N

United States Patent 19 (111 Patent Number: 5,884,033
Duvall et al. 451 Date of Patent: *Mar. 16, 1999
[54] INTERNET FILTERING SYSTEM FOR 5,321,844 6/1994 Schwagmann 395/182.07
FILTERING DATA TRANSFERRED OVER 5333266 7/1994 Boaz et al. .ccorrrrrrrrennne 395/200.36
THE INTERNET UTILIZING IMMEDIATE 5,446,898 8/1995 Bealkowski et al. ...co.cooreeesrene 395/651
AND DEFERRED FILTERING ACTIONS 5541911 7/1996 Nilakantan et al.ooevveeunenes. 370/422
) 5,600,668 2/1997 Shwed 395/187.01
(73] Inventors: William S. Duvall, Portola Valley: 5,619,648 4/1997 Canale et dl. 395120036
Matthew Kendall, Palo Alto, both of 5619608 4/1997 Lillich et al. «oovvooresoon. 395/710
Calif. 5,623,601 4/1997 Vu 395/187.01
[73]1 Assignee: Spyglass, Inc.. Naperville, T1L
[*] Notice: This patent issued on a continued pros- Prir'nary Examifxer—-Kr'isna Lim
ecution application filed under 37 CFR ~ Assistant Examiner: _Ylet Vu]
1.53(d). and is subject to the twenty year ~ Atfomey, Agent, or Firm—Howrey & Simon
atent term provisions of 35 U.S.C.
s T [57] ABSTRACT
21] Appl. No.: 645,636 A client-based fllt.ermg system comparc.s po'rtlons of' mc?m-
ing and/or outgoing messages to filtering information in a
[22] Filed: May 15, 1996 filter database. and determines whether to block or allow
[51] Int. CL® GOGF 13/00 incoming and/or outgoing transmissions of messages in
[52] US. CL o 395/200.36; 395/20.55; ~ Tesponse to the comparison. In response to a match between
305/187.01 the portion of the message and the filtering information. the
[58] Field of Searchcoooonrcrrceeens 395/187.01, 200.3, system can employ one of a number of different specified
395/200.31. 200.55, 200.47, 200.54, 200.32, blocking options. The system has an update server that is
200.34. 200.35. 200.36. 200.37. 200.8, accessible over the Internet and that has new filtering
651. 652. 712; 707/10 information for updating the filter database. The filter data-
[56] References Cited base can have a filter database stored on a server in a
network coupled to the client.
U.S. PATENT DOCUMENTS
4825354 4/1989 Agrawal et al. oooorerrrvrenns 707/10 24 Claims, 6 Drawing Sheets
INTERNET

26~_|

/-10

INTERFACE

22

STORAGE

FILTER DATABASE

24—

PROCESSOR f—~—20

Apple 1001.0001

U.S. Patent Mar. 16, 1999 Sheet 1 of 6 5,884,033

r10 g‘lO

CLIENT CLIENT

12
167
USER'S
COMPUTER INTERNET
(CLIENT) PROVIDER
10—’ 1L N
| |
|
DOMAIN UPDATE
30— SRR | L N ServeR SERVER
FIG.1 =
INTERNET
f o
22 26—~_| INTERFACE -
STORAGE
24— | FILTER DATABASE| [~ PROCESSOR [—~—20

FIG.2

Apple 1001.0002

U.S. Patent

116

DEFERRED
ACTION
?

Mar. 16, 1999

100

TRANSMISSION
ALLOWED

— — ——— — —

Sheet 2 of 6 5,884,033

(START)

DATA

STREAM

OPENED
?

GET LST OF P
ADDRESSES ASSOCATED | —~102
WITH THE OPENED PORT [~

IS IMMEDIATE
ACTION REQUIRED
?

106

TAKE ACTION TO
BLOCK TRANSMISSION

\

PROVIDE A MESSSAGE

10 e vser 112

END

FIG.3

Apple 1001.0003

U.S. Patent Mar. 16, 1999 Sheet 3 of 6 5,884,033

i

COMPARE DIRECTION OF
TRANSMISSION TO ——130
DIRECTIONAL INDICATOR

COMPARE KEYWORD T0
BEGINNING OF TRANSMISSIoN [—""132

134
N KEYWORD

4 MATCH
?

Y
COMPARE FILTER PATTERN

ACCORDING TO COMPARE |_—136
DIRECTVE

138

N MATCH
?

Y

TAKE SPECIFIED

\
END

FIG.4

Apple 1001.0004

U.S. Patent Mar. 16, 1999 Sheet 4 of 6 5,884,033

,/ 42
40:\

: ENTRY “
CALL POINT T
H—~ "ROUTINE"
50—~ WexT — 46
: RETURN —~—— 48
FIG. 5(a)
PRIOR ART
r 66
JUMP TO 54
58— | CAL 60 FILTERING” |-/
"ROUTINE™ ? 68
78—~ NEXT — : _/
PERFORM "HEAD
62 | PROCESSING RETURN
\{ REPLACE ORIGINAL 70
64 ENTRY POINT
™ caL roome
REPLACE ENTRY
WITH JUMP TO 36
PERFORM TALL
PROCESSING [~—74
RETURN —~—76
r

