1 2 UNITED STATES PATENT AND TRADEMARK OFFICE 3 4 BEFORE THE PATENT TRIAL AND APPEAL BOARD 5 6 7 8 ARKEMA FRANCE, 9 Petitioner 10 v. 11 HONEYWELL INTERNATIONAL INC., 12 Patent Owner 13 14 15 Case: IPR2015-00915, IPR2015-00916, IPR2015-00917 16 U.S. Patent No. 8,710,282 17 18 Continued Video Deposition of LEO E. MANZER, Ph.D. 19 20 Volume II 21 (Taken by the Patent Owner) 22 Durham, North Carolina 23 Friday, January 8, 2016 24 25 Reported by: Marisa Munoz-Vourakis -RMR, CRR and Notary Public

1	APPEARANCE OF COUNSEL:
2	For the Petitioner:
3	BRUCE J. ROSE, ESQ
4	MIRANDA M. SOOTER, ESQ.
5	CHRISTOPHER TL DOUGLAS, ESQ.
6	Alston & Bird, LLP
7	101 South Tryon Street, Suite 4000
8	Bank of America Plaza
9	Charlotte, NC 28280-4000
10	704-444-1000
11	bruce.rose@alston.com
12	miranda.sooter@alston.com
13	christopher.douglas@alston.com
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1	APPEARANCES (Continued)
2	For the Patent Owner:
3	JON H. BEAUPRÉ, ESQ.
4	ALLEN R. BAUM, ESQ.
5	ALLYN B. ELLIOTT, ESQ.
6	JOSHUA E. NEY, ESQ.
7	Brinks, Gilson & Lione
8	524 South Main Street, Suite 200
9	Ann Arbor, MI 48104-2921
10	734-302-6000
11	jbeaupre@brinksgilson.com
12	abaum@brinksgilson.com
13	aelliott@brinksgilson.com
14	jney@brinksgilson.com
15	
16	Also Present: ROB HAHN, Videographer
17	
18	
19	
20	
21	
22	
23	
24	
25	

1	Continued Video Deposition of LEO E.		
2	MANZER, taken by the Petitioner, at Brinks, Gilson $\&$		
3	Lione, 4721 Emperor Boulevard, Suite 220, Durham, North		
4	Carolina, on the 8th day of January, 2016 at 9:01 a.m.,		
5	before Marisa Munoz-Vourakis, Registered Merit		
б	Reporter, Certified Realtime Reporter and Notary		
7	Public.		
8			
9	000		
10			
11	I N D E X		
12	Examination of: Page		
13	LEO E. MANZER		
14	EXAMINATION BY MR. ROSE 178		
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			

1	PROCEEDINGS		
2	THE VIDEOGRAPHER: This is the		
3	beginning of volume number two in media		
4	number one in the deposition of Dr. Leo		
5	Manzer.		
6	Today's date is January 8, 2016. The		
7	time on the video monitor is 0901.		
8	Will the court reporter please swear		
9	in the witness and we can proceed.		
10	Whereupon, LEO E. MANZER, having		
11	been first duly sworn, was examined		
12	and testified as follows:		
13	EXAMINATION BY COUNSEL FOR PETITIONER		
14	BY MR. ROSE:		
15	Q. Good morning, Dr. Manzer.		
16	A. Good morning, Mr. Rose.		
17	Q. I'd like to start out today talking about		
18	the Harrison reference and today we will be focusing		
19	largely on your declarations in the 916 and 917 cases.		
20	The Harrison reference is Exhibit number 1006 in both		
21	of those cases.		
22	A. All right. I have it.		
23	Q. And what do you generally understand the		
24	Harris reference to disclose?		
25	A. It's an invention related to process for		

1	calcium fluoride production from industrial waste		
2	treatment, more specifically waste production of		
3	calcium difluoride from waste water streams by lime		
4	precipitation and carbonation. So essentially a way of		
5	removing fluoride from industrial waste streams.		
б	Q. And the process that's shown or disclosed		
7	in Harrison, that's a batch process, correct?		
8	MR. BEAUPRE: Objection, form.		
9	BY MR. ROSE:		
10	Q. You understand what a batch process is?		
11	A. I certainly do. I'm just trying to		
12	remember, see if it relates to a batch process or not.		
13	If you'd like to point me to somewhere to save a little		
14	time here.		
15	Q. I've looked through examples. I don't see		
16	anything other than a batch process, and I'm wondering		
17	if you've seen anything other than a batch process.		
18	The examples I will tell you those, and you can tell me		
19	or determine if those are anything but a batch process.		
20	A. They do appear to be batch processes.		
21	Q. And going back to the summary of the		
22	invention, which is column two, and I'm reading the		
23	paragraph that begins at line 30, it says that the		
24	invention is based on the discovery that a commercially		
25	pure calcium fluoride product can be obtained from		

1	aqueous solutions by precipitation using essentially		
2	stoichiometric or slightly higher stoichiometric amount		
3	of lime and neutralization and with carbon dioxide.		
4	What is meant by stoichiometric amount in that		
5	sentence?		
6	A. It would mean that the amount of potassium		
7	hydroxide would be equal molar amounts relative to the		
8	amount of fluoride present.		
9	Q. And what does it mean when it says or		
10	slightly higher than stoichiometric amount of lime?		
11	Does that mean that it discloses the option of putting		
12	in additional lime to make sure you've put in enough?		
13	A. Yes.		
14	Q. To neutralize the hydrogen fluoride?		
15	A. That's correct, the fluoride.		
16	Q. The fluoride?		
17	MR. BEAUPRE: Please make sure counsel		
18	finishes his question before you answer.		
19	THE WITNESS: Sorry.		
20	BY MR. ROSE:		
21	Q. And what's disclosed in Harrison is		
22	strike that.		
23	I'm looking down to the detailed		
24	description of the invention, and in particular at line		
25	64. There's reference to 63 to 64, the waste waters		

Page	181

1	contain a considerable quantity of HF, hydrogen
2	fluoride. What do you understand that to mean by a
3	considerable quantity?
4	MR. BEAUPRE: Objection, form.
5	A. Yeah, it's not defined.
б	Q. And then reading the next paragraph, the
7	disclosure states this HF tar is thin with a solvent.
8	Do you see that?
9	A. Yes.
10	Q. Is the solvent water?
11	MR. BEAUPRE: Objection, form.
12	A. Once again it's not clear.
13	Q. Continue on to the next sentence, the
14	disclosure reads this aqueous solution. Does that not
15	suggest that the solvent is water because it's aqueous?
16	A. It suggests that there is certainly water
17	present.
18	Q. Do you have any understanding as to where
19	the water could come from if not by the solvent?
20	MR. BEAUPRE: Objection, form.
21	A. Once again it's not defined, but it could
22	come from any source.
23	Q. But the only source that's disclosed is the
24	solvent, correct?
25	MR. BEAUPRE: Same objection.

1	THE WITNESS: Would you please repeat	
2	that question?	
3	(Record read.)	
4	A. It does not say the solvent is water. It	
5	says it can be thinned with solvent. Additional water	
6	could be added from some source.	
7	Q. Right. All I'm saying is that it doesn't	
8	disclose any other source other than the mention of a	
9	solvent, correct?	
10	MR. BEAUPRE: Objection, form.	
11	A. Well, it does say that potassium fluoride	
12	solution. It says that the HF tar is mixed with a	
13	solvent and mixed with excess potassium hydroxide, and	
14	potassium hydroxide solution is likely aqueous.	
15	Q. Okay. And then starting at line three of	
16	column three, Harrison discloses this aqueous solution	
17	contains 15 to 20 weight percent of potassium fluoride.	
18	Do you see that?	
19	A. Yes.	
20	Q. And then it says three to five percent	
21	unreacted potassium hydroxide. Do you see that?	
22	A. Yes.	
23	Q. Did those concentrations were those	
24	considered by you when you reached your opinion of	
25	combining Harrison with Masayuki and Smith?	

1	MR. BEAUPRE: Objection, form.		
2	A. I did not look specifically at the		
3	concentrations in combining those two references.		
4	Q. And similarly, the examples that are shown		
5	disclose a percent, a weight percent of fluoride		
б	combined as potassium fluoride as 4.42 percent and 4.47		
7	percent. Those are the only concentrations that are		
8	disclosed in the examples, correct?		
9	A. I see the 4.42 percent.		
10	Q. Yes. I can give you direction. Referring		
11	to column four, line 25, for example one, and then		
12	example two at line 51, it says the same waste as in		
13	example one. Example three, column four at line 16		
14	refers to 4.47 weight percent. Example four refers to		
15	the same waste as in example one, that's at line 49,		
16	and then example five refers to the procedure of		
17	example four.		
18	So 4.42 and 4.47 weight percent were the		
19	only concentrations shown in the examples, correct?		
20	A. Correct.		
21	MR. BEAUPRE: Objection, form.		
22	BY MR. ROSE:		
23	Q. And you did not give any consideration to		
24	those concentrations when you reached your conclusions		
25	or your opinion to combine, sorry, Harrison with		

1	Masayuki and Smith, correct?
2	MR. BEAUPRE: Same objection.
3	A. I didn't form an opinion based on the
4	concentrations.
5	Q. And you didn't consider them whether the
б	concentrations would have an effect on the combination,
7	correct?
8	MR. BEAUPRE: Same objection, form.
9	A. I did not form an opinion on the
10	concentrations and the effect of the concentration.
11	Q. If excess calcium hydroxide is used, as we
12	discussed, the dissolved disclosure suggests possibly
13	using a slightly higher than stoichiometric amount of
14	lime in the combination with Smith and Masayuki, what
15	would happen to that excess calcium hydroxide in the
16	overall process?
17	MR. BEAUPRE: Objection, form.
18	A. Which process are you talking about?
19	Q. When you in your opinion, you combined
20	Smith with Masayuki with Harrison to recover and
21	recycle KOH. If excess lime is used, what happens to
22	that in the recycling back to the reactor?
23	MR. BEAUPRE: Same objection.
24	BY MR. ROSE:
25	Q. In that combination?

1	Α.	It would be insoluble and be removed by
2	centrifugatio	on, the use of a centrifuge in that case.
3	Q	I want to talk a little bit about the
4	Masayuki refe	erence so we can go ahead and get that out,
5	which is Exh:	ibit 1005 in the 916 and 917 proceedings.
б	Masayuki is d	lirected to a process for the manufacture
7	of chlorine, correct?	
8	Α	That is correct.
9	Q. 2	And it's manufactured starting with
10	3,4-dichloro-butene-1?	
11	Α.	I think it's 3,5-dichloro-butene, maybe
12	it's 3,4, let me see, dichloro-butene-1, yes.	
13	Q	Yes, sir. If you'll look at page two, line
14	12, it's 3,4 dichloro-butene-1?	
15	Α	Yes.
16	Q. 2	And so this process disclosed in Masayuki
17	does not invo	olve a fluorocarbon chemistry, correct?
18	ľ	MR. BEAUPRE: Objection, form.
19	Α. [The Masayuki patent does not involve
20	fluorocarbon	chemistry, that's correct.
21	Q. 2	And chloroprene, the product of the
22	Masayuki prod	cess, is a molecule that has two double
23	bonds, correc	ct?
24	Α. [That's correct.
25	Q. 2	And are there issues raised by that fact

1	that it has two double bonds as far as how the reaction
2	proceeds compared to reactions involving a result in
3	molecule with only a single double bond?
4	MR. BEAUPRE: Objection, form,
5	incomplete.
6	BY MR. ROSE:
7	Q. For example, are there issues regarding
8	polymerization?
9	MR. BEAUPRE: Same objections.
10	A. Chloroprene is a reactive molecule and
11	rises rapidly.
12	Q. Are there safety concerns in the
13	manufacture of chloroprene that would not be present in
14	the manufacture of 134, for example?
15	MR. BEAUPRE: Objection, form.
16	A. I haven't considered that.
17	Q. I want to walk through the process of
18	Masayuki and see if I'm understanding it correctly.
19	If you would turn to page six of Masayuki,
20	and beginning at line 14, the process begins with a
21	description of subjecting 3,4-dichloro-butene-1 to
22	dehydrochlorination in an aqueous solution, correct?
23	A. Yes.
24	Q. And it refers to doing this at a relatively
25	high concentration of hydroxide at 25 to 55 percent

1	weight of al	kali metal hydroxide, right?
2	Α.	Correct.
3		MR. BEAUPRE: Objection, form.
4		BY MR. ROSE:
5	Q.	And the alkali metal hydroxide disclosed in
6	Masayuki is	sodium hydroxide, correct?
7	Α.	That is the base that's used throughout the
8	experimentat	ion, but they also refer to the use of
9	other hydrox	ides, such as potassium, lithium for
10	example.	
11	Q.	And the reaction described in Masayuki on
12	page six als	o is conducted in the presence of an
13	organic cata	lyst. Do you see that reference at page
14	six, lines 1	8 to 19?
15	Α.	I do, yes.
16	Q.	What is the role of the catalyst in this
17	reaction?	
18		MR. BEAUPRE: Objection, form.
19	Α.	The catalyst is specifically a phase
20	transfer cat	alyst and added to speed up the chemical
21	reaction.	
22	Q.	Similar to the phase transfer catalyst we
23	discussed ye	sterday?
24	Α.	Exactly.
25		MR. BEAUPRE: Same objection.

1 BY MR. ROSE: 2 And then the Masayuki on that same page 0. 3 goes on to discuss gas evaporation to remove the 4 chloroprene product. I'm reading from line 20, down to 5 about line 28. 6 Α. Yes, he discusses removal of chloroprene in addition to other products. 7 8 0. Right. At the gas top of the reactor, 9 correct? 10 At the top of the reactor, which is line Α. 11 14. 12 And then beginning at line 28, Masayuki Q. 13 discloses some water is evaporated away at a 14 temperature of 95 to 100 degrees C from the water phase 15 primarily containing an aqueous solution of alkali 16 metal hydroxide and alkali metal chloride, correct? 17 Α. Correct. 18 And so the alkali metal hydroxide that is 0. the unreacted sodium hydroxide that's discussed in the 19 20 examples, but as you said, could be potassium hydroxide 21 or lithium hydroxide. 22 Objection to form. MR. BEAUPRE: 23 BY MR. ROSE: 24 0. Correct? 25 It would be unconverted. Α.

