
United States Patent [19]

Shwed

[54] SYSTEM FOR SECURING INBOUND AND
OUTBOUND DATA PACKET FLOW IN A
COMPUTER NETWORK

[75] Inventor: Gil Shwed, Jerusalem, Israel

[73] Assignee: Checkpoint Software Technologies
Ltd., Jerusalem, Israel

[21] Appl. No.: 168,041

[22] Filed: Dec. 15, 1993

[51] Int. Cl.6
........................... G06F 13/36; G06F 15/401

[52] U.S. Cl. ··········'························ 395/200.11; 395/200.1;
395/836; 395/186; 395/187.01; 380/42

[58] Field of Search 395/200.01, 200.1,

[56]

4,315,315
4,736,320
5,247,693

395/200.11, 835, 836, 186, 726, 187.01;
380/42

References Cited

U.S. PATENT DOCUMENTS

2/1982 Kossiakoff 364/300
4/1988 Bristol 364/300
911993 Bristol 395/800

OTHER PUBLICATIONS

"A Software Design and Implementation for Filtering, For­
warding and Ciphering in a Secure Bridge", Soriano et al,
IEEE, 1992, pp. 487-492.
"A Network Firewall", Marcus J. Ranum, Digital Equipment
Corporation.

MAJNSITE

112

REMOTE SITE

111
US005606668A

[11] Patent Number:

[45] Date of Patent:

5,606,668
Feb.25, 1997

"Network (In) Security Through IP Packet Filtering", D.
Brent Chapman, Proceedings of the Third UNSENIX UNIX
Security Symposium; Baltimore, MD, Sep. 1992.
"The TAMU Security Package: An Ongoing Response to
Internet Intruders in an Academic Environment", David R.
Safford, Douglas Lee Schales, David K. Hess, UNIX Secu­
rity Symposium IV, Oct. 4-6, 1993.
"The Design of a Secure Internet Gateway", Bill Cheswick,
AT&T Bell Laboratories, Jun. 1990.
"An Internet Gatekeeper", Herve Schauer, Christophe Wolf­
huge!, Herve Schauer Consultants.

Primary Examiner-Thomas C. Lee
Assistant Examiner-Rehana Perveen Krick
Attorney, Agent, or Firm-Ladas & Parry

[57] ABSTRACT

A filter module allows controlling network security by
specifying security rules for traffic in the network and
accepting or dropping communication packets according to
these security rules. A set of security rules are defined in a
high level form and are translated into a packet filter code.
The packet filter code is loaded into packet filter modules
located in strategic points in the network. Each packet
transmitted or received at these locations is inspected by
performing the instructions in the packet filter code. The
result of the packet filter code operation decides whether to
accept (pass) or reject (drop) the packet, disallowing the
communication attempt.

12 Claims, 18 Drawing Sheets

212 206

Q PACKET FILTER MODULE

• ROUTER PROGRAMMING SCRIPT

Page 1 of 25 OpenTV Exhibit 2006
Apple v. OpenTV

IPR2015-00969

U.S. Patent

' '

MAIN SITE

r-------------------

I

I

REMOTE SITE

Feb.25, 1997

ROUTER

Sheet 1 of 18 5,606,668

108 106
SYS. ADMIN.

102
W/S

W/S W/S

124

G/W W/S

124:
'
'
' ' ..-'------, I

W/S
I

I

---J

FIG. 1

Page 2 of 25

U.S. Patent Feb.25, 1997 Sheet 2 of 18 5,606,668

212 206

MAIN SITE
102

108

204 204

REMOTE SITE 124 124

W/S W/S

Q PACKET FILTER MODULE

• ROUTER PROGRAMMING SCRIPT

FIG. 2

Page 3 of 25

c·c ,
(t•:

...... " FIRE W ALL-1 RULE BASE EDITOR: CORPORATE

FILE,.') RULE •. •') FILTER •. •') ROUTERS 't~) UTILITIES't;) PROPERTIES ••• ') ___________ .. "------------' ..._ ___________ ..,. ... ___________ ,. .._ ___________ __. ,I~!~~~~~)
WINDOWS: £NETWORK OBJECTS £SERVICES .jJ SYSTEM VIEW ___ j LOG VIEWER

I

NO. SOURCE DESTINATION SERVICES ACTION TRACK INSTALL ON

1 @ANY
E;) MAIL TE) • ~ SERVERS

SMTP ACCEPT GATEWAYS

"""l
..h
. ..
:!.,

~ CEO 8) 8 (({1~ ~
I

2 ~FINANCE I

;&{ CFO ANY DROP ALERT GATEWAYS

3 E;) TRUSTED
• ~ ·: R:c l Tv • '¢osT PARTIES 't'4' INTERNAL ·.· ..
TALK RSTAT TELNET ACCEPT i

4 I.JJ~ INTERNAL @ANY @ • (({1~ ~ .. I
~"'

ANY ACCEPT ALERT GATEWAYS

5
@ANY

't'4' INTERNAL 8) § [8] '¢osT
·~FINANCE ANY REJECT'--· MAIL

--------- -------
~ ••• 3
j_~j~~ j

t RULE BASE SAVED TO 1 /FW I USERS I MARIUS I CORPORATE. W 1 COPYRIGHT @1993 CHECKPOINT SOFTWARE TECHNOLOGIES LTD.
... (_____ ---___________________________________ ___J