FIG. 5(b)

Apple 1001.0005

U.S. Patent

Mar. 16, 1999

Sheet 5 of 6

5,884,033

[80

CALL
"ROUTINE”

NEXT

JUMP TO -84

867

"FILTERING”
NEXT

PERFORM HEAD
PROCESSING

RETURN

™90

JUMP TO
"BUFFER”

82

INSTR #1

84

INSTR {2

MODIFY STACK TO
RETURN TO
TAL

JUMP TO
ROUTINE AT
NEXT

\

PERFORM TAIL
PROCESSING

——92

RETURN

FIG. 5(c)

Apple 1001.0006

U.S. Patent Mar. 16, 1999

g‘ 200

202 o

] FLTERING

Sheet 6 of 6

g* 204

PERFORM HEAD
PROCESSING

5,884,033

g‘ 208

CALL "ROUTINE”

214~

PERFORM TAIL
PROCESSING

ENTRY

210

L

RETURN

RETURN

N— 212

FIG. 5(d)

Apple 1001.0007

5,884,033

1

INTERNET FILTERING SYSTEM FOR
FILTERING DATA TRANSFERRED OVER
THE INTERNET UTILIZING IMMEDIATE

AND DEFERRED FILTERING ACTIONS

FIELD OF THE INVENTION

This invention relates to a system for filtering messages
transmitted between the Internet and a client computer.

BACKGROUND OF THE INVENTION

While the Internet is very useful for obtaining
information, many people are concerned that objectionable
materials, especially sexually explicit materials, can be
obtained too easily. Many parents are particularly concerned
that their children can get access to such objectionable
materials without supervision.

Congress recently passed the Communications Decency
Act (CDA) to outlaw transmission of indecent material over
the Internet. Many in the “Internet community” view the
CDA as censorship, and have organized an online free
speech campaign. Many also believe that parents should
have the primary responsibility for controlling what their
children obtain and view over the Internet.

OBJECT AND SUMMARY OF THE INVENTION

1t is an object of the present invention to provide a system
that allows Internet users to filter material transmitted over
the Internet.

According to an embodiment of the present invention, a
client-based filtering system compares portions of incoming
and/or outgoing messages with filtering information stored
in a filter database. and determines whether to block or allow
the incoming and/or outgoing transmissions of messages in
response to the comparison. In response to a match between
certain information in portions of the message and the
filtering information. the system can employ one of a
number of different specified blocking options. including
discarding incoming data, preventing execution of an open
command. or replacing parts of received data.

In a preferred embodiment, the system compares an
interface port and an IP address to a stored list of ports and
addresses. If a match is found. the system can allow the
message 1o be transmitted or block the message prior to
transmission. The system can defer the decision whether to
allow or block, and then monitor transmissions to search for
a particular command and a particular filter pattern. If a
pattern is detected during an outgoing message to a host
server, the system can block resulting incoming transmis-
sions from that server. Thus, the system can check both TP
addresses and strings in URLSs.

The system preferably communicates with a remote
update server that has new filtering information for updating
the filter database. The system periodically accesses the
update server over the Internet, and downloads one of a
number of new sets of filters from the server to replace some
or all of the existing filters.

The filter database and all implementation software pref-
erably reside on the client computer system. Alternatively, a
filtering database and implementing software can be stored
on a server in a network to which the client is coupled, and
can thus be incorporated into a firewall, gateway. or proxy
Server.

To implement this system. the present invention also
includes methods for patching the operating system to take
into account multitasking and variable-length instructions.

10

15

20

25

30

35

45

55

65

2

In Windows 95. in which a copy of certain library programs
is made from disk into RAM for each application, the
present invention uses patches to inject filtering code into
RAM without modifying or replacing the library on the disk.
These patches cause a buffer to store a series of copied
instructions from a called routine, where the buffer is
between certain head processing routines and tail processing
routines. Because the library is not replaced or modified. the
system can adapt to upgrades or reloading without the
concern of losing modified or alternate variations of pro-
grams.

With the present invention, a wser can filter material
received over the Internet that is personally objectionable.
whether that material is sexually explicit. violent. politically
extreme, or otherwise. depending on that user’s individual
tastes and sensitivities. By providing updates online. the
system can adapt as new sites and servers are added to the
Internet. Other features and advantages will become appar-
ent from the following detailed description. drawings, and
claims.

BRIEF DESCRIFTION OF THE DRAWINGS

FIG. 1 is a block diagram of a network with a client
computer for accessing the Internet.

FIG. 2 is a block diagram of a client computer system with
a filtering system.

FIGS. 3 and 4 are flow charts illustrating filtering methods
implemented by the filtering system.

FIGS. 5(a)-5(d) are charts illustrating known and new
patching methods.

DETAILED DESCRIPTION

A user uses a computer which serves as a client 10 to
communicate with other computers over Internet 12. A
number of clients are typically linked to a network 14, such
as a local area network (LAN) or a broad-based commercial
service. Many such networks are linked to one of a number
of Internet providers 16, such as BBN. Inc. of Cambridge.
Mass.. which in turn, accesses the Internet.