1	Q. Right. It was in the reactor but didn't
2	react?
3	A. That's correct.
4	Q. Okay. And then the alkali metal chloride,
5	that would be the resultant material that did react.
6	You would have the alkali metal, for example, sodium,
7	and then the chloride that had been removed from the
8	3,4-dichloro-butene-1?
9	MR. BEAUPRE: Objection to form.
10	BY MR. ROSE:
11	Q. Correct?
12	A. That is correct.
13	Q. And so that solution is concentrated by
14	removal of some of the water in that solution, correct?
15	MR. BEAUPRE: Objection, form.
16	A. Which solution are you talking about?
17	Q. Yes, where it says: The resulting material
18	is concentrated to recover an aqueous solution
19	containing alkali metal hydroxide as a concentration of
20	15 to 55 percent by weight. I'm on page six, lines 29
21	to 36.
22	A. That's correct.
23	Q. Masayuki then actually says that the alkali
24	metal hydroxide for the present invention typically is
25	sodium hydroxide, right, for economic reasons?

1	A. Yes, that's what it says.
2	Q. And then he goes on to say that the
3	concentration of the alkali metal hydroxide is
4	typically between 25 and 55 percent by weight, correct?
5	MR. BEAUPRE: Objection, form.
б	A. That's how it reads, yes.
7	Q. So the reaction or the process starts with
8	a concentration of alkali metal hydroxide of about 25
9	to 55 percent weight is reacted, and then after the
10	reaction, it reconcentrated by evaporation to bring the
11	concentration up to 15 to 55 percent by weight,
12	correct?
13	MR. BEAUPRE: Objection, form.
14	A. Yes, fresh alkali and concentration are
15	used to maintain the concentration in that range.
16	Q. Right. So the fresh alkali coming in at 25
16 17	Q. Right. So the fresh alkali coming in at 25 to 55 percent is reacted, which causes the alkali metal
16 17 18	Q. Right. So the fresh alkali coming in at 25 to 55 percent is reacted, which causes the alkali metal hydroxide concentration to drop as some of it is
16 17 18 19	Q. Right. So the fresh alkali coming in at 25 to 55 percent is reacted, which causes the alkali metal hydroxide concentration to drop as some of it is reacted, and then it is concentrated back up to 15 to
16 17 18 19 20	Q. Right. So the fresh alkali coming in at 25 to 55 percent is reacted, which causes the alkali metal hydroxide concentration to drop as some of it is reacted, and then it is concentrated back up to 15 to 55 percent, as described on page six at lines 34 to 38,
16 17 18 19 20 21	Q. Right. So the fresh alkali coming in at 25 to 55 percent is reacted, which causes the alkali metal hydroxide concentration to drop as some of it is reacted, and then it is concentrated back up to 15 to 55 percent, as described on page six at lines 34 to 38, correct?
16 17 18 19 20 21 22	Q. Right. So the fresh alkali coming in at 25 to 55 percent is reacted, which causes the alkali metal hydroxide concentration to drop as some of it is reacted, and then it is concentrated back up to 15 to 55 percent, as described on page six at lines 34 to 38, correct? MR. BEAUPRE: Objection, form.
16 17 18 19 20 21 22 23	Q. Right. So the fresh alkali coming in at 25 to 55 percent is reacted, which causes the alkali metal hydroxide concentration to drop as some of it is reacted, and then it is concentrated back up to 15 to 55 percent, as described on page six at lines 34 to 38, correct? MR. BEAUPRE: Objection, form. A. Well, the process is run continuously.
16 17 18 19 20 21 22 23 24	Q. Right. So the fresh alkali coming in at 25 to 55 percent is reacted, which causes the alkali metal hydroxide concentration to drop as some of it is reacted, and then it is concentrated back up to 15 to 55 percent, as described on page six at lines 34 to 38, correct? MR. BEAUPRE: Objection, form. A. Well, the process is run continuously. It's not clear to me whether the sodium hydroxide level

Page	191
------	-----

1	adding additional sodium hydroxide.
2	Q. Well, what's coming out of the reactor is
3	concentrated, right?
4	MR. BEAUPRE: Objection, form.
5	A. Well, you'd have to define the word
6	concentrated, as it comes out.
7	Q. No. It gets concentrated after it comes
8	out. Masayuki talks about that at page six, starting
9	at line 33. The resulting material is concentrated to
10	recover an aqueous solution containing alkali metal
11	hydroxide as a concentration of 15 to 55 percent by
12	weight, which is reused in the reaction?
13	A. Yes.
14	Q. So if it it's concentrated to get to 15 to
15	55 percent by weight, it had to have been somewhere
16	lower in order to be concentrated, correct?
17	MR. BEAUPRE: Objection, form.
18	A. Concentration implies that the
19	concentration is being raised. I don't know what those
20	levels are.
21	Q. Right. Thank you.
22	And Masayuki indicates that the
23	concentration of alkali metal hydroxide going into the
24	reactor should not be less than 25 percent, because the
25	speed of reaction would be produced and a byproduct

Page	192
------	-----

1	would be increased. Do you see that at lines five to
2	seven on page seven of Masayuki?
3	MR. BEAUPRE: Objection to form.
4	A. I think you said produced, but I think you
5	meant reduced. Reaction rate would be reduced, but
6	that's fine.
7	Q. I'm not sure what I said.
8	A. That's what I thought I heard.
9	Q. I'll restate my question to make sure it's
10	clear.
11	So Masayuki indicates that you should use
12	at least 25 percent weight concentration, because if
13	you don't, the speed of reaction would be reduced and a
14	byproduct, one chloro butadiene 1-3 would be increased
15	if you go below 25 percent, correct?
16	MR. BEAUPRE: Objection, form.
17	A. That's what it says.
18	Q. And then Masayuki goes into a discussion
19	regarding the distilling the chloroprene, which that
20	would be a discussion of the gaseous product coming out
21	of the top of the reactor, correct? I'm looking at
22	line 14 of page seven.
23	A. Correct.
24	Q. Then going on to the next paragraph that
25	starts at 21, Masayuki discusses a quaternary ammonium

1	compound and other options to be used as an organic
2	catalyst. Is that, again, a reference to the phase
3	catalyst mentioned earlier?
4	MR. BEAUPRE: Objection, form.
5	A. Yes, those are examples of phase transfer
б	catalysts.
7	Q. And then on page eight at line three,
8	Masayuki discussed the desire to avoid further reaction
9	of chloroprene. Is that a reference to the
10	polymerization that I had asked about earlier?
11	MR. BEAUPRE: Objection, form.
12	A. He doesn't say specifically whether that is
13	related to the polymerization of chloroprene, or it
14	could be further dehydrochlorination of the remaining
15	chloride as well. So it's not clear.
16	Q. But he also does say in that sentence: The
17	reaction can be preferably carried out following the
18	addition of a polymerization inhibitor, such as
19	phenothiazine. So does that suggest that
20	polymerization is at least one of the potential results
21	of further reaction?
22	MR. BEAUPRE: Objection, form.
23	A. Yes, it does.
24	Q. And then beginning at line 13, Masayuki
25	discusses maintaining a vapor pressure lower than

1	atmospheric to increase the speed at which the
2	chloroprene is produced, I'm sorry, at which the
3	chloroprene which is produced evaporates.
4	So, again, is it the idea that if we can
5	remove it before it reacts further, we can reduce
б	polymerization?
7	MR. BEAUPRE: Objection, form.
8	BY MR. ROSE:
9	Q. Is that your understanding?
10	A. That's the general idea, yes.
11	Q. Okay. And then beginning at line 19,
12	Masayuki discusses water is included in the organic
13	phase separated along with the aqueous phase from the
14	mixture. Does that mean that there is water that's
15	also included in the gaseous phase going out of the top
16	of the reactor?
17	MR. BEAUPRE: Objection to form.
18	A. He does state that, yes.
19	Q. I'd like to turn to page nine, and
20	beginning at line nine, Masayuki discusses some of the
21	water is removed via evaporation from the water phase
22	containing primarily an aqueous solution of alkali
23	metal hydroxide and alkali metal chloride, which in
24	turn contains solid alkali metal chloride separated
25	from the organic phase.

1	So am I understanding that correctly that
2	we're talking about now the aqueous phase that's drawn
3	out at the bottom of the reactor?
4	MR. BEAUPRE: Objection, form.
5	A. Yes, aqueous phase is withdrawn from the
6	reactor 19.
7	Q. And that aqueous phase includes some solid
8	alkali metal chloride, for example, sodium chloride in
9	the examples of Masayuki, right?
10	A. Yes, it does say that.
11	Q. And then again at lines 13 to 14, Masayuki
12	says that the resulting material is concentrated to
13	recover alkali metal hydroxide?
14	MR. BEAUPRE: Objection, form.
15	BY MR. ROSE:
16	Q. Is that correct?
17	A. Please repeat the question again.
18	(Record read.)
19	A. This section is related to describing the
20	problem that he's trying to solve. So there is a
21	discussion of temperatures and concentrations and
22	polymerization being an issue of production of
23	chloroprene, and as he noted in line 15 in the
24	conventional process, the conventionally that
25	conventionally precipitation of dissolved alkali metal

1	chloride accompanying the evaporation of this water as
2	well as the precipitation of polymer due to small
3	amounts of 3,4 dichloro-butene-1, chloroprene and
4	polymer contained in the aqueous phase are problematic.
5	So I think in the context of your question,
6	he's referring to describing the overall general
7	conventional processes.
8	Q. So he mentions conventionally precipitation
9	being a problem, starting at line 15, that's the next
10	paragraph of Masayuki. So you don't understand that
11	what he's talking about in lines 9 through 14 of page
12	nine to be describing Masayuki's process?
13	MR. BEAUPRE: Objection, form.
14	A. It's certainly part of Masayuki's process.
15	Q. And then as you note, beginning at line 15,
16	the next paragraph, Masayuki discusses possible
17	problems with precipitation of polymer due to
18	additional 3,4 dichloro-butene-1 and chloroprene and
19	polymer being in that aqueous phase that's coming out
20	the bottom of the reactor, isn't that correct?
21	A. That's correct.
22	Q. And then in the next paragraph, beginning
23	at line 28, Masayuki says that they were able to solve
24	that problem by running performing the operation at
25	a temperature of 95 degrees C or greater, that avoids

1	the problem caused by the polymer, right?
2	MR. BEAUPRE: Objection. Sorry,
3	objection, form.
4	A. It avoids the formation of the polymer that
5	is formed in this "the standard apparatus used" in the
6	conventional processes.
7	Q. Right. And then beginning at line 32, he's
8	talking about the concentration step. He said: If
9	concentration is performed at a temperature lower than
10	95 degrees C, within a short period of time disassembly
11	of the apparatus is required due to deposition of
12	polymer into the apparatus. So he's talking about the
13	concentration step?
14	MR. BEAUPRE: Objection, form.
15	BY MR. ROSE:
16	Q. Right?
17	A. Please repeat that again.
18	(Record read.)
19	A. I believe he's referring to the reaction
20	step.
21	Q. What do you understand that language to
22	mean at line 32 of page nine of Masayuki, where he
23	says: If concentration is performed at a temperature
24	lower than 95 degrees C, what do you understand him to
25	mean by the word concentration?

MR. BEAUPRE: Objection, form.
A. Concentration is the increase in
concentration.
Q. Right. So we discussed previously that
concentrating a solution means increasing its
concentration?
A. That's correct.
Q. So what he's talking about here is the step
of increasing the concentration being performed at a
temperature lower than 95 degrees C?
MR. BEAUPRE: Objection, form.
A. Yes.
Q. And then he says that performing that step
at higher than 150 degrees C is not energy efficient.
So he recommends doing it in a range between 95 and 150
degrees C, correct?
MR. BEAUPRE: Objection, form.
A. Correct.
Q. Then on page ten, Masayuki describes an
example of performing this process, starting at line
20. And in this example, Masayuki utilizes sodium
hydroxide as the alkali metal hydroxide, correct?
A. Correct.
Q. And he utilizes a solution of sodium
hydroxide that is 50 percent by weight sodium hydroxide

1	aqueous sol	ution, that's at line 25 to 26, isn't that
2	right?	
3	Α.	That's correct.
4	Q.	And he talks about conduits in various
5	numbers in	reference to the drawing that's shown on
б	page 13 of	Masayuki. So it may help to refer to that
7	as we go th	rough this discussion. But the reaction
8	takes place	in stirring machine equipped reactor 19,
9	correct?	
10		MR. BEAUPRE: Objection, form.
11		BY MR. ROSE:
12	Q.	That's 19 in the drawing?
13	Α.	That's where the reaction takes place, yes.
14	Q.	And the aqueous phase is showing as
15	withdrawn t	hrough the conduit number four at the bottom
16	of the read	tor, as shown in the drawing, right?
17	Α.	That's correct.
18	Q.	And he mentions at line 36 35 to 36, a
19	slightly mi	xed lipid and aqueous phases. What is
20	lipid?	
21	Α.	That is phase transfer catalyst.
22	Q.	And so the aqueous phase withdrawn through
23	conduit fou	r then goes to decanter, which is number 20,
24	correct?	
25	Α.	Correct.

