process for their Nafion dispersion products. In 15 2004, I transferred to Wilmington into the fuel cells 16 group where I worked on synthesizing new 17 fluoropolymers, ionic fluoropolymers that were 18 similar to Nafion that had advanced properties for fuel cell applications. 19 20 Between August 2007 -- excuse me. Let me Ο. 21 start again. 22 Between August of 2000 and April of 2007, 23 did you have any experience designing chemical 24 processes to manufacture gases? 25 Α. Yes.

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Exhibit 1027-00020

Page 184

1	Q. And what gases were you designing chemical
2	processes to manufacture during that period?
3	A. We were designing chemical processes for
4	intermediates that would ultimately lead to 1234yf.
5	Q. Now was that during the period of
6	August 2000 to April 2007 when you were a senior
7	research chemist of fluoro products?
8	A. No, that would have been August that
9	would have been I transferred from the fuel cells
10	group in spring of 2007 into the fluoro chemicals
11	group. So from spring of 2007 until maybe mid-2008,
12	I was working on processes for chemical intermediates
13	for 1234yf.
14	At that point, I transferred into our
15	solvents group and working on processes to make new
16	solvent materials such as HFX-110 and others that did
17	not become commercial. It was basically HFX-110
18	was the product that ultimately went to commercial
19	production, but I worked on the research of a lot of
20	other materials that the intended application if they
21	had gone commercial would have been as new types of
22	solvent molecules.
23	Q. So until April of 2007, you didn't have
24	any experience designing processes to manufacture
25	gases, correct?

Page 185

1	A. That in graduate school, I worked with
2	tetrafluoroethylene. That's a gas. I had to
3	synthesize that in order to do the experiments.
4	There, I took what was what was already
5	documented in the literature and adapted it to for
6	my laboratory to make tetrafluoroethylene. That
7	process is basically pyrolyzation of
8	polytetrafluoroethylene to make tetrafluoroethylene.
9	So I have handled gases.
10	It the idea or for the process to
11	make tetrafluoroethylene certainly wasn't my own. It
12	was already documented in the literature. But I have
13	implemented those types of processes
14	Q. Other than
15	A before.
16	Q that one experience preparing
17	tetrafluoroethylene in graduate school, you didn't
18	have any experience with in designing chemical
19	processes for manufacturing gases until April of
20	2007, correct?
21	A. That is correct.
22	Q. And the work that you did on
23	tetrafluoroethylene in graduate school, that wasn't a
24	commercial scale process, was it?
25	A. No.

Page 186

1	Q. What was the purpose of that experiment
2	that you conducted concerning tetrafluoroethylene in
3	graduate school?
4	A. It was a means to get access to an
5	intermediate tetrafluoroethylene which you couldn't
б	buy commercially so that I could do further
7	experiments for my graduate work and thesis.
8	Q. And how much tetraethylene do you believe
9	you produced during that experience in graduate
10	school?
11	A. Maybe one to two kilograms.
12	Q. And then what did you do with that one to
13	two kilograms of tetrafluoroethylene that you
14	produced?
15	A. Made new fluoromonomers and polymers with
16	it.
17	Q. So the end product of that work in
18	graduate school relating to tetrafluoroethylene was
19	not a gas, correct?
20	A. Correct.
21	Q. So up until April 2007, you didn't have
22	any experience designing chemical processes where the
23	end product would be a gas, correct?
24	A. That is correct.
25	Q. And then from April 2007 to June of 2015,

Page 187

1	how many chemical processes for manufacturing gases
2	did you have experience with?
3	A. I don't know an exact number offhand.
4	There's a lot of research done. We made a lot of
5	different molecules.
6	Gases, can we define where are we consider
7	a gas what are we defining as a gas? A gas
8	ambient is a is gaseous at ambient temperature?
9	Say 20 degrees something?
10	Q. Is that your understanding of what a gas
11	is?
12	MR. BAUM: Objection to form.
13	THE WITNESS: Well, many things can be
14	gas. Water can be a gas, steam if it's hot enough,
15	so. Are we talking about refrigerant molecules or
16	anything that has a boiling point before room
17	temperature?
18	BY MR. BAUM:
19	Q. Let's talk about refrigerants. How many
20	chemical processes did you have experience with
21	during your tenure at DuPont from 2007 to 2015
22	A. Okay. Well, let's see.
23	Q involving refrigerants?
24	A. When I first started, I also worked on
25	doing the dehydrofluorination of 245eb. That was

Page 188

1	done in in a similar type way as the '282 patent.
2	There, my objective was to explore the use of
3	solvents for making that reaction go and to what
4	extent and efficiency it went. I also I believe I
5	also did the dehydrofluorination of 236ea in a
6	similar fashion.
7	That was not a part of any patent because
8	at the time, I believe DuPont was not going to was
9	not ultimately probably going to go that way and I
10	think DuPont had assumed that Honeywell had already
11	covered a lot of this. I think looking back now,
12	that we may have been in that same time frame as
13	Honeywell in doing a lot of the experiments, but we
14	didn't ultimately pursue them in into patents. So
15	yes, I did do those experiments for making 1225ye and
16	1224yf.
17	But soon after doing that, my major focus
18	was looking on the long-term alternative routes for
19	1234yf. DuPont realized that an HFP route was likely
20	not going to be in the long term. The variable cost
21	in producing that would be higher than other routes
22	so they had me transition into looking into making
23	1234yf, ultimately starting from chlorocarbons, such
24	as reactions of carbon tetrachloride with ethylene to
25	make 250fb and then reactions of 250fb to make other

Page 189

1 chlorocarbon intermediates that could then go through 2 vapor phase reactions with, for example, HF to 3 ultimately lead to 1234yf. 4 So that's two reactions that you had Ο. 5 experience with --MR. ROSE: Objection. б 7 BY MR. BAUM: 8 Q. -- concerning refrigerants at DuPont 9 during 2007 --10 MR. ROSE: Objection to form. 11 BY MR. BAUM: 12 -- to 2015? Ο. 13 Α. I would say maybe three because the 14 chlorocarbon routes ultimately did lead into gases. 15 So between the periods of 2007 and 2015 at Ο. 16 DuPont, you had experience with three chemical 17 processes relating to the manufacture of 18 refrigerants? 19 Α. Well, I had -- I had experience with -- I 20 didn't always make them in the same way. And if we define -- if -- if chemical processes are distinct, 21 22 if you do them in slightly different ways, then I've 23 done lots. I've done dozens. But ultimately, these 24 different chemical processes were focusing on a certain set of intermediates. So the amount of 25

Page 190

1	processes that I looked to make them could be in the
2	dozens.
3	Q. So during the period of 2007 to 2015 at
4	DuPont, you only had experience with three distinct
5	chemical processes for manufacturing refrigerants; is
6	that correct?
7	MR. ROSE: Objection to form.
8	THE WITNESS: I'm not sure we're defining
9	distinct. I think I said that if you look at
10	carrying them out in different ways, either through
11	vapor phase or liquid reactions or running the vapor
12	phase with different catalysts, those could be
13	considered distinct processes, couldn't they?
14	BY MR. BAUM:
15	Q. Well, how do you define the term "distinct
16	processes"?
17	A. Well, it has to be there has to be some
18	fundamental difference between them. Using different
19	catalysts is a fundamental difference I would say.
20	Even doing deaqueous phase dehyrdofluorinations with
21	different catalysts could be viewed as distinct
22	differences between processes.
23	Q. So if we use the definition of distinct
24	processes to mean processes that have either
25	different reactants or products, how many distinct

Page 191

1	processes did you have experience with at DuPont
2	between 2007 and 2015 relating to refrigerants?
3	MR. ROSE: Objection to form.
4	THE WITNESS: I can't give you an exact
5	number on there because there when I because
6	there was there was always variations in
7	intermediates that we were making. Yes, there
8	what I'm talking when we first started this line
9	of questioning, you asked me what I had in my mind
10	was distinct processes that I could I could recall
11	that that, for example, chlorocarbon routes are
12	distinct from fluorocarbon routes starting with HFP
13	to go to 1234yf.
14	I used many different chlorofluorocarbons
15	and pure chloro chlorocarbons to go to different
16	intermediates. For example, 1230xa is an
17	intermediate for long-term production of 1234yf.
18	That's that intermediate, 1230xa, is hydro is
19	hydrofluorinated to make 244bb and then that is
20	dehydrochlorinated to make 1234yf.
21	1230xa can come about by several different
22	routes. It can come from two from
23	hydrofluorination of 1230xa. It can come about by
24	chlorination of 243zf and then dehydrochlorination of
25	243zf.

Page 192

1	So can you see how it is to answer your
2	question exactly, we what you're actually asking
3	is kind of hard to define.
4	BY MR. BAUM:
5	Q. So yesterday you mentioned you had done a
6	fair amount of work in the area of producing, I
7	believe was it HFX-110?
8	A. Yes.
9	Q. And you also mentioned that you did a fair
10	amount of work in the area of producing 1234,
11	correct?
12	A. Or, yeah. Routes and chemical
13	intermediates and reaction conditions, processes that
14	led to 1234yf.
15	Q. Other than HFX-110 and 1234yf, have you
16	had experience in designing chemical processes for
17	other compounds?
18	A. Yes. And there are a lot of them. And a
19	lot of them are not in the public domain so I can't
20	necessarily talk specifically to them.
21	Q. Were any of them gases?
22	A. I think I had a few compounds I can't name
23	specifically that had boiling points in the range
24	from about 6 degrees maybe up to 20.
25	Q. So other than HFX-110 and 1234yf, there

1 were a few other compounds that were gases that you 2 have experience in designing a manufacturing 3 process --4 Can you say that again, please? Α. 5 Ο. So you only have experience in designing a few other compounds -- let me strike that. б 7 So you only have experience designing 8 processes to manufacture a few compounds in addition 9 to HFX-110 and 1234yf, correct? 10 MR. ROSE: Objection. Form. 11 Mischaracterizes. 12 THE WITNESS: Are these few compounds 13 gases? Are you saying these few compounds are gases? 14 BY MR. BAUM: 15 0. Yes. 16 Α. Okay, because HFX-110 is not a gas. 17 Okay. Thank you. So other than 1234yf, Q. you have experience designing chemical manufacturing 18 19 processes to manufacture gases of how many different 20 compounds? 21 Α. That are gases? 22 Ο. That are gases. 23 Α. Two or three. 24 And all of that experience would have Ο. 25 occurred other than the work you did in graduate

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Page 193

Page 194

1	school after April of 2007, correct?
2	A. Correct.
3	Q. Do you know what a flash drum is?
4	A. A flash drum? No.
5	Q. Do you know what a phase splitter is?
6	A. Yes.
7	Q. What is a phase splitter?
8	A. I know the term. I have never used one.
9	I've just so, yes, I've heard the term. I don't
10	know its operation, although I presume it splits two
11	phases or or yeah.
12	Q. So you've heard the term, but you don't
13	know what it is?
14	A. No, it's I've heard it through
15	engineers so I believe it's common to engineering.
16	Q. And you don't consider yourself an
17	engineer?
18	A. Not by practice, although I have picked up
19	some engineering skills.
20	Q. Do you know what the configuration of a
21	phase splitter is?
22	A. No.
23	Q. Do you know if a phase splitter separates
24	a liquid from a gas?
25	A. I I don't know. I haven't used the

Page 195

1	term "phase splitter" in my work so I don't know its
2	operation. If a phase splitter if a decanter is
3	an example of a phase splitter, then I can know what
4	it is, but I have not commonly worked with the term
5	or I haven't worked with the term "phase splitter."
6	Q. Can a reactor function as a phase
7	splitter?
8	MR. ROSE: Objection to form.
9	THE WITNESS: Yes, if if you have
10	two two phases in a reactor and, for example, the
11	reactor is stirring and you stop stirring, then the
12	reactor is acting as a phase splitter.
13	BY MR. BAUM:
14	Q. Can a decanter act as a phase splitter?
15	A. Yes.
16	Q. Is sodium hydroxide a dehalogenating
17	agent?
18	A. Yes. Sorry. Say that again?
19	Q. Is sodium hydroxide a dehydrohalogenating
20	agent?
21	A. Yes.
22	Q. Yesterday we were talking about continuous
23	reactor and reactants being introduced to that
24	reactor and products, by-products and reactants being
25	removed from that reactor. And we were talking about

Page 196

1	the desire to maintain a steady state in the reactor.
2	How do you measure whether you have a
3	steady state in that reactor?
4	MR. ROSE: Objection to form.
5	THE WITNESS: Well, you can do analytical
6	methods to measure the product coming out. You
7	can your reactor support equipment like pumps and
8	such can be designed so that they balance input with
9	output so the level in the reactor remains constant.
10	But if you if you're asking about steady state in
11	terms of the product coming out, you pretty you
12	have you have to balance the inputs with the
13	outputs. And to confirm that you have a steady
14	state, you need to measure the outputs, assuming you
15	have premeasured your inputs and your inputs are well
16	known as to what what their characterization is.
17	BY MR. BAUM:
18	Q. So if you have a reactant going in at
19	50 percent and you want to maintain a steady state?
20	A. 50 percent what?
21	Q. By weight. And you want to maintain that
22	level of reactant in the reactor, you have to add an
23	amount of reactant equal to the amount that's being
24	reacted to produce product in order to maintain a
25	steady state in the reactor?

Page 197

1	A. Can you say that again, please?
2	MR. BAUM: Could you read that question
3	back, please?
4	(Whereupon the Court Reporter read the
5	previous question.)
6	THE WITNESS: I believe so.
7	BY MR. BAUM:
8	Q. So that's a yes?
9	A. Yes.
10	Q. And then to confirm that you had achieved
11	a steady state, would you measure the output of that
12	reactant to confirm that it matched the input of that
13	reactant?
14	MR. ROSE: Objection to form.
15	THE WITNESS: No, because the reactant
16	will react. It will be something less in the reactor
17	and coming out.
18	BY MR. BAUM:
19	Q. But you'll be adding fresh reactant to
20	replace the reactant that had reacted, correct?
21	A. Right. You you have in order to
22	confirm steady state, the material coming out, its
23	composition needs to be a constant composition.
24	Q. So if we have 50 parts of reactant going
25	into the continuous reactor, we would want to add

Page 198

1	enough of that reactant such that let me let's
2	scratch that. So in a continuous process, if we have
3	50 parts of a reactant going in and there's a
4	50 percent conversion rate.
5	A. Correct.
б	Q. 25 percent of that reactant would be
7	reacted in the reactor?
8	A. Correct.
9	MR. ROSE: Objection to form.
10	BY MR. BAUM:
11	Q. And to maintain a steady state, you would
12	want to add a fresh 25 parts by weight of that
13	reactant so that the reactor has 50 parts by weight
14	of that reactant being withdrawn from the reactor,
15	correct?
16	MR. ROSE: Objection to form.
17	THE WITNESS: So we have 50 parts going
18	in. There was some level it is not 50 parts in
19	the reactor. It is reacting. It is steady state.
20	So there is 25 parts in the reactor or and coming
21	out of that is 25 parts so you so if you want to
22	maintain that 25 parts coming out, then you have to
23	keep adding 50 parts.
24	BY MR. BAUM:
25	Q. I think you'd want to add

Г

Page 199

1	A. At the same rate that 25 parts is coming
2	out.
3	Q. Okay. Let's let's try it again. So
4	A. See, we're talking about parts, and then
5	we're talking about rates, and they are very
6	different they're different units. Parts don't
7	have a time dependency on them, the parts per minute.
8	Q. Right. So I want you to assume a
9	50 percent conversion rate in the reactor. Okay?
10	A. Okay.
11	Q. So if we have 50 parts by weight of
12	reactant going into a continuous reactor?
13	A. Right.
14	Q. And we know our conversion is 50 percent?
15	A. Correct.
16	Q. Unless we add fresh reactant, we're only
17	going to have 25 percent, or excuse me, 25 parts by
18	weight coming out of the reactor of that reactant,
19	correct?
20	MR. ROSE: Objection. Form.
21	THE WITNESS: Y is less? We're talking
22	steady state, right?
23	BY MR. BAUM:
24	Q. Yes.
25	A. Everything is continuous. There's a
Page 200

1 constant flow of 50 parts in and a constant flow of 2 25 parts out. 3 Ο. Okay. So --4 MR. BAUM: All right. We've been going 5 for close to an hour. Let's take a break. б THE WITNESS: All right. 7 VIDEOGRAPHER: The time is 9:47 a.m. and 8 we are now going off the record. 9 (A recess transpired from 9:47 a.m. until 10 10:08 a.m.) 11 VIDEOGRAPHER: Okay. The time is 10:08 12 and we are now going back on the record. 13 BY MR. BAUM: 14 Dr. Lousenberg, before the break, we were Q. 15 talking about a steady state in a continuously 16 stirred reactor, and if you have 50 percent 17 conversion of a reactant and were adding that 18 reactant to the reactor at 50 parts by weight, I want 19 to make sure I understood that we would then be 20 withdrawing that reactant at 25 parts by weight from 21 the reactor. Is that correct? 22 Α. Are -- we're adding a reactant at 20 -- 50 23 Is there anything else going into parts by weight. 24 this reactor? So it's reacting with something that 25 has no weight and then coming out at 25 parts by

Page 201

1	weight?
2	Q. Well
3	A. Because the parts by weight will change
4	because even though it's 25 parts by weight in its
5	feed, the other feed has to be factored into the
б	parts by weight that are coming out.
7	Q. Okay. So let's assume in a continuously
8	stirred reactor, we're inserting two reactants, both
9	at 50 parts by weight. And we have a 50 percent
10	conversion of those two reactants into a product in
11	the reactor.
12	A. So we have two reactants, both 50 parts by
13	weight going into a reactor, and they react in
14	one-to-one stoichiometry for argument's sake?
15	Q. Yes.
16	A. And what's coming out? Well, now
17	you've now you've got now you've got 100 parts
18	coming out, correct? Of the reactor? Under steady
19	state condition? I'm not saying what it is. So
20	Q. Well, could you give me a breakdown of the
21	100 parts by weight that's being withdrawn from the
22	reactor?
23	A. Okay, okay. So at 50 parts per weight of
24	reactant A, 50 parts by weight of reactant B, they
25	react stoichiometrically to 50 percent conversion.

Page 202

1	Now you now you have a total of 100 parts coming
2	out so you have I'm just getting confused with
3	math, but I understand where you're going. 50 parts
4	by weight going in of each. They react at 50 percent
5	so you have 25 parts by weight of one product and one
6	by-product maybe at the same. They're equal.
7	Q. And how many parts by weight of each
8	reactant?
9	MR. ROSE: Objection to form.
10	THE WITNESS: Are remaining?
11	BY MR. BAUM:
12	Q. Would you remove from the reactor?
13	A. I'm just a little nervous. This is a math
14	test for me. I I can do this.
15	So 50 parts by weight going in. 50 parts
16	by weight of another going in. They react at
17	50 percent. Are again, is the molecular weights
18	the same?
19	Q. It's a one-to-one stoichiometric
20	relationship in the formula so
21	A. Yeah, but we're talking parts by weight,
22	and reactions don't go by weight. They go by
23	Q. So let's back up and talk about this in
24	terms of moles then. Would that be helpful?
25	A. Okay.

Page 203

1	Q. So if we have 50 moles of one reactant,
2	50 moles of another reactant going into a
3	continuously stirred reactor.
4	A. Right.
5	Q. To produce a product at a 50 percent
6	conversion rate.
7	A. Right. So you have 25 moles of product.
8	Q. Correct. And how many moles of each
9	reactant would be withdrawn from that continuously
10	stirred reactor?
11	A. 25 moles.
12	Q. Of each reactant?
13	A. Yes.
14	Q. And is it desirable in a continuous
15	reaction to maintain a steady state?
16	A. Yes.
17	Q. And what do you mean by steady state?
18	A. The the composition and flow rates of
19	the output are constant in time.
20	Q. And would the concentrations scratch
21	that.
22	Does steady state also tell you something
23	about the concentrations of the reactant's being
24	removed from the reactor?
25	A. Does sorry. Does the steady state tell

Г

Page 204

1	you something?
2	Q. Let me ask the question a little bit
3	differently.
4	If it's desirable to maintain a steady
5	state in a continuous reactor as you've said, what
6	does steady state with regard to the amount of
7	reactants being removed from the reactor mean?
8	A. The amount of reactants the the flow
9	rate of those reactants is constant in time.
10	Q. Are the amounts of those ingredients
11	constant in time, too?
12	MR. ROSE: Objection to form.
13	THE WITNESS: When we when we when
14	we talk about steady state, we don't necessarily
15	talk the composition of the outputs is constant.
16	But what we really want in steady state operation is
17	constant constant the volume that goes in is
18	equal to the volume that comes out in time. The
19	volume flow rates going in and the volume flow rates
20	going out are constant in time; and therefore, the
21	level in the reactor stays constant.
22	And because that is constant, you're
23	feeding your reagents at a constant composition. If
24	they're neat, of course, is one aspect, but if they
25	are solutions such as KOH, but it's a constant

Page 205

1	composition going in, then the outputs will be
2	constant as well. If they're not constant, then what
3	has happened is the level in the reactor has changed.
4	BY MR. BAUM:
5	Q. And when you say that the composition is
б	constant of the reactants coming out of the reactor,
7	do you mean that the concentration is constant?
8	A. Yes.
9	Q. So in a continuous process, it sounds like
10	there's significant amounts of reactant being removed
11	on a constant basis from the continuous reactor,
12	correct?
13	MR. ROSE: Objection to form.
14	THE WITNESS: If if it will depend
15	on the conversion. If
16	BY MR. BAUM:
17	Q. So at a 50 percent conversion rate
18	A. Yes.
19	Q it sounds like there's significant
20	amounts of reactant being removed on a constant basis
21	from a continuous reactor, correct?
22	A. Yes.
23	MR. ROSE: Objection to form.
24	BY MR. BAUM:
25	Q. And if you have significant amounts of

Page 206

1	reactant being removed from a continuous reactor
2	constantly, is it desirable to recycle those
3	unreacted reactants?
4	MR. ROSE: Objection to form.
5	THE WITNESS: Yes.
б	BY MR. BAUM:
7	Q. And in recycling those unreacted
8	reactants, is it common to try to separate out any
9	by-products that may be present?
10	MR. ROSE: Objection to form.
11	THE WITNESS: Yes, separations are are
12	usually part of the process to recycle reactants.
13	BY MR. BAUM:
14	Q. And was that true in 2010?
15	A. Yes.
16	Q. Was that true in 2008?
17	A. Yes.
18	Q. In the continuous process that we've been
19	discussing where you are introducing 50 moles of one
20	reactant and 50 moles of another reactant and we have
21	a 50 percent conversion rate, does the composition of
22	the reaction mixture inside the reactor stay constant
23	over time?
24	A. Yes.
25	Q. So it's desirable to keep the composition

Page 207

1	of the reaction mixture inside the reactor constant
2	over time?
3	A. Yes, that that is steady state.
4	Q. When maintaining a steady state in a
5	continuous reaction, does the rate at which each
6	stream enters the reactor remain constant?
7	A. Yes.
8	Q. When maintaining a steady state in a
9	continuous reaction, does the composition of each
10	stream entering the reactor remain constant?
11	A. When they say that again, please?
12	MR. BAUM: Would the reporter read back
13	the question, please?
14	(Whereupon the Court Reporter read the
15	previous question.)
16	THE WITNESS: Yes.
17	BY MR. BAUM:
18	Q. When maintaining a steady state in a
19	continuous reaction, does the composition of the
20	mixture inside the reactor remain constant?
21	A. Yes.
22	Q. When maintaining a steady state in a
23	continuous reaction, does the rate at which each
24	stream leaves the reactor remain constant?
25	A. Yes.

Г

Page 208

1	Q. When maintaining a steady state in a
2	reaction, does the composition of each stream leaving
3	the reactor remain constant?
4	A. Sorry. Say that one again, please?
5	MR. BAUM: Please.
6	(Whereupon the Court Reporter read the
7	previous question.)
8	THE WITNESS: Yes.
9	BY MR. BAUM:
10	Q. I'd like to move now to well, before we
11	do that, a couple other questions.
12	We were talking earlier about your
13	experience in designing chemical processes. Do you
14	remember that?
15	A. Yes.
16	Q. And I'd like to have you describe for me
17	what types of activities you were engaged when you
18	were designing chemical processes generally?
19	A. We were measuring the flows under various
20	conditions of steady state and looking at their
21	outputs to maximize the yield and minimize
22	by-products and determine the overall efficiency of
23	their reaction. We used various analytical
24	techniques to do that.
25	Gas chromatography was the main one. We

Page 209

1	looked at different sources of reagents, different
2	suppliers, ran them through the process to see if the
3	process was robust and could handle variation in
4	suppliers or materials from different suppliers.
5	Q. Anything else?
6	A. We looked at design of equipment, the size
7	of equipment that would be needed so that we could
8	scale it up so because if I give you an example
9	with HFX-110, we didn't have a budget to build a
10	pilot plant so we built a laboratory scale working
11	process for what the what it would look like at
12	full commercial production. There, we looked at
13	different designs of the decanter in terms of size,
14	placement of the inlets and outlets of that decanter.
15	We looked at the distillation in terms of different
16	distillation column configurations and how that
17	affected the various streams through that
18	distillation.
19	Q. Anything else?
20	A. There are other things. Just just
21	that's they're not coming to mind at the moment.
22	Q. So these are the most significant things
23	that
24	A. Right.
25	Q you recall being involved with? You

Page 210 1 said "we" many times in your response. 2 Α. Oh. Who is "we"? 3 Ο. 4 Me and typically my technician and Α. 5 engineering advice from engineers who were involved with the product -- project. б 7 Do you know what a flow diagram is in a Ο. 8 chemical process? 9 Α. Yes. 10 Ο. What is a flow diagram? 11 It is a flow diagram outlining the Α. 12 different steps in unit operations that are involved 13 in a chemical process. 14 Were you responsible during your time at Q. 15 DuPont for designing a flow diagram outlining 16 different steps and unit operations that are involved 17 in a chemical process? 18 At a very high level. Since I was more at Α. the research laboratory scale, I did -- was not in 19 20 depth. I did not do any significant modeling of the 21 flow diagram with the various inputs. We had 22 engineers involved who would use Aspen to make a more 23 refined model and refine their flow diagram. 24 So did you have any responsibility while 0. 25 you were at DuPont for selecting the particular steps

Page 211

1	that were occurring in a flow diagram outlining
2	different steps and unit operations that are involved
3	in the chemical process?
4	MR. ROSE: Objection to form.
5	THE WITNESS: I had I had some I had
6	responsibility in in designing how where we
7	would add certain well, sorry. Can you state that
8	again, please?
9	MR. BAUM: Could you read the question
10	back, please?
11	(Whereupon the Court Reporter read the
12	previous question.)
13	THE WITNESS: Yes.
14	BY MR. BAUM:
15	Q. Can you describe your responsibilities in
16	that regard?
17	A. Well, as an example, I designed the
18	decanter configuration to get appropriate phase
19	separation of organic from aqueous and vice versa.
20	And that information from the laboratory scale model
21	was then incorporated into the full scale commercial
22	engineering flow diagram.
23	Q. So there was a full scale commercial
24	engineering flow diagram
25	A. Right.

Page 212

1	Q that was used. Before full scale
2	commercial engineering flow diagrams are obtained,
3	how does the process work? First, you have to start
4	with, I assume, a lab scale flow diagram? And then
5	you
6	A. Yes, yes. But in terms of being like a
7	blueprint, it is really just an outline in a notebook
8	to that much. It never really goes to a full model
9	working in Excel to that extent or in Aspen.
10	Q. Okay. Let's describe how this all works
11	or if you can help me understand how it all works.
12	A. Okay.
13	Q. I'm not a chemical engineer. I'm just a
14	chemist. So I don't have the experience that you do.
15	It would be helpful, you know, if you could sort of
16	give me a background.
17	A. Okay.
18	Q. So when you're designing a chemical
19	process, you start with the reaction?
20	A. Right.
21	Q. You figure out what the reaction is. Then
22	you have to figure out what processing steps you're
23	going to use.
24	A. Well, when we start for example, when
25	we started with HFX-110, most of the steps were batch

Page 213

1	in nature. And when we realized that the actual
2	product composition, what had commercial utility, we
3	then started thinking, how can we make this in a
4	consistent manner with a small footprint in an
5	economical way meaning the equipment is not huge. So
6	then so in my case, I started with and I, and I
7	may use we, in which case I mean me and my
8	technician.
9	Q. Okay.
10	A. Started once we had established that we
11	had a product that was desirable, we then started
12	an engineer was brought in to help scale it up. And
13	at that point, the engineer could not did not have
14	a budget to build a pilot facility and he didn't even
15	know how he would build a pilot facility.
16	I was asked to take a reactor I had, an
17	existing commercial, small-scale laboratory reactor,
18	Par, and adapt it for continuous stirred operations,
19	so it's a CSTR. Bought laboratory scale pumps that
20	could handle caustic and fluorocarbon, integrated
21	that into the reactor, changed out the head fitting
22	so that I could get input flow in and input flow out.
23	That initially didn't go into a decanter because we
24	just wanted to see could we make a consistent product
25	at steady state.

Page 214

1	So it went into a batch container, for
2	lack of a better word, and then we took that batch
3	container since we had the laboratory scale
4	continuous distillation train, we then took that
5	batch material and started pumping it through the
6	distillation under various conditions, various
7	heights in the columns, various various take-off,
8	reflux ratios. And as we started to develop data
9	from that, that laboratory data said that even at a
10	lab scale, we were getting a separation that we
11	couldn't predict even from I don't know that I
12	don't know that it was Aspen, but we have modelers
13	who will take materials, get vapor liquid equilibrium
14	and then figure out what the best configuration of a
15	commercial column might be.
16	And because in the case of HFX-110, it's a
17	complex mixture of different isomers, that we could
18	never get high purity components from it to model
19	that system. But they did the best they could, and
20	their model said the separation that we wanted was
21	maybe not that good, but we were already getting the
22	separation on a laboratory scale.
23	And it's it's there is no
24	substitution for height in a distillation. I mean,
25	if you can have a taller column, you're going to get

Page 215

1	a better separation. In a laboratory, you're limited
2	by the height of your ceiling. But it typically
3	in a commercial process, you can go 20, 30, 40 feet
4	if you have to.
5	So we knew just from that, from the
6	laboratory distillation, that we were we had a
7	that we we were getting the separations that we
8	wanted, that this would work in a commercial process
9	so we weren't worried about that at all.
10	The next step in that process was, well,
11	we're going to have to decant this in a continuous
12	type of operation so let's build a decanter. In my
13	case, I took a commercial cylinder, which was really
14	just a jug, and adapted it with outlets on the side
15	and the bottom with a siphon tube that I could adjust
16	the various heights from. And based on that and the
17	calculations based on density where I thought the
18	phase separation would occur, I would set my siphon
19	there, and it usually came out pretty close to what
20	would be predicted from the formulas for calculating
21	that.
22	So we looked at various residence times in
23	the decanter, and that, of course, you can do by
24	adjusting the outlets of the decanter to see what
25	kind of separation we were getting. So if we had an

Page 216

1	organic phase at the bottom, one of the critical
2	components was, would I need the aqueous phase?
3	That's where Karl Fischer titration would come into
4	play to see how much water is in that organic phase.
5	We could then titrate it to see how much
6	KOH was left in the aqueous phase that was entrained
7	in that organic, for example. We could do
8	gravimetric drawing to see what the overall
9	concentration of salts in that aqueous phase were.
10	So those types of tests were run on
11	running the reactor under continuous conditions and
12	the decanter under various conditions. There's a lot
13	of variables involved. The residence time in the
14	reactor, for example, determines how much conversion
15	you get. And your residence time is determined by
16	the volume of the reactor you have and the flow rate.
17	So if you have a volume of 1 and your flow rate is 2,
18	your residence time is one half. So by varying the
19	flow rates in, we could see what the effect of
20	residence time is.
21	So we were able to get data for all the
22	various inputs and variations and configurations of
23	that process and then use that to develop a flow
24	sheet model engineering, scaling it for a full scale
25	process to predict what we were going to get in full

Page 217

1	scale process so that it's it's not just one
2	series of steps linearly, there's a lot of
3	reiterations in a lot of cases. Sometimes we may,
4	uh-uh, we really need to look at this because we're
5	seeing something downstream that we didn't see
6	before. So that's
7	Q. Thanks. That's helpful.
8	A. That's a very long answer, but
9	Q. I understand generally how the process
10	works. So in the work that you described, how did
11	you know that you needed to decant in a continuous
12	process?
13	A. How did how did that is common
14	knowledge for lack of if you're if you're
15	continuous and you need to well, you have to
16	separate your phases.
17	Q. And so that was common knowledge back in
18	2008?
19	A. Yes.
20	Q. So it sounds like you started with HFX-110
21	with a flow diagram that you wrote out in a lab
22	notebook?
23	A. I believe so at a high level, yeah, yeah,
24	so maybe sketched out points
25	Q. Right.

