1000100110 5 MILES

1100110110 4 MILES

0110110011 2 MILES

WELCOME
TO THE
INFORMATION
SUPER
HIGHWAY

Page 1 of 137 OpenTV Exhibit 2004
Apple v. OpenTV
IPR2015-00969

Computer Networks
Third Edition

Andrew S. Tanenbaum

Vrije Universiteit
Amsterdam, The Netherlands

For book and bookstore information

Prentice Hall PTR
Upper Saddle River, New Jersey 07458

Page 2 of 137

Page 3 of 137

Library of Congress Cataloging in Publication Data

Tanenbaum, Andrew S. 1944-.

Computer networks / Andrew S. Tanenbaum. -- 3rd ed.

p. cm

Includes bibliographical references and index.

ISBN 0-13-349945-6

1.Computer networks. I. Title.
TK5105.5.T36 1996 96-4121
004.6--dc20 CIp

Editorial/production manager: Camille Trentacoste

Interior design and composition: Andrew S. Tanenbaum

Cover design director: Jerry Votta

Cover designer: Don Martinetti, DM Graphics, Inc.

Cover concept: Andrew S. Tanenbaum, from an idea by Marilyn Tremaine
Interior graphics: Hadel Studio

Manufacturing manager: Alexis R. Heydt

Acquisitions editor: Mary Franz '

Editorial Assistant: Noreen Regina

© 1996 by Prentice Hall PTR
Prentice-Hall, Inc.

A Simon & Schuster Company

Upper Saddle River, New Jersey 07458

The publisher offers discounts on this book when ordered in bulk quantities. For morelinformation,
contact:

Corporate Sales Department, Prentice Hall PTR, One Lake Street, Upper Saddle River, NJ 07458.
Phone: (800) 382-3419; Fax: (201) 236-7141. E-mail: corpsales @prenhall.com

All rights reserved. No part of this book may be reproduced, in any form or by any means, without
permission in writing from the publisher.

All product names mentioned herein are the trademarks of their respective owners.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-349945-6

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

INTRODUCTION

Each of the past three centuries has been dominated by a single technology.
The 18th Century was the time of the great mechanical systems accompanying the
Industrial Revolution. The 19th Century was the age of the steam engine. During
the 20th Century, the key technology has been information gathering, processing,
and distribution. Among other developments, we have seen the installation of
worldwide telephone networks, the invention of radio and television, the birth and
unprecedented growth of the computer industry, and the launching of communica-
tion satellites. '

Due to rapid technological progress, these areas are rapidly converging, and
the differences between collecting, transporting, storing, and processing informa-
tion are quickly disappearing. Organizations with hundreds of offices spread over
a wide geographical area routinely expect to be able to examine the current status
of even their most remote outpost at the push of a button. As our ability to gather,
process, and distribute information grows, the demand for even more sophisti-
cated information processing grows even faster.

Although the computer industry is young compared to other industries (e.g.,
automobiles and air transportation), computers have made spectacular progress in
a short time. During the first two decades of their existence, computer systems
were highly centralized, usually within a single large room. Not infrequently, this
room had glass walls, through which visitors could gawk at the great electronic
wonder inside. A medium-size company or university might have had one or two

Page 4 of 137

2 INTRODUCTION CHAP. 1

computers, while large institutions had at most a few dozen. The idea that within
20 years equally powerful computers smaller than postage stamps would be mass
produced by the millions was pure science fiction.

The merging of computers and communications has had a profound influence
on the way computer systems are organized. The concept of the “computer
center’” as a room with a large computer to which users bring their work for pro-
cessing is now totally obsolete. The old model of a single computer serving all of
the organization’s computational needs has been replaced by one in which a large
number of separate but interconnected computers do the job. These systems are
called computer networks. The design and organization of these networks are
the subjects of this book. ‘

Throughout the book we will use the term “computer network™ to mean an
“interconnected collection of autonomous computers. Two computers are said to
be interconnected if they are able to exchange information. The connection need
not be via a copper wire; fiber optics, microwaves, and communication satellites
can also be used. By requiring the computers to be autonomous, we wish to
exclude from our definition systems in which there is a clear master/slave rela-
tion. If one computer can forcibly start, stop, or control another one, the comput-
ers are not autonomous. A system with one control unit and many slaves is not a
network; nor is a large computer with remote printers and terminals.

There is considerable confusion in the literature between a computer network
and a distributed system. The key distinction is that in a distributed system, the
existence of multiple autonomous computers is transparent (i.e., not visible) to the
user. He' can type a command to run a program, and it runs. It is up to the
operating system to select the best processor, find and transport all the input files
to that processor, and put the results in the appropriate place.

In other words, the user of a distributed system is not aware that there are
multiple processors; it looks like a virtual uniprocessor. Allocation of jobs to pro-
cessors and files to disks, movement of files between where they are stored and
where they are needed, and all other system functions must be automatic.

With a network, users must explicitly log onto one machine, explicitly submit
jobs remotely, explicitly move files around and generally handle all the network
management personally. With a distributed system, nothing has to be done expli-
citly; it is all automatically done by the system without the users’ knowledge.

In effect, a distributed system is a software system built on top of a network.
The software gives it a high degree of cohesiveness and transparency. Thus the
distinction between a network and a distributed system lies with the software
(especially the operating system), rather than with the hardware.

Nevertheless, there is considerable overlap between the two subjects. -For
example, both distributed systems and computer networks need to move files
around. The difference lies in who invokes the movement, the system or the user.

1 “He” should Be read as “he or she” throughout this book.

Page 5 of 137

SEC. 1.1 USES OF COMPUTER NETWORKS 3

Although this book primarily focuses on networks, many of the topics are also
important in distributed systems. For more information about distributed systems,
see (Coulouris et al., 1994; Mullender, 1993; and Tanenbaum, 1995).

1.1. USES OF COMPUTER NETWORKS

Before we start to examine the technical issues in detail, it is worth devoting’
some time to pointing out why people are interested in computer networks and
what they can be used for.

1.1.1. Networks for Companies

Many organizations have a substantial number of computers in operation,
often located far apart. For example, a company with many factories may have a
computer at each location to keep track of inventories, monitor productivity, and
do the local payroll. Initially, each of these computers may have worked in isola-
tion from the others, but at some point, management may have decided to connect
them to be able to extract and correlate information about the entire company.

Put in slightly more general form, the issue here is resource sharing, and the
goal is to make all programs, equipment, and especially data available to anyone
on the network without regard to the physical location of the resource and the
user. In other words, the mere fact that a user happens to be 1000 km away from
his data should not prevent him from using the data as though they were local.
This goal may be summarized by saying that it is an attempt to end the “tyranny
of geography.”

A second goal is to provide high reliability by having alternative sources of
supply. For example, all files could be replicated on two or three machines, so if
one of them is unavailable (due to a hardware failure), the other copies could be
used. In addition, the presence of multiple CPUs means that if one goes down, the
others may be able to take over its work, although at reduced performance. For
military, banking, air traffic control, nuclear reactor safety, and many other appli-
cations, the ability to continue operating in the face of hardware problems is of
utmost importance. '

Another goal is saving money. Small computers have a much better
price/performance ratio than large ones. Mainframes (room-size computers) are
roughly a factor of ten faster than personal computers, but they cost a thousand
times more. This imbalance has caused many systems designers to build systems
consisting of personal computers, one per user, with data kept on one or more
shared file server machines. In this model, the users are called clients, and the
whole arrangement is called the client-server model. It is illustrated in Fig. 1-1.

In the client-server model, communication generally takes the form of a
request message from the client to the server asking for some work to be done.

Page 6 of 137

4 INTRODUCTION CHAP. 1

Client machine Server machine
Client Server
process ‘“HO Q//process
ol \

[T\ S R -
W

Reply

Fig. 1-1. The client-server model.

The server then does the work and sends back the reply. Usually, there are many
clients using a small number of servers.

Another networking goal is scalability, the ability to increase system perfor-
mance gradually as the workload grows just by adding more processors. With
centralized mainframes, when the system is full, it must be replaced by a larger
one, usually at great expense and even greater disruption to the users. With the
client-server model, new clients and new servers can be added as needed.

Yet another goal of setting up a computer network has little to do with tech-
nology at all. A computer network can provide a powerful communication
medium among widely separated employees. Using a network, it is easy for two
or more people who live far apart to write a report together. When one worker
makes a change to an on-line document, the others can see the change immedi-
ately, instead of waiting several days for a letter. Such a speedup makes coopera-
tion among far-flung groups of people easy where it previously had been impossi-
ble. In the long run, the use of networks to enhance human-to-human communi-
cation will probably prove more important than téchnical goals such as improved
reliability.

1.1.2. Networks for People

The motivations given above for building computer networks are all essen-
tially economic and technological in nature. If sufficiently large and powerful
mainframes were available at acceptable prices, most companies would simply
choose to keep all their data on them and give employees terminals connected to
them. In the 1970s and early 1980s, most companies operated this way. Com-
puter networks ‘only became popular when networks of personal computers
offered a huge price/performance advantage over mainframes.

Starting in the 1990s, computer networks began to start delivering services to
private individuals at home. These services and the motivations for using them

Page 7 of 137

SEC. 1.1 USES OF COMPUTER NETWORKS 5

are quite different than the “corporate efficiency”” model described in the previ-
ous section. Below we will sketch three of the more exciting ones that are starting
to happen: '

1. Access to remote information.
2. Person-to-person communication.
3. Interactive entertainment.

Access to remote information will come in many forms. One area in which it
is already happening is access to financial institutions. Many people pay their
bills, manage their bank accounts, and handle their investments electronically.
Home shopping is also becoming popular, with the ability to inspect the on-line
catalogs of thousands of companies. Some of these catalogs will soon provide the
ability to get an instant video on any product by just clicking on the product’s
name.

Newspapers will go on-line and be personalized. It will be possible to tell the
newspaper that you want everything about corrupt politicians, big fires, scandals
involving celebrities, and epidemics, but no football, thank you. At night while
you sleep, the newspaper will be downloaded to your computer’s disk or printed
on your laser printer. On a small scale, this service alreadyexists. The next step
beyond newspapers (plus magazines and scientific journals) is the on-line digital
library. Depending on the cost, size, and weight of book-sized notebook comput-
ers, printed books may become obsolete. Skeptics should take note of the effect
the printing press had on the medjeval illuminated manuscript.

Another application that falls in this category is access to information systems
like the current World Wide Web, which contains information about the arts, busi-
ness, cooking, government, health, history, hobbies, recreation, science, Sports,
travel, and too many other topics to even mention.

All of the above applications involve interactions between a person and a
remote database. The second broad category of network use will be person-to-
person interactions, basically the 21st Century’s answer to the 19th Century’s tele-
phone. Electronic mail or email is already widely used by millions of people and
will soon routinely contain audio and video as well as text. Smell in messages
will take a bit longer to perfect.

Real-time email will allow remote users to communicate with no delay, possi-
bly seeing and hearing each other as well. This technology makes it possible to
have virtual meetings, called videoconference, among far-flung people. It is
sometimes said that transportation and communication are having a race, and
whichever wins will make the other obsolete. Virtual meetings could be used for
remote school, getting medical opinions from distant specialists, and numerous
other applications.

Worldwide newsgroups, with discussions on every conceivable topic are
already commonplace among a select group of people, and this will grow to

Page 8 of 137

6 INTRODUCTION CHAP. 1

include the population at large. These discussions, in which one person posts a
message and all the other subscribers to the newsgroup can read it, run the gamut
from humorous to impassioned.

Our third category is entertainment, which is a huge and growing industry.
The killer application here (the one that may drive all the rest) is video on
demand. A decade or so hence, it may be possible to select any movie or televi-
sion program ever made, in any country, and have it displayed on your screen
instantly. New films may become interactive, where the user is occasionally
prompted for the story direction (should MacBeth murder Duncan or just bide his
time?) with alternative scenarios provided for all cases. Live television may also
become interactive, with the audience participating in quiz shows, choosing
among contestants, and so on.

On the other hand, maybe the killer application will not be video on demand.
Maybe it will be game playing. Already we have multiperson real-time simula-
tion games, like hide-and-seek in a virtual dungeon, and flight simulators with the
players on one team trying to shoot down the players on the opposing team. If
done with goggles and 3-dimensional real-time, photographic-quality moving
images, we have a kind of worldwide shared virtual reality.

In short, the ability to merge information, communication, and entertainment
will surely give rise to a massive new industry based on computer networking.

1.1.3. Social Issues -

The widespread introduction of networking will introduce new social, ethical,
political problems (Laudon, 1995). Let us just briefly mention a few of them; a
thorough study would require a full book, at least. A popular feature of many net-
works are newsgroups or bulletin boards where people can exchange messages
with like-minded individuals. As long as the subjects are restricted to technical
topics or hobbies like gardening, not too many problems will arise.

The trouble comes when newsgroups are set up on topics that people actually
care about, like politics, religion, or sex. Views posted to such groups may be
deeply offensive to some people. Furthermore, messages need not be limited to
text. High-resolution color photographs and even short video clips can now easily
be transmitted over computer networks. Some people take a live-and-let-live
view, but others feel that posting certain material (e.g., child pornography) is sim-
ply unacceptable. Thus the debate rages. l

People have sued network operators, claiming that they are responsible for the
contents of what they carry, just as newspapers and magazines are. The inevitable
response is that a network is like a telephone company or the post office and can-
not be expected to police what its users say. Stronger yet, having network opera-
tors censor messages would probably cause them to delete everything with even
the slightest possibility of their being sued, and thus violate their users’ rights to
free speech. It is probably safe to say that this debate will go on for a while.

Page 9 of 137

SEC. 1.1 USES OF COMPUTER NETWORKS 7

Another fun area is employee rights versus employer rights. Many people
read and write email at work. Some employers have claimed the right to read and
possibly censor employee messages, including messages sent from a home termi-
nal after work. Not all employees agree with this (Sipior and Ward, 1995).

Even if employers Have power over employees, does this relationship also
govern universities and students? How about high schools and students? In 1994,
Carnegie-Mellon University decided to turn off the incoming message stream for
several newsgroups dealing with sex because the university felt the material was
inappropriate for minors (i.e., those few students under 18). The fallout from this
event will take years to settle.

Computer networks offer the potential for sending anonymous messages. In
some situations, this capability may be desirable. For example, it provides a way
for students, soldiers, employees, and citizens to blow the whistle on- illegal
behavior on the part of professors, officers, superiors, and politicians without fear
of reprisals. On the other hand, in the United States and most other democracies,
the law specifically permits an accused person the right to confront and challenge
his accuser in court. Anonymous accusations cannot be used as evidence.

In short, computer networks, like the printing press 500 years ago, allow ordi-
nary citizens to distribute their views in different ways and to different audiences
than were previously possible. This new-found freedom brings with it many
unsolved social, political, and moral issues. The solution to these problems is left
as an exercise for the reader.

1.2. NETWORK HARDWARE

It is now time to turn our attention from the applications and social aspects of
networking to the technical issues involved in network design. There is no gen-
erally accepted taxonomy into which all computer networks fit, but two dimen-
sions stand out as important: transmission technology and scale. We will now
examine each of these in turn.

Broadly speaking, there are two types of transmission technology:

1. Broadcast networks.

2. Point-to-point networks.

Broadcast networks have a single communication channel that is shared by all
the machines on the network. Short messages, called packets in certain contexts,
sent by any machine are received by all the others. An address field within the
packet specifies for whom it is intended. Upon receiving a packet, a machine
checks the address field. If the packet is intended for itself, it processes the
packet; if the packet is intended for some other machine, it is just ignored.

As an analogy, consider someone standing at the end of a corridor with many
rooms off it and shouting “Watson, come here. I want you.” Although the packet

Page 10 of 137

8 INTRODUCTION CHAP. 1

may actually be received (heard) by many people, only Watson responds. The
others just ignore it. Another example is an airport announcement asking all flight
644 passengers to report to gate 12. ; .

Broadcast systems generally also allow the possibility of addressing a packet
to all destinations by using a special code in the address field. When a packet
with this code is transmitted, it is received and processed by every machine on the
network. This mode of operation is called broadcasting. Some broadcast sys-
tems also support transmission to a subset of the machines, something known as
multicasting. One possible scheme is to reserve one bit to indicate multicasting.
The remaining n — 1 address bits:can hold a group number. Each machine can
“subscribe’ to any or all of the groups. When a packet is sent to a certain group,
it is delivered to all machines subscribing to that group.

In contrast, point-to-point networks consist of many connections between
individual pairs of machines. To go from the source to the destination, a packet
on this type of network may have to first visit one or more intermediate machines.
Often multiple routes, of different lengths are possible, so routing algorithms play
an important role in point-to-point networks. As a general rule (although there are
many exceptions), smaller, geographically localized networks tend to use broad-
casting, whereas larger networks usually are point-to-point.

Interprocessor Processors Example
distance located in same
0.1m Circuit board Data flow machine
im System Multicomputer
10m Room
100 m Building Local area network
1 km - Campus
10 km City Metropolitan area network
100 km Country
Wide area network
1,000 km Continent
10,000 km Planet The internet

Fig. 1-2. Classification of interconnected processors by scale.

An alternative criterion for classifying networks is their scale. In Fig. 1-2 we
give a classification of multiple processor systems arranged by their physical size.
At the top are data flow machines, highly parallel computers with many func-
tional units all working on the same program. Next come the multicomputers,
systems that communicate by sending messages over very short, very fast buses.
Beyond the multicomputers are the true networks, computers that communicate

Page 11 of 137

SEC. 1.2 NETWORK HARDWARE 9

by exchanging messages over longer cables. These can be divided into local,
metropolitan, and wide area networks. Finally, the connection of two or more
networks is called an internetwork. The worldwide Internet is a well-known
example of an internetwork. Distance is important as a classification metric
because different techniques are used at different scales. In this book we will be
concerned with only the true networks and their interconnection. Below we give
a brief introduction to the subject of network hardware.

1.2.1. Local Area Networks

Local area networks, generally called LANS, are privately-owned networks
within a single building or campus of up to a few kilometers in size. They are
widely used to connect personal computers and workstations in company offices
and factories to share resources (e.g., printers) and exchange information. LANs
are distinguished from other kinds of networks by three characteristics: (1) their
size, (2) their transmission technology, and (3) their topology.

LANs are restricted in size, which means that the worst-case transmission
time is bounded and known in advance. Knowing this bound makes it possible to
use certain kinds of designs that would not otherwise be possible. It also simpli-
fies network management.

LANs often use a transmission technology consisting of a single cable to
which all the machines are attached, like the telephone company party lines once
used in rural areas. Traditional LANs run at speeds of 10 to 100 Mbps, have low
delay (tens of microseconds), and make very few errors. Newer LANs may
operate at higher speeds, up to hundreds of megabits/sec. In this book, we will
adhere to tradition and measure line speeds in megabits/sec (Mbps), not
megabytes/sec (MB/sec). A megabit is 1,000,000 bits, not 1,048,576 '(220) bits.

L 235

Cable \Computer

(a) (b)

Fig. 1-3. Two broadcast networks. (a) Bus. (b) Ring.

Various topologies are possible for broadcast LANs. Figure 1-3 shows two of
them. In a bus (i.e., a linear cable) network, at any instant one machine is the

Page 12 of 137

10 INTRODUCTION CHAP. 1

master and is allowed to transmit. All other machines are required to refrain from
sending. An arbitration mechanism is needed to resolve conflicts when two or
more machines want to transmit simultaneously. The arbitration mechanism may
be centratized or distributed. IEEE 802.3, popularly called Ethernet™, for
example, is a bus-based broadcast network with decentralized control operating at
10 or 100 Mbps. Computers on an Ethernet can transmit whenever they want to;
if two or more packets collide, each computer just waits a random time and tries
again later. :

A second type of broadcast system is the ring. In a ring, each bit propagates
around on its own, not waiting for the rest of the packet to which it belongs. Typi-
cally, each bit circumnavigates the entire ring in the time it takes to transmit a few
bits, often before the complete packet has even been transmitted. Like all other
broadcast systems, some rule is needed for arbitrating simultaneous accesses’ to
the ring. Various methods are in use and will be discussed later in this book.
IEEE 802.5 (the IBM token ring), is a popular ring-based LAN operating at 4 and
16 Mbps.

Broadcast networks can be further divided into static and dynamic, depending
on how the channel is allocated. A typical static allocation would be to divide up
time into discrete intervals and run a round robin algorithm, allowing each
machine to broadcast only when its time slot comes up. Static allocation wastes
channel capacity when a machine has nothing to say during its allocated slot, so
most systems attempt to allocate the channel dynamically (i.e., on demand).

Dynamic allocation methods for a common channel are either centralized or
decentralized. In the centralized channel allocation method, there is a single
entity, for example a bus arbitration unit, which determines who goes next. It
might do this by accepting requests and making a decision according to some
internal algorithm. In the decentralized channel allocation method, there is no
central entity; each machine must decide for itself whether or not to transmit.
You might think that this always leads to chaos, but it does not. Later we will
study many algorithms designed to bring order out of the potential chaos.

The other kind of LAN is built using point-to-point lines. Individual lines
connect a specific machine with another specific machine. Such a LAN is really a
miniature wide area network. We will look at these later.

1.2.2. Metropolitan Area Networks

A metropolitan area metwork, or MAN (plural: MANs, not MEN) is basi-
cally a bigger version of a LAN and normally uses similar technology. It might
cover a group of nearby corporate offices or a city and might be either private or
public. A MAN can support both data and voice, and might even be related to the
local cable television network. A MAN just has one or two cables and does not
‘contain switching elements, which shunt packets over one of several potential out-
put lines. Not having to switch simplifies the design.

Page 13 of 137

SEC. 1.2 NETWORK HARDWARE 11

The main reason for even distinguishing MANSs as a special category is that a
standard has been adopted for them, and this standard is now being implemented.
It is called DQDB (Distributed Queue Dual Bus) or for people who prefer
numbers to letters, 802.6 (the number of the IEEE standard that defines it).
DQDB consists of two unidirectional buses (cables) to which all the computers
are connected, as shown in Fig. 1-4. Each bus has a head-end, a device that ini-
tiates transmission activity. Traffic that is destined for a computer to the right of
the sender uses the upper bus. Traffic to the left uses the lower one.

Direction of flow on bus A —

Bus A [l @

Computer — .
X Head end
Bus B

- Dlrectlon of ﬂow on bus B

Fig. 1-4. Architecture of the DQDB metropolitan area network.

A key aspect of a MAN is that there is a broadcast medium (for 802.6, two
cables) to which all the computers are attached. This greatly simplifies the design

compared to other kinds of networks. We will discuss DQDB in more detail in
Chap. 4.

1.2.3. Wide Area Networks

A wide area network, or WAN, spans a large geographical area, often a
country or continent. It contains a collection of machines intended for running
user (i.e., application) programs. We will follow traditional usage and call these
machines hosts. The term end system is sometimes also used in the literature.
The hosts are connected by a communication subnet, or just subnet for short.
The job of the subnet is to carry messages from host to host, just as the telephone
system carries words from speaker to listener. By separating the pure communi-
cation aspects of the network (the subnet) from the application aspects (the hosts),
the complete network design is greatly simplified.

In most wide area networks, the subnet consists of two distinct components:
transmission lines and switching elements. Transmission lines (also called cir-
cuits, channels, or trunks) move bits between machines.

The switching elements are specialized computers used to connect two or
more transmission lines. When data arrive on an incoming line, the switching

Page 14 of 137

12 INTRODUCTION CHAP. 1

element must choose an outgoing line to forward them on. Unfortunately, there is
no standard terminology used to name these computers. They are variously called
packet switching nodes, intermediate systems, and data switching exchanges,
among other things. As a generic term for the switching. computers, we will use
the word router, but the reader should be aware that no consensus on terminology
exists here. In this model, shown in Fig. 1-5, each host is generally connected to a
LAN on which a router is present, although in some cases a host can be connected
directly to a router. The collection of communication lines and routers (but not
the hosts) form the subnet.

Subnet Router

Tl T T

Host

Qe Al

Fig. 1-5. Relation between hosts and the subnet.

An aside about the term “subnet” is worth making. Originally, its only mean-
ing was the collection of routers and communication lines that moved packets
from the source host to the destination host. However, some years later, it also
acquired a second meaning in conjunction with network addressing (which we
will discuss in Chap. 5). Hence the term has a certain ambiguity about it. Unfor-
tunately, no widely-used alternative exists for its initial meaning, so with some
hesitation we will use it in both senses. From the context, it will always be clear
which is meant. ' :

In most WANS, the network contains numerous cables or telephone lines, -
each one connecting a pair of routers. If two routers that do not share a cable
nevertheless wish to communicate, they must do this indirectly, via other routers.
When a packet is sent from one router to another via one or more intermediate
routers, the packet is received at each intermediate router in its entirety, stored
there until the required output line is free, and then forwarded. A subnet using
this principle is called a point-to-point, store-and-forward, or packet-switched
subnet. Nearly all wide area networks (except those using satellites) have store-
and-forward subnets. When the packets are small and all the same size, they are
often called cells.

When a point-to-point subnet is used, an important design issue is what the
router interconnection topology should look like. Figure 1-6 shows several

Page 15 of 137

SEC. 1.2 NETWORK HARDWARE 13

possible topologies. Local networks that were designed as such usually have a
symmetric topology. In contrast, wide area networks typically have irregular
topologies. :

v :
(d) (e) ®

Fig. 1-6. Some possible topologies for a point-to-point subnet. (a) Star.
(b) Ring. (c) Tree. (d) Complete. () Intersecting rings. (f) Irregular.

A second possibility for 2 WAN is a satellite or ground radio system. Each
router has an antenna through which it can send and receive. All routers can hear
the output from the satellite, and in some cases they can also hear the upward
transmissions of their fellow routers to the satellite as well. Sometimes the
routers are connected to a substantial point-to-point subnet, with only some of
them having a satellite antenna. Satellite networks are inherently broadcast and
are most useful when the broadcast property is important.

1.2.4. Wireless Networks

Mobile computers, such as notebook computers and personal digital assistants
(PDAs), are the fastest-growing segment of the computer industry. Many of the
owners of these computers have desktop machines on LANs and WANSs back at
the office and want to be connected to their home base even when away from
home or en route. Since having a wired connection is impossible in cars and air-
planes, there is a lot of interest in wireless networks. In this section we will

Page 16 of 137

14 INTRODUCTION CHAP. 1

briefly introduce this topic. (Note: by section, we mean those portions of the book
with a three-part number such as 1.2.4.)

Actually, digital wireless communication is not a new idea. As early as 1901,
the Ttalian physicist Guglielmo Marconi demonstrated a ship-to-shore wireless
telegraph using Morse Code (dots and dashes are binary, after all). Modern digi-
tal wireless systems have better performance, but the basic idea is the same.
Additional information about these systems can be found in (Garg and Wilkes,
1996; and Pahlavan et al., 1995).

Wireless networks have many uses. A common one is the portable office.
People on the road often want to use their portable electronic equipment to send
and receive telephone calls, faxes, and electronic mail, read remote files, login on
remote machines, and so on, and do this from anywhere on land, sea, or air.

Wireless networks are of great value to fleets of trucks, taxis, buses, and
repairpersons for keeping in contact with home. Another use is for rescue work-
ers at disaster sites (fires, floods, earthquakes, etc.) where the telephone system
has been destroyed. Computers there can send messages, keep records, and so on.

Finally, wireless networks are important to the military. If you have to be
able to fight a war anywhere on earth on short notice, counting on using the local
networking infrastructure is probably not a good idea. It is better to bring your
own.

Although wireless networking and mobile computing are often related, they
are not identical, as Fig. 1-7 shows. Portable computers are sometimes wired.
For example, if a traveler plugs a portable computer into the telephone jack in a
hotel, we have mobility without a wireless network. Another example is someone
carrying a portable computer along as he inspects a train for technical problems.
Here a long cord can trail along behind (vacuum cleaner model).

Wireless | Mobile Applications

No No Stationary workstations in offices

No Yes Using a portable in a hotel; train maintenance
Yes No LANSs in older, unwired buildings

Yes Yes Portable office; PDA for store inventory

Fig. 1-7. Combinations of wireless networks and mobile computing.

On the other hand, some wireless computers are not portable. An important
example here is a company that owns an older building that does not have net-
work cabling installed and wants to connect its computers. Installing a wireless
LAN may require little more than buying a small box with some electronics and
setting up some antennas. This solution may be cheaper than wiring the building.

Although wireless LANs are easy to install, they also have some disadvan-
tages. Typically they have a capacity of 1-2 Mbps, which is much slower than

Page 17 of 137

SEC. 1.2 NETWORK HARDWARE 15

wired LANs. The error rates are often much higher, too, and the transmissions
from different computers can interfere with one another. '

But of course, there are also the true mobile, wireless applications, ranging
from the portable office to people walking around a store with a PDA doing
inventory. At many busy airports, car rental return clerks work out in the parking
lot with wireless portable computers. They type in the license plate number of
returning cars, and their portable, which has a built-in printer, calls the main com-
puter, gets the rental information, and prints out the bill on the spot. True mobile
computing is discussed further in (Forman and Zahorjan, 1994).

Wireless networks come in many forms. Some universities are already instal-
ling antennas all over campus to allow students to sit under the trees and consult
the library’s card catalog. Here the computers commuricate directly with the
wireless LAN in digital form. Another possibility is using a cellular (i.e., port-
able) telephone with a traditional analog modem. Direct digital cellular service,
called CDPD (Cellular Digital Packet Data) is becoming -available in many
cities. We will study it in Chap. 4. '

Finally, it is possible to have different combinations of wired and wireless
networking. For example, in Fig. 1-8(a), we depict an airplane with a number of
people using modems and seat-back telephones to call the office. Each call is
independent of the other ones. A much more efficient option, however, is the fly-
ing LAN of Fig. 1-8(b). Here each seat comes equipped with an Ethernet connec-
tor into which passengers can plug their computers. A single router on the aircraft
maintains a radio link with some router on the ground, changing routers as it flies
along. This configuration is just a traditional LAN, except that its connection to
the outside world happens to be a radio link instead of a hardwired line.

Flying router

B

fe
Portable Wired
computer LAN

(@) (b)

]

%

One telephone
call per computer

Fig. 1-8. (a) Individual mobile computers. (b) A flying LAN.

While many people believe that wireless portable computers are the wave of
the future, at least one dissenting voice has been heard. Bob Metcalfe, the inven-
tor of Ethernet, has written: “Mobile wireless computers dre like mobile pipeless
bathrooms—portapotties. They will be common on vehicles, and at construction
sites, and rock concerts. My advice is to wire up your home and stay there”
(Metcalfe, 1995). Will most people follow Metcalfe’s advice? Time will tell.

Page 18 of 137

16 INTRODUCTION CHAP. 1

1.2.5. Internetworks

Many networks exist in the world, often with different hardware and software.
People connected to one network often want to communicate with people attached
to a different one. This desire requires connecting together different, and fre-
quently incompatible networks, sometimes by using machines called gateways to
make the connéction and provide the necessary translation, both in terms of
hardware and software. A collection of interconnected networks is called an
internetwork or just internet.

A commot form of internet is a collection of LANs connected by a WAN. In
fact, if we wete to replace the label “subnet” in Fig. 1-5 by “WAN,” nothing else
in the figure would have to change. The only real distinction between a subnet
and 2 WAN in this case is whether or not hosts are present. If the system within
the closed curve contains only routers, it is a subnet. If it contains both routers
and hosts with their own users, it is a WAN.

To avoid confusion, please note that the word “internet” will always be used
in this book in a generic sense. In coritrast, the Internet (note uppercase I) means
a specific worldwide internet that is widely used to connect universities, govern-
ment offices, Companies, and of late, ptivate individuals. We will have much to
say about both intetnets and the Internet later in this book.

Subnets, networks, and internetworks are often confused. Subnet makes the
most sense in the context of a wide area network, where it refers to the collection
of routers and communication lines ownéd by the network operator, for example,
companies like America Online and CompuServe. As an analogy, the telephone
system consists of telephone switching offices connected to each other by high-
speed lines, and to houses and businesses by low-speed lines. These lines and
equipment, owned and managed by the telephone company, form the subnet of the
telephone system.’ The telephones themselves (the hosts in this analogy) are not
part of the subnet. The combination of a subnet and its hosts forms a network. In
the case of a LAN, the cable and the hosts form the network. There really is no
subnet.

An internetwork is formed when distinct networks are connected together. In
our view, connectirig a LAN and a WAN or connecting two LANS forms an inter-
network, but there is little agreement in the industry over terminology in this area.

1.3. NETWORK SOFTWARE

The first computer networks were designed with the hardware as the main
concern and the software as an afterthought. This strategy no longer works. Net-
work software is now highly structured. In the following sections we examine the
software structuring technique in some detail. The method described here forms
the keystone of the entire book and will occur repeatedly later on.

Page 19 of 137

SEC. 1.3 NETWORK SOFTWARE 17

1.3.1. Protocol Hierarchies

‘To reduce their design complexity, most networks are organized as a series of
layers or levels, each one built upon the one below it. The number of layers, the
name of each layer, the contents of each layer, and the function of each layer
differ from network to network. However, in all networks, the purpose of each
layer is to offer certain services to the higher layers, shielding those layers from
the details of how the offered services are actually implemented.

Layer n on one machine carries on a conversation with layer n on another
machine. The rules and conventions used in this conversation are collectively
known as the layer n protocol. Basically, a protocol is an agreement between the
communicating parties on how communication is to proceed. As an analogy,
when a woman is introduced to a man, she may choose to stick out her hand. He,
in turn, may decide either to shake it or kiss it, depending, for example, on
whether she is an American lawyer at a business meeting or a European princess
at a formal ball. Violating the protocol will make communication more difficult,
if not impossible. ‘

A five-layer network is illustrated in Fig. 1-9. The entities comprising the
corresponding layers on different machines are called peers. In other words, it is
the peers that communicate using the protocol.

Host 1 Host 2

Layer 5 protocol
Layer5 [==-=——====-----==m=-- = Layer5

[[

Layer 4/5 interface

Layer B L Layer 4

. .

Layer 3/4 interface ! I

Layer 3 [e-mEsR sl m s S =~| Layer3

Layer 2/3 interface :

Layer2 |s-—-——-—-——==mmmmmmm— Layer 2

Layer 1/2 interface

Layer 1 fmmermmom=crmemmesm e =| Layer 1

Physical medium

Fig. 1-9. Layers, protocols, and interfaces.

In reality, no data are directly transferred from layer n on one machine to
layer n on another machine. Instead, each layer passes data and control

Page 20 of 137

18 INTRODUCTION CHAP. 1

information to the layer immediately below it, until the lowest layer is reached.
Below layer 1 is the physical medium through which actual communication
occurs. In Fig. 1-9, virtual communication is shown by dotted lines and physical
communication by solid lines.