1	Q. And from there what is decanting? What
2	does that mean?
3	MR. BEAUPRE: Objection, form.
4	A. Decanting is the separation of two phases.
5	Q. And in an aqueous and lipid mixture, the
б	lipid would be the lighter of the two phases?
7	MR. BEAUPRE: Objection, form.
8	A. Well, it's not clear that it's the lighter
9	phase, but the diagram shows it coming off the top of
10	the decanter. That's the reactor.
11	Q. The decanter allows liquids to settle, so
12	it allows two liquids to separate, is that what happens
13	in the decanter?
14	MR. BEAUPRE: Objection, form.
15	A. Two or three phases.
16	Q. Okay. In this case, the lipid phase is
17	shown being withdrawn out the top of the decanter
18	through conduit five, is that correct?
19	A. That's correct.
20	Q. And then the drawing shows and the
21	discussion going on to page 11 shows that the aqueous
22	phase comes out the bottom of the decanter through
23	conduit six, correct?
24	MR. BEAUPRE: Objection, form.
25	A. The aqueous phase and some of the

Раде	201
I azu	401

1	precipitated sodium chloride.
2	Q. So that aqueous phase coming out at six
3	would include water, sodium hydroxide, dissolved sodium
4	chloride and some precipitated sodium chloride,
5	correct?
б	MR. BEAUPRE: Objection to form.
7	A. Yes, that's correct.
8	Q. And then that goes into the enricher, which
9	is number 21 of the drawing, is that right?
10	A. Yes.
11	Q. And then it says, Masayuki says at page 11,
12	line 4: Concentration was carried out such that NaOH
13	over NaOH plus H2O equals 0.5.
14	So that's an indication of returning or
15	concentrating the sodium hydroxide to a 50 percent
16	concentration, is that right?
17	A. That's correct.
18	MR. BEAUPRE: Objection, form. Please
19	have a pause there so I can lodge my
20	objection.
21	THE WITNESS: I'm sorry.
22	BY MR. ROSE:
23	Q. And Masayuki describes using the heat
24	exchanger, which is number 22, to heat solution after
25	circulated into the enricher via conduit ten well,

1	strike that.
2	So Masayuki then at line six shows passing
3	from the enricher the solution through conduit nine
4	from conduit eight to a heat exchanger, which is 22,
5	correct?
б	MR. BEAUPRE: Objection, form.
7	A. Yes.
8	Q. So the material that's been concentrated,
9	if I'm understanding this correctly, leaves the
10	enricher at conduit eight, goes to conduit nine through
11	the heat exchanger 22 to heat it up and then back
12	through conduit ten and into the enricher at a hotter
13	temperature, is that a correct understanding?
14	MR. BEAUPRE: Objection, form.
15	A. Well, a sidestream is showing being taken
16	from conduit eight.
17	Q. Right. So as material comes out of the
18	enricher, some of it is heated up and returned back to
19	the enricher, and some of it is drawn off from conduit
20	8 by conduit 11, correct?
21	MR. BEAUPRE: Objection, form.
22	A. That is correct.
23	Q. And then that portion that comes off
24	through conduit 11, which has been concentrated up to a
25	50 percent concentration, as described at line nine on

1	page 11, that goes into the slurry tank, which is 24,
2	correct?
3	MR. BEAUPRE: Objection, form.
4	A. Yes, that's correct.
5	Q. And so what goes into the slurry tank has a
6	weight percent of 50 percent sodium hydroxide and 50
7	percent water plus whatever residual organics might be
8	in there?
9	MR. BEAUPRE: Objection to form.
10	A. It has a 50 percent ratio of sodium
11	hydroxide over sodium hydroxide plus water.
12	Q. And then precipitation occurs in the so
13	after the slurry tank, which is 24, that solution goes
14	to the centrifuge, which is 25, correct?
15	A. The mixture goes to the centrifuge 25.
16	Q. And, okay, so the mixture has just to
17	make sure I'm understanding correctly, the mixture has
18	a sodium hydroxide to sodium hydroxide plus water
19	makeup of 50 percent strike that. That was poorly
20	worded.
21	The percentage of sodium hydroxide to
22	sodium hydroxide plus water that's going into the
23	slurry tank is 50 percent, is that correct?
24	MR. BEAUPRE: Objection, form.
25	A. It doesn't state whether that is a molar

1	ratio or a weight ratio, I don't believe. I presume	
2	it's a weight ratio.	
3	Q. All the other percentage concentrations	
4	described are in terms of weight percent, right?	
5	A. Yes.	
б	Q. And so after the so what goes in there	
7	may also include some precipitated sodium chloride,	
8	correct?	
9	A. Almost definitely does.	
10	Q. And then from the slurry tank, it goes from	
11	the centrifuge, which is 25, and in the centrifuge, the	
12	solid sodium chloride is removed and discarded, right?	
13	A. It's removed.	
14	Q. Right, and it's removed through conduit 12?	
15	A. That's correct.	
16	Q. We don't know what happens after that, but	
17	it's removed?	
18	A. That's right.	
19	Q. Thank you. And then conduit 13 takes the	
20	sodium hydroxide and water mixture that has that ratio	
21	of 50 percent sodium to sodium hydroxide plus water	
22	through conduit 13 back up to conduit two and is	
23	returned to the reaction tank 19, correct?	
24	MR. BEAUPRE: Objection, form.	
25	A. I don't know whether it has that ratio or	

Page 2	205
--------	-----

1	not. It returns recovered aqueous sodium hydroxide.
2	Q. So is there any procedure or step in the
3	process shown between what goes into the slurry tank 24
4	and then what happens in the centrifuge and what comes
5	out at conduit 13 that would change the ratio of sodium
б	hydroxide to sodium hydroxide plus water?
7	MR. BEAUPRE: Objection, form.
8	A. I haven't formed an opinion on that.
9	Q. The sodium hydroxide in water at that ratio
10	50 percent, that would all be soluble, correct?
11	MR. BEAUPRE: Objection, form.
12	A. I don't know for a fact, but I expect it
13	would be.
14	Q. And something that's dissolved in water
15	wouldn't come out in the centrifuge 25?
16	A. No.
17	Q. That would be solids coming out, correct?
18	A. That's correct.
19	Q. An then Masayuki discloses another example
20	on page 12, although not walking through all of the
21	steps, but also indicates that a similar procedure, as
22	we just discussed, was performed, except that the
23	concentration of the sodium hydroxide aqueous solution
24	was set at 30 percent by weight. Do you see that at
25	lines 5 through 7?

1 Yes, I do. Α. 2 And he indicates that good separation of 0. 3 the lipid and aqueous phases was achieved as well as no 4 trouble with the enricher being observed, correct? 5 Α. That's correct. 6 So if Masayuki were combined with Smith and 0. 7 used in a process that involved a stream coming out of the reactor that included dissolved potassium fluoride 8 9 and potassium hydroxide, there would not be any 10 appreciable difference between the solubility of 11 potassium fluoride and potassium hydroxide, is that 12 correct? 13 MR. BEAUPRE: Objection, form. 14 Α. There are differences in solubility in 15 water between potassium fluoride and potassium 16 hydroxide. 17 0. Are they appreciable enough to cause a 18 separation, as described in Masayuki? 19 MR. BEAUPRE: Objection, form. 20 Α. I don't recall specifically what those 21 concentrations are, and the temperatures may have to be 22 adjusted if you were to follow that to a procedure. 23 And you don't disclose in your declaration 0. 24 any such changes in the temperatures to compensate for 25 that?

1		MR. BEAUPRE: Objection, form.
2	Α.	I don't believe I did.
3	Q.	Well, wouldn't the enrichment step of
4	Masayuki cau	ise problems in combination with the Smith
5	disclosure,	if concentrations of KOH at 15 percent or
б	greater are	used?
7		MR. BEAUPRE: Objection, form.
8	Α.	You're asking me about concentrations of
9	KOH and KF?	
10	Q.	KOH of 15 percent.
11		MR. BEAUPRE: Same objections.
12	Α.	I don't know what would happen in the
13	enricher under those conditions, under the conditions	
14	of Masayuki.	
15	Q.	And then using lime to drop to
16	precipitate	out the strike that.
17		Using lime to convert potassium fluoride to
18	calcium fluc	oride to precipitate that out, would that
19	not result in an inefficient reaction at those	
20	concentratio	ons?
21		MR. BEAUPRE: Objection, form, and
22	incomp	olete hypothetical.
23	Α.	I haven't formed an opinion, but not
24	necessarily.	
25	Q.	If Smith were combined with Masayuki, in

1	the Smith reaction, potassium hydroxide would start at,	
2	given my example of 15 percent concentration, and some	
3	amount of that potassium hydroxide would be used so	
4	that the concentration would be below 15 percent	
5	potassium hydroxide when it left the reactor, and the	
6	enricher would be used to bring potassium hydroxide	
7	back up to 15 percent, as that's done, would that not	
8	remove enough water to cause the calcium hydroxide	
9	reaction to form calcium fluoride to be inefficient and	
10	eventually become bogged down?	
11	MR. BEAUPRE: Objection, form and	
12	incomplete hypothetical.	
13	A. Yeah, I have formed no opinion as to	
14	whether it's efficient or not.	
15	Q. Now, Smith doesn't disclose we discussed	
16	this yesterday Smith doesn't disclose the fact that	
17	unused or unreacted potassium hydroxide comes out of	
18	the reaction, is that correct?	
19	MR. BEAUPRE: Same objection or	
20	objection, form.	
21	A. He doesn't disclose what happens to any	
22	unreacted KOH.	
23	Q. It doesn't disclose indeed that there even	
24	is unreacted KOH, correct?	
25	MR. BEAUPRE: Objection, form.	

1	A. H	le doesn't discuss whether there is or is	
2	not any unrea	acted KOH.	
3	Q. S	o based on Smith, it's possible it's not	
4	disclosed one	e way or the other, but it's possible that	
5	all the KOH r	eacts, and what comes out in the aqueous	
6	phase is primarily or entirely potassium fluoride with		
7	little or no	potassium hydroxide, correct?	
8	Μ	IR. BEAUPRE: Objection, form.	
9	A. I	t doesn't indicate one way or the other.	
10	Q. I	'd like to turn to your declaration.	
11	Μ	IR. BEAUPRE: The 916 declaration?	
12	Μ	IR. ROSE: Yes, sorry, talking about	
13	the 916.		
14	A. C	Dkay.	
15	Q. A	nd in particular paragraph 68.	
16	A. Y	les.	
17	Q. S	Starting at the fourth line from the bottom	
18	of page 39, y	ou state that a POSITA would be motivated	
19	to try to rec	over and recycle as much valuable	
20	material, e.g	., dehydrohalogenating agent as possible	
21	from the reac	tions described in Smith. Do you see	
22	that?		
23	A. Y	/es.	
24	Q. S	so if the material coming out in the	
25	aqueous phase	e of the reactor from Smith didn't have any	
1	dehydrohalogenating agent in it, would the POSITA		
----	--		
2	nonetheless be motivated to try to recover		
3	dehydrohalogenating agent?		
4	MR. BEAUPRE: Objection, form and		
5	incomplete hypothetical.		
б	A. Yeah, it is a hypothetical situation.		
7	Q. Sure. You're an expert		
8	A. It's not present.		
9	Q. Right. So there would be no motivation to		
10	recover any unused dehydrohalogenating agent if it was		
11	all reacted, correct?		
12	MR. BEAUPRE: Same objections.		
13	A. You can't recover it if it's not there. If		
14	it were in excess, and it was present in the effluent,		
15	you would be motivated to recover it.		
16	Q. And if the material coming out of the		
17	reactor in Smith was primarily potassium fluoride,		
18	wouldn't the POSITA be motivated to look for		
19	alternative uses or markets for potassium fluoride?		
20	MR. BEAUPRE: Objection, form and		
21	incomplete hypothetical.		
22	A. That's not stated at all. They would be		
23	motivated to recover the potassium fluoride.		
24	Q. Right.		
25	A. Certainly.		

1	Q. And perhaps sell that on the market rather
2	than convert it back to KOH?
3	MR. BEAUPRE: Objection, form and
4	foundation.
5	A. That's certainly something one would
б	possibly consider, but it's not stated that they're
7	selling potassium chloride.
8	MR. BEAUPRE: Counsel, if we're at a
9	breaking point, we've been going for about
10	an hour.
11	MR. ROSE: Yeah, that's fine.
12	THE VIDEOGRAPHER: We're off the
13	record, the time is 10:02.
14	(Recess.)
15	THE VIDEOGRAPHER: We're back on the
16	record, the time is 10:16.
17	BY MR. ROSE:
18	Q. Dr. Manzer, one thing I want to confirm
19	before we get going again is we've been talking about
20	your declaration in the 916 proceeding. I just want to
21	confirm that your declarations are the same as between
22	the 916 and the 917, correct?
23	A. Yes, I believe they're identical.
24	Q. Now, we were talking about the Masayuki
25	reference earlier, and we walked through the example

1	one that is disclosed and discussed in Masayuki from
2	pages ten to twelve, and I just want to confirm that in
3	Masayuki the reaction strike that.
4	The Masayuki, in the example, the sodium
5	hydroxide aqueous solution that is introduced to the
6	reactor by conduit two is 50 percent by weight sodium
7	hydroxide, correct? And that's on page ten at lines 25
8	to 26.
9	MR. BEAUPRE: Objection, form.
10	A. It says the conduit two contains 50 percent
11	of the weight sodium hydroxide, aqueous sodium
12	hydroxide.
13	Q. And then we also discussed that after
14	concentration in the enricher, the concentration of
15	sodium hydroxide was brought back to 50 percent by
16	weight sodium hydroxide compared to sodium hydroxide
17	plus water?
18	MR. BEAUPRE: Objection, form.
19	BY MR. ROSE:
20	Q. Correct, and then I can direct you to page
21	11, line 5 for that.
22	MR. BEAUPRE: Same objection.
23	A. Yes.
24	0. So the only disclosure in Masayuki that

Page	213
LUGU	

1	shows that what goes into the reactor through conduit
2	two is the same as what is then later taken out of the
3	enricher at conduit eight, correct?
4	MR. BEAUPRE: Objection, form.
5	A. I have not formed an opinion on that.
6	Q. Can you identify any other disclosure in
7	Masayuki that shows any instance in which the
8	concentration of sodium hydroxide introduced into the
9	reactor is different than the concentration of sodium
10	hydroxide that is withdrawn from the enricher?
11	MR. BEAUPRE: Objection, form.
12	A. It does provide a variation in the
13	concentration of caustic sodium hydroxide on column
14	page six, line 17, which says relatively high, which
15	could be 25 to 55 percent.
16	Q. Right. And the only example, however
17	strike that.
18	He does not show any other percentage
19	within that range and discuss it being reacted and
20	taken through the Masayuki process, including the
21	enricher, in which some different concentration of
22	sodium hydroxide leaves the enricher, correct?
23	MR. BEAUPRE: Objection, form.
24	A. That's one example only. Once again on
25	page column page six, line 36, it says, the

1	hydroxide concentration could be 15 to 55 percent,
2	which is used in the reaction.
3	Q. Are there any other examples that you're
4	aware of?
5	MR. BEAUPRE: Objection, form.
б	A. There are three examples in the Masayuki
7	reference.
8	Q. Right. And in those other examples, other
9	than example one, Masayuki does not disclose the
10	concentration of sodium hydroxide coming out of the
11	enricher, does he?
12	MR. BEAUPRE: Objection, form.
13	A. I don't believe that's true. And example
14	two, line seven, it says: The concentration was set to
15	30 percent by weight.
16	Q. Do you understand that to be the
17	concentration going into the reactor?
18	A. It's not specific, but 30 percent by weight
19	concentration going into the reactor falls within that
20	range that he describes.
21	Q. And then is that the percentage by weight
22	coming out of the enricher?
23	MR. BEAUPRE: Objection, form.
24	A. It does not state that.
25	Q. Right. So the only example in which

1	Masayuki discloses the concentration going into the
2	reactor and the concentration coming out of the
3	enricher is example one in which they are the same
4	concentration, correct?
5	MR. BEAUPRE: Objection, form and
б	misstates prior testimony.
7	MR. ROSE: I didn't state any prior
8	testimony.
9	MR. BEAUPRE: And assumes facts not in
10	evidence.
11	MR. ROSE: I didn't make an assumption
12	either. I merely asked a question.
13	THE WITNESS: Please repeat that
14	question.
15	(Record read.)
16	MR. BEAUPRE: Same objections.
17	A. That's what's described in example one.
18	Example two he says the same procedure was used as in
19	example one with the hydroxide solution set to 30
20	percent. It does not say where that 30 percent is
21	derived from.
22	Q. So example two doesn't provide a comparison
23	of what went into the reactor and what came out of the
24	enricher, correct?
25	MR. BEAUPRE: Objection, form.