Page 218

1	A and draw drew them in PowerPoint and
2	incorporated them into my notebook.
3	Q. So that's an example from where in the
4	very beginning from that first those first
5	decisions about what process steps and to use and
6	what the flow diagram would look like?
7	A. Right, but the flow diagram changed over
8	time as
9	Q. Okay.
10	A as other components were recognized and
11	added into it.
12	Q. So all the work that you've just
13	described, this is an example where you have taken it
14	from the very beginning and carried it out from
15	conception all the way through a commercial process?
16	A. Yes.
17	Q. Correct? Were there and as I recall
18	correctly, earlier you said that HFX-110 is not a
19	gas?
20	A. That's correct.
21	Q. Okay. With regard to the processes that
22	you were involved with at DuPont for the manufacture
23	of 1234, can you describe your role there?
24	A. Laboratory scale experiments. I did
25	earlier, I said that when I started in fluoro

Page 219

1	chemicals, I looked at the liquid phase reactions of
2	245eb in particular and a little bit of 236ea
3	dehydrofluorinations with caustic, basting, and
4	solvent system. But that was early and it was
5	that was early in my fluoro fluorochemicals, when
б	I had transitioned to fluorochemicals.
7	I then transitioned probably in later 2007
8	into doing vapor phase reactions of fluorocarbons and
9	chlorocarbons to generate intermediates that some in
10	themselves were gases that were then a step towards
11	1234yf.
12	Q. Okay. So the process for manufacturing
13	1234yf that you were working on, what was the
14	starting material?
15	A. There were various starting materials. It
16	went in fact, it went all the way back to carbon
17	tetrachloride and ethylene. But DuPont has a process
18	to make 1243zf which is trifluoropropene. That is a
19	gas. And the chlorination of that and
20	dehydrochlorination leads to 1233xf which is
21	desirable.
22	A lot of without there are a lot of
23	steps that go into 12 that can lead to 1233xf, not
24	just through trifluoropropene. So then
25	hydrochlorination of that to 244db. And then

Г

Page 220

1	dehydrochlorination is 1234yf. So
2	Q. Okay. So with regard to the process for
3	manufacturing 1234 that you had experience with
4	A. Right.
5	Q at DuPont, were you responsible for
6	coming up with the initial list of process steps that
7	were required to manufacture 1234?
8	A. Actually
9	MR. ROSE: Objection. Form.
10	THE WITNESS: That was one of my initial
11	assignments was to develop is to map out potential
12	long-term routes to 1234yf starting using
13	chlorocarbons.
14	BY MR. BAUM:
15	Q. And did you develop such a process?
16	A. I worked on the individual steps, but I
17	never combined all the steps myself into a process
18	from start to beginning. If you I have one
19	on my CV, there are two patents that have issued
20	where I was where I am one of the inventors, and
21	the the inventors, we all had responsibility for
22	looking at different steps.
23	Q. So you don't have any experience
24	developing a process for manufacturing 1234yf from
25	start to finish, correct?

Page 221 1 MR. ROSE: Objection to form. 2 THE WITNESS: That's -- from start to finish, correct. 3 4 BY MR. BAUM: 5 Yesterday I believe you had mentioned that Ο. the patent that you got relating to the decanter б 7 developed in connection with HF-110 -- HX -- sorry. 8 Α. HFX-110. 9 HFX-110 was U.S. Patent Number 8,592.630; Ο. 10 is that correct? 11 Α. I don't remember the patent number. But 12 if you say the title, I will confirm it. 13 Ο. And the title is A Process for Separating 14 Components in Alkyl Perfluoroalkene in Ether 15 Production. 16 Α. Correct. 17 Q. Is that the patent that you've been 18 describing the work that resulted in that patent? 19 Α. Yes. 20 Okay. Ο. 21 (Exhibit 1024 was marked for identification.) 22 BY MR. BAUM: 23 I'd like to mark a new exhibit. Ο. I'm 24 placing before the witness a copy of Exhibit 1024, 25 which is U.S. Patent Number 8,592,630.

Page 222

1	Dr. Lousenberg, are you familiar with this
2	document?
3	A. Yes, I am. I have not looked at in the
4	detail for a long time and I was only aware of it as
5	an exhibit last week so
6	Q. Okay. So this is the patent that you've
7	been referring to?
8	A. Right.
9	MR. ROSE: Do you have an extra copy of
10	that exhibit?
11	MR. BAUM: Yeah, sure. I'm just going to
12	mark it. I don't have any questions right now.
13	BY MR. BAUM:
14	Q. I'd like to now return to your report in
15	IPR 2015-00916.
16	A. Can I have a copy of that, please?
17	MR. BAUM: I've got a copy.
18	BY MR. BAUM:
19	Q. So you have a copy of your expert report?
20	A. Yes.
21	Q. And the 916 IPR in front of you?
22	A. Yes.
23	Q. I'd like you to turn to your paragraph 121
24	of your report, please. This is the section of your
25	report where you're performing some high level

enberg, Ph.D. April 15, 2016 Page 223

1 analysis of Smith if I recall correctly. Are you 2 discussing the Smith reference in paragraph 121? This --3 Α. 4 MR. ROSE: Objection. Form. 5 THE WITNESS: This paragraph contains information from both Smith and Masayuki. б 7 BY MR. BAUM: 8 And you see that in the second sentence, Ο. 9 it says, "The person of ordinary skill in the art 10 would understand that the higher concentration of KOH 11 or alkali metal hydroxide." 12 Α. Sorry. "The faster the reaction will occur and 13 Ο. 14 the greater conversion to products, resulting in a 15 more economic process." 16 Α. Sorry. I don't see that. I know what 17 you're referring to. I'm just not maybe looking at 18 the right part of it right now. 19 Ο. That's fine. It's the second sentence. 20 Of 121? Α. 21 0. Yes. 22 Α. Okay. I'm looking at 916 here. 23 Declaration 916. 24 Correct. So yeah. The second sentence Ο. 25 says, just to make sure you've got the right document

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Exhibit 1027-00060

1 in front of you, "Even though this wide range is 2 disclosed." 3 Α. Oh. 4 It goes on to say, "The person of ordinary Ο. 5 skill in the art would understand that the higher the concentration of KOH or alkali metal hydroxide, the б 7 faster the reaction will occur and the greater 8 conversion to products, resulting in a more economic 9 process." 10 Α. Yes, I see that. 11 Q. You see that? What did you mean by 12 "higher concentration of KOH" in that sentence? 13 Α. A higher percent concentration so, for 14 example, 25 versus 55 or 5 versus --15 So that higher concentration of your --Ο. 16 strike that. 17 Α. Yeah, it's the higher concentrate -- KOH 18 in an aqueous medium. 19 Ο. So make -- make sure I've got that right. 20 So when you refer in that sentence to a higher 21 concentration of KOH, you're referring to the 22 concentration of KOH in the aqueous phase in the 23 reactor? 24 Yes. Or -- no. Yes, and also higher Α. 25 concentration of the KOH going into the reactor. So

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Page 224

1 So both. yes. 2 So your answer is yes, and also a higher Ο. concentration of KOH going into the reactor; is that 3 4 correct? 5 Yes, it is a higher concentration of KOH Α. going into the reactor, and there is a higher б 7 concentration -- steady state concentration of KOH in 8 the reactor. 9 When you say "faster reaction" in that Ο. 10 sentence, are you referring to the organic reactants? 11 MR. ROSE: Objection to form. 12 BY MR. BAUM: 13 Ο. Let me try to rephrase. When you referred 14 _ _ 15 A faster --Α. 16 Ο. Yeah, so let me --17 MR. ROSE: Let him ask his question. 18 BY MR. BAUM: When you refer to "faster reaction" in 19 Ο. 20 that sentence, are you referring to the speed of 21 reaction to obtain product? What are you referring 22 to? 23 MR. ROSE: Objection to form. 24 THE WITNESS: Yes, the speed of reaction 25 will be faster. The concentration of KOH entering

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Exhibit 1027-00062

Page 225

Page 226

1	and the steady state concentration of KOH.
2	BY MR. BAUM:
3	Q. So are you referring to a faster rate of
4	consumption of organic starting materials as well?
5	A. Yes.
6	Q. And are you referring to a faster
7	production of by-products as well?
8	A. Yes. Well, yes. For for argument's
9	sake, yes.
10	Q. You also mention "greater conversion" in
11	that sentence of paragraph 121.
12	A. Right.
13	Q. What did you mean by "greater conversion"?
14	A. Well, if the reaction is faster and steady
15	state conditions are maintained such that your
16	residence time is the same, then then you will
17	have greater conversion in that residence time to
18	products.
19	Q. And greater conversion is a desired
20	result, correct?
21	A. Yes.
22	Q. You also refer to a higher concentration
23	of KOH. What did you mean by that?
24	A. Sorry. Can you
25	Q. I'm sorry. Never mind. Let's strike

Page 227

1	that. We've already asked that question.
2	Why does a higher concentration of KOH
3	lead to faster reaction and greater conversion?
4	A. That's that's chemistry 101. The
5	higher the concentration, the faster the reaction.
6	The rate constants to the reaction don't necessarily
7	change in a simple argument. But the higher
8	because the rate of reaction is the rate constant
9	times the concentration of the reactions, the
10	reactant. So it goes to argument if you have higher
11	concentration of reactants in the reactor, you're
12	going to have a higher rate of reaction.
13	I think the question yesterday was asked
14	if we have less reactants in a reactor, will the
15	reactor rate goes down? And I answered in the
16	affirmative to that yesterday.
17	Q. Okay. I do recall that.
18	So in paragraph 121 of your report, you're
19	referring to the use of KOH as a dehydrohalogenating
20	agent, correct?
21	A. Correct.
22	Q. And that dehydrohalogenating agent is used
23	to convert either 236 or 245 to 1225 or 1234,
24	correct?
25	A. Correct.

1 In that reaction, is it desirable to have Ο. 2 an excess of KOH or an excess of 236 or 245? 3 Α. Tn --4 MR. ROSE: Objection to form. 5 THE WITNESS: In looking within the '282 б patent, it looks like it is desirable to have a 7 slight excess of KOH over organic reaction. In 8 Masayuki, it looks like there is a slight excess of 9 KOH over organic reactant. Smith does not -- is 10 not -- does not -- is silent to what the reagent is. 11 He says the person doing the reaction will appreciate 12 those types of conditions so --13 BY MR. BAUM: 14 So referring back to that second sentence Q. 15 in paragraph 121 of your report, as the reaction 16 proceeds, KOH is converted to KF, correct? 17 Α. Correct. 18 The KF forms in the aqueous phase of the Ο. 19 reactor, correct? 20 Α. Yes. 21 And KF does not --Ο. 22 Α. Sorry. Can I restate that? KF more -- KF 23 may form at the interface between the two phases, but 24 it exists in the aqueous phase in the reactor. 25 Ο. So let me ask the question again and just

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Page 228

Page 229

1	make sure I've got it right. So referring back to
2	that second sentence in paragraph 121 of your report,
3	as the reaction proceeds, KOH is converted to KF,
4	correct?
5	A. Correct.
6	Q. KF does not facilitate
7	dehydrofluorination, correct?
8	MR. ROSE: Objection to form.
9	THE WITNESS: I don't know. It's not
10	it's not within any of the exhibits that that occurs.
11	BY MR. BAUM:
12	Q. KF is not a dehydrohalogenating agent, is
13	it?
14	A. It is a weak base, but I don't think it is
15	a dehydrohalogenating agent.
16	Q. And KF is a by-product
17	A. Of?
18	Q the dehydrohalogenation reaction? And
19	yesterday and in your report, you said that KF is a
20	by-product that would necessarily be present in the
21	Smith reaction that includes a continuous reactor and
22	KOH is a dehydrohalogenating agent, correct?
23	MR. ROSE: Objection to form.
24	THE WITNESS: I don't know that we talked
25	about in context of a continuous reactor yesterday.

Page 230 BY MR. BAUM: Well, so let's -- let's just ask the Ο. question again then. So your report in the 915 matter in paragraph 118 states that "A person of ordinary skill in the art would understand that an alkali halide salt, KF, would be present as a reaction by-product of the base-mediated dehydrofluorination steps purportedly disclosed in Smith." MR. ROSE: Do you have a copy of the 915 report that we used yesterday? 12 MR. BAUM: Yeah. Let's go off the record for a minute. See if we can find. VIDEOGRAPHER: 10:55 a.m. and we're now going off the record. 16 (A brief recess transpired from 10:55 a.m. until 10:55 a.m.) VIDEOGRAPHER: Okay. The time is 10 -okay. The time is 10:55 and now we're going back on the record. BY MR. BAUM: Ο. So to refresh your recollection with regard to our discussion yesterday, I placed a copy of your report in the 915 IPR in front of you and I'm

25 now directing you to paragraph 118.

1

2

3

4

5

6

7

8

9

10

11

13

14

15

17

18

19

20

21

22

23

24

Page 231

1	Do you see that there you stated, "A
2	person of ordinary skill in the art would understand
3	that an alkali halide salt, example, KF, would be
4	present as a reaction by-product of the base-mediated
5	dehydrofluorination steps purportedly disclosed in
6	Smith"?
7	A. Yes.
8	Q. Do you see that? Do you
9	Have you changed your opinion with regard
10	to that statement?
11	A. No.
12	Q. Would that statement also be true with
13	regard to a continuous reactor such as that described
14	in Smith?
15	A. Would there be KF in as a by-product?
16	As a reaction by-product in a continuous reactor?
17	Q. Yes.
18	A. Yes.
19	Q. So a person of ordinary skill in the art
20	would understand that an alkali halide salt, example,
21	KF, would be present as a reaction by-product of the
22	base-mediated dehydrohalogenation steps in a
23	continuous reactor disclosed in Smith, correct?
24	A. Correct.
25	Q. And so I'd like you to now go back to your

Page 232

1 report in the 916 IPR, please. 2 Α. Okay. So the KF that's present in the continuous 3 Ο. 4 reactor Smith does not facilitate the 5 dehydrofluorination reaction, correct? Not that I'm aware. 6 Α. 7 Ο. If KOH decreases, does the rate of 8 reaction go down? 9 Α. Yes. 10 Ο. What would happen if the reaction were to 11 run to 100 percent conversion of KOH to KF? 12 There would be 100 percent KF in the Α. 13 aqueous phase. 14 Would that be a desirable process? Q. 15 MR. ROSE: Objection. Form. 16 THE WITNESS: Yes. 17 BY MR. BAUM: 18 If the process in Smith were to run to Ο. 19 100 percent KF in a continuous reactor, what would 20 happen? 21 MR. ROSE: Objection. Form. 22 THE WITNESS: Happen to what? 23 MR. BAUM: Let's take a break. Been going 24 about an hour. 25 THE WITNESS: Okay.

Page 233

1	VIDEOGRAPHER: Okay. The time is 10:59.
2	We're now going off the record.
3	(A recess transpired from 10:59 a.m. until
4	11:23 a.m.)
5	VIDEOGRAPHER: Okay. The time is 11:23
6	and we are now going back on the record.
7	BY MR. BAUM:
8	Q. Dr. Lousenberg, yesterday we were talking
9	about the Smith reference.
10	A. Yes.
11	Q. Let's make sure you have a copy in front
12	of you. Do you
13	MR. ROSE: I think you guys packed up the
14	exhibits that were used yesterday. Here it is.
15	(Exhibit 1003 was previously marked for
16	identification.)
17	BY MR. BAUM:
18	Q. So Smith is Petitioner's Exhibit 1003.
19	And you recall we went through this document and
20	highlighted a number of portions of the document. Do
21	you recall that?
22	A. I didn't highlight anything in the
23	document, but I do recall us going over Smith.
24	Q. And you recall that Smith teaches
25	dehydrohalogenation in a continuous reactor, correct?

Page 234

1	A. Yes.
2	Q. And you recall that that
3	dehydrohalogenation can be accomplished with
4	potassium hydroxide, correct?
5	A. Correct.
6	Q. And you recall that most preferably, that
7	dehydrohalogenation was conducted with potassium
8	hydroxide, correct?
9	A. Correct.
10	Q. And you also recall that Smith discloses
11	using from 1 to 50 percent based on total weight of
12	the components which makes the steps (b) and (d)
13	of
14	A. Sorry. Where are you reading this?
15	Q. If you turn to page 12. The last full
16	paragraph. You see that it says, "The base is
17	typically present in an amount of 1 to 50 percent by
18	weight on the total weight of the compounds which
19	make up steps (b) and (d)"?
20	A. Yes.
21	Q. And do you understand the base being
22	referred to there includes potassium hydroxide?
23	A. Yes.
24	Q. And do you understand that steps (b) and
25	(d) are the dehydrohalogenation steps disclosed in

Page 235

1 Smith? 2 Α. Yes. 3 Ο. And the very next paragraph says that "The 4 base-mediated dehydrofluorination may preferably 5 employ water as the solvent." б Do you see that? 7 Α. Yes. 8 Ο. So let's talk about what's happening in 9 that continuous reactor Smith. There's KOH? 10 Α. Um-hmm. 11 Q. And either 236 or 245 going in as 12 reactants, correct? 13 Α. Right. 14 And what amount of KOH would one of Q. 15 ordinary skill in the art select to input into that 16 reactor? 17 Α. By total weight or by weight percent in 18 the aqueous phase going in? 19 Ο. Weight percent in the aqueous phase going 20 in. 21 Probably around 25 percent. Α. 22 Ο. If you could look at your report in the 23 916 IPR, please? 24 Okay. Sorry. Where again? Α. 25 Ο. Just a moment, please.
1 Α. Okay. 2 Paragraph 121? Ο. Okay. 3 Α. 4 You state that, "Irrespective, a person of Ο. 5 ordinary skill in the art would have understood that no matter the level of concentration, for an economic б 7 process to result and generate sufficient desired 8 product, it is desirable to have at least 50 percent 9 KOH utilization." 10 Do you see that? 11 Α. Yes. 12 And then the next sentence says, "Said Ο. 13 differently, the product streams should be at least 14 comparable in size and preferably larger than the 15 recycle streams." Correct? 16 Α. Correct. 17 what do you mean when you say that "the Q. product stream should be at least comparable in size 18 19 and preferably larger than the recycle streams"? 20 In that case, I'm typically referring to Α. 21 volume of equipment -- the volume of products coming 22 off, it is desirable to have those larger than the 23 streams that are being recycled or wasted. 24 And the result of that is that you're Ο. 25 generating more organic product than by-products?

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Г

Page 237

1	A. Mo:	re in terms of
2	MR	. ROSE: Objection. Form.
3	TH	E WITNESS: More in terms of volume.
4	BY MR. BAUM:	
5	Q. Mo:	re in terms so if we think now about
6	what's happen.	ing inside the continuous reactor Smith
7	that we've be	en discussing.
8	A. Of	Smith?
9	Q. Yes	s. We have an aqueous phase?
10	A. Oka	ay.
11	Q. Co:	rrect?
12	A. We	yes, Smith allows for that.
13	Q. And	d what's in that aqueous phase?
14	A. KOI	Н.
15	Q. On	ce the
16	A. Oh	, sorry. Can you can I in a
17	continuous rea	actor okay. We're assuming that a
18	reaction has l	begun and is progressing?
19	Q. Yes	s.
20	A. Oka	ay. Then there is KOH and KF for the
21	most part. T	here may be trace others, but they
22	are Smith	is silent to that or he's actually
23	no if the :	reaction is going, Smith doesn't say
24	there's any -	- no, there is by according to
25	Smith, Smith	teaches a very high efficiency reaction.

Page 238

1 So for the most part, there's going to be only KF in 2 the aqueous phases, if the reaction is established at 3 steady state. 4 Ο. So --5 Α. There will be next -- Smith is silent. He б doesn't say there's any KOH in that. 7 So if there's no KOH in the aqueous phase, Ο. 8 once you've achieved steady state, no reaction would occur, correct? 9 10 Α. Okay. No, to the extent that there's any 11 significant amount. It's probably a small amount 12 because Smith just doesn't disclose it. 13 Ο. Now, earlier you testified that you would 14 want a high concentration of KOH in the reactor to 15 make the reaction occur faster? 16 Α. Right. High concentration in the aqueous 17 phase. 18 So there would be a high concentration of 0. 19 KOH in the aqueous phase in the Smith continuous 20 reactor, correct? 21 Smith is silent to that. He doesn't say Α. 22 anything about that. 23 Well, I'm asking you what your Ο. 24 understanding is. 25 Α. I don't -- there would be a high

Page 239

1	concentration of KOH in the aqueous phase going in,
2	but I don't know what the concentration of KOH in the
3	aqueous phase in the reactor would be, if there would
4	be any at all. Smith is just silent to that.
5	Q. Well, it would be desirable to have high
б	amounts of KOH present in the aqueous phase of Smith
7	to drive the reaction faster, wouldn't it?
8	A. Well, Smith Smith allows for a catalyst
9	and that has a big effect. So it in the absence
10	of a catalyst, yes. But Smith teaches the use of a
11	catalyst and he doesn't to make a reaction
12	efficient. He doesn't teach a lower efficiency
13	reaction. So how it's going to be mostly KF in
14	that in that system under steady state if you
15	follow teachings of Smith.
16	Q. So in Smith where strike that.
17	In Smith, they're introducing 236 or 245
18	into a reactor containing KOH.
19	A. Right.
20	Q. If there's no KOH present in the aqueous
21	phase, there's nothing to react with, correct?
22	A. The steady state concentration of any KOH
23	is very low.
24	Q. So if it's very low, you're going to have
25	a very slow reaction, correct?

Page 240

1	A. No, no, catalyst is what facilitates that
2	reaction. That changes everything. Remember, I said
3	the rate is proportional to the rate constant times
4	the concentration of the reactants. That rate
5	constant will define as K is going to be much bigger
6	for the for that reaction system without and
7	the same reaction without it. So the amount of KOH,
8	to get a very high rate, because that rate constant
9	is very high, the amount of KOH that needs to be
10	there can be very small.
11	And so and depending on and of
12	course, the amount of even though you're feeding
13	in a large amount of reactant, that doesn't have to
14	be large at all, the steady state concentrations of
15	your reactants. This is a very similar condition to
16	what you pointed out in Sedat. That reaction is very
17	quick. There is not a lot of reactant in the reactor
18	to escape.
19	Q. So irrespective of the speed of the
20	reaction, if there is a very low concentration of KOH
21	in the reactor, there's no KOH to react with,
22	correct?
23	A. No. That that is not true. Low
24	concentrations can react if you give them conditions
25	that allow them to react.

Г

Page 241

1	In this case, in Smith, the catalyst has a
2	big effect. In general, yes, it's desirable to have
3	higher concentrations of reactions, but a catalyst
4	changes that perspective by a lot.
5	Q. So you're telling me that there can be no
6	KOH in the reactor and you would still
7	A. I'm not saying no. I'm just saying
8	there it's it's a very small amount under
9	steady state conditions.
10	Q. So you previously said that one of
11	ordinary skill in the art reading Smith would
12	introduce 25 percent KOH into the reactor. And
13	you're saying that a well, let me back up. Strike
14	that.
15	So earlier you testified that it's
16	desirable to maintain a steady state of reactants in
17	a reactor?
18	A. Yes.
19	Q. Okay. And you said also that one of
20	ordinary skill in the art would, reading Smith, would
21	use 25 percent as the starting concentration for KOH
22	being introduced into the continuous reactor?
23	A. I you I didn't say it's one of
24	ordinary skill in the art reading Smith would use
25	25 percent. I believe.

1 Well, we'll let the record reflect what it Ο. 2 says. So if you're introducing --3 But -- sorry. Continue. My fault. Α. 4 If you're introducing KOH at a Ο. 5 concentration of 25 percent into the continuous б reactor of Smith, you're telling me that there would 7 be no KOH present in that solution? 8 That's not what I'm saying. I'm saying Α. 9 the amount of KOH -- the KOH would react very quickly 10 because there is a finite residence time in that 11 reactor so the steady state concentration of KOH 12 would be very low. 13 Ο. How does a phase transfer catalyst works? 14 Α. It facilitates solubility of the reactants 15 at the interface of the two phases. 16 Ο. And the reaction at the interface depends 17 on the concentration of KOH in the aqueous; is that 18 correct? 19 MR. ROSE: Objection to form. 20 THE WITNESS: Yes. 21 BY MR. BAUM: 22 Ο. And if there's no KOH present, no reaction 23 will occur, correct? 24 A. If there's no KOH present, no reaction will occur. 25

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Exhibit 1027-00079

You mentioned a finite residence time. 1 Ο. 2 What is it that you're referring to by "finite residence time"? 3 4 Finite is a measurable quantity of time. Α. 5 Ο. And what is it that's present for a finite б residence? 7 MR. ROSE: Objection to form. 8 BY MR. BAUM: 9 In the reactor of Smith? Ο. 10 Α. What is present for a finite residence? Α 11 low concentration of -- I don't know how to answer 12 that. Let me think about that. The two phases are present for a finite residence time. 13 14 The phase including the organic product? Q. 15 Is that what you're referring to? 16 Α. Yeah, an organic phase that contains 17 organic product. 18 And an aqueous phase? Q. 19 Α. And an aqueous phase that --20 Contain? Ο. 21 -- comprises KF. Α. 22 Ο. And no KOH? 23 Very little. Very low. Α. 24 And what's your basis for believing that Ο. 25 the concentration of KOH would be very low in a

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Exhibit 1027-00080

Page 244 1 reactor of Smith? 2 MR. ROSE: Objection to form. Asked and 3 answered. 4 THE WITNESS: I've -- I've seen reactions 5 where we are feeding a high concentration of KOH, yet the concentration of KOH coming out of the reactor 6 7 which reflects the steady state concentration of KOH 8 in the reactor is very low. 9 BY MR. BAUM: 10 Ο. Have you done any modeling to confirm that 11 that's what would be happening in the reactor of 12 Smith? 13 MR. ROSE: Objection to form. 14 THE WITNESS: I have not done any modeling 15 in -- to confirm that, what's happening in Smith. 16 Only thing I know is Smith doesn't disclose any spent 17 KOH in any of the permutations of his invention. BY MR. BAUM: 18 19 Ο. Did you rely on the reactions that you've 20 seen in forming your opinions? The reactions in the evidence? Or in the 21 Α. 2.2 exhibits? 23 The reactions that you just described that Ο. 24 you have previously seen, did you rely on those in 25 forming your opinion?

Page 245 1 MR. ROSE: Objection to form. 2 THE WITNESS: Yes. BY MR. BAUM: 3 4 Where are those written down in your Ο. 5 opinion? 6 Α. My notebooks. 7 Where are they written down in your report Ο. 8 submitted in connection with the 916 or 917? 9 They're not in there. That is my opinion. Α. 10 Ο. The amount of -- well, strike that. 11 To the extent that KOH and KF are present 12 in the aqueous phase in the continuous reactor of 13 Smith, can that KF and KOH be separated in the 14 dehydrohalogenation reactor? 15 Α. No. 16 Ο. Why not? 17 Because the -- they are disassociated Α. 18 There is potassium ions, hydroxide ions and species. fluoride ions. No one -- no one molecule of 19 20 potassium associated with any one anime. 21 So once you've achieved steady state Ο. 22 reaction in the dehydrohalogenation reactor of Smith 23 which is a continuous reactor? 24 Α. Right. 25 Ο. And you want to add fresh KOH to keep the

Page 246

1	reaction going, do you have to remove some amount of
2	the aqueous phase to make room for the fresh KOH that
3	you want to add to the reactor?
4	A. Yes.
5	Q. And when you withdraw that stream, that
6	aqueous stream from the dehydrohalogenation reactor
7	in Smith containing KOH and KF, won't KOH and KF both
8	be present in that stream being withdrawn to make
9	room for the fresh KOH?
10	A. A very small amount. The fresh KOH going
11	into the reactor gets diluted fairly quickly so its
12	concentration drops very fast and it reacts very fast
13	because of the catalyst that's there. So the
14	concentration of a KOH I mean, if we're we
15	really shouldn't talking about hydroxide, but
16	we'll I think we both agree that KOH and KF, even
17	though they can't be distinguished in an aqueous
18	phase, we'll just we'll somewhat treat them as
19	distinct entities.
20	The concentration of KOH coming out of
21	that in that reactor is very low because it gets
22	diluted and there's not a lot of KO and it reacts
23	very quickly so there's not a lot of KOH there under
24	steady state conditions. So the amount of KOH coming
25	out is very low.

Г

Page 247

1	Q. And what is very low in your opinion?
2	A. Probably if if we just look at
3	the the ratio, mole ratio/weight ratio is probably
4	very similar because they have similar molecular
5	weights. About more than 90 percent would be KF.
6	Q. With a phase transfer catalyst in the
7	reaction, in the continuous reaction of Smith, would
8	a higher concentration of KOH in the aqueous phase
9	lead to a faster reaction?
10	A. Faster in what sense?
11	Q. Would the rate of reaction be faster?
12	A. You mean the bulk reaction of moles
13	moles per minute of product being produced be faster?
14	Q. Yes.
15	A. Yes.
16	Q. If you had a lower concentration of KOH in
17	the continuous dehydrohalogenation reactor of Smith,
18	would you expect a lower rate of reaction?
19	A. Yes. But that is what happens in the
20	reactor. It goes in. It reacts. Its concentration
21	is is dropping and its steady state concentration
22	is ultimately very low.
23	Q. So if your goal is to produce as much
24	product as possible, then wouldn't it be desirable to
25	have a high concentration of KOH in the aqueous phase

Page 248 1 of Smith? 2 MR. ROSE: Objection to form. 3 THE WITNESS: Concentration in terms of --4 oh, sorry. Concentration in the aqueous phase? Is 5 that what I heard? BY MR. BAUM: 6 7 Ο. Yes. 8 Yes, but there is a limit. Typically --Α. 9 typically, it wouldn't go above -- above 50 percent 10 in an aqueous medium that would be manageable. 11 Plus -- plus, there is an issue that there is 12 solubility limits for KF. It is similar to KOH, but 13 it is slightly lower. So you do not want to produce 14 a solid precipitate in commercial practice if you can 15 avoid it because it makes the -- the pressure let --16 it tends to clog the pressure let-down valves. 17 So how do you know that it -- the limit of Q. 18 KOH concentration in the aqueous phase with Smith is 50 percent? 19 20 I don't. That was just a -- my opinion as Α. 21 since we were discussing various concentrations. 22 Ο. So you don't have a specific basis for 23 that opinion? 24 It's based on my own experience working. Α. Okay. So the rate of reaction is based on 25 Ο.

1 the steady state concentration in the reactor; is 2 that correct? 3 MR. ROSE: Objection. Form. 4 THE WITNESS: It's based on the steady state concentration of reactants times the rate 5 б constant. 7 BY MR. BAUM: 8 Let me ask the question again. 0. 9 So the rate of reaction is based on the 10 steady state concentration of KOH in the reactor; is 11 that correct? 12 MR. ROSE: Objection to form. Asked and 13 answered. 14 THE WITNESS: Yes. 15 MR. BAUM: I'm ready to move on, Masayuki. 16 MR. ROSE: Want to do lunch break? 17 MR. BAUM: Yeah, why don't we do that and 18 then come back after that. 19 MR. ROSE: Okay. That's fine. 20 MR. BAUM: Off the record. 21 VIDEOGRAPHER: Okay. The time is 11:49. 22 We are now going off the record. 23 (A luncheon recess transpired from 24 11:49 a.m. until 1:04 p.m.) 25 VIDEOGRAPHER: Okay, we ready? Okay.

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

1 Time is 1:04 a.m. -- p.m., excuse me, and we're going 2 back on the record. BY MR. BAUM: 3 4 Dr. Lousenberg, before we took a break for Ο. 5 lunch, you mentioned that you had considered some б experiments in lab notebooks in rendering your 7 opinion concerning the presence of KF in the aqueous 8 phase of Smith; is that correct? 9 MR. ROSE: Objection to form. 10 THE WITNESS: It's my recollection. Ι 11 didn't look at them. 12 BY MR. BAUM: 13 Ο. So you're just aware of these lab 14 notebooks? 15 Α. Yes. 16 Ο. And were these lab notebooks from DuPont 17 that you're referring to? 18 Α. Yes. 19 Ο. Are they publicly available lab notebooks? 20 Α. No. 21 Were there any public available materials Ο. 22 that you relied on in rendering your opinion that are 23 not listed in the expert report in IPR 916? 24 Are there any public documents? No. Α. 25 Ο. So yesterday, you had mentioned some, I

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

1 guess, Alibaba price quotes? 2 Α. Yes. 3 Ο. So other than the Alibaba price quotes you 4 mentioned yesterday, there's nothing else that you 5 relied on in rendering your report that's not б specifically listed in the report; is that correct? 7 Α. Correct. 8 And you didn't rely on any publicly 0. 9 available documents describing the concentration of 10 KF in the aqueous phase of Smith, correct? 11 Α. I did not. 12 Before we move on to Masayuki, I just want 0. 13 to ask a couple more questions about the Smith 14 reference. Do you have a copy in front of you? Ιf 15 not, I can give you this. 16 Α. Okay. 17 Looks like you do. So you have Smith in Q. front of you, Exhibit 1003, correct? 18 19 Α. Correct. 20 if you could turn to page 11 of Smith, Ο. 21 please? You'll see that in the last full paragraph, 22 it says, "Typically, the base-mediated 23 dehydrofluorination process of steps (b) and (d) is 24 conducted at a temperature of from about negative 50 25 to about 300 degrees C." It further states,

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Page 252

1	"Preferably, the process is conducted at a
2	temperature from about 20 to about 250 degrees C, for
3	example, from about 50 to 200 degrees C." And
4	additionally states, "The base-mediated
5	dehydrofluorination may be conducted at a pressure
6	from about 0 to 30 bars."
7	Do you see that?
8	A. Yes.
9	Q. And yesterday, I had pointed out on page
10	2, if you'll turn to page 2, second full paragraph,
11	which says, "Each of steps (a) to (d) may be carried
12	out batch-wise or continuously, preferably
13	continuously, using a suitable apparatus, including a
14	stirred tank reactor."
15	Do you see that?
16	A. Yes.
17	Q. And you see that it also says,
18	"Preferably, the apparatus is made from one or more
19	materials that are resistant to corrosion, for
20	example, Hastelloy or Inconel"?
21	A. Correct.
22	Q. In the dehydrohalogenation reaction
23	occurring in the continuously stirred reaction
24	vessel let's begin again.
25	In the dehydrohalogenation reactor Smith,

1 which is a continuous reactor that is stirred, would 2 you expect that there would be any dissolved organics 3 in the aqueous phase along with KF and KOH? 4 MR. ROSE: Objection to form. 5 THE WITNESS: Yes. I would expect it, б since we do have entrained organics by the nature of 7 the fact that we're stirring the reactor, we would 8 have dissolved in the true meaning of the term in that aqueous phase. 9 BY MR. BAUM: 10 11 When you say "dissolved in the true Q. 12 meaning of the term, " what do you mean? 13 Α. Molecularly dissolved at a molecular 14 level. Not at -- not at a discrete nanoscopic or 15 microscopic phase entrained in another phase. 16 Ο. So dissolved organics include 236 and 245, 17 correct? 18 Α. Yes. 19 Ο. Are you saying that 245 and 236 would be 20 dissolved in water at the aqueous level? 21 At a very low concentration part per Α. 2.2 million level. 23 Would one of ordinary skill in the art Ο. 24 reading Smith understand that high shear mixing would 25 be desirable?