302 FIG. 3A

d •
00 •
1-C
= """'" ~ a

~ g. .
~
~

'-= '-= -..l

Ill

[
w
s,
~
QC)

Ul ,..
=" = =" ,..
="
=" QC

Page 4 of 25

U.S. Patent

304 \..

f~~
1 MAILTOOL 1
L ____ _j

,----,

: (;o?j:
I FW I L ____ ..J

Feb.25, 1997 Sheet 4 of 18 5,606,668

FIRE WALL-1 NE1WORK OBJECT MANAGER

VIEW BY TYPES= r-INTERNPi r-EXTERNAL

-{] HOST £ NET -{] ROUTER

.{j GATEWAY .{J DOMAIN -{]GROUP

ttl8 .BRM.CO.ll

~ CEO

~ CFO

~ FINANCE 16

\t~ INTERNAL

(• :) MAIL SERVERS
I

I
I
I

I

(• :) TRUSTED PARTIES l
AW DYLAN j

____ ,

~ LOCALNET i 1 ___ J

CREATE NEW OBJECTS\'') MAIL SERVERS
---------------------------'

COPYRIGHT @1993 CHECKPOINT SOFI'WARE TECHNOLOGIES LTD.

FIG. 38

Page 5 of 25

U.S. Patent

~
XTERM

306
~

~rTi
1

WASTE
1

L ____ __l

Feb.25, 1997 Sheet 5 of 18

FIRE WALL-1 SERVICES MANAGER

VIEW BY TYPES:

£ TCP £ RPC

£ UDP £ OTHER

B X11

0
--+
UDP

AUTH_ TELNET

BLFF
+-
--+
UDP DAYTIME
+-
--+
UDP DISCARD
+-
--+
UDP ECHO
+-

B EXEC

B FINGER

B FTP

£ GROUP

: ____ ,
I I
I I

: .J> I

I
I
I

I
I
I ----

5,606,668

COPYRIGHT (C)1993 CHECKPOINT SOFTWARE TECHNOLOGIES LTD.

FI.G.3C

Page 6 of 25

t'(

~~f_C!~T-~ -~~:) ~~-'='~YY __ ·~~)

FIRE WALL-I SYSTEM STATUS VIEW

INSTALL,.-~
' .., ___________ , LAST UPDATE: 16:21:42

NOW: 16:26:16

UPDATE INTERVAL (SEC): 0 0.1 (... : ... ~ ,. ... : j 120 ~ ~~!-~~! -~~!-) ~ ~L!=~~ ~E_L§~T!~~~)

1 0Dec93 13:05:35

~
I•

MONK

DEFAULT

-{ 180842

1 0Dec93 16:20:53

.
:·. :::::::: •!• ••••••••• : ·: .·. ·. :. : :::·:·.·:·:-.: ... : . :.• · :: :.: : : : : :: :
........ '

:;:! ...
N ...

~ .. !l ~

0

21

COPYRIGHT@993 CHECKPOINT SOFTWARE TECHNOLOGIES LTD.
~.(..

308 FIG. 3D

d •
00.
•
~

~ a

~

?-
~
~
~
~

00

[
=--
s,
....
00

Ul
"" =" = =" "" =" =" QO

Page 7 of 25

U.S. Patent Feb.25, 1997

400~

GET NEXT
RULE

406

408

410

416

402

Sheet 7 of 18

GENERATE CODE
TO MATCH RULE

SOURCE
NETWORK OBJECTS

GENERATE CODE
TO MATCH RULE

DESTINATION
NETWORK OBJECTS

GENERATE CODE
TO MATCH RULE

SERVICES

412 GENERATE CODE TO ACCEPT

YES

FIG. 4

OR REJECT THE PACKET
IF 406, 408, 410 WERE

MATCHED

5,606,668

Page 8 of 25

U.S. Patent Feb. 25, 1997 Sheet 8 of 18 5,606,668

500

~
r--------- -----------------r--------------------------------------520---:
: .5.Q2. -
I
I