Page	216
------	-----

1	A. I don't see anywhere that it does.
2	Q. I'd like to turn back to your declaration
3	in 916 and 917 proceedings.
4	In paragraph 72, you state I'll wait
5	until you get there.
6	A. I'm there.
7	Q. A POSITA would be motivated to apply the
8	withdrawing step of Masayuki to the dehydrohalogenation
9	process of Smith, thereby resulting in withdrawing an
10	aqueous phase, i.e., a reaction stream comprising spent
11	KOH and byproduct KF from the dehydrofluorination
12	reactor as recited in step B of claim 21. Do you see
13	that?
14	A. Yes.
15	Q. However, we've already confirmed that Smith
16	doesn't disclose whether any unreacted KOH comes out of
17	the reactor in a reaction stream, isn't that correct?
18	MR. BEAUPRE: Objection, misstates
19	prior testimony and form.
20	A. I haven't formed an opinion on that.
21	Q. Smith is silent as to whether any unreacted
22	KOH remains and therefore nothing about Smith would
23	motivate a POSITA to look to Masayuki, correct?
24	MR. BEAUPRE: Objection, form.

1	Q. Well, it's not correct that Smith is silent	
2	on whether any unreacted KOH comes out of the reactor?	
3	MR. BEAUPRE: Same objection.	
4	A. There's no discussion in Smith about the	
5	concentration of KOH exiting the reactor.	
6	Q. And there's no discussion in Smith about	
7	any KOH coming out of the reactor, isn't that correct?	
8	MR. BEAUPRE: Same objection.	
9	A. No, but combining Masayuki with Smith,	
10	Smith would it would be logical to include higher	
11	concentrations of KOH, because as Masayuki says, the	
12	dehydrohalogenation action goes faster in the presence	
13	of excess KOH.	
14	Q. But Smith is the primary reference,	
15	correct?	
16	MR. BEAUPRE: Objection, form.	
17	A. Smith is a reference for the production of	
18	halo alkanes, primarily.	
19	Q. You don't have anything in your declaration	
20	that suggests that Masayuki's mention of using higher	
21	concentrations of alkali metal hydroxide gives rise to	
22	the motivation to combine Smith and Masayuki, do you?	
23	MR. BEAUPRE: Objection, form.	
24	A. Masayuki makes the point that higher	
25	concentrations of hydroxide preferred increase the rate	

1	of the hydrodehalogenation step. Excuse me, therefore,	
2	if you are Smith, you're looking for a good	
3	dehydrohalogenation step, you would be inclined to look	
4	at Masayuki.	
5	Q. You don't cite in your declaration to	
б	Masayuki's suggestion of using higher concentrations of	
7	alkali metal hydroxide as a motivation to combine the	
8	references, do you?	
9	MR. BEAUPRE: Objection, form.	
10	A. The POSITA is looking at all prior art as a	
11	way to make 1234 using KOH and recovering all valuable	
12	materials. And in looking at the prior art, it covers	
13	Masayuki, which is looks like a great starting point	
14	for recovering and recycling spent dehydrohalogenation	
15	agent in recovering fluoride value by using the method	
16	of Harrison.	
17	So combining those three references, one	
18	would a POSITA would think there would be a high	
19	probability of success in a more efficient	
20	cost-effective process.	
21	Q. Where in Masayuki are you relying on for	
22	the testimony that Masayuki teaches using excess alkali	
23	metal hydroxide?	
24	MR. BEAUPRE: Objection, form.	
25	A. All right. Let's go to page six, line 17.	

Page	219
I azu	

1	It discusses the present invention in which he uses
2	high concentration of alkali metal hydroxide 25 through
3	55 percent, and he goes on to page 7, line 5, it says:
4	If the concentration is less than 25 percent, not only
5	is the speed of the reaction reduced, but byproducts
б	are increased. The implication is that the
7	concentration of base should be relatively high.
8	Q. Is there any other area of Masayuki that
9	you're relying on for that opinion?
10	MR. BEAUPRE: Objection, form.
11	A. On page four, line 21, the reaction is run
12	so as to leave a final hydroxide concentration of at
13	least 25 percent, and the method for the production,
14	said method for the production following on there
15	provides for a fast reaction speed.
16	Q. Is there anywhere else that you're
17	referring to?
18	A. I don't seem to be able to find anything
19	else. There may be additional examples, but I can't
20	find them right now.
21	Q. And just to be clear, 25 percent
22	concentration is the absolute lowest concentration that
23	Masayuki describes for the alkali metal hydroxide being
24	introduced into the reactor, correct?
25	MR. BEAUPRE: Objection, form.

1	A. He prefers the 25 to 55 percent range.
2	Q. And do you cite to those excerpts from
3	Masayuki anywhere in your declaration as providing
4	motivation for a POSITA to combine Masayuki with Smith?
5	MR. BEAUPRE: Objection, form.
6	A. Let's go to page 0000040, paragraph 68,
7	line 11 of paragraph 68: To make the
8	dehydrohalogenation process of Smith even more
9	efficient and cost effective, POSITA would be motivated
10	to increase the amount of KOH recovered and recycled to
11	the dehydrohalogenation reaction to make productive use
12	of the KF byproduct.
13	Q. Anywhere else?
14	MR. BEAUPRE: Objection, form.
15	(Pause.)
16	A. Without taking a lot more time, I'm not
17	uncovering any additional examples. They may be in
18	there, but I haven't seen them.
19	Q. And to go back to the portion that you just
20	referenced, page 40, beginning at the 11th line from
21	the top, where you state: To make the
22	dehydrohalogenation process of Smith even more
23	efficient and cost effective, a POSITA would be
24	motivated to increase the amount of KOH recovered and

1	productive use of the KF byproduct salt. And after
2	that you state: To that end, Harrison teaches a method
3	for converting byproduct KF back to KOH using CAOH2.
4	So the excerpt that you cited, that's a
5	motivation to use Harrison, correct?
6	MR. BEAUPRE: Objection, form.
7	A. Motivation is to increase the amount of KOH
8	to the dehydrohalogenation reactor, as stated, offers
9	benefits by Masayuki. And then by increasing the
10	amount of KOH fed, the reaction would produce KF as a
11	byproduct salt, and that's when Harrison enters into
12	the picture as a way to recover the KF byproduct salt.
13	Q. That excerpt that you cited to me does not
14	include any statement about increasing the amount of
15	KOH fed to the reactor, does it? Instead, it says
16	increase the amount of KOH recovered and recycled.
17	MR. BEAUPRE: Objection.
18	BY MR. ROSE:
19	Q. Isn't that correct?
20	A. A POSITA would look at Masayuki and
21	understand that increasing base concentration increases
22	the rate of the reaction and likely the conversion
23	reaction, depending on conditions. And, therefore,
24	there would be excess KOH fed to the reactor, and any
25	unreacted KOH would exit the reactor, as stated in

1	line in paragraph 68, along with that spent KOH
2	would be KF, the byproduct from the reaction or
3	co-product from the reaction, and then in order to make
4	the process more cost efficient, then you look at
5	Harrison as a method of removing KF and regenerating
б	KOH.
7	Q. Where in paragraph 68 do you state that the
8	POSITA would be motivated to increase the amount of KOH
9	being fed into the reactor? Isn't paragraph 68 about
10	motivation to recover as much KOH as possible?
11	MR. BEAUPRE: Objection, form.
12	A. I think that's reading it too narrowly. I
13	mean, you're applying the teachings of Masayuki, which
14	are numerous to the process.
15	Q. To focus on my question, where in paragraph
16	68 do you say that a POSITA would be motivated to
17	increase the amount of KOH going into the reactor?
18	MR. BEAUPRE: Objection, form.
19	A. I hadn't formed an opinion on that.
20	Q. And going back to the citations that you
21	gave from Masayuki, you first identified the statement
22	on page six at line 17 regarding a high concentration
23	25 to 55 percent by weight of alkali metal hydroxide,
24	do you see that?
25	A. Yes.

Page	223
------	-----

1	Q. That doesn't mention that the alkali metal
2	hydroxide should be excess, does it? It just says a
3	high concentration.
4	MR. BEAUPRE: Objection, form.
5	A. Well, it says that the KOH concentration
6	should be in that range of 25 to 50 percent, and it
7	also indicates that there's excess for spent DHA
8	exiting the reactor. Therefore there would be likely
9	an excess of KOH.
10	Q. Right, but at no point does Masayuki
11	recommend using excess KOH, correct?
12	MR. BEAUPRE: Objection, form.
13	A. He recommends the use of high
14	concentrations of KOH to speak of the reaction, and his
15	examples show that using high concentrations of sodium
16	hydroxide result in spent DHA from the reactor. That
17	would imply to me that there is an excess of sodium
18	hydroxide added.
19	Q. But you didn't find any place in Masayuki
20	where he recommends using an excess of KOH, correct?
21	MR. BEAUPRE: Objection, form.
22	A. I haven't studied it enough to make an
23	opinion on that.
24	Q. I want to go back to your declaration at
25	paragraph 77 on page 45.

1	A. Okay.	
2	Q. Starting at line five of paragraph 77, you	
3	state: Smith describes dehydrofluorinating 245EB using	ſ
4	an aqueous solution of KOH to produce 1234YF and KF	
5	with unreacted KOH and water being present in the	
6	reaction mixture.	
7	Do you see where you said that?	
8	A. Yes.	
9	Q. Okay. But Smith does not describe that	
10	reaction with unreacted KOH being present in the	
11	reaction mixture, correct?	
12	MR. BEAUPRE: Objection, form.	
13	A. Would you rephrase that, please?	
14	Q. Yes. Well, we've already discussed that	
15	Smith doesn't describe any unreacted KOH coming out of	
16	the reactor, isn't that correct?	
17	MR. BEAUPRE: Objection, form and	
18	misstates prior testimony.	
19	A. Well, I will have to go back and read	
20	Smith.	
21	Q. Okay.	
22	(Pause.)	
23	A. Let's go in the Smith reference to the page	ž
24	number 13 in the bottom right, second paragraph from	
25	the bottom, the line starting: The basis typically	

Page 22	25
---------	----

1	present in an amount from one to 50 percent based on
2	the total.
3	Q. I'm on the wrong page. I'm sorry. Okay,
4	go ahead.
5	A. It's on page 12 page 13 I guess where it
б	says
7	Q. Yes, I'm there now.
8	A. The base is typically present in an amount
9	from of from one to 50 percent based on the total
10	weight of the components, which make up steps B and C,
11	which are the dehydrohalogenation steps. Preferably
12	the base is present in an amount from five to thirty
13	percent. There's not enough information in that
14	statement to determine whether there's an excess of
15	base relative to 236 or 245.
16	Q. Okay.
17	(Pause.)
18	A. Are you waiting for me?
19	Q. Yeah, I didn't know if you had anything
20	more to add to your answer.
21	A. Oh, I'm sorry, no.
22	Q. So why don't you go back to our discussion
23	with Masayuki and the combination of Masayuki with
24	Harrison. We've discussed that in the example of
25	Masayuki, the concentration of the KOH that goes into

1	the reactor is 50 percent, and then the concentration
2	of KOH strike that.
3	In the combination of Masayuki, Smith and
4	Harrison, the concentration strike that again.
5	Using Masayuki with potassium hydroxide
б	instead of sodium hydroxide going into the reactor,
7	then coming out of the reactor and going into the
8	enricher, and then using strike that again.
9	MR. BEAUPRE: That's three strikes,
10	counsel.
11	MR. ROSE: Three strikes. I knew you
12	were counting.
13	Q. If Masayuki is used in connection with
14	Smith and potassium hydroxide is the
15	dehydrohalogenating agent in the production of 1234YF,
16	what comes out of the reactor is a combination of KOH
17	and KF in the aqueous phase, correct?
18	MR. BEAUPRE: Objection, form.
19	BY MR. ROSE:
20	Q. As well as other things, but certainly KOH
21	and KF, correct?
22	MR. BEAUPRE: Same objection.
23	A. Those would certainly be two of the
24	components.
25	Q. Okay. And then following the teachings of

1	Masayuki, that aqueous solution would go into the
2	enricher, and the concentration of KOH would be back
3	brought back up to its original concentration using,
4	for example, the 50 percent of Masayuki's example,
5	correct? So that what leaves the enricher has the same
6	alkali metal hydroxide concentration as what went into
7	the reactor. That would require a KOH concentration of
8	50 percent coming out of the enricher, correct?
9	MR. BEAUPRE: Objection, form.
10	A. Well, it doesn't state that specifically.
11	It says there's a preferred range of concentration of
12	base.
13	Q. I'm using the only example that we
14	discussed that shows the concentration going into the
15	reactor and also shows the concentration coming out of
16	the enricher.
17	A. And once again, that's one example, based
18	on a range of preferred examples, and it relates to the
19	dehydrohalogenation of chloroprene. When one considers
20	Smith over Masayuki, then some of the conditions may be
21	changed.
22	Q. We'll get to that in a minute, but I'm
23	following the example using 50 percent into the reactor
24	and 50 percent of alkali metal hydroxide coming out of