Between each pair of adjacent layers there is an interface. The interface
defines which primitive operations and services the lower layer offers to the upper
one. When network designers decide how many layers to include in a network
and what each one should do, one of the most important considerations is defining
clean interfaces between the layers. Doing so, in turn, requires that each layer
perform a specific collection of well-understood functions. In addition to mini-
mizing the amount of information that must be passed between layers, clean-cut
interfaces also make it simpler to replace the implementation of one layer with a
completely different implementation (e.g., all the telephone lines are replaced by
satellite channels), because all that is required of the new implementation is that it
offers exactly the same set of services to its upstairs neighbor as the old imple-
mentation did.

A set of layers and protocols is called a network architecture. The specifi-
cation of an architecture must contain enough information to allow an imple-
menter to write the program or build the hardware for each layer so that it will
correctly obey the appropriate protocol. Neither the details of the implemenitation
nor the specification of the interfaces are part of the architecture because these are
hidden away inside the machines and not visible from the outside. It is not even
necessary that the interfaces on all machines in a network be the same, provided
that each machine can correctly use all the protocols. A list of protocols used by a
certain system, one protocol per layer, is called a protocol stack. The subjects of °
network architectures, protocol stacks, and the protocols themselves are the prin-
cipal topics of this book. :

An analogy may help explain the idea of multilayer communication. Imagine
two philosophers (peer processes in layer 3), one of whom speaks Urdu and
English and one of whoim speaks Chinese and French. Since they have no com-
mon language, they each engage a translator (peer processes at layer 2), each of
whom in turn contacts a secretary (peer processes in layer 1). Philosopher 1
wishes to convey his affection for oryctolagus cuniculus to his peer. To do so, he
passes a message (in English) across the 2/3 interface, to his translator, saying “I
like rabbits,” as illustrated in Fig. 1-10. The translators have agreed on a neutral
language, Dutch, so the message is converted to “Tk hou van konijnen.” The
choice of language is the layer 2 protocol and is up to the layer 2 peer processes.

The translator then gives the message to a secretary for transmission, by, for
example, fax (the layer 1 protocol). When the message arrives, it is translated
into French and passed across the 2/3 interface to philosopher 2. Note that each
protocol is completely independent of the other ones as long as the interfaces are
not changed. The translators can switch from Dutch to say, Finnish, at will, pro-
vided that they both agree, and neither changes his interface with either layer 1 or

Page 21 of 137

SEC. 1.3 NETWORK SOFTWARE 19

Location A Location B
| like . J'aime
rabbits Message Philosopher —— les
lapins
1 3
1
] Information .
L: Dutch| 4 for the remote Translator —— L: Dutch
tk hou translator Ik hou
5 van van
konijnen konijnen -
Information
Fax #--- | for the remote Fax #--- |
L: Dutch secretary Secretary — L: Dutch
3 Ik hou Ik hou ’
van van
konijnen konijnen
‘

C J

Fig. 1-10. The philosopher-translator-secretary architecture.

layer 3. Similarly the secretaries can switch from fax to email, or telephone
without disturbing (or even informing) the other layers. Each process may add
some information intended only for its peer. This information is not passed
upward to the layer above.

Now consider a more technical example: how to provide communication to
the top layer of the five-layer network in Fig. 1-11. A message, M, is produced by
an application process running in layer 5 and given to layer 4 for transmission.
Layer 4 puts a header in front of the message to identify the message and passes
the result to layer 3. The header includes control information, such as sequence
numbers, to allow layer 4 on the destination machine to deliver messages in the
right order if the lower layers do not maintain sequence. In some layers, headers
also contain sizes, times, and other control fields.

In many networks, there is no limit to the size of messages transmitted in the
layer 4 protocol, but there is nearly always a limit imposed by the layer 3 proto-
col. Consequently, layer 3 must break up the incoming messages into smaller

Page 22 of 137

20 INTRODUCTION CHAP. 1

Layer
Layer 5 protocol
5 M - — i ——— ¥—~—E ————————————— »41 M |
Layer 4 protocol
4 M -1-————-—--—-y—----p ------------

/\ l&aa

T o] W[t

L
: erocel
o [FalFale[W 1] [FalFa] MalTal=-—-fralru [W [Ta] [Fels[2]
1
Source machine Destination machine

Fig. 1-11. Example information flow supporting virtual communication in layer 5.

units, packets, prepending a layer 3 header to each packet. In this example, M is
split into two parts, M| and M.

Layer 3 decides which of the outgoing lines to use and passes the packets to
layer 2. Layer 2 adds not only a header to each piece, but also a trailer, and gives
the resulting unit to layer 1 for physical transmission. At the receiving machine
the message moves upward, from layer to layer, with headers being stripped off as
it progresses. None of the headers for layers below n are passed up to layer n.

The important thing to understand about Fig. 1-11 is the relation between the
virtual and actual communication and the difference between protocols and inter-

_faces. The peer processes in layer 4, for example, conceptually think of their
communication as being “horizontal,” using the layer 4 protocol. Each one is
likely to have a procedure called something like SendToOtherSide and GetFrom-
OtherSide, even though these procedures actually communicate with lower layers
across the 3/4 interface, not with the other side.

The peer process abstraction is crucial to all network design. Using it, the
unmanageable task of designing the complete network can be broken into several
smaller, manageable, design problems, namely the design of the individual layers.

Although Section 1-3 is called “Network Software,” it is worth pointing out
that the lower layers of a protocol hierarchy are frequently implemented in
hardware or firmware. Nevertheless, complex protocol algorithms are involved,
even if they are embedded (in whole or in part) in hardware.

Page 23 of 137

SEC. 1.3 NETWORK SOFTWARE 21

1.3.2. Design Issues for the Layers

Some of the key design issues that occur in computer networking are present
in several layers. Below, we will briefly mention some of the more important
ones.

Every layer needs d mechanism for identifying senders and receivers. Since a
network normally has many computers, some of which have multiple processes, a
means is needed for a process on one machine to specify with whom it wants to
talk. As a consequence of having multiple destinations, some form of addressing
is needed in order to specify a specific destination.

Another set of design decisions concerns the rules for data transfer. In some
systems, data only travel in one direction (simplex communication). In others
they can travel in either direction, but not simultaneously (half-duplex communi-
cation). In still others they travel in both directions at once (full-duplex com-
munication). The protocol must also determine how many logical channels the
connection corresponds to, and what their priorities are. Many networks provide
at least two logical channels per connection, one for normal data and one for
urgent data.

Error control is an important issue because physical communication circuits
are not perfect. Many error-detecting and error-correcting codes are known, but
both ends of the connection must agree on which one is being used. In addition,
the receiver inust have some way of telling the sender which messages have been
correctly received and which have not. ‘

Not all comimunication channels preserve the order of messages sent on them.
To deal with a possible loss of sequencing, the protocol must make explicit provi-
sion for the receiver to allow the pieces to be put back together properly. An
obvious solution is to number the pieces, but this solution still leaves open the
question of what should be done with pieces that arrive out of order.

An issue that occurs at every level is how to keep a fast sender from swamp-
ing a slow receiver with data. Various solutions have been proposed and will be
discussed later. Some of them involve some kind of feedback from the receiver to
the sender, either directly or indirectly, about the receiver’s current situation.
Others limit the sender to an agreed upon transmission rate. ‘

Another problem that must be solved at several levels is the inability of all
processes to accept arbitrarily long messages. This property leads to mechanisms
for disassembling, transmitting, and then reassembling messages. A related issue
is what to do when processes insist upon transmitting data in units that are so
small that sending each one separately is inefficient. Here the solution is to gather
together several small messages heading toward a common destination into a sin-
gle large message and dismember the large message at the other side.

When it is inconvenient or expensive to set up a separate connection for each
pair of communicating processes, the underlying layer may decide to use the same
connection for multiple, unrelated conversations. As long as this multiplexing and

Page 24 of 137

22 INTRODUCTION CHAP. 1

demultiplexing is done transparently, it can be used by any layer. Multiplexing is
needed in the physical layer, for example, where all the traffic for all connections
has to be sent over at most a few physical circuits.

When there are multiple paths between source and destination, a route must
be chosen. Sometimes this decision must be split over two or more layers. For
example, to send data from London to Rome, a high-level decision might have to
be made to go via France or Germany based on their respective privacy laws, and
a low-level decision might have to be made to choose one of the many available
circuits based on the current traffic load.

1.3.3. Interfaces and Services

The function of each layer is to provide services to the layer above it. In this
section we will look at precisely what a service is in more detail, but first we will
give some terminology.

The active elements in each layer are often called entities. An entity can be a
software entity (such as a process), or a hardware entity (such as an intelligent I/O
chip). Entities in the same layer on different machines are called peer entities.
The entities in layer n implement a service used by layer n + 1. In this case layer
n is called the service provider and layer n + 1 is called the service user. Layer
n may use the services of layer n — 1 in order to provide its service. It may offer
several classes of service, for example, fast, expensive communication and slow,
cheap communication..

Services are available at SAPs (Service Access Points), The layer n SAPs are
the places where layer n + 1 can access the services offered. Each SAP has an
address that uniquely identifies it. To make this point clearer, the SAPs in the
telephone system are the sockets into which modular telephones can be plugged,
and the SAP addresses are the telephone numbers of these sockets. To call some-
one, you must know the callee’s SAP address. Similarly, in the postal system, the
SAP addresses are street addresses and post office box numbers. To send a letter,
you must know the addressee’s SAP address.

In order for two layers to exchange information, there has to be an agreed
upon set of rules about the interface. At a typical interface, the layer n + 1 entity
passes an IDU (Interface Data Unit) to the layer n entity through the SAP as
shown in Fig. 1-12. The IDU consists of an SDU (Service Data Unit) and some
control information. The SDU is the information passed across the network to the
peer entity and then up to layer n + 1. The control information is needed to help
the lower layer do its job (e.g., the number of bytes in the SDU) but is not part of
the data itself. 1

In order to transfer the SDU, the layer » entity may have to fragment it into
several pieces, each of which is given a header and sent as a separate PDU (Pro-
tocol Data Unit) such as a packet. The PDU headers are used by the peer entities

Page 25 of 137

SEC. 1.3 NETWORK SOFTWARE 23

IDU SAP = Service Access Point
T S IDU = Interface Data Unit
Layer N+1 SDU = Service Data Unit
’ E@l PDU = Protocol Data Unit
SAP ICl = Interface Control Information
~ TTm
Interface e
LayerN ' cl ol Layer N entities

- exchange N-PDUs
- — in their layer N

* N-PDU protocol
Header

Fig. 1-12. Relation between layers at an interface.

to carry out their peer protocol. They identify which PDUs contain data and which
contain control information, provide sequence numbers and counts, and so on.

1.3.4. Connection-Oriented and Connectionless Services

Layers can offer two different types of service to the layers above them:
connection-oriented and connectionless. In this section we will look at these two
types and examine the differences between them.

~ Connection-oriented service is modeled after the telephone system. To talk
to someone, you pick up the phone, dial the number, talk, and then hang up. Simi-
larly, to use a connection-oriented network service, the service user first estab-
lishes a connection, uses the. connection, and then releases the connection. The
essential aspect of a connection is that it acts like a tube: the sender pushes objects
(bits) in at one end, and the receiver takes them out in the same order at the other
end.

In contrast, connectionless service is modeled after the postal system. Each
message (letter) carries the full destination address, and each one is routed
through the system independent of all the others. Normally, when two messages
are sent to the same destination, the first one sent will be the first one to arrive.
However, it is possible that the first one sent can be delayed so that the second
one arrives first. With a connection-oriented service this is impossible.

Each service can be characterized by a quality of service. Some services are
reliable in the sense that they never lose data. Usually, a reliable service is imple- -
mented by having the receiver acknowledge the receipt of each message, so the
sender is sure that it arrived. The acknowledgement process introduces overhead
and delays, which are often worth it but are sometimes undesirable.

A typical situation in which a reliable connection-oriented service is

Page 26 of 137

24 INTRODUCTION CHAP. 1

appropriate is file transfer. The owner of the file wants to be sure that all the bits
arrive correctly and in the same order they were sent. Very few file transfer cus-
tomers would prefer a service that occasionally scrambles or loses a few bits, even
if it is much faster.

Reliable connection-oriented service has two minor variations: message
sequences and byte streams. In the former, the message boundaries are preserved.
When two 1-KB messages are sent, they arrive as two distinct 1-KB messages,
never as one 2-KB message. (Note: KB means kilobytes; kb means kilobits.) In
the latter, the connection is simply a stream of bytes, with no message boundaries.
When 2K bytes arrive at the receiver, there is no way to tell if they were sent as
one 2-KB message, two 1-KB messages, or 2048 1-byte messages. If the pages of
a book are sent over a network to a phototypesetter as separate messages, it might
be important to preserve the message boundaries. On the other hand, with a ter-
minal logging into a remote timesharing system, a byte stream from the terminal
to the computer is all that is needed. '

As mentioned above, for some applications, the delays introduced by
acknowledgements are unacceptable. One such application is digitized voice
traffic. It is preferable for telephone users to hear a bit of noise on the line or a
garbled word from time to time than to introduce a delay to wait for acknowledge-
ments. Similarly, when transmitting a video film, having a few pixels wrong is no
problem, but having the film jerk along as the flow stops to correct errors is very
irritating. '

Not all applications require connections. For example, as electronic mail
becomes more common, can electronic junk mail be far behind? The electronic
junk mail sender probably does not want to go to the trouble of setting up and
later tearing down a connection just to send one item. Nor is 100 percent reliable
delivery essential, especially if it costs more. All that is needed is a way to send a
single message that has a high probability of arrival, but no guarantee. Unreliable
(meaning not acknowledged) connectionless service is often called datagram ser-
vice, in analogy with telegram service, which also does not provide an acknowl-
edgement back to the sender.

In other situations, the convenience of not having to establish a connection to
send one short message is desired, but reliability is essential. The acknowledged
datagram service can be provided for these applications. It is like sending a
registered letter and requesting a return receipt. When the receipt comes back, the
sender is absolutely sure that the letter was delivered to the intended party and not
lost along the way.

Still another service is the request-reply service. In this service the sender
transmits a single datagram containing a request; the reply contains the answer.
For example, a query to the local library asking where Uighur is spoken falls into
this category. Request-reply is commonly used to implement communication in
the client-server model: the client issues a request and the server responds to it.
Figure 1-13 summarizes the types of services discussed above. l

Page 27 of 137

SEC. 1.3 NETWORK SOFTWARE 25

Service Example
Connection- Reliable message stream Sequence of pages
oriented Reliable byte stream Remote login
Unreliable connection Digitized voice
Unreliable datagram Electronic junk mail
Connecﬁiggs- Acknowledged datagram Registered mail
Request-reply Database query

Fig. 1-13. Six different types of service.

1.3.5. Service Primitives

A service is formally specified by a set of primitives (operations) available to
a user or other entity to access the service. These primitives tell the service to
perform some action or report on an action taken by a peer entity. One way to

classify the service primitives is to divide them into four classes as shown in
Fig. 1-14.

Primitive Meaning

Request An entity wants the service to do some work

Indication | An entity is to be informed about an event

Response | An entity wants to respond to an event

Confirm The response to an earlier request has come back

Fig. 1-14. Four classes of service primitives.

To illustrate the uses of the primitives, consider how a connection is esta-
blished and released. The initiating entity does a CONNECT.request which results
in a packet being sent. The receiver then gets a CONNECT.indication announcing
that an entity somewhere wants to set up a connection to it. The entity getting the
CONNECT.indication then uses the CONNECT.response primitive to tell whether it
wants to accept or reject the proposed connection. Either way, the entity issuing
the initial CONNECT.request finds out what happened via a CONNECT.confirm
primitive.

Primitives can have parameters, and most of them do. The parameters to a
CONNECT.request might specify the machine to connect to, the type of service
desired, and the maximum message size to be used on the connection. The
parameters to a CONNECT.indication might contain the caller’s identity, the type of

Page 28 of 137

26 INTRODUCTION CHAP. 1

service desired, and the proposed maximum message size. If the called entity did
not agree to the proposed maximum message size, it could make a counterpropos-
al in its response primitive, which would be made available to the original caller
in the confirm. The details of this negotiation are part of the protocol. For exam-
ple, in the case of two conflicting proposals about maximum message size, the
protocol might specify that the smaller value is always chosen.

As an aside on terminology, we will carefully avoid the terms “open a con-
nection” and “close a connection” because to electrical engineers, an “open cir-
cuit” is one with a gap or break in it. Electricity can only flow over “closed cir-
cuits.” Computer scientists would never agree to having information flow over a
closed circuit. To keep both camps pacified, we will use the terms “establish a
connection” and “release a connection.”

Services can be either confirmed or unconfirmed. In a confirmed service,
there is a requiest, an indication, a response, and a confirm. In an unconfirmed
service, there is just a request and an indication. CONNECT is always a confirmed
service because the remote peer must agree to establish a connection. Data
transfer, on the other hand, can be either confirmed or unconfirmed, depending on
whether or not the sender needs an acknowledgement. Both kinds of services are
used in networks.

To make the concept of a service more concrete, let us consider as an example
a simple connection-oriented service with eight service primitives as follows:

1. CONNECT.request — Request a connection to be established.
CONNECT.indication — Signal the called party.
CONNECT.response — Used by the callee to accept/reject calls.

CONNECT.confirm — Tell the caller whether the call was accepted.

2

3

4

5. DATA.request — Request that data be sent.

6. DATA.indication — Signal the arrival of data.

7. DISCONNECT.request — Request that a connection be released.
8

DISCONNECT.indication — Signal the peer about the request.

In this example, CONNECT is a confirmed service (an explicit response is
required), whereas DISCONNECT is unconfirmed (no response).

It may be helpful to make an analogy with the telephone system to see how
these primitives are used. For this analogy, consider the steps required to call
Aunt Millie on the telephone and invite her to your house for tea.

1. CONNECT.request — Dial Aunt Millie’s phone number.
2. CONNECT.indication — Her phone rings.

3. CONNECT.response — She picks up the phone.

Page 29 of 137

SEC. 1.3 NETWORK SOFTWARE 27

CONNECT.confirm — You hear the ringing stop.

DATA .request — You invite her to tea.

DATA.indication — She hears your invitation.

DATA .request — She says she would be delighted to come.

DATA.indication — You hear her acceptance.

© ® X N s

DISCONNECT.request — You hang up the phone.
10. DISCONNECT.indication — She hears it and hangs up too.

Figure 1-15 shows this same sequence of steps as a series of service primi-
tives, including the final confirmation of disconnection. Each step involves an
interaction between two layers on one of the computers. Each request or response
causes an indication or confirm at the other side a little later. In this example, the
service users (you and Aunt Millie) are in layer N + 1 and the service provider
(the telephone system) is in layer N.

Layer N + 1 1 P 5 y 7
. v = T Computer 1
Layer N x 4 A 6 N
{ 2 3 4 5 6 7 8 9 10 Time —
Layer N + 1 4 3 4 5
7 \ 7 \\ 7 Computer 2
Layer N 2 6 8

Fig. 1-15. How a computer would invite its Aunt Millie to tea. The nmumbers
near the tail end of each arrow refer to the eight service primitives discussed in
this section.

1.3.6. The Relationship of Services to Protocols

Services and protocols are distinct concepts, although they are frequently con-
fused. This distinction is so important, however, that we emphasize it again here.
A service is a set of primitives (operations) that a layer provides to the layer
above it. The service defines what operations the layer is prepared to perform on
behalf of its users, but it says nothing at all about how these operations are imple-
mented. A service relates to an interface between two layers, with the lower layer
being the service provider and the upper layer being the Service user.

A protocol, in contrast, is a set of rules governing the format and meaning of
the frames, packets, or messages that are exchanged by the peer entities within a
layer. Entities use protocols in order to implement their service definitions. They

Page 30 of 137

28 INTRODUCTION CHAP. 1

are free to change their protocols at will, provided they do not change the service
visible to their users. In this way, the service and the protocol are completely
decoupled.

An analogy with programming languages is worth making. A service is like
an abstract data type or an object in an object-oriented language. It defines opera-
tions that can be performed on an object but does not specify how these operations
are implemented. A protocol relates to the implementation of the service and as
such is not visible to the user of the service.

Many older protocols did not distinguish the service from the protocol. In
effect, a typical layer might have had a service primitive SEND PACKET with the
user providing a pointer to a fully assembled packet. This arrangement meant that
all changes to the protocol were immediately visible to the users. Most network
designers now regard such a design as a serious blunder.

1.4. REFERENCE MODELS

Now that we have discussed layered networks in the abstract, it is time to look
at some examples. In the next two sections we will discuss two important net-
work architectures, the OSI reference model and the TCP/IP reference model.

1.4.1. The OSI Reference Model

The OSI model is shown in Fig. 1-16 (minus the physical medium). This
model is based on a proposal developed by the International Standards Organiza-’
tion (ISO) as a first step toward international standardization of the protocols used
in the various layers (Day and Zimmermann, 1983). The model is called the ISO
OSI (Open Systems Interconnection) Reference Model because it deals with
connecting open systems—that is, systems that are open for communication with
other systems. We will usually just call it the OSI model for short.

The OSI model has seven layers. The principles that were applied to arrive at
the seven layers are as follows:

1. A layer should be created where a different level of abstraction is
needed.

2. Each layer should perform a well defined function.

3. The function of each layer should be chosen with an eye toward
defining internationally standardized protocols.

4. The layer boundaries should be chosen to minimize the information
flow across the interfaces.

5. The number of layers should be large enough that distinct functions
need not be thrown together in the same layer out of necessity, and
small enough that the architecture does not become unwieldy.

Page 31 of 137

SEC. 1.4 REFERENCE MODELS 29

Below we will discuss each layer of the model in turn, starting at the bottom
layer. Note that the OSI model itself is not a network architecture because it does
not specify the exact services and protocols to be used in each layer. It just tells
what each layer should do. However, ISO has also produced standards for all the
layers, although these are not part of the reference model itself. Each one has
been published as a separate international standard.

Layer) Name of unit
exchanged
. Application protocol o
7 Application |w-=======-—---=-=s--Sosomommmmmm oo T ~| Application | APDU
]
Interface
N
6 | Presentation |=----------- Presentationprotocdl __________ »| Presentation | PPDU
[
Interface i
5 Session -———---——~—-——SFE@I?DPI@(-JE@—~-—-,— —————— »| Session SPDU
|
4 | Transport |=-——---=-----= TSRO PIOIOCO] st »| Transport TPDU
Communication subnet boundary
a Internal subnet protocol \\ ¢
St
3 Network <--1+ Network <Zt=| Network [|=—+4--+| Network Packet
5 L 1 b =
Y
2 Data link -~ Datalink |<--}=| Datalink |=-{--+| Data link Frame
3
!

1 Physical |«{4t+| Physical |<-—= Physical |<-{--+ Physical Bit
L —
Host A k Router Router . Host B

Network layer host-router protocol
Data link layer host-rduter_ protocol
Physical layer host-router protocol

Fig. 1-16. The OSI reference model.

The Physical Layer

The physical layer is concerned with transmitting raw bits over a communi-
cation channel. The design issues have to do with making sure that when one side
sends a 1 bit, it is received by the other side as a 1 bit, not as a 0 bit. Typical

Page 32 of 137

30 INTRODUCTION CHAP. 1

questions here are how many volts should be used to represent a 1 and how many
for a 0, how many microseconds a bit lasts, whether transmission may proceed
simultaneously in both directions, how the initial connection is established and
how it is torn down when both sides are finished, and how many pins the network
connector has and what each pin is used for. The design issues here largely deal
with mechanical, electrical, and procedural interfaces, and the physical transmis-
sion medium, which lies below the physical layer.

~

The Data Link Layer

The main task of the data link layer is to take a raw transmission facility and
transform it into a line that appears free of undetected transmission errors to the
network layer. It accomplishes this task by having the sender break the input data
up into data frames (typically a few hundred or a few thousand bytes), transmit
the frames sequentially, and process the acknowledgement frames sent back by
the receiver. Since the physical layer merely accepts and transmits a stream of
bits without any regard to meaning or structure, it is up to the data link layer to
create and recognize frame boundaries. This can be accomplished by attaching
special bit patterns to the beginning and end of the frame. If these bit patterns can
accidentally occur in the data, special care must be taken to make sure these pat-
terns are not incorrectly interpreted as frame delimiters.

A noise burst on the line can destroy a frame completely. In this case, the
data link layer software on the source machine can retransmit the frame. How-
ever, multiple transmissions of the same frame introduce the possibility of dupli-
cate frames. A duplicate frame could be sent if the acknowledgement frame from
the receiver back to the sender were lost. It is up to this layer to solve the prob-
lems caused by damaged, lost, and duplicate frames. The data link layer may
offer several different service classes to the network layer, each of a different
quality and with a different price.

Another issue that arises in the data link layer (and most of the higher layers
as well) is how to keep a fast transmitter from drowning a slow receiver in data.
Some traffic regulation mechanism must be employed to let the transmitter know
how much buffer space the receiver has at the moment. Frequently, this flow
regulation and the error handling are integrated.

If the line can be used to transmit data in both directions, this introduces a
new complication that the data link layer software must deal with. The problem is
that the acknowledgement frames for A to B traffic compete for the use of the line
with data frames for the B to A traffic. A clever solution (piggybacking) has been
devised; we will discuss it in detail later.

Broadcast networks have an additional issue in the data link layer: how to
control access to the shared channel. A special sublayer of the data link layer, the
medium access sublayer, deals with this problem.

Page 33 of 137

SEC. 14 REFERENCE MODELS - 31

The Network Layer

The network layer is concerned with controlling the operation of the subnet.
A key design issue is determining how packets are routed from source to destina-
tion. Routes can be based on static tables that are “wired into” the network and
rarely changed. They can also be determined at the start of each conversation, for
example a terminal session. Finally, they can be highly dynamic, being deter-
mined anew for each packet, to reflect the current network load.

If too many packets are present in the subnet at the same time, they will get in
each other’s way, forming bottlenecks. The control of such congestion also
belongs to the network layer.

Since the operators of the subnet may well expect remuneration for their
efforts, there is often some accounting function built into the network layer. At
the very least, the software must count how many packets or characters or bits are
sent by each customer, to produce billing information. When a packet crosses a
national border, with different rates on each side, the accounting can become
complicated.

When a packet has to travel from one network to another to get to its destina-
tion, many problems can arise. The addressing used by the second network may
be different from the first one. The second one may not accept the packet at all
because it is too large. The protocols may differ, and so on. It is up to the net-
work layer to overcome all these problems to allow heterogeneous networks to be
interconnected.

In broadcast networks, the routing problem is simple, so the network layer is
often thin or even nonexistent.

The Transport Layer

The basic function of the transport layer is to accept data from the session
layer, split it up into smaller units if need be, pass these to the network layer, and
ensure that the pieces all arrive correctly at the other end. Furthermore, all this
must be done efficiently, and in a way that isolates the upper layers from the inev-
itable changes in the hardware technology.

Under normal conditions, the transport layer creates a distinct network con-
nection for each transport connection required by the session layer. If the trans-
port connection requires a high throughput, however, the transport layer might
create multiple network connections, dividing the data among the network con-
nections to improve throughput. On the other hand, if creating or maintaining a
network connection is expensive, the transport layer might multiplex several
transport connections onto the same network connection to reduce the cost. In all
cases, the transport layer is required to make the multiplexing transparent to the
session layer.

The transport layer also determines what type of service to provide the session

Page 34 of 137

32 INTRODUCTION CHAP. 1

layer, and ultimately, the users of the network. The most popular type of transport
connection is an error-free point-to-point channel that delivers messages or bytes
in the order in which they were sent. However, other possible kinds of transport
service are transport of isolated messages with no guarantee about the order of
delivery, and broadcasting of messages to multiple destinations. The type of ser-
vice is determined when the connection is established.

The transport layer is a true end-to-end layer, from source to destination. In
other words, a program on the source machine carries on a conversation with a
similar program on the destination machine, using the message headers and con-
trol messages. In the lower layers, the protocols are between each machine and its
immediate neighbors, and not by the ultimate source and destination machines,
which may be separated by many routers. The difference between layers 1
through 3, which are chained, and layers 4 through 7, which are end-to-end, is
illustrated in Fig. 1-16.

Many hosts are multiprogrammed, which implies that multiple connections
will be entering and leaving each host. There needs to be some way to tell which
message belongs to which connection. The transport header (H, in Fig. 1-11) is
one place this information can be put.

In addition to multiplexing several message streams onto one channel, the
transport layer must take care of establishing and deleting connections across the
network. This requires some kind of naming mechanism, so that a process on one
machine has a way of describing with whom it wishes to converse. There must
also be a mechanism to regulate the flow of information, so that a fast host cannot
overrun a slow one. Such a mechanism is called flow control and plays a key
role in the transport layer (also in other layers). Flow control between hosts is
distinct from flow control between routers, although we will later see that similar
principles apply to both. ‘

The Session Layer

The session layer allows users on different machines to establish sessions
between them. A session allows ordinary data transport, as does the transport
layer, but it also provides enhanced services useful in some applications. A ses-
sion might be used to allow a user to log into a remote timesharing system or to
transfer a file between two machines.

One of the services of the session layer is to manage dialogue control. Ses-
sions can allow traffic to go in both directions at the same time, or in only one
direction at a time. If traffic can only go one way at a time (analogous to a single
railroad track), the session layer can help keep track of whose turn it is.

A related session service is token management. For some protocols, it is
essential that both sides do not attempt the same operation at the same time. To
manage these activities, the session layer provides tokens that can be exchanged.
Only the side holding the token may perform the critical operation.

Page 35 of 137

SEC. 1.4 " REFERENCE MODELS ; 33

Another session service is synchronization. Consider the problems that
might occur when trying to do a 2-hour file transfer between two machines with a
1-hour mean time between crashes. After each transfer was aborted, the whole
transfer would have to start over again and would probably fail again the next
time as well. To eliminate this problem, the session layer provides a way to insert
checkpoints into the data stream, so that after a crash, only the data transferred
after the last checkpoint have to be repeated.

The Presentation Layer

The presentation layer performs certain functions that are requested suffi-
ciently often to warrant finding a general solution for them, rather than letting
each user solve the problems. In particular, unlike all the lower layers, which are
just interested in moving bits reliably from here to there, the presentation layer is
concerned with the syntax and semantics of the information transmitted.

A typical example of a presentation service is encoding data in a standard
agreed upon way. Most user programs do not exchange random binary bit strings.
They exchange things such as people’s names, dates, amounts of money, and
invoices. These items are represented as character strings, integers, floating-point
numbers, and data structures composed of several simpler items. Different com-
puters have different codes for representing character strings (e.g., ASCII and
Unicode), integers (e.g., one’s complement and two’s complement), and so on. In
order to make it possible for computers with different representations-to commun-
icate, the data structures to be exchanged can be defined in an abstract way, along
with a standard encoding to be used “on the wire.” The presentation layer
manages these abstract data structures and converts from the representation used
inside the computer to the network standard representation and back.

The Application Layer

The application layer contains a variety of protocols that are commonly
needed. For example, there are hundreds of incompatible terminal types in the
world. Consider the plight of a full screen editor that is supposed to work over a
network with many different terminal types, each with different screen layouts,
escape sequences for inserting and deleting text, moving the cursor, etc.

One way to solve this problem is to define an abstract network virtual termi-
nal that editors and other programs can be written to deal with. To handle each
terminal type, a piece of software must be written to map the functions of the net-
work virtual terminal onto the real terminal. For example, when the editor moves
the virtual terminal’s cursor to the upper left-hand corner of the screen, this
software must issue the proper command sequence to the real terminal to get its
cursor there too. All the virtual terminal software is in the application layer.

Another application layer function is file transfer. Different file systems have

Page 36 of 137

34 INTRODUCTION CHAP. 1

different file naming conventions, different ways of representing text lines, and so
on. Transferring a file between two different systems requires handling these and
other incompatibilities. This work, too, belongs to the apphcat1on layer, as do
electronic mail, remote job entry, directory lookup, and various other general-
purpose and special-purpose facilities.

Data Transmission in the OSI Model

Figure 1-17 shows an example of how data can be transmitted using the OSI
model. The sending process has some data it wants to send to the receiving pro-
cess. It gives the data to the application layer, which then attaches the application
header, AH (which may be null), to the front of it and gives the resulting item to
the presentation layer.

Sending Receiving
Process Process

-«—— Data |—*

Application | Anpjication protocol <«~—| AH| Data |— Application
layjer | " layer
Presentation Presentation protocol -—— PH Data — Fieseiiation
layer layer
Session Session protocol ~ =<——{ SH Data - Session
layer | layer
Transport Transport - TH Data . Transport
layer protocol = A layer
Network Network NH Data Network
layer protocol —————————————— layer
Data link DH Data DT Data link
layer | = —— . layer
Physical Bits Physical
layer layer

Y

Actual data transmission path

Fig. 1-17. An example of how the OSI model is used. Some of the headers may
be null. (Source: H.C. Folts. Used with permission.)

The presentation layer may transform this item in various ways and possibly
add a header to the front, giving the result to the session layer. It is important to
realize that the presentation layer is not aware of which portion of the data given
to it by the application layer is AH, if any, and which is true user data.

This process is repeated until the data reach the physical layer, where they are
actually transmitted to the receiving machine. On that machine the various

Page 37 of 137

SEC. 1.4 REFERENCE MODELS 35

headers are stripped off one by one as the message propagates up the layers until
it finally arrives at the receiving process.

The key idea throughout is that although actual data transmission is vertical in
Fig. 1-17, each layer is programmed as though it were horizontal. When the send-
ing transport layer, for example, gets a message from the session layer, it attaches
a transport header and sends it to the receiving transport layer. From its point of
view, the fact that it must actually hand the message to the network layer on its
own machine is an unimportant technicality. As an analogy, when a Tagalog-
speaking diplomat is addressing the United Nations, he thinks of himself as
addressing the other assembled diplomats. That, in fact, he is really only speaking
to his translator is seen as a technical detail.

1.4.2. The TCP/IP Reference Model

Let us now turn from the OSI reference model to the reference model used in
the grandparent of all computer networks, the ARPANET, and its successor, the
worldwide Internet. Although we will give a brief history of the ARPANET later,
it is useful to mention a few key aspects of it now. The ARPANET was a
research network sponsored by the DoD (U.S. Department of Defense). It eventu-
ally connected hundreds of universities and government installations using leased
telephone lines. When satellite and radio networks were added later, the existing
protocols had trouble interworking with them, so a new reference architecture was
needed. Thus the ability to connect multiple networks together in a seamless way
was one of the major design goals from the very beginning. This architecture
later became known as the TCP/IP Reference Model, after its two primary pro-
tocols. It was first defined in (Cerf and Kahn, 1974). A later perspective is given
in (Leiner et al., 1985). The design philosophy behind the model is discussed in
(Clark, 1988).