Messages are transmitted over the Internet among com-
puters with a transport protocol known as Transmission
Control Protocol/Internet Protocol (TCP/IP). This protocol
provides an error-free data connection between computers,
and sits underneath and works in conjunction with higher
level network protocols. including HyperText Transfer Pro-
tocol (HTTP); File Transfer Protocol (FTP); Network News
Transmission Protocol (NNTP); Internet Relay Chat (IRC);
and GOPHER.

According to the current Internet Protocol (version 4).
each computer on or connected to the Internet has an IP
address that identifies the location of the computer. Each IP
address is a 32-bit number that is often written in the form
nl.n2.n3.n4 (each nx represents an 8-bit number). (Version
6 of the Internet Protocol is expected to have 128-bit
addresses. with one address for each interface. and with
different types of addresses.) To initiate communications
with another computer over the Internet, a computer opens
a port in its interface for a TCP data stream. The computer
sends messages that have defined fields for its own IP
address and for the recipient computer’s TP address.

With HTTP. a user can access web sites over the world-
wide web using one of a number of commercially available
web browsers, such as a Spyglass Mosaic web browser,
available from Spyglass Inc. of Naperville, Mllinois. To
access a web site, the user enters a uniform resource locator

Apple 1001.0008

5,884,033

3

(URL) request with the form “http://www.name.ext”, where
“hitp://” indicates the protocol, and “www.name.ext” is a
domain name (although currently “www” is often not
required). Such a domain name with this form typically
points to a home page. The domain name can also be
followed by other file names or directories, with the direc-
tories separated from the domain pame and from other
directories with slashes that serve as spacer characters. The
directories sit below the home page, but are individually
addressable and accessible. URL requests are also made
with the other protocols noted above, such as FIP and
NNTP.

When a user enters 2 URL request, the client provides the
URL to a domain name server (DNS) 18. DNS 18, which
may be accessed through the Iaternet or directly from
network 14, looks up the domain name and returns the IP
address associated with that URL (if the name is in DNS 18).
The client opens a TCP data stream and uses this IP address
to comrnunicate with the other computer.

Domain names in a URL are often descriptive. For many
companies and other organizations, the domain name
includes their own name, a close variation. or some acronym
of their name. Other Internet service providers use names
that are descriptive of some service that is provided or some
interest that is addressed. e.g., “www.chess.com.” While
many descriptive names may be nonobjectionable, others
such as “xxx” or “sex” may be included in a URL of a server
that provides sexually explicit material that may be objec-
tionable to some users. The string “sex™ could. however, be
part of some completely different name, such as “Essex” or
“sextet.”

While the domain name itself may not be objectionable,
there may be objectionable certain files or directories below
that domain name. For example, some commercial online
services allow users to build personal home pages but do not
restrict the material on that home page. Consequently. some
but not all of the directories may be objectionable. It could
be undesirable to eliminate all accesses to such a domain
name if only a relative few directories under that domain
name are objectionable.

Referring also to FIG. 2, in a first embodiment of the
present invention, a filtering system resides in client com-
puter 10. Processing by the filtering system is carried out by
the computer’s processor 20, and the system uses the com-
puter’s storage 22 to store a filter database 24. The filter
database would typically be maintained in the client com-
puter’s hard drive. and could be copied to RAM during
operation.

The client communicates with the Internet through an
interface 26 that has a number of ports. By convention,
certain default ports are associated with certain protocols;
€.g.. HTTP communications are typically transmitted
through a port numbered 80. In the transmitted message.
however, the user can specify another port that is different
from the default port. Moreover. multiple ports can be used
for one protocol, and one port could be used for multiple
protocols. Thus, each TCP data stream passes through one of
a group of numbered ports in interface 26. The client
monitors these ports and maintains internal tables that
indicate the state of each active TCP data stream. whether
that stream is open or closed. for both incoming and out-
going transmissions.

The filter database has lists of filters, some of which are
identified as either ALLOW filters or BLOCK filters for
respectively allowing or blocking transmission. Both
ALLOW and BLOCK filters in the database preferably have

20

25

45

50

55

4

fields for port number and IP address. These fields can
include a specific port number. a specific IP address, and/or
meta values ANY IP and ANY PORT. which stand for all
possible IP addresses and all possible port numbers. respec-
tively. Thus, a filter can apply to a specific port and a specific
address; to a particular port regardless of the address by
specifying the port and ANY IP; to a particular address
regardless of the port by specifying the address and ANY
PORT; or even any address in any port for complete block-
ing or as a catch-all default by indicating ANY IP and ANY
PORT.

Each filter entry in the filter database also has a field for
specifying an action to be taken by the client if that filter
were retrieved. These actions are essentially divided into
two groups. direct action or deferred action. Direct actions
indicate that the system should unconditionally allow or
unconditionally block the transmission. When filter entries
are retrieved. they are first scanned for entries that require
direct action; if there are any, these actions are carried out
immediately. Deferred actions are discussed in more detail
below.