1	shows both the incoming concentration and the outgoing
2	concentration, correct?
3	MR. BEAUPRE: Objection, form.
4	A. You asked me to consider a specific case
5	where you've got 50 percent KOH plus KF and potentially
б	other materials and that aqueous treatment being fed to
7	the reactor. And you're asking me to assume that the
8	50 percent KOH that's fed is concentrated back up to 50
9	percent KOH in the enricher. It does provide the
10	possibility for the addition of additional component
11	additional KOH. But let's consider your example.
12	Q. Right. What goes into the reactor is 50
13	percent KOH. What comes out of the reactor is some
14	concentration of KOH that's less than 50 percent. That
15	aqueous stream goes into the enricher, and it is
16	enriched back up to 50 percent KOH using Masayuki's
17	example, okay?
18	A. Yes.
19	Q. So that's going to increase the
20	concentration of KOH and also increase the
21	concentration of KF coming out of the enricher,
22	correct?
23	MR. BEAUPRE: Objection, form.
24	A. That's correct.
25	Q. And then going into the slurry tank and the
25	0. And then going into the slurry tank and the

1	addition of calcium hydroxide into that mixture would				
2	convert the KF to KOH, correct?				
3	MR. BEAUPRE: Objection, form.				
4	A. At least some portion of it, depending on				
5	the amount that was added.				
6	Q. And that would increase the KOH				
7	concentration to above 50 percent, correct?				
8	MR. BEAUPRE: Objection, form.				
9	A. Well, it's unclear. It depends on how much				
10	water was added along with the lime. I think it says				
11	the lime was added as a slurry. So additional water is				
12	added along with the KOH to the slurry tank.				
13	Q. You don't know how much that is?				
14	MR. BEAUPRE: Objection, form.				
15	A. I don't think it states how much water is				
16	added.				
17	Q. Wouldn't the concentration of KOH coming				
18	out of the slurry tank and out of the centrifuge be				
19	higher than the concentration of KOH that originally				
20	went into the reactor?				
21	MR. BEAUPRE: Objection, form.				
22	A. There's not enough information to draw that				
23	conclusion. The enricher could be run differently.				
24	Q. I'd like to turn to your declaration,				
25	paragraph 75. You state: In the combined process of				

1	Smith, Masayuki and Harrison, a POSITA would understand					
2	that the dehydrofluorination reaction of Smith would					
3	take place in the reactor 19 of Masayuki. The					
4	remainder of the process of Masayuki would operate					
5	substantially, as taught in Masayuki, with a small					
6	modification to the slurry tank 24 for introduction of					
7	CAOH2 into the slurry tank 24 to convert KF to KOH and					
8	CAF2.					
9	Do you see where you wrote that?					
10	A. Yes.					
11	Q. So you don't describe or opine on any					
12	changes being made to the enricher of Masayuki in order					
13	for that process to work commercially, correct?					
14	MR. BEAUPRE: Objection, form.					
15	A. I do state the remainder of the process of					
16	Masayuki would offer a substantially, as taught in					
17	Masayuki, one small variation modification of the					
18	slurry tank, but it doesn't say that is the only					
19	modification to the Masayuki process.					
20	Q. But that's the only modification you					
21	identify, isn't that right?					
22	MR. BEAUPRE: Objection, form.					
23	A. That's the only one that was written in the					
24	declaration at that point.					
25	Q. At what point would the concentration of					

1	the KOH and subsequently the KF get to a point at which					
2	precipitating calcium fluoride using lime would be too					
3	high?					
4	MR. BEAUPRE: Objection, form.					
5	THE WITNESS: Yes, please repeat that					
б	question for me.					
7	(Record read.)					
8	A. I haven't formed an opinion on that at all.					
9	Q. And the concentrations disclosed in					
10	Harrison of the KOH are only about 15 to 20 percent					
11	I'm sorry, the weight percentage of KF are only 15 to					
12	20 percent potassium fluoride and three to five percent					
13	unreacted KOH, isn't that correct?					
14	MR. BEAUPRE: Objection, form.					
15	A. Those are the concentrations specifically					
16	used by Harrison.					
17	Q. Wouldn't utilizing the concentrations					
18	disclosed by Masayuki be significantly higher than					
19	that?					
20	MR. BEAUPRE: Objection, form.					
21	A. That would be a cost-efficient way to run					
22	the process, could potentially be higher.					
23	Q. So Masayuki discloses using concentrations					
24	higher, significantly higher than those concentrations					
25	shown in Harrison, correct?					

1	MR. BEAUPRE: Object to form.				
2	A. I read Harrison directly, use his examples,				
3	that's true. The chemistry is still the same.				
4	Q. Right. And you state additionally I'm				
5	referring to paragraph 77 of your declaration on page				
6	46, last sentence of that paragraph, you state:				
7	Additionally, a POSITA would consider applying the				
8	converting step of Harrison to Masayuki to be				
9	straightforward with little to no disruption in the				
10	process of Masayuki, correct?				
11	A. Yes.				
12	Q. And so have you done any modeling to see				
13	what happens if you follow the teaching of Masayuki in				
14	using the enricher to bring the KOH concentration back				
15	up to 50 percent and then using Harrison to convert KF				
16	to KOH to increase the KOH concentration coming out of				
17	the slurry tank and thus out of the centrifuge, how				
18	that would affect the overall continuous operation of				
19	the process going forward?				
20	MR. BEAUPRE: Objection, form.				
21	A. Yeah, I have not done any modeling.				
22	Q. Did you consider any difficulties that				
23	might arise with an increasing concentration of KOH as				
24	higher and higher concentrations are circulated back to				
25	the reactor via conduits 13 and 2?				

MR. BEAUPRE: Objection, form. 1 2 THE WITNESS: Please read that 3 question again. 4 (Record read.) A POSITA would not have seen any 5 Α. 6 difficulties that could not be overcome by further 7 modeling or further evaluation of the components of the 8 process. 9 But you didn't do any modeling, correct? Q. 10 MR. BEAUPRE: Same objection. 11 Α. Correct, I did not do any modeling. 12 And what do you base that opinion that a 0. 13 POSITA would not see any difficulties that could not be 14 overcome? 15 Objection, form. MR. BEAUPRE: 16 Α. Well, a POSITA would look at that process 17 of Masayuki and understand that from a variety of 18 concentrations down to very low concentrations, the 19 addition of lime would effectively precipitant calcium 20 fluoride. 21 Right, and I'm talking about the addition 0. of -- strike that. 22 23 What I'm talking about is the increase of concentration of KOH by use of the enricher in 24 combination with the conversion of KF into KOH in the 25

1	slurry tank that would occur, and as the process					
2	repeats itself, would occur again and again and again?					
3	MR. BEAUPRE: Objection, form.					
4	A. Well, once again, I have not modeled it,					
5	but as I said previously, one could adjust the					
6	concentration in the enricher to maintain a desired					
7	level of KOH fed to the reactor.					
8	Q. But that would be contrary to what you said					
9	in paragraph 77 and 75 that no other changes would need					
10	to be made to the Masayuki process other than just some					
11	changes to the slurry tank to add the lime?					
12	MR. BEAUPRE: Objection, form and					
13	mischaracterizes.					
14	A. I did not say that. I said the process of					
15	Masayuki would operate substantially as taught, but					
16	other changes could be made.					
17	Q. That you don't identify, correct?					
18	MR. BEAUPRE: Objection to form.					
19	A. I have not outlined any additional changes					
20	or formed an opinion on those.					
21	Q. And you also stated in paragraph 77 that a					
22	POSITA would consider applying the converting step of					
23	Harrison to Masayuki to be straightforward, causing					
24	little to no disruption to the process of Masayuki. So					
25	that doesn't identify any changes to the enricher, does					

1 it? 2 Objection, form. MR. BEAUPRE: 3 Α. No, it says the process of Harrison could 4 be applied with little disruption to the process. 5 Little to no disruption? Q. 6 Α. Little to no, but little is fine. 7 0. But, again, you don't identify any changes 8 to the operation of the enricher of Masayuki in that 9 comment, do you? 10 Objection, form. MR. BEAUPRE: 11 Yeah, I've not formed any opinions on that. Α. 12 As I said, I haven't looked in detail or modeled it, 13 but I did not anticipate any significant changes at 14 all. 15 MR. ROSE: Why don't we take a quick 16 break. We may be about to wrap up. Let me 17 talk with my colleagues. 18 Sure. MR. BEAUPRE: 19 THE VIDEOGRAPHER: We're going off the 20 record, the time is 11:28. 21 (Recess.) 22 THE VIDEOGRAPHER: We're back on the 23 record, the time is 11:41. 24 BY MR. ROSE: 25 I just have a couple of follow-up questions 0.

1 Dr. Manzer.

2	You had testified earlier when we were
3	asking about the water, the concentration in the slurry
4	tank after the lime is added, and you had said it's
5	unclear, because you thought that the lime was added as
6	a slurry. Will you take a look at the Harrison
7	reference, which is, again, Exhibit 1006, and I'd like
8	to direct your attention to column three, starting at
9	line six. Harrison indicates that basic potassium
10	chloride solution is then mixed with solid hydrated
11	slate lime in a stirred vessel.
12	So the lime that is added to the aqueous
13	solution of Harrison is actually added as a solid, as
14	opposed to a slurry, is that correct?
15	A. That's what it says, correct.
16	MR. ROSE: I have no further questions
17	at this time.
18	MR. BEAUPRE: We have no questions for
19	Dr. Manzer.
20	THE VIDEOGRAPHER: This concludes the
21	deposition of Dr. Leo E. Manzer. The number
22	of tapes used were three. Going off the
23	record, the time is 11:42.
24	(Whereupon the deposition was $concluded$ at $11:42 = m$)
25	(Signature reserved.)

1	SIGNATURE PAGE
2	
3	
4	
5	
6	
7	
8	LEO E. MANZER
9	
10	
11	SUBSCRIBED AND SWORN to before me this
12	day of, 2016.
13	
14	
15	
16	NOTARY PUBLIC
17	
18	My Commission expires:
19	
20	
21	
22	
23	
24	
25	

1	ERRATA PAGE	
2		MMV
3		
4	CASE NAME: France vs. Honeywell	
5		
6	WITNESS NAME: LEO E. MANZER	
7	DATE: January 8, 2016	
8		
9	PAGE LINE READS SHOULD READ	REASON FOR CHANGE
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
23		
24		
23		

1	CERTIFICATE					
2	I, Marisa Munoz-Vourakis, RMR, CRR and Notary Public,					
3	the officer before whom the foregoing proceeding was					
4	conducted, do hereby certify that the witness(es) whose					
5	testimony appears in the foregoing proceeding were duly					
6	sworn by me; that the testimony of said witness(es) were					
7	taken by me to the best of my ability and thereafter					
8	transcribed under my supervision; and that the foregoing					
9	pages, inclusive, constitute a true and accurate					
10	transcription of the testimony of the witness(es).					
11	I do further certify that I am neither counsel for,					
12	related to, nor employed by any of the parties to this					
13	action in which this proceeding was conducted, and					
14	further, that I am not a relative or employee of any					
15	attorney or counsel employed by the parties thereof, nor					
16	financially or otherwise interested in the outcome of the					
17	action.					
18	IN WITNESS WHEREOF, I have hereunto subscribed my name					
19	this of , 2016. M- M (
20	1 /aus a 11/umz-Vocantis					
21	MARISA MUNOZ-VOURAKIS					
22						
23						
24	Notary #20032900127					
25						

Index	A	5	36	
muca.	v			

	226:15	204:23	219:2,4,
0	13 193:24	230:3	13,21
0 5 201:13	195:11		220:1
0.5 201.13	199:6	2	222:23
0000040	204:19.22		223:6
220:6	205:5	2 232:25	26 199:1
0901 178:7	224:24	20 182:17	212:8
	225:5	188:4	
1	222:25	198:21	28 188:5,12
		199:23	196:23
1-3 192:14	134 186:14	231:10,12	29 189:20
100 188.14	14 186:20	001 C 170 C	
100 100.14	188:11	2016 1/8.0	3
1005 185:5	192:22	21 192:25	
1006 178:20	196:11	201:9	3,4 185:12,
236:7	15 182:17	216:12	14 196:3,
10.02 211:13	189:20	219:11	18
	190:11.19	22 201:24	3,4-dichloro-
10:16 211:16	191:11,14	202:4,11	butene-1
11 200:21	195:23	226 225.15	185:10
201:11	196:9,15	230 223•13	186:21
202:20,24	207:5,10	24 203:1,13	189:8
203:1	208:2,4,7	205:3	3.5-dichloro-
212:21	214:1	230:6,7	butene
220:7	231:10,11	245 225:15	185:11
11:28 235:20	150 198:14	245FB 224:3	30 179:23
	15		205:24
11:41 235:23	15	25 183:11	203:21
11:42	16 183:13	186:25	215:19 20
236:23,24	17 213:14	190:4,8,16	
11th 220:20	218:25	191:24	32 197:7,22
10 204.14	222:22	192:12,15	33 191:9
205·20	18 187:14	エッツ・エ 202・11 15	34 190:20
225:5	10 107.11	203.14,13	DE 100.10
	10/·11	205:15	33 199.10
1234 218:11	105·6	203:13	36 189:21
1234YF 224:4	100·0 10	213:15	199:18
	199·0,14	2-3-13	

Index: 38..ahead

213:25	12,14,16		added 182:6
38 190:20	229:7	8	187:20
20 200.10	232:15	8 178:6	223:18
39 209.10	51 183:12	202:20	229:5,10,
	55 186:25		11,12,16
4	189:20	9	236:4,5,
4 201:12	190:4.9.		12,13
4 42 192.6	11,17,20	9 196:11	adding 191:1
9 1 8	191:11,	916 178:19	addition
5,10	213:15	185:5	188:7
4.47 183:6,	214:1	209:11,13	193:18
14,18	219:3	211:20,22	228:10
40 220:20	220:1	216:3	229:1
45 223:25	222:23	917 178:19	233:19,21
16 222.6		185:5	additional
40 232.0	6	211:22	180:12
49 183:15	62 100.05	216:3	182:5
	63 18U·25	95 188:14	191:1
5	64 180:25	196:25	196:18
5 205.25	68 209:15	197:10.24	219:19
212:21	220:6,7	198:10,15	220:17
219:3	222:1,7,9,	,	228:10,
	16	A	229:11
50 198:25			234:19
201.15	7	a.m. 236:24	additionally
202:25		absolute	232:4,7
19.23	7 205:25	219:22	adjust 234:5
204:21	219.3	accompanying	adjusted
205:10	72 216:4	196:1	206:22
212:6,10,	75 229:25		
15 223:6	234:9	achieved	affect
225:1,9	77 223:25	200.5	232·10
226:1	224:2	action	agent 209:20
227:4,8,	232:5	217:12	210:1,3,10
23,24	234:9,21	add 225:20	226:15
228:5,8,		234:11	ahead 225:4
1			

ARKE	MA FRANCE v. HONEY Leo E. Manzer, P	WELL INTERNATION h.D. on 01/08/2016	AL INC. Index: alkaliBEAUPRE
alkali	180:7	216:10	212:15
187:1.5	196:3	224:4	216:2
188:15.16.		226:17	220:19
18 189:4.	anticipate	227:1	221:3
6.19.23	235:13	228:6.15	222:20
190:3.8.	apparatus	236:12	223:24
14.16.17	197:5,11,		224:19
191:10.23	12	area 219:8	225:22
194:22,23,	applied	arise 232:23	227:2,3
24 195:8,	235:4	art 218:10.	228:8,16
13,25	- 016 5	12	232:14,24
198:22	apply 216:7		235:22
217:21	applying	assume 228:7	h
218:7,22	222:13	assumes	Dase 219.7
219:2,	232:7	215:9	$221 \cdot 21$
222:23	234:22	assumption	$225 \cdot 8, \pm 2,$
223:1	appreciable	215:11	15 233.12
227:6,24	206:10.17		based 179:24
alkanog		atmospheric	209:3
217:18	aqueous	194:1	225:1,9
217.10	101.14 15	attention	227:17
alternative	181:14,15	236:8	basic 236:9
210:19	106.00	avoid 193:8	bagig 224.25
ammonium	100.15		Dasis 221.23
192:25	100.10	avoids	batch 179:7,
amount	101.10	196:25	10,12,16,
180:2 4 6	101.12 22	197:4	17,19,20
8 10	194.13,22 195:2 5 7	aware 214:4	BEAUPRE
184:13	196.4 19		179:8
208:3	199:1 14	В	180:17
220:10 24	19 22		181:4,11,
221:7.10.	200:5 21	back 179:21	20,25
14.16	25 201:2	184:22	182:10
222:8,17	205:1.23	190:19	183:1,21
225:1,8,12	206:3	202:11,18	184:2,8,
229:5	209:5,25	204:22	17,23
	212:5.11	208:7	185:18
amounts		211:2,	186:4,9,15

ARKEMA FRANCE v. HONEYWELL INTERNATIONAL INC.