Given the DoD’s worry that some of its precious hosts, routers, and internet-
work gateways might get blown to pieces at a moment’s notice, another major
goal was that the network be able to survive loss of subnet hardware, with existing
conversations not being broken off. In other words, DoD wanted connections to
remain intact as long as the source and destination machines were functioning,
even if some of the machines or transmission lines in between were suddenly put
out of operation. Furthermore, a flexible architecture was needed, since applica-
tions with divergent requirements were envisioned, ranging from transferring files
to real-time speech transmission.

The Internet Layer
All these requirements led to the choice of a packet-switching network based

on a connectionless internetwork layer. This layer, called the internet layer, is
the linchpin that holds the whole architecture together. Its job is to permit hosts to

Page 38 of 137

36 INTRODUCTION CHAP. 1

inject packets into any network and have them travel independently to the destina-
tion (potentially on a different network). They may even arrive in a different
order than they were sent, in which case it is the job of higher layers to rearrange
them, if in-order delivery is desired. Note that “internet’ is used here in a generic
sense, even though this layer is present in the Internet.

The analogy here is with the (snail) mail system. A person can drop a
sequence of international letters into a mail box in one country, and with a little
luck, most of them will be delivered to the correct address in the destination coun-
try. Probably the letters will travel through one or more international mail gate-
ways along the way, but this is transparent to the users. Furthermore, that each
country (ie., each network) has its own stamps, preferred envelope sizes, and
delivery rules is hidden from the users.

The internet layer defines an official packet format and protocol called IP
(Internet Protocol). The job of the internet layer is to deliver IP packets where
they are supposed to go. Packet routing is clearly the major issue here, as is
avoiding congestion. For these reasons, it is reasonable to say that the TCP/IP
internet layer is very similar in functionality to the OSI network layer. Figure
1-18 shows this correspondence.

osl TCP/IP
7 Application Application
6 | Presentation \/lﬁﬁ'ﬁﬁ’\&k@fﬁ?&? o Not present
5 Session e T,-ikfk, i &,ﬁiﬁ.; f:fﬂ in the model
4 Transport Transport
3 Network Internet
2 Data link Host-to-network
1 Physical

Fig. 1-18. The TCP/IP reference model.

The Transport Layer

The layer above the internet layer in the TCP/IP model is now usually called
the transport layer. It is designed to allow peer entities on the source and desti-
nation hosts to carry on a conversation, the same as in the OSI transport layer.
Two end-to-end protocols have been defined here. The first one, TCP
(Transmission Control Protocol) is a reliable connection-oriented protoeol that
allows a byte stream originating on one machine to be delivered without error on

Page 39 of 137

SEC. 1.4 REFERENCE MODELS 37

any other machine in the internet. It fragments the incoming byte stream into
discrete messages and passes each one onto the internet layer. At the destination,
the receiving TCP process reassembles the received messages into the output
stream. TCP also handles flow control to make sure a fast sender cannot swamp a
slow receiver with more messages than it can handle.

The second protocol in this layer, UDP (User Datagram Protocol), is an
unreliable, connectionless protocol for applications that do not want TCP’s
sequencing or flow control and wish to provide their own. It is also widely used
for one-shot, client-server type request-reply queries and applications in which
prompt delivery is more important than accurate delivery, such as transmitting
speech or video. The relation of IP, TCP, and UDP is shown in Fig. 1-19. Since
the model was developed, IP has been implemented on many other networks.

Layer (OS| names)

, TELNET FTP ‘ SMTP DNS Application
Protocols W TCP UDP Transport
P o Network
Networks { ARPANET | | SATNET hacs LAN Eyeiadl

Fig. 1-19. Protocols and networks in the TCP/IP model initially.

The Application Layer

The TCP/IP model does not have session or presentation layers. No need for
them was perceived, so they were not included. Experience with the OSI model
has proven this view correct: they are of little use to most applications.

On top of the transport layer is the application layer. It contains all the
higher-level pfotécols.‘ The early ones included virtual terminal (TELNET), file
transfer (FTP), and electronic mail (SMTP), as shown in Fig. 1-19. The virtual
terminal protocol allows a user on one machine to log into a distant machine and
work there. The file transfer protocol provides a way to move data efficiently
from one machine to another. Electronic mail was originally just a kind of file
transfer, but later a specialized protocol was developed for it. Many other proto-
cols have been added to these over the years, such as the Domain Name Service
(DNS) for mapping host names onto their network addresses, NNTP, the protocol
used for moving news articles around, and HTTP, the protocol used for fetching
pages on the World Wide Wide, and many others.

Page 40 of 137

38 INTRODUCTION CHAP. 1
The Host-to-Network Layer

Below the internet layer is a great void. The TCP/IP reference model does
not really say much about what happens here, except to point out that the host has
to connect to the network using some protocol so it can send IP packets over it.
This protocol is not defined and varies from host to host and network to network.
Books and papers about the TCP/IP model rarely discuss it.

1.4.3. A Comparison of the OSI and TCP Reference Models

The OSI and TCP/IP reference models have much in common. Both are
based on the concept of a stack of independent protocols. Also, the functionality
of the layers is roughly similar. For example, in both models the layers up
through and including the transport layer are there to provide an end-to-end
network-independent transport service to processes wishing to communicate.
These layers form the transport provider. Again in both models, the layers above
transport are application-oriented users of the transport service.

Despite these fundamental similarities, the two models also have many differ-
ences. In this section we will focus on the key differences between the two refer-
ence models. It is important to note that we are comparing the reference models
here, not the corresponding protocol stacks. The protocols themselves will be dis-
cussed later. For an entire book comparing and contrasting TCP/IP and OSI, see
(Piscitello and Chapin, 1993). '

Three concepts are central to the QSI model:

1. Services
2. Interfaces
3. Protocols

Probably the biggest contribution of the OSI model is to make the distinction
between these three concepts explicit. Each layer performs some services for the
layer above it. The service definition tells what the layer does, not how entities
above it access it or how the layer works.

A layer’s interface tells the processes above it how to access it. It specifies
what the parameters are and what results to expect. It, too, says nothing about
how the layer works inside.

Finally, the peer protocols used in a layer are the layer’s own business. It can
use any protocols it wants to, as long as it gets the job done (i.e., provides the
offered services). It can also change them at will without affecting software in
higher layers.

These ideas fit very nicely with modern ideas about object-oriented program-
ming. An object, like a layer, has a set of methods (operations) that processes

Page 41 of 137

SEC. 1.4 REFERENCE MODELS 39

outside the object can invoke. The semantics of these methods define the set of
services that the object offers. The methods’ parameters and results form the
object’s interface. The code internal to the object is its protocol and is not visible
or of any concern outside the object.

The TCP/IP model did not originally clearly distinguish between service,
interface, and protocol, although people have tried to retrofit it after the fact to
make it more OSI-like. For example, the only real services offered by the internet
layer are SEND IP PACKET and RECEIVE IP PACKET.

As a consequence, the protocols in the OSI model are better hidden than in the
TCP/IP model and can be replaced relatively easily as the technology changes.
Being able to make such changes is one of the main purposes of having layered
protocols in the first place.

The OSI reference model was devised before the protocols were invented.
This ordering means that the model was not biased toward one pamcular set of
protocols, which made it quite general The down side of this ordering is that the
designers did not have much expenence with the subject and did not have a good
idea of which functionality to put in which layer.

For example, the data link layer originally dealt only with point-to-point net-
works. When broadcast networks came around, a new sublayer had to be hacked
into the model. When people started to build real networks using the OSI model
and existing protocols, it was discovered that they did not match the required ser-
vice specifications (wonder of wonders), so convergence sublayers had to be
grafted onto the model to provide a place for papering over the differences.
Finally, the committee originally expected that each country would have one net-
work, run by the government and using the OSI protocols, so no thought was
given to internetworking. - To make a long story short, things did not turn out that
way.

With the TCP/IP the reverse was true: the protocols came first, and the model
was really just a description of the existing protocols. There was no problem with
the protocols fitting the model. They fit perfectly. The only trouble was that the
model did not fit any other protocol stacks. Consequently, it was not especially
useful for describing other non-TCP/IP networks.

Turning from philosophical matters to more specific ones, an obvious differ-
ence between the two models is the number of layers: the OSI model has seven
layers and the TCP/IP has four layers. Both have (inter)network, transport, and
application layers, but the other layers are different.

Another difference is in the ared of connectionless versus connection-oriented
communication. The OSI model supports both connectionless and connection-
oriented communication in the network layer, but only connection-oriented com-
munication in the transport layer, where it counts (because the transport service is
visible to the users). The TCP/IP model has only one mode in the network layer
(connectionless) but supports both modes in the transport layer, giving the users a
choice. This choice is especially important for simple request-response protocols.

Page 42 of 137

40 INTRODUCTION CHAP. 1
1.44. A Critique of the OSI Model and Protocols

Neither the OSI model and its protocols nor the TCP/IP model and its proto-
cols are perfect. Quite a bit of criticism can be, and has been, directed at both of
them. In this section and the next one, we will look at some of these criticisms.
We will begin with OSI and examine TCP/IP afterward. .

At the time the second edition of this book was published (1989), it appeared
to most experts in the field that the OSI model and its protocols were going to take
over the world and push everything else out of their way. This did not happen.
Why? A look back at some of the lessons may be useful. These lessons can be
summarized as:

1. Bad timing.

2. Bad technology.

3. Bad implementations.
4

. Bad politics.

Bad Timing

First let us look at reason one: bad timing. The time at which a standard is
established is absolutely critical to its success. David Clark of M.L.T. has a theory
of standards that he calls the apocalypse of the two elephants, and which is illus-
trated in Fig. 1-20.

Billion dollar
Research investment
2
=
< Staml:iards
Time —

Fig. 1-20. The apocalypse of the two elephants.

This figure shows the amount of activity surrounding a new subject. When
the subject is first discovered, there is a burst of research activity in the form of
discussions, papers, and meetings. After a while this subsides, corporations dis-
cover the subject, and the billion-dollar wave of investment hits.

Page 43 of 137

SEC. 14 REFERENCE MODELS 41

It is essential that the standards be written in the trough between the two
“clephants.”” If they are written too early, before the research is finished, the sub-
ject may still be poorly understood, which leads to bad standards. If they are writ-
ten too late, so many companies may have already made major investments in dif-
ferent ways of doing things that the standards are effectively ignored. If the inter-
val between the two elephants is very short (because everyone is in a hurry to get
started), the people developing the standards may get crushed.

It now appears that the standard OSI protocols got crushed. The competing
TCP/IP protocols were already in widespread use by research universities by the
time the OSI protocols appeared. While the billion-dollar wave of investment had
not yet hit, the academic market was large enough that many vendors had begun
cautiously offering TCP/IP products. When OSI came around, they did not want
to support a second protocol stack until they were forced to, so there were no ini-
tial offerings. With every company waiting for every other company to go first,
no company went first and OSI never happened.

Bad Technology

The second reason that OSI never caught on is that both the model and the
protocols are flawed. Most discussions of the seven-layer model give the impres-
sion that the number and contents of the layers eventually chosen were the only
way, or at least the obvious way. This is far from true. The session layer has lit-
tle use in most applications, and the presentation layer is nearly empty. In fact,
the British proposal to ISO only had five layers, not seven. In contrast to the ses-
sion and presentation layers, the data link and network layers are so full that sub-
sequent work has split them into multiple sublayers, each with different functions.

Although hardly anyone ever admits it in public, the real reason that the OSI
model has seven layers is that at the time it was designed, IBM had a proprietary
seven-layer protocol called SNA™ (Systems Network Architecture). At that
time, IBM so dominated the computer industry that everyone else, including tele-
phone companies, competing computer companies, and even major governments,
were. scared to death that IBM would use its market clout to effectively force
everybody to use SNA, which it could change whenever it wished. The idea
behind OSI was to produce an IBM-like reference model and protocol stack that
would become the world standard, and controlled not by one company, but by a
neutral organization, ISO. :

The OSI model, along with the associated service definitions and protocols, is
extraordinarily complex. When piled up, the printed standards occupy a signifi-
cant fraction of a meter of paper. They are also difficult to implement and ineffi-
cient in operation. In this context, a riddle posed by Paul Mockapetris and cited in
(Rose, 1993) comes to mind:

Q: What do you get when you cross a mobster with an international standard?
A: Someone who makes you an offer you can’t understand.

Page 44 of 137

42 INTRODUCTION CHAP. 1

In addition to being incomprehensible, another problem with OSI is that some
functions, such as addressing, flow control, and error control reappear again and
again in each layer. Saltzer et al. (1984), for example, have pointed out that to be
effective, error control must be done in the highest layer, so that repeating it over
and over in each of the lower layers is often unnecessary and inefficient.

Another issue is that the decision to place certain features in particular layers
is not always obvious. The virtual terminal handling (now in the application
layer) was in the presentation layer during much of the development of the stand-
ard. It was moved to the application layer because the committee had trouble
deciding what the presentation layer was good for. Data security and encryption
were so controversial that no one could agree which layer to put them in, so they
were left out altogether. Network management was also omitted from the model
for similar reasons. _

Another criticism of the original standard is that it completely ignored con-
nectionless services and connectionless protocols, even though most local area
networks work that way. Subsequent addenda (known in the software world as
bug fixes) corrected this problem.

Perhaps the most serious criticism is that the model is dominated by a com-
munications mentality. The relationship of computing to communications is
barely mentioned anywhere, and some of the choices made are wholly inappropri-
ate to the way computers and software work. As an example, consider the OSI
primitives, listed in Fig. 1-14. In particular, think carefully about the primitives
and how one might use them in a programming language.

The CONNECT.request primitive is simple. One can imagine a library pro-
cedure, connect, that programs can call to establish a connection. Now think
about CONNECT.indication. When a message arrives, the destination process has
to be signaled. In effect, it has to get an interrupt—hardly an appropriate concept
for programs written in any modern high-level language. Of course, in the lowest
layer, an indication (interrupt) does occur. : :

If the program were expecting an incoming call, it could call a library pro-
cedure receive to block itself. But if this were the case, why was receive not the
primitive instead of indication? Receive is clearly oriented toward the way com-
puters work, whereas indication is equally clearly oriented ‘toward the way' tele-"
phones work. Computers are different from telephones. Telephones ring. Com-
puters do not ring. In short, the semantic model of an interrupt-driven system is
conceptually a poor idea and totally at odds with all modern ideas of structured
programming. This and similar problems are discussed by Langsford (1984).

Bad Implementations
Given the enormous complexity of the model and the protocols, it will come

as no surprise that the initial implementations were huge, unwieldy, and slow.
Everyone who tried them got burned. It did not take long for people to associate

Page 45 of 137

SEC. 1.4 REFERENCE MODELS 43

“OSI” with “poor quality.” While the products got better in the course of time,
the image stuck.

In contrast, one of the first implementations of TCP/IP was part of Berkeley
unix® and was quite good (not to mention, free). People began using it quickly,
which led to a large user community, which led to improvements, which led to an
even larger community. Here the spiral was upward instead of downward.

Bad Politics

On account of the initial implementation, many people, especially in
academia, thought of TCP/IP as part of UNIX, and UNIX in the 1980s in academia
was tiot unlike parenthood (then incorrectly called motherhood) and apple pie.

OSI, on the other hand, was thought to be the creature of the European
telecommunication ministries, the European Community, and later the U.S.
Government. This belief was only partly true, but the very idea of a bunch of
government bureaucrats trying to shove a technically inferior standard down the
throats of the poor researchers and programmers down in the trenches actually
developing computer networks did not. help much. Some people viewed this
development in the same light as IBM announcing in the 1960s that PL/I was the
language of the future, or DoD correcting this later by announcing that it was
actually Ada®.

Despite the fact that the OSI model and protocols have been less than a
resounding success, there are still a few organizations interested in it, mostly
European PTTs that still have a monopoly on telecommunication. Consequently a
feeble effort has been made to update OSI, resulting in a revised model published
in 1994. For what was changed (little) and what should have been changed (a
lot), see (Day, 1995).

1.4.5. A Critique of the TCP/IP Reference Model

The TCP/IP model and protocols have their problems too. First, the model
does not clearly distinguish the concepts of service, interface, and protocol. Good
software engineering practice requires differentiating between the specification
and the implementation, something that OSI does very carefully, and TCP/IP does
not. Consequently, the TCP/IP model is not much of a guide for designing new
networks using new technologies.

Second, the TCP/IP model is not at all general and is poorly suited to describ-
ing any protocol stack other than TCP/IP. Trying to describe SNA using the
TCP/IP model would be nearly impossible, for example.

Third, the host-to-network layer is not really a layer at all in the normal sense
that the term is used in the context of layered protocols. It is an interface
(between the network and data link layers). The distinction between an interface
and a layer is a crucial one and one should not be sloppy about it.

Page 46 of 137

44 INTRODUCTION CHAP. 1

Fourth, the TCP/IP model does not distinguish (or even mention) the physical
and data link layers. These are completely different. The physical layer has to do
with the transmission characteristics of copper wire, fiber optics, and wireless
communication. The data link layer’s job is to delimit the start and end of frames
and get them from one side to the other with the desired degree of reliability. A
proper model should include both as separate layers. The TCP/IP model does not
do this.

Finally, although the IP and TCP protocols were carefully thought out, and
well implemented, many of the other protocols were ad hoc, generally produced
by a couple of graduate students hacking away until they got tired. The protocol
implcmentatioris were then distributed free, which resulted in their becoming
widely used, deeply entrenched, and thus hard to replace. Some of them are a bit
of an embarrassment now. The virtual terminal protocol, TELNET, for example,
was designed for a ten-character per second mechanical Teletype terminal. It
knows nothing of graphical user interfaces and mice. Nevertheless, 25 years later,
it.is still in widespread use.

In summary, despite its problems, the OSI model (minus the session and
presentation layers) has proven to be exceptionally useful for discussing computer
networks. In contrast, the OSI protocols have not become popular. The reverse is
true of TCP/IP: the model is practically nonexistent, but the protocols are widely
used. Since computer scientists like to have their cake and eat it, too, in this book
we will use a modified OSI model but concentrate primarily on the TCP/IP and
related protocols, as well as newer ones such as SMDS, frame relay, SONET, and
ATM. In effect, we will use the hybrid model of Fig. 1-21 as the framework for
this book.

Application Iayer—|

Transport layer

Network layer

D oW R~ O

Data Link layer
Physical layer

Fig. 1-21. The hybrid reference model to be used in this book.

—

1.5. EXAMPLE NETWORKS

Numerous networks are currently operating around the world. Some of these
are public networks run by common carriers or PTTs, others are research net-
works, yet others are cooperative networks run by their users, and still others are
commercial or corporate networks. In the following sections we will take a look

Page 47 of 137

SEC. 1.5 EXAMPLE NETWORKS 45

at a few current and historical networks to get an idea of what they are (or were)
like and how they differ from one another.

Networks differ in their history, administration, facilities offered, technical
design, and user communities. The history and administration can vary from a
network carefully planned by a single organization with a well-defined goal, to an
ad hoc collection of machines that have been connected to one another over the
years without any master plan or central administration at all. The facilities avail-
able range from arbitrary process-to-process communication to electronic mail,
file transfer, remote login, and remote execution. The technical designs can differ
in the transmission media used, the naming and routing algorithms employed, the
number and contents of the layers present, and the protocols used. Finally, the
user community can vary from a single corporation to all the academic computer
scientists in the industrialized world.

In the following sections we will look at a few examples. These are the popu-
lar commercial LAN networking package, Novell NetWare®, the worldwide
Internet (including its predecessors, the ARPANET and NSFNET), and the first
gigabit networks.

1.5.1. Novell NetWare

_ The most popular network system in the PC world is Novell NetWare. It was
designed to be used by companies downsizing from a mainframe to a network of
PCs. In such systems, each user has a desktop PC functioning as a client. In
addition, some number of powerful PCs operate as servers, providing file services,
database services, and other services to a collection of clients. In other words,
Novell NetWare is based on the client-server model.

NetWare uses a proprietary protocol stack illustrated in Fig. 1-22. It is based
on the old Xerox Network System, XN S™ but with various modifications.
Novell NetWare predates OSI and is not based on it. If anything, it looks more

like TCP/IP than like OSI.
Layer
Application SAP File server
Transport NCP SPX
Network IPX
Data link Ethernet Token ring ARCnet
Physical Ethernet Token ring ARCnet

Fig. 1-22. The Novell NetWare reference model.

The physical and data link layers can be chosen from among various industry
standards, including Ethernet, IBM token ring, and ARCnet. The network layer

Page 48 of 137

46 INTRODUCTION CHAP. 1

runs an unreliable connectionless internetwork protocol called IPX. It passes
packets transparently from source t0 destination, even if the source and destina-
tion are on different networks. IPX is functionally similar to IP, except that it
uses 10-byte addresses instead of 4-byte addresses. The wisdom of this choice
will become apparent in Chap. 5.

Above IPX comes a connection-oriented transport protocol called NCP (Net-
work Core Protocol). NCP also provides various other services besides user data
transport and is really the heart of NetWare. A second protocol, SPX, is also
available, but provides only transport. TCP is another option. %pplications can
choose any of them. The file system uses NCP and Lotus Notes~ uses SPX, for
example. The session and presentation layers do not exist. Various application
protocols are present in the application layer.

As in TCP/IP, the key to the entire architecture is the internet datagram packet
on top of which everything else is built. The format of an IPX packet is shown in
Fig. 1-23. The Checksum field is rarely used, since the underlying data link layer
also provides a checksum. The Packet length field tells how long the entire
packet is, header plus data. The Transport control field counts how many net-
works the packet has traversed. When this exceeds a maximum, the packet is dis-
carded. The Packet type field is used to mark various control packets. The two
addresses each contain a 32-bit network number, a 48-bit machine number (the
802 LAN address), and 16-bit local address (socket) on that machine. Finally, we
have the data, which occupy the rest of the packet, with the maximum size being
determined by the underlying network.

Bytes 2 2 11 12 12 ¢

f
, Destination address Source address Data 1
| [l 55
‘ Packet type
Transport control

Packet length
Checksum

Fig. 1-23. A Novell NetWare IPX packet.

About once a minute, each server broadcasts a packet giving its address and
telling what services it offers. These broadcasts use the SAP (Service Advertis-
ing Protocol) protocol. The packets are seen and collected by special agent
processes running on the router machines. The agents use the information con-
tained in them to construct databases of which servers are running where.

When. a client machine is. booted, it broadcasts a request asking where the
nearest server is. The agent on the local router machine sees this request, looks in
its database of servers, and matches up the request with the best server. The
choice of server to use is then sent back to the client. The client can now establish

Page 49 of 137

SEC. 1.5 EXAMPLE NETWORKS 47

an NCP connection with the server. Using this connection, the client and server
negotiate the maximum packet size. Fromi this point on, the client can access the
file system and other services using this contiection. It can also query the setver’s
database to look for other (more distant) servers.

1.5.2. The ARPANET

Let us now switch gears from LANs to WANs. In the mid-1960s, at the
height of the Cold War, the DoD wanted a command and contiol network that
could survive a nuclear war. Traditional circuit-switched telephone networks
were considered too vulnerable, since the loss of one line or switch would cer-
tainly terminate all conversations using them and might even partition the net-
work. To solve this problem, DoD turned to its research arm, ARPA (later
DARPA, now ARPA again), the (periodically Defense) Advanced Research Pro-
jects Agency.

ARPA was created in response to the Soviet Union’s launching Sputnik in
1957 and had the mission of advancmg technology that might be useful to the mil-
itary. ARPA had no scientists or laboratories, in fact, it had nothing more than an
office and a small (by Pentagon standards) budget. It did its work by issuing
grants and contracts to universities and companies whose ideas looked promising
to it.

Several early grants went to universities for investigating the then-radical idea
of packet switching, something that had been suggested by Paul Baran in a series
of RAND Corporation reports published in the early 1960s. After some discus-
sions with various experts, ARPA decided that the network the DoD needed
should be a packet-switched network, consisting of a subnet and host computers.

The subnet would consist of minicomputers called IMPs (Interface Message
Processors) connected by transmission lines. For high reliability, each IMP
would be connected to at least two other IMPs. The subnet was to be a datagram
subnet, so if some lines and IMPs were destroyed, messages could be automati-
cally rerouted along alternative paths.

Each node of the network was to consist of an IMP and a host, in the same
room, connected by a short wire. A host could send messages of up to 8063 bits
to its IMP, which would then break these up into packets of at most 1008 bits and
forward them independently toward the destination. Each packet was received in
its entirety before being forwarded, so the subnet was the first electronic store-
and-forward packet-switching network.

ARPA then put out a tender for building the subnet. Twelve companies bid
for it. After evaluating all the proposals, ARPA selected BBN, a consulting firm
in Cambridge, Massachusetts, and in December 1968, awarded it a contract to
build the subnet and write the subnet software. BBN chose to use specially modi-
fied Honeywell DDP-316 minicomputers with 12K 16-bit words of core memory

Page 50 of 137

SEC. 1.6 EXAMPLE DATA COMMUNICATION SERVICES 61

usage must be below a predetermined level. In return, the carrier charges much
less for a virtual line than a physical one. '

In addition to competing with leased lines, frame relay also competes with
X.25 permanent virtual circuits, except that it operates at higher speeds, usually
1.5 Mbps, and provides fewer features.
~ Frame relay provides a minimal service, primarily a way to determine the
start and end of each frame, and detection of transmission errors. If a bad frame is
received, the frame relay service simply discards it. Itis up to the user to discover
that a frame is missing and take the necessary action to recover. Unlike X.25,
frame relay does not provide acknowledgements or normal flow control. It does
have a bit in the header, however, which one end of a connection can set to indi-
cate to the other end that problems exist. The use of this bit is up to the users.

1.6.4. Broadband ISDN and ATM

‘Even if the above services become popular, the telephone companies are still
faced with a far more fundamental problem: multiple networks. POTS (Plain Old
Telephone Service) and Telex use the old circuit-switched .network. Each of the
new data services such as SMDS and frame relay uses its own packet-switching
network. DQDB is different from these, and the internal telephone company call
management network (SSN 7) is yet another network. Maintaining all these
separate networks is a major headache, and there is another network, cable televi-
sion, that the telephone companies do not control and would like to.

The perceived solution is to invent a single new network for the future that
will replace the entire telephone system and all the specialized networks with a
single integrated network for all kinds of information transfer. This new network
will have a huge data rate compared to all existing networks and services and will
make it possible to offer a large variety of new services. This is not a small proj-
ect, and it is certainly not going to happen overnight, but it is now under way.

The new wide area service is called B-ISDN (Broadband Integrated Ser-
vices Digital Network). It will offer video on demand, live television from many
sources, full motion multimedia electronic mail, CD-quality music, LAN inter-
connection, high-speed data transport for science and industry and many other set-
vices that have not yet even been thought of, all over the telephone line.

The underlying technology that makes B-ISDN possible is called ATM"
(Asynchronous Transfer Mode) because it is not synchronous (tied to a master
clock), as most long distance telephone lines are. Note that the acronym ATM
here has nothing to do with the Automated Teller Machines many banks provide
(although an ATM machine can use an ATM network to talk to its bank).

A great deal of work has already been done on ATM and on the B-ISDN sys-
tem that uses it, although there is more ahead. For more information on this sub-
ject, see (Fischer et al., 1994: Gasman, 1994; Goralski, 1995; Kim et al., 1994,
Kyas, 1995; McDysan and Spohn, 1995; and Stallings, 1995a).

Page 51 of 137

62 INTRODUCTION CHAP. 1

The basic idea behind ATM is to transmit all information in small, fixed-size
packets called cells. The cells are 53 bytes long, of which 5 bytes are header and
48 bytes are payload, as shown in Fig. 1-29. ATM is both a technology (hidden
from the users) and potentially a service (visible to the users). Sometimes the ser-
vice is called cell relay, as an analogy to frame relay.

Bytes 5 48

Header User data

Fig. 1-29. An ATM cell.

The use of a cell-switching technology is a gigantic break with the 100-year
old tradition of circuit switching (establishing a copper path) within the telephone
system. There are a variety of reasons why cell switching was chosen, among
them are the following. First, cell switching is highly flexible and can handle
both constant rate traffic (audio, video) and variable rate traffic (data) easily.
Second, at the very high speeds envisioned (gigabits per second are within reach),
digital switching of cells is easier than using traditional multiplexing techniques,
especially using fiber optics. Third, for television distribution, broadcasting is
essential; cell switching can provide this and circuit switching cannot.

ATM networks are connection-oriented. Making a call requires first sending
a message to set up the connection. After that, subsequent cells all follow the
same path to the destination. Cell delivery is not guaranteed, but their order is. If
cells 1 and 2 are sent in that order, then if both arrive, they will arrive in that
order, never first 2 then 1. '

ATM networks are organized like traditional WANSs, with lines and switches
(routers). The intended speeds for ATM networks are 155 Mbps and 622 Mbps,
with the possibility of gigabit speeds later. The 155-Mbps speed was chosen
because this is about what is needed to transmit high definition television. The
exact choice of 155.52 Mbps was made for compatibility with AT&T’s SONET
transmission system. The 622 Mbps speed was chosen so four 155-Mbps chan-
nels could be sent over it. By now it should be clear why some of the gigabit
testbeds operated at 622 Mbps: they used ATM.

When ATM was proposed, virtually all the discussion (i.e., the hype) was
about video on demand to every home and replacing the telephone system, as
described above. Since then, other developments have become important. Many
organizations have run out of bandwidth on their campus or building-wide LANs
and are being forced to go to some kind of switched system that has more
bandwidth than does a single LAN. Also, in client-server computing, some appli-
cations need the ability to talk to certain servers at high speed. ATM is certainly a
major candidate for both of these applications. Nevertheless, it is a bit of a let-
down to go from a goal of trying to replace the entire low-speed analog telephone

Page 52 of 137

SEC. 1.6 EXAMPLE DATA COMMUNICATION SERVICES 63

system with a high-speed digital one to a goal of trying connect all the Ethernets
on campus. LAN interconnection using ATM is discussed in (Kavak, 1995; New-
man, 1994; and Truong et al., 1995).

It is also worth pointing out that different organizations involved in ATM
have different (financial) interests. The long-distance telephone carriers and
PTTs are mostly interested in using ATM to upgrade the telephone system and
compete with the cable TV companies in electronic video distribution. The com-
puter vendors see campus ATM LANs as the big moneymaker (for them). All
these competing interests do not make the ongoing standardization process any
easier, faster, or more coherent. Also, politics and power within the organization
standardizing ATM (The ATM Forum) have considerable influence on where
ATM is going.

The B-ISDN ATM Reference Model

Let us now turn back to the technology of ATM, especially as used in the
(future) telephone system. Broadband ISDN using ATM has its own reference
model, different from the OSI model and also different from the TCP/IP model.
This model is shown in Fig. 1-30. It consists of three layers, the physical, ATM,
and ATM adaptation layers, plus whatever the users want to put on top of that.

/ Plane management
/ Layer management /

Control plane User plane /
Upper layers Upper layers Z@ / ,
_O\s(’é CS: Convergence sublayer

CS ____ ATM adaptation layer ——————-) / / SAR: Segmentation and

SAR reassembly sublayer

ATM layer @@ / TC: Transmission convergence
SR sublayer

TC____ Pnysicallayer = ——————~ KS) PMD: Physical medium

PMD dependent sublayer

Fig. 1-30. The B-ISDN ATM reference model.

The physical layer deals with the physical medium: voltages, bit timing, and
various other issues. ATM does not prescribe a particular set of rules, but instead
says that ATM cells may be sent on a wire or fiber by themselves, but they may
also be packaged inside the payload of other carrier systems. In other words,
ATM has been designed to be independent of the transmission medium.

The ATM layer deals with cells and cell transport. It defines the layout of a
~ cell and tells what the header fields mean. It also deals with establishment and
release of virtual circuits. Congestion control is also located here.

Page 53 of 137

64 INTRODUCTION CHAP. 1

Because most applications do not want to work directly with cells (although
some may), a layer above the ATM layer has been defined that allows users to
send packets larger than a cell. The ATM interface segments these packets,
transmits the cells individually, and reassembles them at the other end. This layer
is the AAL (ATM Adaptation Layer).

Unlike the earlier two-dimensional reference models, the ATM model is
defined as being three-dimensional, as shown in Fig. 1-30. The user plane deals
with data transport, flow control, error correction, and other user functions. In
contrast, the control plane is concerned with connection management. The layer.
and plane management functions relate to resource management and interlayer
coordination.

The physical and AAL layers are each divided into two sublayers, one at the
bottom that does the work and a convergence sublayer on top that provides the
proper interface to the layer above it. The functions of the layers and sublayers
are given in Fig. 1-31.

(O8] ATM ATM

layer layer sublayer Functionality
; Cs Providing the standard interface (convergence)
3/4 AAL [e e s e s e S S S ey st
SAR Segmentation and reassembly
Flow control ,
/3 ATM Cell header generation/extraction

Virtual circuit/path management
Cell multiplexing/demultiplexing

Cell rate decoupling

Header checksum generation and verification-

2 TC Cell generation

Packing/unpacking cells from the enclosing envelope
Frame generation

—————— Physical |- —————f————— e

Bit timing
1 L Physical network access

Fig. 1-31. The ATM layers and sublayers, and their functions.

The PMD (Physical Medium Dependent) sublayer interfaces to the actual
cable. It moves the bits on and off and handles the bit timing. For different car-
riers and cables, this layer will be different.

The other sublayer of the physical layer is the TC (Transmission Conver-
gence) sublayer. When cells are transmitted, the TC layer sends them as a string
of bits to the PMD layer. Doing this is easy. At the other end, the TC sublayer
gets a pure incoming bit stream from the PMD sublayer. Its job is to convert this

Page 54 of 137

SEC. 1.6 EXAMPLE DATA COMMUNICATION SERVICES 65

bit stream into a cell stream for the ATM layer. It handles all the issues related to
telling where cells begin and end in the bit stream. In the ATM model, this func-
tionality is in the physical layer. In the OSI model and in pretty much all other ,
networks, the job of framing, that is, turning a raw bit stream into a sequence of
frames or cells, is the data link layer’s task. For that reason we will discuss it in
this book along with the data link layer, not with the physical layer.

As we mentioned earlier, the ATM layer manages cells, including their gen-
eration and transport. Most of the interesting aspects of ATM are located here. It
is a mixture of the OSI data link and network layers, but it is not split into sub-
layers.

The AAL layer is split into a SAR (Segmentation And Reassembly) sub-
layer and a CS (Convergence Sublayer). The lower sublayer breaks packets up
into cells on the transmission side and puts them back together again at the desti-
nation. The upper sublayer makes it possible to have ATM systems offer different
kinds of services to different applications (e.g., file transfer and video on demand
have different requirements concerning error handling, timing, etc.).