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Page 254

1	A. Yes.
2	Q. And would that high shear mixing result in
3	entrained organics being present in the aqueous phase
4	of Smith?
5	A. Yes. And vice versa.
6	Q. Earlier, you testified that there would be
7	product stream coming out of Smith and that there
8	would also be a stream containing KF, KOH and water.
9	Would that stream also include dissolved organics?
10	A. The product stream would likely be an
11	entrained if there if it's under steady state
12	and there was mixing occurring, the product stream
13	would be a mixture of the the entrained phases of
14	the aqueous and organic coming out of that reactor.
15	Under high shear mixing conditions, there is no way
16	to get separate phases out of the reactor as separate
17	streams.
18	Q. Would one of ordinary skill in the art
19	reading Smith understand that the continuous reactor
20	is desirably operated at steady state?
21	A. Smith doesn't talk about steady state.
22	Q. But one of ordinary skill in the art would
23	assume that it's advantageous to conduct a continuous
24	reaction at steady state, correct?
25	MR. ROSE: Objection to form.

Page 255

1 In my opinion, yes. THE WITNESS: 2 BY MR. BAUM: 3 Ο. In the stream being withdrawn from the 4 continuous reactor in Smith containing KOH, KF, 5 dissolved organics and water, can you tell me what percentage of KF would be present? б 7 Α. No. 8 MR. ROSE: Objection to form. 9 Smith doesn't give any THE WITNESS: 10 examples. 11 BY MR. BAUM: 12 Earlier, you had testified that up to Q. 90 percent of that stream could be KF? 13 14 MR. ROSE: Objection. Form. THE WITNESS: Under -- under conditions 15 16 where catalysts are, someone could expect to see more 17 than 90 percent KF in that aqueous -- in the aqueous 18 phase of that stream. BY MR. BAUM: 19 20 And of the remaining 10 percent, what Ο. 21 percentage would be dissolved organics? 22 MR. ROSE: Objection to form. 23 THE WITNESS: It would be time 24 dependent -- or sorry. Of that remaining 10 percent? 25

1

2

3

4

5

б

7

8

9

10

11

12

13

14

15

16

17

18

19

0.

Α.

Ο.

Α.

Q.

Α.

Page 256 BY MR. BAUM: Yes. Sorry. 90 -- we've said 90 percent is KF. 10 percent is KOH? Is that what you're saying? Well, I'm asking you what the remaining 10 percent, what portion of it would be KOH, what portion of it would be dissolved organics? There's no way to know because the KOH and KF are not distinct species, when they're dissolved in the aqueous phase. So then based on the molar reaction ratio we talked about before in column 12, figures 1 and 2 of the '282 patent, one would expect there to be roughly equal molar concentrations of KF and KOH in that stream coming out of the Smith reactor containing KOH, KF and dissolved organics, correct? Can you restate that, please? MR. BAUM: The reporter could read that back, please.

20 (Whereupon the Court Reporter read the 21 previous question.) 22 MR. ROSE: Object to form. 23 THE WITNESS: No. 24 BY MR. BAUM: 25 Ο. What would the ratio, the molar ratio --

Г

Page 257

1	let me begin again.
2	What would you expect the molar ratio of
3	KF to KOH be in the stream being removed from
4	A. It would be depend on the factors of
5	operation of that reactor. If there's as I
6	stated, if there's a catalyst there, there's not
7	going to be a lot of KOH in that stream. There's
8	going to be a small amount. So we defined conversion
9	to 50 percent. Now we're asking for a real world
10	example where the real world example is based upon
11	the parameters defining that steady state operation
12	so we can't say what that will be.
13	Q. Now, earlier today, we talked about that
14	reaction formula in column 12, formulas 1 and 2 of
15	the '282 patent, column 12. Do you recall that?
16	A. Yes.
17	Q. So we focused just on the aqueous phase
18	and you had said that 50 moles of water plus 50 moles
19	of KOH going into the reactor would become 25 moles
20	of KF, 25 moles of KOH and 75 moles of water assuming
21	a 50 percent conversion rate.
22	Do you recall that?
23	A. Assuming 50 percent conversion.
24	Q. Okay. Does that also apply to the amount
25	of KF, KOH and water being produced as a result of

1 the dehydrohalogenation reaction in the continuous 2 reactor of Smith? 3 Α. No. 4 Why not? Ο. 5 Because, again, we've defined conversion, Α. б whereas conversion is defined by the conditions of 7 operation of that CSTR. 8 So assuming a 50 percent conversion rate 0. 9 in the aqueous phase of the continuous Smith reactor 10 where you've got -- in a situation where you've got 11 50 moles of water and 50 moles of calcium hydroxide 12 entering the reactor, isn't it true that you would be 13 _ _ 14 Α. Calcium? Sorry. 15 Ο. I'm sorry. Let me start again. 16 So assuming a 50 percent conversion rate 17 in the aqueous phase of continuous process disclosed 18 in Smith, in a situation where you're adding 50 moles 19 of water, 50 moles of potassium hydroxide, isn't it 20 correct that you would end up with 25 moles of 21 potassium fluoride, 25 moles of KOH and 75 moles of 2.2 water? 23 Well, the way you've asked the question, Α. 24 you're teaching away from what Smith is describing. 25 He -- his purpose is to -- is to make an efficient

Г

Page 259

1	reaction by putting in the catalyst. So the
2	situation you're describing is not what Smith is
3	teaching.
4	Q. What is Smith teaching?
5	A. He's teaching he's teaching an
6	efficient reaction. An efficient reaction is a
7	reaction where all reactants go to products and
8	by-products at high conversion. You're setting up a
9	situation that is taught away from Smith.
10	Q. What is your understanding of teaching
11	away?
12	A. Teaching a less efficient reaction.
13	Q. So back to my question, which is simply a
14	question regarding what's happening from a standpoint
15	of a reaction in the reactor assuming a 50 percent
16	conversion rate. Is it correct that if you're adding
17	50 moles of water, 50 moles of KOH to the continuous
18	reactor Smith, that it would produce 25 moles of
19	potassium fluoride, 25 moles of potassium hydroxide
20	and 75 moles of water?
21	A. It is not correct because you've you've
22	said that in the context of Smith. But if you're
23	asking me of my general expert opinion outside of
24	Smith, then that is correct.
25	Q. How does anything in Smith change the

Г

Page 260

1	basic formula of the reaction that's described in
2	columns column 12, formulas 1 and 2 of the '282
3	patent?
4	MR. ROSE: Objection to form.
5	THE WITNESS: Now you're combining Smith
6	with the '282 patent.
7	BY MR. BAUM:
8	Q. No, I'm just I'm just asking you with
9	regard to that's the formula we're talking about.
10	A. Okay. I'm just not comfortable with
11	this see, if you're talking about a CSTR in
12	general, then I can answer that question. But if I'm
13	trying to answer this in the context of Smith, then
14	Smith has a catalyst. He has options for solvent,
15	various catalysts. There isn't going to be
16	50 percent conversion cases.
17	Q. Okay. So let's assume a 90 percent
18	conversion case. Are you comfortable with that?
19	A. Sure.
20	Q. Okay. So in the context of Smith, if we
21	have a 90 percent conversion rate, isn't it true that
22	if you're adding 50 moles of water and 50 moles of
23	potassium hydroxide to the reaction vessel, the
24	continuously stirred reaction vessel, that you're
25	going to end up with 25 moles of KF, 25 moles of KOH

Page 261

1 and 75 moles of water? 2 No, it's not true. Α. 3 Ο. Why not? 4 Because you would have 45 moles of KF and Α. 5 5 moles of KOH. And I don't know what the water is, but it would be higher than 75. б 7 And what would that be? Ο. 8 Α. I don't -- I don't know offhand. It's 9 simple algebra, but I don't have it in my head. 10 Ο. So the net result is there is more water 11 after the reaction occurs than before it occurs? 12 Yes. In a molar basis. As a mass Α. 13 fraction basis, which is typically how people would 14 look at the reaction, it's not that much. Water has 15 a very low molecular weight. 16 Ο. But we'd still have more water after the 17 dehydrohalogenation reaction occurs than before, correct? 18 Yes, but on the order -- 5 percent. 19 Α. 20 5 percent by weight? Ο. 21 In that -- in that range by weight. Α. 22 Ο. And it would be a much higher percentage 23 from a molar basis, correct? 24 Α. Yes. 25 Ο. Okay. Let's move on to Masayuki. I'm

Page 262

1	happy to hand you the Japanese versions of the
2	document.
3	A. No thanks. I've been to Japan, but
4	Q. Okay. So I'd assume you'd prefer the
5	English language translation?
6	A. I would.
7	(Exhibit 1005 was previously marked for
8	identification.)
9	Q. Okay. So I'm handing Dr. Lousenberg a
10	copy of Petitioner's Exhibit 1005 which is a
11	translation of Japanese language patent document
12	59-70626. Is this a document that you've spent
13	substantial time reviewing in connection with your
14	involvement in this case?
15	A. Yes, it is.
16	Q. So you're familiar with the contents of
17	this document?
18	A. Yes, I am.
19	Q. You understand the contents of the
20	document; is that correct?
21	A. Yes.
22	Q. You understand what it says?
23	A. Yes.
24	Q. Okay. You also indicated that you had
25	reviewed the petitions in IPRs 916 and 917, correct?

Г

Page 263

1	A. Correct.
2	Q. Okay. I'm handing the witness a copy
3	let's go off the record for just a minute.
4	(Brief off record discussion.)
5	BY MR. BAUM:
6	Q. Back on the record. So I'm handing the
7	witness a copy of the Petition for Inter Partes
8	Review in the 916 case, and I'm directing well,
9	let me hand it to the witness first. First, I'd just
10	like you to confirm that you've actually seen this
11	document before and that you reviewed it in
12	connection with your report.
13	A. Yes, I have.
14	Q. Okay. Could you turn to page 23, please?
15	You see there's a figure on page 23?
16	A. Yes, I do.
17	Q. And you understand this to be an annotated
18	version of the figure in Masayuki?
19	A. Yes, I do.
20	Q. I'd like you to turn to page 10. You can
21	keep open the page 23 of the petition there, but also
22	open up Masayuki page 10. And you understand when I
23	say "Masayuki," I'm referring to Exhibit 1005,
24	correct?
25	A. Yes, I do.

Page 264

1	Q. So on page 10, there's an example. And
2	that example describes the figure that's set forth
3	in on page 23 of the petition in the 916 case,
4	correct?
5	A. Correct.
6	Q. With the noted differences that we've
7	included some annotations.
8	So example 1 beginning on page 10 of
9	Masayuki says, "Chloroprene was produced via the
10	dehydrochlorination of 3-dichloro-butene-1 according
11	to the process shown in the figure."
12	Do you see that?
13	A. Yes, I do.
14	Q. "A mixture of fresh 3,4-dichloro-butene-1
15	derived from Conduit 1 and recovered
16	3,4-dichloro-butene derived from Conduit 18,
17	50 percent by weight sodium hydroxide aqueous
18	solution derived from Conduit 2 and the catalyst;
19	Quartamin, Q-U-A-R-T-A-M-I-N, 24P, the brand name of
20	lauryl trimethyl ammonium chloride sold by Kao Atlas
21	Company."
22	You see that?
23	A. Yes.
24	Q. And so if you refer to the figure, the
25	annotated figure on page 23, you see that there's

Page 265

1 sodiums hydroxide coming in via Conduit 2? 2 Α. Yes. 3 Ο. You see that there's 236 or 235, excuse 4 me. Let me begin again. 5 You see that there's organic or 3,4-dichloro-butene coming in through Conduit 1 into б 7 the Reactor 19? 8 Α. Yes. 9 And you also see that there's this 0. 10 Quartarmin catalyst coming in through Conduit 3. Do 11 you see that? 12 Α. Yes. 13 Ο. What do you understand Quartamin to be? 14 A quarternary ammonium salt. Α. 15 Is that a phase transfer catalyst? Q. 16 Α. Yes. 17 The passage that I just read from Masayuki Q. also says that the stirring machine or, excuse me, 18 19 "the Reactor 19 is stirring machine equipped." 20 Do you see that? 21 Α. Yes. 22 Ο. And that "that reactor is operating rates 23 -- at rates of 100 parts per weight by hour, 76.8 24 parts per weight per hour and 1.0 part per weight per 25 hour respectively and a reaction was performed at

Г

Page 266

1	60 degrees C and 225 millimeters of mercury."
2	Do you see that?
3	A. Yes, I do.
4	Q. Do you understand what that passage says?
5	A. Yes.
6	Q. What does it mean to you?
7	MR. ROSE: Object to form.
8	THE WITNESS: It means that 100 parts per
9	hour were fed into the stirred reactor and those 100
10	parts were the 3,4-dichloro-butene-1, 76.8 parts per
11	weight per hour is the 50 percent by weight sodium
12	hydroxide aqueous solution and 1 part per weight per
13	hour is the Quartamin 24P phase transfer catalyst.
14	BY MR. BAUM:
15	Q. Thank you. Masayuki goes on to say, "The
16	aqueous phase was extracted via Conduit 4." And you
17	see Conduit 4 coming out of Reactor 19 in the figure?
18	A. I do.
19	Q. "Such that the level of Reactor 19
20	remained constant and the slightly mixed lipid and
21	aqueous phases, including precipitated sodium
22	chloride, were separated using Decanter 20."
23	Do you see that?
24	A. Yes, I do.
25	Q. Do you understand what that passage means?

Page 267

1	A. Yes.
2	Q. Can you explain what that passage means to
3	you, please?
4	A. The aqueous phase
5	MR. ROSE: Object to form.
6	THE WITNESS: in reactor was extracted
7	via Conduit 4 such that the and through Conduit 4,
8	it went into a decanter where it was separated after
9	which the lipid phase was returned to the reactor via
10	Conduit 5.
11	BY MR. BAUM:
12	Q. Do you understand what's meant by the
13	lipid phase?
14	A. The catalyst.
15	Q. The phase transfer catalyst?
16	A. Correct.
17	Q. Masayuki then says, "The lipid phase was
18	returned to the reactor via Conduit 5."
19	Do you see that?
20	A. Yes.
21	Q. And so there they're recycling the
22	recovered phase transfer catalyst to the Reactor 19;
23	is that correct?
24	A. Yes.
25	Q. Masayuki goes on to say that "The aqueous

Page 268

1	phase containing solid sodium chloride from which the
2	lipid phase was removed using Decanter 20 was fed
3	into forced circulation-type Enricher 21 via
4	Conduit 6."
5	Do you see that in the description in the
6	figure?
7	A. Yes, I do.
8	Q. Masayuki further says, "Concentration was
9	carried out such that NaOH divided by NaOH plus water
10	equals 0.5 at 112 degrees C and 200 millimeters of
11	mercury."
12	You see that?
13	A. Yes, I do.
14	Q. What does that passage mean to you?
15	MR. ROSE: Object to form.
16	THE WITNESS: It means that the aqueous
17	phase that that goes out the bottom of Decanter 20
18	through 6 into the Enricher 20 21 is concentrated
19	by removing water from the aqueous mixture of sodium
20	hydroxide and sodium sodium hydroxide and some
21	sodium chloride by by distillation.
22	BY MR. BAUM:
23	Q. The formula that's expressed in that
24	passage where they're dividing NaOH by NaOH plus
25	water is a half a percent. What does that mean to

Г

Page 269

1	you?	
2	Α.	That's not a half percent. That means
3	Q.	I'm sorry. 0.5.
4	A.	That means that the concentration of
5	sodium hyd	roxide in the water is 50 percent.
6	Q.	And do you understand why they're
7	converting	let me strike that, please.
8		Do you understand why they're
9	concentrat	ing to 0.5?
10	A.	Yes.
11	Q.	50 percent?
12	A.	Yes.
13	Q.	And why is that?
14	A.	So that they can increase the
15	concentrat	ion of the sodium hydroxide to ultimately
16	return it i	back to the reactor and also precipitate
17	additional	sodium chloride.
18	Q.	So one of the purposes of Masayuki is to
19	recycle so	dium hydroxide; is that correct?
20	A.	Yes.
21	Q.	And Masayuki teaches a way to recover
22	sodium hyd	roxide before it's recycled, correct?
23		MR. ROSE: Objection. Form.
24		THE WITNESS: What do you mean by
25	"recover"?	

Г

Page 270

1	BY MR. BAUM:
2	Q. Using your definition of "recover" in your
3	report.
4	A. He teaches away from recovering? Yes.
5	Q. So Masayuki teaches a way to recover?
6	A. I'm sorry. A way or away?
7	Q. A way.
8	A. Okay.
9	MR. BEAUPRE: Two words.
10	BY MR. BAUM:
11	Q. Teaches a space way. So the question is,
12	does Masayuki teach a way to recover sodium hydroxide
13	from a dehydrohalogenation before recycling that
14	sodium hydroxide?
15	MR. ROSE: Objection. Form.
16	THE WITNESS: Not not as we've defined
17	it.
18	BY MR. BAUM:
19	Q. Why is that?
20	A. Because he has not separated out the
21	3,4-dichloro-1-butene or any other entrained organics
22	other than a lipid phase which in our definition of
23	organic which are the entrained the entrained
24	24 245 or 236, the lipid phase in our definition
25	is not organic.

Page 271

1	Q. When you say "in our definition," you mean
2	the definition in your
3	A. In the '282 patent.
4	Q. In the '282 patent?
5	A. As adopted in the '282 patent.
6	Q. And you also mean the definition in your
7	report for "recover"?
8	A. Yes.
9	Q. Masayuki goes on to say that after
10	"After passing through Conduit 9 from Conduit 8, the
11	aqueous phase was heated in the Heat Exchanger 22
12	after which it was circulated into Enricher 21 via
13	Conduit 10."
14	Do you see that?
15	A. I was looking at the diagram as you were
16	saying that. I should have been looking at the
17	written word. Can you say it
18	Q. Sure. "After passing through Conduit 9
19	from Conduit 8."
20	A. Okay. Just a moment.
21	Q. It's below the enricher.
22	A. Oh, okay. "After passing." I see it now.
23	Q. So "After passing through Conduit 9 from
24	Conduit 8, the aqueous phase was heated in Heat
25	Exchanger 22 after which it was circulated into
Г

Page 272

1	Enricher 21 via Conduit 10."
2	Do you see that?
3	A. Yes, I do.
4	Q. "As concentration was performed, dissolved
5	sodium chloride precipitated out, but said aqueous
6	phase was extracted via Conduit 8."
7	Do you see that?
8	A. Yes.
9	Q. You see that in both the text and the
10	figure, correct?
11	A. Yes.
12	Q. Masayuki says, "The aqueous phase was
13	extracted via Conduit 8, directed into Slurry Tank 24
14	via Conduit 11 and fed into Centrifuge 25 where
15	precipitated sodium chloride was separated out and
16	also discarded via Conduit 12."
17	Do you see that?
18	A. I see it written and I see it in the
19	diagram.
20	Q. So you understand that calcium excuse
21	me. I'll begin again.
22	What is it that the centrifuge is
23	separating?
24	A. Sodium chloride from aqueous sodium
25	hydroxide.

Page 273 1 And the sodium chloride has been Ο. 2 precipitated? 3 Α. Yes. 4 And that sodium chloride is present in its Ο. 5 precipitated form in Slurry Tank 24 before it enters the Centrifuge 25, correct? б 7 Α. Correct. 8 Ο. And Conduit 12 is the conduit through 9 which the sodium chloride that's been precipitated is 10 removed from the process, correct? 11 Α. Correct. 12 Masayuki continues and says, line 14 on 0. 13 page 11, "Recovered sodium hydroxide aqueous solution 14 was returned to Conduit 2." 15 That's the line that goes directly into 16 the reactor? 17 Α. Uh-huh. 18 "Via Conduit 13 and fed back into the Ο. reaction." 19 20 Do you see that in the text and in the 21 figure? 22 Α. Yes, I do. 23 Do you have an understanding as to why Ο. 24 Masayuki returns sodium hydroxide to the 25 dehydrohalogenation reactor?

Г

Page 274

1	A. Yes, to reuse it.
2	Q. Is that
3	A. In the dehydrohalogenation reaction.
4	Q. Is that something one of ordinary skill in
5	the art would want to do?
6	MR. ROSE: Objection to form.
7	BY MR. BAUM:
8	Q. To reuse unused reactant?
9	MR. ROSE: Objection to form.
10	THE WITNESS: If the concentration of
11	unused reactant was significant enough that throwing
12	it away would create an economic or environmental
13	need.
14	BY MR. BAUM:
15	Q. Masayuki goes on to say that,
16	"Additionally, in order to prevent clogging of the
17	apparatus due to deposition of sodium chloride onto
18	the walls of the enricher, warm water was fed into
19	the enricher once every eight hours to dissolve the
20	deposited sodium chloride."
21	Do you see that?
22	A. Yes.
23	Q. "At the same time, steam discharged from
24	Enricher 21 was directed into Condenser 23 via
25	Conduit 7, condensed and removed via Conduit 32 as

Page 275 1 water." 2 Do you see that in the description and in 3 the figure? 4 Α. I do. 5 Ο. So there's steam coming out of the enricher via Conduit 7 and being inserted into the б Condenser 23 via Line 7. Is that correct? 7 8 Α. Yes. 9 Masayuki continues and says, "Steam Ο. 10 discharged from Reactor 19 was introduced into 11 Condenser 26 via Conduit 14 and water separated out 12 in Decanter 27 following condensation was removed via Conduit 15 and the remaining material was introduced 13 14 into the Dehydration Tower 28 via Conduit 16, after 15 which it was fed into Distillation Column 29 16 following dehydration." 17 Do you see that in the text and the 18 figure? 19 Α. Yes. 20 "The target chloroprene steam was Ο. extracted from the distillation column via Conduit 17 21 and condensed in Condenser 30 to obtain liquid 22 23 chloroprene from Conduit 31." 24 Do you see that? 25 Α. Yes.

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Exhibit 1027-00112

Г

Page 276

1	Q. And then Masayuki says, "Unreacted
2	3,4-dichloro-butene was extracted from the bottom of
3	Distillation Column 29 and returned to Conduit 1 via
4	Conduit 18 for reuse in the reaction."
5	Do you see that?
6	A. Yes, I do.
7	Q. Do you have an understanding as to why
8	Masayuki would extract unreacted
9	3,4-dichloro-butene-1 and return it to the
10	dehydrohalogenation reactor?
11	A. Well, he extracts it in order to drive as
12	part of the process of driving his product out of the
13	top of the reactor and not having his starting a
14	significant quantity of his starting product end up
15	going into the decanter.
16	Q. So is it correct that Masayuki is
17	recycling unreacted 3,4-dichloro-butene back to the
18	reactor?
19	A. Yes.
20	Q. Is that correct?
21	A. Through Conduit 18.
22	Q. And do you have an understanding as to why
23	one would want to recycle unreacted
24	3,4-dichloro-butene-1 back to the dehydrohalogenation
25	reactor?

Page 277

1 Objection to form. MR. ROSE: 2 Sure, to make an efficient THE WITNESS: 3 process. 4 BY MR. BAUM: 5 And an efficient process is the goal of Ο. б one of ordinary skill in the art, correct? 7 MR. ROSE: Objection to form. 8 BY MR. BAUM: 9 Ο. Let me ask again. 10 An efficient process is the goal of one of 11 ordinary skill in the art in designing a chemical 12 process for manufacturing gases; is that correct? 13 MR. ROSE: Objection to form. 14 THE WITNESS: For manufacturing gases? 15 BY MR. BAUM: 16 Ο. Yes. 17 Well, in Masayuki, we're -- I don't Α. 18 remember what the boiling point of 3,4-dichloro-butene is. 19 20 I'm setting aside Masayuki. Ο. I'm asking a question, is an efficient 21 22 process the goal of one of ordinary skill in the art 23 designing a chemical process for manufacturing gases? 24 MR. ROSE: Objection. 25 THE WITNESS: For manufacturing anything.

Page 278

1 BY MR. BAUM: 2 So your answer is yes? Ο. 3 Α. Yes. 4 Thank you. Masayuki goes on to say that, Ο. 5 "The above procedure was continued for approximately one week with good separation of the lipid and б 7 aqueous phases as well as no trouble with the enricher observed and the reaction rate of 8 9 3,4-dichloro-butene achieved was 98 percent." 10 Do you see that? 11 Α. Yes. 12 Do you understand example 1 of Masayuki, 0. 13 Dr. Lousenberg? 14 Α. I understand this. I believe I understand 15 the last sentences that you just read. But 16 98 percent is not a reaction rate. 98 percent is 17 probably a conversion of 3,4-dichloro-butene in that 18 efficient process. What does efficiency mean to you? Let me 19 Ο. 20 rephrase. What does it mean to have an efficient 21 process to you? 22 MR. ROSE: Objection to form. 23 BY MR. BAUM: 24 I'll try it again. What does it mean to Ο. 25 you to have an efficient process?

Page 279

1	MR. ROSE: Objection to form.
2	THE WITNESS: One in which a in which
3	reactants go to high yield of products in an
4	economically viable amount of time.
5	BY MR. BAUM:
6	Q. Does having an efficient process mean also
7	reusing reactants where you can?
8	MR. ROSE: Objection to form.
9	THE WITNESS: If the economics are
10	justified.
11	BY MR. BAUM:
12	Q. Does having an efficient process mean
13	maximizing desired production?
14	MR. ROSE: Objection to form.
15	THE WITNESS: Well, yes. You increase the
16	value of what you're making if you're maximizing
17	production because then you're the amount of
18	you're I think I'm overstating it, but yes, I
19	agree.
20	BY MR. BAUM:
21	Q. Thank you. Does having an efficient
22	process also mean minimization of waste?
23	MR. ROSE: Objection to form.
24	THE WITNESS: Yes.
25	

1 BY MR. BAUM: 2 Does having an efficient process mean 0. minimizing the waste of unused reactants? 3 4 MR. ROSE: Objection to form. 5 THE WITNESS: It can. BY MR. BAUM: б 7 Under what circumstances can having an Ο. 8 efficient process mean minimizing waste of unused 9 reactants? 10 Α. If the unused reactions are a small 11 portion of the overall waste stream, then it may not 12 be efficient to recover. 13 MR. BAUM: Okay. Let's go off the record 14 and take a break for about ten minutes. VIDEOGRAPHER: The time is 1:52 p.m. and 15 16 we are now going off the record. 17 (A recess transpired from 1:52 p.m. until 18 2:07 p.m.) 19 VIDEOGRAPHER: Okay. The time is 2:07 and 20 we are now back on the record. 21 BY MR. BAUM: 22 Ο. Dr. Lousenberg, I'm going to ask you a 23 series of questions that are directed to practicing 24 the dehydrohalogenation reaction disclosed in Smith 25 in the process flow diagram of Masayuki.

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Page 280

Page 281

1	A. Okay.
2	Q. Do you understand what I've just said?
3	A. The dehydrohalogenation reaction in Smith,
4	a CSTR, with 236ea or 245eb, a phase transfer
5	catalyst, aqueous KOH and everything else Masayuki.
6	Q. Yes, correct.
7	Could the reaction that you've just
8	described, the dehydrohalogenation reaction you've
9	just described, be conducted in Reactor 19 of
10	Masayuki?
11	A. Yes.
12	Q. So instead of 3,4-dichloro-butene-1 as the
13	organic, the reaction would involve 236 or 235,
14	correct?
15	A. 245, correct.
16	Q. Thank you. And instead of sodium
17	hydroxide, we would be using potassium hydroxide,
18	KOH, as the dehydrohalogenating agent, correct?
19	A. Correct.
20	Q. And both Masayuki and Smith disclosed the
21	use of a phase transfer catalyst in the
22	dehydrohalogenation reactor, correct?
23	A. Correct.
24	Q. So as applied to the flow diagram that you
25	have in front of you for Masayuki.

Г

Page 282

1	Α.	I may have closed it. What page was it on
2	again?	
3	Q.	23.
4	Α.	Of the 916?
5	Q.	Yes.
6	Α.	Okay.
7	Q.	You see the flow diagram?
8	Α.	Yes, I do.
9	Q.	So the phase transfer catalyst would be
10	introduced	into the dehydrohalogenation reactor using
11	Conduit 3,	correct?
12	Α.	Correct.
13	Q.	The KOH would be introduced to the
14	dehydrohald	ogenation reactor using Conduit 2, correct?
15	Α.	Correct.
16	Q.	The 236 or 245 would be introduced into
17	the dehydro	phalogenation reactor using Conduit 1,
18	correct?	
19	Α.	Correct.
20	Q.	What would be coming out of the reactor
21	via Conduit	4 in Masayuki with the process of Smith
22	being condu	acted in the dehydrohalogenation reactor?
23	Α.	Aqueous KOH and the phase transfer
24	catalyst ar	nd a very small amount of KOH.
25	Q.	Would there be any KF coming out of the

Page 283 reactor as well? That -- mostly what would be coming Yes. out of 4 would be aqueous KF.

Would there be any dissolved organics Ο. coming out of Reactor 4?

> Α. Yes.

Α.

1

2

3

4

5

6

10

14

24

25

7 So that mixture of KF, KOH, and dissolved Ο. 8 organics is then introduced into Decanter 20 via Conduit 4, correct? 9

Α. Correct.

11 And what would happen in that decanter Q. 12 with the aqueous solution of KOH, KF and dissolved 13 organics?

MR. ROSE: Objection to form.

15 THE WITNESS: The aqueous -- if it -- in 16 the -- in view of Masayuki, what would be happening 17 there is the catalyst and the aqueous layer would be 18 separating, and the catalyst would be returning to 19 the reactor through Conduit 5.

20 BY MR. BAUM:

21 So the phase transfer catalyst would go Ο. 22 from Decanter 20 via Conduit 5 to Reactor 19 in 23 Masayuki, correct?

Α. Yes.

> Ο. And the aqueous phase coming out of the

1 bottom of Decanter 6 -- of 20, would be introduced 2 into Enricher 20 line -- let me start again. 3 The aqueous phase coming out of Decanter 4 20 would be introduced to Enricher 21 via Conduit 6, 5 correct? 6 Α. Correct. 7 Would any of the dissolved organics be Ο. 8 separated from the aqueous phase in the decanter? 9 In Masayuki is silent to that occurring so Α. 10 no. 11 So the enricher would contain an aqueous Q. 12 solution of KF, KOH and dissolved organics? 13 Α. Yes. 14 And what would happen to that aqueous Q. 15 solution in the enricher? 16 Α. The water in that aqueous solution would 17 be stripped off through Conduit 7 and condensed into 18 23 and out through 32. 19 Ο. What would happen to the dissolved 20 organics? 21 Masayuki doesn't say. Α. 22 Ο. What are the boiling points of 236 and 23 245? 24 236 is 6 degrees and 245 is 21. Α. 25 Ο. If the enricher is run hot enough to

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Exhibit 1027-00121

Page 284

1 evap- -- let me begin again. 2 If the enricher is run hot enough to remove or strip off water, wouldn't it also remove or 3 4 strip off 236 or 245? 5 MR. ROSE: Object to form. б THE WITNESS: Outside of Masayuki, yes. 7 BY MR. BAUM: 8 In the enricher of Masayuki? 0. 9 Masayuki has fairly low boiling Α. Yes. 10 components. He says there's nothing in there. But 11 outside of Masayuki, in my opinion, yes, you would 12 boil off low boiling components with water. So if we were to conduct the reaction of 13 Ο. 14 Smith in the dehydrohalogenating reactor, deliver the 15 aqueous phase from that reactor to the decanter 16 through Conduit 4 and then deliver the aqueous phase from the decanter to the enricher and the enricher 17 18 was operated at 100 degrees C, would you expect 236 19 and 245 to evaporate out of the enricher along with 20 water? 21 Yes, outside of Masayuki, that's what I Α. 22 would expect. I don't know that it would happen, but 23 that's what I would expect. 24 When you say "outside of Masayuki," what 0. 25 do you mean?

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Page 285

Page 286

1	A. Because Masayuki has organics in his
2	system. And he is steam stripping that system. Yet
3	for a person who is trying to teach away from using
4	waste waters, that seems like it would be a fairly
5	significant point in his in his paper if he was
6	getting organics in there because he he doesn't
7	he says nothing. He's trying to make an
8	environmentally friendly process by by not
9	generating waste waters. So if he's getting organics
10	in there, that seems like something you would want to
11	say.
12	Q. So
13	A. But yes, I agree that I don't know
14	what what is happening or what's missing here, but
15	as reading this in terms of Masayuki, I can't say
16	that 245 and 236 are in there just because that would
17	be that's a major oversight on Masayuki's part if
18	that's a way out for organics. And I agree, in my
19	professional opinion, that there's possibly an
20	organics go in there.
21	So you either take Masayuki as it is or we
22	interpret it on top of what's there. And the only
23	way that I can say that there are organics there is
24	outside of the framework of what Masayuki is telling
25	me.