When a message is transmitted, whether that message is
incoming or outgoing with respect to the client computer, the
filtering system compares the IP address and/or other infor-
mation in the data stream to the filter entries stored in the
database to determine whether some action needs to be
taken. The filters are preferably stored so that the system
searches ALLOW filters first, BLOCK filters next. and
deferred action filters last, and takes action based on the first
matched filter. In this order, ALLOW filters thus take
precedence over BLOCK filters; accordingly. if a specific IP
address/port is matched by both an ALLOW filter and a
BLOCK filter, the ALLOW filter takes precedence.
Alternatively, selected BLOCK filters or all BLOCK filters
can be searched before the ALLOW filters to make sure that
certain messages are blocked.

Referring to FIG. 3. the filtering system can filter outgo-
ing messages on the basis of the IP address of the host server
that is being contacted by the client. The filtering system
detects when the client opens the data stream for a particular
port and TP address (step 160). and searches the filter
database for matching filters. The system first searches by
port number to get the list of filters with IP addresses
associated with meta value ANY PORT and also with the
particular opened port (step 102). The system then checks
for and retrieves any filters that match the particular IP
address. The retrieved filters are checked to determine if any
require immediate action, i.e.. if unconditional allowing or
blocking is required (steps 104, 106). If such action is
required and it is to allow the transmission, the system
allows the transmission to proceed normally (step 108). If
the immediate action is to block the transmission. the system
takes action to block the transmission (step 1190), and pro-
vides a “Blocked” message to the user (step 112).

When blocking is done on the basis of the IP address of
the outgoing message. such blocking is preferably accom-
plished by simply not executing the open command. This
nonexecution causes a failure result to be returned to the
application (e.g.. web browser) that called the open com-
mand. The system also provides a screen on the user’s
display indicating that the transmission was blocked. and
advising the user on how to get back to the state before the
user tried to open the stream and send the message.

If, at step 104. it is determined that no immediate action
must be taken, it is determined whether a deferred action
must be taken with respect to any of the retrieved filter (step

Apple 1001.0009

5,884,033

5

116). If there is also no deferred action. the system can
default to allow the transmission (step 108). or it can default
to block the transmission (steps 110 and 112). Such defaults
can be implemented with a last filter that includes entries
ANY PORT and ANY IP. and an action that indicates allow
or block. As noted above, prior conflicting filters would take
precedence over this effective default in the last filter.

Deferred filter entries preferably have additional fields,
including fields for (1) a keyword, typically a command such
as GET; (2) a filter pattern to be compared to data in the
message. typically a siring of characters; (3) a directional
indicator (IN/OUT) for indicating incoming or outgoing
transmissions; (4) a compare directive for the type of match;
and (5) an action to be taken. typically to allow or block the
transmission. The compare directive indicates a type of
match, e.g., whether the pattern must match with equality,
whether it must appear in a particular substring. or whether
it can appear with a wildcard character before, after, before
and after. or embedded in the string.

Referring to FIG. 4, when data is transmitted over an open
TCP/IP connection. the direction of the transmission is
compared to the directional indicators in the deferred entities
(step 130). For each entry in a filter that matches the
direction. the beginning of the data stream is compared to
the keyword in the filter entry (step 132). If the key-words
match (step 134), the data is further compared to the filter
pattern of the filter(s) according to the compare directive
(step 136). If a match is found at this level (step 138), the
specified action in the filter is taken (step 140).

The filters are preferably queued so that filter pattern
matching is performed when incoming data is received from
the host server following a particular detected outgoing
command. With such queueing, a similar scan of the mes-
sage is performed on the outgoing transmission, but block-
ing is performed on the incoming message. Blocking actions
that are available for incoming messages are different from
those for outgoing messages. The incoming data can be
discarded, replaced by data from the database, or edited to
remove occurrences of entries containing patterns stored in
the database entry. Because modifications to incoming data
can change the length of the data, because the filtering
system has no way of knowing how much data will be
received, and because edits by the filtering system may
result in the data stream being broken across an edit. the
filtering system preferably locally buffers incoming data
with a local fragment buffer. The contents of the local
fragment buffer may be edited to change or delete portions
of the data in another part of the buffer or in storage used
temporarily. The unedited portion may be returned to the
fragment buffer so that the entire transaction will be trans-
parent to the application requesting the data.

Specified parts of the protocol message can be corrupted.
or portions of the response to a protocol message can be
deleted. These approaches are most commonly used when
access is requested by a news reader to a news group over
NNTP (or by a request to a chat channel over IRC). When
such a request is made, the server responds with a list of
news groups that match the request. While many of the news
groups may be nonobjectionable, it may be desirable to
block some of the listed items. The system allows certain
listed iterns in the response to an NNTP request to be
blocked while allowing certain other strings. With these
options, even though some items are allowed. a “Blocked”
message should be provided on the user’s screen to notify
the user of the action taken.

The locations, names. and meanings of keywords and
filter patterns in the URL vary with the particular protocol.

10

15

20

25

30

35

45

50

55

65

6

The system determines the particular protocol that is being
used based on the port number as stored in the database.
Thus the protocol is generally determined by the filters
within the database, rather than by the filtering system
software outside the database. When the system determines
the protocol from the port, it then matches the specific URL
(or group of URLs) based on locations in the URL where the
commands are for that specific protocol. A pattern match is
then performed on that part of the URL.