Perspective on ATM

To a considerable extent, ATM is a project invented by the telephone industry
because after Ethernet was widely installed, the computer industry never rallied
around any higher-speed network technology to make it standard. The telephone
companies filled this vacuum with ATM, although in October 1991, many com-
puter vendors joined with the telephone companies to set up the ATM Forum, an
industry group that will guide the future of ATM.

Although ATM promises the ability to deliver information anywhere at speeds
soon to exceed 1 Gbps, delivering on this promise will not be easy. ATM is basi-
cally high-speed packet-switching, a technology the telephone companies have lit-
tle experience with. What they do have, is a massive investment in a different
technology (circuit switching) that is in concept unchanged since the days of
Alexander Graham Bell. Needless to say, this transition will not happen quickly,
all the more so because it is a revolutionary change rather than an evolutionary
one, and revolutions never go smoothly.

The economics of installing ATM worldwide also have to be considered. A
substantial fraction of the existing telephone system will have to be replaced.
Who will pay for this? How much will consumers be willing to pay to get a
movie on demand electronically, when they can get one at the local video store for
a couple of dollars? Finally, the question of where many of the advanced services
are provided is crucial. If they are provided by the network, the telephone com-
panies will profit from them. If they are provided by computers attached to the
network, the manufacturers and operators of these devices make the profits. The
users may not care, but the telephone companies and computer vendors certainly
do, and this will surely affect their interest in making ATM happen.

Page 55 of 137

66 INTRODUCTION CHAP. 1
1.6.5. Comparison of Scrvices

The reader may be wondering why so many incompatible and overlapping
services exist, including DQDB, SMDS, X.25, frame relay, ATM, and more. The
underlying reason is the 1984 decision to break up AT&T and foster competition
in the telecommunications industry. Different companies with different interests
and technologies are now free to offer whatever services they think there is a
demand for, and many of them are doing this with a vengeance.

“To recap some of the services we have touched on in this chapter, DQDB is
an unswitched MAN technology that allows 53-byte cells (of which 44 are pay-
load) to be sent down long wires within a city. SMDS is a switched datagram
technology for sending datagrams anywhere in-a network at 45 Mbps. X.25 is an
older connection-oriented networking technology for transmitting small variable-
sized packets at 64 kbps. Frame relay is a service that provides virtual leased
lines at speeds around 1.5 Mbps. Finally, ATM is designed to replace the entire
circuit-switched telephone system with cell switching and be able to handle data
and television as well. Some differences between these competitors are summar-
ized in Fig. 1-32.

Frame ATM

Issue DQDB | SMDS | X.25 | Relay AAL
Connection oriented Yes No Yes | Yes Yes
Normal speed (Mbps) | 45 45 .064 | 1.5 155
Switched No Yes Yes | No Yes
Fixed-size payload Yes No No No No |
Max payload 44 9188 128 1600 Variable
Permanent VCs No No Yes | Yes Yes
Multicasting No Yes No No Yes

Fig. 1-32. Different networking services.

1.7. NETWORK STANDARDIZATION

Many network vendors and suppliers exist, each with their own ideas of how
things should be done. Without coordination, there would be complete chaos, and
users would be able to get nothing done. The only way out is to agree upon some
network standards.

Not only do standards allow different computers to communicate, but they
also increase the market for products adhering to the standard, which leads to

Page 56 of 137

THE MEDIUM ACCESS SUBLAYER

As we pointed out in Chap. 1, networks can be divided into two categories:
those using point-to-point connections and those using broadcast channels. This
chapter deals with broadcast networks and their protocols.

In any broadcast network, the key issue is how to determine who gets to use
the channel when there is competition for it. To make this point clearer, consider
a conference call in which six people, on six different telephones, are all con-
nected together so that each one can hear and talk to all the others. It is very
likely that when one of them stops speaking, two or more will start talking at
once, leading to chaos. In a face-to-face meeting, chaos is. avoided by external
means, for example, at a meeting, people raise their hands to request permission
to speak. When only a single channel is available, determining who should go
next is much harder. Many protocols for solving the problem are known and form
the contents of this chapter. In the literature, broadcast channels are sometimes
referred to as multiaccess channels or random access channels.

The protocols used to determine who goes next on a multiaccess channel,
belong to a sublayer of the data link layer called the MAC (Medium Access Con-
trol) sublayer. The MAC sublayer is especially important in LANS, nearly all of
which use a multiaccess channel as the basis of their communication. WANS, in
contrast, use point-to-point links, except for satellite networks. Because multiac-
cess channels and LANs are so closely related, in this chapter we will discuss
LANS in general, as well as satellite and some other broadcast networks.

243

Page 57 of 137

244 THE MEDIUM ACCESS SUBLAYER CHAP. 4

Technically, the MAC sublayer is the bottom part of the data link layer, so
logically we should have studied it before examining all the point-to-point proto-
cols in Chap. 3. Nevertheless, for most people, understanding protocols involving
multiple parties is easier after two-party protocols are well understood. For that
reason we have deviated slightly from a strict bottom-up order of presentation.

4.1. THE CHANNEL ALLOCATION PROBLEM

The central theme of this chapter is how to allocate a single broadcast channel
among competing users. We will first look at static and dynamic schemes in gen-
eral. Then we will examine a number of specific algorithms.

4.1.1. Static Channel Allocation in LANs and MANSs

The traditional way of allocating a single channel, such as a telephone trunk,
among multiple competing users is Frequency Division Multiplexing (FDM). If
there are N users, the bandwidth is divided into N equal sized portions (see Fig.
2-24), each user being assigned one portion. Since each user has a private fre-
quency band, there is no interference between users. When there is only a small
and fixed number of users, each of which has a heavy (buffered) load of traffic
(e.g., carriers’ switching offices), FDM is a simple and efficient allocation
mechanism. ‘

However, when the number of senders is large and continuously varying, or
the traffic is bursty, FDM presents some problems. If the spectrum is cut up into
N regions, and fewer than N users are currently interested in communicating, a
large piece of valuable spectrum will be wasted. If more than N users want to
communicate, some of them will be denied permission, for lack of bandwidth,
even if some of the users who have been assigned a frequency band hardly ever
transmit or receive anything. ‘

However, even assuming that the number of users could somehow be held
constant at N, dividing the single available channel into static subchannels is
inherently inefficient. The basic problem is that when some users are quiescent,
their bandwidth is simply lost. They are not using it, and no one else is allowed to
use it either. Furthermore, in most computer systems, data traffic is extremely
bursty (peak traffic to mean traffic ratios of 1000:1 are common). Consequently,
most of the channels will be idle most of the time.

The poor performance of static FDM can easily be seen from a simple queue-
ing theory calculation. Let us start with the mean time delay, T, for a channel of
capacity C bps, with an arrival rate of A frames/sec, each frame having a length
drawn from an exponential probability density function with mean 1/ bits/frame:

1
T =
uC — A

Now let us divide the single channel up into N independent subchannels, each

Page 58 of 137

276 THE MEDIUM ACCESS SUBLAYER CHAP. 4
4.3.1. IEEE Standard 802.3 and Ethernet

The IEEE 802.3 standard is for a 1-persistent CSMA/CD LAN. To review the
idea, when a station wants to transmit, it listens to the cable. If the cable is busy,
the station waits until it goes idle; otherwise it transmits immediately. If two or
more stations simultaneously begin transmitting on an idle cable, they will collide.
All colliding stations then terminate their transmission, wait a random time, and
repeat the whole process all over again.

The 802.3 standard has an interesting history. The real beginning was the
ALOHA system constructed to allow radio communication between machines
scattered over the Hawaiian Islands. Later, carrier sensing was added, and Xerox
PARC built a 2.94-Mbps CSMA/CD system to connect over 100 personal work-
stations on a 1-km cable (Metcalfe and Boggs, 1976). This system was called
Ethernet after the luminiferous ether, through which electromagnetic radiation
was once thought to propagate. (When the Nineteenth Century British physicist
James Cletk Maxwell discovered that electromagnetic radiation could be
described by a wave equation, scientists assumed that space must be filled with
some ethereal medium in which the radiation was propagating. Only after the
famous Michelson-Morley experiment in 1887, did physicists discover that elec-
tromagnetic radiation could propagate in a vacuum.)

The Xerox Ethernet was so successful that Xerox, DEC, and Intel drew up a
standard for a 10-Mbps Ethernet. This standard formed the basis for 802.3. The
published 802.3 standard differs from the Ethernet specification in that it
describes a whole family of 1-persistent CSMA/CD systems, running at speeds
from 1 to 10-Mbps on various media. Also, the one header field differs between .
the two (the 802.3 length field is used for packet type in Ethernet). The initial
standard also gives the parameters for a 10 Mbps baseband system using 50-ohm
coaxial cable. Parameter sets for other media and speeds came later.

Many people (incorrectly) use the name “Ethernet” in a generic sense to refer
to all CSMA/CD protocols, even though it really refers to a specific product that
almost implements 802.3. We will use the terms “802.3” and “CSMA/CD”
except when specifically referring to the Ethernet product in the next few para-
graphs.

802.3 Cabling

Since the name “Ethernet’’ refers to the cable (the ether), let us start our dis-
cussion there. Five types of cabling are commonly used, as shown in Fig. 4-17.
Historically, 10Base5 cabling, popularly called thick Ethernet, came first. It
resembles a yellow garden hose, with markings every 2.5 meters to show where
the taps go. (The 802.3 standard does not actually require the cable to be yellow,
but it does suggest it.) Connections to it are generally made using vampire taps,
in which a pin is carefully forced halfway into the coaxial cable’s core. The

Page 59 of 137

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS ‘ 277

notation 10BaseS means that it operates at 10 Mbps, uses baseband signaling, and
can support segments of up to 500 meters.

Name Cable Max. segment | Nodes/seg. Advantages
10Base5 | Thick coax 500 m 100 Good for backbones
10Base2 | Thin coax 200 m 30 Cheapest system
10Base-T | Twisted pair 100 m 1024 Easy maintenance
10Base-F | Fiber optics 2000 m 1024 Best beétween buildings

. Fig. 4-17. The most common kinds of baseband 802.3 LANS.

Historically, the second cable type was 10Base2 or thin Ethernet, which, in
contrast to the garden-hose-like thick Ethernet, bends easily. Connections to it are
made using industry standard BNC connectors to form T junctions, rather than
using vampire taps. These are easier to use and more reliable. Thin Ethernet is
much cheaper and easier to install, but it can run for only 200 meters and can han-
dle only 30 machines per cable segment.

Detecting cable breaks, bad taps, or loose connectors can be a major problem
with both media. For this reason, techniques have been developed to track them
down. Basically, a pulse of known shape is injected into the cable. If the pulse
hits an obstacle or the end of the cable, an echo will be generated and sent back.
By carefully timing the interval between sending the pulse and receiving the echo,
it is possible to localize the origin of the echo. This techhique is called time
domain reflectometry. - -

The problems associated with finding cable breaks have driven systems
toward a different kind of wiring pattern, in which all stationis have a cable run-
ning to a central hub. Usually, these wires are telephone company twisted pairs,
since most office buildings are already wired this wiy, and.there are normally
plenty of spare pairs available. This scheme is called 10Base-T.

These three wiring schemes are illustrated in Fig. 4-18. For 10Base5, a trans-
ceiver is clamped securely around the cable so that its tap makes contact with the
inner core. The transceiver contains the electronics that handle carrier detection
and collision detection. When a collision is detected, the transceiver also puts a
special invalid signal on the cable to ensure that all other transceivers also realize
that a collision has occurred. ,

With 10Base5, a transceiver cable connects thé trahsceiver to an interface
board in the computer. The transceiver cable may be up to 50 meters long and
contains five individually shielded twisted pairs. Two of the pairs are for data in
and data out, respectively. Two more are for control signals in and out. The fifth
pair, which is not always used, allows the computer to power the transceiver elec-
tronics. Some transceivers allow up to eight nearby computers to be attached to
them, to reduce the number of transceivers needed.

Page 60 of 137

278 THE MEDIUM ACCESS SUBLAYER CHAP. 4

Controller
=] Transceiver
ransceiver + controller

Core Vampire tap

==
. Transceiver Connector

(a) (b)

Fig. 4-18. Three kinds of 802.3 cabling. (a) 10Base5. (b) 10Base2. (c) 10Base-T.

The transceiver cable terminates on an interface board inside the computer.
The interface board contains a controller chip that transmits frames to, and
receives frames from; the transceiver. The controller is responsible for assem-
bling the data into the propef frame format, as well as computing checksums on
outgoing frames and verifying them on incoming frames. Some controller chips
also manage a pool of buffers for incoming frames, a queue of buffers to be
transmitted, DMA transfers with the host computers, and other aspects of network
management. :

With 10Base2, the connection to the cable is just a passive BNC T-junction
connector. The transceiver electronics are on the controller board, and each sta-
tion always has its own transceiver.

With 10Base-T, there is no cable at all, just the hub (a box full of electronics).
Adding or removing a station is simpler in this configuration, and cable breaks
can be detected easily. The disadvantage of 10Basé-T is that the maximum cable
run from the hub is only 100 meters, maybe 150 meters if high-quality (category
5) twisted pairs are used. Also, a large hub éosts ‘thousands of dollars. Still,
10Base-T is becoming steadily more popular due to the ease of maintenance that
it offers, A faster version of 10Base-T (100Base-T) will be discussed later in this
chaptet. - , e

~."A fourth cabling option for 802.3 is 10Bd4se-I*, which uses fiber optics. This
alternative is expensive due to the cost of the connectors and terminators, but it
has excellent noise immunity and is the method of choice when running between
buildings or widely separated hubs. :

Figure 4-19 shows different ways of wiring up a building. In Fig. 4-19(a), a
single cable is snaked from room to room, with eacli station tapping onto it at the
nearest point. In Fig. 4-19(b), a vertical spine runs from the basement to the roof,

Page 61 of 137

SEC. 43 IEEE STANDARD 802 FOR LANS AND MANS 279

with horizontal cables on each floor connected to it by special amplifiers
(repeaters). In some buildings the horizontal cables are thin, and the backbone is
thick. The most general topology is the tree, as in Fig. 4-19(c), because a network
with two paths between some pairs of stations would suffer from interference
between the two signals.

A B —
| A B C D
C —
< - A
Tap R T

D — Repeater

Backbone —
(@) (b) (c) (d)

Fig. 4-19. Cable topologies. (a) Linear. (b) Spine. (c) Tree. (d) Segmented.

. Bach version of 802.3 has a maximum cable length per segment. To allow
larger networks, multiple cables can be connected by repeaters, as shown in
Fig. 4-19(d). A repeater is a physical layer device. It receives, amplifies, and
retransmits signals in both directions. As far as the software is concerned, a series
of cable segments connected by repeaters is no different than a single cable
(except for some delay introduced by the repeaters). A system may contain multi-
ple cable segments and multiple repeaters, but no two transceivers may be more
than 2.5 km apart and no path between any two tfan’sceivers may traverse more
than four repeaters. P ‘ "

Manchester Encoding

None of the versions of 802.3 use straight binary encoding with 0 volts for a 0
bit and 5 volts for a 1 bit because it leads to ambiguities. If one station sends the
bit string 0001000, others might falsely interpret it as 10000000 or 01000000
because they cannot tell the diffcrehc_e‘ between an idle sender (0 volts) and a 0 bit
(0 volts). S5 e

What is needed is a way for receivers to unambiguously determine the start,
end, or middle of each bit-without reference to an external clock. Two such
approaches are called Manchester encoding and differential ‘Manchester
encoding. With Manchester encoding, each bit period is divided into two equal
intervals. A binary 1 bit is sent by having the voltage set high-during the first
interval and low in the second one. A binary O is just the reverse: first low and
then high. This scheme ensures that every bit period has a transition in the mid-
dle, making it easy for the receiver to synchronize with the s_er_;_der. A

Page 62 of 137

280 THE MEDIUM ACCESS SUBLAYER CHAP. 4

disadvantage of Manchester encoding is that it requires twice as much bandwidth |
as straight binary encoding, because the pulses are half the width. Manchester
encoding is shown in Fig. 4-20(b).

Bit stream 1 0 0 0 0 1 0 1 1 1 1

Binary encoding

araraserancoang | || [T [1LI" LI L L
(L L L

Differential '—'I |
Manchester encoding | | ||
\ Transition here \ Lack of transition here

indicates a 0 indicates a 1

Fig. 4-20. (a) Binary encoding. (b) Manchester encoding. (c) Differential Man-
chester encoding.

Differential Manchester encoding, shown in Fig. 4-20(c), is a variation of
basic Manchester encoding. In it, a 1 bit is indicated by the absence of a transi-
tion at the start of the interval. A O bit is indicated by the presence of a transition
at the start of the interval. In both cases, there is a transition in the middle as well.
The differential scheme requires more complex equipment but offers better noise
immunity. All 802.3 baseband systems use Manchester encoding due to its sim-
plicity. The high signal is +0.85 volts and the low: signal is —0.85 volts, giving a
DC value of 0 volts. ' .

The 802.3 MAC Sublayer Protocol

The 802.3 (IEEE, 1985a) frame structure is shown in Fig. 4-21. Each frame
starts with a Preamble of 7 bytes, each containing the bit pattern 10101010. The
Manchester encoding of this pattern produces a 10-MHz square wave for 5.6 psec
to allow the receiver’s clock to synchronize with the sender’s. Next comes a Start
of frame byte containing 10101011 to denote the start of the frame itself.

The frame contains two addres':ses, one for the destination and one for the
source. The standard allows Z-byte and 6-byte addresses, but the parameters
defined for the 10-Mbps baseband standard use only the 6-byte addresses. The
high-order bit of the destination address is a 0 for ordinary addresses and 1 for
group addresses. Group addrésses allow multiple stations to listen to a single
address. When a frame is sent to a group address, all the stations in the group
receive it. Sending to a group of stations is called multicast. The address con-
sisting of all 1 bits is reserved for broadcast. A frame containing all 1s in the
destination field is delivered to all stations on the network.

Page 63 of 137

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS 281

Bytes 7 1 2o0r6 20r6 2 0-1500 0-46 4

{§
Destination Source ;
Preamble f Ncldiess address * D?rta Pad Checksum
! | 1)
Start of Length of
frame delimiter data field

Fig. 4-21. The 802.3 frame format.

Another interesting feature of the addressing is the use of bit 46 (adjacent to
the high-order bit) to distinguish local from global addresses. Local addresses are
assigned by each network administrator and have no significance outside the local
network. Global addresses, in contrast, are assigned by IEEE to ensure that no
two stations anywhere in the world have the same global address. With
48 — 2 =46 bits available, there are about 7 X 10" global addresses. The idea is
that any station can uniquely address any other station by just giving the right 48-
bit number. It is up to the network layer to figure out how to locate the destina-
tion.

The Length field tells how many bytes are present in the data field, from a
minimum of 0 to a maximum of 1500. While a data field of O bytes is legal, it
causes a problem. When a transceiver detects a collision, it truncates the current
frame, which means that stray bits and pieces of frames appear on the cable all the
time. To make it easier to distinguish valid frames from garbage, 802.3 states that
valid frames must be at least 64 bytes long, from destination address to checksum.
If the data portion of a frame is less than 46 bytes, the pad field is used to fill out
the frame to the minimum size.

Another (and more important) reason for having a minimum length frame is to
prevent a station from completing the transmission of a short frame before the
first bit has even reached the far end of the cable, where it may collide with
another frame. This problem is illustrated in Fig. 4-22. At time 0, station A, at
one end of the network, sends off a frame. Let us call the propagation time for
this frame to reach the other end T. Just before the frame gets to the other end
(i.e., at time T — €) the most distant station, B, starts transmitting. When B detects
that it is receiving more power than it is putting out, it knows that a collision has
occurred, so it aborts its transmission and generates a 48-bit noise burst to warn
all other stations. At about time 27, the sender sees the noise burst and aborts its
transmission, too. It then waits a random time before trying again.

If a station tries to transmit a very short frame, it is conceivable that a colli-
sion occurs, but the transmission completes before the noise burst gets back at 2.
The sender will then incorrectly conclude that the frame was successfully sent.
To prevent this situation from occurring, all frames must take more than 2T to
send. For a 10-Mbps LAN with a maximum length of 2500 meters and four

Page 64 of 137

282 ‘ THE MEDIUM ACCESS SUBLAYER CHAP. 4

Packet starts Packet almost
/attimeO E atBatt-€
—— _ C—
)

(@) (b

Noise burst gets

w;«}&m B ,/ backto A at2t
i — %‘“

(© Collision at -~ (d)
: timet

Fig. 4-22. Collision detection can take as long as 2T.

repeaters (from the 802.3 specification), the minimum allowed frame must take
51.2 psec. This time corresponds to 64 bytes. Frames with fewer bytes are pad-
ded out to 64 bytes.

As the network speed goes up, the minimum frame length must go up or the
maximum cable length must come down, proportionally. For a 2500-meter LAN
operating at 1 Gbps, the minimum frame size would have to be 6400 bytes. Alter-
natively, the minimum frame size could be 640 bytes and the maximum distance
between any two stations 250 meters. These restrictions are becoming increas-
ingly painful as we move toward gigabit networks.

The final 802.3 field is the Checksum. 1t is effectively a 32-bit hash code of
the data. If some data bits are erroneously received (due to noise on the cable),
the checksum will almost certainly be wrong, and the error will be detected. The
checksum algorithm is a cyclic redundancy check of the kind discussed in Chap.
3.

The Binary Exponential Backoff Algorithm

Let us now see how randomization is done when a collision occurs. The
model is that of Fig. 4-5. After a collision, time is divided up into discrete slots
whose length is equal to the worst case round-trip propagation time on the ether
(21). To accommodate the longest path allowed by 802.3 (2.5 km and four
repeaters), the slot time has been set o 512 bit times, or 51.2 psec.

After the first collision, each station waits either O or 1 slot times before try-
ing again. If two stations collide and each one picks the same random number,
they will collide again. After the second collision, each one picks either 0, 1, 2, or
3 at random and waits that number of slot times. If a third collision occurs (the
probability of this happening is 0.25), then the next time the number of slots to
wait is chosen at random from the interval 0 to 23 -1.

Page 65 of 137

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS 283

In general, after i collisions, a random number between 0 and 2i — 1 is chosen,
and that number of slots is skipped. However, after ten collisions have been
reached, the randomization interval is frozen at a maximum of 1023 slots. After
16 collisions, the controller throws in the towel and reports failure back to the
computer. Further recovery is up to higher layers.

This algorithm, called binary exponential backoff, was chosen to dynami-
cally adapt to the number of stations trying to send. If the randomization interval
for all collisions was 1023, the chance of two stations colliding for a second time
would be negligible, but the average wait after a collision would be hundreds of
slot times, introducing significant delay. On the other hand, if each station always
delayed for either zero or one slots, then if 100 stations ever tried to send at once,
they would collide over and over until 99 of them picked 0 and the remaining sta-
tion picked 1, or vice versa. This might take years. By having the randomization
interval grow exponentially as more and more consecutive collisions occur, the
algorithm ensures a low delay when only a few stations collide but also ensures
that the collision is resolved in a reasonable interval when many stations collide.

As described so far, CSMA/CD provides no acknowledgements. Since the
mere absence of collisions does not guarantee that bits were not garbled by noise
spikes on the cable, for reliable communication the destination must verify the
checksum, and if correct, send back an acknowledgement frame to the source.
Normally, this acknowledgement would be just another frame as far as the proto-
col is concerned and would have to fight for channel time just like a data frame.
However, a simple modification to the contention algorithm would allow speedy
confirmation of frame receipt (Tokoro and Tamaru,” 1977). All that would be
needed is to reserve the first contention slot following successful transmission for
the destination station.

802.3 Performance

Now let us briefly examine the performance of 802.3 under conditions of
heavy and constant load, that is, k stations always ready to transmit. A rigorous
analysis of the binary exponential backoff algorithm is complicated. Instead we
will follow Metcalfe and Boggs (1976) and assume a constant retransmission pro-
bability in each slot. If each station transmits during a contention slot with proba-
bility p, the probability A that some station acquires the channel in that slot is

A=kp(1-p)! (4-6)

A is maximized when p = 1/k, with A — 1/e as k — . The probability that the
contention interval has exactly j slots in it is A(1 — AY ™! so the mean number of
slots per contention is given by

> : 1
A(1—AY 1=—
E)J(e 5

Since each slot has a duration 27, the mean contention interval, w, is 2T/A.

Page 66 of 137

284 THE MEDIUM ACCESS SUBLAYER CHAP. 4

Assuming optimal p, the mean number of contention slots is never more than e,
so w is at most 2Te = 5.47.

If the mean frame takes P sec to transmit, when many stations have frames to
send,

P
Ch 1 effici = 4-7
annel efficiency P 2UA 4-7)

Here we see where the maximum cable distance between any two stations enters
into the performance figures, giving rise to topologies other than that of Fig. 4-
19(a). The longer the cable, the longer the contention interval. By allowing no
more than 2.5 km of cable and four repeaters between any two transceivers, the
round-trip time can be bounded to 51.2 usec, which at 10 Mbps corresponds to
512 bits or 64 bytes, the minimum frame size.

It is instructive to formulate Eq. (4-7) in terms of the frame length, F, the net-
work bandwidth, B, the cable length, L, and the speed of signal propagation, c,
for the optimal case of e contention slots per frame. With P =F/B, Eq. (4-7)
becomes

1

h 1 effici = 4-8
Channel efficiency [+ 2BLe/cF (4-8)

When the second term in the denominator is large, network efficiency will be low.
More specifically, increasing network bandwidth or distance (the BL product)
reduces efficiency for a given frame size. Unfortunately, much research on net-
work hardware is aimed precisely at increasing this product. People want high
bandwidth over long distances (fiber optic MANS, for example), which suggests
that 802.3 may not be the best system for these applications.

In Fig. 4-23, the channel efficiency is plotted versus number of ready stations
for 2t =751.2 usec and a data rate of 10 Mbps using Eq. (4-12). With a 64-byte
slot time, it is not surprising that 64-byte frames are not efficient. On the other
hand, with 1024-byte frames and an asymptotic value of e 64-byte slots per con-
tention interval, the contention period is 174 bytes long and the efficiency is 0.85.

To determine the mean number of stations ready to transmit under conditions
of high load, we can use the following (crude) observation. Each frame ties up
the channel for one contention period and one frame transmission time, for a total
of P +w sec. The number of frames per second is therefore 1/(P +w). If each
station generates frames at a mean rate of A frames/sec, when the system is in
state k the total input rate of all unblocked stations combined is kA frames/sec.
Since in equilibrium the input and output rates must be identical, we can equate
these two expressions and solve for k. (Notice that w is a function of k.) A more
sophisticated analysis is given in (Bertsekas and Gallager, 1992).

It is probably worth mentioning that there has been a large amount of theoreti-
cal performance analysis of 802.3 (and other networks). Virtually all of this work
has assumed that traffic is Poisson. As researchers have begun looking at real

Page 67 of 137

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS 285

1.0 —
09 - 1024 byte frames
0.84= 512 byte frames
0.7

256 byte frames

128 byte frames

o ©
w £
|

Channel efficiency
o o
o o
| I

64-byte frames

o o
PO
I

| | | l l | I | l
0 1 2 4 8 16 32 64 128 256

Number of stations trying to send

Fig. 4-23. Efficiency of 802.3 at 10 Mbps with 5 12-bit slot times.

data, it now appears that network traffic is rarely Poisson, but self-similar (Paxson
and Floyd, 1994; and Willinger et al., 1995). What this means is that averaging
over long periods of time does not smooth out the traffic. The average number of
packets in each minute of an hour has as much variance as the average number of
packets in each second of a minute. The consequence of this discovery is that
most models of network traffic do not apply to the real world and should be taken
with a grain (or better yet, a metric ton) of salt.

Switched 802.3 LANs

As more and more stations are added to an 802.3 LAN, the traffic will go up.
Eventually, the LAN will saturate. One way out is to go to a higher speed, say
from 10 Mbps to 100 Mbps. This solution requires throwing out all the 10 Mbps
adaptor cards and buying new ones, which is expensive. If the 802.3 chips are on
the computers’ main circuit boards, it may not even be possible to replace them.

Fortunately, a different, less drastic solution is possible: a switched 802.3
LAN, as shown in Fig. 4-24. The heart of this system is a switch containing a
high-speed backplane and room for typically 4 to 32 plug-in line cards, each con-
taining one to eight connectors. Most often, each connector has a 10Base-T
twisted pair connection to a single host computer.

When a station wants to transmit an 802.3 frame, it outputs a standard frame
to the switch. The plug-in card getting the frame checks to see if it is destined for
one of the other stations connected to the same card. If so, the frame is copied

Page 68 of 137

286 THE MEDIUM ACCESS SUBLAYER CHAP. 4

Switch
Connector\/ To hosts
1.
\0\ 0\ e o : 8025 L0 Hub E To hosts
Pl Pl P Il

To hosts

,312\,3‘3]

Fig. 4-24. A switched 802.3 LAN.

10Base-T __»
connection

To the host computers

there. If not, the frame is sent over the high-speed backplane to the destination
station’s card. The backplane typically runs at over 1 Gbps using a proprietary
protocol.

What happens if two machines attached to the same plug-in card transmit
frames at the same time? It depends on how the card has been constructed. One
possibility is for all the ports on the card to be wired together to form a local on-
card LAN. Collisions on this on-card LAN will be detected and handled the same -
as any other collisions on a CSMA/DC network—with retransmissions using the
binary backoff algorithm. With this kind of plug-in card, only one transmission
per card is possible at any instant, but all the cards can be transmitting in parallel.
With this design, each card forms its own collision domain, independent of the
others.

With the other kind of plug-in card, each input port is buffered, so incoming
frames are stored in the card’s on-board RAM as they arrive. This design allows
all input ports to receive (and transmit) frames at the same time, for parallel, full-
duplex operation. Once a frame has been completely received, the card can then
check to see if the frame is destined for another port on the same card, or for a
distant port. In the former case it can be transmitted directly to the destination. In
the latter case, it must be transmitted over the backplane to the proper card. With
this design, each port is a separate collision domain, so collisions do not occur.
The total system throughput can often be increased by an order of magnitude over
10Base-5, which has a single collision domain for the entire system.

Since the switch just expects standard 802.3 frames on each input port, it is
possible use some of the ports as concentr‘éltors. In Fig. 4-24, the port in the upper
right-hand corner is connected not to a ‘single ‘station, but to a 12-port hub. As
frames arrive at the hub, they contend for the 802.3 LAN in the usual way, -

Page 69 of 137

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS 287

including collisions and binary backoff. Successful frames make it to the switch,
and are treated there like any other incoming frames: they are switched to the
correct output line over the high-speed backplane. If all the input ports are con-
nected to hubs, rather than to individual stations, the switch just becomes an 802.3
to 802.3 bridge. We will study bridges later in this chapter.

4.3.2. IEEE Standard 802.4: Token Bus

Although 802.3 is widely used in offices, during the development of the 802
standard, people from General Motors and other companies interested in factory
automation had serious reservations about it. For one thing, due to the probabil-
istic MAC protocol, with a little bad luck a station might have to wait arbitrarily
long to send a frame (i.e., the worst case is unbounded). For another, 802.3
frames do not have priorities, making them unsuited for real-time systems in
which important frames should not be held up waiting for unimportant frames.

A simple system with a known worst case is a ring in which the stations take
turns sending frames. If there are n stations and it takes T sec to send a frame, no
frame w111 ever have to wait more than nT sec to be sent. The factory automation
people in ‘the 802 committee liked the conceptual idea of a ring but did not like
the physical implementation because a break in the ring cable would bring the
whole network down. Furthermore, they noted that a ring is a poor fit to the linear
topology of most assembly lines. As a result, a new standard was developed, hav-
ing the robustness of the 802.3 broadcast cable, but the known worst-case
behavior of a ring.

Broadband - 14 i
coaxial cable/_/,/ T Llil L—[L \\‘ Logical ring
’ 1
\ 1" - o 5 L &
:
] \\ it o) 3
. - This station
—————————————————— not currently in

13 11 —_— . 7 19 the logical ring
Direction of

token motion

Fig. 4-25. A token bus.

This standard, 802.4 (Dirvin and Miller, 1986; and IEEE, 1985b), describes a
LAN called a token bus. Physically, the token bus is a linear or tree-shaped cable
onto which the stations are attached. Logically, the stations are organized into a
ring (see Fig. 4-25), with each station knowing the address of the station to its
“left”” and “right.” When the logical ring is initialized, the highest numbered sta-
tion may send the first frame. After it is done, it passes permission to its immedi-
ate neighbor by sending the neighbor a special control frame called a token. The

Page 70 of 137

292 THE MEDIUM ACCESS SUBLAYER CHAP. 4

powered on simultaneously, the protocol deals with this by letting them bid for the
token using the standard modified binary countdown algorithm and . the two ran-
dom bits.

Due to transmission errors or hardware failures, problems can arise with the
logical ring or the token. For example, if a station tries to pass the token to a sta-
tion that has gone down, what happens? The solution is straightforward. After
passing the token, a station listens to see if its successor either transmits a frame
or passes the token. If it does neither, the token is passed a second time.

If that also fails, the station transmits a WHO_FOLLOWS frame specifying the
address of its successor. When the failed station’s successor sees a
WHO_FOLLOWS frame naming its predecessor, it responds by sending a
SET_SUCCESSOR frame to the station whose successor failed, naming itself as the
new successor. In this way, the failed station is removed from the ring.

Now suppose that a station fails to pass the token to its successor and also
fails to locate the successor’s successor, which may also be down. It adopts a new
strategy by sending a SOLICIT_SUCCESSOR._2 frame to see if anyone else is still
alive.. Once again the standard contention protocol is run, with all stations that
want to be'in the ring now bidding for a place. Eventually, the ring is re-
established.

Another kind of problem occurs if the token holder goes down and takes the
token with it. This problem is solved using the ring initialization algorithm. Each
station has a timer that is reset whenever a frame appears on the network. When
this timer hits a threshold value, the station issues a CLAIM_TOKEN frame, and the
modified binary countdown algorithm with random bits determines who gets the
token.

Still another problem is multiple tokens. If a station holding the token notices
a transmission from another station, it discards its token. If there were two, there
would now be one. If there were more than two, this process would be repeated
sooner or later until all but one were discarded. If, by accident, all the tokens are
discarded, then the lack of activity will cause one or more stations to try to claim
the token.

4.3.3. IEEE Standard 802.5: Token Ring

Ring networks have been around for many years (Pierce, 1972) and have long
been used for both local and wide area networks. Among their many attractive
features is the fact that a ring is not really a broadcast medium, but a collection of
individual point-to-point links that happen to form a circle. Point-to-point links
involve a well-understood and field-proven technology and can run on twisted
pair, coaxial cable, or fiber optics. Ring engineering is also almost entirely digi-
tal, whereas 802.3, for example, has a substantial analog component for collision
detection. A ring is also fair and has a known upper bound on channel access.