	Leo E. Manzer, F	Ph.D. on 01/08/2016	Index: beginningcausing
187:3,18,	218:9,24	bogged	
25 188:22	219:10,25	208:10	C
189:9,15	220:5,14	bond 186:3	GNE2 220.0
190:5,13,	221:6,17		CAF2 230.0
22 191:4,	222:11,18	bonds 185:23	calcium
17 192:3,	223:4,12,	180:1	179:1,3,25
16 193:4,	21 224:12,	bottom 195:3	184:11,15
11,22	17 226:9,	196:20	207:18
194:7,17	18,22	199:15	208:8,9
195:4,14	227:9	200:22	229:1
196:13	228:3,23	209:17	231:2
197:2,14	229:3,8,	224:24,25	233:19
198:1,11,	14,21	break 235:16	CAOH2 221:3
17 199:10	230:14,22	Dieak 200010	230:7
200:3,7,	231:4,14,	breaking	100.2
14,24	20 232:1,	211:9	carbon 180:3
201:6,18	20 233:1,	bring 190:10	carbonation
202:6,14,	10,15	208:6	179:4
21 203:3,	234:3,12,	232:14	carried
9, 204:24	18 235:2,	brought	193:17
205:7,11	10, 236:18	212.15	201:12
206:13,19	beginning	212.13	105.0
207:1,7,	178:3	227•5	case 185:2
11,21	186:20	butadiene	200:16
208:11,19,	188:12	192:14	228:4
25 209:8,	193:24	byproduct	cases
11 210:4,	194:11,20	191:25	178:19,21
12,20	196:15,22	192:14	catalyst
211:3,8	197:7	216:11	187:13,16,
212:9,18,	220:20	220:12	19,20,22
22 213:4,	boging	221:1,3,	193:2,3
11,23	170.22	11,12	199:21
214:5,12,	186:20	222:2	astslugta
23 215:5,	100.20	byproducts	
9,16,25	benefits	219:5	0.541
216:18,24	221:9		caused 197:1
217:3,8,	bit 185:3		causing
16,23			234:23

ARKEMA FRANCE v. HONEYWELL INTERNATIONAL INC. Leo E. Manzer, Ph.D. on 01/08/2016 Index: caustic..concentration

caustic	185:21	combination	components
213:13	186:10,13	184:6,14,	225:10
centrifugation	188:4,6	25 207:4	226:24
185:2	192:19	225:23	233:7
103.2	193:9,13	226:3,16	compound
centrifuge	194:2,3	233:25	193:1
185:2	195:23	combine	19301
203:14,15	196:3,18	183.25	comprising
204:11	227:19	217.22	216:10
205:4,15	airaulatod	218.7	concentrated
229:18	201·25	210.1	189:13,18
232:17	201.23	220.4	190:19
change 205:5	232.24	combined	191:3,6,7,
, , ,	citations	183:6	9,14,16
changed	222:20	184:19	195:12
227:21	cite 218:5	206:6	202:8.24
chemical	220:2	229:25	228:8
187:20		combining	220 0
abomiatry	cited 221:4,	182:25	concentrating
185.17 20	13	183:3	198:5
103.17,20	claim 216:12	217:9	201:15
232.3	aloom 101.10	218:17	concentration
chloride	100.24	210.11	184:10
188:16	190.24	comment	186:25
189:4,7	102.10	235:9	189:19
193:15	193.12	commercially	190:3,8,
194:23,24	200.8	179:24	11,14,15,
195:8	219.21	230:13	18 191:11,
201:1,4	co-product		18,19,23
204:7,12	222:3	compared	192:12
211:7	colleagues	186:2	197:8,9,
236:10	235:17	212:10	13,23,25
chlorine	200 1,	comparison	198:2,3,6,
185:7	column	215:22	9 201:12.
10017	179:22	compensate	16 202:25
chloro	182:16	206:24	205:23
192:14	183:11,	200.21	208:2.4
chloroprene	213:13,25	component	212:14 25
	236:8	228:10	

ARKEMA FRANCE v. HONEYWELL INTERNATIONAL INC. Leo E. Manzer, Ph.D. on 01/08/2016 Index: concentrations..correct

213:8,9,	233:18	confirmed	221:22
13,21	concerns	216:15	233:25
214:1,10,	186:12	connection	convert
14,17,19		226:13	207:17
215:1,2,4	concluded		229:2
217:5	236:24	considerable	230:7
219:2,4,7,	concludes	181:1,3	232:15
12,22	236:20	consideration	
221:21	conclusion	183:23	converting
222:22	220.22	congidorod	221:3
223:3,5	229.23		232:8
225:25	conclusions	102.24	234:22
226:1,4	183:24	100.10	correct
227:2,3,6,	conditions	considers	179:7
7,11,14,15	207:13	227:19	180:15
228:1,2,	221:23	contained	181:24
14,20,21	227:20	196:4	182:9
229:7,17,	22, 20	190 1	183:8,19,
19 230:25	conducted	context	20 184:1,
232:14,16,	187:12	196:5	185:7,8,
23 233:24	conduit	Continue	17.20.23.
234:6	199:15,23	181:13	24 186:22
236:3	200:18,23	continuous	187:2,6
	201:25	232:18	188:9,16,
	202:3,4,	232.10	17.24
102.2	10,12,16,	continuously	189:3.11.
10.24	19,20,24	190:23	12.14.22
19,24	204:14,19,	contrary	190:4.12.
184:4,6,10	22 205:5	234:8	21 191:16
195.21	212:6,10		192:15.21.
204:3	213:1,3		23 195:16
206:21	aonduita	195.24	196:20.21
207:5,8,20	100.1	196.7	198:7 16
$2\perp/\cdot\perp\perp, 2\perp,$	エッジ・4 つつつ・つに	191.0	18.22.23
25 218:6	434.43	conventionally	199:3.9
223:14,15	confirm	195:24,25	17,24,25
231:9,15,	211:18,21	196:8	200:18 19
1,23,	212:2	conversion	23 201:5
232:24			
AKNE	Leo E. Manzer, P	h.D. on 01/08/2016	Index: correctlydetail
------------	---------------------------------	---	-------------------------------------
7,17	cost 220:9,	220:3	225:11
202:5,13,	23 222:4	230:24	227 : 19
20,22	cost-effective	232:5	depending
203:2,4,	218:20	declarations	221:23
14,23	cost-efficient	178:19	229:4
204:8,15,	231:21	211:21	depends
23 205:10,	291.21	define 191:5	229:9
1/, 18	counsel		
206:4,5,12	178:13	defined	deposition
208:18,24	180:17	181:5,21	178:4
209:7	211:8	degrees	197:11
210:11	226:10	188:14	236:21,24
211:22	counting	196:25	derived
212:7,20	226:12	197:10,24	215:21
213:3,22	aoun lo	198:10,14,	doggribo
215:4,24	225·25	16	$221\cdot 0$ 15
216:17,23,	233.23	dobalogonation	$224 \cdot 9, 15$ $220 \cdot 11$
25 217:1,	court 178:8		230.11
7,15	covers	220.25	describes
219:24	218:12	dehydrochlorin	198:19
221:5,19		ation 186:22	201:23
223:11,20		193:14	214:20
224:11,16		dehydrofluorin	219:23
226:17,21	date 178:6	ating 224:3	224:3
227:5,8	deserter	dehydrofluorin	describing
228:2,22,		ation 216:11	195:19
24 229:2,7	199.23	230:2	196:6,12
231:13,25	$200 \cdot 10, 11,$ 12 17 22		
232:10	13,17,22	dehydrohalogen	description
233:9,11	decanting	ating 209.20	180:24
234:17	200:1,4	210·1,3,10 226·15	180:51
236:14,15	declaration	220.15	desire 193:8
correctly	206:23	dehydrohalogen	desired
186:18	209:10,11	ation 2⊥0·0 017·10	234:6
195:1	211:20	$\Delta \perp / \cdot \perp \Delta$	datad 1
202:9	216:2	$\Delta \perp 0 \cdot 3, \pm 4$	025.10
203:17	217:19	$\angle \angle \cup \cdot \lor, \bot \bot,$	232.12
	218:5	ZZ ZZI·Ö	

NEVWELL INTEDNATIONAL INC

ANNE	Leo E. Manzer, l	Ph.D. on 01/08/2016	Index: detailedeconomic
detailed	directly	212:24	235:4,5
180:23	232:2	213:6	dissolved
determine	disassembly	discovery	184:12
179:19	197:10	179:24	195:25
225:14	diggardod	diaguag	201:3
ר202 געת	204·12	188.3	205:14
16	204.12	200.1	206:8
TO	disclose	209.1	diatillina
diagram	178:24	213.19	
200:9	182:8	discussed	192.19
dichloro-	183:5	184:12	double
butene-1	206:23	187:23	185:22
185:12,14	208:15,16,	188:19	186:1,3
196:3,18	21,23	193:8	draw 229:22
1.55	214:9	198:4	
difference	216:16	205:22	drawing
206:10	disclosed	208:15	199:5,12,
differences	170.6	212:1,13	16 200:20
206:14	180.21	224:14	201:9
differently	101.22	225:24	drawn 195:2
229:23	102.0	227:14	202:19
229.23	105.0		100.10
difficulties	107.5		drop 190:18
232:22	187.5		207:15
233:6,13	209.4	193.25	drops 190:25
difluoride	$2 \downarrow 2 \cdot \downarrow$	194:12,20	due 196:2
179:3	231:9,18	196:16	17 197:11
	discloses	219:1	
dioxide	180:11	discussion	duly 178:11
180:3	182:16	192:18,20	
direct	188:13	195:21	Е
212:20	205:19	199:7	
236:8	215:1	200:21	e.g. 209:20
dimontad	231:23	217:4,6	earlier
185.6	digaloguro	225:22	193:3,10
TOD.O	$101 \cdot 7 1 $	diamuntian	211:25
direction	101・1014		236:2
183:10		232·9 224·24	
	20/·5	234·24	economic

ADREMA EDANCE 7 HONEVWELL INTEDNATIONAL INC

ARKEMA FRANCE v. HONEYWELL INTERNATIONAL INC. Leo F. Manzer, Ph.D. on 01/08/2016

-

	Leo E. Manzer, F	h.D. on 01/08/2016	Index: effectfine
189:25	21 229:23	EXAMINATION	178:20
effect	230:12	178:13	185:5
184:6.10	232:14	examined	236:7
	233:24	178:11	exit 221:25
effective	234:6,25		
220:9,23	235:8	examples	exiting
effectively	enrichment	1/9:15,18	217:5
233:19	207:3	183:4,8,19	223:8
efficient		188:20	expect
208:14	enters	193:5	205:12
218:19	221:11	195:9	evperimentatio
220:22	equal 180:7	214:3,6,8	n 187:8
220.2,23	ogualg	219:19	
222.1	201.12	220:17	expert 210:7
effluent	201.12	223:15	
210:14	equipped	227:18	F
end 221:2	199:8	232:2	fact 185:25
energy	essentially	excerpt	205:12
198:14	179:4	221:4,13	208:16
	180:1	excerpts	200.10
enriched	evaluation	220:2	facts 215:9
228:16	233:7		falls 214:19
enricher		excess	fact 219:15
201:8,25	evaporated	182:13	
202:3,10,	188:13	184:11,15,	faster
12,18,19	evaporates	$21 \ 210:14$	217:12
206:4	194:3	217:13	fed 221:10,
207:13	evenoration	218:22	15,24
208:6	188:3	221:24	222:9
212:14	190:10	223:2,7,9,	228:6,8
213:3,10,	194.21	11,17,20	234:7
21,22	196.1	225:14	c : 1 010.10
214:11,22	190.1	exchanger	final 219:12
215:3,24	eventually	201:24	find
226:8	208:10	202:4,11	219:18,20
227:2,5,8,	evidence	Evanse 212.1	223:19
16,25	215:10	Encupe 210.1	fine 192:6
228:9,15,		Exhibit	211:11
			<u> </u>