Page 287

Q. Well, what I'm asking you to do is look at
the flow diagram of Masayuki. Okay? And we're
talking about operating the chemistry of Smith
A. Right.
Q in the reactor of Masayuki and focusing
on what would happen if we conducted the reaction of
Smith in the flow diagram of Masayuki.
A. No, I understand.
Q. And so, you know, the question is whether
or not, if you were to conduct the Smith process in
the flow diagram of Masayuki, whether it's reasonable
to expect that 236 and 245 would be removed from the
aqueous solution and the enricher along with some
water if that enricher was run at 100 degrees C?
A. It is reasonable. I don't know that it
would work just for the reasons stated. That's all I
can say. It is reasonable but not but not as
Masayuki teaches me.
Q. Because you're looking at details other
than just what's in the flow diagram?
A. I'm putting my expert view onto what's
going here.
Q. So what are your reasons for thinking that
if we conducted the reaction of Smith in Masayuki, as
I've been describing that, you wouldn't remove 236 or

DTI Court Reporting Solutions - Chicago 800-868-0061 www.dep

www.deposition.com

Exhibit 1027-00124

Page 288

1	245 in the enricher along with some water if the
2	enricher was at 100 degrees C?
3	A. I don't know an exact reason. Maybe
4	maybe in the enriching phase, you're I just don't
5	have an answer.
6	Q. So if 236 and 245 were removed in the
7	enricher because it's operated at 100 degrees C and
8	the aqueous solution is then passed to Slurry Tank
9	24, would the aqueous solution in Slurry Tank 24
10	include water, KOH and KF?
11	A. It would include water, KF and a small
12	amount of KOH.
13	Q. Can you separate the KF and KOH in that
14	aqueous solution that you've just described that
15	would be present in the slurry tank?
16	A. Not efficiently.
17	Q. And why is that?
18	A. Because their solubilities are so similar.
19	Q. And is there a chemical reaction that one
20	of ordinary skill in the art would be aware of that
21	would convert KF to something else that would permit
22	you to remove KF?
23	A. Sure. Reaction with calcium hydroxide.
24	Q. And that's a reaction that was known in
25	2008 or earlier; is that correct?

Page 289

1	A. Yes, it is.
2	Q. And you've seen that reaction in a
3	reference that I think you refer to as Harrison in
4	your report; is that correct?
5	A. That's correct.
6	Q. So if one of ordinary skill were to add
7	calcium hydroxide to the aqueous solution containing
8	KOH and KF in Slurry Tank 24, what would happen to
9	that aqueous solution?
10	A. The KF in that aqueous solution would get
11	converted to KOH. But not very efficiently unless
12	the concentration of KOH that went into the process
13	to begin with was pretty low because we in the
14	enricher, we now have a concentrated KOH. Remember,
15	Masayuki teaches us to concentrate this the
16	remaining dehydrohalogenating agent back to the same
17	concentration that went into the reactor through Line
18	2.
19	Now if I apply Smith, I have very little
20	KOH coming out of Line 4. So but I have a lot of
21	KF. So when I go into that enricher and I apply the
22	teaching of Masayuki, which doesn't seem logical to
23	do in this situation, but this is what Masayuki is
24	teaching, then you're going to have an unstable
25	process because you will be concentrating a small

Page 290

1	amount of KOH back to its initial starting
2	concentration, but the concentration of that KF will
3	be increasing, too, so you will end up precipitating
4	KF/KOH probably to the point where you have very
5	little liquid and you're stirring a wet mixture of
6	cement.
7	So but if we ignore the enricher, then
8	what you're saying will work. We can then take that
9	KF/KOH and convert that large fraction of KF back to
10	KOH using lime.
11	Q. Yes, so let me be clear. I'm not
12	suggesting that we would remove the enricher. I
13	don't want you to think that we're removing the
14	enricher in this discussion.
15	A. Okay. Under most circumstances, I don't
16	think you could run Smith in this process and get
17	past Enricher 21 so that you would be able to
18	effectively convert KF to lime.
19	Q. Okay. Let's explore that a little bit.
20	Earlier, you said that the dehydrohalogenation
21	reaction disclosed in Smith creates additional water,
22	correct?
23	A. Yes.
24	Q. Okay. So if we conduct the process of
25	Smith in the flow diagram of Masayuki, when we get to

Page 291

1	the enricher, the enricher does serve a purpose in
2	removing some water to get us back to the original
3	concentration of KOH plus KF as compared to the
4	original concentration of KOH going into the Reactor
5	19, correct?
6	A. It's not the concentration of KOH plus KF.
7	The formula that Masayuki has is a concentration of
8	DHA over DHA plus water. KF is not a factor in that
9	concentration.
10	Q. Okay. But you would agree that one
11	purpose the enricher could serve is to enrich the
12	aqueous solution of KOH and KF to a concentration
13	equal to the amount of KOH being introduced into the
14	dehydrohalogenation Reactor 19, correct?
15	A. Yes, but it is a mixture of KOH and KF
16	plus a small amount of water.
17	Q. So you agree that even if we were well,
18	let me start again.
19	So you agree that the enricher would serve
20	a purpose?
21	A. Yes. It it could be used to remove a
22	small amount of water that was formed in the
23	reaction. But just removing that amount of water
24	will not get you back to the starting concentration
25	of sodium of dehydrohalogenating agent in water.

Page 292

1	Q. Another purpose the enricher would serve
2	in conducting the dehydrohalogenation reaction of
3	Smith in the flow diagram of Masayuki would be to
4	remove any 236 and 245 present, correct?
5	A. Well, as I said, Masayuki is silent to
6	removing organics through that flow path. But
7	outside of Masayuki, in my opinion, yes, that's what
8	would happen.
9	Q. Would one of ordinary skill in the art
10	understand that dissolved organics would be present
11	in the stream, the aqueous stream coming out of
12	Reactor 19 if one were to conduct the
13	dehydrohalogenation reaction of Smith in Reactor 19
14	of Masayuki?
15	MR. ROSE: Objection. Form.
16	THE WITNESS: Sir, would you state that
17	again, please?
18	MR. BAUM: Could you read that back,
19	please?
20	(Whereupon the Court Reporter read the
21	previous question.)
22	THE WITNESS: Yes.
23	BY MR. BAUM:
24	Q. And would strike that.
25	Would one of ordinary skill in the art

Page 293

1 understand that it's desirable to remove dissolved 2 organics present in the aqueous stream being removed from Reactor 19 if the -- if the process of Smith 3 4 were conducted in the flow diagram of Masayuki? 5 Α. Yes. б MR. ROSE: Objection to form. 7 BY MR. BAUM: 8 And would one of ordinary skill in the art Ο. 9 understand that those dissolved organics, because of 10 their boiling points, could be removed in the 11 enricher if it was operated at a temperature above 12 the boiling point of those organics? 13 MR. ROSE: Objection to form. 14 THE WITNESS: They -- yes, they would, but 15 they might question why Masayuki is silent. So they 16 may or may not want to model that system just to 17 confirm that that would happen. 18 BY MR. BAUM: 19 Ο. But one of ordinary skill in the art would 20 understand that's a way to remove 236 and 245? 21 It's a possible way. Α. 22 MR. ROSE: Objection to form. 23 BY MR. BAUM: 24 Looking now at Slurry Tank 24. If we have 0. 25 removed an amount of water in the enricher to bring

Page 294

1	the combined combination of KF and KOH back to the
2	same level as the concentration of KOH going into
3	Reactor 19 strike that.
4	Let's go back to Slurry Tank 24 where
5	we've added lime. Would a concentration of
6	25 percent KF strike that.
7	Would an aqueous solution of 25 percent KF
8	and 25 percent KOH in Slurry Tank 24 include any
9	solid before lime is added?
10	A. Smith would probably not allow you to get
11	to a condition like that. So but assuming that
12	outside of using Smith in that reactor, I can answer
13	your question. Would a combination of 25 percent KF
14	and KOH precipitate in Slurry Tank 24? What is the
15	temperature of that slurry tank?
16	Q. Let's assume it's 100 degrees.
17	A. No, it would not precipitate.
18	Q. Would it precipitate at 50 degrees
19	Celsius?
20	A. It let's see if recalling what I
21	know about at 40 degrees, the solubility of KF and
22	KOH are about 57, 58 percent each. At about 60, it's
23	60 degrees. So a combined concentration of KOH and
24	KF at 50 percent concentration at 50 degrees C would
25	not precipitate, but it's probably getting close to

Page 295

1 borderline. 2 MR. ROSE: The realtime stopped working. 3 MR. BAUM: Yeah. 4 VIDEOGRAPHER: Time is 2:32 p.m. We're 5 going off the record. б (A recess transpired from 2:32 p.m. until 7 2:34 p.m.) 8 VIDEOGRAPHER: Time is 2:34 p.m. and now 9 we're going back on the record. 10 BY MR. BAUM: 11 Earlier, you said that you were looking to Q. 12 something outside of Masayuki in determining whether Smith would work in Masayuki. 13 14 Α. Okay. I don't recall that. 15 You said outside of Masayuki or outside of Ο. 16 Smith a couple of times. What did you mean by that? 17 MR. ROSE: Object to the form. Asked and 18 answered. 19 THE WITNESS: I meant outside of the 20 framework of Smith and Masayuki applying my expert 21 opinion and view on what is going on. 2.2 BY MR. BAUM: 23 So you were looking beyond the explicit Ο. 24 disclosure of Masayuki or Smith when --When -- yes. 25 Α.

Г

Page 296

1	Q. You were looking outside the disclosure of
2	Smith or Masayuki when you were saying that the
3	process of Smith wouldn't work in the flow diagram of
4	Masayuki; is that correct?
5	MR. ROSE: Objection. Mischaracterizes.
б	THE WITNESS: No, I don't think I said
7	that, but then I don't exactly remember that train of
8	conversation so I would not be comfortable trying to
9	resay that at this point.
10	BY MR. BAUM:
11	Q. Could you turn to page, or excuse me,
12	paragraph 136 of your report in the 916 IPR, please.
13	A. Sir, what paragraph again?
14	Q. 136.
15	A. Okay.
16	Q. The latter part of that paragraph says
17	that "at best, a 60 percent mixture of KF/KOH in
18	solution"?
19	A. Right.
20	Q. In open paren, "at the border of
21	solubility, close paren, plus a precipitant of KOH
22	and KF salts in Slurry Tank 24."
23	What did you mean by the borderline of
24	solubility?
25	A. In the slurry tank at the temperature that

Page 297

1	it operates, the limiting solubility of KF and KOH is
2	about that amount, maybe 60, 65 percent.
3	Q. So you could have up to a combined amount
4	of 60 percent KF and KOH without any precipitant
5	according let me back up. Start again.
6	So you could have a combined amount of up
7	to about 60 percent KF and KOH in Slurry Tank 24
8	without precipitating any KF or KOH.
9	A. Well, first, before I comment on that, I'd
10	like to put paragraph 136 in context. We stated
11	earlier in the deposition that Masayuki and Smith
12	will not work because Smith teaches an efficient
13	process, and that in combination with the
14	concentration loop should make this whole thing
15	inoperable. We right here, we are we are
16	basically we went through an argument starting
17	here or starting in this section where we allowed,
18	even though Smith doesn't, for conversions that are
19	less than what and Smith teaches he teaches an
20	efficient process in order to make this argument.
21	So this is not a strictly Smith/Masayuki
22	example. It is an argument that we made, even though
23	we stated earlier on that the combination of Smith
24	and Masayuki wouldn't work. So when you see KF and
25	KOH at 30 percent concentration, that is our argument

Page 298

1	and not a Smith/Masayuki in the strictest terms.
2	Q. Okay. Thank you for that. I'd like you
3	now to think about an aqueous solution of KOH and KF.
4	Could you have as much as 60 percent
5	mixture of KF and KOH in aqueous solution before a
6	precipitant would form?
7	A. Yes. At temperatures above 40 degrees
8	40, 50 degrees.
9	Q. And that's the temperature in those in
10	the slurry tank of Masayuki?
11	A. I think the slurry tank is hotter, but I'm
12	saying that's the limiting solubility. So above
13	that, 60 percent is viable.
14	Q. Okay. So applying the reaction of Smith
15	in the flow diagram of Masayuki and focusing on the
16	slurry tank where we have an aqueous solution of KF
17	and KOH, if one of ordinary skill in the art were to
18	add lime to that slurry tank, I believe you said
19	before that you would precipitate out calcium
20	fluoride and you would be left with KOH in solution.
21	A. You would be left with a mixture of KF,
22	KOH, calcium fluoride and lime because the amount of
23	calcium fluoride that you need to add to that mixture
24	would become a very viscous wet cement. It would not
25	be a complete reaction.

Г

Page 299

1	Q. Now, what would the level of KF, KOH and
2	calcium fluoride have to be to have a wet cement in
3	the slurry tank?
4	A. Probably probably just as this example
5	says. With with 40 percent water remaining and
6	30 percent salts and now you're adding in a larger
7	another large amount of a salt, the calcium fluoride,
8	your water in that system is at best maybe what,
9	about 25 percent less?
10	Q. So the consistency of that aqueous
11	solution is really going to depend on how much water
12	you remove in the enricher, correct?
13	A. Yes.
14	Q. And so one of ordinary skill could adjust
15	the amount of water that's being removed in the
16	enricher such that you would not have a cement or a
17	wet cement in the slurry tank, correct?
18	MR. ROSE: Objection to form.
19	THE WITNESS: If they moved away from what
20	Masayuki teaches, yes.
21	BY MR. BAUM:
22	Q. And so if one of ordinary skill in the art
23	were to exercise their own judgment, one of ordinary
24	skill could remove a small amount of water and still
25	have a solution that would flow?

Page 300

1	A. Sure, but that one of ordinary skill would
2	probably take the enricher out at best or, at most,
3	put the enricher after the slurry tank so that they
4	could balance the concentration of that. I think
5	they would also add water into their calcium
6	hydroxide and because if you look at Harrison,
7	which we're doing here, Harrison is using fairly
8	dilute as weight percent concentrations of calcium
9	hydroxide in order to effect a good conversion of KF
10	to KOH.
11	So if one was to use their own judgment
12	and teach away from Masayuki, they would take the
13	enricher out where it is. They would go directly
14	into the slurry tank. They they would they
15	would then go add in their lime, take off their
16	calcium fluoride, send the KOH which is diluted
17	because, as I said, the calcium the lime would be
18	slurried with more water, and go into an enricher to
19	then remove water to bring the KOH up to the
20	concentration that it originally was when it entered
21	the reactor. That's how someone who would use their
22	own judgment and not follow implicitly Masayuki would
23	probably want to run this system.
24	Now that assumes that that they see a need
25	to even use Masayuki because Smith is teaching an

Page 301

1	efficient reaction. And as we've defined spent KOH,
2	KOH here, let me go to the definition.
3	Q. Yeah, there's really no need to do that.
4	A. Okay, but just my one point. We've
5	defined it there is a point I want to make.
б	Spent spent unreacted oh, this is not mine, is
7	it?
8	Q. Yeah, that's the
9	A. Okay. All right. Well, my point is,
10	spent spent KOH, which is an aqueous solution of
11	dehydrohalogenation and by-product salts, may not be
12	the same as by-product salts and some spent
13	dehydrohalogenating agent, and that's what you're
14	getting with Smith.
15	Q. So I'm not asking you to reconfigure,
16	reconstruct Masayuki. The questions I'm asking you
17	really are given the structure that's here, what
18	would one of ordinary skill would do?
19	MR. ROSE: Objection to form.
20	THE WITNESS: I understand. But you did
21	tell me that the one using your own judgment would
22	decide on the amount of water they wanted to take
23	out, and that's not following Masayuki. Masayuki,
24	by by his definition of what how they
25	concentrated the sodium hydroxide defines how much

Page 302

1 water you have to take out. So . . . 2 BY MR. BAUM: 3 Ο. So the changes that you've described, are 4 those changes that would be necessary to get Masayuki 5 to work? 6 Α. Yes. 7 And a person of ordinary skill in the art Ο. 8 in 2008 would have understood that those changes 9 would be necessary, correct? 10 MR. ROSE: Objection to form. 11 THE WITNESS: He would very likely -- he 12 would at least recognize that the enricher is a 13 significant problem following the teachings of 14 Masayuki and applying Smith and Masayuki. 15 BY MR. BAUM: Could one of ordinary skill in the art 16 Ο. 17 operate the enricher in such a way as to remove only 18 the additional water generated in the 19 dehydrohalogenation reactor? 20 MR. ROSE: Objection to form. 21 THE WITNESS: If he doesn't follow 22 Masayuki, yes. 23 BY MR. BAUM: 24 I'm asking you to apply the process of 0. 25 Smith in the Masayuki flow diagram.

Г

Page 303

1	A. Okay. Yes, I I think I understand
2	that. But yes, if you just if you just remove the
3	water that's produced by reaction, you're not
4	following Masayuki, but using his own.
5	Q. Would one of ordinary skill in the art be
6	able to exercise his or her own judgment as to how
7	much water to remove in view of the differences
8	between the process taught and Smith and the process
9	of Masayuki?
10	MR. ROSE: Objection to form.
11	THE WITNESS: I believe so.
12	BY MR. BAUM:
13	Q. So one of ordinary skill in the art could
14	practice the process of Smith in the flow diagram of
15	Masayuki if proper concentrations of water were
16	chosen at the various stages of the process, correct?
17	MR. ROSE: Objection. Form.
18	THE WITNESS: Could you restate that,
19	please?
20	(Whereupon the Court Reporter read the
21	previous question.)
22	THE WITNESS: I don't know that there are
23	proper concentrations of water that will allow you to
24	follow the teachings of Smith and Masayuki and have
25	this process work for any length of time before it

Page 304

1	becoming unstable. At the very least, that person of
2	ordinary skill would probably want to build a working
3	model or have this model through computer simulation
4	to see what happens.
5	BY MR. BAUM:
б	Q. But you believe that it's possible one of
7	ordinary skill could envision proper concentrations
8	of water at various stages in the process to get the
9	process of Smith to work in Masayuki?
10	MR. ROSE: Objection to the form.
11	THE WITNESS: No, I believe they could
12	build a model and do a computer simulation. I don't
13	know that they would find those concentrations.
14	BY MR. BAUM:
15	Q. So if one were to conduct the process of
16	Smith let me start again.
17	If one of ordinary skill were to conduct
18	the dehydrohalogenation reaction of Smith in the flow
19	diagram of Masayuki and we have in the Slurry Tank 24
20	a mixture of KOH and KF and calcium fluoride and that
21	aqueous mixture is inserted into Centrifuge 25, would
22	that centrifuge be able to separate out the solid
23	calcium fluoride from the aqueous solution?
24	MR. ROSE: Objection.
25	THE WITNESS: I can't answer that within

Page 305

1	the context of Smith and Masayuki. But outside of
2	that, you would be able to separate.
3	BY MR. BAUM:
4	Q. So it's relatively easy to separate
5	calcium fluoride that's been precipitated out of
6	solution including KF/KOH; is that correct?
7	MR. ROSE: Objection. Form.
8	THE WITNESS: If concentrations are low
9	enough.
10	BY MR. BAUM:
11	Q. And then following the flow diagram of
12	Masayuki using the dehydrohalogenation reaction of
13	Smith, the aqueous solution recovered from the
14	centrifuge would then be returned to the
15	dehydrohalogenation reaction via Conduit 13 to
16	Conduit 2 and then into the reactor, correct?
17	MR. ROSE: Objection to form.
18	THE WITNESS: No, I don't think so because
19	I can't answer that in the context of Masayuki and
20	Smith. But yes, with outside of that, that aqueous
21	dehydrohalogenation could certainly go through 13
22	back up into 2 and into the reactor.
23	BY MR. BAUM:
24	Q. And that would effectively recycle spent
25	KOH to the Reactor 19 in Masayuki, correct?

Page 306

1	MR. ROSE: Objection. Form.
2	THE WITNESS: Again, outside of context of
3	Masayuki, it would effectively recycle.
4	MR. BAUM: Let's take about a ten-minute
5	break. I'm getting close.
6	MR. ROSE: I was going to ask how long you
7	plan to go.
8	MR. BAUM: Yeah, I should be half an hour
9	I would think at the most.
10	VIDEOGRAPHER: The time is 2:53 p.m. and
11	we are now going off the record.
12	(A recess transpired from 2:53 p.m. until
13	3:14 p.m.)
14	VIDEOGRAPHER: Okay. The time is 3:14 and
15	we are going back on the record.
16	BY MR. BAUM:
17	Q. Dr. Lousenberg, you said several times
18	that the Smith reference teaches an efficient process
19	and a conversion rate of at least 90 percent. Can
20	you show me where in Smith it says that?
21	A. I didn't say that Smith teaches a
22	conversion rate of 90 percent, but my experience in
23	doing reactions with KOH in a phase transfer catalyst
24	is that's very easy to achieve.
25	

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Robert D. Lousenberg, Ph.D. April 15, 2016
Page 308

). Are those documents publicly available to
your KI	lowledge?
	A. I don't know. I I assumed they would
be avai	lable to you II I was using them as exhibits.
). But it's your understanding that those are
CONILGE	intial exhibits not available to the public,
correct	
F	1. I believe so. It does say "confidential"
on the	documents.
, _ · _ ·	2. So you can't point to anything
specifi	.cally in Smith that teaches a conversion rate
ot at 1	.east 90 percent, correct?
F	No. All I can point to is the fact that
Smith t	eaches methods of achieving high efficiency
which -	which is conversion to desired products and
he does	sn't state exactly what those efficiencies are.
He's si	lent to those efficiencies.

Page 309

1	Q. Can you point to where Smith teaches
2	methods of achieving high efficiency and conversion?
3	A. Sure. On page 14, third paragraph, he
4	talks about the phase transfer catalyst. And he
5	says, "An effective amount of a phase transfer
6	catalyst should be used in order to effect the
7	desired reaction, influence selectivity to the
8	desired products or enhance the yield. Such an
9	amount can be determined by limited experiments once
10	the reactants, process conditions and phase transfer
11	catalysts are selected."
12	Q. That's a fairly common statement with
13	regard to phase transfer catalyst, isn't it?
14	A. Yes.
15	Q. In fact, you've said the same thing before
16	in your '630 patent which we marked as Exhibit 1024
17	earlier, didn't you?
18	A. Sorry. Can you say that again?
19	Q. You said the same thing in your '630
20	patent which we marked as Exhibit 1024 earlier?
21	A. I may have. I don't recall the exact
22	passages in the patent so it's possible.
23	Q. Can you point to any other portion of
24	Smith that teaches that the process is efficient or
25	has a conversion rate of at least 90 percent in your

Page 310

1	opinion?
2	A. I can't point to a conversion rate of
3	90 percent because Smith is silent. He doesn't give
4	any of those examples.
5	Q. Either yesterday or today during breaks or
6	overnight, did you discuss your deposition at all
7	with anyone?
8	A. No. I was alone from the time I left
9	Alston & Bird until this morning.
10	Q. And did you eat lunch by yourself today?
11	A. No, I ate it in the break room, and
12	counsel was there.
13	Q. And what did you discuss during lunch?
14	A. I didn't discuss much of anything.
15	Counsel talked about sports for the most part. I did
16	comment that depositions are lonely.
17	Q. What else did you discuss with counsel?
18	A. We discussed going for a walk and we did
19	that, but there was no real discussion with me. It
20	was counsel talking amongst themselves as I walked
21	typically at some distance away from them.
22	Q. Were they talking about the deposition
23	while you were walking?
24	A. Not that I could hear.
25	Q. Did you discuss anything else with

Г

Page 311

1	counsel?
2	A. I don't believe so.
3	Q. Did you speak with counsel during the last
4	break about the teachings of the Honeywell reports?
5	A. No.
6	MR. BAUM: No further questions at this
7	time.
8	MR. ROSE: Okay. We're going to take a
9	little break and see if we have a little bit of
10	redirect.
11	MR. BAUM: All right.
12	VIDEOGRAPHER: We're going off the record.
13	It is now 3:22 p.m.
14	(A recess transpired from 3:22 p.m. until
15	3:47 p.m.)
16	VIDEOGRAPHER: Okay. Time is 3:47 p.m.
17	we're now going back on the record.
18	EXAMINATION
19	BY MR. ROSE:
20	Q. Welcome back, Dr. Lousenberg. I have a
21	few follow-up questions for you. I'd like to go to
22	your declaration you have in front of you. It's
23	in I think the one you have is the 916. I want to
24	talk briefly about the materials that you reviewed
25	and considered in preparing your declarations. Do

Г

Page 312

1	you recall giving testimony about that yesterday?
2	A. Yes.
3	Q. About what you reviewed or didn't review?
4	A. Yes.
5	Q. And if you will, turn to page 7 of your
6	declaration.
7	A. Sure.
8	Q. And it said, you have a section captioned
9	"Information Considered"?
10	A. Yes.
11	Q. Okay. And in scrolling down there in
12	paragraph 14 about the fourth line.
13	A. Yes.
14	Q. You list Exhibits 1001 through 1018.
15	A. Correct.
16	Q. Did you consider those exhibits to the
17	petition in these cases?
18	A. I yes, I did. I believe I my
19	memory works best when I refer to them by their
20	their names in particular. So I have been confused
21	at times with numbers. I believe these numbers
22	within these numbers are the reports for technical
23	reports for Honeywell that are exhibits.
24	Q. These are these are the Exhibits 1001
25	through 1018 which are the exhibits to the petition

1 filed by the petitioner in this case? 2 Α. Oh, okay. Well, then the -- I'm referring --3 4 I just want to know, did you review Ο. 5 exhibits, the exhibits listed here? Yes, I did. Yes, I did. I did. I recall 6 Α. 7 that. 8 Okay. Now, if you will pull out the Ο. 9 petition filed by the petitioner in this case. And 10 I'll direct your attention to -- that's your 11 declaration. Somewhere before you had the petition 12 filed by -- maybe it's that one with the binder. 13 Here we are. 14 Α. Okay. 15 Ο. Now, on page Roman numeral III is a 16 listing of those exhibits. Do you see that? Roman numeral III? 17 18 Α. Yes. 19 Ο. Okay. And in that listing, Exhibit 1002 20 is the declaration of Dr. Manzer, correct? 21 Α. Correct. 22 Ο. And Exhibit 1015 is the file history for 23 the '282 patent, correct? 24 10 -- sorry? Α. 25 Ο. 1015?

DTI Court Reporting Solutions - Chicago 800-868-0061 www.deposition.com

Exhibit 1027-00150

Page 313

Page 314 1 Α. Yes. 2 So those are exhibits that you did 0. Okay. 3 review in preparing your declaration? 4 Α. Yes. 5 Thank you. Now, you were shown another 0. б document yesterday which was marked I believe as 7 Exhibit 1021 which is an English translation of an 8 Italian document that appears to be authored by Dario 9 Sianesi and Renzo Fontanelli. Do you recall looking 10 at that document yesterday? 11 I did look at this document yesterday. Α. 12 And you gave some testimony about that Ο. 13 document yesterday, correct? 14 Α. Yes, I did. 15 Okay. And I'd like to turn to page 852 0. 16 using the page numbers in the upper left-hand corner. 17 And you were asked in particular about the paragraph 18 in the middle of the page that starts with a B. 19 Α. Yes, I was. 20 And then states, "dehydrofluorination with Ο. 21 basic agents." Do you see that? 22 Α. Yes, I do. 23 Ο. Okay. And that paragraph states, "The 24 most immediate method for the dehydrofluorination of 25 C3F6H2 is found to be simple passage of the compound

Page 315

1	in gaseous form through a liquid phase constituted of
2	an aqueous solution of KOH with a high titre, 70 to
3	80 percent, maintained at a temperature of about
4	150 degrees."
5	Do you see that?
6	A. Yes.
7	Q. Okay. How is that method performed in the
8	Sianesi document, the method of passing the gas
9	through the liquid phase?
10	A. Well, that might be answered from the
11	experimental section. I don't have it in my head
12	offhand, but I do recall reading the experimental
13	section that seemed to be very important.
14	Q. And did you come to a conclusion as to how
15	that method is performed?
16	A. Yes. They bubbled the C3F6H2 through
17	80 percent KOH in a metal container that was heated
18	to 140 to 150 degrees C. "By means of a 5-centimeter
19	weighing tube, 600 grams of C3F6H2 were bubbled into
20	this liquid phase over a period of one hour, the
21	exiting product being collected by condensation at
22	minus 78-degrees C."
23	Q. Is that a tube reactor?
24	A. It's a metal container with with a tube
25	in it. It is not specific to the dimensions, but the

1

2

3

4

5

б

7

8

9

10

11

12

13

14

15

16

17

18

Page 316 reading of this seems to be consistent with a tube reactor. Okay. And how was that different from Ο. what is described in the Sedat reference? Α. The Sedat reference is a continuously stirred tank reactor. And is that difference significant? Ο. Α. It can be. And why is that? Ο. Α. Because the length of contact time between the reactant, the C3F6H2 can be different from the tube reactor. Or sorry. The C3 -- the length of contact time of the C3F6H2 with the aqueous KOH can be different. Do you have your declaration from the 915 Ο. case before you? Α. I don't think so, but I will look. Yes, I do.

19 Ο. I'd like you to turn to paragraph 127, 20 please. It's on page 42. Are you at paragraph 127? 21 Yes, I am. Α. 22 Ο. And you expressed your opinion that "A 23 person of ordinary skill in the art reading Sedat 24 would not find Sedat to be enabled for the purposes 25 of a dehydrofluorination reaction and thus would

Page 317

1	expressly reject his teachings when preparing a
2	process for the manufacture of fluoroolefins alone or
3	in combination with any other references."
4	You see that?
5	A. Yes.
6	Q. Okay. Do you believe that your opinions
7	expressed here are incorrect because of what you read
8	in the Sianesi reference?
9	A. In the Sianesi reference, the contact time
10	between the materials is not stated, but the
11	dimensions of the reactor are different than in the
12	continually stirred tank reactor so even though
13	Sianesi says that there is well, back to page
14	page 852. Even though he says that "The operation
15	gave a virtually quantitative dehydrofluorination,
16	the reaction product is only
17	1-hydropentafluoropropylene constituting mainly of
18	isomer I with minor contents, about five percent of
19	isomer II," I can't say that the contact time in this
20	reactor would be sufficient to give the same result.
21	Q. When you say "the contact time in this
22	reactor," you're talking about Sedat?
23	A. Yes.
24	MR. BAUM: Leading. Objection. Leading.
25	

Page 318

1	BY MR. ROSE:
2	Q. I want to talk a little bit about some
3	testimony you gave earlier today regarding the
4	combination of Smith and Masayuki
5	A. Okay.
6	Q this afternoon. And counsel had asked
7	you some questions regarding conducting the
8	dehydrohalogenation reaction of Smith using the
9	apparatus of Masayuki. Do you recall that?
10	A. Yes.
11	Q. Okay. And you testified that that at
12	one point, that the person of ordinary skill could
13	remove the evaporator from the Masayuki process
14	because it didn't need to be there for the Smith
15	process. Do you recall that, that a person of
16	ordinary skill could remove the evaporator?
17	MR. BAUM: Objection. Leading. Form.
18	THE WITNESS: I recall saying that they
19	could possibly remove all of the Smith process if
20	in a high efficiency reaction, but if they move the
21	evaporator, it in the combination of Smith, what
22	would happen is they would avoid the concentration
23	loop difficulties.
24	BY MR. ROSE:
25	Q. Okay. So if the evaporator is removed,

Page 319

1 then there would be no spent KOH ever passing through 2 the evaporator, correct? 3 MR. BAUM: Objection. Form. Leading. 4 THE WITNESS: Correct. If there's no 5 evaporator, spent KOH is not going through it. BY MR. ROSE: б 7 And you -- do you recall also testifying Ο. 8 about the possibility of moving the evaporator to --9 after the centrifuge? 10 Α. Yes, I did. 11 Now in that instance, the centrifuge is Q. 12 used to remove the calcium fluoride, correct? 13 Α. Correct. 14 MR. BAUM: Objection. Leading. Form. 15 BY MR. ROSE: 16 Ο. So that would be after the conversion of 17 KF to CAF2? 18 MR. BAUM: Objection. Leading. Form. 19 THE WITNESS: Correct. 20 BY MR. ROSE: 21 Okay. And so at that point, there would 0. 22 be no more spent KOH in the stream, correct? 23 MR. BAUM: Objection. Leading. Form. 24 THE WITNESS: Spent KOH, yes, there would 25 be no more spent KOH.