As an example of blocking an HTTP transmission.
assume that the user requests “http://www.domain/
test.html.” The client transmits the URL request and the
domain name server returns an IP address, e.g.. 1.2.3.4,
corresponding to the domain name. The client tries to open
a TCPAP connection with that IP address and typically with
port 80. If that IP address and port 80 (or that IP address with
ANY PORT) are together in a BLOCK filter, the system
prevents the data stream from opening.

Rather than specifying blocking at this time, a filter can
indicate a deferred action. In this example, the filter searches
for a GET command as the keyword in an outgoing data
stream. and for “test.html” as the filter pattern in the trans-
mission. When the client sends a transmission with a GET
command to get information under the directory test.html.
the host server will respond with data for that directory. But
if there is a blocking filter for test.html, the system can block
the incoming data by discarding it or replacing it.

The filter pattern can specify particular strings for both
allowing or for blocking. This can be useful when a poten-
tially objectionable phrase may be part of an unrelated
phrase. For example. the filters can cause the system to allow
transmission of a directory with the string “sextet”, while
blocking transmission to or from a directory with the string
“sex™ by itself. By using wildcards (characters that stand for
any non-alpha characters, such as “/” or “.” before andfor
after a particular phrase). particular appearances of “xxx”
can be blocked, as it is less likely to be part of a nonobjec-
tionable string; for example, if “#” indicates the wildcard,
a filter pattern can be Jxxx 7 indicates that any instances of
xxx set off with periods, slashes, or other spacers within a
URL will be matched by the filter.

While strings for filter entries may be searched
sequentially, if there are many strings that need to be
searched, the strings can be searched as a collection of
strings organized by their beginning letter. In this case, the
first character of each string is used as an offset into a table
of starting positions in a string storage pool containing all of
the strings to be searched. Strings within this pool are
grouped by their beginning letter. The offset table contents
for any letter contains the address within the pool of the first
string beginning with that letter. This technique allows faster
overall searching since only the strings that begin with the
same letter need to be checked to determine a match. For
more efficiency. a filter entry whose strings all begin with the
same letter look for that letter specifically. If there is a
match. then the remainder of the search is performed as
described above, but beginning with the second character in
the string being searched rather than the first.

Accordingly, when a match is found to a filter entry,
whether the match is from an incoming message. outgoing
message. an IP address. a phrase in a domain name, or a
phrase somewhere else in the URL. the filter entry specifies
one of a number of different actions with respect to different
IP addresses and URLSs. The filtering system can: (1) block
access to a specific IP address. regardless of the port; (2)
block access to a specific port. regardless of the IP address;

Apple 1001.0010

5,884,033

7

(3) block access to sclected URL’s on a specific port
regardless of the IP address based on the content of the URL,;
€.g.. prevent access to any web page containing the s letters
“sex” or “xxx” in the URL; (4) block access to a URL or
family of URLs at a specific IP address/port; (5) allow
access to certain sites that would otherwise be blocked by
the filter database; and (6) block access to all sites, and then
allow access to specific sites, URLs, or families of URL’s.

To implement option (6), for example. the system may
have certain specified ALLOW filters, followed by a
BLOCK filter for ANY PORT and ANY IP. The ALLOW
filters would supersede later BLOCK filters, so the presump-
tion is that what is not allowed is forbidden.

Updating Mechanism

Referring again to FIG. 1, when the system of the present
invention is first loaded into a client system, it may have an
initial set of filters for the filter database. Because Internet
sites are being added to the Internet at a fast rate, however,
the filtering system preferably also has an updating mecha-
nism to keep the filters current. The updating mechanism in
the filtering system can locate a particular HTTP or FTP
update server 32 over the Internet. After optional user
authentication, the updating mechanisin causes the filtering
system to download from the update server one of a number
of new sets of filters, and preferably causes some or all of the
existing filters in the filter database to be replaced with the
newly downloaded filters

When a user first installs the filtering system, the user is
preferably provided with the authorization to make an initial
download from the update server. This initial download
addresses the potential problem of software aging on a store
shelf. This download can supplement a filter database, or can
be provided instead of an initial filter database. When the
user updates with the initial download, the user is given an
opportunity to obtain a subscription by filling out an
on-screen subscription form to obtain further filter updates.
Data from this form is transmitted and used to validate the
user.

To obtain a download, the client identifies itself to the
update server with a serial number. The server hashes the
serial number into a value between 0 and 124 with a hashing
function that provides a relatively uniform distribution of
serial numbers over the range of numbers. The hash value is
used to locate a file containing user data for serial numbers
with that specific hash value. This data file is then down-
loaded into the client. and a search is conducted to find a
matching entry in the client. If found. the entry contains
subscription information, including expiration date, fre-
quency of update. and identification of the filter set to be
downloaded.

The update server can store and provide up to 65.536
different filter sets, each with a different group of materials
to be filtered. The user data file indicates which set of filters
is to be downloaded. Each set also includes additional
information, including its creation date and version. If a
download is made for a user who does not have an entry in
the user database. the updater determines which set of filters
to download.

The updating server sends email messages to a particular
email address whenever a download or subscription occurs.
These messages include date and time, the IP address of the
user requesting the download. and the name and serial
number of the user (if available). Alternatively, the updating
mechanism can post information to a log file on a web server
through a common gateway interface (CGI).