: COMMUNICATION LAYERS
I
I

I

516 Jr17. APPLICATION I
I

j16.PRESENTATION I
514 I

I

J15. SESSION
512 I

I Jri 4. TRANSPORT
510 I

508 I

506 I

I

PACKET FILTER

PACKET RECEIVED

524

: J1. HW I
_jr I CONNECTION

5M : ~4 5~
I
I
I
I
1 I

L--------- -----------------L--1

FIG. 5

Page 9 of 25

U.S. Patent Feb.25, 1997 Sheet 9 of 18

600

~ 602

1. PACKET RECEIVED

604

2. GET FILTER OPERATIONS

606

3. INITIALIZE MEMORY

4. GET FIRST VIRTUAL MACHINE OPERATION

5. PERFORM VIRTUAL MACHINE OPERATION

\

7. GET NEXT OPERATION \

\

612 614 \

NO

YES 618

616

5,606,668

" 608
I

I
610 1

I

YES, PASS THE PACKET NO, DROP THE PACKET

FIG. 6

Page 10 of 25

U.S. Patent

702

DATA
EXTRACTION

704

Feb. 25, 1997 Sheet 10 of 18

5.PERFORM VIRTUAL
MACHINE OPERATION

613

LOGICAL
OPERATION

FIG. 7

610

COMPARISON

614

5,606,668

706

Page 11 of 25

U.S. Patent Feb. 25, 1997 Sheet 11 of 18

DATA EXTRACTION

702~

802

804

808

812

EXTRACT DATA
FROM PACKET

PUT DATA
INTO MEMORY

FIG. 8

5,606,668

PACKET

810

MEMORY
STACK

806

Page 12 of 25

U.S. Patent Feb. 25, 1997 Sheet 12 of 18

914

704~

902

904

908

FALSE

PUTO
IN MEMORY

LOGICAL OPERATION

GET FIRST VALUE
FROM MEMORY

GET SECOND VALUE
FROM MEMORY

916

FIG. 9

TRUE 912

PUT 1
IN MEMORY

5,606,668

906

MEMORY
STACK

Page 13 of 25

U.S. Patent Feb. 25, 1997 Sheet 13 of 18

1014

COMPARISON OPERATION

706~

1002

1004

~

1008

FALSE

PUTO

GET FIRST VALUE
FROM MEMORY

GET SECOND VALUE
FROM MEMORY

TRUE

PUT 1

1012

IN MEMORY IN MEMORY

FIG. 10

5,606,668

1006

MEMORY
STACK

Page 14 of 25

U.S. Patent Feb.25, 1997 Sheet 14 of 18 5,606,668

ENTERING A LITERAL VALUE TO MEMORY

1102

1106

~

1108

1110

GET LITERAL VALUE
FROM CODE

PUT VALUE
INTO MEMORY

F I G. 11

MEMORY
STACK

1104

Page 15 of 25

U.S. Patent

1202

FALSE

Feb.25, 1997 Sheet 15 of 18

CONDITIONAL BRANCH OPERATION

1204

FALSE

1214

TRUE

GET VALUE
FROM MEMORY

STACK

1210

5,606,668

1206

MEMORY
STACK

1208

TRUE

..____ __ ...,. SET NEXT STEP
TON .-------------------~

1216

FIG. 12

Page 16 of 25

U.S. Patent Feb.25, 1997 Sheet 16 of 18 5,606,668

ARITHMETIC AND BITWISE OPERATION

1302

1304

~

1308

GET FIRST VALUE
FROM MEMORY

GET SECOND VALUE
FROM MEMORY

131 PERFORM

1312

ARITHMETIC OR
BITWISE

OPERATION

PUT RESULT
IN MEMORY·

1314

F I G. 13

1306

MEMORY
STACK

Page 17 of 25

U.S. Patent

1410

TABLE 1

TABLE 2

TABLE 3

Feb.25, 1997 Sheet 17 of 18

1402

GET VALUES
FROM MEMORY

SEARCH THE VALUES
IN THE REFERRED

TABLE

1412

1418

FIG. 14

5,606,668

1406

MEMORY

Page 18 of 25

U.S. Patent

1510

~
TABLE 1

TABLE 2

TABLE 3

Feb.25, 1997 Sheet 18 of 18

1502

GET VALUES
FROM MEMORY

PUT VALUES
IN THE REFERRED

TABLE

FIG. 15

1512

1518

5,606,668

1506

MEMORY

Page 19 of 25

5,606,668
1

SYSTEM FOR SECURING INBOUND AND
OUTBOUND DATA PACKET FLOW IN A

COMPUTER NETWORK

BACKGROUND OF THE INVENTION

This application relates, in general, to a method for
controlling computer network security. More specifically it
relates to an easily alterable or expandable method for
computer network security which controls information flow
on the network from/to external and internal destinations.

Connectivity and security are two conflicting objectives in
the computing environment of most organizations. The
typical modem computing system is built around network
communications, supplying transparent access to a multi­
tude of services. The global availability of these services is
perhaps the single most important feature of modem com­
puting solutions. Demand for connectivity comes both from
within organizations and from outside them.