Page 320

1	BY MR. ROSE:
2	Q. Okay. So if you have the evaporator
3	placed after the centrifuge, would any spent KOH go
4	through the evaporator?
5	A. No.
6	MR. ROSE: Okay. Thank you. I have no
7	further questions.
8	MR. BAUM: Take a short break and return.
9	VIDEOGRAPHER: Time is 3:59 p.m. We are
10	now going off the record.
11	(A recess transpired from 3:59 p.m. until
12	4:11 p.m.)
13	VIDEOGRAPHER: Okay. The time is
14	4:11 p.m. We are going back on the record.
15	MR. BAUM: Dr. Lousenberg, we have no more
16	questions for you at this time. Thank you very much
17	for your participation in this deposition.
18	THE WITNESS: You're welcome.
19	VIDEOGRAPHER: And this concludes the
20	deposition. Time is 4:12 p.m. We are off the
21	record.
22	(The deposition was concluded
23	at 4:12 p.m.)
24	(Signature reserved.)
25	

Г

Page 321

1	SIG	NATURE OF DEPONENT	
2	DEPONENT: ROBERT I	D. LOUSENBERG, Ph.D.	
3	REPORTER: Karen K	April 15, 2016, Volum . Kidwell, RMR, CRR	le 2
4	CASE CAPTION: Arke Hone	ema France v. eywell International,	Inc.
5			
6	(Please return bo	oth Signature of Depo	nent pages)
7	I, the	e undersigned, ROBERT	D.
8	LOUSENBERG, Ph. D. read the foregoing	, do hereby certify t deposition and find	hat I have it to be a
9	true and accurate t the following corre	transcription of my t ections, if any.	estimony, with
10			
11	PAGE LINE	CHANGE	REASON
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24	- T	ROBERT D. LOUSENBERG	Ph.D. Date
25			

Page 322

	SIGNA	ATURE OF DEPONENT	
DEPONE	NT: ROBERT I	D. LOUSENBERG, Ph.D.	2
DEPOSI REPORT	TION DATE: A ER: Karen K. APTION: Arker	pril 15, 2016, Volume Kidwell, RMR, CRR	2
Intern	ational, Inc.	na Flance V. noneywei	±
PAGE	LINE	CHANGE	REASON
	R	OBERT D. LOUSENBERG, P	h.D. Date
	R	OBERT D. LOUSENBERG, P	h.D. Date
State	R(R(I, Karen K. K: of North Caro	DBERT D. LOUSENBERG,P idwell, Notary Public lina at Large, do her	h.D. Date for the eby certify
State that t	R R I, Karen K. K of North Caro he deponent wa	DBERT D. LOUSENBERG,P idwell, Notary Public lina at Large, do her as advised of his or i	h.D. Date for the eby certify her right to
State that t read a writin	R R I, Karen K. K of North Caro he deponent wa nd sign said o g. If the dep	DBERT D. LOUSENBERG,P idwell, Notary Public lina at Large, do her as advised of his or i deposition both verba ponent fails to execu-	h.D. Date for the eby certify her right to lly and in te and return
State that tiread as writin forego thirty	R R I, Karen K. K of North Caro he deponent wa nd sign said o g. If the dep ing Signature (30) days al	DBERT D. LOUSENBERG, P. idwell, Notary Public lina at Large, do her as advised of his or 1 deposition both verba ponent fails to execu of Deponent pages wi lowed pursuant to the	h.D. Date for the eby certify her right to lly and in te and return thin the Rules of
State that t read a writin forego thirty Civil with t	R I, Karen K. K of North Caro he deponent wa nd sign said o g. If the dep ing Signature (30) days al Procedure, the he court.	DBERT D. LOUSENBERG, P idwell, Notary Public lina at Large, do her as advised of his or i deposition both verba ponent fails to execu of Deponent pages wi lowed pursuant to the e original transcript	h.D. Date for the eby certify her right to lly and in te and return thin the Rules of may be filed
State that t read a writin forego thirty Civil with t	R R I, Karen K. K of North Caro he deponent wa nd sign said o g. If the dep ing Signature (30) days al Procedure, the he court.	DBERT D. LOUSENBERG,P idwell, Notary Public lina at Large, do here as advised of his or i deposition both verba ponent fails to execu of Deponent pages wi lowed pursuant to the e original transcript	h.D. Date for the eby certify her right to lly and in te and return thin the Rules of may be filed
State that that the read a writing forego thirty Civil with the	R(I, Karen K. K: of North Caro he deponent wa nd sign said o g. If the dep ing Signature (30) days al Procedure, the he court.	DBERT D. LOUSENBERG, P. idwell, Notary Public lina at Large, do here as advised of his or 1 deposition both verba ponent fails to execu of Deponent pages wi lowed pursuant to the e original transcript	h.D. Date for the eby certify her right to lly and in te and return thin the Rules of may be filed
State that t read a writin forego thirty Civil with t	R I, Karen K. K: of North Caro he deponent wa nd sign said o g. If the dep ing Signature (30) days al Procedure, the he court.	DBERT D. LOUSENBERG, P. idwell, Notary Public lina at Large, do her as advised of his or 1 deposition both verba ponent fails to execu of Deponent pages wi lowed pursuant to the e original transcript Karen K. Kidwell, Ri My Commission Expire	h.D. Date for the eby certify her right to lly and in te and return thin the Rules of may be filed MR, CRR es

800-868-0061

Page 323

	CERTIFICATE OF REPORTER		
I, KAREN K. KIDWELL, Registered			
Professional Reporter and Notary Public for the State			
of North Carolina at Large, do hereby certify that			
the foregoing transcript is a true, accurate, and			
complete record.			
	I further certify that I am neither		
related to nor counsel for any party to the cause			
	pending or interested in the events thereof.		
	This the 17th day of April, 2016.		
	Karen K Kidwall DMD (DD		
	Registered Professional Reporter		
	Notary Public #19971050142		

www.deposition.com Exhibit 1027-00160

800-868-0061

Г

Page 1

	1 1.4.		
A	addition		anime
abaum@brinksgils	193:8	221:14	245:20
167:7	additional	Allen	Ann 167.12
able	209:17 290:21 302:18	107:4 109:20 allow	10/:15
216:21 290:17 303:6	252.4 274.16	anow 240.25 204.10 202.23	263.17 264.25
304:22 305:2	232.4 274.10 adjust	240.25 294.10 505.25 allowed	203.17 204.23
absence	215.15 200.11	207.17 322.20	264.7
239:9	adjusting	297.17 522.20 allows	204.7 answer
access	215.24	237.12 230.8	178.6 2/ 180.16 192.1
186:4	adonted	Δllvn	217.8 225.2 243.11
accomplished	271.5	167·5 169·22	260.12 13 278.2
234:3	advanced	allvnelliott@hrinks	288.5 294.12 304.25
accurate	183·18	167·8	305.19
1//:19 321:8 323:0	advantage	Alston	answered
	307:12	166:6 167:17 169:8.24	227:15 244:3 249:13
300:24	advantageous	310:9	295:18 315:10
107.10 238.8 245.21	254:23	alternative	apparatus
197.10 230.0 243.21 278.0	advice	188:18	252:13.18 274:17
270.9 Achieving	210:5	ambient	318:9
308·22 309·2	advised	187:8,8	APPEAL
act	322:18	America	165:5
195·14	affirmative	166:6 169:9	appears
acting	227:16	ammonium	314:8
195·12	afternoon	264:20 265:14	application
activities	318:6	amount	184:20
208:17	agent	175:4,17 180:11	applications
actual	195:17,20 227:20,22	189:25 192:6,10	183:19
174:23 175:7.8 179:5	229:12,15,22 281:18	196:23,23 204:6,8	applied
213:1	289:16 291:25	234:17 235:14	281:24
adapt	301:13	238:11,11 240:7,9,12	apply
213:18	agents	240:13 241:8 242:9	257:24 289:19,21
adapted	314:21	245:10 246:1,10,24	302:24
185:5 215:14	agree	257:8,24 279:4,17	applying
add	178:23 179:6 246:16	282:24 288:12 290:1	295:20 298:14 302:14
174:19 196:22 197:25	279:19 286:13,18	291:13,16,22,23	appreciate
198:12,25 199:16	291:10,17,19	293:25 297:2,3,6	228:11
211:7 245:25 246:3	ahead	298:22 299:7,15,24	appropriate
289:6 298:18,23	175:11 178:5	301:22 309:5,9	211:18
300:5,15	algebra	amounts	approximately
added	261:9	180:11 204:10 205:10	278:5
172:7 218:11 294:5,9	Alibaba	205:20,25 239:6	April
adding	251:1,3	analysis	100:5 109:1,5 183:5
197:19 198:23 200:17	aikali	223:1	185:22 184:6,23
200:22 258:18	225:11 224:6 230:6		185:19 186:21,25
259:16 260:22 299:6	231:3,20	196:5 208:23	194:1 321:2 322:2

DTI Court Reporting Solutions - Chicago

222.12	005 15 006 5 041 11	175 4	
323:13	235:15 236:5 241:11	1/5:6	294:4 295:9 297:5
aqueous	241:20,24 253:23	assumptions	305:22 306:15
1/6:23 1//:11 1/8:16	254:18,22 274:5	180:15	311:17,20 317:13
179:15 211:19 216:2	277:6,11,22 288:20	ate	320:14
216:6,9 224:18,22	292:9,25 293:8,19	310:11	background
228:18,24 232:13	298:17 299:22 302:7	Atlas	212:16
235:18,19 237:9,13	302:16 303:5,13	264:20	balance
238:2,7,16,19 239:1	316:23	attention	196:8,12 300:4
239:3,6,20 242:17	aside	313:10	Ballard
243:18,19 245:12	277:20	August	181:21 182:5,10,14,19
246:2,6,17 247:8,25	asked	183:5,20,22 184:6,8	182:23
248:4,10,18 250:7	177:20 191:9 213:16	authored	Bank
251:10 253:3,9,20	227:1,13 244:2	314:8	166:6 169:8
254:3,14 255:17,17	249:12 258:23	available	bars
256:10 257:17 258:9	295:17 314:17 318:6	250:19,21 251:9 308:9	252:6
258:17 264:17	asking	308:12,14	base
266:12,16,21 267:4	179:23 192:2 196:10	avoid	229:14 234:16,21
267:25 268:16,19	238:23 256:5 257:9	248:15 318:22	based
271:11,24 272:5,12	259:23 260:8 277:21	aware	215:16,17 234:11
272:24 273:13 278:7	287:1 301:15,16	222:4 232:6 250:13	248:24,25 249:4,9
281:5 282:23 283:3	302:24	288:20	256:11 257:10
283:12,15,17,25	aspect	a.m	307:16,23
284:3,8,11,14,16	204:24	166:8 200:7,9,10	base-mediated
285:15,16 287:13	Aspen	230:14,16,17 233:3,4	230:8 231:4,22 235:4
288:8,9,14 289:7,9	210:22 212:9 214:12	249:24 250:1	251:22 252:4
289:10 291:12	assemblies	A1	basic
292:11 293:2 294:7	182:18	168:17	260:1 314:21
298:3,5,16 299:10	assignment		basically
301:10 304:21,23	183:11	<u> </u>	184:17 185:7 297:16
305:13,20 315:2	assignments	b	basis
316:13	220:11	201:24 234:12,19,24	205:11,20 243:24
Arbor	associated	251:23 314:18	248:22 261:12,13,23
167:13	245:20	back	basting
area	assume	176:10 177:7 178:9	219:3
192:6,10	178:19 199:8 201:7	180:21 182:24	batch
argument	212:4 254:23 260:17	188:11 197:3 200:12	212:25 214:1,2,5
227:7,10 297:16,20,22	262:4 294:16	202:23 207:12	batch-wise
297:25	assumed	211:10 217:17	252:12
argument's	177:24 188:10 308:11	219:16 228:14 229:1	Baum
201:14 226:8	assumes	230:19 231:25 233:6	167:4 168:4 169:20,20
Arkema	300:24	241:13 249:18 250:2	170:5 173:3,10,21
165:8 169:15,21 321:3	assuming	256:19 259:13 263:6	177:6,12 180:17,21
322:3	196:14 237:17 257:20	269:16 273:18	181:2 187:12,18
art	257:23 258:8,16	276:17,24 280:20	189:7,11 190:14
172:24 173:5,16 223:9	259:15 294:11	289:16 290:1,9 291:2	192:4 193:14 195:13
224:5 230:6 231:2,19	assumption	291:24 292:18 294:1	196:17 197:2,7,18
		l	

800-868-0061

198:10,24 199:23	188:4,8 192:7 194:15	268:17 276:2 284:1	202:6 229:16,20 230:7
200:4,13 202:11	197:6 217:23 221:5	Bought	231:4,15,16,21
205:4.16.24 206:6.13	241:25 278:14	213:19	301:11.12
207:12.17 208:5.9	298:18 303:11 304:6	Boulevard	by-products
211:9.14 220:14	304:11 307:1.10	167:5	195:24 206:9 208:22
221.4 22 222.11 13	308.16 311.2 312.18	brand	226.7 236.25 259.8
222.17 18 223.7	312.21 314.6 317.6	264.19	
225.12 18 226.2	helieving	hreak	С
228.13 229.11 230.1	2/13·2/	200.5 14 232.23	C
220.13 229.11 250.1	bost	200.3,14232.23 240.16250.4280.14	167.1 169.2 251.25
230.12,21 $232.17,23233.7$ 17 237.4	214.14 10 206.17	249.10 250.4 280.14	252.2 3 266.1 268.10
233.7,17 237.4	214.14,19 290.17	220.9	285.18 287.14 288.2
242.21 245.0 244.9	299.8 300.2 312.19		288.7 294.24 315.18
244:18 245:5 248:0	Detter	breakdown	200.7 274.24 515.10
249:7,15,17,20 250:3	214:2 215:1	201:20	CAE2
250:12 253:10 255:2	beyond	breaks	CAF2 210:17
255:11,19 256:1,18	171:2 295:23	310:5	519:17
256:24 260:7 263:5	big	brief	
266:14 267:11	239:9 241:2	230:16 263:4	258:11,14 272:20
268:22 270:1,10,18	bigger	briefly	288:23 289:7 298:19
274:7,14 277:4,8,15	240:5	311:24	298:22,23 299:2,7
278:1,23 279:5,11,20	binder	bring	300:5,8,16,17 304:20
280:1,6,13,21 283:20	313:12	293:25 300:19	304:23 305:5 319:12
285:7 292:18,23	Bird	BRINKS	calculating
293:7,18,23 295:3,10	166:6 167:17 169:8,24	167:4,10	215:20
295:22 296:10	310:9	brought	calculations
299:21 302:2,15,23	bit	213:12	215:17
303:12 304:5,14	204:2 219:2 290:19	Bruce	CAPTION
305:3.10.23 306:4.8	311:9 318:2	167:17 169:23	321:3 322:3
306:16 308:2 311:6	blueprint	bruce.rose@alston	captioned
311:11 317:24	212.7	167.20	312:8
318.17 319.3 14 18	BOARD	hubbled	carbon
319.23 320.8 15	165.5	315.16.10	188:24 219:16
Regunre	hoarding	budget	career
169·22 270·9	170.23	200.0 213.14	181.8
BFAUPRÉ	170.23 hoil	209.9 213.14 build	Carolina
167·10	295.12	200:0 212:14 15	166.8 167.19 169.1 10
hosoming	203.12	209.9 215.14,15	183.12 322.17 323.5
204.1	197.16 102.22 277.18	213:12 304:2,12	carried
304.1	18/:10 192:23 2//:18		218.14 252.11 268.0
Deginning	284:22 285:9,12	169:9	210.14 252.11 200.9
218:4,14 220:18 264:8	293:10,12	built	100.10
begun	border	209:10	190.10
237:18	296:20	bulk	
Behalf	borderline	247:12	109:10 215:0,/ 214:10
167:3,16	295:1 296:23	buy	215:13 236:20 241:1
believe	bottom	186:6	260:18 262:14 263:8
181:1 182:23 186:8	172:2 215:15 216:1	by-product	264:3 313:1,9 316:16

800-868-0061

371.3 377.3	chango	188.23 101.15 210.0	columns
521.5 522.5	201.3 227.7 250.25	220.13	214.7.260.2
217.3 260.16 312.17	321.11 322.6	chlorofluorocarbons	combination
catalyst	changed	191·14	294.1 13 297.13 23
239.8 10 11 240.1	205.3 213.21 218.7	chloronrene	317.3 318.4 21
239.0,10,11 240.1	203.5 213.21 210.7	264·9 275·20 23	combined
246:13 247:6 257:6	changes	chosen	220.17 294.1 23 297.3
259:1 260:14 264:18	240:2 241:4 302:3.4.8	303:16	297:6
265:10.15 266:13	characterization	Christopher	combining
267:14.15.22 281:5	196:16	167:18 169:25	260:5
281:21 282:9.24	Charlotte	christopher.douglas	come
283:17.18.21 306:23	166:7 167:19 169:1.9	167:21	170:25 171:19 191:21
307:3,13 309:4,6,13	chemical	chromatography	191:22.23 216:3
catalysts	171:5.21 172:6 181:7	208:25	249:18 315:14
190:12,19,21 255:16	181:13,14,16 182:4,6	CH-080661	comes
260:15 309:11	182:7.20 183:23	169:17	204:18
cause	184:1,3,12 185:18	circulated	comfortable
323:10	186:22 187:1,20	271:12,25	260:10,18 296:8
caustic	189:16,21,24 190:5	circulation-type	coming
213:20 219:3	192:12,16 193:18	268:3	196:6,11 197:17,22
ceiling	208:13,18 210:8,13	circumstances	198:20,22 199:1,18
215:2	210:17 211:3 212:13	280:7 290:15	200:25 201:6,16,18
cell	212:18 277:11,23	Civil	202:1 205:6 209:21
183:19	288:19	322:20	220:6 236:21 244:6
cells	chemicals	clear	246:20,24 254:7,14
182:18 183:7,15 184:9	184:10 219:1	290:11	256:15 265:1,6,10
Celsius	chemist	clog	266:17 275:5 282:20
294:19	183:6 184:7 212:14	248:16	282:25 283:2,5,25
cement	chemistry	clogging	284:3 289:20 292:11
290:6 298:24 299:2,16	175:7 227:4 287:3	274:16	commencing
299:17	Chicago	close	166:8
centrifugal	169:13	200:5 215:19 294:25	comment
171:25	China	296:21 306:5	297:9 310:16
centrifuge	171:1,2	closed	commercial
171:20 172:3 272:14	chloride	282:1	181:9,15 182:10
272:22 273:6 304:21	264:20 266:22 268:1	colleague	184:17,18,21 185:24
304:22 305:14 319:9	268:21 269:17 272:5	169:25	209:12 211:21,23
319:11 320:3	272:15,24 273:1,4,9	collected	212:2 213:2,17
certain	274:17,20	315:21	214:15 215:3,8,13
189:25 211:7	chlorination	column	218:15 248:14
certainly	191:24 219:19	173:24,25 175:25	commercially
185:11 305:21	chloro	178:17 180:3,10	181:11 186:6
CERTIFICATE	191:15	181:4 209:16 214:15	Commission
323:1	chlorocarbon	214:25 256:12	322:24
certify	189:1,14 191:11	257:14,15 260:2	common
321:7 322:17 323:5,9	chlorocarbons	275:15,21 276:3	194:15 206:8 217:13
· · · · · · · · · · · · · · · · · · ·		1	

Page 5

217.17 309.12	241.21 242.5 11 17	304.15.17	constant
commonly	241.21 242.3,11,17	conducted	106.0 107.23 200.1 1
105.4	245.11,25 244.5,0,7	186.2 224.7 251.24	190.9 197.23 200.1,1
Company	240.12,14,20 247.8	$160.2\ 234.7\ 231.24$	203.19 204.9,11,13
	247:10,20,21,23	252:1,5 281:9 282:22	204:17,17,20,21,22
264:21	248:3,4,18 249:1,5	287:6,24 293:4	204:23,25 205:2,2,6
comparable	249:10 251:9 253:21	conducting	205:7,11,20 206:22
236:14,18	268:8 269:4,15 272:4	292:2 318:7	207:1,6,10,20,24
compared	274:10 289:12,17	conduit	208:3 227:8 240:3,5
291:3	290:2,2 291:3,4,6,7,9	264:15,16,18 265:1,6	240:8 249:6 266:20
complete	291:12,24 294:2,5,23	265:10 266:16,17	constantly
298:25 323:7	294:24 297:14,25	267:7,7,10,18 268:4	206:2
complex	300:4,20 318:22	271:10,10,13,18,19	constants
214:17	concentrations	271:23,24 272:1,6,13	227:6
components	203:20,23 240:14,24	272:14,16 273:8,8,14	constituted
214:18 216:2 218:10	241:3 248:21 256:14	273:18 274:25,25	315:1
221:14 234:12	300:8 303:15,23	275:6,11,13,14,21,23	constituting
285:10,12	304:7,13 305:8	276:3,4,21 282:11,14	317:17
composition	conception	282:17,21 283:9,19	consumption
197:23,23 203:18	218:15	283:22 284:4,17	226:4
204:15.23 205:1.5	concerning	285:16 305:15.16	contact
206:21.25 207:9.19	170:18.19 186:2 189:8	confidential	172:11.13 316:10.13
208.2.213.2	250:7	308:14.16	317.9.19.21
compound	concluded	configuration	contain
314:25	320:22	194:20 211:18 214:14	243:20 284:11
compounds	concludes	configurations	container
192:17,22 193:1,6,8	320:19	209:16 216:22	214:1,3 315:17,24
193:12,13,20 234:18	conclusion	confirm	containing
comprises	315:14	196:13 197:10,12,22	239:18 246:7 254:8
243:21	condensation	221:12 244:10,15	255:4 256:16 268:1
computer	275:12 315:21	263:10 293:17	289:7
304:3.12	condensed	confused	contains
concentrate	274:25 275:22 284:17	202:2 312:20	223:5 243:16
224.17 289.15	Condenser	confusing	contents
concentrated	274:24 275:7.11.22	179:23	262:16 19 317:18
268:18 289:14 301:25	condition	connection	context
concentrating	201.19 240.15 294.11	175.18 221.7 245.8	175.15 229.25 259.22
269.9 289.25	conditions	262.13 263.12	260.13 20 297.10
concentration	172.16 18 174.23 25	consider	305:1 19 306:2
179.4 6 180.1 2 205.7	192.13 208.20 214.6	187.6 194.16 312.16	continually
216.0 223.10 224.6	216.11 12 226.15	considered	317.12
210.9 223.10 224.0 224.12 13 15 21 22	210.11,12 220.13 228.12 240.24 241.0	100.13 250.5 211.25	Continue
22 4 .12,13,13,21,22 224.25 225.2 5 7 7	220.12 240.24 241.9	312.0	242.3
224.25 $225.5,5,7,7$	240.24 234.13	S12.9	242.5
223:23 220:1,22	233.13 238:0 309:10		
227:2,5,9,11 230:0	CONQUEL	299:10	218:5
238:14,16,18 239:1,2	254:25 285:15 287:10		continues
239:22 240:4,20	290:24 292:12	215:4,24 516:1	273:12/275:9
		1	1

DTI Court Reporting Solutions - Chicago

800-868-0061

Cantinuina	229.16 220.2 290.11	077.6 10 001.6 14 15	CETD
	228:16 229:3 289:11	2/7:0,12 281:0,14,15	USIK
168:4 170:4	converting	281:18,19,22,23	213:19 258:7 260:11
continuous	269:7	282:11,12,14,15,18	281:4
172:4 195:22 197:25	copy	282:19 283:9,10,23	
198:2 199:12,25	221:24 222:9,16,17,19	284:5,6 288:25 289:4	181:20 183:6 220:19
203:14 204:5 205:9	230:10,23 233:11	289:5 290:22 291:5	cylinder
205:11,21 206:1,18	251:14 262:10 263:2	291:14 292:4 296:4	215:13
207:5,9,19,23 213:18	263:7	299:12,17 302:9	C3
214:4 215:11 216:11	corner	303:16 305:6,16,25	316:12
217:11,15 229:21,25	314:16	308:15,20 312:15	C3F6H2
231:13,16,23 232:3	Corporation	313:20,21,23 314:13	314:25 315:16,19
232:19 233:25 235:9	169:12	319:2,4,12,13,19,22	316:11,13
237:6,17 238:19	correct	corrections	
241:22 242:5 245:12	172:4 174:4,10,14,15	321:9	D
245:23 247:7,17	174:19 175:19,23	correctly	d
253:1 254:19,23	176:13,14,17,18	178:25 180:16 218:18	165:15 166:1 168:1,3
255:4 258:1,9,17	177:2.13 178:6.20	223:1	169:2 170:1 234:12
259:17	179:13.14.25 180:6	corrosion	234:19,25 251:23
continuously	181:1.6 182:1.24.25	252:19	252:11 321:2,7,7,24
200:15 201:7 203:3.9	183:2 184:25 185:20	cost	322:2,15
252:12.13.23 260:24	185:21 186:19.20.23	188:20	Dario
316:5	186:24 190:6 192:11	counsel	314:8
conversation	193:9 194:1.2 197:20	169:7.18 170:18.20	data
179:21 296:8	198:5.8.15 199:15.19	310:12.15.17.20	173:12,18 214:8,9
conversion	200:21 201:18 203:8	311:1,3 318:6 323:10	216:21
172:20 177:25 178:19	205:12,21 218:17,20	couple	date
179:8 180:25 198:4	220:25 221:3,10,16	208:11 251:13 295:16	169:5 321:2,24 322:2
199:9,14 200:17	223:24 225:4 226:20	course	322:15
201:10,25 203:6	227:20,21,24,25	204:24 215:23 240:12	day
205:15,17 206:21	228:16,17,19 229:4,5	court	323:13
216:14 223:14 224:8	229:7.22 231:23.24	177:8 180:23 197:4	days
226:10.13.17.19	232:5 233:25 234:4.5	207:14 208:6 211:11	322:20
227:3 232:11 257:8	234:8,9 235:12	256:20 292:20	deaqueous
257:21.23 258:5.6.8	236:15.16 237:11	303:20 322:21	190:20
258:16 259:8.16	238:9.20 239:21.25	covered	decant
260:16.18.21 278:17	240:22 242:18.23	188.11	215:11 217:11
300.9 306.19 22	249.2.11 250.8 251.6	co-efficients	decanter
307.4 14 16 22	251.7.10.18.19	174.21	195:2,14 209:13,14
308:19.23 309:2.25	252:21 253:17	create	211:18 213:23
310.2 319.16	254.24 256.16	172.15 274.12	215:12,23,24 216:12
conversions	258.20 259.16 21.24	creates	221:6 266:22 267:8
297:18 307:1	261:18.23 262:20.25	290:21	268:2,17 275:12
convert	263:1.24 264:4 5	critical	276:15 283:8.11.22
227.23 288.21 290.9	267:16.23.269:19.22	216.1	284:1,3,8 285:15,17
290:18	272:10 273.6 7 10 11	CRR	decide
converted	275:7 276:16 20	321.3 322.3 23 323.17	301:22
		521.5 522.5,25 525.17	

800-868-0061

decisions	307.4 314.20 24	denosition	236.22 230.5 241.2
218.5	316.25 317.15	165.11 166.1 160.6 14	230.22 239.3 241.2 241.16 247.24
doclaration	dehydrofluoringtions	103.14 100.1 109.0,14 170.8 11 18 10	241.10 247.24
222.22 211.22 212.6	210.3	274.17 207.11 310.6	desirably
223.23 311.22 312.0	217.3 dehydrobologeneting	214.17 297.11 310.0	254.20
315.11,20 514.5	105.10 227.10 22	310.22 320.17,20,22	234.20
declarations	193.19227.19,22 220.121522281.18	321.2,0 322.2,10	106.1
	229.12,13,22 201.10		190.1
311:25	285:14 289:10	310:10 Jan th	aesirea
decreases	291:25 301:13		226:19 236:7 279:13
232:7	denydronalogenation	210:20	308:23 309:7,8
define	1/6:21 1/8:14 229:18	derived	detail
18/:6 189:21 190:15	231:22 233:25 234:3	264:15,16,18	222:4
192:3 240:5	234:7,25 245:14,22	describe	details
defined	246:6 247:17 252:22	183:9 208:16 211:15	287:19
257:8 258:5,6 270:16	252:25 258:1 261:17	212:10 218:23	determine
301:1,5	270:13 273:25 274:3	described	172:25 173:6,17
defines	276:10,24 280:24	176:20 178:13 217:10	208:22
301:25	281:3,8,22 282:10,14	218:13 231:13	determined
defining	282:17,22 290:20	244:23 260:1 281:8,9	216:15 309:9
178:8 187:7 190:8	291:14 292:2,13	288:14 302:3 316:4	determines
257:11	301:11 302:19	describes	216:14
definition	304:18 305:12,15,21	176:11 264:2	determining
190:23 270:2,22,24	318:8	describing	295:12
271:1,2,6 301:2,24	dehyrdofluorinations	221:18 251:9 258:24	develop
degree	190:20	259:2 287:25	214:8 216:23 220:11
181:21	deliver	description	220:15
degrees	285:14,16	168:9,15 268:5 275:2	developed
187:9 192:24 251:25	denser	design	221:7
252:2,3 266:1 268:10	172:1	182:9,12 209:6	developing
284:24 285:18	density	designed	220:24
287:14 288:2,7	215:17	181:8,9,10 196:8	DHA
294:16,18,21,23,24	depend	211:17	291:8,8
298:7,8 315:4,18	205:14 257:4 299:11	designing	diagram
dehalogenating	dependency	181:16 182:2,4,20	210:7,10,11,15,21,23
195:16	199:7	183:23 184:1,3,24	211:1,22,24 212:4
dehvdration	dependent	185:18 186:22	217:21 218:6.7
275:14.16	255:24	192:16 193:2.5.7.18	271:15 272:19
dehydrochlorinated	depending	208:13.18 210:15	280:25 281:24 282:7
191.20	240:11	211:6 212:18 277:11	287.2.7.11.20.290.25
dehydrochlorination	depends	277:23	292:3 293:4 296:3
191:24 219:20 220.1	242:16	designs	298:15 302:25
264.10	deponent	209.13	303.14 304.19
dehvdrofluorination	321.1 2 6 322.1 2 18	desirable	305.11
187.25 188.5 220.7	327.10 10	203.14 204.4 206.2 25	diagrams
107.25 100.5 227.7	denosited	203.17 204.7 200.2,23	012.7
230.0 231.3 232.3	271.20	213.11 217.21 220.1	LIL.L difforence
233.4 231.23 232.3	274.20	220.0 232.14 230.8	unterence

Page 8

100.10 10 21 6 7	205-24 207-1	0(0.10.17.00.0(0.11	DuDant
190:18,19 316:7	295:24 296:1	262:12,17,20 263:11	DUPONT
differences	discrete	314:6,8,10,11,13	183:2,4 187:21 188:8
190:22 264:6 303:7	253:14	315:8	188:10,19 189:8,16
different	aiscuss	documented	190:4 191:1 210:15
1/4:24 18/:5 189:22	1/0:20 1/1:1 310:6,13	181:11 185:5,12	210:25 218:22
189:24 190:10,12,18	310:14,17,25	documents	219:17 220:5 250:16
190:21,25 191:14,15	discussed	250:24 251:9 307:6	Durham
191:21 193:19 199:6	1/0:8,11,14 310:18	308:3,4,6,9,17	167:6
199:6 209:1,1,4,13	discussing	doing	F
209:15 210:12,16	206:19 223:2 237:7	182:6,7187:25188:13	
211:2 214:17 220:22	248:21	188:17 190:20 219:8	\mathbf{E}
316:3,11,14 317:11	discussion	228:11 300:7 306:23	160.2.2
differently	230:23 263:4 290:14	domain	109:2,2
204:3 236:13	310:19	192:19	earlier
difficulties	discussions	Douglas	208:12 218:18,25
318:23	170:17	167:18 169:25	238:13 241:15 254:6
dilute	dispersion	downstream	255:12 257:13
300:8	183:14	217:5	288:25 290:20
diluted	dissolve	dozens	295:11 297:11,23
246:11,22 300:16	274:19	189:23 190:2	309:17,20 318:3
dimensions	dissolved	Dr	early
315:25 317:11	253:2,8,11,13,16,20	170:6 200:14 222:1	219:4,5
direct	254:9 255:5,21 256:7	233:8 250:4 262:9	easy
313:10	256:9,16 272:4 283:4	278:13 280:22	1/9:20 305:4 306:24
directed	283:7,12 284:7,12,19	306:17 311:20	eat
272:13 274:24 280:23	292:10 293:1,9	313:20 320:15	310:10
directing	distance	draw	economic
230:25 263:8	310:21	218:1	223:15 224:8 230:0
directly	distillation	drawing	274:12
183:4 273:15 300:13	171:16 209:15,16,18	216:8	economical
disassociated	214:4,6,24 215:6	drew	213:5
245:17	268:21 275:15,21	218:1	economically
discarded	276:3	drive	279:4
272:16	distinct	239:7 276:11	economics
discharged	189:21 190:4,9,13,15	driving	2/9:9
274:23 275:10	190:21,23,25 191:10	276:12	
disclose	191:12 246:19 256:9	dropping	216:19 239:9 241:2
238:12 244:16	distinguished	247:21	300:9 309:6
disclosed	246:17	drops	effective
224:2 230:9 231:5,23	divided	246:12	1/2:25 1/3:6,1/ 309:5
234:25 258:17	268:9	drum	
280:24 281:20	dividing	194:3,4	290:18 305:24 306:3
290:21	268:24	due	enticiencies
discloses	document	274:17	308:24,25
176:15 234:10	222:2 223:25 233:19	duly	eniciency
disclosure	233:20,23 262:2,11	170:2	188:4 208:22 237:25

DTI Court Reporting Solutions - Chicago

800-868-0061

Page 9

	I	I	I
239:12 278:19	272:1 274:18,19,24	equipped	excess
308:22 309:2 318:20	275:6 278:8 284:2,4	265:19	228:2,2,7,8
efficient	284:11,15,25 285:2,8	Ernie	Exchanger
239:12 258:25 259:6,6	285:17,17,19 287:13	167:23 169:11	271:11,25
259:12 277:2,5,10,21	287:14 288:1,2,7	escape	excuse
278:18,20,25 279:6	289:14,21 290:7,12	240:18	181:24 183:20 199:17
279:12,21 280:2,8,12	290:14,17 291:1,1,11	established	250:1 265:3,18
297:12,20 301:1	291:19 292:1 293:11	213:10 238:2	272:20 296:11
306:18 309:24	293:25 299:12,16	Ether	execute
efficiently	300:2,3,13,18 302:12	221:14	322:19
288:16 289:11	302:17	ethylene	exercise
eight	enriching	188:24 219:17	299:23 303:6
274:19	288:4	evap	exhibit
either	entered	285:1	168:10,16,18 221:21
175:14,15 181:12	300:20	evaporate	221:23,24 222:5,10
190:10,24 227:23	entering	285:19	233:15,18 251:18
235:11 286:21 310:5	207:10 225:25 258:12	evaporation	262:7,10 263:23
electrode	enters	171:9,11	309:16,20 313:19,22
182:17	207:6 273:5	evaporator	314:7
Elliott	entities	318:13,16,21,25 319:2	exhibits
167:5 169:22	246:19	319:5,8 320:2,4	168:8,14 229:10
Emperor	entrained	events	233:14 244:22
167:5	216:6 253:6,15 254:3	323:11	307:17 308:5,5,12,14
employ	254:11,13 270:21,23	evidence	312:14,16,23,24,25
235:5	270:23	244:21 307:2,23	313:5,5,16 314:2
enabled	environmental	exact	existing
316:24	274:12	187:3 191:4 288:3	213:17
engaged	environmentally	309:21	exists
208:17	286:8	exactly	228:24
engineer	envision	169:6 192:2 296:7	exiting
194:17 212:13 213:12	304:7	307:11 308:24	315:21
213:13	equal	EXAMINATION	expect
engineering	180:11 196:23 202:6	170:4 311:18	247:18 253:2,5 255:16
194:15,19 210:5	204:18 256:14	example	256:13 257:2 285:18
211:22,24 212:2	291:13	171:9 189:2 191:11,16	285:22,23 287:12
216:24	equals	195:3,10 209:8	307:25
engineers	268:10	211:17 212:24 216:7	experience
194:15 210:5,22	equate	216:14 218:3,13	171:4,8 182:20 183:23
English	182:7	224:14 231:3,20	184:24 185:16,18
168:18 262:5 314:7	equation	252:3,20 257:10,10	186:9,22 187:2,20
enhance	174:20	264:1,2,8 278:12	189:5,16,19 190:4
309:8	equilibrium	297:22 299:4	191:1 192:16 193:2,5
enrich	214:13	examples	193:7,18,24 208:13
291:11	equipment	255:10 310:4	212:14 220:3,23
enricher	171:14,16,17,18 196:7	Excel	248:24 306:22
268:3,18 271:12,21	209:6,7 213:5 236:21	212:9	experiment