10

15

20

25

30

35

45

50

55

65

8
Editing Manager

In addition to an initial filter database and future updates,
the filtering system has an editing Manager that allows the
user to edit the database to add. delete, or modify filters in
the database. The editing filter allows the user to make
custom changes if the user believes that the filtering system
is filtering too much or too little. The editing manager is
preferably separately password protected. The system
allows each filter to be examined individually.

The implementation and use of the editing manager are
generally based on known database editing techniques. In
addition, during a session over the Internet. a user can copy
URLSs for later editing. The user can then copy those URLs
for inclusion in the database. or can edit the entry. e.g.. to
change the action from allow to block or vice versa.

Server-based System

Referring again to FIG. 1. according to another embodi-
ment of the present invention, the filtering system can be
provided from a server 30 that is on the client’s own network
40. Such a topology may be more desirable, for example, in
a corporate network that has a limited size and a uniform set
of filters for many users. This version of the filtering system
uses. the same type of filter database as a client-based
filtering system. but the filter database is located on server

The server-based system preferably has several other 30
differences. Because a server environment may not have
ready access to the Internet’s domain name services, and
because efficiency is important, an application produces its
own domain name table for rapidly converting a domain
name into a unique 32-bit number (typically an IP address).
To make this conversion, the domain name is hashed, and
the hash is used to locate a list of symbol table entities with
matching hash values. This list is searched associatively for
an entry which matches the domain name being looked up.
If found, the entry contains the unique 32-bit value.

An algorithm for pattern matching as described above
may not be efficient enough for a server environment, and
therefore an alternative search technique is preferably
employed. First, a large list of representative URLs are
analyzed to determine the frequency of combinations of
characters. preferably two characters at a time. The resulting
frequency information is stored in a Diphthong Frequency
Table (DFT) that associates character combinations and their
frequency.

Next, each filter pattern for each filter entry is searched to
determine the character combination that is the least fre-
quent according to the DFT. The pattern and a signed integer
offset are used to calculate the start of the pattern from the
location of the character combination being matched. The
character combination and the filter pattern are used to make
an entry in a probe table. The probe table is indexed by the
character combination, and the indexed entry points to a list
of patterns are characterized by that combination. In other
words, each filter pattern is analyzed to find a character
combination, preferably a character pair, that is least likely
to occur in a target URL. The filter pattern is then stored in
the probe table according to that least likely character
combination.

Pattern matching is then accomplished by comparing each
specified character combination in the candidate string to the
entries in the probe table. Since commonly used character
combinations will normally produce no hits in the probe
table, the number of full string comparisons which need to
be made is minimized.

Apple 1001.0011

5.884,033

9

As an example, assume a user enters a string that includes
a series of letters. and the character combinations of interest
are character pairs. The system successively checks the
probe table for each pair of characters in the string. and for
each of these pairs, if a string on the list of filters has one of
these pairs that is least common. the system performs a
comparison of the entire strings. Because some of the
character pairs in the string will be common, it will be
unnecessary to make comparisons for these pairs. Thus. by
searching according to least common character pairs. the
number of comparisons is substantially reduced.

Patching Code

The filtering system provides patching code for the client
computer’s operating system. This code is different for a
Windows-based system and for a Macintosh-based system.

For a Macintosh-based system, when a PBControl call is
*made, the parameters that are passed include a function
selection variable that is compared to a bit vector containing
values for all possible values of the function selector. If the
bit vector has 0. no further filtering system code is executed,
and the command is executed normally; if it is 1, the filtering
system code is called before the normal command is
executed. If the filtering system needs to take action after the
normal execution of a command but before control is
returned to the calling application. the stack of the applica-
tion is modified so that when a return is made from the
normal execution of the code, control goes to the filtering
system patching code, and then returns to the application
normally so that the application is not aware that the filtering
system has been called.

In some cases, a command may be executed asynchro-
nously. So far as the application is concerned. the call returns
and sometime later a completion routine is executed. In this
case, the filtering system creates a dummy piece of code that
gets executed at completion time, and then correspondingly
executes the application’s completion routine in a manner
that makes the presence of the filtering system undetectable,
except for any blocking action that might be taken.

Referring to FIG. 5(a). in a typical system without
patching, an application 40, such as a web browser, has call
instructions 41. A routine 42 has an entry point 44. a series
of instructions 46, and a return 48 to the next instruction 50
after the call. Application 40 calls the routine, instructions
44-48 are executed, and control returns to the application.

Referring to FIG. 5(»). under Windows 3.1 and 16-bit
subsystems of Windows 95 (generally referred to as Win16),
a Winsock API is patched by identifying all relevant entry
points 54 and replacing them with a jump instructions to
patch code 56, identified here as “filtering.” Patch code 56
implements all head processing 60 which must take place
before calling the application’s call 58. Such head process-
ing can include matching a port and a URL or IP address to
filters in the database. The entry point of the instruction is
reset to its original state in instruction 62 and the patch code
has a call 64 to the patched routine 66 as a subroutine. After
instructions 68, patched routine 66 has a return 70 to patch
code 56. Patch code 56 has instructions 72 to re-replace
entry 54 with a jump to the filtering patch code instructions
74 to perform tail processing (such a further filtering actions
or blocking actions). and a return 76 to a next instruction 78
in the application. These patches are referred to here as soft
patches and are generally known.