Page 71 of 137

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS 293

" For these reasons, IBM chose the ring as its LAN and IEEE has included the
token ring standard as 802.5 (IEEE, 1985c; Latif et al., 1992).

A major issue in the design and analysis of any ring network is the “physical
length” of a bit. If the data rate of the ring is R Mbps, a bit is emitted every
1/R psec. With a typical signal propagation speed of about 200 m/psec, each bit
occupies 200/R meters on the ring. This means, for example, that a 1-Mbps ring
whose circumference is 1000 meters can contain only 5 bits on it at once. The
implications of the number of bits on the ring will become clearer later.

" As mentioned above, a ring really consists of a collection of ring interfaces
connected by point-to-point lines. Each bit arriving at an interface is copied into a
1-bit buffer and then copied out onto the ring again. While in the buffer, the bit
can be inspected and possibly modified before being written out. This copying
step introduces a 1-bit delay at each interface. A ring and its interfaces are shown
in Fig. 4-28.

Ring Station
interface -

1 bit Ring
delay interface

B

To From To From
station station station station

(b) (©

Fig. 4-28. () A ring network. (b) Listen mode. (c) Transmit mode.

In a token ring a special bit pattern, called the token, circulates around the
ring whenever all stations are idle. When a station wants to transmit a frame, it is
required to seize the token and remove it from the ring before transmitting. This
action is done by inverting a single bit in the 3-byte token, which instantly
changes it into the first 3 bytes of a normal data frame. Because there is only one
token, only one station can transmit at a given instant, thus solving the channel
access problem the same way the token bus solves it. ,

An implication of the token ring design is that the ring itself must have a suf-
ficient delay to contain a complete token to circulate when all stations are idle.

The delay has two components: the 1-bit delay introduced by each station, and the
signal propagation delay. In almost all rings, the designers must assume that

Page 72 of 137

294 THE MEDIUM ACCESS SUBLAYER CHAP. 4

stations may be powered down at various times, especially at night. If the inter-
faces are powered from the ring, shutting down the station has no effect on the
interface, but if the interfaces are powered externally, they must be designed to
connect the input fo the output when power goes down, thus removing the 1-bit
delay. The point here is that on a short ring an artificial delay may have to be
inserted into the ring at night to ensure that a token can be contained on it.

Ring interfaces have two operating modes, listen and transmit. In listen
mode, the input bits are simply copied to output, with a delay of 1 bit time, as
shown in Fig. 4-28(b). In transmit mode, which is entered only after the token has
been seized, the interface breaks the connection between input and output, enter-
ing its own data onto the ring. To be able to switch from listen to transmit mode
in 1 bit time, the interface usually needs to buffer one or more frames itself rather
than having to fetch them from the station on such short notice.

As bits that have propagated around the ring come back, they are removed
from the ring by the sender. “The sending station can either save them, to compare
with the original datd to monitor ring reliability, or discard them. Because the
entire frame never appears on the ring at one instant, this ring architecture puts no
Jimit on the size of the frames. After a station has finished transmitting the last bit
of its last frame, it must regenerate the token. When the last bit of the frame has
gone around and come back, it must be removed, and the interface must switch
back into listen mode immediately, to avoid removing the token that might follow
if no other station has removed'it.

It is straightforward to handle acknowledgements on a token ring. The frame
format need only include a 1-bit:field for acknowledgements, initially zero. When
the destination station has received a frame, it sets the bit. Of course, if the
acknowledgement means that the checksum has been verified, the bit must follow
the checksum, and the ring intetface must be able to verify the checksum as soon
as its last bit has arrived.” When a frame is broadcast to multiple stations, a more
complicated acknowledgement mechanism must be used (if any is used at all).

When traffic is light, the ‘token will spend most of its time idly circulating
around the ring. Occasionally a station will seize it, transmit a frame, and then
output a new token. However, when the traffic is heavy, so that there is a queue
at each station, as soon as a station finishes its transmission and regenerates the
token, the next station downstream will see and remove the token. In this manner
the permission to send rotates smoothly around the ring, in round-robin fashion.
The network efficiency can begin to approach 100 percent under conditions of
heavy load. " o .

Now let us turn from token rings in general to the 802.5 standard in particular.
At the physical layer, 802.5 calls for shielded twisted pairs running at 1 or 4
Mbps, although IBM later introduced a 16-Mbps version. Signals are encoded
using differential Manchester encoding [see Fig. 4-20(c)] with high and low being
positive and negative signals of absolute magnitude 3.0 to 4.5 volts. Normally,
differential Manchester encoding uses high-low or low-high for each bit, but

Page 73 of 137

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS 295

802.5 also uses high-high and low-low in certain control bytes (e.g., to mark the
start and end of a frame). These nondata signils always occur in consecutive
pairs so as not to introduce a DC component into the ring voltage. *

One problem with a ring network is that if the cable breaks somewhere, the
ring dies. This problem can be solved very elegantly by the use of a'wire center,
as shown in Fig. 4-29. While logically still a ting, physically each station is con-
nected to the wire center by a cable containing (at least) two twisted pairs, one for
data to the station and one for data from the station. '

@jsmﬁon

A
=

™~ Cable

o Bypass relay

=
/

Connector
> ==
|

] . ———

\

ﬁ)
"

Wire center

O\
]

Fig. 4-29. Four stations connected via a wire center.

Inside the wire center are bypass relays that are energized by current from the
stations. If the ring breaks or a station goes dowti, loss of the drive current will
release the relay and bypass thie station. The relays can also be operated by
software to permit diagnostic programs to remove statiohs one at d time to find
faulty stations and ring segments. The ring can then continue operation with the
bad segment bypassed. Although the 802.5 standard does not formally require
this kind of ring, often called a star-shaped ring (Saltzer et al., 1983), most 802.5
LANS, in fact, do use wire centers to improve their reliability and maintainability.

When a network consists of many clusters of stations far apart, a topology
with multiple wire centers can be used. Just imagine that the cable to one of the
stations in Fig. 4-29 were replaced by a cable to a distant wire center. Although
logically all the stations are on the same ring, the wiring requirements are greatly

Page 74 of 137

296 THE MEDIUM ACCESS SUBLAYER CHAP. 4

reduced. An 802.5 ring using a wire center has a similar topology to an 802.3
10Base-T hub-based network, but the formats and protocols are different.

The Token Ring MAC Sublayer Protocol

The basic operation of the MAC protocol is straightforward. When there is no
traffic on the ring, a 3-byte token circulates endlessly, waiting for a station to
seize it by setting a specific 0 bit to a 1 bit, thus converting the token into the
start-of-frame sequence. The station then outputs the rest of a normal data frame,
as shown in Fig. 4-30.

1 1 1

SDI|AC|ED
(a)
Bytes 1 1 1 20r6 20r6 No limit 4 11
— f—
SD|AC|FC Destination Source Data Checksum ED|FS
A address address A

-
Frame control Ending delimiter
L Access control Frame status

Starting delimiter

(b)
Fig. 4-30. (a) Token format. (b) Data frame format.

Under normal conditions, the first bit of the frame will go around the ring and
return to the sender before the full frame has been transmitted. Only a very long
ring will be able to hold even a short frame. Consequently, the transmitting sta-
tion must drain the ring while it continues to transmit. As shown in Fig. 4-28(c),
this means that the bits that have completed the trip around the ring come back to
the sender and are removed.

A station may hold the token for the token-holding time, which is 10 msec
unless an installation sets a different value. If there is enough time left after the
first frame has been transmitted to send more frames, these may be sent as well.
After all pending frames have been transmitted or the transmission of another
frame would exceed the token-holding time, the station regenerates the 3-byte
token frame and puts it out onto the ring.

The Starting delimiter and Ending delimiter fields of Fig. 4-30(b) mark the
beginning and ending of the frame. Each contains invalid differential Manchester
patterns (HH and LL) to distinguish them from data bytes. The Access control

Page 75 of 137

SEC. 4.3 IEEE STANDARD 802 FOR LANS AND MANS 297

byte contains the token bit, and also the Monitor bit, Priority bits, and Reservation
bits (described below). The Frame control byte distinguishes data frames from
various possible control frames.

Next come the Destination address and Source address fields, which are the
same as in 802.3 and 802.4. These are followed by the data, which may be as
long as necessary, provided that the frame can still be transmitted within the
token-holding time. The Checksum field, like the destination and source
addresses, is also the same as 802.3 and 802.4.

An interesting byte not present in the other two protocols is the Frame status
byte. It contains the A and C bits. When a frame arrives at the interface of a sta-
tion with the destination address, the interface turns on the A bit as it passes
through. If the interface copies the frame to the station, it also turns on the C bit.
A station might fail to copy a frame due to lack of buffer space or other reasons.

When the sending station drains the frame from the ring, it examines the A
and C bits. Three combinations are possible:

1. A =0and C = 0: destination not present or not powered up.
2. A =1 and C = 0: destination present but frame not accépted.
3. A =1and C = 1: destination present and frame copied.

This arrangement provides an automatic acknowledgement for each frame. If a
frame is rejected but the station is present, the sender has the option of trying
again in a little while. The A and C bits are present twice in the Frame status to
increase reliability inasmuch as they are not covered by the checksum.

The Ending delimiter contains an E bit which is set if any interface detects an
error (e.g., a non-Manchester pattern where that is not permitted). It also contains
a bit that can be used to mark the last frame in a logical sequence, sort of like an
end-of-file bit.

The 802.5 protocol has an elaborate scheme for handling multiple priority
frames. The 3-byte token frame contains a field in the middle byte giving the
priority of the token. When a station wants to transmit a priority »n frame, it must
wait until it can capture a token whose priority is less than or equal to n. Further-
more, when a data frame goes by, a station can try to reserve the next token by
writing the priority of the frame it wants to send into the frame’s Reservation bits.
However, if a higher priority has already been reserved there, the station may not
make a reservation. When the current frame is finished, the next token is gen-
erated at the priority that has been reserved.

A little thought will show that this mechanism acts like a ratchet, always Jack-
ing the reservation priority higher and higher. To eliminate this problem, the pro-
tocol contains some complex rules. The essence of the idea is that the station rais-
ing the priority is responsible for lowering the priority again when it is done.

Notice that this priority scheme is substantially different from the token bus
scheme, in which each station always gets its fair share of the bandwidth, no

Page 76 of 137

298 THE MEDIUM ACCESS SUBLAYER CHAP. 4

matter what other stations are doing. In the token ring, a station with only low
priority frames may starve to death waiting for a low priority token to appear.
Clearly, the two committees had different taste when trading off good service for
high priority traffic versus fairness to all stations.

Ring Maintenance

The token bus protocol goes to considerable lengths to do ring maintenance in
a fully decentralized way. The token ring protocol handles maintenance quite dif-
ferently. Each token ring has a monitor station that oversees the ring. If the
monitor goes down, a contention protocol ensures that another station is quickly
elected as monitor. (Every station has the capability of becoming the monitor.)
While the monitor is functioning properly, it alone is responsible for seeing that
the ring operates correctly. '

When the ring comes up or any station notices that there is no monitor, it can
transmit a CLAIM TOKEN control frame. If this frame circumnavigates the ring
before any other CLAIM TOKEN frames are sent, the sender becomes the new mon-
itor (each station has monitor capability built in). The token ring control frames
are shown in Fig. 4-31.

Control field Name Meaning 4‘
00000000 Duplicate address'test Test if two stations have the same address
00000010 Beacon Used to locate breaks in the ring

00000011 Claim token Attempt to become monitor

00000100 Purge Reinitialize the ring

00000101 Active monitor present Issued periodically by the monitor

00000110 Standby monitor present | Announces the presence of potential monitoﬂ

Fig. 4-31. Token ring control frames.

Among the monitor’s responsibilities are seeing that the token is not lost, tak-
ing action when the ring breaks, cleaning the ring up when garbled'frames appear,
and watching out for orphan frames. An orphan frame occurs when a station
transmits a short frame in its entirety onto a long ring and then crashes or is
powered down before the frame can be drained. If nothing is done, the frame will
circulate forever.

To check for lost tokens, the monitor has a timer that is set to the longest pos-
sible tokenless interval: each station transmitting for the full token-holding time.
If this timer goes off, the monitor drains the ring and issues a new token.

When a garbled frame appears, the monitor can detect it by its invalid format
or checksum, open the ring to drain it, and issue a new token when the ring has

Page 77 of 137

SEC. 4.3 [EEE STANDARD 802 FOR LANS AND MANS 299

been cleaned up. Finally, the monitor detects orphan frames by setting the moni-
tor bit in the Access control byte whenever it passes through. If an incoming
frame has this bit set, something is wrong since the same frame has passed the
monitor twice without having been drained, so the monitor drains it.

One last monitor function concerns the length of the ring. The token is 24 bits
Jong, which means that the ring must be big enough to hold 24 bits. If the 1-bit
delays in the stations plus the cable length add up to less than 24 bits, the monitor
inserts extra delay bits so that a token can circulate.

One maintenance function that cannot be handled by the monitor is locating
breaks in the ring. When a station notices that either of its neighbors appears to
be dead, it transmits a BEACON frame giving the address of the presumably dead
station. When the beacon has propagated around as far as it can, it is then possi-
ble to see how many stations are down and deleteé them from the ring using the
bypass relays in the wire center, all without human intervention. ~

It is instructive to compare the approaches taken to controlling the token bus
and the token ring. The 802.4 committee was scared to death of having any cen-
tralized component that could fail in some unexpected way and take the system
down with it. Therefore they designed a system in which the current token holder
had special powers (e.g., soliciting bids to join the ring), but no station was other-
wise different from the others (e.g., currently assigned administrative responsibil-
ity for maintenance).

The 802.5 committee, on the other hand, felt that having a centralized monitor
made handling lost tokens, orphan frames and so on much easier. - Furthermore, in
a normal system, stations hardly ever crash, so occasionally having to put up with
contention for a new monitor is not a great hardship. The price paid is that if the
monitor ever really goes berserk but continues to issue ACTIVE MONITOR PRESENT
control frames periodically, no station will ever challenge it. Monitors cannot be
impeached.

This difference in approach comes from the different application areas the
two committees had in mind. The 802.4 committee was thinking in terms of fac-
tories with large masses of metal moving around under computer control. Net-
work failures could result in severe damage and had to be prevented at all costs.
The 802.5 committee was interested in office automation, where a failure once in
a rare while could be tolerated as the price for a simpler system. Whether 802.4
is, in fact, more reliable than 802.5 is a matter of some controversy.

4.3.4. Comparison of 802.3, 802.4, and 802.5

With three different and incompatible LANs available, each with different
properties, many organizations are faced with the question: Which one should we
install? in this section we will look at all three of the 802 LAN standards, point-
ing out their strengths and weaknesses, comparing and contrasting them.

Page 78 of 137

SEC. 4.5 HIGH-SPEED LANS 319

. 4.5.1. FDDI

FDDI (Fiber Distributed Data Interface) is a high-performance fiber optic
token ring LAN running at 100 Mbps over distances up to 200 km with up to 1000
stations connected (Black, 1994; Jain, 1994; Mirchandani and Khanna, 1993; Ross
and Hamstra, 1993; Shah and Ramakrishnan, 1994; and Wolter, 1990). It can be
used in the same way as any of the 802 LANs, but with its high bandwidth,
another common use is as a backbone to connect copper LANs, as shown in

- Fig. 4-44. FDDI-II is the successor to FDDI, modified to handle synchronous
circuit-switched PCM data for voice or ISDN traffic, in addition to ordinary data.
We will refer to both of them as just FDDI. This section deals with both the phy-
sical layer and the MAC sublayer of FDDL :

ronnon L1
bod

Bridge T il
El] FDDI ring é] |£

Ethernet

Bridge

I'g & Computer

Token fing ? T l]_J
IJ_‘I é] Ethernet

Fig. 4-44. An FDDI ring being used as a backbone to connect LANs and com-
puters.

EDDI uses multimode fibers because the additional expense of single mode
fibers is not needed for networks running at only 100 Mbps. It also uses LEDs
rather than lasers, not only due to their lower cost, but also because FDDI may

~ sometimes be used to connect directly to user workstations. There is a danger that
curious users may occasionally unplug the fiber connector and look directly into it
to watch the bits go by at 100 Mbps. With a laser the curious user might end up
with a hole in his retina. LEDs are too weak to do any eye damage but are strong
enough to transfer data accurately at 100 Mbps. The FDDI design specification
calls for no more than 1 error in 2.5 X 1010 bits. Many implementations do much
better.

The FDDI cabling consists of two fiber rings, one transmitting clockwise and
the other transmitting counterclockwise, as illustrated in Fig. 4-45(a). If either
one breaks, the other can be used as a backup. If both break at the same point, for

Page 79 of 137

320 THE MEDIUM ACCESS SUBLAYER CHAP. 4

example, due to a fire or other accident in the cable duct, the two rings can be
joined into a single ring approximately twice as long, as shown in Fig. 4-45(b).
Each station contains relays that can be used to join the two rings or bypass the

station in the event of station problems. Wire centers can also be used, as in
802.5.

AT P N

T T

(@) (b)

Fig. 4-45. (a) FDDI consists of two counterrotating rings. (b) In the event of
failure of both rings at one point, the two rings can be joined together to form a
single long ring.

FDDI defines two classes of stations, A and B. Class A stations connect to
both rings. The cheaper class B stations only connect to one of the rings.
Depending on how important fault tolerance is, an installation can choose class A
or class B stations, or some of each.

The physical layer does not use Manchester encoding because 100-Mbps
Manchester encoding requires 200 megabaud, which was deemed too expensive.
Instead a scheme called 4 out of 5 encoding is used. Each group of 4 MAC sym-
bols (Os, 1s, and certain nondata symbols such as start-of-frame) are encoded as a
group of 5 bits on the medium. Sixteen of the 32 combinations are for data, 3 are
for delimiters, 2 are for control, 3 are for hardware signaling, and 8 are unused
(i.e., reserved for future versions of the protocol). :

The advantage of this scheme is that it saves bandwidth, but the disadvantage
is the loss of the self-clocking property of Manchester encoding. To compensate
for this loss, a long preamble is used to synchronize the receiver to the sender’s
clock. Furthermore, all clocks are required to be stable to at least 0.005 percent.
With this stability, frames up to 4500 bytes can be sent without danger of the
receiver’s clock drifting too far out of sync with the data stream.

The basic FDDI protocols are closely modeled on the 802.5 protocols. To
transmit data, a station must first capture the token. Then it transmits a frame and
removes it when it comes around again. One difference between FDDI and 802.5
is that in 802.5, a station may not generate a new token until its frame has gone all
the way around and come back. In FDDI, with potentially 1000 stations and 200
km of fiber, the amount of time wasted waiting for the frame to circumnavigate
the ring could be substantial. For this reason, it was decided to allow a station to

Page 80 of 137

SEC. 4.5 HIGH-SPEED LANS 321

put a new token back onto the ring as soon as it has finished transmitting its
frames. In a large ring, several frames might be on the ring at the same time.

FDDI data frames are similar to 802.5 data frames. The FDDI format is
shown in Fig. 4-46. The Start delimiter and End delimiter fields mark the frame
boundaries. The Frame control field tells what kind of frame this is (data, con-
trol, etc.). The Frame status byte holds acknowledgement bits, similar to those of
802.5. The other fields are analogous to 802.5.

Bytes >8 20r6 20r6 No limit 4 11
— 3=
Preamble Destination Source Data Checksum
address address ”

) '
l - Frame control Ending delimiter ’
Start delimiter

Frame status

Fig. 4-46. FDDI frame format.

In addition to the regular (asynchronous) frames, FDDI also permits special
synchronous frames for circuit-switched PCM or ISDN data. The synchronous
frames are generated every 125 psec by a master station to provide the 8000
samples/sec needed by PCM systems. Each of these frames has a header, 16
bytes of noncircuit-switched data, and up to 96 bytes of circuit-switched data (i.e.,
up to 96 PCM channels per frame).

The number 96 was chosen because it allows four T1 channels (4 X 24) at
1.544 Mbps or three CCITT E1 channels (3 x 32) at 2.048 Mbps to fit in a frame,
thus making it suitable for use anywhere in the world. One synchronous frame
every 125 psec consumes 6.144 Mbps of bandwidth for the 96 circuit-switched
channels. A maximum of 16 synchronous frames every 125 psec allows up to
1536 PCM channels and eats up 98.3 Mbps.

Once a station has acquired one or more time slots in a synchronous frame,
those slots are reserved for it until they are explicitly released. The total
bandwidth not used by the synchronous frames is allocated on demand. A bit
mask is present in each of these frames to indicate which slots are available for
demand assignment. The nonsynchronous traffic is divided into priority classes,
with the higher priorities getting first shot at the leftover bandwidth.

The FDDI MAC protocol uses three timers. The token holding timer deter-
mines how long a station may continue to transmit once it has acquired the token.
This timer prevents a station from hogging the ring forever. The token rotation
timer is restarted every time the token is seen. If this timer expires, it means that
the token has not been sighted for too long an interval. Probably it has been lost,
so the token recovery procedure is initiated. Finally, the valid transmission
timer is uséd to time out and recover from certain transient ring errors.

FDDI also has a priority algorithm similar to 802.4. It determines which

Page 81 of 137

322 THE MEDIUM ACCESS SUBLAYER CHAP. 4

priority classes may transmit on a given token pass. If the token is ahead of
schedule, all priorities may transmit, but if it is behind schedule, only the highest
ones may send.

4.5.2. Fast Ethernet

FDDI was supposed to be the next generation LAN, but it never really caught
on much beyond the backbone market (where it continues to do fine). The station
management was too complicated, which led to complex chips and high prices.
The substantial cost of FDDI chips made workstation manufacturers unwilling to
make FDDI the standard network, so volume production never happened and
FDDI never broke through to the mass market. The lesson that should have been
learned here was KISS (Keep It Simple, Stupid).

In any event, the failure of FDDI to catch fire left a gap for a garden-variety
LAN at speeds above 10 Mbps. Many installations needed more bandwidth and
thus had numerous 10-Mbps LANs connected by a maze of repeaters, bridges,
routers, and gateways, although to the network managers it sometimes felt that
they were being held together by bubble gum and chicken wire.

It was in this environment that IEEE reconvened the 802.3 committee in 1992
with instructjons to come up with a faster LAN. One proposal was to keep 802.3
exactly as it was, but just make it go faster. Another proposal was to redo it
totally, to give it lots of new features, such as real-time traffic and digitized voice,
but just keep the old name (for marketing reasons). After some wrangling, the
committee decided to keep 802.3 the way it was, but just make it go faster. The
people behind the losing proposal did what any computer-industry people would
have done under these circumstances—they formed their own committee and
standardized their LAN anyway (eventually as 802.12).

The three primary reasons that the 802.3 committee decided to go with a
souped-up 802.3 LAN were:

1. The need to be backward compatible with thousands of existing LANs.
2. The fear that a new protocol might have unforeseen problems.
3. The desire to get the job done before the technology changed.

The work was done quickly (by standards committees’ norms), and the result,
802.3u, was officially approved by IEEE in June 1995. Technically, 802.3u is not
a new standard, but an addendum to the existing 802.3 standard (to emphasize its
backward compatibility). Since everyone calls it fast Ethernet, rather than
802.3u, we will do that, too.

The basic idea behind fast Ethernet was simple: keep all the old packet for-
mats, interfaces, and procedural rules, but just reduce the bit time from 100 nsec
to 10 nsec. Technically, it would have been possible to copy 10Base-5 or
10Base-2 and still detect collisions on time by just reducing the maximum cable

Page 82 of 137

SEC. 6.3 A SIMPLE TRANSPORT PROTOCOL 521

the actions following the wakeup also count. For example, if a CALL REQUEST
packet comes in and a process was asleep waiting for it, the transmission of the
CALL ACCEPT packet following the wakeup counts as part of the action for CALL
REQUEST. After each action is performed, the connection may move to a new
state, as shown in Fig. 6-21.

The advantage of representing the protocol as a matrix is threefold. First, in
this form it is much easier for the programmer to systematically check each com-
bination of state and event to see if an action is required. In production imple-
mentations, some of the combinations would be used for error handling. In
Fig. 6-21 no distinction is made between impossible situations and illegal ones.
For example, if a connection is in waiting state, the DISCONNECT event is impossi-
ble because the user is blocked and cannot execute any primitives at all. On the
other hand, in sending state, data packets are not expected because no credit has
been issued. The arrival of a data packet is a protocol error.

The second advantage of the matrix representation of the protocol is in imple-
menting it. One could envision a two-dimensional array in which element a[i 171
was a pointer or index to the procedure that handled the occurrence: of event i
when in state j. One possible implementation is to write the transport entity as a
short loop, waiting for an event at the top of the loop. When an event happens,
the relevant connection is located and its state is extracted. With the event and
state now known, the transport entity just indexes into the array a and calls the
proper procedure. This approach gives a much more regular and systematic
design than our transport entity.

The third advantage of the finite state machine approach is for protocol
description. In some standards documents, the protocols -are given as finite state
machines of the type of Fig. 6-21. Going from this kind of description to a work-
ing transport entity is much easier if the transport entity is also driven by a finite
state machine based on the one in the standard. '

The primary disadvantage of the finite state machine approach is that it may
be more difficult to understand than the straight programming example we used
initially. However, this problem may be partially solved by drawing the finite
state machine as a graph, as is done in Fig. 6-22. :

6.4. THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP)

The Internet has two main protocols in the transport layer, a connection-
oriented protocol and a connectionless one. In the following sections we will
study both of them. The connection-oriented protocol is TCP. The connection-
less protocol is UDP. Because UDP is basically just IP with a short header added,
we will focus on TCP.

TCP (Transmission Control Protocol) was specifically designed to provide
a reliable end-to-end byte stream .over an unreliable internetwork. An

Page 83 of 137

522 THE TRANSPORT LAYER CHAP. 6

(N

CONNECT TIMEOUT
IDLE '
CLEAR REQ ' — CALLREQ
l - ,
e
Zlo
[TIRI =
WAITING Sl Z QUEUED
Il 8
O &
| =)
CALLACC [— LISTEN
ESTAB-
DATA, LISHED RECEIVE
("CLEAR REQ / }
[
SEND z DATA,
SENDING Z SIEARREG RECEIVING
O
4]
QO

J

DISCON-
NECTING

k CLEAR REQ, CLEAR CONF J

Fig. 6-22. The example protocol in graphical form. Transitions that leave the
connection state unchanged have been omitted for simplicity.

internetwork differs from a single network because different parts may have
wildly different topologies, bandwidths, -delays, packet sizes, and other parame-
ters. TCP was designed to dynamically adapt to properties of the internetwork
and to be robust in the face of many kinds of failures.

TCP was formally defined in RFC 793. As time went on, various errors and
inconsistencies were detected, and the requirements were changed in some areas.
These clarifications and some bug fixes are detailed in RFC 1122. Extensions are
given in RFC 1323. ,

* Each machine supporting TCP has a TCP transport entity, either a user pro-
cess or part of the kernel that manages TCP streams and interfaces to the IP layer. -
A TCP entity accepts user data streams from local processes, breaks them up into
pieces not exceeding 64K bytes (in practice, usually about 1500 bytes), and sends
each piece as a separate IP datagram. When IP datagrams containing TCP data
arrive at a machine, they are given to the TCP entity, which reconstructs the origi-
nal byte streams. For simplicity, we will sometimes use just “TCP” to mean the

Page 84 of 137

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 523

TCP transport entity (a piece of software) or the TCP protocol (a set of rules).
From the context it will be clear which is meant. For example, in “The user gives
TCP the data,” the TCP transport entity is clearly intended.

The IP layer gives no guarantee that datagrams will be delivered properly, so
it is up to TCP to time out and retransmit them as need be. Datagrams that do
arrive may well do so in the wrong order; it is also up to TCP to reassemble them
into messages in the proper sequence. In short, TCP must furnish the reliability
that most users want and that IP does not provide.

6.4.1. The TCP Service Model

TCP service is obtained by having both the sender and receiver create end
points, called sockets, as discussed in Sec. 6.1.3. Each socket has a socket
number (address) consisting of the IP address of the host and a 16-bit number
local to that host, called a port. A port is the TCP name for a TSAP. To obtain
TCP service, a connection must be explicitly established between a socket on the
sending machine and a socket on the receiving machine. The socket calls are
listed in Fig. 6-6. '

A socket may be used for multiple connections at the same time. In other
words, two or more connections may terminate at the same socket. Connections
are identified by the socket identifiers at both ends, that is, (socketl, socket2). No
virtual circuit numbers or other identifiers are used.

Port numbers below 256 are called well-known ports and are reserved for
standard services. For example, any process wishing to establish a connection to
a host to transfer a file using FTP can connect to the destination host’s port 21 to
contact its FTP daemon. Similarly, to establish a remote login session using TEL-
NET, port 23 is used. The list of well-known ports is given in RFC 1700.

All TCP connections are full-duplex and point-to-point. Full duplex means
that traffic can go in both directions at the same time. Point-to-point means that
each connection has exactly two end points. TCP does not support multicasting or
broadcasting. :

A TCP connection is a byte stream, not a message stream. Message bound-
aries are not preserved end to end. For example, if the sending process does four
512-byte writes to a TCP stream, these data may be delivered to the receiving pro-
cess as four 512-byte chunks, two 1024-byte chunks, one 2048-byte chunk (see
Fig. 6-23), or some other way. There is no way for the receiver to detect the
unit(s) in which the data were written.

Files in UNIX have this property too. The reader of a file cannot tell whether
the file was written a block at a time, a byte at a time, or all in one blow. As with
a UNIX file, the TCP software has no idea of what the bytes mean and no interest
in finding out. A byte is just a byte.

When an application passes data to TCP, TCP may send it immediately or
buffer it (in order to collect a larger amount to send at once), at its discretion.

Page 85 of 137

524 . THE TRANSPORT LAYER . - CHAP. 6

IP header / TCP header

p| ' ABCD

@ | ©

Fig. 6-23. (a) Four 512-byte segments sent as separate IP datagrams. (b) The
2048 bytes of data delivered to the application in a single READ call.

However, sometimes, the apphcat10n really wants the data to be sent immediately.

For example, suppose a user is logged int6 a remote machine. After a command
line has been finished and the carriage return typed, it is essential that the line be
shipped off to the remote machine immediately and not buffered until the next -
line comes in. To force data out, applications can use the PUSH flag, which tells
TCP not to delay the transmission.

Some early applications used the PUSH flag as a kind of marker to delineate
messages boundaries. While this trick sometimes works, it sometimes fails since
not all implementations of TCP pass the PUSH flag to the application on the
receiving side. Furthermore, if additional PUSHes come in before the first one
has been transmitted (e.g., because the output line is busy), TCP is free to collect
all the PUSHed data into a single IP datagram, w1th no separation between the
various pieces.

One last feature of the TCP service that is worth mentioning here is urgent
data. When an interactive user hits the DEL or CTRL-C key to break off a
remote computation that has already begun, the sending application puts some
control information in the data stream and gives it to TCP along with the
URGENT flag. This event causes TCP to stop accumulating data and transmit
everything it has for that connection immediately. ,

When the urgent data are received at the destination, the receiving application
is interrupted (e.g., given a signal in UNIX terms), so it can stop whatever it was
doing and read the data stream to find the urgent data. The end of the urgent data
is marked, so the apphcatlon knows when it-is over. The start of the urgent data is
not marked. It is up to the application to figure that out. This scheme basically
provides a crude signaling mechanism and leaves everything else up to the apph—
cation.

6.4.2. The TCP Protocol

In this section we -will give a general overview of the TCP protocol. In the
next one we will go over the protocol header, field by field. Every byte on a TCP
connection has its own 32-bit sequence number. For a host blasting away at full

Page 86 of 137

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 525

speed on a 10-Mbps LAN, theoretically the sequence numbers could wrap around
in an hour, but in practice it takes much longer. The sequence numbers are used
both for acknowledgements and for the window mechanism, which use separate
32-bit header fields.

The sending and receiving TCP entities exchange data in the form of seg-
ments. A segment consists of a fixed 20-byte header (plus an optional part) fol-
lowed by zero or more data bytes. The TCP software decides how big segments
should be. It can accumulate data from several writes into one segment or split
data from one write over multiple segments. Two limits restrict the segment size.
First, each segment, including the TCP header, must fit in the 65,535 byte IP pay-
load. Second, each network has a maximum transfer unit or MTU, and each
segment must fit in the MTU. In practice, the MTU is generally a few thousand
bytes and thus defines the upper bound on segment size. If a segment passes
through a sequence of networks without being fragmented and then hits one
whose MTU is smaller than the segment, the router at the boundary fragments the
segment into two or more smaller segments.

A segment that is too large for a network that it must transit can be broken up
into multiple segments by a router. Each new segment gets its own TCP and IP
headers, so fragmentation by routers increases the total overhead (because each
additional segment adds 40 bytes of extra header information).

The basic protocol used by TCP entities is the sliding window protocol.
When a sender transmits a segment, it also starts a timer. When the segment
arrives at the destination, the receiving TCP entity sends back a segment (with
data if any exists, otherwise without data) bearing an acknowledgement number
equal to the next sequence number it expects to receive. If the sender’s timer goes
off before the acknowledgement is received, the sender transmits the segment
again. _

Although this protocol sounds simple, there are many ins and outs that we will
cover below. For example, since segments can be fragmented, it is possible that
part of a transmitted segment arrives and is acknowledged by the receiving TCP
entity, but the rest is lost. Segments can also arrive out of order, so bytes -
3072-4095 can arrive but cannot be acknowledged because bytes 2048-3071 have
not turned up yet. Segments can also be delayed so long in transit that the sender
times out and retransmits them. If a retransmitted segment takes a different route
than the original, and is fragmented differently, bits and pieces of both the original
and the duplicate can arrive sporadically, requiring a careful administration to-
achieve a reliable byte stream. Finally, with so many networks making up the
Internet, it is possible that a segment may occasionally hit a congested (or broken)
network along its path. ‘

TCP must be prepared to deal with these problems and solve them in an effi-
cient way. A considerable amount of effort has gone into optimizing the perfor-
mance of TCP streams, even in the face of network problems. A number of the
algorithms used by many TCP implementations will be discussed below.

Page 87 of 137

526 o THE TRANSPORT LAYER CHAP. 6

- 6.4.3. The TCP Segment Header

Figure 6-24 shows the layout of a TCP segment. Every segment begins with a
fixed-format 20-byte header. The fixed header may be followed by header
options. After the options, if any, up to 65,535 — 20 — 20 = 65,515 data bytes may
follow, where the first 20 refers to the IP header and the second to the TCP
header. Segments without any. data are legal and are commonly used for

acknowledgements and control messages.
' N
32 Bits

Source port Destination port

Sequence number

Acknowledgement number

PIR|S|F
SIS|Y| | Window size
H{T|N|N :
Checksum Urgent pointer
%:: ' Options (0 or more 32-bit words) =

J

*:r : Data (optional) : T

‘ Fig. 6-24. The TCP header.