DTI Court Reporting Solutions - Chicago

800-868-0061

106.1	240.1 242.14	215.2	297.11 20 200.25
100:1	240:1 242:14	213:3 figure	207:11,20 290:23
	1acility 212.14 15	11gure	292:3,0 293:4 290:3
50/:25 515:11,12	213:14,13	212:21,22 214:14	298:15 299:25
		263:15,18 264:2,11	302:25 303:14
181:10	219:16 253:7 306:25	264:24,25 266:17	304:18 305:11
experimentation	308:21 309:15	268:6 272:10 273:21	flows
1/3:1,7	factor	2/5:3,18	208:19
experiments	291:8	figures	fluoride
182:6 185:3 186:7	factored	256:12	245:19 258:21 259:19
188:13,15 218:24	201:5	file	298:20,22,23 299:2,7
250:6 309:9	factors	313:22	300:16 304:20,23
expert	257:4	filed	305:5 319:12
175:21 222:19 250:23	fails	313:1,9,12 322:20	fluoro
259:23 287:21	322:19	filtration	183:7,11 184:7,10
295:20	fair	171:9,16	218:25 219:5
Expires	175:17 192:6,9	find	fluorocarbon
322:24	fairly	230:13 304:13 316:24	191:12 213:20
explain	246:11 285:9 286:4	321:8	fluorocarbons
267:2	300:7 309:12	fine	219:8
explicit	familiar	175:12 223:19 249:19	fluorochemicals
295:23	222:1 262:16	finish	219:5,6
explore	fashion	220:25 221:3	fluoromonomers
188:2 290:19	188:6	finite	186:15
expressed	fast	242:10 243:1,2,4,5,10	fluoroolefins
268:23 316:22 317:7	246:12,12	243:13	317:2
expressly	faster	first	fluoropolymers
317:1	172:21 223:13 224:7	170:2 183:11 187:24	183:17,17
extent	225:9,15,19,25 226:3	191:8 212:3 218:4,4	focus
188:4 212:9 238:10	226:6,14 227:3,5	263:9,9 297:9	188:17
245:11	238:15 239:7 247:9	Fischer	focused
extra	247:10.11.13	216:3	257:17
222:9	fault	fitting	focusing
extract	242:3	213:21	189:24 287:5 298:15
276:8	favorable	five	follow
extracted	172:15.17	317:18	239:15 300:22 302:21
266.16.267.6.272.6.13	Favetteville	flash	303.24
275.21 276.2	183.12	194.3.4	following
extracts	fed	flow	275.12.16.301.23
276.11	266.9 268.2 272.14	200.1 1 203.18 204.8	302.13 303.4 305.11
270.11	273.18 274.18	204.19 19 210.7 10	321.9
F	275.10 274.10	210:11 15 21 23	follows
fabrication	feed	210.11,13,21,23	170.2
182:16	201.5 5	211.1,22,24 212.2,4	follow-up
facilitate	feeding	215.22,22 210.10,17	311.21
229:6 232:4	201.23 210.12 211.5	210.19,23 217.21 218.67 280.25	Fontanalli
facilitates	204.23 240.12 244.3	210.0,7 200.23	
14011104000	1001	201.24 202.7 207.2,7	J14.7

Football	172.25 174.5 175.25	105.6	200.8 212.16 240.24
FOOLDAII 170.21	1/5.25 1/4.5 1/5.25	193.0 fundamental	209.6 212.10 240.24
170.21 footmeint	1/0.1, 7, 0, 11, 13 190.2, 191.4, 4, 202.20		231.13 233.9 310.3
212.4	180.5 181.4,4 202.20	190.10,19 funther	317.20 given
213:4 f ormed	257:14 200:1,9	172.10 186.6 251.25	201.17
171.25 172.1	208:23 291:7	172:19 180:0 251:25	301:17
1/1:25 1/2:1	Iormulas	268:8 311:6 320:7	giving
iorcea	174:1,2 175:9 176:24	323:9	312:1
268:3	1/8:1/ 180:10	G	go
Ioregoing	215:20 257:14 260:2	$\left \frac{\mathbf{C}}{\mathbf{C}}\right $	1/2:1,19,21 1/5:11
321:8 322:19 323:6	Iorth	U 160·2	1/8:5,9 181:14 188:3
form	1/3:25 264:2	109.2	188:9 189:1 191:13
1/3:2,8,19 1/7:3	found	gas 171.11 195.2 196.10	191:15 202:22,22
180:13 187:12	314:25	1/1.11 185:2 180:19	213:23 215:3 219:23
189:10 190:7 191:3	fourth	180:23 187:7,7,7,10	230:12 231:25 232:8
193:10 195:8 196:4	312:12	187:14,14 195:10	248:9 259:7 263:3
197:14 198:9,16	fraction	194:24 208:25	279:3 280:13 283:21
199:20 202:9 204:12	261:13 290:9	218:19 219:19 315:8	286:20 289:21 294:4
205:13,23 206:4,10	frame	gaseous	300:13,15,18 301:2
211:4 220:9 221:1	188:12	187:8 315:1	305:21 306:7 311:21
223:4 225:11,23	framework	gases	320:3
228:4,23 229:8,23	286:24 295:20	182:21 183:24 184:1	goal
232:15,21 237:2	France	184:25 185:9,19	247:23 277:5,10,22
242:19 243:7 244:2	165:8 169:21 321:3	187:1,6 189:14	goes
244:13 245:1 248:2	322:3	192:21 193:1,13,13	204:17 212:8 224:4
249:3,12 250:9 253:4	fresh	193:19,21,22 219:10	227:10,15 247:20
254:25 255:8,14,22	197:19 198:12 199:16	277:12,14,23	266:15 267:25
256:22 260:4 266:7	245:25 246:2,9,10	general	268:17 271:9 273:15
267:5 268:15 269:23	264:14	174:20 241:2 259:23	274:15 278:4 307:4
270:15 273:5 274:6,9	FRIDAY	260:12	going
277:1,7,13 278:22	169:1	generally	180:9 181:5 188:8,9
279:1,8,14,23 280:4	friendly	183:9 208:18 217:9	188:20 196:18
283:14 285:5 292:15	286:8	generate	197:24 198:3,17
293:6,13,22 295:17	front	219:9 236:7	199:12,17 200:4,8,12
298:6 299:18 301:19	174:21 222:21 224:1	generated	200:23 201:13 202:3
302:10,20 303:10,17	230:24 233:11	302:18	202:4,15,16 203:2
304:10 305:7,17	251:14,18 281:25	generating	204:19,20 205:1
306:1 307:20 315:1	311:22	236:25 286:9	212:23 214:25
318:17 319:3,14,18	fuel	getting	215:11 216:25
319:23	182:18 183:7,15,19	170:23 202:2 214:10	222:11 224:25 225:3
formed	184:9	214:21 215:7,25	225:6 227:12 230:15
291:22 307:16	full	286:6,9 294:25	230:19 232:23 233:2
forming	209:12 211:21.23	301:14 306:5	233:6,23 235:11,18
244:20,25	212:1,8 216:24.25	GILSON	235:19 237:23 238:1
forms	234:15 251:21	167:4,10	239:1,13,24 240:5
228:18	252:10	give	246:1,10 249:22
formula	function	179:8 191:4 201:20	250:1 257:7.8.19
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

800-868-0061

	I		
260:15,25 276:15	284:14,19 285:22	184:16,17 192:7,15,25	huge
280:16,22 287:22	287:6 289:8 292:8	193:9,16 209:9	213:5
289:24 291:4 294:2	293:17 318:22	212:25 214:16	hundreds
295:5,9,21 299:11	happened	217:20 218:18 221:8	181:18,19
306:6,11,15 310:18	205:3	221:9	НХ
311:8,12,17 319:5	happening	HF-110	221:7
320:10,14	176:20 178:13 179:17	221:7	hydro
good	235:8 237:6 244:11	high	191:18
169:23 170:6,7 214:21	244:15 259:14	171:24 210:18 214:18	hydrochlorination
278:6 300:9	283:16 286:14	217:23 222:25	219:25
graduate	happens	237:25 238:14,16,18	hydrofluorinated
182:24 183:3 185:1,17	172:14 179:15 247:19	238:25 239:5 240:8,9	191:19
185:23 186:3,7,9,18	304:4	244:5 247:25 253:24	hydrofluorination
193:25	happy	254:2,15 259:8 279:3	191:23
grams	262:1	307:4,5,13 308:22	hydroxide
315:19	hard	309:2 315:2 318:20	195:16,19 223:11
gravimetric	192:3	higher	224:6 234:4,8,22
216:8	Harrison	188:21 223:10 224:5	245:18 246:15
greater	289:3 300:6,7	224:12,13,15,17,20	258:11,19 259:19
223:14 224:7 226:10	Hastelloy	224:24 225:2,5,6	260:23 264:17 265:1
226:13,17,19 227:3	252:20	226:22 227:2,5,7,10	266:12 268:20,20
group	head	227:12 241:3 247:8	269:5,15,19,22
183:16 184:10,11,15	213:21 261:9 315:11	261:6,22	270:12,14 272:25
guess	hear	highlight	273:13,24 281:17,17
251:1	177:5 310:24	233:22	288:23 289:7 300:6,9
guys	heard	highlighted	301:25
233:13	180:18 194:9,12,14	233:20	Hypothetically
	248:5	hired	179:3
H	Heat	183:4	H2O
Н	271:11,24	history	176:13,17
167:10	heated	313:22	-
half	271:11,24 315:17	Honeywell	I
216:18 268:25 269:2	height	165:11 169:15 188:10	idea
306:8	214:24 215:2	188:13 307:2,7,17	185:10
halide	heights	308:4 311:4 312:23	identification
230:6 231:3,20	214:7 215:16	321:4 322:3	221:21 233:16 262:8
hand	help	hot	identified
262:1 263:9	172:21 180:18 212:11	187:14 284:25 285:2	308:5
handing	213:12	hotter	ignore
262:9 263:2,6	helpful	298:11	290:7
handle	202:24 212:15 217:7	hour	II
209:3 213:20	HF	200:5 232:24 265:23	317:19
handled	189:2	265:24,25 266:9.11	III
185:9	HFP	266:13 306:8 315:20	313:15,17
happen	188:19 191:12	hours	Illinois
232:10,20,22 283:11	HFX-110	274:19	169:13
<i>, ,</i>			

immediate	172.7 204.10	introduce	220.10
	172.7 204.10	160.18 2/1.12	Lelion
j14.24	220.6 10 200.1	introduced	31/1·8
182.10	initially	195·23 2/1·22 275·10	514.0
implemented	713·73	275.13 282.10 13 16	J
181.11 185.13	inlets	273.13 282.10,13,10	J
implicitly	209.14	introducing	167:17
300.22	inonerable	206.19 239.17 242.2 4	Japan
important	297·15	invention	262:3
315.13	innut	244·17	Japanese
include	196·8 197·12 213·22	inventors	168:19 262:1,11
172.8 253.16 254.9	213:22 235:15	220:20.21	jbeaupre@brinksgi
288:10.11 294:8	inputs	involve	167:14
included	196:12.15.15 210:21	281:13	jney@brinksgilson
264:7	216:22	involved	167:14
includes	inserted	209:25 210:5.12.16.22	Jon
229:21 234:22	275:6 304:21	211:2 216:13 218:22	167:10 169:21
including	inserting	involvement	Joshua
172:6 243:14 252:13	201:8	262:14	167:11 169:22
266:21 305:6	inside	involving	JP
Inconel	206:22 207:1,20 237:6	187:23	168:19
252:20	instance	ionic	judgment
incorporated	319:11	183:17	299:23 300:11,22
211:21 218:2	integrated	ions	301:21 303:6
incorrect	213:20	245:18,18,19	jug
317:7	intended	IPR	215:14
increase	184:20	222:15,21 230:24	July
172:11,13 269:14	Inter	232:1 235:23 250:23	181:24
279:15	263:7	296:12	June
increases	interested	IPRs	186:25 322:24
171:25	323:11	262:25	justified
increasing	interface	IPR2015-00915	279:10
290:3	228:23 242:15,16	165:19 169:15	V
indicated	intermediate	IPR2015-00916	
262:24	186:5 191:17,18	165:20	N 166-2 240-5 221-2
indication	intermediates	IPR2015-00917	100:2 240:3 321:3
175:2	184:4,12 189:1,25	165:21	522:5,17,25 525:5,17 K ao
individual	191:7,16 192:13	irrespective	Nau 264.20
220:16	219:9	236:4 240:19	204.20 Karan
industry	International	isomer	Karen 166-2 221-2 222-2 17
183:2	165:11 168:16 321:4	317:18,19	377.73 373.3 17
influence	322:4	isomers	522.25 525.5,17 Korl
309:7	interpret	214:17	216·3
information	286:22	issue	210.5 keen
211:20 223:6 312:9	interrupt	248:11	198.73 206.25 215.25
ingredients	175:13	issued	170.23 200.23 243.23

2.62.21	0.01 5 0 005 00		102.14
263:21	261:5,8 285:22	296:21 297:1,4,7,8	192:14
KF	286:13 287:9,15	297:25 298:3,5,17,20	left
174:12,17 176:13,17	288:3 294:21 303:22	298:22 299:1 300:10	216:6 298:20,21 310:8
177:1,17,19 178:21	304:13 308:11 313:4	300:16,19 301:1,2,10	left-hand
179:9 180:11 181:3	knowledge	304:20 305:25	314:16
228:16,18,21,22,22	217:14,17 308:10	306:23 315:2,17	legal
229:3,6,12,16,19	known	316:13 319:1,5,22,24	169:11
230:7 231:3,15,21	174:21,25 196:16	319:25 320:3	length
232:3,11,12,19	288:24		303:25 316:10,12
237:20 238:1 239:13	КО		let's
243:21 245:11,13	246:22		173:15 178:9 187:19
246:7,7,16 247:5	КОН	212:4 214:10 217:21	187:22 198:1 199:3,3
248:12 250:7 251:10	174:12,16 176:12,16	250:6,13,16,19	200:5 201:7 202:23
253:3 254:8 255:4,6	176:25 177:1,14,15	laboratory	212:10 215:12
255:13,17 256:3,9,14	177:16,19 178:21,22	185:6 209:10 210:19	226:25 230:2,2,12
256:16 257:3,20,25	178:25 179:4,7,9	211:20 213:17,19	232:23 233:11 235:8
260:25 261:4 282:25	180:11 204:25 216:6	214:3,9,22 215:1,6	252:24 260:17
283:3,7,12 284:12	223:10 224:6,12,17	218:24	261:25 263:3 280:13
288:10,11,13,21,22	224:21,22,25 225:3,5	lack	290:19 294:4,16,20
289:8,10,21 290:2,9	225:7,25 226:1,23	214:2 217:14	306:4
290:18 291:3,6,8,12	227:2,19 228:2,7,9	language	let-down
291:15 294:1,6,7,13	228:16 229:3,22	168:18 262:5,11	248:16
294:21,24 296:22	232:7,11 235:9,14	large	level
297:1,4,7,8,24 298:3	236:9 237:14,20	240:13,14 290:9 299:7	196:9,22 198:18
298:5,16,21 299:1	238:6,7,14,19 239:1	322:17 323:5	204:21 205:3 210:18
300:9 304:20 319:17	239:2,6,18,20,22	larger	217:23 222:25 236:6
KF/KOH	240:7,9,20,21 241:6	236:14,19,22 299:6	253:14,20,22 266:19
290:4,9 296:17 305:6	241:12,21 242:4,7,9	lauryl	294:2 299:1
Kidwell	242:9,11,17,22,24	264:20	light
166:2 321:3 322:3,17	243:22,25 244:5,6,7	layer	179:5
322:23 323:3,17	244:17 245:11,13,25	283:17	lime
kilograms	246:2,7,7,9,10,14,16	lead	290:10,18 294:5,9
186:11,13	246:20,23,24 247:8	184:4 189:3,14 219:23	298:18,22 300:15,17
kind	247:16,25 248:12,18	227:3 247:9 308:1	limit
179:23 192:3 215:25	249:10 253:3 254:8	Leading	248:8,17
knew	255:4 256:4,6,8,14	317:24,24 318:17	limited
170:25 215:5	256:16 257:3,7,19,20	319:3,14,18,23	215:1 309:9
know	257:25 258:21	leads	limiting
179:4 181:15 187:3	259:17 260:25 261:5	219:20	297:1 298:12
194:3.5.8.10.13.20	281:5,18 282:13,23	leave	limits
194:23,25 195:1,3	282:24 283:7,12	179:8	248:12
199:14 210:7 212:15	284:12 288:10.12.13	leaves	line
213:15 214:11.12	289:8.11.12.14.20	207:24	191:8 273:12.15 275:7
217:11 223:16 229:9	290:1,10 291:3.4.6	leaving	284:2 289:17.20
229:24 239:2 243:11	291:12.13.15 294:1.2	208:2	312:12 321:11 322:6
244:16 248:17 256:8	294:8.14.22.23	led	linearly

Page 15

217.2	lashad	240.16 250.5 210.10	000.15 000.7 000 10
21/:2 LIONE	100Kea	249:10 250:5 310:10	255:15 262:7 309:16
	190:1 209:1,6,12,15	310:13	309:20 314:6
16/:4,10	215:22 219:1 222:3		
	100King	249:23	223:6 228:8 249:15
266:20 267:9,13,17	1/3:23 1/9:25 181:20	M	251:12 261:25
268:2 270:22,24	188:11,18,22 208:20	machina	263:18,22,23 264:9
278:6	220:22 223:17,22	265.18 10	265:17 266:15
liquid	228:5 271:15,16	203:18,19	267:17,25 268:8
171:5,10,12,15,21	287:19 293:24	Magness	269:18,21 270:5,12
190:11 194:24	295:11,23 296:1	167:23 169:11	271:9 272:12 273:12
214:13 219:1 275:22	314:9		273:24 274:15 275:9
290:5 315:1,9,20	looks	167:12 208:25	276:1,8,16 277:17,20
list	228:6,8 251:17	maintain	278:4,12 280:25
220:6 312:14	loop	196:1,19,21,24 198:11	281:5,10,20,25
listed	297:14 318:23	198:22 203:15 204:4	282:21 283:16,23
250:23 251:6 313:5	lot	241:16	284:9,21 285:6,8,9
listing	174:22 177:4 180:14	maintained	285:11,21,24 286:1
313:16,19	184:19 187:4,4	226:15 315:3	286:15,21,24 287:2,5
literature	188:11,13 192:18,19	maintaining	287:7,11,18,24
185:5,12	216:12 217:2,3	207:4,8,18,22 208:1	289:15,22,23 290:25
little	219:22,22 240:17	major	291:7 292:3,5,7,14
173:1,7,9 202:13	241:4 246:22,23	188:17 286:17	293:4,15 295:12,13
204:2 219:2 243:23	257:7 289:20	making	295:15,20,24 296:2,4
289:19 290:5,19	lots	183:13 188:3,15,22	297:11,24 298:10,15
311:9.9 318:2	189:23	191:7 279:16	299:20 300:12,22,25
Live	Lousenberg	manageable	301:16,23,23 302:4
167:11	165:15 166:2 168:3	248:10	302:14.14.22.25
LLP	169:7 170:1.6 200:14	manner	303:4.9.15.24 304:9
167:17	222:1 233:8 250:4	213:4	304:19 305:1.12.19
location	262:9 278:13 280:22	manufacture	305:25 306:3 318:4.9
169.8	306.17 311.20	183:24 184:2,24	318:13
logical	320:15 321:2.7.24	189:17 193:8,19	Masavuki's
289·22	322.2	218:22 220:7 317:2	286.17
lonely	LOUSENBERG.Ph.D	manufacturing	mass
310.16	322.15	182:21 185:19 187:1	261.12
long	10w	190:5 193:2.18	matched
188.20 217.8 222.4	239.23 24 240.20 23	219:12 220:3.24	197.12
306.6	239.23,24 240.20,23	277:12.14.23.25	material
long torm	242.12 243.11,23,23	Manzer	172.1 197.22 214.5
199.19 101.17 220.12	244.8 240.21,23	313.20	210.14 275.13
188.18 191.17 220.12	247.1,22 255.21	man	217.14 275.15 motorials
1006	201.13 203.9,12	220.11	172.11 14 184.16 20
190.9 209.11 217.4	289.13 303.8	mark	172.11,14184.10,20 200.4214.12210.15
210:0 200:22 247:2	10WCF 220.12 247.16 10	221.23 222.12	209.4 214:15 219:15
250:11 201:14 28/:1	259:12 247:10,18	marked	220:4 230:21 232:19
500:0 507:12 514:11 216:17	248:15	168.8 1/ 221.21	511:24 51/:10
310:17	lunch	100.0,14 221.21	maun

800-868-0061

DTI Court Reporting Solutions - Chicago

Page 16

202 2 12			
202:3,13	266:1 268:11	mixed	258:11,11,18,19,20
matter	Merrill	266:20	258:21,21 259:17,17
169:14 175:19 230:4	169:12	mixing	259:18,19,20 260:22
236:6 307:18	metal	253:24 254:2,12,15	260:22,25,25 261:1,4
maximize	223:11 224:6 315:17	mixture	261:5
208:21	315:24	206:22 207:1,20	moment
maximizing	method	214:17 254:13	171:19 209:21 235:25
279:13,16	314:24 315:7,8,15	264:14 268:19 283:7	271:20
mean	methods	290:5 291:15 296:17	Monomer
172:18 176:7,9 190:24	196:6 308:22 309:2	298:5,21,23 304:20	182:15
203:17 204:7 205:7	Michigan	304:21	monomers
213:7 214:24 224:11	167:13	model	182:16
226:13,23 236:17	microscopic	210:23 211:20 212:8	morning
246:14 247:12	253:15	214:18,20 216:24	169:23 170:6,7 310:9
253:12 266:6 268:14	middle	293:16 304:3,3,12	move
268:25 269:24 271:1	314:18	modelers	208:10 249:15 251:12
271:6 278:19,20,24	mid-2008	214:12	261:25 318:20
279:6,12,22 280:2,8	184:11	modeling	moved
285:25 295:16	millimeters	210:20 244:10,14	299:19
296:23	266:1 268:10	molar	moving
meaning	million	180:1 256:11,14,25	319:8
172:19 213:5 253:8,12	253:22	257:2 261:12,23	
means	mind	mole	
171:11 186:4 266:8,25	171:19 179:20 191:9	174:11,11,12,12,13,16	N
267:2 268:16 269:2,4	209:21 226:25	174:16,17,17,18	167:1 168:1 169:2
315:18	mine	175:2,4 176:3,4,11	Nafion
meant	301:6	176:12,12,12,13,15	183:14,18
267:12 295:19	minimization	176:16,16,17,17	name
measurable	279:22	181:3,5 247:3	169:11,20 192:22
243:4	minimize	molecular	264:19
measure	208:21	179:19 202:17 247:4	names
196:2,6,14 197:11	minimizing	253:13 261:15	312:20
measuring	280:3,8	Molecularly	nanoscopic
208:19	minor	253:13	253:14
medium	317:18	molecule	NaOH
224:18 248:10	minus	245:19	268:9,9,24,24
membranes	315:22	molecules	nature
182:16	minute	184:22 187:5,15	213:1 253:6
memory	199:7 230:13 247:13	moles	NC
312:19	263:3	175:3 178:8,9,20,21	167:6
mention	minutes	178:21,21,22,25	neat
226:10	280:14	179:2,6,7,8,9,9,10,12	204:24
mentioned	Mischaracterizes	179:16 180:7 202:24	necessarily
173:11 192:5,9 221:5	193:11 296:5 307:21	203:1,2,7,8,11	192:20 204:14 227:6
243:1 250:5,25 251:4	missing	206:19,20 247:12,13	229:20
mercury	178:24 286:14	257:18,18,19,20,20	necessary

DTI Court Reporting Solutions - Chicago

800-868-0061

www.deposition.com

202.4.0	177.4 010 01 01 00	005-01-075-00	005.14 006 15 000 0
302:4,9	1/7:4 312:21,21,22	225:21 275:22	295:14 296:15 298:2
need	314:16	obtained	298:14 301:4,9 303:1
1//:5 180:15 196:14	numeral	212:2	306:14 307:15 311:8
216:2 217:4,15	313:15,17	occur	311:16 312:11 313:2
274:13 298:23	numerous	215:18 223:13 224:7	313:8,14,19 314:2,15
300:24 301:3 318:14	181:15	238:9,15 242:23,25	314:23 315:7 316:3
needed		occurred	317:6 318:5,11,25
209:7 217:11		193:25	319:21 320:2,6,13
needs	1(0:2	occurring	once
197:23 240:9	109:2 Object	211:1 252:23 254:12	213:10 237:15 238:8
negative	00ject	284:9	245:21 274:19 309:9
251:24	250:22 200:7 207:5	occurs	one-to-one
neither	268:15 285:5 295:17	229:10 261:11,11,17	175:4 201:14 202:19
323:9	Objection	offhand	000
nervous	1/3:2,8,19 1/7:3	187:3 261:8 315:12	169:3
202:13	180:13 187:12 189:6	Office	open
net	189:10 190:7 191:3	165:2 166:5	263:21,22 296:20
261:10	193:10 195:8 196:4	offices	operate
never	197:14 198:9,16	166:5	302:17
181:11 194:8 212:8	199:20 202:9 204:12	oh	operated
214:18 220:17	205:13,23 206:4,10	175:14 177:10 210:2	254:20 285:18 288:7
226:25	211:4 220:9 221:1	224:3 237:16 248:4	293:11
new	223:4 225:11,23	271:22 301:6 313:2	operates
182:8 183:16 184:15	228:4 229:8,23	okay	297:1
184:21 186:15	232:15,21 237:2	175:17 176:10 177:6	operating
221:23	242:19 243:7 244:2	177:23 178:3,11,12	265:22 287:3
NEWLY	244:13 245:1 248:2	178:18,23 179:3,4	operation
168:8	249:3,12 250:9 253:4	181:20 187:22	194:10 195:2 204:16
Ney	254:25 255:8,14,22	193:16,17 199:3,9,10	215:12 257:5,11
167:11 169:22	260:4 269:23 270:15	200:3,11 201:7,23,23	258:7 317:14
North	274:6,9 277:1,7,13	202:25 212:10,12,17	operations
166:7 167:19 169:1,10	277:24 278:22 279:1	213:9 218:9,21	210:12,16 211:2
183:12 322:17 323:5	279:8,14,23 280:4	219:12 220:2 221:20	213:18
Notary	283:14 292:15 293:6	222:6 223:22 227:17	opinion
166:3 322:17 323:4,18	293:13,22 296:5	230:18,19 232:2,25	231:9 244:25 245:5,9
notebook	299:18 301:19	233:1,5 235:24 236:1	247:1 248:20,23
212:7 217:22 218:2	302:10,20 303:10,17	236:3 237:10,17,20	250:7,22 255:1
notebooks	304:10,24 305:7,17	238:10 241:19	259:23 285:11
245:6 250:6,14,16,19	306:1 30/:20 317:24	248:25 249:19,21,25	286:19 292:7 295:21
noted	318:17 319:3,14,18	249:25 251:16	307:15,22 310:1
264:6	319:23	257:24 260:10,17,20	316:22
number	objective	261:25 262:4,9,24	opinions
168:9,15 169:15,16,17	188:2	263:2,14 270:8	244:20 317:6
187:3 191:5 221:9,11	observed	271:20,22 280:13,19	options
221:25 233:20	278:8	281:1 282:6 287:2	260:14
numbers	obtain	290:15,19,24 291:10	order

	I	l	
181:18 185:3 196:24	259:23 285:6,11,21,24	parameters	271:10,18,22,23 315:8
197:21 261:19	286:24 292:7 294:12	257:11	319:1
274:16 276:11	295:12,15,15,19	paren	patent
297:20 300:9 309:6	296:1 305:1,20 306:2	296:20,21	165:2,5,12,22 166:4
ordinary	overall	part	167:16 168:10
172:24 173:5,16 223:9	208:22 216:8 280:11	188:7 206:12 223:18	169:16,24 173:22
224:4 230:5 231:2,19	overnight	237:21 238:1 253:21	175:18,23 176:6,21
235:15 236:5 241:11	310:6	265:24 266:12	176:22 178:14,15,17
241:20,24 253:23	oversight	276:12 286:17	179:16 180:4,10
254:18,22 274:4	286:17	296:16 310:15	181:5 188:1,7 221:6
277:6,11,22 288:20	overstating	Partes	221:9,11,17,18,25
289:6 292:9,25 293:8	279:18	263:7	222:6 228:6 256:13
293:19 298:17	Owner	participation	257:15 260:3,6
299:14,22,23 300:1	165:12 167:16 169:24	320:17	262:11 271:3,4,5
301:18 302:7,16	o'clock	particular	309:16,20,22 313:23
303:5.13 304:2.7.17	169:6	210:25 219:2 312:20	patents
316:23 318:12.16		314:17	188:14 220:19
organic	P	parts	path
211:19 216:1.4.7	Р	176.24.25.25.177.1.1	292:6
225:10 226:4 228:7.9	167:1,1 169:2	177.14 14 15 15 16	pending
236.25 243.14 16 17	packed	177.17.17.18.18.19	323.11
254.14 265.5 270.23	233:13	178.7 7 8 179.17	people
270.25 281.13	page	180.8 197.24 198.3	261.13
organics	168:2,9,15 177:24	198.12 13 17 18 20	nercent
253.2 6 16 254.3 9	234:15 251:20 252:9	198.21 22 23 199.1 4	177.24 178.19 179.7
255:5 21 256:7 16	252:10 263:14.15.20	199.6 7 11 17 200.1	180.25 196.19 20
270.21 283.4 8 13	263:21.22 264:1.3.8	200.2 18 20 23 25	198.4 6 199.9 14 17
284.7 12 20 286.1 6	264:25 273:13 282:1	200.2,10,20,23,23	200.16 201.9 25
286.9 18 20 23 292.6	296:11 309:3 312:5	201.23 24 202.1 3 5	200:10 201:9,25
200.2,10,20,22 222.0	313:15 314:15.16.18	201.23,24 202.1,3,3	202:4,17 205:5
2)2.10 2)3.2,),12	316.20 317.13 14	265.23 24 266.8 10	205.17 200.21
176.10 201.2 / 322.20	321.11 322.6	205.25,24 200.8,10	$224.13\ 232.11,12,19$ $234.11\ 17\ 235.17\ 10$
170.10 291.2,4 322.20 originally	nages	200.10	234.11,17 233.17,19
200.20	165.17 321.6 322.19	180.2	235.21 230.8 241.12
JUU.20	naner	100.2	241.21,23 242.3
200.14 215.14 24	286.5	party	247.3 246.9,19
209.14 213.14,24	Par	525:10	255.15,17,20,24
	213.18	pass	250:5,4,0 257:9,21
212:7	naragranh	170:23	257:25 258:8,10
outiining	222.23 223.2 5 226.11	passage	259:15 200:10,17,21
210:11,15 211:1	222.23 223.2,5 220.11	205:17 200:4,25 207:2	201:19,20 204:17
OULPUL	227.10 220.15 229.2	268:14,24 314:25	200:11 208:25 209:2
196:9 197:11 203:19	230.3,23 234.10	passages	269:5,11 278:9,16,16
ALLENITE		1 109.77	I 294°N / N I S 22.24
106.12 14204.15	255.5 250.2 251.21	509.22	206.17207.24725
196:13,14 204:15	255.5 250.2 251.21 252:10 296:12,13,16 297:10 309:3 312:12	passed	296:17 297:2,4,7,25
196:13,14 204:15 205:1 208:21	253.5 250.2 251.21 252:10 296:12,13,16 297:10 309:3 312:12 314:17 23 316:19 20	passed 288:8	296:17 297:2,4,7,25 298:4,13 299:5,6,9 200:8 206:10 22