ARKEMA	FRANCE v. HONEY Leo E. Manzer, Ph	WELL INTERNATION A.D. on 01/08/2016	AL INC. Index: finishesHarrison
235:6	187:3,18	221:6	
finishes	188:22	222:11,18	G
180:18	189:9,15	223:4,12,	100.2 0
100,10	190:5,13,	21 224:12,	gas 188.3,8
fluoride	22 191:4,	17 226:18	gaseous
179:1,5,25	17 192:3,	227:9	192:20
180:8,14,	16 193:4,	228:3,23	194:15
15,16	11,22	229:3,8,	gave 222:21
181:2	194:7,17	14,21	- -
182:11,17	195:4,14	230:14,22	general
183:5,6	196:13	231:4,14,	194:10
206:8,11,	197:3,14	20 232:1,	196:6
15 207:17,	198:1,11,	20 233:1,	generally
18 208:9	17 199:10	15 234:3,	178:23
209:6	200:3,7,	12,18	aive
210:17,19,	14,24	235:2,10	183:10 23
23 218:15	201:6,18	formation	103.10,23
231:2,12	202:6,14,	197:4	good
233:20	21 203:3,	1)/.1	178:15,16
fluorocarbon	9, 204:24	formed 197:5	218:2
185:17,20	205:7,11	205:8	great 218:13
forum 222.15	206:13,19	207:23	greater
10cus 222.15	207:1,7,21	208:13	196·25
focusing	208:9,11,	213:5	207:6
178:18	20,25	216:20	207.0
follow	209:8	222:19	guess 225:5
206:22	210:4,20	231:8	
232:13	211:3	234:20	н
f = 11	212:9,18	235:11	
10110w-up	213:4,11,	forward	H2o 201:13
235.25	23 214:5,	232:19	halo 217:18
form 179:8	12,23	foundation	happen
181:4,11,	215:5,25	211:4	184:15
20 182:10	216:19,24		207:12
183:1,21	217:16,23	fourth	
184:3,8,9,	218:9,24	209:17	Harris
17 185:18	219:10,25	fresh	178:24
186:4,15	220:5,14	190:14,16	Harrison

AKKEI	MA FRANCE v. HONEY Leo E. Manzer, Pl	WELL INTERNATION h.D. on 01/08/2016	AL INC. Index: heardincrease
178:18,20	198:14	23 206:9,	222:21
179:7	217:10,20,	11,16	identify
180:21	24 218:6	208:1,3,5,	213:6
182:16,	229:19	6,8,17	230:21
183:25	231:18,22,	209:7	234:17,25
184:20	232:24	212:5,7,	235:7
218:16	hotter	11,12,15,	i
221:2,5,11	202:12	16,25	
222:5	bour 211.10	213:8,10,	219.0
225:24	HOUL ZII · IO	13,22	implies
226:4	hydrated	214:1,10	191:18
230:1	236:10	215:19	imply 223:17
231:10,16,	hydrodehalogen	217:21,25	inglined
25 232:2,	ation 218:1	218:7,23	218.3
8,15	hydrogen	219:2,12,	210.3
234:23	180:14	222:23	include
235:3	181:1	223:2,16,	201:3
236:6,9,13	101 1	18 226:5,	204:7
heard 192:8	hydroxide	6,14	217:10
heat	180:7	227:6,24	221:14
201:23.24	182:13,14,	229:1	included
202:4,11	ZI 184:II, 15 106:05	hydroxides	194:12,15
	15 180·25 107·1 E 6	187:9	206:8
heated	107.1,5,0 100.16 10	hypothetical	includes
202.10	100.10, 10, 10, 10, 10, 20, 21	207:22	195:7
HF 181:1,7	19,20,21	208:12	1997,
182:12	$109 \cdot 19, 24,$ $25, 190 \cdot 3$	210:5,6,21	including
high 186:25	25 190·5, 8 18 24		213:20
213:14	191:1 11	I	incoming
218:18	194:23		228:1
219:2,7	195:13	i.e. 216:10	incomplete
222:22	198:22.25	idea 194:4,	186:5
223:3,13,	201:3,15	10	207:22
15 231:3	203:6,11,	i dombi go l	208:12
higher	18,21,22	211:22	210:5,21
180:2,10	204:20,21	211·23	increase
184:13	205:1,6,9,	identified	194:1

ARKI	CMA FRANCE v. HONEY Leo E. Manzer, P	WELL INTERNATION h.D. on 01/08/2016	AL INC. Index: increasedlime	
198:2	introduced	226:17,21	13 232:14,	
217:25	212:5	212:5 228:5,21		
220:10,24	213:8	229:2	233:24,25	
221:7,16	219:24	230:7	234:7	
222:8,17	introduction	231:1,11		
228:19,20	220.6	232:15	L	
229:6	230.0	233:25		
232:16	invention	1 226·11	language	
233:23	178:25	knew 220.11	197:21	
·	179:22,	кон 184:21	largoly	
100.1 14	189:24	207:5,9,10	170.10	
192:1,14	219:1	208:22,24	1/0.19	
219:6	involve	209:2,5	leave 219:12	
increases	185:17,19	211:2	leaves 202:9	
221:21	, <u>,</u> ,	216:11,16,	213:22	
increasing	involved	22 217:2,	227:5	
198:5,	206:7	5,7,11,13	1.5+ 200·E	
221:9.14.	involving	218:11	leit 200.5	
21 232:23	186:2	220:10,24	Leo 178:4,	
	issue 195:22	221:3,7,	10 236:21	
indication		10,15,16,	level 190:24	
201:14	issues	24,25	234:7	
industrial	185:25	222:1,6,8,		
179:1,5	186:7	10,17	levels	
inefficient		223:5,9,	191:20	
207:19	J	11,14,20	lighter	
207:12		224:4,5,	200:6,8	
20009	January	10,15	lime 180:3.	
information	T\8:0	225:25	10 12	
225:13		226:2,16,	184:14 21	
229:22	K	20 227:2,7	207:15 17	
inhibitor	wa 207.0	228:5,8,9,	229:10.11	
193:18	XF = 207.9	11,13,14,	231:2	
incoluble	210.11	16,20	233:19	
185:1	∠∠∪・⊥∠))1・1)	229:2,6,	234:11	
T02.T	∠∠⊥・⊥,), 10 10	12,17,19	236:4.5	
instance	⊥∪,⊥⊿))),⊥⊿	230:7	11.12	
213:7	444.4,5 221.1	231:1,10,		
	ムムオ・ 4			

	Leo E. Manzer, Ph.	D. on 01/08/2016	Index: linesmention
lines 187:14	made 230:12	182:25	225:23,25
190:20	234:10,16	184:1,14,	226:3,5,13
192:1	maintain	20 185:4,	227:1,20,
196:11	100.15	6,16,19,22	25 230:1,
205:25	234.6	186:18,19	3,4,5,12,
212:7	234.0	187:6,11	16,17,19
lipid	maintaining	188:2,12	231:18,23
100.10 20	193 : 25	189:23	232:8,10,
$200.5 \in 16$	make	191:8,22	13 233:17
200.3,0,10	180:12,17	192:2,11,	234:10,15,
200.3	192:9	18,25	23,24
liquids	203:17	193:8,24	235:8
200:11,12	218:11	194:12,20	Magazzukilo
lithium	220:7,11,	195:9,11	196:10 11
187:9	21,25	196:10,16,	217.20
188:21	222:3	23 197:22	217.20
Jadas 201.10	223:22	198:19,21	210.0
100ge 201.19	225:10	199:6	227.4
logical		201:11,23	220.10
217:10	makes 21/.24	202:2	material
looked	makeup	205:19	189:5,17
179:15	203:19	206:6,18	191:9
235:12	manufacture	207:4,14,	195:12
	185:6	25 211:24	202:8,17
lot 220:16	186:13,14	212:1,3,4,	209:20,24
low 233:18		24 213:7,	210:16
lower 191:16	manufactured	20 214:6,9	materials
193:25	185:9	215:1	218:12
197:9.24	Manzer	216:8,23	228:6
198:10	178:5,10,	217:9,11,	
	15 211:18	22,24	means 198.5
lowest	236:1,19,	218:4,13,	meant 180:4
219:22	21	21,22	192:5
	market 211:1	219:8,23	media 178:3
М		220:3,4	
	markets	221:9,20	mention
	210:19	222:13,21	182:8
T33:8	Masayuki	223:10,19	21/:20
			223:1

ARKEMA FRANCE v. HONEYWELL INTERNATIONAL INC. Leo E. Manzer, Ph.D. on 01/08/2016 Inde

ARKEMA FRANCE v. HONEYWELL INTERNATIONAL INC. Leo E. Manzer, Ph.D. on 01/08/2016 Index: mentioned..objection

mentioned	mixture	motivation		
193:3	194:14	210:9	0	
mentions	200:5	217:22	a 1 1 22211	
196:8	203:15,16,	218:7	Object 232:1	
199:18	17 204:20	220:4	objection	
100,10	224:6,11	221:5,7	179:8	
metal 187:1,	229:1	222:10	181:4,11,	
5 188:16,	modeled		20,25	
18 189:4,		N	182:10	
6,19,24	234.4		183:1,21	
190:3,8,17	233.12	Naoh	184:2,8,	
191:10,	modeling	201:12,13	17,23	
194:23,24	232:12,21		185:18	
195:8,13,	233:7,9,11	narrowiy	186:4,15	
25 198:22	modification	222・12	187:3,18,	
217:21	230:6 17	necessarily	25 188:22	
218:7,23	19 20	207:24	189:9,15	
219:2,	17,20	neutralization	190:5,13,	
222:23	molar 180:7	180:3	22 191:4.	
223:1	203:25	100 5	17 192:3.	
227:6,24	molecule	neutralize	16 193:4.	
mathad	185:22	180:14	11.22	
210.15	186:3,10	nonetheless	194:7.17	
	•	210:2	195:4.14	
219.13,14	monitor	106·15	196:13	
221.2	1/8:/	note 190.15	197:2 3 14	
222.5	morning	noted 195:23	198:1 11	
minute	178:15,16	number	17 199:10	
227:22	motivate	178:3,4,20	200:3 7	
mischaracteriz	216:23	199:15,23	14 24	
es 234:13	210.23	201:9.	201:6 18	
	motivated	224:24	201:0,10,	
misstates	209:18	236:21	14 21	
215.6	210:2,15,		17,21 202·2 0	
224:18	18,23	numbers	203•3,9,	
mixed	216:7	199:5	204·24 205·7 11	
182:12,13	220:9,24	numerous	203·/,11 206·12 10	
199:19	222:8,16	222:14	200·13,19	
236:10			20/11,/,21	

ARKEMA	FRANCE	v. HONE	EYWELL	INTERNATIO	NAL INC.
	Leo E.	Manzer.	Ph.D. on	01/08/2016	Index: objectio

	Leo E. Manzer, P	h.D. on 01/08/2016	Index: objectionspercent
208:11,19,	observed	235:11	192:24
20,25	206:4	opposed	196:10,16,
209:8	obtained	236·14	22 209:15
210:4,20	170.25	230.14	216:4
211:3	179.25	option	220:6,7
212:9,18,	occur 234:1,	180:11	222:1,7,9,
22 213:4,	2	190:25	15 223:25
11,23	occurs	options	224:2,24
214:5,12,	203:12	193:1	229:25
23 215:5.	203112	199°1	232:5.6
25 216:18	offer 230:16	order 191:16	234:9 21
23 210 10, 24 217:3	offers 221:8	222:3	
8 16 23		230:12	part 196:14
218.9 24	operate	organic	passing
210.9, 24 210.10.25	230:4	187:13	202:2
219.10,25 220.5,14	234:15	193:1	
220.5,14	operation	194:12.25	patent
$221 \cdot 0, \pm 7$	196:24		182.18
$222 \cdot 11, 10$	232:18	organics	pause 201:19
$223 \cdot 4, 12,$	235:8	203:7	220:15
$21 224 \cdot 12,$	220.11	original	224:22
1/ 226:18,		227:3	225:17
22 22/:9	opinion	ani ginall.	percent
228:3,23	182:24		182.17 20
229:3,8,	183:25	229.19	102.17,20
14,21	184:3,9,19	outgoing	103.5,0,7,
230:14,22	205:8	228:1	9,14,10 106.0E
231:4,14,	207:23	outlined	100.20
232:20	208:13	234:19	100:4 0
233:1,10,	213:5	231.12	190:4,9,
15 234:3,	216:20	overcome	101.11.15
12,18	219:9	233:6,14	191:11,15,
235:2,10	222:19		24 192:12,
objections	223:23	P	15 198:25
186:9	231:8		201:15
207:11	233:12	pages 212:2	202:25
210:12	234:20	paragraph	203:6,7,
215:16	aniniana	179:23	10,19,23
	opinions	181:6	204:4,21

ARKEMA FRANCE v. HONEYWELL INTERNATIONAL INC. Leo E. Manzer, Ph.D. on 01/08/2016Index: percentage..precipitation

205:10,24	PETITIONER	polymer	182:11,13,
207:5,10	178:13	196:2,4,	14,17,21
208:2,4,7	nhago	17,19	183:6
212:6,10,	187:19 22	197:1,4,12	187:9
213:15	188:14	polymerization	188:20
214:1,15,	193:2 5	186:8	206:8,9,
18 215:20	194:13 15	193:10 13	11,15
219:3,4,	21 25	18 20	207 : 17
13,21	195:2 5 7	194:6	208:1,3,5,
220:1	196:4 19	195:22	6,17
222:23	199:14 21	175.22	209:6,7
223:6	22 200:9	poorly	210:17,19,
225:1,9,13	16 22 25	203:19	23 211:7
226:1	201:2	portion	226:5,14
227:4,8,	201:2	202:23	231:12
23,24	216:10	220:19	236:9
228:5,8,9,	226:17	229:4	potential
13,14,16		DOGTWA	193:20
229:7	phases	209:18	193-20
231:10,12	199:19	209.10 210.1 18	potentially
232:15	200:4,6,15	210.1, 10 216:7, 23	228:5
percentage	206:3	210:7,23	231:22
203:21	phenothiazine	220:10,10	precipitant
203 21	193:19	220:1,2,23	233:19
213:18	nicture	222:20	precipitate
214:21	221:12	230:1	207:16 18
231:11		232:7	20, 110, 10
	place 199:8,	233:5 13	precipitated
performed	13 223:19	16 234:22	201:1,4
197:9,23	230:3	10 10 1 11	204:7
198:9	point 179:13	possibility	precipitating
205:22	211:9	228:10	231:2
performing	217:24	possibly	precipitation
196:24	218:13	184:12	179:4
198:13,20	223:10	211:6	180:1
period	230:24,25	potassium	195:25
197:10	231:1	180:6	196:2 8 17
		TOO : O	1)0·2/0/1/