These soft patches can, however, have drawbacks with
some operating systems, including Windows 95. Because
the instructions have variable length. the initial replacement

10

15

20

25

30

35

40

45

50

55

65

10

of the entry point in the originally called routine 66 may
include only part of the first instruction or may include the
first instruction and part of a second. Moreover, with a
multitasking operating system. there is a period of time
between instructions 62 and 72 when entry point 54 does not
have a jump. Consequently. the filtering system could lose
control during this time if another application calls that
routine.

Referring to FIG. 5(c). to address these matters, other
patches. referred to here as hard patches, are put in place. A
hard patch to a routine 80 is achieved by copying to a buffer
82 the first several instructions 84 beginning with the entry
point of routine 80. To determine which instructions are
copied, instructions 84 are identified and selected so that the
copied instructions have a minimum total length in bytes and
an even number of bytes. These instructions are then modi-
fied if needed to operate in the buffer. Entry point 84 of
routine 80 is replaced with a jump instruction to a head
processing routine 86. After the head processing is a jump
instruction 88 to buffer 82. Instructions 84 are executed and
then routine 80 is modified so its return 90 points to tail
processing 92. Next. an instruction 94 is added at the end of
private buffer 82 to jump back into patched routine 80 a next
instruction 96 after the jump. After return 90, processing
returns to tail processing routine 92, which returns to the
calling application that is unaware the filtering system has
been called.

Such hard patches are generally used to patch when
applications are created or loaded. These include the Load-
Module system calls for Winl6; and CreateProcess.
LoadLibrary, and GetProcAddress in 32-bit portions of
Windows (referred to generally as Win32), such as Windows
9s5.

Referring to FIG. 5(d), to patch the Winsock API with
Win32. an application’s dli import table 200 is patched to
replace Winsock calls with filtering system calls 202. These
calls point to head processing 204. Next. a call 206 points to
entry 208 of the original Winsock routine 210. After a return
212, the system performs tail processing 214 as necessary.
Control then is returned to the application.

To inject patching code into the address space of a
Winsock client without the need to modify or alter the
library stored on disk, the following method is used: (1)
during head processing of the CreateProcess call. the argu-
ments are modified to create the process in an initially
suspended state; (2) during tail processing of the CreatePro-
cess call. the modules loaded into the address space s of the
new process are examined. and if WSOCK32 has been
loaded, the patching code is injected; (3) to activate the
injecting code, the original entry point of the process on the
stack is pushed to act as a call return address and the initial
instruction pointer at a routine that loads filtering system
code into memory and patches the applications import table
is pointed to the routines of the filtering system; (4) if during
tail processing of the LoadLibrary routine, WSOCK32 has
been loaded by an application which is dynamically linking
to Winsock (or a loaded library is implicitly linked to
WSOCK32). a loading/patching routine is called; and (5) if
an application dynamically links to WSOCK32 using the
above LoadLibrary method., all calls to GetProcAddress are
identified and the address of filtering system routines are
returned to gain control of the APL

A Windows 3.1 application is installed to a publicly
known directory with redundant duplicate hidden files in the
DOS and Windows directories. To activate the filtering
system. which is implemented as a monolithic executable

Apple 1001.0012

5,884,033

11

program containing both the control panel and the blocking
code, an item is added to the Startup menu, and a line is
added to the WIN.INI file. Additionally, the file system.drv
is replaced with a new system.drv that loads the original
system.drv and aliases all of its entry points to point to the
original routines. Additionally a “soft” hook is placed on a
WinExec call so that the first time this routine is called. the
filtering system is run and WinExec is unhooked.

These measures are also taken on Windows 95.
Additionally, the control code and the blocking code are
separated so that the control panel loads the blocking
routines and provides on/off functionality, while the system-
.drv hook loads both 16-bit blocking library routines and
32-bit library routines. To activate the filtering system, a
reference to the executable program is added to the “Run-
Services” registry key so that the operating system auto-
matically executes the program on startup.

Once the filtering system library routine is loaded, it
cannot be unloaded. Therefore, if a user kills the program by
re-booting. the blocking mechanisms are left intact.

Having described preferred embodiments of the present
invention, it should be apparent that other modifications can
be made without departing from the scope of the invention
as set forth in the appended claims. For example. the present
invention can be readily adapted to mew protocols. or
updated versions of other protocols, such a new versions of
the Internet Protocol.

What is claimed is:

1. A method for communicating with servers over the
Internet to prevent or allow access to Internet sites, the
method comprising computer-implemented steps of:

(a) opening a data stream to send a message through an

interface to an Internet server;

(b) maintaining a database of filtering information com-
prising a table of filters. said table comprising
(1) filters specifying immediate action. and
(2) filters specifying deferred action;

(c¢) comparing information in the message to filtering
information in at least one of said filters specifying
immediate action and said filters specifying deferred
action; and

(d) determining whether to prevent or allow the outgoing
transmission of the message based on the comparison.

2. The method of claim 1. wherein some of the filters
indicate that the message should be sent. and others indicate
that the message should be blocked.