800-868-0061

	I	I	
300:8 306:19,22	228:18,24 232:13	Plaza	possibly
308:20 309:25 310:3	235:18,19 237:9,13	166:6	286:19 318:19
315:3,17 317:18	238:7,17,19 239:1,3	please	potassium
percentage	239:6,21 242:13	169:18 173:24 175:13	234:4,7,22 245:18,20
255:6,21 261:22	243:14,16,18,19	177:7 180:22 193:4	258:19,21 259:19,19
Perfluoroalkene	245:12 246:2,18	197:1,3 207:11,13	260:23 281:17
221:14	247:6,8,25 248:4,18	208:4,5 211:8,10	potential
performed	250:8 251:10 253:3,9	222:16,24 232:1	220:11
265:25 272:4 315:7,15	253:15,15 254:3	235:23,25 251:21	potentially
performing	255:18 256:10	256:17,19 263:14	182:8
222:25	257:17 258:9,17	267:3 269:7 292:17	Power
period	265:15 266:13,16	292:19 296:12	181:21 182:5,14,19,23
184:2,5 190:3 315:20	267:4,9,13,15,17,22	303:19 316:20 321:6	PowerPoint
periods	268:1,2,17 270:22,24	plus	218:1
189:15	271:11,24 272:6,12	174:17 176:12,13	practice
permit	281:4,21 282:9,23	178:20 248:11,11	194:18 248:14 303:14
288:21	283:21,25 284:3,8	257:18 268:9,24	practicing
permutations	285:15,16 288:4	291:3,6,8,16 296:21	280:23
244:17	306:23 307:3,12	point	precipitant
person	309:4,5,10,13 315:1	184:14 187:16 213:13	296:21 297:4 298:6
223:9 224:4 228:11	315:9,20	277:18 286:5 290:4	precipitate
230:5 231:2,19 236:4	phases	293:12 296:9 301:4,5	248:14 269:16 294:14
286:3 302:7 304:1	194:11 195:10 217:16	301:9 308:18,21	294:17,18,25 298:19
316:23 318:12,15	228:23 238:2 242:15	309:1,23 310:2	precipitated
perspective	243:12 254:13,16	318:12 319:21	266:21 272:5,15 273:2
241:4	266:21 278:7	pointed	273:5,9 305:5
petition	Ph.D	240:16 252:9	precipitating
263:7,21 264:3 312:17	165:15 166:2 167:11	points	290:3 297:8
312:25 313:9,11	168:3 170:1 183:4	173:12,18 192:23	predict
petitioner	321:2,24 322:2	217:24 284:22	214:11 216:25
165:9 167:3 169:8,21	picked	293:10	predicted
313:1,9	194:18	polymer	215:20
Petitioner's	pilot	182:15	prefer
233:18 262:10	209:10 213:14,15	polymers	262:4
petitions	placed	182:17 186:15	preferably
262:25	230:23 320:3	polytetrafluoroethy	234:6 235:4 236:14,19
Ph	placement	185:8	252:1,12,18
321:7	209:14	portion	premeasured
phase	placing	256:6,7 280:11 309:23	196:15
176:23 177:11 178:16	221:24	portions	preparing
179:15 189:2 190:11	plan	233:20	176:1 185:16 308:7
190:12,20 194:5,7,21	306:7	possibility	311:25 314:3 317:1
194:23 195:1,2,3,5,6	plant	319:8	presence
195:12,14 211:18	209:10	possible	250:7
215:18 216:1,2,4,6,9	play	247:24 293:21 304:6	present
219:1,8 224:22	216:4	309:22	167:23 175:4 176:22

www.deposition.com

176:23 178:15,16	210:8,13,17 211:3	186:23 196:6,11,24	191:15
179:12 206:9 229:20	212:3,19 215:3,8,10	201:10 202:5 203:5,7	purity
230:7 231:4,21 232:3	216:23,25 217:1,9,12	210:6 213:2,11,24	214:18
234:17 239:6,20	218:5,15 219:12,17	225:21 236:8,13,18	purportedly
242:7,22,24 243:5,10	220:2,6,15,17,24	236:25 243:14,17	230:9 231:5
243:13 245:11 246:8	221:13 223:15 224:9	247:13,24 254:7,10	purpose
254:3 255:6 273:4	232:14.18 236:7	254:12 276:12.14	186:1 258:25 291:1.11
288:15 292:4.10	251:23 252:1 258:17	315:21 317:16	291:20 292:1
293.2	264.11 273.10	production	purposes
pressure	276:12 277:3.5.10.12	180:4 184:19 191:17	269:18 316:24
248:15.16 252:5	277:22.23 278:18.21	209:12 221:15 226:7	pursuant
presume	278:25 279:6.12.22	279:13.17	166:3 322:20
194.10	280.2.8.25.282.21	products	nursue
nretty	286:8 287:10 289:12	172.20 22 175.3 182.8	188·14
106.11 215.10 280.13	289.25 290.16 24	182.10 183.7 11 14	nut
190.11 215.19 209.15	203.23 206.3 207.13	182.10 185.7,11,14	207.10 200.2
274.16	295.5 290.5 297.15	104.7 190.25 195.24 222.14 224.8 226.18	297.10 300.3
274.10	297.20 302.24 303.8	223.14 224.8 220.18	250.1 287.21
177.0 107.5 207.15	204.0 15 206.19	230.21 239.7 279.3	239:1 287:21
177.9 197.5 207.15	304:9,13 300:18	308:23 309:8	
208:7 211:12 256:21	309:10,24 317:2	professional	185:7
292:21 303:21	318:13,15,19	286:19 323:4,18	p.m
previously	processes	progressing	249:24 250:1 280:15
168:14 233:15 241:10	181:7,14,14 182:2,4,8	237:18	280:17,18 295:4,6,7
244:24 262:7	182:9,12,13,20	project	295:8 306:10,12,13
price	183:24 184:2,3,12,15	210:6	311:13,14,15,16
171:1,2 251:1,3	184:24 185:13,19	proper	320:9,11,12,14,20,23
printed	186:22 187:1,20	303:15,23 304:7	
170:23	189:17,21,24 190:1,5	properties	Q
probably	190:13,16,22,24,24	183:18	quantitative
180:16 188:9 219:7	191:1,10 192:13,16	proportional	317:15
235:21 238:11 247:2	193:8,19 208:13,18	240:3	quantity
247:3 278:17 290:4	218:21	public	243:4 276:14
294:10,25 299:4,4	processing	166:3 192:19 250:21	Quartamin
300:2,23 304:2	212:22	250:24 308:14	264:19 265:13 266:13
problem	produce	322:17 323:4,18	Quartarmin
302:13	179:10 180:9 181:5	Publication	265:10
procedure	196:24 203:5 247:23	168:16,19	quarternary
278:5 322:20	248:13 259:18	publicly	265:14
proceeds	produced	250:19 251:8 308:9	question
228:16 229:3	180:11 181:3 186:9.14	pull	170:25 176:10 177:5,7
process	247:13 257:25 264:9	171.25 313.8	177:9,24 180:14,18
171.6.21 172.4.6	303:3	numping	180:21,24 192:2
181.13 183.14 185.7	producing	214.5	197:2,5 204:2 207:13
185.10 24 193.3	producing	214.5	
10.7.10.4717.7.7.7	188.21 192.6 10	numns	207:15 208:7 211:9
198.2 205.9 206.12	188:21 192:6,10 product	pumps 196·7 213·19	207:15 208:7 211:9 211:12 225:17 227:1
198:2 205:9 206:12 206:18 209:2 3 11	188:21 192:6,10 product 180:7 8 184:18 186:17	pumps 196:7 213:19	207:15 208:7 211:9 211:12 225:17 227:1 227:13 228:25 230:3
198:2 205:9 206:12 206:18 209:2,3,11	188:21 192:6,10 product 180:7,8 184:18 186:17	pumps 196:7 213:19 pure	207:15 208:7 211:9 211:12 225:17 227:1 227:13 228:25 230:3

800-868-0061
249:8 256:21 258:23	175:5 247:3,3 256:11	174:25 175:8 177:18	196:1,3,7,9,22,25
259:13,14 260:12	256:25,25 257:2	178:14,23 180:9,12	197:16,25 198:7,13
270:11 277:21 287:9	ratios	188:3 192:13 203:15	198:14,19,20 199:9
292:21 293:15	176:7 214:8	206:22 207:1,5,9,19	199:12,18 200:16,18
294:13 303:21	ratio/weight	207:23 208:2,23	200:21,24 201:8,11
questioning	247:3	212:19,21 223:13	201:13,18,22 202:12
191:9	react	224:7 225:9.19.21.24	203:3.10.24 204:5.7
questions	177:16 197:16 201:13	226:14 227:3,5,6,8	204:21 205:3,6,11,21
179:23 208:11 222:12	201:25 202:4.16	227:12 228:1.7.11.15	206:1.22 207:1.6.10
251:13 280:23	239:21 240:21.24.25	229:3.18.21 230:7	207:20.24 208:3
301:16 311:6.21	242:9	231:4.16.21 232:5.8	213:16.17.21 216:11
318:7 320:7.16	reactant	232:10 237:18.23.25	216:14.16 224:23.25
auick	172.25 173.17 180.7 8	238:2.8.15 239:7.11	225:3.6.8 227:11.14
240.17	181.16 196.18 22.23	239:13.25 240:2.6.7	227:15 228:19.24
auickly	197:12.13.15.19.20	240:16.20 242:16.22	229:21.25 231:13.16
242.9 246.11.23	197.24 198.1 3 6 13	242.24 245.22 246.1	231.23 232.4 19
auotes	198.14 199.12 16 18	247.7.7.9.11.12.18	233.25 235.9.16
251.1.3	200.17 18 20 22	248.25 249.9 252.22	237.6 17 238.14 20
0-II-A-R-T-A-M-I-N	201.24 24 202.8	252:23 254:24	239.3 18 240.17 21
264·19	203.1 2 9 12 205.10	256.11 257.14 258.1	241.6 12 17 22 242.6
204.19	205:20 206:1 20 20	259.16671215	242.11 243.9 244.1 6
R	203.20 200.1,20,20	260.1 23 24 261.11	242.11 243.9 244.1,0
R	240.17 274.8 11	261.14 17 265.25	245.22 23 246.3 6 11
167:1.4 169:2	316.11	201.14,17 203.25	245.22,25 240.3,0,11
ran	reactants	278.8 16 280.24	240.21 247.17,20
209:2	172·20 22 174·22	281.37813285.13	253.17254.141619
range	175.3 176.8 25	287.6 24 288.19 23	255.4 256.15 257.5
192:23 224:1 261:21	190.25 195.23 24	288.24 289.2 290.21	257.19 258.2 9 12
rate	201.8 10 12 204.7 8	200.24 209.2 290.21	259.15 18 265.7 19
177:25 178:20 198:4	201.0,10,12 204.7,0	298.14 25 301.1	265.22 266.9 17 19
199:1.9 203:6 204:9	204.9 205.0 200.5,8	303.3 304.18 305.12	263.22 200.9,17,19
205:17 206:21 207:5	$200.12\ 225.10$ $227.11\ 14\ 235.12$	305.15 309.7 316.25	273.16 25 275.10
207:23 216:16.17	240.4 15 241.16	317.16 318.8 20	275:10,25 275:10
226:3 227:6.8.8.12	240.4,13 241.10	reactions	281.9 22 282.10 14
227:15 232:7 240:3.3	279.3 7 280.3 9	180.3 181.17 182.7 7	282.17 20 22 283.1 5
240:4.8.8 247:11.18	309.10	188.24 25 189.2 4	282.17,20,22 203.1,5
248.25 249.5 9	reactant's	100.24,25 $105.2,4190.11$ 202.22 219.1	283.17,22 283.14,15 287.5 289.17 291.4
257.21 258.8 16	203·23	219.8 227.9 241.3	207.5 209.17 291.4 201.14 202.12 13
259.16 260.21 278.8	reacted	217.0 227.7 241.3 244.4 10 21 23	291.14 292.12,13
278.16 306.19 22	106.24 107.20 108.7	280.10 306.23	300.21 302.19
308.19 309.25 310.2	190.24 197.20 198.7	200.10 300.23	305.16 22 25 315.23
rates	174.11 16 176.4 11 15	reactor	316.2 6 12 317.11 12
199.5 203.18 204.19	174.11,10170.4,11,15 170.7108.10200.24	172.6781214	317.20.22
204.19 216.19	1/9./ 190:19 200:24	176.20,1,0,12,14	517.20,22 rooots
265.22 23 307.16 23	172.16 17 10 21 172.6	170.20,21 170.13	246.12 22 247.20
ratio	172.25 174.1 7 10 15	105.10 190.0,10,11	2+0.12,22 247.20
14110	1/5:25 1/4:1,/,10,15	193.12,23,24,23	reau

DTI Court Reporting Solutions - Chicago

800-868-0061

			017.0
177:7,8 180:21,23	249:23 280:17 295:6	223:2 233:9 251:14	217:3
197:2,4 207:12,14	306:12 311:14	289:3 306:18,25	reject
208:6 211:9,11	320:11	316:4,5 317:8,9	317:1
256:18,20 265:17	recognize	referenced	relate
278:15 292:18,20	302:12	168:14 308:4	182:13
303:20 317:7 321:8	recognized	references	related
322:18	218:10	317:3	323:10
reading	recognizing	referred	relates
175:25 234:14 241:11	179:5	225:13 234:22 307:6	174:8
241:20,24 253:24	recollection	referring	relating
254:19 286:15	230:22 250:10	222:7 223:17 224:21	186:18 189:17 191:2
315:12 316:1,23	reconfigure	225:10,20,21 226:3,6	221:6
ready	301:15	227:19 228:14 229:1	relationship
249:15,25	reconstruct	236:20 243:2,15	202:20
reagent	301:16	250:17 263:23	relatively
228:10	record	307:17 313:3	305:4
reagents	169:4,19 200:8,12	refine	relied
204:23 209:1	230:12,15,20 233:2,6	210:23	250:22 251:5
real	242:1 249:20,22	refined	rely
257:9,10 310:19	250:2 263:3,4,6	210:23	244:19,24 251:8
realized	280:13,16,20 295:5,9	reflect	remain
188:19 213:1	306:11,15 311:12,17	242:1	207:6,10,20,24 208:3
really	320:10,14,21 323:7	reflects	remained
204:16 212:7,8 215:13	recover	244:7	266:20
217:4 246:15 299:11	269:21,25 270:2,5,12	reflux	remaining
301:3,17	271:7 280:12	214:8	177:16 179:9 202:10
realtime	recovered	reformulating	255:20,24 256:5
295:2	264:15 267:22 273:13	183:13	275:13 289:16 299:5
reason	305:13	refresh	remains
288:3 321:11 322:6	recovering	230:22	196:9
reasonable	270:4	refrigerant	remember
287:11,15,17	recycle	187:15	208:14 221:11 240:2
reasons	206:2,12 236:15,19	refrigerants	277:18 289:14 296:7
287:16,23	269:19 276:23	187:19,23 189:8,18	307:11
recall	305:24 306:3	190:5 191:2	remove
191:10 209:25 218:17	recycled	regard	202:12 246:1 285:3.3
223:1 227:17 233:19	236:23 269:22	175:23 176:7 179:16	287:25 288:22
233:21.23.24 234:2.6	recycling	204:6 211:16 218:21	290:12 291:21 292:4
234:10 257:15.22	206:7 267:21 270:13	220:2 230:23 231:9	293:1.20 299:12.24
295:14 309:21 312:1	276:17	231:13 260:9 307:15	300:19 302:17 303:2
313.6 314.9 315.12	redirect	309.13	303.7 318.13 16 19
318.9.15.18.319.7	311.10	regarding	319.12
recalling	refer	259.14 318.3 7	removed
294.20	224.20 225.19 226.22	Registered	195.25 203.24 204.7
recess	264.24 289.3 312.19	323.3.18	205.10 20 206.1
200.9 230.16 233.3	reference	reiterations	257.3 268.2 273.10
200.7 200.10 200.0			237.3 200.2 273.10

DTI Court Reporting Solutions - Chicago

800-868-0061

274:25 275:12	320:24	313:4 314:3	225:17,23 228:4
287:12 288:6 293:2	residence	reviewed	229:8,23 230:10
293:10,25 299:15	215:22 216:13,15,18	262:25 263:11 308:6	232:15,21 233:13
318:25	216:20 226:16,17	311:24 312:3	237:2 242:19 243:7
removing	242:10 243:1,3,6,10	reviewing	244:2,13 245:1 248:2
268:19 290:13 291:2	243:13	175:18 262:13	249:3,12,16,19 250:9
291:23 292:6	resistant	right	253:4 254:25 255:8
rendering	252:19	175:20 178:1,1 197:21	255:14,22 256:22
250:6,22 251:5	respectively	199:8,13,22 200:4,6	260:4 266:7 267:5
Renzo	265:25	203:4,7 209:24	268:15 269:23
314:9	response	211:25 212:20	270:15 274:6,9 277:1
rephrase	210:1	217:25 218:7 220:4	277:7,13,24 278:22
225:13 278:20	responsibilities	222:8,12 223:18,18	279:1,8,14,23 280:4
replace	211:15	223:25 224:19	283:14 285:5 292:15
197:20	responsibility	226:12 229:1 235:13	293:6,13,22 295:2,17
report	210:24 211:6 220:21	238:16 239:19	296:5 299:18 301:19
222:14,19,24,25	responsible	245:24 287:4 296:19	302:10,20 303:10,17
227:18 228:15 229:2	210:14 220:5	297:15 301:9 307:19	304:10,24 305:7,17
229:19 230:4,11,24	restate	311:11 322:18	306:1,6 307:20 311:8
232:1 235:22 245:7	228:22 256:17 303:18	RMR	311:19 318:1,24
250:23 251:5,6	result	321:3 322:3,23 323:17	319:6,15,20 320:1,6
263:12 270:3 271:7	180:4 226:20 236:7,24	RMR-CRR	roughly
289:4 296:12 308:6,7	254:2 257:25 261:10	166:3	256:14
reporter	317:20	Robert	route
177:6,8 180:23 197:4	resulted	165:15 166:1 168:3	188:19
207:12,14 208:6	221:18	169:7 170:1 321:2,7	routes
211:11 256:18,20	rogulting	001 04 000 0 15	
/	resulting	321:24 322:2,15	188:18,21 189:14
292:20 303:20 321:3	223:14 224:8	321:24 322:2,15 robust	188:18,21 189:14 191:11,12,22 192:12
292:20 303:20 321:3 322:3 323:1,4,18	223:14 224:8 results	321:24 322:2,15 robust 183:13 209:3	188:18,21 189:14 191:11,12,22 192:12 220:12
292:20 303:20 321:3 322:3 323:1,4,18 reports	223:14 224:8 results 307:13 308:1	321:24 322:2,15 robust 183:13 209:3 role	188:18,21 189:14 191:11,12,22 192:12 220:12 RPM
292:20 303:20 321:3 322:3 323:1,4,18 reports 307:2,9,24 311:4	223:14 224:8 results 307:13 308:1 return	321:24 322:2,15 robust 183:13 209:3 role 218:23	188:18,21 189:14 191:11,12,22 192:12 220:12 RPM 171:24
292:20 303:20 321:3 322:3 323:1,4,18 reports 307:2,9,24 311:4 312:22,23	223:14 224:8 results 307:13 308:1 return 222:14 269:16 276:9	321:24 322:2,15 robust 183:13 209:3 role 218:23 Roman	188:18,21 189:14 191:11,12,22 192:12 220:12 RPM 171:24 Rules
292:20 303:20 321:3 322:3 323:1,4,18 reports 307:2,9,24 311:4 312:22,23 representation	223:14 224:8 results 307:13 308:1 return 222:14 269:16 276:9 320:8 321:6 322:19	321:24 322:2,15 robust 183:13 209:3 role 218:23 Roman 313:15,16	188:18,21 189:14 191:11,12,22 192:12 220:12 RPM 171:24 Rules 166:4 322:20
292:20 303:20 321:3 322:3 323:1,4,18 reports 307:2,9,24 311:4 312:22,23 representation 177:20	223:14 224:8 results 307:13 308:1 return 222:14 269:16 276:9 320:8 321:6 322:19 returned	321:24 322:2,15 robust 183:13 209:3 role 218:23 Roman 313:15,16 room	188:18,21 189:14 191:11,12,22 192:12 220:12 RPM 171:24 Rules 166:4 322:20 run
292:20 303:20 321:3 322:3 323:1,4,18 reports 307:2,9,24 311:4 312:22,23 representation 177:20 representing	223:14 224:8 results 307:13 308:1 return 222:14 269:16 276:9 320:8 321:6 322:19 returned 183:1 267:9,18 273:14	321:24 322:2,15 robust 183:13 209:3 role 218:23 Roman 313:15,16 room 187:16 246:2,9 310:11	188:18,21 189:14 191:11,12,22 192:12 220:12 RPM 171:24 Rules 166:4 322:20 run 216:10 232:11,18
292:20 303:20 321:3 322:3 323:1,4,18 reports 307:2,9,24 311:4 312:22,23 representation 177:20 representing 169:12	223:14 224:8 results 307:13 308:1 return 222:14 269:16 276:9 320:8 321:6 322:19 returned 183:1 267:9,18 273:14 276:3 305:14	321:24 322:2,15 robust 183:13 209:3 role 218:23 Roman 313:15,16 room 187:16 246:2,9 310:11 Rose	188:18,21 189:14 191:11,12,22 192:12 220:12 RPM 171:24 Rules 166:4 322:20 run 216:10 232:11,18 284:25 285:2 287:14
292:20 303:20 321:3 322:3 323:1,4,18 reports 307:2,9,24 311:4 312:22,23 representation 177:20 representing 169:12 requested	223:14 224:8 results 307:13 308:1 return 222:14 269:16 276:9 320:8 321:6 322:19 returned 183:1 267:9,18 273:14 276:3 305:14 returning	321:24 322:2,15 robust 183:13 209:3 role 218:23 Roman 313:15,16 room 187:16 246:2,9 310:11 Rose 167:17 168:5 169:23	188:18,21 189:14 191:11,12,22 192:12 220:12 RPM 171:24 Rules 166:4 322:20 run 216:10 232:11,18 284:25 285:2 287:14 290:16 300:23
292:20 303:20 321:3 322:3 323:1,4,18 reports 307:2,9,24 311:4 312:22,23 representation 177:20 representing 169:12 requested 180:24	223:14 224:8 results 307:13 308:1 return 222:14 269:16 276:9 320:8 321:6 322:19 returned 183:1 267:9,18 273:14 276:3 305:14 returning 283:18	321:24 322:2,15 robust 183:13 209:3 role 218:23 Roman 313:15,16 room 187:16 246:2,9 310:11 Rose 167:17 168:5 169:23 169:23 173:2,8,19	188:18,21 189:14 191:11,12,22 192:12 220:12 RPM 171:24 Rules 166:4 322:20 run 216:10 232:11,18 284:25 285:2 287:14 290:16 300:23 running
292:20 303:20 321:3 322:3 323:1,4,18 reports 307:2,9,24 311:4 312:22,23 representation 177:20 representing 169:12 requested 180:24 required	223:14 224:8 results 307:13 308:1 return 222:14 269:16 276:9 320:8 321:6 322:19 returned 183:1 267:9,18 273:14 276:3 305:14 returning 283:18 returns	321:24 322:2,15 robust 183:13 209:3 role 218:23 Roman 313:15,16 room 187:16 246:2,9 310:11 Rose 167:17 168:5 169:23 169:23 173:2,8,19 177:3 180:13 189:6	188:18,21 189:14 191:11,12,22 192:12 220:12 RPM 171:24 Rules 166:4 322:20 run 216:10 232:11,18 284:25 285:2 287:14 290:16 300:23 running 190:11 216:11
292:20 303:20 321:3 322:3 323:1,4,18 reports 307:2,9,24 311:4 312:22,23 representation 177:20 representing 169:12 requested 180:24 required 220:7	223:14 224:8 results 307:13 308:1 return 222:14 269:16 276:9 320:8 321:6 322:19 returned 183:1 267:9,18 273:14 276:3 305:14 returning 283:18 returns 273:24	321:24 322:2,15 robust 183:13 209:3 role 218:23 Roman 313:15,16 room 187:16 246:2,9 310:11 Rose 167:17 168:5 169:23 169:23 173:2,8,19 177:3 180:13 189:6 189:10 190:7 191:3	188:18,21 189:14 191:11,12,22 192:12 220:12 RPM 171:24 Rules 166:4 322:20 run 216:10 232:11,18 284:25 285:2 287:14 290:16 300:23 running 190:11 216:11 R&D
292:20 303:20 321:3 322:3 323:1,4,18 reports 307:2,9,24 311:4 312:22,23 representation 177:20 representing 169:12 requested 180:24 required 220:7 resay	223:14 224:8 results 307:13 308:1 return 222:14 269:16 276:9 320:8 321:6 322:19 returned 183:1 267:9,18 273:14 276:3 305:14 returning 283:18 returns 273:24 reuse	321:24 322:2,15 robust 183:13 209:3 role 218:23 Roman 313:15,16 room 187:16 246:2,9 310:11 Rose 167:17 168:5 169:23 169:23 173:2,8,19 177:3 180:13 189:6 189:10 190:7 191:3 193:10 195:8 196:4	188:18,21 189:14 191:11,12,22 192:12 220:12 RPM 171:24 Rules 166:4 322:20 run 216:10 232:11,18 284:25 285:2 287:14 290:16 300:23 running 190:11 216:11 R&D 183:7
292:20 303:20 321:3 322:3 323:1,4,18 reports 307:2,9,24 311:4 312:22,23 representation 177:20 representing 169:12 requested 180:24 required 220:7 resay 296:9	223:14 224:8 results 307:13 308:1 return 222:14 269:16 276:9 320:8 321:6 322:19 returned 183:1 267:9,18 273:14 276:3 305:14 returning 283:18 returns 273:24 reuse 274:1,8 276:4	321:24 322:2,15 robust 183:13 209:3 role 218:23 Roman 313:15,16 room 187:16 246:2,9 310:11 Rose 167:17 168:5 169:23 169:23 173:2,8,19 177:3 180:13 189:6 189:10 190:7 191:3 193:10 195:8 196:4 197:14 198:9,16	188:18,21 189:14 191:11,12,22 192:12 220:12 RPM 171:24 Rules 166:4 322:20 run 216:10 232:11,18 284:25 285:2 287:14 290:16 300:23 running 190:11 216:11 R&D 183:7
292:20 303:20 321:3 322:3 323:1,4,18 reports 307:2,9,24 311:4 312:22,23 representation 177:20 representing 169:12 requested 180:24 required 220:7 resay 296:9 research	223:14 224:8 results 307:13 308:1 return 222:14 269:16 276:9 320:8 321:6 322:19 returned 183:1 267:9,18 273:14 276:3 305:14 returning 283:18 returns 273:24 reuse 274:1,8 276:4 reusing	321:24 322:2,15 robust 183:13 209:3 role 218:23 Roman 313:15,16 room 187:16 246:2,9 310:11 Rose 167:17 168:5 169:23 169:23 173:2,8,19 177:3 180:13 189:6 189:10 190:7 191:3 193:10 195:8 196:4 197:14 198:9,16 199:20 202:9 204:12	188:18,21 189:14 191:11,12,22 192:12 220:12 RPM 171:24 Rules 166:4 322:20 run 216:10 232:11,18 284:25 285:2 287:14 290:16 300:23 running 190:11 216:11 R&D 183:7 <u>S</u>
292:20 303:20 321:3 322:3 323:1,4,18 reports 307:2,9,24 311:4 312:22,23 representation 177:20 representing 169:12 requested 180:24 required 220:7 resay 296:9 research 183:6 184:7.19 187:4	223:14 224:8 results 307:13 308:1 return 222:14 269:16 276:9 320:8 321:6 322:19 returned 183:1 267:9,18 273:14 276:3 305:14 returning 283:18 returns 273:24 reuse 274:1,8 276:4 reusing 279:7	321:24 322:2,15 robust 183:13 209:3 role 218:23 Roman 313:15,16 room 187:16 246:2,9 310:11 Rose 167:17 168:5 169:23 169:23 173:2,8,19 177:3 180:13 189:6 189:10 190:7 191:3 193:10 195:8 196:4 197:14 198:9,16 199:20 202:9 204:12 205:13.23 206:4.10	188:18,21 189:14 191:11,12,22 192:12 220:12 RPM 171:24 Rules 166:4 322:20 run 216:10 232:11,18 284:25 285:2 287:14 290:16 300:23 running 190:11 216:11 R&D 183:7 <u>S</u>
292:20 303:20 321:3 322:3 323:1,4,18 reports 307:2,9,24 311:4 312:22,23 representation 177:20 representing 169:12 requested 180:24 required 220:7 resay 296:9 research 183:6 184:7,19 187:4 210:19	223:14 224:8 results 307:13 308:1 return 222:14 269:16 276:9 320:8 321:6 322:19 returned 183:1 267:9,18 273:14 276:3 305:14 returning 283:18 returns 273:24 reuse 274:1,8 276:4 reusing 279:7 review	321:24 322:2,15 robust 183:13 209:3 role 218:23 Roman 313:15,16 room 187:16 246:2,9 310:11 Rose 167:17 168:5 169:23 169:23 173:2,8,19 177:3 180:13 189:6 189:10 190:7 191:3 193:10 195:8 196:4 197:14 198:9,16 199:20 202:9 204:12 205:13,23 206:4,10 211:4 220:9 221:1	188:18,21 189:14 191:11,12,22 192:12 220:12 RPM 171:24 Rules 166:4 322:20 run 216:10 232:11,18 284:25 285:2 287:14 290:16 300:23 running 190:11 216:11 R&D 183:7 <u>S</u> 167:1 169:2
292:20 303:20 321:3 322:3 323:1,4,18 reports 307:2,9,24 311:4 312:22,23 representation 177:20 representing 169:12 requested 180:24 required 220:7 resay 296:9 research 183:6 184:7,19 187:4 210:19 reserved	223:14 224:8 results 307:13 308:1 return 222:14 269:16 276:9 320:8 321:6 322:19 returned 183:1 267:9,18 273:14 276:3 305:14 returning 283:18 returns 273:24 reuse 274:1,8 276:4 reusing 279:7 review 263:8 307:16 312:3	321:24 322:2,15 robust 183:13 209:3 role 218:23 Roman 313:15,16 room 187:16 246:2,9 310:11 Rose 167:17 168:5 169:23 169:23 173:2,8,19 177:3 180:13 189:6 189:10 190:7 191:3 193:10 195:8 196:4 197:14 198:9,16 199:20 202:9 204:12 205:13,23 206:4,10 211:4 220:9 221:1 222:9 223:4 225:11	188:18,21 189:14 191:11,12,22 192:12 220:12 RPM 171:24 Rules 166:4 322:20 run 216:10 232:11,18 284:25 285:2 287:14 290:16 300:23 running 190:11 216:11 R&D 183:7 <u>S</u> S 167:1 169:2 sake

DTI Court Reporting Solutions - Chicago

800-868-0061

201.14.226.0			207.1
201:14 226:9	section	sentence	30/:1
salt	222:24 297:17 312:8	223:8,19,24 224:12,20	Sianesi
230:7 231:3,20 265:14	315:11,13	225:10,20 226:11	314:9 315:8 317:8,9
299:7	Sedat	228:14 229:2 236:12	31/:13
salts	240:16 316:4,5,23,24	sentences	side
216:9 296:22 299:6	317:22	278:15	215:14
301:11,12	see	separate	sign
sample	173:24 174:1 180:15	171:15,20 206:8	322:18
171:24	187:22 192:1 199:4	217:16 254:16,16	Signature
saying	209:2 213:24 215:24	288:13 304:22 305:2	320:24 321:1,6 322:1
177:15 193:13 201:19	216:4,5,8,19 217:5	305:4	322:19
241:7,7,13 242:8,8	223:8,16 224:10,11	separated	significant
253:19 256:4 271:16	230:13 231:1,8	171:12 245:13 266:22	205:10,19,25 209:22
290:8 296:2 298:12	234:16 235:6 236:10	267:8 270:20 272:15	210:20 238:11
318:18	251:21 252:7,15,17	275:11 284:8	2/4:11 2/6:14 286:5
says	255:16 260:11	separates	302:13 316:7
183:6 223:9,25 228:11	263:15 264:12,22,25	194:23	silent
234:16 235:3 236:12	265:3,5,9,11,20	separating	228:10 237:22 238:5
242:2 251:22 252:11	266:2,17,23 267:19	171:5 221:13 272:23	238:21 239:4 284:9
252:17 262:22 264:9	268:5,12 271:14,22	283:18	292:5 293:15 308:25
265:18 266:4 267:17	272:2,7,9,17,18,18	separation	310:3
268:8 272:12 273:12	273:20 274:21 275:2	172:1 211:19 214:10	similar
2/5:9 2/6:1 285:10	275:17,24 276:5	214:20,22 215:1,18	183:18 188:1,6 240:15
286:7 296:16 299:5	278:10 282:7 294:20	215:25 278:6	24/:4,4 248:12
306:20 309:5 317:13	297:24 300:24 304:4	separations	288:18 307:25 308:1
317:14	311:9 313:16 314:21	206:11 215:7	simple
scale	315:5 317:4	series	227:7 261:9 314:25
185:24 209:8,10	seeing	217:2 280:23	simply
210:19 211:20,21,23	217:5	serve	259:13
212:1,4 213:12,19	seen	291:1,11,19 292:1	simulation
214:3,10,22 216:24	244:4,20,24 263:10	set	304:3,12
21/:1 218:24	289:2	173:25 189:25 215:18	siphon
scaling	select	264:2	215:15,18
216:24	235:15	setting	Sir
schedule	selected	259:8 277:20	292:16 296:13
170:21	309:11	snear	situation
school	selecting	253:24 254:2,15	258:10,18 259:2,9
183:3 185:1,17,23	210:25	sheet	289:23
186:3,10,18 194:1	selectivity	216:24	size
scratch	30/:5,14 309:7	short	209:6,13 236:14,18
182:3,12 198:2 203:20	send	320:8	sketched
scrolling	300:16	show	21/:24
312:11	senior	306:20/307:2	SKIII
second	183:6 184:6	snown	1/2:24 1/3:5,16 223:9
225:8,19,24 228:14	sense	264:11 314:5	224:5 230:5 231:2,19
229:2 252:10	247:10	shows	235:15 236:5 241:11