	Leo E. Manzer, P	h.D. on 01/08/2016	Index: preferablyquestion
203:12	217:14	17,19	185:21
preferably	\mathbf{prior} 215:6	184:16,18	188:4
193:17	7 216:19	185:6,16,	192:20
225·11	7210010 218010 12	22 186:17,	production
223.11	210.10,12	20 190:7,	
preferred	224.10	23 195:24	105.22
217:25	probability	196:12,14	195.22
227:11,18	218:19	198:20	$2 \perp / \cdot \perp /$ 210.12 1/
prefers	problem	205:3	219:13,14
220:1	195:20	206:7	220113
	196:9,24	213:20	productive
olotio	197:1	216:9	220:11
$Z \perp / \cdot \perp Z$		218:20	221:1
present		220:8,22	products
180:8	196:4	222:4,14	188:7
181 : 17	problems	229:25	
186:13	196:17	230:4,13,	provide
189:24	207:4	15.19	213:12
210:8,14	nnogoduno	231:22	215:22
219:1		232:10 19	228:9
224:5,10	$103 \cdot 10$	232:20,22	providing
225:1,8,12	205.2,21	234:1 10	220:3
	206.22	14 24	170.05
pressure	215:18	17,27 225·2 /	pure 1/9:25
193:25	proceed	233.3,4	put 180:12
presume	178:9	processes	putting
204:1	proceeding	179:20	180:11
previously	211:20	196:7	100 11
198:4	211.20	197 : 6	
234:5	proceedings	produce	Q
231.3	185:5	221:10	quantity
primarily	216:3	224:4	181:1.3
188:15	proceeds		101 1/0
194:22	186:2	produced	quaternary
209:6		191:25	192:25
210:17	process	192:4	question
217 : 18	1/8:25	194:2,3	180:18
primary	1/9:6,7,	product	182:2
L-T THEAT I	10,12,16,	_ 179:25	192:9
			2

ARKEMA FRANCE v. HONEYWELL INTERNATIONAL INC. Leo E. Manzer, Ph.D. on 01/08/2016 Index: preferably..qu

www.huseby.com Huseby, Inc. Regional Centers 800-333-2082 Charlotte ~ Atlanta ~ Washington, DC ~ New York ~ Houston ~ San Francisco

	Leo E. Manzer, P	h.D. on 01/08/2016	Index: questionsrecover
195:17	reacted	190:25	231:7
196:5	190:9,17,	191:2,24	233:2,4
215:12,14	19 210:11	192:21	reading
222:15	213:19	194:16	170·22
231:6	roaction	195:3,6	181.6
233:3	196.1	196:20	101.0
guadtiona	187.11 17	199:8,16	100·4 222·12
225·25	107.11,17, 21 100.7	200:10	222•12
235.25	21 190.7, 10 101.12	206:8	reads 181:14
230.10,10	10 191.12, 25 102.5	208:5	190:6
quick 235:15	25 192.5, 12 102.0	209:25	reasons
	13 193.0, 17 21	210:17	189:25
R	107.10	212:6	
	197.19 100.7 12	213:1,9	recall
raised	199.7,13	214:17,19	206:20
185:25	204.23	215:2,23	Recess
191:19	207.19	216:12,17	211:14
range 198:15	200·1,9,10 010·2	217:2,5,7	235:21
213:19	$2 \perp 2 \cdot 3$	219:24	recited
214:20	$2 \pm 4 \cdot 2$	221:8,15,	216:12
220:1	210.10,17	24,25	
223:6	ZI9·5,II,	222:9,17	recommend
227:11,18	15 220:11,	223:8,	223:11
	25 221:10,	224:16	recommends
	22,23	226:1,6,7,	198:15
180.11	222:2,3	16 227:7,	223:13,20
rate 192:5	223:14	15,23	magangantwatad
217 : 25	224:6,10,	228:7,12,	
221:22	11 230:2	13 229:20	190.10
ratio 203:10	reactions	230:3	record 182:3
204:1.2.	186:2	232:25	197:18
20 25	209:21	234:7	211:13,16
205:5.9	reactive		215:15
203.375	186:10	reacts 209:5	231:7
reached	T00.T0	read 182:3	233:4
183:24	reactor	197:18	235:20,
react 189:2,	184:22	215:15	236:23
5	188:8,10	224:19	recover
	189:1		

ARKEMA FRANCE v. HONEYWELL INTERNATIONAL INC.

by.com Huseby, Inc. Regional Centers 800 Charlotte ~ Atlanta ~ Washington, DC ~ New York ~ Houston ~ San Francisco www.huseby.com 800-333-2082

ARKEN	A FRANCE v. HONEY	WELL INTERNATION	AL INC.
	Leo E. Manzer, I	Ph.D. on 01/08/2016	Index: recoveredrises
184:20	187:13	218:21	require
189:18	193:2,9	219:9	227 : 7
191:10	199:5	remainder	required
195:13	211:25	230:4 15	197:11
209:19	214:7	230.1,13	1)/ • 11
210:2,10,	217:14,17	remaining	reserved
13,15,23	224:23	193:14	236:25
221:12	236:7	remains	residual
222:10	referenced	216:22	203:7
recovered	220:20	remember	restate
205:1		179:12	192:9
220:10.24	references	179.12	19209
220:10,21	183:3	removal	result 186:2
221010	218:8,17	188:6	207:19
recovering	referring	189:14	223:16
218:11,14,	183:10	remove 188:3	resultant
15	196:6	194:5	189:5
recycle	197:19	208:8	
184:21	219:17		resulting
209:19	232:5	105.1	189:17
requaled	refers		191.9
220·10 25	102·1/ 16	104.01	195.12
220.10,23	186.24	194.21	210.9
221.10	100.24	$204 \cdot 12, 13,$	results
recycling	regenerating	14,1/	193:20
184:22	222:5	removing	returned
218:14	related	222:5	202:18
reduce 194:5	178:25	repeat 182:1	204:23
reduced	193:13	197 : 17	returning
192:5.13	195:19	215:13	201:14
219:5	relates	231:5	201.14
219 5	179:12	roposta	returns
refer 187:8	227:18	234:2	205:1
199:0		2JI•2	reused
reference	relative	rephrase	191:12
178:18,20,	180:7	224:13	mina 017.01
24 180:25	225:15	reporter	rise ∠⊥/・∠⊥
185:4	relying	178:8	rises 186:11

ARKE	MA FRANCE v. HONEY	WELL INTERNATION	AL INC.
	Leo E. Manzer, P	h.D. on 01/08/2016	Index: rolesodium
role 187:16	save 179:13	205:3	199:19
Rose	section	231:25	slurry
178:14,16	195:19	shows 200:9,	203:1,5,
179:9	7011 211•1	20,21	13,23
180:20	Sell ZII·I	202:2	204:10
183:22	selling	212:25	205:3
184:24	211:7	213:1,7	228:25
186:6	sentence	227:14,15	229:11,12,
187:4	180:5	228:1	18 230:6,
188:1,23	181:13	sidestream	7,18
189:10	193:16	202:15	232:17
194:8	232:6		234:1,11
197:15	generate	signature	236:3,6,14
199:11	200:12	236:25	small 196:2
201:22	200112	significant	230:5.17
209:12	separated	235:13	
211:11,17	194:13,24	significantly	Smith 182:25
212:19	separation	231:18 24	184:1,14,
215:7,11	200:4	231,10,21	20 206:6
221:18	206:2,18	silent	207:4,25
226:11,19	act 205.24	216:21	208:1,15,
235:15,24	21 <i>A</i> ·1 <i>A</i>	217:1	16 209:3,
236:16	214.14	similar	21,25
run 190:23	213.19	187:22	210:17
219:11	settle	205:21	216:9,15,
229:23	200:11	gimilarly	21,22
231:21	short 197:10	183:4	21/:1,4,6,
	abov 212.10	103.1	9,10,14,
running	213·10 222·15	single 186:3	1/,22
196:24	223.13	sir 185:13	218:2
	showing	gituation	220.4,8,22
S	199:14	210:6	224.5,9,
safety	202:15	210.0	10,20,23 226·2 11
186:12	shown 179:6	slate 236:11	220.3,14
100.17	183:4,19	slightly	227.20
salt 221:1,	199:5,16	180:2,10	23U·1,2
11,12	200:17	184:13	sodium 187:6
			188:19

800-333-2082

	Leo E. Manzer, Pl	h.D. on 01/08/2016 In	dex: solidstoichiometric
189:6,25	16,18	227:10	222:7
190:24	191:10	231:15	224:3
191:1	194 : 22	speed 187:20	227:10
195:8	198:5,24	191:25	229:25
198:21,24,	199:1	192:13	230:15
25 201:1,	201:24	194:1	232:4,6
3,4,15	202:3	219:5 15	stated
203:6,10,	203:13	219 3713	210:22
11,18,21,	205:23	spent 216:10	211:6
22 204:7,	212:5	218:14	221:8 25
12,20,21	215:19	222:1	234:21
205:1,5,6,	224:4	223:7,16	231.21
9,23	227:1	standard	statement
212:4,6,	236:10,13	197:5	221:14
11,15,16,	solutions	atomt 178.17	222:21
25 213:8,	180:1	200·1	225:14
9,13,22	100.1	200.1	states 181:7
214:10	solve 195:20	starting	229:15
223:15,17	196:23	182:15	aton 197.8
226:6	solvent	185:9	12 20
solid 194:24	181:7,10,	191:8	198.8 13
195:7	15,19,24	196:9	205.2
204:12	182:4,5,9,	198:20	203.2
236:10 13	13	209:17	207.5 216.8 12
230,10,13	G0117760	218:13	210.0, 12
solids	101·00 02	224:2,25	220.2,5
205:17	101.22,23	236:8	232.0
solubility	102.0,0	starts 190:7	237.22
206:10,14	speak 223:14	192:25	steps 205:21
soluble	specific	state 194:18	225:10,11
205:10	214:18	203:25	stirred
200 10	228:4	203:23	236:11
solution	specifically	209:10	stirring
181:14	183:2	215:7	199:8
182:12,14,	187:19	215:7	
16 186:22	193:10	220:21	stoichiometric
188:15	206:20	220.21	180:2,4,10
189:13,14,	200.20	22 1 •2	184:13

ARKEMA FRANCE V HONEYWELL INTERNATIONAL INC

ARKEMA FRANCE v. HONEYWELL INTERNATIONAL INC. Leo E. Manzer, Ph.D. on 01/08/2016 Index: straightforward..top

			F
straightforwar	218:6	228:25	178:12
d 232:9	suggests	229:12,18	236:2
234:23	181:16	230:6,7,18	testimonv
stream 206:7	184:12	232:17	215:6.8
216:10,17	217:20	234:1,11	216:19
228:15	-	236:4	218:22
at	summary	tapes 236:22	224:18
	1/9:21	101.0	
1/9.3,5	swear 178:8	tar 181:/	thin $181:7$
strike	sworn 178:11	182:12	thing 211:18
180:22		taught	things
202:1		230:5,16	226:20
203:19		234:15	
207:16	takes 199:8,	teaches	thinned
212:3	13 204:19	218:22	182:5
213:17	1 - 1 - 1 - 1 - 1	221:2	thirty
226:2,4,8	taking		225:12
233:22	220.10	teaching	thought
strikes	talk 185:3	232:13	192:8
226:9,11	235:17	teachings	236:5
	talking	222:13	250-5
studied	178:17	226:25	time 178:7
223.22	184:18	temperature	179:14
subjecting	189:16	188:14	197:10
186:21	195:2	196:25	211:13,
subsequently	196:11	197:9 23	220:16
231:1	197:8,12	198:10	235:20,23
	198:8	202:13	236:17,23
substantially	209:12	202:13	today
230:5,16	211:19,24	temperatures	178:17,18
234:15	233:21,23	206:21,24	Todayla
success	101.0	ten 198:19	178:6
218:19	ταικs 191:8	201:25	T,0.0
suggest	199.4	202:12	top 188:8,
181:15	tank 203:1,	212:2,7	10 192:21
193:19	5,13,23	terms 204:4	194:15
	204:10,23	Cermo 701.1	200:9,17
suggestion	205:3	testified	220:21
1			

	AKKE	MA FRANCE V. HONE Y Leo E. Manzer, P	well in terna i ion h.D. on 01/08/2016	AL INC. Index: totalwithdrawing
total	225:2,	understand		182:4,5
9		178:23	v	188:13,
twomafo		179:10		189:14
107.	20 22	181:2	valuable	194:12,14,
102.1	20,22 F	196:10	209:19	21 196:1
100.0	0 1	197:21,24	218:11	201:3
199.2	ZI	214:16	vapor 193:25	203:7,11,
treatme	ent	221:21	wariation	18,22
179:2	2	230:1	012·10	204:20,21
228:0	б	233:17	213.12	205:6,9,14
trouble	2		230.17	206:15
206:4	4	understanding	variety	208:8
200	-	186:18	233:17	212:17,25
true 2	214:13	194:9	vessel	224:5
232:	3	195:1	236:11	229:10.11.
turn		202:9,13		15 236:3
194:1	19,24	203:17	video 178:7	10 200 0
209:1	10	unreacted	volume 178:3	waters
216:2	2	182:21		180:25
229 : 2	24	188:19	W	weight
twolvo	212:2	208:17,22,		182:17
CWEIVE	212.2	24 209:2	wait 216:4	183:5,14,
typical	.ly	216:16,21	waiting	18 187:1
189:2	24	217:2	225:18	189:20
190:4	4	221:25	106.17	190:4,9,11
224 : 2	25	224:5,10,	walk 186:1/	191:12,15
225:8	8	15 231:13	walked	192:12
		unused	211:25	198:25
	U	208:17	walking	203:6
		210.10	205:20	204:1,2,4
unclear	•	210.10	203.20	205:24
229 : 9	9	utilizes	waste 179:1,	212:6,11,
236:5	5	198:21,24	2,3,5	16 214:15,
unconve	erted	utilizing	180:25	18,21
188:2	25	231:17	183:12,15	222:23
			water 179:3	225:10
uncover	1 7		181:10,15,	231:11
22U:	L /		16,19	
				withdrawing

216	:8,9
withd	rawn
195	:5
199	:15,22
200	:⊥/ ·10
212	• 10
wonde:	ring
1/9	• 1 0 1 . 5
word 197	:25
worde	4
203	:20
work	230:13
	225.16
wrap	233.10
writte 230	en :23
230	• 2 5
wrong	225:3
wrote	230:9
	Y
187	rday :23
208	:16