3. The method of claim 1, wherein in step (b) the filters
specifying immediate action comprise fields specifying an
interface port, an Internet Protocol (IP) address, and an
action to be taken if the filtering information matches the
information in the message.

4. The method of claim 3, wherein step (c¢) includes
comparing an Internet Protocol (IP) address of the message
to the filtering information.

5. The method of claim 1, wherein in step (b) the filters
specifying deferred action comprise fields specifying a
keyword., a filter pattern, a compare directive, and an action
to be taken if the filtering information matches information
in the message.

6. The method of claim 5, wherein the message includes
a URL. and step (c) includes comparing a domain name in
the URL to filtering information in at least one of said filters
specifying immediate action and said filters specifying
deferred action.

7. The method of claim 6. wherein step (c) includes
comparing file information in the URL to the filtering
information.

20

25

30

35

40

45

55

60

65

12

8. The method of claim 5, wherein step (c) includes
comparing a command after a connection has been opened
to filtering information in at least one of said filters speci-
fying immediate action and said filters specifying deferred
action.

9. The method of claim 1, wherein steps (a)~«(d) are all

performed by a client computer, step (b) including main-
taining the database in storage residing on the client com-
puter.
10. The method of claim 5. wherein step (c) includes
comparing strings in the message against strings in at least
one of said filters specifying immediate action and said
filters specifying deferred action, the strings in the filter
database being maintained based on the least common string
in the filter entry.

11. The method of claim 9, further comprising a step of
updating the database by downloading new filtering infor-
mation from an update server, the update server being
accessible to the client computer over the Internet.

12. The method of claim 11, wherein the updating step
includes replacing at least some of the information previ-
ously stored in the database.

13. The method of claim 5, wherein the message includes
a URL. wherein step (c) includes comparing a command in
the URL to at least one of said filters specifying immediate
action and said filters specifying deferred action.

14. The method of claim 6. wherein step (c) include
comparing directory information in the URL to the filtering
information.

15. A method for filtering messages transmitted over the
Internet to prevent or allow access to Internet sites, the
method comprising computer-implemented steps of:

(a) maintaining a database of filtering information com-

prising a table of filters. said table comprising
(1) filters specifying immediate action, and
(2) filters specifying deferred action;

(b) comparing information in the message to filtering
information in at least one of said filters specifying
immediate action and said filters specifying deferred
action; and

(c) determining whether to prevent or allow transmission
of the message in response to the comparison.

16. The method of claim 18, further comprising a step (d)
of updating the filtering information by downloading from a
remote server via the Internet new filter information for
storage in the database of filter information.

17. The method of claim 16, wherein step (d) includes
replacing the existing filter information with the new filter
information.

18. The method of claim 16. wherein the update server has
a number of sets of new filter information. the method
further including a step of providing to the server a message
indicating which set of filters to download.

19. A method for communicating with servers over the
Internet to prevent or allow access to Internet sites, the
method comprising the computer implemented steps of:

(a) sending messages to and receiving messages from an
Internet server through an interface;

(b) maintaining a database of filtering information com-
prising a table of filters, said table comprising
(1) filters specifying immediate action. and
(2) filters specifying deferred action;

(c) comparing information in the messages to filtering
information in at least one of said filters specifying
immediate action and said filters specifying deferred
action; and

Apple 1001.0013

5,884,033

13

(d) determining whether to prevent or allow transmission
of the messages based on the comparison;
wherein steps (a)«(d) are performed by a client computer
connected to the Internet through a network server.

20. The method of claim 19. wherein step (d) comprises 5

a determination to prevent transmission of the messages, the
method further comprising steps of buffering the messages
in a buffer. discarding at least part of the incoming messages,
and displaying a message indicating that the transmission
was prevented.

21. The method of claim 18, wherein in step (b) the filters
specifying deferred action comprise fields specifying a
keyword. a filter pattern, and an action to be taken if the
filtering information matches information in the messages.

22. The method of claim 19, step (c) including comparing
messages sent to the Internet. the method further comprising
the step of queuing the filtering information.

23. A method for communicating with servers over the
Internet to prevent or allow access to Internet sites. the
method comprising the computer-implemented steps of:

(a) opening a data stream to receive a message through an

interface from an Internet server;

(b) maintaining a database of filtering information com-
prising a table of filters, said table comprising

(c) filters specifying immediate action, and

(d) filters specifying deferred action;

10

15

20

25

14

(¢) comparing information in the message to filtering
information in the filters specifying immediate action
and filters specifying deferred action and

(f) determining whether to prevent or allow the incoming
transmission of the message based on the comparison.

24. A method of executing a hard patch for a called

computer routine comprising the computer-implemented
steps of:

(a) identifying instructions and copying a number of
instructions with a minimum number of bytes from an
entry point of a called routine to a buffer;

(b) providing an application calling the called routine;

(c) jumping from the called routine to a head processing
routing;

(d) performing the head processing routine;

(e) jumping to the buffer;

(f) executing the copied instructions;

(g) returning to the called routine after the jump of step
()

(h) returning to a tail processing routine;

(i) performing the tail processing routine; and

(j) returning to the calling application.

I N S *

Apple 1001.0014