800-868-0061

I	I	
244:1,12,15,16	268:1 294:9 304:22	space
245:13,22 246:7	solubilities	270:11
247:7,17 248:1,18	288:18	speak
250:8 251:10,13,17	solubility	176:19 178:12 311:3
251:20 252:25	242:14 248:12 294:21	species
253:24 254:4,7,19,21	296:21,24 297:1	245:18 256:9
255:4,9 256:15 258:2	298:12	specific
258:9,18,24 259:2,4	solution	248:22 315:25
259:9,18,22,24,25	242:7 264:18 266:12	specifically
260:5,13,14,20	273:13 283:12	174:20 192:20,23
280:24 281:3,20	284:12,15,16 287:13	251:6 308:19
282:21 285:14 287:3	288:8,9,14 289:7,9	speed
287:7,10,24 289:19	289:10 291:12 294:7	225:20,24 240:19
290:16,21,25 292:3	296:18 298:3.5,16,20	spent
292:13 293:3 294:10	299:11,25 301:10	175:17 244:16 262:12
294:12 295:13.16.20	304:23 305:6.13	301:1.6.6.10.10.12
295:24 296:2.3	315:2	305:24 319:1.5.22.24
297:11.12.18.19.23	solutions	319:25 320:3
298:14 300:25	204:25	spins
301:14 302:14.25	solvent	171.24
303:8.14.24 304:9.16	184:16.22 219:4 235:5	splits
304:18 305:1.13.20	260:14	194.10
306.18.20.21.308.19	solvents	splitter
308.22 309.1 24	184.15 188.3	194.5 7 21 23 195.1 2
310.3 318.4 8 14 19	somewhat	195.3 5 7 12 14
318.21	246.18	snorts
Smith's	240.10 Soon	310.15
307.25	188.17	spring
Smith/Masavuki	sorry	184.10 11
297.21 298.1	195.18 203.25 208.4	stages
sodium	211.7 221.7 223.12	303.16 30/.8
195.16 19 264.17	211.7 221.7 223.12	standnoint
266.11 21 268.1 19	$223.10\ 220.24,23$ $228.22\ 234.14$	180.1 2 250.14
268.20 20 21 269.5	220.22 237.14	100.1,2 239.14
269.15 17 19 22	235.24 257.10 242.5	178.10 183.21 212.3
209.13,17,19,22	258.14 15 260.3	212.10 24 220.18 25
270.12,14 272.3,13	250.14,15 209.5	212.19,24 220.10,23
272.24,24 273.1,4,9	216.12	221.2 236.13 264.2
273.13,24 274.17,20	510.12	291.18 297.3 304.10
201.10 291.25	SOFL 212.15	Started
501.25	212:13	1/8:25 18/:24 191:8
500101115 265.1	SUILIUS	212:25 215:5,6,10,11
203:1	205:9,19 217:20	214:5,8 217:20
SUIU 264-20	sources	218:23
204:20	209:1 South	starting
SOIIQ	South	188:23 191:12 219:14
1/1:3,10,13,21 248:14	100:0 107:12,18 169:9	219:15 220:12 226:4
	244:1,12,15,16 245:13,22 246:7 247:7,17 248:1,18 250:8 251:10,13,17 251:20 252:25 253:24 254:4,7,19,21 255:4,9 256:15 258:2 258:9,18,24 259:2,4 259:9,18,22,24,25 260:5,13,14,20 280:24 281:3,20 282:21 285:14 287:3 287:7,10,24 289:19 290:16,21,25 292:3 292:13 293:3 294:10 294:12 295:13,16,20 295:24 296:2,3 297:11,12,18,19,23 298:14 300:25 301:14 302:14,25 303:8,14,24 304:9,16 304:18 305:1,13,20 306:18,20,21 308:19 308:22 309:1,24 310:3 318:4,8,14,19 318:21 Smith's 307:25 Smith/Masayuki 297:21 298:1 sodium 195:16,19 264:17 266:11,21 268:1,19 268:20,20,21 269:5 269:15,17,19,22 270:12,14 272:5,15 272:24,24 273:1,4,9 273:13,24 274:17,20 281:16 291:25 301:25 sodiums 265:1 sold 264:20 solid 171:5,10,15,21 248:14	244:1,12,15,16 268:1 294:9 304:22 245:13,22 246:7 solubilities 247:7,17 248:1,18 208:12 250:8 251:10,13,17 242:14 248:12 294:21 253:24 254:4,7,19,21 296:21,24 297:1 255:4,9 256:15 258:2 298:12 258:9,18,24 259:2,4 299:12 260:5,13,14,20 284:12,15,16 287:13 280:24 281:3,20 284:12,15,16 287:13 287:7,10,24 289:19 289:10 291:12 294:7 290:16,21,25 292:3 299:11,25 301:10 294:12 295:13,16,20 299:11,25 301:10 294:12 295:13,16,20 299:11,25 301:10 299:11,25 301:10 304:23 305:6,13 297:11,12,18,19,23 204:25 301:14 302:14,25 solutions 303:8,14,24 304:9,16 184:16,22 219:4 235:5 304:18 305:1,13,20 306:18,20,21 308:19 306:18,20,21 308:19 308:22 309:1,24 310:3 318:4,8,14,19 318:21 Smith's somewhat 310:3 318:4,8,14,19 246:18 310:3 318:4,24 304:9,16 304:23 209:14 306:18,20,21 208:1 195:18 203:25 208:4 Solutim 195:18 203:25 208:4

800-868-0061

241:21 276:13,14	242:11 244:7 245:21	167:11	260:19 271:18 277:2
290:1 291:24 297:16	246:24 247:21 249:1	streams	288:23 300:1 309:3
297:17	249:4,10 254:11,20	209:17 236:13,15,19	312:7
starts	254:21,24 257:11	236:23 254:17	sworn
314:18	steam	Street	170:2
state	187:14 274:23 275:5,9	166:7 167:12,18 169:9	synthesis
196:1,3,10,14,19,25	275:20 286:2	strictest	182:15,15
197:11,22 198:11,19	step	298:1	synthesize
199:22 200:15	215:10 219:10	strictly	185:3
201:19 203:15,17,22	steps	297:21	synthesizing
203:25 204:5,6,14,16	210:12,16,25 211:2	strike	183:16
207:3,4,8,18,22	212:22,25 217:2	173:4,15,15 193:6	system
208:1,20 211:7	218:5 219:23 220:6	224:16 226:25	214:19 219:4 239:14
213:25 225:7 226:1	220:16,17,22 230:8	239:16 241:13	240:6 286:2,2 293:16
226:15 236:4 238:3,8	231:5,22 234:12,19	245:10 269:7 292:24	299:8 300:23
239:14,22 240:14	234:24,25 251:23	294:3,6	Systems
241:9,16 242:11	252:11	strip	181:22 182:5,14,19,23
244:7 245:21 246:24	stirred	285:3.4	S59-70626
247:21 249:1,5,10	200:16 201:8 203:3,10	stripped	168:19
254:11,20,21,24	213:18 252:14,23	284:17	
257:11 292:16	253:1 260:24 266:9	stripping	T
308:24 322:17 323:4	316:6 317:12	286:2	take
stated	stirrer	structure	173:14 200:5 213:16
231:1 257:6 287:16	172:8,21	301:17	214:13 232:23
297:10,23 317:10	stirring	submitted	280:14 286:21 290:8
statement	195:11.11 253:7	245:8	300:2,12,15 301:22
231:10.12 309:12	265:18.19 290:5	substantial	302:1 306:4 311:8
states	stoichiometric	262:13	320:8
165:2 166:4 230:5	176:1.8 202:19	substitution	taken
251:25 252:4 314:20	stoichiometrically	214:24	166:2 169:7,14 174:22
314:23	201:25	sufficient	175:14,15 218:13
stav	stoichiometry	236:7 317:20	take-off
206:22	175:8 201:14	suggesting	214:7
stavs	stop	290:12	talk
204:21	195:11	suitable	179:16 187:19 192:20
steady	stopped	252:13	202:23 204:14,15
196:1.3.10.13.19.25	295:2	Suite	235:8 254:21 311:24
197:11.22 198:11.19	stream	166.7 167.6 12.19	318:2
199:22 200:15	207:6.10.24 208:2	suppliers	talked
201:18 203:15.17.22	236.18 246.5 6 8	209.2.4.4	179:14 229:24 256:12
203:25 204:4.6.14.16	254.7.8.9.10.12	support	257:13 310:15
207.3.4.8.18.22	255.3.13.18.256.15	196.7	talking
208.1.20.213.25	257.3.7 280.11	sure	174:2 175:7 177:10
225:7 226:1 14 238.3	292:11 11 293.2	177.23 190.8 200.19	180:7 187:15 191:8
238.8 239.14 22	319.22	220.17	195:22,25 199:4.5.21
240.14 241.9 16	Streaming	222.11 223.23	200:15 202:21
270.17 271.9,10	Sucannig	224.19 229.1 233.11	

DTI Court Reporting Solutions - Chicago

800-868-0061

000.10 022.0 046.15	4.011	216.10	41
208:12 255:8 246:15	tell	210:10	172.11 10 101.12
200:9,11 287:3	1/4:4,7 203:22,25	199.24 210.17	1/3:11,18 181:13
310:20,22 317:22	255:5 301:21	188:24 219:17	189:13,16 190:4
taiks	teming		193:25
509:4	241:5 242:6 280:24	180:8	
	temperature	tetralluoroetnylene	2/4:11
214:25	1/2:25 1/3:0,1/ 18/:8	185:2,6,8,11,17,23	ume
tank 252.14 272.12 272.5	18/:1/ 251:24 252:2	180:2,5,13,18	109:5 1/5:18 188:8,12
252:14 272:15 275:5	295:11 294:15	lexi	199:7 200:7,11
288:8,9,15 289:8	296:25 298:9 315:3	176:3,5 272:9 273:20	203:19 204:9,11,18
293:24 294:4,8,14,15	temperatures	2/5:1/	204:20 206:23 207:2
296:22,25 297:7	298:7	I nank	210:14 216:13,15,18
298:10,11,16,18	ten	1/1:4 193:17 266:15	216:20 218:8 222:4
299:3,17 300:3,14	181:18,19 280:14	2/8:4 2/9:21 281:16	226:16,17 230:18,19
304:19 316:6 317:12	tend	298:2 314:5 320:6,16	233:1,5 242:10 243:1
target	172:15	thanks	243:3,4,13 249:21
275:20	tends	217:7262:3	250:1 255:23 262:13
taught	1/2:1 248:16	thereof	274:23 279:4 280:15
259:9 303:8	tenure	323:11	280:19 295:4,8
tea	187:21	thesis	303:25 306:10,14
171:1,2	ten-minute	186:7	310:8 311:7,16
teach	306:4	thing	316:10,13 317:9,19
239:12 270:12 286:3	term	244:16 297:14 309:15	317:21 320:9,13,16
300:12	188:20 190:15 194:8,9	309:19	320:20
teaches	194:12 195:1,4,5	things	times
233:24 237:25 239:10	253:8,12	179:22 187:13 209:20	174:22 210:1 215:22
269:21 270:4,5,11	terms	209:22	227:9 240:3 249:5
287:18 289:15	172:20 176:19 178:7	think	295:16 306:17
297:12,19,19 299:20	178:12 179:17	173:11 176:22 178:15	312:21
306:18,21 308:19,22	196:11 202:24	188:10,11 190:9	title
309:1,24	209:13,15 212:6	192:22 198:25	221:12,13
teaching	237:1,3,5 248:3	227:13 229:14	titrate
258:24 259:3,4,5,5,10	286:15 298:1 307:13	233:13 237:5 243:12	216:5
259:12 289:22,24	test	246:16 279:18 289:3	titration
300:25	202:14	290:13,16 296:6	216:3
teachings	testified	298:3,11 300:4 303:1	titre
239:15 302:13 303:24	170:2 238:13 241:15	305:18 306:9 311:23	315:2
307:25 311:4 317:1	254:6 255:12 318:11	316:17	today
technical	testify	thinking	257:13 310:5,10 318:3
312:22	175:21	213:3 287:23	Today's
technician	testifying	third	169:5
210:4 213:8	319:7	309:3	top
techniques	testimony	thirty	276:13 286:22
208:24	170:9,14 312:1 314:12	322:20	total
Telephone	318:3 321:8	thought	179:11 202:1 234:11
167:11	tests	215:17	234:18 235:17

m			200 11 21 25
Tower	try	189:3,14,23 247:22	300:11,21,25
275:14	199:3 206:8 225:13	269:15	usually
trace	278:24	Um-hmm	206:12 215:19
237:21	trying	235:10	utility
Trademark	260:13 286:3,7 296:8	undergraduate	213:2
165:2 166:4	Tryon	181:21	utilization
train	166:7 167:18 169:9	undersigned	236:9
214:4 296:7	tube	321:7	U.S
transcript	215:15 315:19,23,24	understand	165:22 168:10 169:16
322:20 323:6	316:1,12	176:5,6,9 178:2 202:3	221:9,25
transcription	turn	212:11 217:9 223:10	
321:8	173:22,24 222:23	224:5 230:6 231:2,20	V
transfer	234:15 251:20	234:21,24 253:24	V
242:13 247:6 265:15	252:10 263:14,20	254:19 262:19,22	165:10 321:3 322:3
266:13 267:15,22	296:11 312:5 314:15	263:17,22 265:13	value
281:4,21 282:9,23	316:19	266:4,25 267:12	279:16
283:21 306:23 307:3	two	269:6,8 272:20	valves
307:12 309:4,5,10,13	174:1 175:3 181:14	278:12,14,14 281:2	248:16
transferred	186:11,13 189:4	287:8 292:10 293:1,9	vapor
183:15 184:9,14	191:22 193:23	293:20 301:20 303:1	189:2 190:11,11
transition	194:10 195:10,10	understanding	214:13 219:8
188:22	201:8,10,12 220:19	175:1 187:10 238:24	variable
transitioned	228:23 242:15	259:10 273:23 276:7	188:20
219:6,7	243:12 270:9	276:22 308:13	variables
translation	type	understood	216:13
168:18 262:5,11 314:7	188:1 215:12	200:19 236:5 302:8	variation
transpired	types	unit	209:3
200:9 230:16 233:3	171:14,18 184:21	210:12,16 211:2	variations
249:23 280:17 295:6	185:13 208:17	United	191:6 216:22
306:12 311:14	216:10 228:12	165:2 166:4	various
320:11	typical	units	208:19,23 209:17
treat	172:8	199:6	210:21 214:6,6,7,7
246:18	typically	unreacted	215:16,22 216:12,22
Trial	172:25 173:6.17	206:3.7 276:1.8.17.23	219:15 248:21
165:5.19.20.21 169:15	179:20.21 210:4	301:6	260:15 303:16 304:8
trifluoropropene	215:2 234:17 236:20	unstable	varying
219:18.24	248:8.9 251:22	289:24 304:1	216:18
trimethyl	261.13 310.21	unused	verbally
264.20		274.8.11.280.3.8.10	322:18
trouble	U	unner	versa
278.7	Uh-huh	314.16	211:19 254:5
true	273:17	1150	version
206.14 16 231.12	uh-uh	188.2 190.23 210.22	263:18
200.14,10 231.12	217:4	212.23 213.23 210.22	versions
258.12 260.21 261.2	ultimately	212.25 215.7 210.25	262:1
201.12 200.21 201.2	184:4.18 188:9.14.23	241.21 24 281.21	versus
521.0 525.0	····,, 	271.21,27 201.21	

		010 15 010 15	
169:15 224:14,14	200:18 204:16	218:15 219:16	250:1 253:7 257:9
vessel	238:14 245:25 246:3	254:15 256:8 258:23	260:9 277:17 287:2
252:24 260:23,24	248:13 249:16	269:21 270:5,6,7,11	290:13 295:4,9 300:7
viable	251:12 274:5 276:23	270:12 286:18,23	311:8,12,17
279:4 298:13	286:10 290:13	293:20,21 302:17	we've
vice	293:16 300:23 301:5	ways	179:14,19 200:4
211:19 254:5	304:2 306:25 311:23	189:22 190:10	206:18 227:1 237:7
video	313:4 318:2	weak	256:3 258:5 264:6
169:6	wanted	229:14	270:16 294:5 301:1,4
videographer	213:24 214:20 215:8	week	wide
167:23 169:4,12 200:7	301:22	222:5 278:6	224:1
200:11 230:14,18	warm	weighing	Wilmington
233:1,5 249:21,25	274:18	315:19	183:15
280:15,19 295:4,8	wasn't	weight	withdraw
306:10,14 311:12,16	185:11,23	179:17 180:8 196:21	246:5
320:9,13,19	waste	198:12,13 199:11,18	withdrawing
Videotaped	279:22 280:3,8,11	200:18,20,23,25	200:20
165:14 166:1	286:4,9	201:1,3,4,6,9,13,21	withdrawn
view	wasted	201:23,24 202:4,5,7	198:14 201:21 203:9
176:23 178:16 283:16	236:23	202:15,16,21,22	246:8 255:3
287:21 295:21 303:7	water	234:11,18,18 235:17	witness
viewed	174:13,18 176:24	235:17,19 261:15,20	173:9,20 177:4,10
190:21	177:1,15,17,18 178:7	261:21 264:17	180:14,25 187:13
virtually	178:20,22 179:1,2,6	265:23,24,24 266:11	190:8 191:4 193:12
317:15	179:10,12 180:4,9	266:11,12 300:8	195:9 196:5 197:6,15
viscous	181:5 187:14 216:4	weights	198:17 199:21 200:6
298:24	235:5 253:20 254:8	179:20 202:17 247:5	202:10 204:13
volume	255:5 257:18,20,25	welcome	205:14 206:5,11
165:16 168:3 170:3	258:11,19,22 259:17	311:20 320:18	207:16 208:8 211:5
204:17,18,19,19	259:20 260:22 261:1	went	211:13 220:10 221:2
216:16,17 236:21,21	261:5,10,14,16 268:9	181:9 182:24 184:18	221:24 223:5 225:24
237:3 321:2 322:2	268:19,25 269:5	188:4 214:1 219:16	228:5 229:9,24
	274:18 275:1,11	219:16 233:19 267:8	232:16,22,25 237:3
W	284:16 285:3,12,20	289:12,17 297:16	242:20 244:4,14
walk	287:14 288:1,10,11	weren't	245:2 248:3 249:4,14
310:18	290:21 291:2,8,16,22	215:9	250:10 253:5 255:1.9
walked	291:23.25 293:25	wet	255:15.23 256:23
310:20	299:5.8.11.15.24	290:5 298:24 299:2.17	260:5 263:2.7.9
walking	300:5.18.19 301:22	we'll	266:8 267:6 268:16
310:23	302:1.18 303:3.7.15	242:1 246:16.18.18	269:24 270:16
walls	303:23 304:8	we're	274:10 277:2.14.25
274:18	waters	175.7 177.10 23 190.8	279.2.9.15.24.280.5
want	286.4.9	199.4 5 16 21 200.22	283.15 285.6 292.16
175:13 179:21 196:19	wav	201.8 202.21 215.11	292:22 293.14
196:21 197:25	174.24 175.15 16	217.4 230.14 19	295.19 296.6 299.19
198:12.21.25 199:8	188.1 0 180.20 213.5	23.7 230.17,17	301.20 302.11 21
···, , · ····	100.1,7 107.20 213.3	233.2 237.17 270.17	501.20 502.11,21

800-868-0061

		[
303:11,18,22 304:11	wrote	1	166:6 167:18 169:9
304:25 305:8,18	217:21	1	227:4
306:2 307:22 318:18	V	174:2,5,10,22 175:25	1015
319:4,19,24 320:18	$\frac{\Lambda}{\mathbf{v}}$	176:7,11,24 178:17	313:22,25
WITNESS/EXAMI	A	180:3,10 181:4,5	1018
168:2	168:1	216:17 234:11,17	312:14,25
WO	V	256:12 257:14 260:2	1021
168:17	V	264:8,15 265:6	314:7
word	L 100.21	266:12 276:3 278:12	1024
214:2 271:17	199.21	282:17	168:10 221:21,24
words	yean 102.12 104.11 202.21	1-hydropentafluoro	309:16,20
270:9	192:12 194:11 202:21	317:17	11
work	217:25,25 222:11	1.0	251:20 272:14 273:13
171:23 182:24 183:9	225:24 224:17	265:24	11:23
185:22 186:7,17	223:10 230:12	1:04	233:4,5
192:6,10 193:25	243:10 249:17 295:3	249:24 250:1	11:49
195:1 212:3 215:8	301:3,8 306:8	1:52	249:21,24
217:10 218:12	year	280:15.17	112
221:18 287:16 290:8	181:16,18	10	268:10
295:13 296:3 297:12	yesterday	230:18 255:20.24	118
297:24 302:5 303:25	170:9,12,15,18 173:11	256:4.6 263:20.22	230:5,25
304:9	173:23 192:5 195:22	264:1.8 271:13 272:1	12
worked	221:5 227:13,16	313:24	173:24,25 175:25
181:21 183:16 184:19	229:19,25 230:11,23	10:08	178:17 180:3,10
185:1 187:24 195:4,5	233:8,14 250:25	200.10.11	181:4 219:23 234:15
220:16	251:4 252:9 310:5	10:55	256:12 257:14,15
working	312:1 314:6,10,11,13	230.14 16 17 19	260:2 272:16 273:8
183:1,13 184:12,15	yield	10:59	121
209:10 212:9 219:13	174:12,17 176:12,16	233.1 3	222:23 223:2,20
248:24 295:2 304:2	176:25 177:16 178:7	100	226:11 227:18
works	178:21 208:21 279:3	201.17 21 202.1	228:15 229:2 236:2
212:10,11 217:10	309:8	232.11 12 19 265.23	1224yf
242:13 312:19		266.8 9 285.18	188:16
world	#	287.14 288.2 7	1225
257:9,10	#19971050142	294.16	174:12 176:1,12
worried	323:18	1001	227:23
215:9	0	312.14.24	1225ve
wouldn't		1002	188:15
239:7 247:24 248:9	252.6	313.19	1230xa
285:3 287:25 296:3	0.5	1003	191:16,18,21,23
297:24	268.10 260.2 0	168.16 233.15 18	1233xf
writing	200.10 209.3,9	251.18	219:20,23
179:22 322:19	160.16	1005	1234
written	109.10 00017	168.18 262.7 10	174:17 176:16 192:10
174:24 180:15 245:4.7	160.16	263.73	218:23 220:3.7
271:17 272:18	109.10	203.23 101	227:23
		101	

800-868-0061

10046	1005	2012	200.0 0 200.0 202.24
12 34yi	1995	2013	288:9,9 289:8 293:24
184:4,13 188:19,23	181:25	307:10	294:4,8,14 296:22
189:3 191:13,17,20	2	2015	297:7 304:19
192:14,15,25 193:9	2	186:25 187:21 189:12	24P
193:17 219:11,13	4	189:15 190:3 191:2	264:19 266:13
220:1,12,24	$103.10\ 108.5\ 170.5$ $174.2\ 7\ 15\ 176.15\ 24$	2015-00916	243ZI
1243zt	174.5,7,15 170.15,24	222:15	191:24,25
219:18	1/0.1/ 100.3,10	2016	244bb
127	161.4 210.17 252.10	166:5 169:1,5 321:2	191:19
316:19,20	252:10 250:12	322:2 323:13	244db
13	257:14 200:2 204:18	2018	219:25
273:18 305:15,21	265:1 2/3:14 282:14	307:10 322:24	245
136	289:18 305:16,22	21	174:16 176:16 227:23
296:12,14 297:10	321:2 322:2	268:3,18 271:12 272:1	228:2 235:11 239:17
14	2:07	274:24 284:4,24	253:16,19 270:24
273:12 275:11 309:3	280:18,19	290:17	281:15 282:16
312:12	2:32	22	284:23,24 285:4,19
140	295:4,6	271:11,25	286:16 287:12 288:1
315:18	2:34	220	288:6 292:4 293:20
15	295:7,8	167:6	245eb
169:1 275:13 321:2	2:53	221	174:9 187:25 219:2
322:2,24	306:10,12	168:10	281:4
15th	20	225	25
166:5 169:5	187:9 192:24 200:22	266:1	176:25 177:1,15,16,16
150	215:3 252:2 266:22	23	177:17,18,19 178:7
315:4,18	268:2,17,18 283:8,22	263:14,15,21 264:3,25	178:21,21 179:8,9,9
16	284:1,2,4	274:24 275:7 282:3	179:10 198:6,12,20
275:14	200	284:18	198:21,22 199:1,17
165	167:12 252:3 268:10	233	199:17 200:2,20,25
165:17	2000	168:16	201:4 202:5 203:7,11
17	183:5,22 184:6	235	224:14 235:21
275:21	2004	265:3 281:13	241:12,21,25 242:5
17th	183:15	236	257:19,20 258:20,21
323:13	2007	174:11.11 176:2.11	259:18,19 260:25,25
170	183:5,20,22 184:6,10	227:23 228:2 235:11	272:14 273:6 294:6.7
168:4	184:11,23 185:20	239:17 253:16.19	294:8.13 299:9
18	186:21,25 187:21	265:3 270:24 281:13	304:21
264.16 276.4 21	189:9,15 190:3 191:2	282:16 284:22.24	250
19	194:1 219:7	285:4.18 286:16	252:2
265:7.19 266.17 19	2008	287:12.25 288.6	250fb
267:22 275.10 281.9	206:16 217:18 288:25	292:4 293.20	188:25.25
283:22 291.5 14	302:8	236ea	26
292:12 13 293.3	2009/138764	174.6 188.5 219.2	275:11
294.3 305.25 307.10	168:17	281.4	262
1991	2010	24	168.18
181.74	206:14	270.24 272.13 273.5	27
101.27		210.27 212.13 213.J	<i></i> ;

275.12	21	109.4 12 17 19 22	215.0
2/3:12	31 275.02	198:4,13,17,18,23	515:2 704
27703-8580	275:23	199:9,11,14 200:1,16	167.20
16/:0	311	200:18,22 201:9,9,12	167:20
28	168:5	201:23,24,25 202:3,4	734
275:14	32	202:15,15,17 203:1,2	167:13
282	274:25 284:18	203:5 205:17 206:19	75
173:22 175:18,23	323	206:20,21 234:11,17	177:1,18 178:22
176:6,20,21 178:13	165:17	236:8 248:9,19	179:12 257:20
178:14,17 179:16		251:24 252:3 257:9	258:21 259:20 261:1
180:3,10 181:4 188:1	4	257:18,18,21,23	261:6
228:5 256:13 257:15	4	258:8,11,11,16,18,19	76.8
260:2,6 271:3,4,5	266:16,17 267:7,7	259:15,17,17 260:16	265:23 266:10
313:23	282:21 283:3,5,9	260:22,22 264:17	78-degrees
28280	285:16 289:20	266:11 269:5,11	315:22
167:19	4:11	294:18,24,24 298:8	
29	320:12,14	524	8
275:15 276:3	4:12	167:12	8
	320:20,23	55	271:10,19,24 272:6,13
3	40	224:14	8,592,630
3	215:3 294:21 298:7,8	57	168:10 221:25
265:10 282:11	299:5	294:22	8,592.630
3,4-dichloro-butene	4000	58	221:9
264:16 265:6 276:2,17	166:7 167:19	294:22	8,710,282
277:19 278:9,17	42	59-70626	165:22 169:16
3,4-dichloro-butene-1	316:20	262:12	80
264:14 266:10 276:9	444-1000		315:3,17
276:24 281:12	167:20	6	852
3,4-dichloro-1-butene	45	6	314:15 317:14
270:21	261:4	192:24 268:4,18 284:1	
3-dichloro-butene-1	4721	284:4,24	<u> </u>
264:10	167:5	60	9
3:14	48104	266:1 294:22,23	271:10,18,23
206 12 14			
306:13,14	167:13	296:17 297:2,4,7	9:00
306:13,14 3:22	167:13	296:17 297:2,4,7 298:4,13	9:00 166:8 169:5
306:13,14 3:22 311:13,14	<u>167:13</u> <u>5</u>	296:17 297:2,4,7 298:4,13 600	9:00 166:8 169:5 9:47
306:13,14 3:22 311:13,14 3:47	$\frac{167:13}{5}$	296:17 297:2,4,7 298:4,13 600 315:19	9:00 166:8 169:5 9:47 200:7,9
3:22 311:13,14 3:47 311:15,16	$ \frac{167:13}{5} \underline{5} 224:14\ 261:5,19,20 $	296:17 297:2,4,7 298:4,13 600 315:19 630	9:00 166:8 169:5 9:47 200:7,9 90
306:13,14 3:22 311:13,14 3:47 311:15,16 3:59	167:13 5 224:14 261:5,19,20 267:10,18 283:19,22	296:17 297:2,4,7 298:4,13 600 315:19 630 309:16,19	9:00 166:8 169:5 9:47 200:7,9 90 247:5 255:13,17 256:3
306:13,14 3:22 311:13,14 3:47 311:15,16 3:59 320:9,11	167:13 5 224:14 261:5,19,20 267:10,18 283:19,22 5-centimeter	296:17 297:2,4,7 298:4,13 600 315:19 630 309:16,19 65	9:00 166:8 169:5 9:47 200:7,9 90 247:5 255:13,17 256:3 256:3 260:17,21
306:13,14 3:22 311:13,14 3:47 311:15,16 3:59 320:9,11 30	167:13 5 224:14 261:5,19,20 267:10,18 283:19,22 5-centimeter 315:18	296:17 297:2,4,7 298:4,13 600 315:19 630 309:16,19 65 297:2	9:00 166:8 169:5 9:47 200:7,9 90 247:5 255:13,17 256:3 256:3 260:17,21 306:19,22 308:20
306:13,14 3:22 311:13,14 3:47 311:15,16 3:59 320:9,11 30 215:3 252:6 275:22	167:13 5 224:14 261:5,19,20 267:10,18 283:19,22 5-centimeter 315:18 50	296:17 297:2,4,7 298:4,13 600 315:19 630 309:16,19 65 297:2	9:00 166:8 169:5 9:47 200:7,9 90 247:5 255:13,17 256:3 256:3 260:17,21 306:19,22 308:20 309:25 310:3
306:13,14 3:22 311:13,14 3:47 311:15,16 3:59 320:9,11 30 215:3 252:6 275:22 297:25 299:6 322:20	167:13 5 224:14 261:5,19,20 267:10,18 283:19,22 5-centimeter 315:18 50 176:24,24 177:14,14	296:17 297:2,4,7 298:4,13 600 315:19 630 309:16,19 65 297:2 7	9:00 166:8 169:5 9:47 200:7,9 90 247:5 255:13,17 256:3 256:3 260:17,21 306:19,22 308:20 309:25 310:3 915
306:13,14 3:22 311:13,14 3:47 311:15,16 3:59 320:9,11 30 215:3 252:6 275:22 297:25 299:6 322:20 300	167:13 5 224:14 261:5,19,20 267:10,18 283:19,22 5-centimeter 315:18 50 176:24,24 177:14,14 177:14,24 178:19,20	296:17 297:2,4,7 298:4,13 600 315:19 630 309:16,19 65 297:2 7 7	9:00 166:8 169:5 9:47 200:7,9 90 247:5 255:13,17 256:3 256:3 260:17,21 306:19,22 308:20 309:25 310:3 915 230:4,10,24 316:15
306:13,14 3:22 311:13,14 3:47 311:15,16 3:59 320:9,11 30 215:3 252:6 275:22 297:25 299:6 322:20 300 251:25	167:13 5 224:14 261:5,19,20 267:10,18 283:19,22 5-centimeter 315:18 50 176:24,24 177:14,14 177:14,24 178:19,20 178:21,25 179:2,6,7	296:17 297:2,4,7 298:4,13 600 315:19 630 309:16,19 65 297:2 7 7 274:25 275:6,7 284:17	9:00 166:8 169:5 9:47 200:7,9 90 247:5 255:13,17 256:3 256:3 260:17,21 306:19,22 308:20 309:25 310:3 915 230:4,10,24 316:15 916
306:13,14 3:22 311:13,14 3:47 311:15,16 3:59 320:9,11 30 215:3 252:6 275:22 297:25 299:6 322:20 300 251:25 302-6000	167:13 5 224:14 261:5,19,20 267:10,18 283:19,22 5-centimeter 315:18 50 176:24,24 177:14,14 177:14,24 178:19,20 178:21,25 179:2,6,7 179:7 180:25 196:19	296:17 297:2,4,7 298:4,13 600 315:19 630 309:16,19 65 297:2 7 274:25 275:6,7 284:17 312:5	9:00 166:8 169:5 9:47 200:7,9 90 247:5 255:13,17 256:3 256:3 260:17,21 306:19,22 308:20 309:25 310:3 915 230:4,10,24 316:15 916 222:21 223:22,23
306:13,14 3:22 311:13,14 3:47 311:15,16 3:59 320:9,11 30 215:3 252:6 275:22 297:25 299:6 322:20 300 251:25 302-6000 167:13	167:13 5 224:14 261:5,19,20 267:10,18 283:19,22 5-centimeter 315:18 50 176:24,24 177:14,14 177:14,24 178:19,20 178:21,25 179:2,6,7 179:7 180:25 196:19 196:20 197:24 198:3	296:17 297:2,4,7 298:4,13 600 315:19 630 309:16,19 65 297:2 7 7 274:25 275:6,7 284:17 312:5 70	9:00 166:8 169:5 9:47 200:7,9 90 247:5 255:13,17 256:3 256:3 260:17,21 306:19,22 308:20 309:25 310:3 915 230:4,10,24 316:15 916 222:21 223:22,23 232:1 235:23 245:8

800-868-0061

250:23 262:25 263:8 264:3 282:4 296:12 311:23 917 245:8 262:25 919.998.5720 167:7 98 278:9,16,16		