Let us dissect the TCP header field by field. The Source port and-Destination
port fields identify the local end points of the connection. Each host may decide
for itself how to allocate its own ports starting at 256. A port plus its host’s IP
~ address forms a 48-bit unique TSAP. The source and destination socket numbers
 together identify the connection.

The Sequence number and Acknowledgement number fields perform their
usual functions. Note that the latter specifies the next byte expected, not the last
byte correctly received. Both are 32 bits long because every byte of data is num-
bered in a TCP stream. ‘

The TCP header length tells how many 32-bit words are contained in the TCP
header. This information is needed because the Options field is of variable length,
so the header is too. Technically, this field really indicates the start of the data

Page 88 of 137

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 527

within the segment, measured in 32-bit words, but that number is just the header
length in words, so the effect is the same.

Next comes a 6-bit field that is not used. The fact that this field has survived
intact for over a decade is testimony to how well thought out TCP is. Lesser pro-

- tocols would have needed it to fix bugs in the original design.

Now come six 1-bit flags. URG is set to 1 if the Urgent pointer is in use. The
Urgent pointer is used to indicate a byte offset from the current sequence number
at which urgent data are to be found. This facility is in lieu of interrupt messages.
As we mentioned above, this facility is a bare bones way of allowing the sender to
signal the receiver without getting TCP itself involved in the reason for the inter-
rupt.

The ACK bit is set to 1 to indicate that the Acknowledgement number is valid.

" If ACK is 0, the segment does not contain an acknowledgement so the Acknowl-
edgement number field is ignored.

The PSH bit indicates PUSHed data. The receiver is hereby kindly requested

“to deliver the data to the application upon arrival and not buffer it until a full
buffer has been received (which it might otherwise do for efficiency reasons).

The RST bit is used to reset a connection that has become confused due to a
host crash or some other reason. It is also used to reject an invalid segment or
refuse an attempt to open a connection. In general, if you get a segment with the
RST bit on, you have a problem on your hands. _

The SYN bit is used to establish connections. The connection request has
SYN =1 and ACK = 0 to indicate that the piggyback acknowledgement field is not
in use. The connection reply does bear an acknowledgement, so it has SYN =1
and ACK = 1. In essence the SYN bit is used to denote CONNECTION REQUEST and
CONNECTION ACCEPTED, with the ACK bit used to distinguish between those two
possibilities.

The FIN bitis used to release a connection. It specifies that the sender has no
more data to transmit. However, after closing a connection, a process may con-
tinue to receive data indefinitely. Both SYN and FIN segments ‘have sequence
numbers and are thus guaranteed to be processed in the correct order.

Flow control in TCP is handled using a variable-size sliding window. The
Window field tells how many bytes may be sent starting at the byte acknowledged.
A Window field of 0 is legal and says that the bytes up to and including
Acknowledgement number — 1 have been received, but that the teceiver is
currently badly in need of a rest and would like no more data for the moment,
‘thank you. Permission to send can be granted later by sending a segment with the
same Acknowledgement number and a nonzero Window field.

A Checksum is also provided for extreme reliability. It checksums the header,
the data, and the conceptual pseudoheader shown in Fig. 6-25. When performiing
this computation, the TCP Checksum field is set to zero, and the data field is pad-
ded out with an additional zero byte if its length is an odd number. The checksum
algorithm is simply to add up all the 16-bit words in 1’s complement and then to

Page 89 of 137

528 THE TRANSPORT LAYER " CHAP. 6

take the 1’s complement of the sum. As a consequence, when the receiver per-
forms the calculation on the entire segment, including the Checksum field, the
result should be 0.

- : 32 Bits -

OO SR AU A EON O | l|ll||||l|ll|!l | I SO DU S | !l

Source address

Destination address

00000000 Protocol=6 . TCP segment length

Fig. 6-25. The pseudoheader included in the TCP checksum.

The pseudoheader contains the 32-bit IP addresses of the source and destina-
tion machines, the protocol number for TCP (6), and the byte count for the TCP
segment (including the header). Including the pseudoheader in the TCP checksum
computation helps detect misdelivered packets, but doing so violates the protocol
hierarchy since the IP addresses in it belong to the IP layer, not the TCP layer.

The Options field was designed to provide a way to add extra facilities not
covered by the regular header. The most important option is the one that allows

~ each host to specify the maximum TCP -payload it is willing to accept. Using
large segments is more efficient than using small ones because the 20-byte header
can then be amortized over more data, but small hosts may not be able to handle
very large segments. During connection setup, each side can announce its max-
imum and see its partner’s. The smaller of the two numbers wins. If a host does
not use this option, it defaults to a 536-byte payload. All Internet hosts are '
required to accept TCP segments of 536 + 20 = 556 bytes. :

For lines with high bandwidth, high delay, or both, the 64 KB window is often
a problem. On a T3 line (44.736 Mbps), it takes only 12 msec to output a full 64
KB window. If the round trip propagation delay is 50 msec (typical for a trans-
continental fiber), the sender will be idle 3/4 of the time waiting for acknowledge-
ments. On a satellite connection, the situation is even worse. A larger window
size would allow the sender to keep pumping data out, but using the 16-bit Win-
dow size field, there is no way to express such a size. In RFC 1323, a Window
scale option was proposed, allowing the sender and receiver to negotiate a win-
dow scale factor. This number allows both sides to shift the Window size field up
to 16 bits to the left, thus allowing windows of up to 232 bytes. Most TCP imple-
mentations now support this option.

Another option proposed by RFC 1106 and now widely implemented is the
use of the selective repeat instead of go back n protocol. If the receiver gets one
bad segment and then a large number of good ones, the normal TCP protocol will

Page 90 of 137

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 529

eventually time out and retransmit all the unacknowledged segments, including all
those that were received correctly. RFC 1106 introduced NAKs, to allow the
receiver to ask for a specific segment (or segments). After it gets these, it can
acknowledge all the buffered data, thus reducing the amount of data retransmitted.

6.4.4. TCP Connection Management

Connections are established in TCP using the three-way handshake discussed
in Sec. 6.2.2. To establish a connection, one side, say the server, passively waits
for an incoming connection by executing the LISTEN and ACCEPT primitives, either
specifying a specific source or nobody in particular. :

The other side, say the client, executes a CONNECT primitive, specifying the
IP address and port to which it wants to connect, the maximum TCP segment size
it is willing to accept, and optionally some user data (e.g., a password). The CON-
NECT primitive sends a TCP segment with the SYN bit on and ACK bit off and
waits for a response.

When this segment arrives at the destination, the TCP entity there checks to
see if there is a process that has done a LISTEN on the port given in the Destination
port field. If not, it sends a reply with the RST bit on to reject the connection.

Host 1 Host 2 Host 1 Host 2

—SYN (SEQ = x

,x—\-ﬂ

K =
SYN (SEQ = y. AY

SYN

(a) | »)

<—~T‘Tlme

Fig. 6-26. (a) TCP connection establishment in the normal case. (b) Call colli-
‘sion.

If some process is listening to the port, that process is given the incoming
TCP segment. It can then either accept or reject the connection. If it accepts, an
acknowledgement segment is sent back. The sequence of TCP segments sent in
the normal case is shown in Fig. 6-26(a). Note that a SYN segment consumes 1
byte of sequence space so it can be acknowledged unambiguously.

Page 91 of 137

530 THE TRANSPORT LAYER - CHAP. 6

In the event that two hosts simultaneously attempt to establish a connection
between the same two sockets, the sequence of events is as illustrated in Fig. 6-
26(b). The result of these events is that just one connection is established, not two
because connections are identified by their end points. If the first setup results in
a connection identified by (x, y) and the second one does too, only one table entry
is made, namely, for (x, y). ‘

The initial sequence number on a connection is not O for the reasons we dis-
cussed earlier. A clock-based scheme is used, with a clock tick every 4 usec. For
additional safety, when a host crashes, it may not reboot for the maximum packet
lifetime (120 sec) to make sure that no packets from previous connections are still
roaming around the Internet somewhere.

Although TCP connections are full duplex, to understand how connections are
released it is best to think of them as a pair of simplex connections. Each simplex
connection is released independently of its sibling. To release a connection, either
party can send a TCP segment with the FIN bit set, which means that it has no
more data to transmit. When the FIN is acknowledged, that direction is shut
down. Data may continue to flow indefinitely in the other direction, however.
When both directions have been shut down, the connection is released. Normally,
four TCP segments are needed to release a connection, one FIN and one ACK for
each direction. However, it is possible for the first ACK and the second FIN to be
contained in the same segment, reducing the total count to three.

Just as with telephone calls in which both people say goodbye and hang up the
phone simultaneously, both ends of a TCP connection may send FIN segments at
the same time. These are each acknowledged in the usual way, and the connec-
tion shut down. There is, in fact, no essential difference between the two hosts
releasing sequentially or simultaneously.

To avoid the two-army problem, timers are used. If a response to a FIN is not
forthcoming within two maximum packet lifetimes, the sender of the FIN releases
the connection. The other side will eventually notice that nobody seems to be
listening to it any more, and time out as well. While this solution is not perfect,
given the fact that a perfect solution is theoretically impossible, it will have to do.
In practice, problems rarely arise. '

The steps required to establish and release connections can be represented ina
finite state machine with the 11 states listed in Fig. 6-27. In each state, certain
events are legal. When a legal event happens, some action may be taken. If some
other event happens, an error is reported. ~ _

Each connection starts in the CLOSED state. It leaves that state when it does
either a passive open (LISTEN), or an active open (CONNECT). If the other side
does the opposite one, a connection is established and the state becomes ESTAB-
LISHED. Connection release can be initiated by either side. When it is complete,
the state returns to CLOSED.

The finite state machine itself is shown in Fig. 6-28. The common case of a
client actively connecting to a passive server is shown with heavy lines—solid for

Page 92 of 137

SEC. 64 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 531

State Description

CLOSED No connection is active or pending

LISTEN The server is waiting for an incoming call

SYN RCVD A connection request has arrived; wait for ACK

SYN SENT The application has started to open a connection

ESTABLISHED | The normal data transfer state

FIN WAIT 1 The application has said it is finished

FIN WAIT 2 The other side has agreed to release

TIMED WAIT Wait for all packets to die off

| CLOSING Both sides have tried to close simultaneously
CLOSE WAIT The other side has initiated a release
LAST ACK Wait for all packets to die off

Fig. 6-27. The states used in the TCP connection management finite state
machine. '

the client, dotted for the server. The lightface lines are unusual event sequences.
Each line in Fig. 6-28 is marked by an event/action pair. The event can either be
a user-initiated system call (CONNECT, LISTEN, SEND, or CLOSE), a segment arrival
(SYN, FIN, ACK, or RST), or in one case, a timeout of twice the maximum packet
lifetime. The action is the sending of a control segment (SYN, FIN, or RST) or
nothing, indicated by —. Comments are shown in parentheses.

The diagram can best be understood by first following the path of a client (the
heavy solid line) then later the path of a server (the heavy dashed line). When an
application on the client machine issues a CONNECT request, the local TCP entity
creates a connection record, marks it as being in the SYN SENT state, and sends a
SYN segment. Note that many connections may be open (or being opened) at the
same time on behalf of multiple applications, so the state is per connection and
recorded in thé connection record. When the SYN+ACK arrives, TCP sends the
final ACK of the three-way handshake and switches into the ESTABLISHED state.
Data can now be sent and received. ' :

When an application is finished, it executes a CLOSE primitive, which causes
the local TCP entity to send a FIN segment and wait for the corresponding ACK
(dashed box marked active close). When the ACK arrives, a transition is made to
state FIN WAIT 2 and one direction of the connection is now closed. When the
other side closes, too, a FIN comes in, which is acknowledged. Now both sides
are closed, but TCP waits a time equal to the maximum packet lifetime to guaran-
© tee that all packets from the connection have died off, just in case the acknowl-
edgement was lost. When the timer goes off, TCP deletes the connection record.

Page 93 of 137

532 THE TRANSPORT LAYER CHAP. 6

(Start) ~
CONNECT/SYN
CLOSED [2 ~N
: CLOSE/~ w
1
LISTEN/- ! CLOSE/~
SYN/SYN + ACK I
oI LISTEN
: .
' AN |
B T/— SEND/SYN
SYN RST/ > - SYN
RC\{D SYN/SYN + ACK (simultaneous open) SENT
:
1
E (Data transfer stake)

K. ACK—- . | ESTABLISHED |= /
SYN + ACK/ACK

CLOSE/FIN . E (Step 3 of the three-way handshake)
1
CLOSE/FIN \ FIN/ACK
((Active close) (Passive) v Close)
T [15 1 T yottTT i
i ! S FIN/ACK , . | CL'OSE g
1 Fl - | i
L

y WAIT 1 CLOSING g '; WAIT i
| i : !
I ACK/- ACK~ | ! CLOSE/FIN|
i : | ! i
| FIN + ACK/ACK . . * I
: FIN TIMED ! i IX*&T !
1] {
L [WAT2 | FINJACK WAIT : E . |
! [: |
I SV RS

(Timeout/) i
ACK/- J
CLOSED |<=mmmmmmmmmmmmmmmmmme -

(Go back to start)

Fig. 6-28. TCP connection management finite state machine. The heavy solid
line is the normal path for a client. The heavy dashed line is the normal path for
a server. The light lines are unusual events. ‘

Now let us examine connection management from the server’s viewpoint.
The server does a LISTEN and settles down to see who turns up. When a SYN
comes in, it is acknowledged and the server goes to the SYN RCVD state. When
the server’s SYN is itself acknowledged, the three-way handshake is complete and
the server goes to the ESTABLISHED state. Data transfer can now occur.

When the client has had enough, it does a CLOSE, which causes a FIN to
arrive at the server (dashed box marked passive close). The server is then

Page 94 of 137

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 533

signaled. When it, too, does a CLOSE, a FIN is sent to the client. When the
client’s acknowledgement shows up, the server releases the connection and
deletes the connection record. '

6.4.5. TCP Transmission Policy

Window management in TCP is not directly tied to acknowledgements as it is
in most data link protocols. For example, suppose the receiver has a 4096-byte
buffer as shown in Fig. 6-29. If the sender transmits a 2048-byte segment that is
correctly received, the receiver will acknowledge the segment. However, since it
now has only 2048 of buffer space (until the application removes some data from
the buffer), it will advertise a window of 2048 starting at the next byte expected.

Sender Receiver Receiver's
Application buffer
dqes a2k ——» 0 4K
write
Empty
ACK = 2048 WIN = 2048
Application
does a 3K —
R o=z __
Sender is Application -

blocked reads 2K
Sender may
send up to 2K —

Fig. 6-29. Window management in TCP.

Now the sender transmits another 2048 bytes, which are acknowledged, but
the advertised window is 0. The sender must stop until the application process on

Page 95 of 137

534 THE TRANSPORT LAYER CHAP. 6

the receiving host has removed some data from the buffer, at which time TCP can
advertise a larger window. '

When the window is 0, the sender may not normally send segments, with two
exceptions. First, urgent data may be sent, for example, to allow the user to kill
the process running on the remote machine. Second, the sender may send a 1-byte
segment to make the receiver reannounce the next byte expected and window
size. The TCP standard explicitly provides this optlon to prevent deadlock if a
window announcement ever gets lost.

Senders are not required to transmit data as soon as they come in from the
application. Neither are receivers required to send acknowledgements as soon as
possible. For example, in Fig. 6-29, When the first 2 KB of data came in, TCP,
knowing that it had a 4-KB window available, would have been completely
correct in just buffering the data until another 2 KB came in, to be able to transmit
a segment with a 4-KB payload. This freedom can be exploited to improve per-
formance.

Consider a TELNET connection to an interactive editor that reacts on every
keystroke. In the worst case, when a character arrives at the sending TCP entity,
TCP creates a 21-byte TCP segment, which it gives to IP to send as a 41-byte IP
datagram. At the receiving side, TCP immediately sends a 40-byte acknowledge-
ment (20 bytes of TCP header and 20 bytes of IP header). Later, when the editor
has read the byte, TCP sends a window update, moving the window 1 byte to the
right. This packet is also 40 bytes. Finally, when the editor has processed the
character, it echoes-it as a 41-byte packet. In all, 162 bytes of bandwidth are used
and four segments are sent for each character typed. When bandwidth is scarce,
this method of doing business is not desirable.

One approach that many TCP implementations use to optimize this situation
is to delay acknowledgements and window updates for 500 msec in the hope of
acquiring some data on which to-hitch a free ride. Assuming the editor echoes
within 500 msec, only one 41-byte packet now need be sent back to the remote
user, cutting the packet count and bandwidth usage in half.

Although this rule reduces the load placed on the network by the receiver, the
sender is still operating inefficiently by sending 41-byte packets containing 1 byte
of data. A way to reduce this usage is known as Nagle’s algorithm (Nagle,
1984). What Nagle suggested is simple: when data come into the sender one byte -
at a time, just send the first byte and buffer all the rest until the outstanding byte is
acknowledged. Then send all the buffered characters in one TCP segment and
start buffering again until they are all acknowledged. If the user is typing quickly
and the network is slow, a substantial number of characters may go in each seg-
ment, greatly reducing the bandwidth used. The algorithm additionally allows a
new packet to be sent if enough data have trickled in to fill half the window or a
maximum segment.

Nagle’s algorithm is widely used by TCP implementations, but there are times
when it is better to disable it. In particular, when an X-Windows application is

Page 96 of 137

SEC. 64 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 535

being run over the Internet, mouse movements have to sent to the remote com-
puter. Gathering them up to send in bursts makes the mouse cursor move errati-
cally, which makes for unhappy users. '

Another problem that can ruin TCP performance is the silly window syn-
drome (Clark, 1982). This problem occurs when data are passed to the sending
TCP entity in large blocks, but an interactive application on the receiving side
reads data 1 byte at a time. To see the problem, look at Fig. 6-30. Initially, the
TCP buffer on the receiving side is full and the sender knows this (i.e., has a win-
dow of size 0). Then the interactive application reads one character from the TCP
stream. This action makes the receiving TCP happy, so it sends a window update
to the sender saying that it is all right to send 1 byte. The sender obliges and
sends 1 byte. The buffer is now full, so the receiver acknowledges the 1-byte seg-
ment but sets the window to 0. This behavior can go on forever.

Application reads 1 byte’

Window update segment sent

- New byte arrives
/ |

1 Byte

Fig. 6-30. Silly window syndrome.

Clark’s solution is to prevent the receiver from sending a window update for 1
byte. Instead it is forced to wait until it has a decent amount of space available
and advertise that instead. Specifically, the receiver should not send a window
update until it can handle the maximum segment size it advertised when the con-
nection was established, or its buffer is half empty, whichever is smaller. .

Furthermore, the sender can also help by not sending tiny segments. Instead,
it should try to wait until it has accumulated enough space in the window to send a
full segment or at least one containing half of the receiver’s buffer size (which it
must estimate from the pattern of window updates it has received in the past).

Page 97 of 137

536 THE TRANSPORT LAYER CHAP. 6

Nagle’s algorithm and Clark’s solution to the silly window syndrome are

" complementary. Nagle was trying to solve the problem caused by the sending.

application delivering data to TCP a byte at a time. Clark was trying to solve the

problem of the receiving application sucking the data up from TCP a byte at a

time. Both solutions are valid and can work together. . The goal is for the sender
not to send small segments and the receiver not to ask for them.

The receiving TCP can go further in improving performance than just doing
window updates in large units. Like the sending TCP, it also has the ability to
buffer data, so it can block a READ request from the application until it has a large
chunk of data to provide. Doing this reduces the number of calls to TCP, and
hence the overhead. Of course, it also increases the response time, but for nonin-
teractive applications like file transfer, efficiency may outweigh response time to
individual requests.

Another receiver issue is what to do Wlth out of order segments. They can be
kept or discarded, at the receiver’s discretion. Of course, acknowledgements can
be sent only when all the data up to the byte acknowledged have been received. If
the receiver gets segments 0, 1, 2, 4, 5, 6, and 7, it can acknowledge everything up
to and including the last byte in segment 2. When the sender times out, it then
retransmits segment 3. If the receiver has buffered segments 4 through 7, upon
receipt of segment 3 it can acknowledge all bytes up to the end of segment 7:

6.4.6. TCP Congestion Control

When the load offered to any network is more than it can handle, congestion
builds up. The Internet is no exception. In this section we will discuss algorithms
that have been developed over the past decade to deal with congestion. Although
the network layer also tries to manage congestion, most of the heavy lifting is
done by TCP because the real solution to congestion is to slow down the data rate.

In theory, congestion can be dealt with by employing a principle borrowed
from physics: the law of conservation of packets. The idea is not to inject a new
packet into the network until an old one leaves (i.e., is delivered). TCP attempts
to achieve this goal by dynamically manipulating the window size.

The first step in managing congestion is detecting it. In the old days, detect-
ing congestion was difficult. A timeout caused by a lost packet could have been
caused by either (1) noise on a transmission line or (2) packet discard at a cong-
ested router. Telling the difference was difficult.

Nowadays, packet loss due to transmission errors is relatively rare because
most long-haul trunks are fiber (although wireless networks are a different story).
Consequently, most transmission timeouts on the Internet are due to-congestion.
All the Internet TCP algorithms assume that timeouts are caused by congestion
and monitor timeouts for signs of trouble the way miners watch their canaries.

Before discussing how TCP reacts to congestion, let us first describe what it
does to try to prevent it from occurring in the first place. When a connection is

Page 98 of 137

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 537

established, a suitable window size has to be chosen. The receiver can specify a
window based on its buffer size. If the sender sticks to this window size, prob-
lems will not occur due to buffer overflow at the receiving end, but they may still
occur due to internal congestion within the network.

In Fig. 6-31, we see this problem illustrated hydraulically. In Fig. 6-31(a), we
see a thick pipe leading to a small-capacity receiver. As long as the sender does
not send more water than the bucket can contain, no water will be lost. In Fig. 6-

- 31(b), the limiting factor is not the bucket capacity, but the internal carrying capa-
city of the network. If too much water comes in too fast, it will back up and some
will be lost (in this case by overflowing the funnel). '

N

Transmission
rate adjustment

G2y

K

Internal
congestion

Transmission
network

Small-capacity Large-capacity
receiver . receiver

(@) » ()

Fig. 6-31. (a) A fast network feeding a low-capacity receiver. (b) A slow net-
work feeding a high-capacity receiver.

The Internet solution is to realize that two potential problems exist—network
capacity and receiver capacity—and to deal with each of them separately. To do
s0, each sender maintains two windows: the window the receiver has granted and
a second window, the congestion window. Each reflects the number of bytes the
sender may transmit. The number of bytes that may be sent is the minimum of the
two windows. Thus the effective window is the minimum of what the sender

Page 99 of 137

538 THE TRANSPORT LAYER ' CHAP. 6

thinks is all right and what the receiver thinks is all right. If the receiver says
“Send 8K but the sender knows that bursts of more than 4K clog the network up,
it sends 4K. On the other hand, if the receiver says “Send 8K and the sender
knows that bursts of up to 32K get through effortlessly, it sends the full 8K
requested. :

When a connection is established, the sender initializes the congestion win-
dow to the size of the maximum segment in use on the connection. It then sends
one maximum segment. If this segment is acknowledged before the timer goes
off, it adds one segment’s worth of bytes to the congestion window to make it two
maximum size segments and sends two segments. As each of these segments is
acknowledged, the congestion window is increased by one maximum segment
size. When the congestion window is n segments, if all n are acknowledged on
time, the congestion window is increased by the byte count corresponding to n
segments. In effect, each burst successfully acknowledged doubles the congestion
window. ;

The congestion window keeps growing exponentially until either a timeout
occurs or the receiver’s window is reached. The idea is that if bursts of size, say,
1024, 2048, and 4096 bytes work fine, but a burst of 8192 bytes gives a timeout,
the congestion window should be set to 4096 to avoid congestion. As long as the
congestion window remains at 4096, no bursts longer than that will be sent, no
‘matter how much window space the receiver grants. This algorithm is called slow
start, but it is not slow at all (Jacobson, 1988). It is exponential. All TCP imple-
mentations are required to support it.

Now let us look at the Internet congestion control algorithm. It uses a third
parameter, the threshold, initially 64K, in addition to the receiver and congestion
windows. When a timeout occurs, the threshold is set to half of the current
congestion window, and the congestion window is reset to one maximum seg-
ment. Slow start is then used to determine what the network can handle, except
that exponential growth stops when the threshold is hit. From that point on, suc-
cessful transmissions grow the congestion window linearly (by one maximum seg-
ment for each burst) instead of one per segment. In effect, this algorithm is guess-
ing that it is probably acceptable to cut the congestion window in half, and then it
gradually works its way up from there.

As an illustration of how the congestion algorithm works, see Fig. 6-32. The
maximum segment size here is 1024 bytes. Initially the congestion window was
64K, but a timeout occurred, so the threshold is set to 32K and the congestion
window to 1K for transmission O here. The congestion window then grows
exponentially until it hits the threshold (32K). Starting then it grows linearly.

Transmission 13 is unlucky (it should have known) and a timeout occurs. The
threshold is sét to half the current window (by now 40K, so half is 20K) and slow
start initiated all over again. When the acknowledgements from transmission 18
start coming in, the first four each increment the congestion window by one seg-
ment, but after that, growth becomes linear again.

Page 100 of 137

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 539

44 —
Timeout

re

40 -
36— " Threshold

o = -

24 Threshold

20 ' AT T s

16

Congestion window (kilobytes)

12

0 2 4 6 8 10 12 14 - 16 18 20 22 .24
Transmission number

Fig. 6-32. An example of the Internet congestion algorithm.

If no more timeouts occur, the congestion window will continue to grow up to
the size of the receiver’s window. At that point, it will stop growing and remain
constant as long as there are no more timeouts and the receiver’s window does not
change size. As an aside, if an ICMP SOURCE QUENCH packet comes in and is’
passed to TCP, this event is treated the same way as a timeout.

Work on improving the congestion control mechanism is continuing. For
example, Brakmo et al. (1994) have reported improving TCP throughput by 40
percent to 70 percent by managing the clock more accurately, predicting conges-
tion before timeouts occur, and using this early warning system to improve the
slow start algorithm.

6.4.7. TCP Timer Management

TCP uses multiple timers (at least conceptually) to do its work. The most
important of these is the retransmission timer. When a segment is sent, a
retransmission timer is started. If the segment is acknowledged before the timer
expires, the timer is stopped. If, on the other hand, the timer goes off before the
acknowledgement comes in, the segment is retransmitted (and the timer started
again). The question that arises is: How long should the timeout interval be?

Page 101 of 137

540 THE TRANSPORT LAYER A CHAP. 6

This problem is much more difficult in the Internet transport layer than in the
generic data link protocols of Chap. 3. In the latter case, the expected delay is
highly predictable (i.e., has a low variance), so the timer can be set to go off just
slightly after the acknowledgement is expected, as shown in Fig. 6-33(a). Since
acknowledgements are rarely delayed in the data link layer, the absence of an
acknowledgement at the expect time generally means the frame or the acknowl-
edgement has been lost.

0.3 — T To

03 T
. 1] i
1 t I
(\ 1] 1
| 1 1
1 1 I
1 1 t
| i I
I 1 I
1 1 I
0.2 — [0.2 l i
2z i > 1 l
= { = 1 t
K} ! o 1 t
© ! © i !
Ko} ! Q 1 f
<) : e ! i
[a i o 1 t
0.1 : 0.1 |- | !
] 1 1
] | H
1 1 i
) . I [!
. 1 I H
. I [H
1 " 1
I i 1
0 10 20 30 40 50 0 10 20 30 40 50
Round trip time (msec) Round trip time (msec)

(a) ,, ‘ (b)

Fig. 6-33. (a) Probability density of acknowledgement arrival times in the data
link layer. (b) Probability density of acknowledgement arrival times for TCP.

TCP is faced with a radically different environment. The probability density
function for the time it takes for a TCP acknowledgement to come back looks
more like Fig. 6-33(b) than Fig. 6-33(a). Determining the round-trip time to the
destination is tricky. Even when it is known, deciding on the timeout interval is
also difficult. If the timeout is set too short, say 7'; in Fig. 6-33(b), unnecessary
retransmissions will occur, clogging the Internet with useless packets. If it is set
too long, (T5), performance will suffer due to the long retransmission delay when-
ever a packet is lost. Furthermore, the mean and variance of the acknowledge-
ment arrival distribution can change rapidly within a few seconds as congestion
builds up or is resolved.

The solution is to use a highly dynamic algorithm that constantly adjusts the
timeout interval, based on continuous measurements of network performance.
The algorithm generally used by TCP is due to Jacobson (1988) and works as fol-
lows. For each connection, TCP maintains a variable, RTT, that is the best current
estimate of the round-trip time to the destination in question. When a segment is
sent, a timer is started, both to see how long the acknowledgement takes and to

Page 102 of 137

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 541

trigger a retransmission if it takes too long. If the acknowledgement gets back
before the timer expires, TCP measures how long the acknowledgement took, say,
M. It then updates RTT according to the formula

RIT =oRTT +(1 —)M

where o is a smoothing factor that determines how much weight is given to the
old value. Typically o= 7/8.

Even given a good value of RTT, choosing a suitable retransmission timeout 1s
a nontrivial matter. Normally, TCP uses BRTT, but the trick is choosing 3. In the
initial implementations, J was always 2, but experience showed that a constant
value was inflexible because it failed to respond when the variance went up.

In 1988, Jacobson proposed making [3 roughly proportional to the standard
deviation of the acknowledgement arrival time probability density function so a
large variance means a large § and vice versa. In particular, he suggested using
the mean deviation as a cheap estimator of the standard deviation. His algorithm
requires keeping track of another smoothed variable, D, the deviation. Whenever
an acknowledgement comes in, the difference between the expected and observed
values, |RTT — M| is computed. A smoothed value of this is maintained in D by
the formula

D=oaD+(1—-a) IRTT -M|

where o0 may or may not be the same value used to smooth RT7. While D is not
exactly the same as the standard deviation, it is good enough and Jacobson
showed how it could be computed using only integer adds, subtracts, and shifts, a
big plus. Most TCP implementations now use this algorithm and set the timeout
interval to

Timeout = RTT + 4*D

The choice of the factor 4 is somewhat arbitrary, but it has two advantages. First,
multiplication by 4 can be done with a single shift. Second, it minimizes unneces-
sary timeouts and retransmissions because less than one percent of all packets
come in more than four standard deviations late. (Actually, Jacobson initially said
'to use 2, but later work has shown that 4 gives better performance.)

One problem that occurs with the dynamic estimation of RTT is what to do
when a segment times out and is sent again. When the acknowledgement comes
in, it is unclear whether the acknowledgement refers to the first transmission or a
later one. Guessing wrong can seriously contaminate the estimate of R77. Phil
Karn discovered this problem the hard way. He is an amateur radio enthusiast
interested in transmitting TCP/IP packets by ham radio, a notoriously unreliable
medium (on a good day, half the packets get through). He made a simple pro-
posal: do not update RTT on any segments that have been retransmitted. Instead,
the timeout is doubled on each failure until the segments get through the first
time. This fix is called Karn’s algorithm. Most TCP implementations use it.

Page 103 of 137

542 : THE TRANSPORT LAYER CHAP. 6

The retransmission timer is not the only one TCP uses. A second timer is the
persistence timer. It is designed to prevent the following deadlock. The receiver
sends an acknowledgement with a window size of 0, telling the sender to wait.
Later, the receiver updates the window, but the packet with the update is lost.
Now both the sender and the receiver are waiting for each other to do something.
When the persistence timer goes off, the sender transmits a probe to the receiver.
The response to the probe gives the window size. If it is still zero, the persistence
timer is set again and the cycle repeats. If it is nonzero, data can now be sent.

A third timer that some implementations use is the keepalive timer. When a
connection has been idle for a long time, the keepalive timer may go off to cause
one side to check if the other side is still there. If it fails to respond, the connec-
tion is terminated. This feature is controversial because it adds overhead and may
terminate an otherwise healthy connection due to a transient network partition.

The last timer used on each TCP connection is the one used in the TIMED
WAIT state while closing. It runs for twice the maximum packet lifetime to make
sure that when a connection is closed, all packets created by it have died off.

6.4.8. UDP

The Internet protocol suite also supports a connectionless transport protocol,
UDP (User Data Protocol). UDP provides a way for applications to send encap-
sulated raw IP datagrams and send them without having to establish a connection.
Many client-server applications that have one request and one response use UDP
rather than go to the trouble of establishing and later releasing a connection. UDP

is described in RFC 768.
32 Bits -
I 1 | | | | 1 i | i | 1 { 1 | | { i i | { i i l | | i i 1 { |
Source port Destination port
UDP length UDP checksum

Fig. 6-34. The UDP header.

A UDP segment consists of an 8-byte header followed by the data. The
header is shown in Fig. 6-34. The two ports serve the same function as they do in
TCP: to identify the end points within the source and destination machines. The
UDP length field includes the 8-byte header and the data. The UDP checksum
includes the same format pseudoheader shown in Fig. 6-25, the UDP header, and
the UDP data, padded out to an even number of bytes if need be. It is optional
and stored as 0 if not computed (a true computed 0 is stored as all 1s, which is the
same in 1’s complement). Turning it off i is foolish unless the quality of the data
does not matter (e.g., digitized speech).

Page 104 of 137

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 543

6.4.9. Wireless TCP and UDP

In theory, transport protocols should be independent of the technology of the
underlying network layer. In particular, TCP should not care whether IP is run-
ning over fiber or over radio. Inpractice, it does matter because most TCP imple-
mentations have been carefully optimized based on assumptions that are true for
wired networks but which fail for wireless networks. Ignoring the properties of
wireless transmission can lead to a TCP implementation that is log1ca11y correct
but has horrendous performance

The principal problem is the congestion control algorithm. Nearly all TCP
implementations nowadays assume that timeouts are caused by congestion, not by
lost packets. Consequently, when a timer goes off, TCP slows down and sends
less vigorously (e.g., Jacobson’s slow start algorithm). The idea behind this
approach is to reduce the network load and thus alleviate the congestion.

Unfortunately, wireless transmission links are highly unreliable. They lose
packets all the time. The proper approach to dealing with lost packets is to send
them again, and as quickly as possible. Slowing down just makes matters worse.
If, say, 20 percent of all packets are lost, then when ‘the sender transmits 100

. packets/sec, the throughput is 80 packets/sec. If the sender slows down to 50
packets/seo the throughput drops to 40 packets/sec.

In effect, when a packet is lost on a wired network, the sender should slow
down. When one is lost on a wireless network, the sender should try harder.
When the sender does not know what the network is, it is difficult to make the
correct decision.

Frequently, the path from sender to receiver is 1nhomogene0us The first
1000 km might be over a wired network, but the last 1 km might be wireless.
Now making the correct decision on a timeout is even harder, since it matters
where the problem occurred. A solution proposed by Bakne and Badrinath
(1995), indirect TCP, is to split the TCP connection into two separate connec-
tions, as shown in Fig. 6-35. The first connection goes from the sender to the base
station. The second one goes from the base station to the receiver. The base sta-
tion simply copies packets between the connections in both directions.

Sender TCP #1 Base
Station

TCP #2

Mobile
host

Router Antenna

Fig. 6-35. Splitting a TCP connection into two connections.

Page 105 of 137

544 THE TRANSPORT LAYER CHAP. 6

The advantage of this scheme is that both connections are now homogeneous.
Timeouts on the first connection can slow the sender down, whereas timeouts on
the second one can speed it up. Other parameters can also be tuned separately for
the two connections. The disadvantage is that it violates the semantics of TCP.
Since each part of the connection is a full TCP connection, the base station
acknowledges each TCP segment in the usual way. Only now, receipt of an
acknowledgement by the sender does not mean that the receiver got the segment,
only that the base station got it.

A different solution, due to Balakrishnan et al. (1995), does not break the
semantics of TCP. It works by making several small modifications to the network
layer code in the base station. One of the changes is the addition of a snooping
agent that observes and caches TCP segments going out to the mobile host, and
acknowledgements coming back from it. When the snooping agent sees a TCP
segment going out to the mobile host but does not see an acknowledgement com-
ing back before its (relatively short) timer goes off, it just retransmits that seg-
ment, without telling the source that it is doing so. It-also generates a retransmis-
sion when it sees duplicate acknowledgements from the mobile host go by, invari-
ably meaning that the mobile host has missed something. Duplicate acknowl-
edgements are discarded on the spot, to avoid having the source misinterpret them
as a sign of congestion. : _

One disadvantage of this transparency, however, is that if the wireless link is
very lossy, the source may time out waiting for an acknowledgement and invoke
the congestion control algorithm. With indirect TCP, the congestion control algo-
rithm will never be started unless there really is congestion in the wired part of the
network. '

The Balakrishnan et al. paper also has a solution to the problem of lost seg-
ments originating at the mobile host. When the base station notices a gap in the
inbound sequence numbers, it generates a request for a selective repeat of the
missing bytes using a TCP option. Using these two fixes, the wireless link is
made more reliable in both directions, without the source knowing about it, and
without changing the semantics of TCP.

While UDP does not suffer from the same problems as TCP, wireless com-
munication also introduces difficulties for it. The main trouble is that programs
use UDP expecting it to be highly reliable. They know that no guarantees are
given, but they still expect it to be near perfect. In a wireless environment, it will
be far from perfect. For programs that are able to recover from lost UDP mes-
sages, but only at considerable cost, suddenly going from an environment where
messages theoretically can be lost but rarely are, to one in which they are con-
stantly being lost can result in a performance disaster.

Wireless communication also affects areas other than just performance. For
example, how does a mobile host find a local printer to connect to, rather than use
its home printer? Somewhat related to this is how to get the WWW page for the
local cell, even if its name is not known. Also, WWW page designers tend to

Page 106 of 137

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 545

assume lots of bandwidth is available. Putting a large logo on every page
becomes counterproductive if it is going to take 30 sec to transmit at 9600 bps
every time the page is referenced, irritating the users no end.

6.5. THE ATM AAL LAYER PROTOCOLS

It is not really clear whether or not ATM has a transport layer. On the one
hand, the ATM layer has the functionality of a network layer, and there is another
layer on top of it (AAL), which sort of makes AAL a transport layer. Some
experts agree with this view (e.g., De Prycker, 1993, page 112). One of the proto-
cols used here (AAL 5) is functlonally similar to UDP, which is unquestlonably a

- transport protocol.

On the other hand, none of the AAL protocols provide a reliable end-to- end
connection, as TCP does (although with only very minor changes they could).
Also, in most applications another transport layer is used on top of AAL. Rather
than split hairs, we will discuss the AAL layer and its protocols in this chapter
without making a claim that it is a true transport layer.

The AAL layer in ATM networks is radically different than TCP, largely
because the designers were pnmarlly interested in transmitting voice and video
streams, in which rapid delivery is more important than accurate delivery.
Remember that the ATM layer just outputs 53-byte cells one after another. It has
no error control, no flow control, and no other control. Consequently, it is not
well matched. to the requirements that most applications need.

To bridge this gap, in Recommendation 1.363, ITU has defined an end-to-end
layer on top of the ATM layer. This layer, called AAL (ATM Adaptation
Layer) has a tortuous history, full of mistakes, revisions, and unfinished business.
In the following sections we will look at it and its design.

The goal of AAL is to provide useful services to application programs and to
shield them from the mechanics of chopping data up into cells at the source and
reassembling them at the destination. When ITU began defining AAL, it realized
that different applications had different requirements, so it organized the service
space along three axes: '

1. Real-time service versus nonreal-time service.
2. Constant bit rate service versus variable bit rate service.
3. Connection-oriented service versus connectionless service.

In principle, with three axes and two values on each axis, eight distinct services
can be defined, as shown in Fig. 6-36. ITU felt that only four of these were of any
use, and named them classes A, B, C, and D, as noted. The others were not sup-
ported. Starting with ATM 4.0, Fig. 6-36 is somewhat obsolete, so it has been
presented here mostly as background information to help understand why the

Page 107 of 137

622 THE APPLICATION LAYER CHAP. 7

(Schneier, 1996). Chapter 8 of his email book does too (Schneier, 1995). Privacy
and computers are also discussed in (Adam, 1995). These references are highly
recommended for readers who wish to pursue their study of this subject.

7.2. DNS—Domain Name System

Programs rarely refer to hosts, mailboxes, and other resources by their binary
network addresses. Instead of binary numbers, they use ASCII strings, such as
tana@art.ucsb.edu. Nevertheless, the network itself only understands binary
addresses, so some mechanism is required to convert the ASCII strings to network
addresses. In the following sections we will study how this mapping is accom-
plished in the Internet.

Way back in the ARPANET, there was simply a file, hosts.txt, that listed all
the hosts and their IP addresses. Every night, all the hosts would fetch it from the
site at which it was maintairied. For a network of a few hundred large timesharing

- machines, this approach worked reasonably well.

However, when thousands of workstations were connected to the net, every-
one realized that this approach could not continue to work forever. For one thing,
the size of the file would become too large. However, even more important, host
naime conflicts would occur constantly unless ndmes were centrally managed,
something unthinkable in a huge international network. To solve these problems,
DNS (the Domain Name System) was invented. o

The esserice of DNS is the inventior of a hierarchical, domain-based naming
scheme and a distributed database system for implementing this naming scheme.
It is primarily used for mapping host names and email destinations to IP addresses
but can also be used for other purposes. DNS is defined in RFCs 1034 and 1035.

Very briefly, the way DNS is used is as follows. To inap a name onto an IP
address, an application program calls a library procedure called the resolver,
passing it the name as a parameter. The resolver sends a UDP packet to a local
DNS server, which then looks up the name and returns the IP address to the
resolver, which then returns it to the caller. Armed with the IP address, the pro-
gram can then establish a TCP connection with the destination, or send it UDP
packets.

7.2.1. The DNS Name Space

Managing a large and constantly changing set of names is a nontrivial prob-
lem. In the postal system, name management is done by requiring letters to
specify (implicitly or explicitly) the country, state or province, city, and street
address of the addressee. By using this kind of hierarchical addressing, there is no
confusion between the Marvin Anderson on Main St. in White Plains, N.Y. and
the Marvin Anderson on Main St. in Austin, Texas. DNS works the same way.

Page 108 of 137

SEC. 7.2 DNS—Domain Name System 623

Conceptually, the Internet is divided into several hundred top-level domains,
where each domain covers many hosts. Each domain is partitioned into sub-
domains, and these are further partitioned, and so on. All these domains can be
represented by a tree, as shown in Fig.7-25. The leaves of the tree represent
domains that have no subdomains (but do contain machines, of course) A leaf
domain may contain a single host, or it may represent a company and contains
thousands of hosts. : '

l B Generic ‘{ ‘ Countries ——
int com edu gov mil org net /‘p us nl
‘sun yale acm/ ieee ac \co oce vu
eng cs eng jac{ \\jill kelio nLc cls
ai linda cs csl flits fluit
rotl)ot pc24

Fig. 7-25. A portion of the Internet domain name space.

The top-level domains come in two flavors: generic and countries. The gen-
eric domains are com (commercial), edu (educational institutions), gov (the U.S.
federal government), int (certain international organizations), mil (the U.S. armed
forces), net (network providers), and org (nonprofit organizations). The country
domains include one entry for every country, as defined in ISO 3166.

Each domain is named by the path upward from it to the (unnamed) rdot. The
components are separated by periods (pronounced “dot”). Thus Sun Microsys-
tems engineering department might be eng.sun.com., rather than a UNIX-style
name such as /com/sun/eng. Notice that this hierarchical naming means that
eng.sun.com. does not conflict with a potential use of eng in eng.yale.edu., which
might be used by the Yale English department. |

Domain names can be either absolute or relative. An absolute domain name
ends with a period (e.g., eng.sun.com.), whereas a relative one does not. Relative
names have to be interpreted in some context to uniquely determine their true
meaning. In both cases, a named domain refers to a specific node in the tree and
all the nodes under it.

Domain names are case insensitive, so edu and EDU mean the same thing.
Component names can be up to 63 characters long, and full path names must not
exceed 255 characters.

In principle, domains can be inserted into the tree in two different ways. For
example, cs.yale.edu could equally well be listed under the wus country domain as

Page 109 of 137

624 THE APPLICATION LAYER CHAP. 7

cs.yale.ct.us. In practice, however, nearly all organizations in the United States
are under a generic domain, and nearly all outside the United States are under the
domain of their country. There is no rule against registering under two top-level
domains, but doing so might be confusing, so few organizations do it.

Each domain controls how it allocates the domains under it. For example,
Japan has domains ac.jp and co.jp that mirror edu and com. The Netherlands does
not make this distinction and puts all organizations directly under nl. Thus all
three of the following are university computer science departments:

1. cs.yale.edu (Yale University, in the United States)
2. cs.vu.nl (Vrije Universiteit, in The Netherlands)
3. cs.keéio.ac.jp (Keio University, in Japan)

To create a new domain, permission is required of the domain in which it will
be included. For example, if a VLSI group is started at Yale and wants to be
known as visi.cs.yale.edu, it needs permission from whomever manages
cs.yale.edu. Similarly, if a new university is chartered, say, the University of
Northern South Dakota, it must ask the manager of the edu domain to assign it
unsd.edu. Tn this way, name conflicts are avoided and each domain can keep
track of all its subdomains. Once a new domain has been created and registered,
it can create subdomains, such as cs.unsd.edu, without getting permission from
anybody higher up the tree.

Naming follows organizational boundaries, not physical networks. For exam-
ple, if the computer science and electrical engineering departments are located in
the same building and share the same LAN, they can nevertheless have distinct
domains. Similarly, even if computer science is split over Babbage Hall and Tur-
ing Hall, all the hosts in both buildings will normally belong to the same domain.

7.2.2. Resource Records

Every domain, whether it is a single host or a top-level domain, can have a set
of resource records associated with it. For a single host, the most common
resource record is just its TP address, but many other kinds of resource records
also exist. When a resolver gives a domain name to DNS, what it gets back are
the resource records associated with that name. Thus the real function of DNS is
to map domain names onto resource records.

A resource record is a five-tuple. Although they are encoded in binary for
efficiency, in most expositions resource records are presented as ASCII text, one
line per resource record. The format we will use is as follows:

Domain_name Time_to_live Type Class Value

The Domain_name tells the domain to which this record applies. Normally, many
records exist for each domain and each copy of the database holds information

Page 110 of 137

SEC. 7.2 DNS—Domain Name System 625

about multiple domains. This field is thus the primary search key used to satisfy
queries. The order of the records in the database is not significant. When a query
is made about a domain, all the matching records of the class requested are
returned.

The Time_to_live field gives an indication of how stable the record is. Infor-
mation that is highly stable is assigned a large value, such as 86400 (the number
of seconds in 1 day). Information that is highly volatile is assigned a small value,
such as 60 (1 minute). We will come back to this point later when we have dis-
cussed caching.

The Type field tells what kind of record this is. The most important types are
listed in Fig. 7-26.

Type Meaning Value
SOA Start of Authority Parameters for this zone
A IP address of a host | 32-Bit integer
MX Mail exchange Priority, domain willing to accept email
NS Name Server Name of a server for this domain
CNAME | Canonical name Domain name
PTR Pointer Alias for an IP address
HINFO Host description CPU and OS in ASCII
T Text Uninterpreted ASCII text

Fig. 7-26. The principal DNS resource record types.

An SOA record provides the name of the primary source of information about
the name server’s zone (described below), the email address of its administrator, a
unique serial number, and various flags and timeouts. :

The most important record type is the A (Address) record. It holds a 32-bit IP
address for some host. Every Internet host must have at least one IP address, so
other machines can communicate with it. Some hosts have two or more network
connections, in which case they will have one type A resource record per network
connection (and thus per IP address).

The next most important record type is the MX record. It specifies the name
of the domain prepared to accept email for the specified domain. A common use
of this record is to allow a machine that is not on the Internet to receive email
from Internet sites. Delivery is accomplished by having the non-Internet site
make an arrangement with some Internet site to accept email for it and forward it
using whatever protocol the two of them agree on.

For example, suppose that Cathy is a computer science graduate student at
UCLA. After she gets her degree in Al, she sets up a company, Electrobrain

Page 111 of 137

626 THE APPLICATION LAYER CHAP. 7

Corporation, to commercialize her ideas. She cannot afford an Internet connec-
tion yet, so she makes an arrangement with UCLA to allow her to have her email
sent there. A few times a day she will call up and collect it.

Next, she registers her company with the com domain and is assigned the
domain electrobrain.com. She might then ask the administrator of the com
domain to add an MX record to the com database as follows:

electrobrain.com 86400 IN MX 1 mailserver.cs.ucla.edu

In this way, mail will be forwarded to UCLA where she can pick it up by logging
in. Alternatively, UCLA could call her and transfer the email by any protocol
they mutually agree on.

The NS records specify name servers. For example, every DNS database nor-
mally has an NS record for each of the top-level domains, so email can be sent to
distant parts of the naming tree. We will come back to this point later.

CNAME records allow aliases to be created. For example, a person familiar
with Internet naming in general wanting to send a message to someone whose
login name is paul in the computer science department at M.LT. might guess that
paul@cs.mit.edu will work. Actually this address will dot work, because the
domain for M.IT.’s computer science department is lcs.mit.edu. However, as a
service to people who do not know this, M.LT. could create a CNAME entry to
point people and programs in the right direction. An entry like this one might do
the job:

cs.mit.edu 86400 IN CNAME Ics.mit.edu

Like CNAME, PTR points to another name. However, unlike CNAME, which
is really just a macro definition, PTR is a regular DNS datatype whose interpreta-
tion depends on the context in which it is found. In practice, it is nearly always
used to associate a name with an IP address to allow lookups of the IP address and
return the name of the corresponding machine.

HINFO records allow people to find out what kind of machine and operating
system a domain corresponds to. Finally, TXT records allow domains to identify
themselves in arbitrary ways. Both of these record types are for user convenience.
Neither is required, so programs cannot count on getting them (and probably can-
not deal with them if they do get them).

Getting back to the general structure of resource records, the fourth field of
every resource record is the Class. For Internet information, it is always IN. For
non-Internet information, other codes can be used.

Finally, we come to the Value field. This field can be a number, a domain
name, or an ASCII string. The semantics depend on the record type. A short
description of the Value fields for each of the principal records types is given in
Fig. 7-26.

As an example of the kind of information one might find in the DNS database
of a domain, see Fig.7-27. This figure depicts part of a (semihypothetical)

Page 112 of 137

SEC. 7.2 DNS-—Domain Name System 627

database for the cs.vu.nl domain shown in Fig. 7-25. The database contains seven
types of resource records.

: Authoritative data for cs.vu.ni

cs.vu.nl. 86400 IN SOA star boss (952771,7200,7200,2419200,86400)
cs.vu.nl. 86400 IN TXT "Faculteit Wiskunde en Informatica."
cs.vu.nl. 86400 IN TXT "Vrije Universiteit Amsterdam."
cs.vu.nl. 86400 IN MX 1 zephyr.cs.vu.nl.
cs.vu.nl.) 86400 IN MX 2 top.cs.vu.nl.
flits.cs.vu.nl. 86400 IN HINFO Sun Unix
flits.cs.vu.nl. 86400 IN A 130.37.16.112
flits.cs.vu.nl. 86400 IN A 192.31.231.165
flits.cs.vu.nl. 86400 IN MX 1 flits.cs.vu.nl.
flits.cs.vu.nl. 86400 IN MX 2 zephyr.cs.vu.nl.
flits.cs.vu.nl. 86400 IN MX 3'top.cs.vu.nl.
www.cs.vu.nl. 86400 IN CNAME star.cs.vu.nl
ftp.cs.vu.nl. 86400 IN CNAME zephyr.cs.vu.nl
rowboat IN A 130.37.56.201
IN MX 1 rowboat
IN MX 2 zephyr

IN HINFO Sun Unix

little-sister IN A 130.37.62.23
IN HINFO Mac MacOS

laserjet IN A 192.31.231.216
IN HINFO “"HP Laserjet IlISi" Proprietary

Fig. 7-27. A portion of a possible DNS database for cs.vu.nl

The first noncomment line of Fig. 7-27 gives some basic information about
the domain, which will not concern us further. The next two lines give textual
information about where the domain is located. Then come two entries giving the
first and second places to try to deliver email sent to person@cs.vu.nl. The
zephyr (a specific machine) should be tried first. If that fails, the zop should be
tried next.

After the blank line, added for readability, come lines telling that the flits is a
Sun workstation running UNIX and giving both of its IP addresses. Then three
choices are given for handling email sent to flits.cs.vu.nl. First choice is naturally
the flits itself, but if it is down, the zephyr and top are the second and third
choices. Next comes an alias, www.cs.vi.nl, so that this address can be used
without designating a specific machine. Creating this alias allows cs.vu.nl to
change its World Wide Web server without invalidating the address people use to
get to it. A similar argument holds for fip.cs.vu.nl.

Page 113 of 137

628 THE APPLICATION LAYER CHAP. 7

The next four lines contain a typical entry for a workstation, in this case,
rowboat.cs.vu.nl. The information provided contains the IP address, the primary
and secondary mail drops, and information about the machine. Then comes an
entry for a non-UNIX system that is not capable of receiving mail itself, followed
by an entry for a laser printer. '

What is not shown (and is not in this file), are the TP addresses to use to look
up the top level domains. These are needed to look up distant hosts, but since
they are not part of the cs.vu.nl domain, they are not in this file. They are sup-
plied by the root servers, whose IP addresses are present in a system configuration
file and loaded into the DNS cache when the DNS server is booted. They have
very long timeouts, so once loaded, they are never purged from the cache.

7.2.3. Name Servers

In theory at least, a single name server could contain the entire DNS database
and respond to all queries about it. In practice, this server would be so overloaded
as to be useless. Furthermore, if it ever went down, the entire Internet would be
crippled.

, To avoid the problems associated with having only a single source of informa-
tion, the DNS name space is divided up into nonoverlapping zones. One possible
way to divide up the name space of Fig. 7-25 is shown in Fig. 7-28. Each zone
contains some part of the tree and also contains name servers holding the authori-
tative information about that zone. Normally, a zone will have one primary name
server, which gets its information from a file on its disk, and one or more secon-
dary name servers, which get their information from the primary name server. To
improve reliability, some servers for a zone can be located outside the zone.

l*‘— Generic l lf Countries —™

Gio @ @b (o @b Cpo Qs> (b

eng ke|i0 nTc
cs csl
pc|24

Fig. 7-28. Part of the DNS name space showing the division into zones.

Where the zone boundaries are placed within a zone is up to that zone’s
administrator. This decision is made in large part based on how many name

Page 114 of 137

SEC: 7.2 DNS—Domain Name System 629

servers are desired, and where. For example, in Fig. 7-28, Yale has a server for
yale.edu that handles eng.yale.edu but not cs.yale.edu, which is a separate zone
with its own name servers. Such a decision might be made when a department
such as English does not wish to run its own name server, but a department such
as computer science does. Consequently, cs.yale.edu is a separate zone but
eng.yale.edu is not.

When a resolver has a query about a domain name, it passes the query to one
of the local name servers. If the domain being sought falls under the jurisdiction
of the name server, such as ai.cs.yale.edu falling under cs.yale.edu, it returns the
authoritative resource records. Ar authoritative record is one that comes from
the authority that manages the record, and is thus always correct. Authoritative
records are in contrast to cached records, which may be out of date.

If, however, the domain is remote and no information about the requested
domain is available locally, the name server sends a query message to the top-
level name server for the domain requested. To make this process clearer, con-
sider the example of Fig. 7-29. Here, a resolver on flits.cs.vu.nl wants to know the
IP address of the host linda.cs.yale.edu. In step 1, it sends a query to the local
name server, cs.vi.nl. This query contains the domain name sought, the type (A)
and the class (IN). ;

VU CS Edu Yale Yale CS
Originator ’ name server o name server 3 name server 4 name server
flits.cs.vu.nl cs.vu.nl edu-server.net yale.edu cs.yale.edu
8 7 6 - 5 —

Fig. 7-29. How a resolver looks up a remote name in eight steps.

Let us suppose the local name server has never had a query for this domain
before and knows nothing about it. It may ask a few other nearby name servers,
but if none of them know, it sends a UDP packet to the server for edu given in its
.database (see Fig. 7-29), edu-server.net. It is unlikely that this server knows the
address of linda.cs.yale.edu, and probably does not know cs.yale.edu either, but it
“must know all of its own children, so it forwards the request to the name server
for yale.edu (step 3). In turn, this one forwards the request to cs.yale.edu (step 4),
which must have the authoritative resource records. Since each request is from a
client to a server, the resource record requested works its way back in steps 5
through 8.

Once these records get back to the cs.vu.nl name server, they will be entered
into a cache there, in case they are needed later. However, this information is not
authoritative, since changes made at cs.yale.edu will not be propagated to all the
caches in the world that may know about it. For this reason, cache entries should
not live too long. This is the reason that the Time_to_live field is included in each
resource record. It tells remote name servers how long to cache records. If a

Page 115 of 137

630 THE APPLICATION LAYER CHAP. 7

certain machine has had the same IP address for years, it may be safe to cache that
information for 1 day. For more volatile information, it might be safer to purge
the records after a few séconds or a minute. .

It is worth mentioning that the query method described here is known as a
recursive query, since each server that does not have the requested information
goes and finds it somewhere, then reports back. An alternative form is also possi-
ble. In this form, when a query cannot be satisfied locally, the query fails, but the
name of the next server along the line to try is returned. This procedure gives the
client more control over the search process. Some servers do not implement
recursive queries and always return the name of the next server to try.

It is also worth pointing out that when a DNS client fails to get a response
before its timer goes off, it normally will try another server next time. The
assumption here is that the server is probably down, rather than the request or
reply got lost.

7.3. SNMP—SIMPLE NETWORK MANAGEMENT PROTOCOL

In the early days of the ARPANET, if the delay to some host became unex-
pectedly large, the person detecting the problem would just run the Ping program
to bounce a packet off the destination. By looking at the timestamps in the header
of the packet returned, the location of the problem could usually be pinpointed
and some appropriate action taken. In addition, the number of routers was so
small, that it was feasible to ping each one to see if it was sick.

When the ARPANET turned into the worldwide Internet, with multiple back-
bones and multiple operators, this solution ceased to be adequate, so better tools
for network management were needed. Two early attempts were defined in RFC
1028 and RFC 1067, but these were short lived. In May 1990, RFC 1157 was
published, defining version 1 of SNMP (Simple Network Management Proto-
col). Along with a companion document (RFC 1155) on management informa-
tio, SNMP provided a systematic way of monitoring and managing a computer
network. This framework and protocol were widely implemented-in commercial
prodicts and became the de facto standards for network management.

As experience was gained, shortcomings in SNMP came to light, 0 an
enhanced version of SNMP (SNMPv2) was defined (in RFCs 1441 to 1452) and
started along the road to become an Internet standard. In the sections to follow,
we will give a brief discussion of the SNMP (meaning SNMPv2) model and pro-
tocol.

~ Although SNMP was designed with the idea of its being simple, at least one
author has managed to produce a 600-page book on it (Stallings, 1993a). For
more compact descriptions (450-550 pages), see the books by Rose (1994) and
Rose and McCloghrie (1995), both of whom were among the designers of SNMP.
Othier references are (Feit, 1995; and Hein and Griffiths, 1995).

Page 116 of 137

SEC. 73 SNMP—SIMPLE NETWORK MANAGEMENT PROTOCOL 643

actual protocol that the management station and agents speak. The protocol itself
is defined in RFC 1448.

The normal way that SNMP is used is that the management station sends a
request to an agent asking it for information or commanding it to update its state
in a certain way. Ideally, the agent just replies with the requested information or
confirms that it has updated its state as requested. Data are sent using the ASN.1
transfer syntax. However, various errors can also be reported, such as No Such
Variable.

SNMP defines seven messages that can be sent. The six messages from an
initiator are listed in Fig. 7-38 (the seventh message is the response message).
The first three request variable values to-be sent back. The first format names the
variables it wants explicitly. The second one asks for the next variable, allowing
a manager to step through the entire MIB alphabetically (the default is the first
variable). The third is for large transfers, such as tables.

Message Description

Get-request Requests the vglue of one or more variables

Get-next-request | Requests the variable following this one

Get-bulk-request | Fetches a large table

Set-request Updates one or more variables
Inform-request Manager-to-manager message describing local MIB

SnmpV2-trap Agent-to-manager trap report

Fig. 7-38. SNMP message types.

Then comes a message that allows the manager to update an agent’s variables,
to the extent that the object specification permits such updates, of course. Next is
an informational request that allows one manager to tell another one which vari-
ables it is managing. Finally, comes the message sent from an agent to a manager
when a trap has sprung.

7.4. ELECTRONIC MAIL

Having finished looking at some of the support protocols used in the applica-
tion layer, we finally come to real applications. When asked: “What are you
going to do now?” few people will say: “I am going to look up some names with
DNS.” People do say they are going to read their email or news, surf the Web, or
watch a movie over the net. In the remainder of this chapter, we will explain in a
fair amount of detail how these four applications work.

Page 117 of 137

644 THE APPLICATION LAYER CHAP. 7

Electronic mail, or email, as it is known to its many fans, has been around for
over two decades. The first email systems simply consisted of file transfer proto-
cols, with the convention that the first line of each message (i.e., file) contained
the recipient’s address. As time went on, the limitations of this approach became
more obvious. Some of the complaints were

1. Sending a message to a group of people was inconvenient. Managers
often need this facility to send memos to all their subordinates.

2. Messages had no internal structure, making computer processing dif-
ficult. For example, if a forwarded message was included in the
body of another message, extracting the forwarded part from the
received message was difficult.

3. The originator (sender) never knew if a message arrived or not.

4. If someone was planning to be away on business for several weeks
and wanted all incoming email to be handled by his secretary, this
was not easy to arrange.

5. The user interface was poorly integrated with the transmission Sys-
tem requiring users first to edit a file, then leave the editor and
invoke the file transfer program.

6. It was not possible to create and send messages containing a mixture
of text, drawings, facsimile, and voice.

As experience was gained, more elaborate email systems were proposed. In
1982, the ARPANET email proposals were published as RFC 821 (transmission
protocol) and RFC 822 (message format). These have since become the de facto
Internet standards. Two years later, CCITT drafted its X.400 recommendation,
which was later taken over as the basis for OSI's MOTIS. In 1988, CCITT modi-
fied X.400 to align it with MOTIS. MOTIS was to be the flagship application for
OSI, a system that was to be all things to all people. “

After a decade of competition, email systems based on RFC 822 are widely
used, whereas those based on X.400 have disappeared under the horizon. How a
system hacked together by a handful of computer science graduate students beat
an official international standard strongly backed by all the PTTs worldwide,
many governments, and a substantial part of the computer industry brings to mind
the Biblical story of David and Goliath. The reason for RFC 822’s success is not
that it is so good, but that X.400 is so poorly designed and so complex that nobody
could implement it well. Given a choice between a simple-minded, but working,
REC 822-based email system and a supposedly truly wonderful, but nonworking,
X.400 email system, most organizations chose the former. For a long diatribe on
what is wrong with X.400, see Appendix C of (Rose, 1993). Consequently, our
discussion of email will focus on RFC 821 and RFC 822 as used in the Internet.

Page 118 of 137

SEC. 74 ELECTRONIC MAIL 657

subtype allows each part to be different, with no additional structure imposed. In
contrast, with the alternative subtype, each part must contain the same message
but expressed in a different medium or encoding. For example, a message could
be sent in plain ASCI], in richtext, and in PostScript. A properly-designed user
agent getting such a message would display it in PostScript if possible. Second
choice would be richtext. If neither of these were possible, the flat ASCII text
would be displayed. The parts should be ordered from simplest to most complex
to help recipients with pre-MIME user agents make some sense of the message
(e.g., even a pre-MIME user can read flat ASCII text). .

The alternative subtype can also be used for multiple languages. In this con-
text, the Rosetta Stone can be thought of as an eatly multipart/alternative mes-
sage.

A multimedia example is shown in Fig. 7-46. Here a birthday greeting is
transmitted both as text and as a song. If the receiver has an audio capability, the
user agent there will fetch the sound file, birthday.snd, and play it. If not, the lyr-
ics are displayed on the screen in stony silence. The parts are delimited by two
hyphens followed by the (user-defined) string specified in the boundary parame-
ter.

Note that the Content-Type header occurs in three positions within this exam-
ple. At the top level, it indicates that the message has multiple parts. Within each
part, it gives the type and subtype of that part. Finally, within the body of the
second part, it is required to tell the user agent what kind of an external file it is to
fetch. To indicate this slight difference in usage, we have used lowercase letters
here, although all headers are case insensitive. The content-transfer-encoding 1s
similarly required for any external body that is not encoded as 7-bit ASCIL

Getting back to the subtypes for multipart messages, two more possibilities
exist. The parallel subtype is used when all parts must be “viewed” simultane-
ously. For example, movies often have an audio channel and a video channel.
Movies are more effective if these two channels are played back in parallel,
instead of consecutively.

Finally, the digest subtype is used when many messages are packed together
into a composite message. For example, some discussion groups on the Internet
collect messages from subscribers and then send them out as a single
multipart/digest message.

7.4.4. Message Transfer

The message transfer system is concerned with relaying messages from origi-
nator to the recipient. The simplest way to do this is to establish a transport con-
nection from the source machine to the destination machine and then just transfer
the message. After examining how this is normally done, we will examine some
situations in which this does not work and what can be done about them.

Page 119 of 137

658 THE APPLICATION LAYER CHAP. 7

From: elinor@abc.com

To: carolyn@xyz.com

MIME-Version: 1.0 -

Message-Id: <0704760941.AA00747 @abc.com>.

Content-Type: multipart/alternative; boundary=qwertyuiopasdfghjkizxcvbnm
Subject: Earth orbits sun integral number of times

This is the preamble. The user agent ignores it. Have a nice day.

--qwertyuiopasdfghjkizxcvbnm
Content-Type: text/richtext

Happy birthday to you
Happy birthday to you
Happy birthday dear <bold> Carolyn </bold>
Happy birthday to you

--qwertyuiopasdfghjklzxcvbnm

Content-Type: message/external-body;
access-type="anon-ftp";
site="bicycle.abc.com";
directory="pub";
name="birthday.snd"

content-type: audio/basic
content-transfer-encoding: base64
--qwertyuiopasdfghjklzxcvbnm--

Fig. 7-46. A multipart message containing richtext and audio alternatives.

SMTP—Simple Mail Transfer Protocol

Within the Internet, email is delivered by having the source machine establish
a TCP connection to port 25 of the destination machine. Listening to this port is
an email daemon that speaks SMTP (Simple Mail Transfer Protocol). This
daemon accepts incoming connections and copies messages from them into the
appropriate mailboxes. If a message cannot be delivered, an error report contain-
ing the first part of the undeliverable message is returned to the sender.

SMTP is a simple ASCII protocol. After establishing the TCP connection to
port 25, the sending machine, operating as the client, waits for the receiving ma-
chine, operating as the server, to talk first. The server starts by sending a line of
text giving its identity and telling whether or not it is prepared to receive mail. If
it is not, the client releases the connection and tries again later.

If the server is willing to accept email, the client announces whom the email
is coming from and whom it is geing too. If such a recipient exists at the

Page 120 of 137

SEC. 7.4 ELECTRONIC MAIL 659

destination, the server gives the client the go-ahead to send the message. Then the
client sends the message and the server acknowledges it. No checksums are gen-
erally needed because TCP provides a reliable byte stream. If there is more
email, that is now sent. When all the email has been exchanged in both direc-
tions, the connection is released. A sample dialog for sending the message of
Fig. 7-46, including the numerical codes used by SMTP, is shown in Fig. 7-47.
The lines sent by the client are marked C:; those sent by the server are marked S:.

A few comments about Fig. 7-47 may be helpful. The first command from
the client is indeed HELO. Of the two four-character abbreviations for HELLO,
this one has numerous advantages over its competitor. Why all the commands
had to be four characters has been lost in the mists of time.

In Fig. 7-47, the message is sent to only one recipient, so only one RCPT
command is used. Multiple such commands are allowed to send a single message
to multiple receivers. Each one is individually acknowledged or rejected. Even if
some recipients are rejected (because they do not exist at the destination), the
message can be sent to the remainder.

Finally, although the syntax of the four-character commands from the client is
rigidly specified, the syntax of the replies is less rigid. Only the numerical code
really counts. Each implementation can put whatever string it wants after the
code.

Even though the SMTP protocol is well defined (by RFC 821), a few prob-
lems can still arise. One problem relates to message length. Some older imple-
mentations cannot handle messages exceeding 64KB. Another problem relates to
timeouts. If the client and server have different timeouts, one of them may give
up while the other is still busy, unexpectedly terminating the connection. Finally,
in rare situations, infinite mailstorms can be triggered. For example, if host 1
holds mailing list A and host 2 holds mailing list B and each list contains an entry
for the other one, then any message sent to either list will generate a never-ending
amount of email traffic.

To get around some of these problems, extended STMP (ESMTP) has been
defined in REC 1425. Clients wanting to use it should send an EHLO message -
instead of HELO initially. If this is rejected, then the server is a regular SMTP
server, and the client should proceed in the usual way. If the EHLO is accepted,
then new commands and parameters are allowed. The standardization of these
commands and parameters is an ongoing process.

Email Gateways

Email using SMTP works best when both the sender and the receiver are on
the Internet and can support TCP connections between sender and receiver. How-
ever, many machines that are not on the Internet still want to send and receive
email from Internet sites. For example, many companies intentionally do not

Page 121 of 137

660 THE APPLICATION LAYER CHAP. 7

S: 220 xyz.com SMTP service ready
: HELO abc.com
S: 250 xyz.com says hello to abc.com
: MAIL FROM: <elinor@abc.com>
S: 250 sender ok
: RCPT TO: <carolyn@xyz.com>
S: 250 recipient ok
: DATA
S: 354 Send mail; end with “." on a line by itself
: From: elinor@abc.com
: To: carolyn@xyz.com
MIME-Version: 1.0
: Message-ld: <0704760941.AA00747 @abc.com>
: Content-Type: multipart/alternative; boundary=qwertyuiopasdfghjklzxcvbnm
: Subject: Earth orbits sun integral number of times

- This is the preamble. The user agent ignores it. Have a nice day.

. --qwertyuiopasdfghjkizxcvbnm
: Caontent-Type: text/richtext

: Happy birthday to you
: Happy birthday to you
: Happy birthday dear <bold> Carolyn </bo|d>
: Happy birthday to you

: --qwertyuiopasdfghjkizxcvbnm

: Content-Type: message/external-body;
access-type="anon-ftp";
site="bicycle.abc.com”;
directory="pub";
name="birthday.snd"

: content-type: audio/basic
: content-transfer-encoding: base64
. --qwertyuiopasdfghjklzxcvbnm

S: 250 message accepted

o) QOOOQQQQQOOQOOOOQOOQOQOOOQOO O O O O

- QUIT
S: 221 xyz.com closing connection

Fig. 7-47. Transferring a message from elinor@abc.com to carolyn@xyz.com.

want to be on the Internet for security reasons. Some of them even remove them-
selves from the Internet by erecting firewalls between themselves and the Internet.
Another problem occurs when the sender speaks only RFC 822 and the

Page 122 of 137

SEC. 7.4 ELECTRONIC MAIL - 661

receiver speaks only X.400 or some proprietary vendor-specific mail protocol.
Since all these worlds differ in message formats and protocols, direct communica-
tion is impossible.

. Both of these problems are solved using application layer email gateways. In
Fig. 7-48 host 1 speaks only TCP/IP and RFC 822, whereas host 2 speaks only
OSI TP4 and X.400. Nevertheless, they can exchange email using an email gate-
way. The procedure is for host 1 to establish a TCP connection to the gateway
and then use SMTP to transfer a message (1) there. The daemon on the gateway
then puts the message in a buffer of messages destined for host 2. Later, a TP4
connection (the OSI equivalent to TCP) is established with host 2 and the message
(2) is transferred using the OSI equivalent of SMTP. All the gateway process has
to do is to extract incoming messages from one queue and deposit them in
another.

Message
buffer
Host 1 Gateway / Host 2

]

TCP connection l TP4 connection l

Network

Fig. 7-48. Transferring email using an application layer email gateway.

It looks easy, but it is not. The first problem is that Internet addresses and
X400 addresses are totally different. An elaborate mapping mechanism is needed
between them. The second problem is that envelope or header fields that are
present in one system may not be present in the other. For example, if one system
requires priority classes and the other does not have this concept at all, in one
direction valuable information must be dropped and in the other it must be gen-
erated out of thin air.

An even worse concept is what to do if body parts are incompatible. What
should a gateway do with a message from the Internet whose body holds a refer-
ence to an audio file to be obtained by FTP if the destination system does not sup-
port this concept? What should it do when an X.400 system tells it to deliver a
message to a certain address, but if that fails, to send the contents by fax? Using
fax is not part of the RFC 822 model. Clearly, there are no simple solutions here.
For simple unstructured text messages in ASCII, gatewaying is a reasonable solu-
tion, but for anything fancier, the idea tends to break down.

Page 123 of 137

662 THE APPLICATION LAYER CHAP. 7
Final Delivery

Up until now, we have assumed that all users work on machines that are capa-
ble of sending and receiving email. Frequently this situation is false. For exam-
ple, at many companies, users work at desktop PCs that are not on the Internet and
are not capable of sending or receiving email from outside the company. Instead,
the company has one or more email servers that can send and receive email. To
send or receive messages, a PC must talk to an email server using some kind of

- delivery protocol. _

A simple protocol used for fetching email from a remote mailbox is POP3
(Post Office Protocol), which is défined in RFC 1225. It has commands for the
user to log in, log out, fetch messages, and delete messages. The protocol itself
consists of ASCII text and has something of the flavor of SMTP. The point of
POP3 is to fetch email from the remote mailbox and store it on the user’s local
machine to be read later.

A more sophisticated delivery protocol is IMAP (Interactive Mail Access
Protocol), which is defined in RFC 1064. It was designed to help the user who
uses multiple computers, perhaps a workstation in the office, a PC at home, and a
laptop on the road. The basic idea behind IMAP is for the email server to main-
tain a central repository that can be accessed from any machine. Thus unlike
POP3, IMAP does not copy email to the user’s personal machine because the user
may have several.

IMAP has many features, such as the ability to address mail not by arrival
number as is done in Fig. 7-40, but by using attributes (e.g., Give me the first
message from Sam). In this view, a mailbox is more like a relational database
system than a linear sequence of messages.

Yet a third delivery protocol is DMSP (Distributed Mail System Protocol),
which is part of the PCMAIL system and described in RFC 1056. This one does
not assume that all email is on one server, as do POP3 and IMAP. Instead, it
allows users to download email from the server to a workstation, PC, or laptop
and then disconnect. The email can be read and answered while disconnected.
When reconnection occurs later, email is transferred and the system is resyn-
chronized.

Independent of whether email is delivered directly to the user’s workstation or
to a remote server, many systems provide hooks for additional processing of
incoming email. An especially valuable tool for many email users is the ability to
set up filters. These are rules that are checked when email comes in or when the
user agent is started. Each rule specifies a condition and an action. "For example,
a rule could say that any message from Andrew S. Tanenbaum should be
displayed in a 24-point flashing red boldface font (or alternatively, be discarded
automatically without comment).

Another delivery feature often provided is the ability to (temporarily) forward
incoming email to a different address. This address can even be a computer

Page 124 of 137

SEC. 7.4 ELECTRONIC MAIL 663

operated by a commercial paging service, which then pages the user by radio or
satellite, displaying the Subject: line on his beeper.
Still another common feature of final delivery is the ability to install a vaca- '
tion daemon. This is a program that examines each incoming message and sends
- the sender an insipid reply such as

Hi. [’m on vacation. I'll be back on the 24th of August. Have a nice day.

Such replies can also specify how to handle urgent matters in the interim, other
people to contact for specific problems, etc. Most vacation daemons keep track of
whom they have sent canned replies to and refrain from sending the same person a
second reply. - The good ones also check to see if the incoming message was sent
to a mailing list, and if so, do not send a canned reply at all. (People who send
messages to large mailing lists durmg the summer probably do not want to get
hundreds of replies detailing everyone’s vacation plans.)

The author recently ran into a most extreme form of delivery processing when
he sent an email message to a person who claims to get 600 messages a day. His
identity will not be disclosed here, lest half the readers of this book also send him
email. Let us call him John. '

: John has installed an email robot that checks every incoming message to see if
it is from a new correspondent. If so, it sends back a canned reply explanung that
John can no longer personally read all his email. Instead he has produced a per-
sonal FAQ (Frequently Asked Questlons) document that answers many questions
he is commonly asked. Normally, newsgroups have FAQs, not people. _

John’s FAQ gives his address, fax, and telephone numbers and tells how to
contact his company. It explains how to get him as a speaker and describes where
to get his papers and other documents. It also provides pointers to software he has
written, a conference he is running, a standard he is the editor of, and so on.
Perhaps this approach is necessary, but maybe a personal FAQ is the yltimate
status symbol.

7.4.5. Email Privacy

When an email message is sent between two distant sites, it will generally
transit dozens of machines on the way. Any of these can read and record the mes-
sage for future use. Privacy is nonexistent, despite what many people think
(Weisband and Reinig, 1995). Neverthieless, many people would like to be able to
send email that can be read by the intended recipient and no one else: not their
boss, not hackers, not even the government. This desire has stimulated several
people and groups to apply the cryptographic principles we studied earlier to
email to produce secure email. In the following sections we will study two widely
used secure email systems, PGP and PEM. For additional information, see (Kauf-
man et al., 1995; Schneier, 1995; Stallings, 1995b; and Stallings, 1995¢).

Page 125 of 137

SEC. 7.5 USENET NEWS 677

multiple newsgroups will contain all of their names. Because multiple names are
allowed here, the Followup-To: header is needed to tell people where to post com-
ments and reactions to put all of the subsequent discussion in one newsgroup.

The Distribution: header tells how far to spread the posting. It may contain
one or more state or country codes, the name of a specific site or network, or
“world.”

The Nntp-Posting-Host: header is analogous to the RFC 822 Sender: header.
It tells which machine actually posted the article, even if it was composed on a
different machine (NNTP is the news protocol, described below).

The References: header indicates that this article is a response (o an earlier
article and gives the ID of that article. It is required on all follow-up articles and
prohibited when starting a new discussion.

The Organization: header can be used to tell what company, university, or
agency the poster is affiliated with. Articles that fill in this header often have a
disclaimer at the end saying that if the article is goofy, it is not the organization’s
fault.

The Lines: header gives the length of the body. The header lines and the

blank line separating the header from the body do not count.
. The Subject: lines tie discussion threads together. Many news readers have a
command to allow the user to see the next article on the current subject, rather
than the next article that came in. Also, killfiles and kill commands use this
header to know what to reject.

Finally, the Summary: is normally used to summarize the follow-up article.
On follow-up articles, the Subject: header contains “Re: ” followed by the origi-
nal subject.

NNTP—Network News Transfer Protocol

Now let us look at how articles diffuse around the network. The initial algo-
rithm just flooded articles onto every line within USENET. While this worked for
a while, eventually the volume of traffic made this scheme impractical, so some-
thing better had to be worked out.

Its replacement was a protocol called NNTP (Network News Transfer Pro-
tocol), which is defined in RFC 977. NNTP has something of the same flavor as
SMTP, with a client issuing commands in ASCII and a server issuing responses as
decimal numbers coded in ASCIL. Most USENET machines now use NNTP.

NNTP was designed for two purposes. The first goal was to allow news arti-
cles to propagate from one machine to another over a reliable connection (€.g.,
TCP). The second goal was to allow users whose desktop computers cannot
receive news to read news remotely. Both are widely used, but we will concen-
trate on how news articles spread out over the network using NNTP.

As mentioned above, two general approaches are possible. In the first one,
news pull, the client calls one of its newsfeeds and asks for new news. In the

Page 126 of 137

678 THE APPLICATION LAYER CHAP. 7

second one, news push, the newsfeed calls the client and announces that it has
news. The NNTP commands support both of these approaches, as well as having
people read news remotely. '

To acquire recent articles, a client must first establish a TCP connection with
port 119 on one of its newsfeeds. Behind this port is the NNTP daemon, which is
either there all the time waiting for clients or is created on the fly as needed.
After the connection has been established, the client and server communicate
using a sequence of commands and responses. These commands and responses
are used to ensure that the client gets all the articles it needs, but no duplicates, no
matter how many newsfeeds it uses. The main ones used for moving articles
between news daemons are listed in Fig. 7-56.

Command - Meaning

LIST Give me a list of all nengroups and articles you have

NEWGROUPS date time Give me a list of newsgroups created after date/time

GROUP grp Give me a list of all articles in grp

NEWNEWS grps date time | Give me a list of new articles in specified groups
ARTICLE id Give me a specific article

POST | have an article for you that was posted here
IHAVE id | have article id. Do you want it?

QUIT ' Terminate the session

Fig. 7-56. The principal NNTP conimands for news diffusion.

The LIST and NEWGROUPS commands allow the client to find out which
groups the server has. The former gives the complete list. The latter gives only
those groups created after the date and time specified. If the client knows the list
is long, it is more efficient for the client to keep track of what each of its
newsfeeds has and just ask for updates. The responses to each of these commands
is a list, in ASCTIL, one newsgroup per line, giving the name of the newsgroup, the
number of the last article the server has, the number of the first article the server
has, and a flag telling whether posting to this newsgroup is allowed.

Once the client knows which newsgroups the server has, it can begin asking
about what articles the server has (e.g., for old newsgroups when NEWGROUPS
is used). The GROUP and NEWNEWS commands are used for this purpose.
Again, the former gives the full list and the latter gives only updates subsequent to
the indicated date and time, normally the time of the last connection to this
newsfeed. The first parameter may contain asterisks, meaning all of them. For
example, comp.os. = means all the newsgroups that start with the string comp.os.

After the client has assembled a complete list of which articles exist in which
groups (or even before it has the full list), it can begin to ask for the articles it

Page 127 of 137

SEC. 7.5 USENET NEWS 679

needs using the ARTICLE command. Once all the required articles are in, the
client can offer articles it has acquired from other newsfeeds using the JHAVE
command and articles that were posted locally using the POST command. The
server can accept or decline these, as it wishes. When the client is done, it can
terminate the session using QUIT. In this way, each machine has complete con-
trol over which articles it gets from which newsfeeds, eliminating all duplicate
articles. :

As an example of how NNTP works, consider an information provider,
wholesome.net that wants to avoid controversy at all costs, so the only news-
groups it offers are soc.couples and misc.kids. Nevertheless, management is open
minded and willing to carry other newsgroups, provided they contain no material
potentially offensive to anyone. Therefore, it wants to be informed of all newly
created groups so it can make an informed decision for its customers. A possible
scenario between wholesome.com acting as the client and its newsfeed,
feeder.com, acting as the server, is shown in Fig. 7-57. This scenario uses the
news pull approach (the client initiates the connection to ask for news). The
remarks in parentheses are comments and niot part of the NNTP protocol.

In this session, wholesome.com first asks if there is any news for soc.couples.
When it is told there are two articles, it fetches both of them and stores them in
news/soc/couples as separate files. Each file is named by its article number.
Then wholesome.com asks about misc.kids and is told there is one article. It
fetches that one and puts it in news/hisc/kids.

Having gotten all the news about the groups it carries, it now checks for new
groups and is told that two new groups have appeared since the last session. One
of them looks promising, so its articles are fetched. The other looks scary, so it is
not taken. (Wholesome.com has made a big ihvestment in Al software to be able
to figure out what to carry just by looking at the names.) '

After having acquired all the articles it wants, wholesome.com offers
feeder.com a new article posted by someone at its site. The offer is accepted and
the article is transferred. Now wholesome.com offers another article, one that
came from its other newsfeed. Since feeder.com already has this one, it declines.
Finally, wholesome.com ends the session and releases the TCP connection.

The news push approach is similar. It begins with the newsfeed calling the
machine that is to receive the news. The newsfeed normally keeps track of which
newsgroups its customers subscribe to and begins by announcing its first article in
the first of these newsgroups using the JHAVE command. The potential recipient
then checks its tables to see whether it already has the article, and can accept or
reject it. If the article is accepted, it is tran$mitted, followed by a line containing
a period. Then the newsfeed advertises the second article, and so forth, until all
the news has been transferred.

A problem with both news pull and news push is that they use stop and wait.
Typically 100 msec are lost waiting for an answer to a question. With 100,000 or
more news articles per day, this lost time adds up to a substantial overhead.

Page 128 of 137

680 THE APPLICATION LAYER CHAP. 7

S: 200 feeder.com NNTP server at your service (response to new connection)
C: NEWNEWS soc.couples 960901 030000 (any new news in soc.couples?)
S: 230 List of 2 articles follows
S: <13281@psyc.berkeley.edu> (article 1 of 2 in soc.couples is from Berkeley)
S: <162721@aol.com> (article 2 of 2 in soc.couples is from AOL)
She. (end of list)
C: ARTICLE <13281@psyc.berkeley.edu> (please give me the Berkeley article)
S: 220 <13281 @psyc.berkeley.edu> follows
S: (entire article <13281@psyc.berkeley.edu> is sent here)
S:. + (end of article)
C: ARTICLE <162721@aol.com> (please give me the AOL article) -
S: 220 <162721@aol.com> follows
S: (entire article <162721@aol.com> is sent here)
S:. , (end of article)
C: NEWNEWS misc.kids 960901 030000 (any new news in misc.kids?)
S: 230 List of 1 article follows
S: <43222 @bio.rice.edu> (1 article from Rice)
S:. (end of list)
C: ARTICLE <43222@bio.rice.edu> (please give me the Rice article)
S: 220 <43222@bio.rice.edu> follows
S: (entire article <43222@bio.rice.edu> is sent here)
S:. (end of article)
C: NEWGROUPS 960901 030000
S: 231 2 new groups follow

S: rec.pets
S: rec.nude
S:.
C: NEWNEWS rec.pets 0 0 (list everything you have)
S: 230 List of 1 article follows
S: <124 @fido.net> (1 article from fido.nef)
S:. (end of list)
C: ARTICLE <124 @fido.net> (please give me the fido.net article)

S: 220 <124 @fido.net> follows
S: (entire article is sent here)

S:.
C: POST
S: 340 (please send your posting)
C: (article posted on wholesome.com sent here)
S: 240 (article received)
C: IHAVE <5321 @foo.com>
S: 435 (I already have it, please do not send it)
C: QuUIT _
S: 205 (Have a nice day)

Fig. 7-57. How wholesome.com might acquire news articles from its newsfeed.

Page 129 of 137

688 THE APPLICATION LAYER CHAP. 7

Readers are encouraged to try this scenario personally (preferably from a
UNIX system, because some other systems do not return the connection status).
Be sure to note the spaces and the protocol version on the GET line, and the blank
line following the GET line. As an aside, the actual text that will be received will
differ from what is shown in Fig. 7-60 for three reasons. First, the example output
here has been abridged and edited to make it fit on one page. Second, it has been
cleaned up somewhat to avoid embarrassing the author, who no doubt expected
thousands of people to examine the formatted page, but zero people to scrutinize
the HTML that produced it. Third, the contents of the page are constantly being
revised. Nevertheless, this example should give a reasonable idea of how HTTP
works.

What the example shows is the following. The client, in this case a person,
but normally a browser, first connects to a particular host and then sends a com-
mand asking for a particular page and specifying a particular protocol and version
to use (HTTP/1.0). On line 7, the server responds with a status line telling the
protocol it-is using (the same as the client) and the code 200, meaning OK. This
line is followed by an RFC 822 MIME message, of which five of the header lines
are shown in the figure (several others have been emitted to save space). Then
comes a blank line, followed by the message body. For sending a picture, the
Content-Type field might be

Content-Type: Image/GIF

In this way, the MIME types allow aibitrary objects to be sent in a standard way.
As an aside, the MIME Content-Transfer-Encoding header is not needed because
TCP allows arbitrary byte streams, even pictures, to be sent without modification.
The meaning of the commands within angle brackets used in the sample page will
be discussed later in this chapter.

Not all servers speak HTTP. In particular, many older servers use the FTP,
Gopher, or other protocols. Since a great deal of useful information is available
on FTP and Gopher servers, one of the design goals of the Web was to make this
information available to Web users. One solution is to have the browser use these
protocols when speaking to an FTP or Gopher server. Some of them, in fact, use
this solution, but making browsers understand every possible protocol makes them
unnecessarily large.

Instead, a different solution is often used: proxy servers (Luotonen and Altis,
1994). A proxy server is a kind of gateway that speaks HTTP to the browser but
FTP, Gopher, or some other protocol to the server. It accepts HTTP requests and
translates them into, say, FTP requests, so the browser does not have to under-
stand any protocol except HTTP. The proxy server can be a program running on
the same machine as the browser, but it can also be on a free-standing machine
somewhere in the network serving many browsers. Figure 7-61 shows the differ-
ence between a browser that can speak FTP and one that uses a proxy.

Page 130 of 137

SEC. 7.6 THE WORLD WIDE WEB 689

; FTP Request

HTTP FTP
B Server

rowser FTP Reply

. HTTP Request FTP Request
llsE i FTP FTP
Proxy Server

ETNEE HTTP Reply FTP Reply

Fig. 7-61. (a) A browser that speaks FTP. (b) A browser that does not.

Often users can configure their browsers with proxies for protocols that the
browsers do not speak. In this way, the range of information sources to which the
browser has access is increased.

In addition to acting as a go-between for unknown protocols, proxy servers
have a number of other important functions, such as caching. A caching proxy
server collects and keeps all the pages that pass through it. When a user asks for a
page, the proxy server checks to see if it has the page. If so, it can check to see if
the page is still current. In the event that the page is still current, it is passed to
the user. Otherwise, a new copy is fetched.

Finally, an organization can put a proxy server inside its firewall to allow
users to access the Web, but without giving them full Internet access. In this con-
figuration, users can talk to the proxy server, but it is the proxy server that con-
tacts remote sites and fetches pages on behalf of its clients. This mechanism can
be used, for example, by high schools, to block access to Web sites the principal
feels are inappropriate for tender young minds.

For information about one of the more popular Web servers (NCSA’s HTTP
daemon) and its performance, see (Katz et al., 1994; and Kwan et al., 1995).

HTTP—HyperText Transfer Protocol

The standard Web transfer protocol is HTTP (HyperText Transfer Proto-
col). Each interaction consists of one ASCII request, followed by one RFC 822
MIME-like response. Although the use of TCP for the transport connection is
very common, it is not formally required by the standard. If ATM networks
become reliable enough, the HTTP requests and replies could be carried in AAL 5
messages just as well.

HTTP is constantly evolving. Several versions are in use and others are under
development. The material presented below is relatively basic and is unlikely to
change in concept, but some details may be a little different in future versions.

Page 131 of 137

690 THE APPLICATION LAYER CHAP. 7

The HTTP protocol consists of two fairly distinct items: the set of requests
from browsers to servers and the set of responses going back the other way. We
will now treat each of these in turn.

All the newer versions of HTTP support two kinds of requests: simple
requests and full requests. A simple request is just a single GET line naming the
page desired, without the protocol version. The response is just the raw page,
with no headers, no MIME, and no encoding. To see how this works, try making
a Telnet connection to port 80 of www.w3.org (as shown in the first line of
Fig. 7-60) and then type

GET /hypertext/ WWW/TheProject.html

but without the HTTP/1.0 this time. The page will be returned with no indication
of its content type. This mechanism is needed for backward compatibility. Its use
will decline as browsers and servers based on full requests become standard.

Full requests are indicated by the presence of the protocol version on the GET
request line, as in Fig. 7-60. Requests may consist of multiple lines, followed by
a blank line to indicate the end of the request, which is why the blank line was
needed in Fig. 7-60. The first line of a full request contains the command (of
which GET is but one of the possibilities), the page desired, and the
protocol/version. Subsequent lines contain RFC 822 headers.

Although HTTP was designed for use in the Web, it has been intentionally
made more general than necessary with an eye to future object-oriented applica-
tions. For this reason, the first word on the full request line is simply the name of
the method (command) to be executed on the Web page (or general object). The
built-in ‘methods are listed in Fig. 7-62. When accessing general objects, addi-
tional object-specific methods may also be available. The names are case sensi-
tive, so, GET is a legal method but get is not.

Method : Description

GET Request to read a Web page

HEAD Request to read a Web page’s header

PUT Request to store a Web page

POST Append to a named resource (e.g., a Web page)
DELETE | Remove the Web page

LINK Connects two existing resources

UNLINK | Breaks an existing connection between two resources

Fig. 7-62. The built-in HTTP request methods.

The GET method requests the server to send the page (by which we mean
object, in the most general case), suitably encoded in MIME. However, if the

Page 132 of 137

SEC. 7.6 THE WORLD WIDE WEB 691

GET request is followed by an If-Modified-Since header, the server only sends the
data if it has been modified since the date supplied. Using this mechanism, a
browser that is asked to display a cached page can conditionally ask for it from
the server, giving the modification time associated with the page. If the cache
page is still valid, the server just sends back a status line announcing that fact,
thus eliminating the overhead of transferring the page again.

The HEAD method just asks for the message header, without the actual page.
This method can be used to get a page’s time of last modification, to collect infor-
mation for indexing purposes, or just to test a URL for validity. Conditional
HEAD requests do not exist.

The PUT method is the reverse of GET: instead of reading the page, it writes
the page. This method makes it possible to build a collection of Web pages on a
remote server. The body of the request contains the page. It may be encoded
using MIME, in which case the lines following the PUT might include Content-
Type and authentication headers, to prove that the caller indeed has permission to
perform the requested operation.

Somewhat similar to PUT is the POST method. It too bears a URL, but
instead of replacing the existing data, the new data is “appended” to it in some
generalized sense. Posting a message to a news group or adding a file to a bul-
letin board system are examples of appending in this context. It is clearly the
intention here to have the Web take over the functionality of the USENET news
system.

DELETE does what you might expect: it removes the page. As with PUT, -
authentication and permission play a major role here. There is no guarantee that
DELETE succeeds, since even if the remote HTTP server is willing to delete the
page, the underlying file may have a mode that forbids the HTTP server from
modifying or removing it. |

The LINK and UNLINK methods allow connections to be established between
existing pages or other resources.

Every request gets a response consisting of a status line, and possibly addi-
tional information (e.g., all or part of a Web page). The status line can bear the
code 200 (OK), or any one of a variety of error codes, for example 304 (not modi-
fied), 400 (bad request), or 403 (forbidden).

The HTTP standards describe message headers and bodies in considerable
detail. Suffice it to say that these are very close to RFC 822 MIME messages, SO
we will not look at them here.

7.6.3. Writing a Web Page in HTML
Web pages are written in a language called HTML (HyperText Markup
Language). HTML allows users to produce Web pages that include text, graph-

ics, and pointers to other Web pages. We will begin our study of HTML with
these pointers, since they are the glue that holds the Web together.

Page 133 of 137

692 THE APPLICATION LAYER CHAP. 7
URLs—Uniform Resource Locators

We have repeatedly‘ said that Web pages may contain pointers to other Web
pages. Now it is time to see how these pointers are implemented. When the Web
was first created, it was immediately apparent that having one page point to
another Web page required mechanisms for naming and locating pages. In partic-
ular, there were three questions that had to be answered before a selected page
could be displayed:

1. What is the page called?
2. Where is the page located? |
3. How can the page be accessed?

If every page were somehow assigned a unique name, there would not be any
ambiguity in identifying pages. Nevertheless, the problem would not be solved.
Consider a parallel between people and pages. In the United States, almost every-
one has a social security number, which is a unique identifier, as no two people
have the same one. Nevertheless, armed only with a social security number, there
is no way to find the owner’s address, and certainly no way to tell whether you
should write to the person in English, Spanish, or Chinese. The Web has basically
the same problems.

The solution chosen identifies pages in a way that solves all three problems at
once. Bach page is assigned a URL (Uniform Resource Locator) that effec-
tively serves as the page’s worldwide name. URLs have three parts: the protocol
(also called a scheme), the DNS.name of the machine on which the page is
located, and a local name uniquely indicating the specific page (usually just a file
name on the machine where it resides). For example, the URL for the author’s
department is

http://www.cs.vu.nl/welcome.html

This URL consists of three parts: the protocol (Attp), the DNS name of the host
(www.cs.vu.nl), and the file name (welcome.html), with certain punctuation
separating the pieces.

Many sites have certain shortcuts for file names built in. For example, ~user/
might be mapped onto user’s WWW directory, with the convention that a refer-
ence to the directory itself implies a certain file, say, index.html. Thus the
author’s home page can be reached at

http://www.cs.vu.nl/~ast/

even though the actual file name is different. At many sites, a null file name
default’s to the organization’s home page.

Now it should be clear how hypertext works, To make a piece of text click-
able, the page writer must provide two items of information: the clickable text to

Page 134 of 137

SEC. 7.6 THE WORLD WIDE WEB 693

be displayed and the URL of the page to go to if the text is selected. When the
text is selected, the browser looks up the host name using DNS. Now armed with
the host’s IP address, the browser then establishes a TCP connection to the host.
Over that connection, it sends the file name using the specified protocol: Bingo.
Back comes the page. This is precisely what we saw in Fig. 7-60.

This URL schetne is open-ended in the sense that it is straightforward to have
protocols other than HTTP. In fact, URLs for various other common protocols
have been defined, and many browsers understand them. Slightly simplified
forms of the more common ones are listed in Fig. 7-63.

Name Used for Example
http Hypertext (HTML) | http:/www.cs.vu.nl/~ast/
ftp FTP ftp://ftp.cs.vu.nl/pub/minix/README
file Local file /usr/suzanne/prog.c
news News group News:comp.os.minix
news News article news:AA0134223112@cs.utah.edu
gopher | Gopher gopher://gopher.tc.umn.edu/11/Libraries
mailto Sending email mailto:kim@acm.org
telnet Remote login telnet://www.w3.0rg:80

Fig. 7-63. Some common URLs.

Let us briefly go over the list. The http protocol is the Web’s native language,
the one spoken by HTTP servers. It supports all the methods of Fig. 7-62, as well
as whatever object-specific methods are needed.

The fip protocol is used to access files by FTP, the Internet’s file transfer pro-
tocol. FTP has been around more than two decades and is well entrenched.
Numerous FTP servers all over the world allow people anywhere on the Internet

-to log in and download whatever files have been placed on the FTP server. The
Web does not change this; it just makes obtaining files by FTP easier, as FTP has
a somewhat arcane interface. In due course, FTP will probably vanish, as there is
no particular advantage for a site to run an FTP server instead of an HTTP server,
which can do everything that the FTP server can do, and more (although there are
some arguments about efficiency).

Tt is possible to access a local file as a Web page, either by using the file pro-
tocol, or more simply, by just naming it. This approach is similar to using FIP
but does not require having a server. Of course, it only works for local files.

The news protocol allows a Web user to call up a news article as though it
were a Web page. This means that a Web browser is simultaneously a news
reader. In fact, many browsers have buttons or menu items to make reading
USENET news even easier than using standard news readers.

Page 135 of 137

694 THE APPLICATION LAYER CHAP. 7

Two formats are supported for the news protocol. The first format specifies a
newsgroup and can be used to get a list of articles from a preconfigured news site.
The second one requires the identifier of a specific news article to be given, in this
case AA0134223112@cs.utah.edu. The browser then fetches the given article
from its preconfigured news site using the NNTP protocol.

The gopher protocol is used by the Gopher system, which was designed at the
University of Minnesota and named after the school’s athletic teams, the Golden
Gophers (as well as being a slang expression meaning “go for”, ie., go fetch).
Gopher predates the Web by several years. It is an information retrieval scheme,
conceptually similar to the Web itself, but supporting only text and no images.
When a user logs into a Gopher server, he is presented with a menu of files and
directories, any of which can be linked to another Gopher menu anywhere in the
world.

Gopher’s big advantage over the Web is that it works very well with 25 80
ASCII terminals, of which there are still quite a few around, and because it is text
based, it is very fast. Consequently, there are thousands of Gopher servers all
over the world. Using the gopher protocol, Web users can access Gopher and
have each Gopher menu presented as a clickable Web page. If you are not fami-
liar with Gopher, try the example given in Fig. 7-63 or have your favorite Web
search engine look for “gopher.”

Although the example given does not illustrate it, it is also possible to send a
complete query to a Gopher server using the gopher+ protocol. What is displayed
is the result of querying the remote Gopher server.

The last two protocols do not really have the flavor of fetching Web pages,
and are not supported by all browsers, but are useful anyway. The mailto protocol
allows users to send email from a Web browser. The way to do this is to click on
the OPEN button and specify a URL consisting of mailto: followed by the
recipient’s email address. Most browsers will respond by popping up a form con-
taining slots for the subject and other header lines and space for typing the mes-
sage.

The telnet protocol is used to establish an on-line connection to a remote
machine. It is used the same way as the Telnet program, which is not surprising,
since most browsers just call the Telnet program as a helper application. As an
exercise, try the scenario of Fig. 7-60 again, but now using a Web browser.

In short, the URLs have been designed to not only allow users to navigate the
Web, but to deal with FTP, news, Gopher, email, and telnet as well, making all
the specialized user interface programs for those other services unnecessary, and
thus integrating nearly all Internet access into a single program, the Web browser.
If it were not for the fact that this scheme was designed by a physics researcher, it
could easily pass for the output of some software company’s advertising depart-
ment. ‘

Despite all these nice properties, the growing use of the Web has turned up an
inherent weakness in the URL scheme. A URL points to one specific host. For

Page 136 of 137

SEC. 7.6 THE WORLD WIDE WEB : 695

pages that are heavily referenced, it is desirable to have multiple copies far apart,
to reduce the network traffic. The trouble is that URLs do not provide any way to
reference a page without simultaneously telling where it is. There is no way to
say: “I want page xyz, but I do not care where you get it.”” To solve this problem
and make it possible to replicate pages, the IETF is working on a system of URIs
(Universal Resource Identifiers). A URI can be thought of as a generalized
URL. This topic is the subject of much current research.

Although we have discussed only absolute URLs here, relative URLs also
exist. The difference is analogous to the difference between the absolute file
name /usr/ast/foobar and just foobar when the context is unambiguously defined.

HTML—HyperText Markup Langﬁage

Now that we have a good idea of how URLs work, it is time to look at HTML
itself. HTML is an application of ISO standard 8879, SGML (Standard Gen-
eralized Markup Language), but specialized to hypertext and adapted to the
Web.

As mentioned earlier, HTML is a markup language, a language for describing
how documents are to be formatted. The term “markup” comes from the old days
when copyeditors actually marked up documents to tell the printer—in those days,
a human being—which fonts to use, and so on. Markup languages thus contain
explicit commands for formatting. For example, in HTML, means start
boldface mode, and means leave boldface mode. The advantage of a
markup language over one with no explicit markup is that writing a browser for it
is straightforward: the browser simply has to understand the markup commands.
TeX and troff are other well-known examples of markup languages.

Documents written in a markup language can be contrasted to documents pro-
duced with a WYSIWYG (What You See Is What You Get) word processor, such
as MS-Word® or WordPerfect®; These systems may store their files with hidden
embedded markup so they can reproduce them later, but not all of them work this
way. Word processors for the Macintosh, for example, keep the formatting infor-
mation in separate data structures, not as commands embedded in the user files.

By embedding the markup commands within each HTML file and standardiz-
ing them, it becomes possible for any Web browser to read and reformat any Web
page. Being able to reformat Web pages after receiving them is crucial because a
page may have ‘been produced full screen on a 1024 x 768 display with 24-bit

color but may have to be displayed in a small window on a 640 x 480 screen with
8-bit color. Proprietary WYSIWYG word processors cannot be used on the Web
because their internal markup languages (if any) are not standardized across ven-
dors, machinies and operating systems. Also, they do not handle reformatting for
different-sized windows and different resolution displays. However, word pro-
cessing program can offer the option of saving documents in HTML instead of in

the vendor’s proprietary format, and some of them already do.

Page 137 of 137