Protecting network services from unauthorized usage is of
paramount importance to any organization. UNIX worksta­
tions, for example, once connected to the Internet, will offer
all the services which it offers another station on the next
table to the entire world. Using current technology, an
organization must give up much of its connectivity in order
to prevent vulnerability, even to the extent of eliminating all
connections to the outside world or other sites.

As the need for increased security grows, the means of
controlling access to network resources has become an
administrative priority. In order to save cost and maintain
productivity, access control must be simple to configure and
transparent to users and applications. The minimization of
setup costs and down time are also important factors.

Packet filtering is a method which allows connectivity yet
provides security by controlling the traffic being passed, thus
preventing illegal communication attempts, both within
single networks and between connected networks.

5

2
A still further object of the invention is to provide a

generic packet filter module which is controlled by a set of
instructions to implement a given security policy at a node
to accept (pass) or reject (drop) the packet.

Yet another object of the invention is to provide a security
method for a computer network which is easily alterable by
the system administrator without the need to change the
nature of the packet filter itself or to write extensive code.

These and other objects, features and advantages are
10 provided by a method of operating a computer network, in

which data is passed in said network as data packets, for
controlling the passage of said data packets in the network
according to a security rule, the method comprising the steps
of generating, in at least one computer in the network, a

15 definition of each aspect of the network controlled by a
security rule; generating said security rule, in said computer,
in terms of said aspect definitions, for controlling at least one
of said aspects; converting said security rule into a set of
filter language instructions for controlling operation of a

20 packet filtering module which controls passage of said data
packet; providing a packet filter module in at least one of
network entity to control the passage of data packets in
accordance with said rule, said module emulating said
packet filtering module; said module reading and executing

25 said instructions for operating said packet filtering module
virtual machine to either accept or reject the passage of said
packet in said network.

Another aspect of the invention includes a security system
for a computer network in which data is passed in said

30 network as data packets, said system controlling the passage
of said data packets in the network according to a security
rule, where each aspect of said network controlled by said
security rule has been defined, said security rule has been
defined in terms of said aspects and converted into a filter

35 language instructions, a method for operating the system
comprising the steps of providing a packet filter module in
at least one entity of the network to be controlled by said
security rule, said module emulating a packet filtering mod­
ule which controls passage of said data packet; said module

40 reading and executing said instructions for operating said
packet filtering module to either accept or reject the passage
of said packet in said network.

Current implementation of packet filtering allows speci­
fication of access list tables according to a fixed format. This
method is limited in its flexibility to express a given orga­
nization's security policy. It is also limited to the set of
protocols and services defined in that particular table. This
method does not allow the introduction of different protocols 45
or services which are not specified in the original table.

A further aspect of the invention comprises a security
system for a computer network in which data is placed in
said network as data packets, said system controlling pas­
sage of said data packets in the network according to a
security rule, where each aspect of said network controlled
by said security rule has been defined, said security rule has

Another method of implementing packet filtering is tai­
loring the computer operating system code manually in
every strategic point in the organization. This method is
limited by its flexibility to future changes in network topol­
ogy, new protocols, enhanced services and to future security
threats. It requires a large amount of work by experts
modifying proprietary computer programs, making it insuf­
ficient and expensive to setup and maintain.

SUMMARY OF THE INVENTION

It is a general object of the present invention to produce

50
been defined in terms of said aspects and converted into a
filter language instructions, a method for operating the
system comprising the steps of providing a packet filter
module in at least one entity of the network to be controlled
by said security rule, said module emulating a packet

55
filtering module which controls passage of said data packet;
said module reading said executing instructions for a packet
filtering operation; storing the results in a storage device;
said module reading and executing instructions and utilizing

a flexible, easily-alterable security method which controls
60

information flow on a computer network.

said stored results for operating said packet filter module to
accept or reject the passage of said packet in said network.

BRIEF DESCRIPTION OF THE DRAWINGS
Another object of the invention is to control information

flow on the network from/to internal as well as external FIG. 1 is an example of a network topology;
destinations. FIG. 2 shows a security system of the present invention

A further object of the invention is to control information 65 applied to the network topology of FIG. 1;
flow by means of a packet filter capable of examining every FIG. 3 shows the computer screen of the network admin-
packet of information flowing past a node in the system. istrator of FIG. 2 in greater detail;

Page 20 of 25

5,606,668
3

FIG. 4 is a flow diagram of the subsystem for converting
graphical information to filter script;

FIG. 5 is a flow diagram of an information flow on a
computer network employing the present invention;

FIG. 6 is a flow diagram of the operation of the packet
filter shown in FIG. 5;

FIG. 7 is a flow diagram showing the virtual machine
operations shown in FIG. 6;

FIG. 8 is a flow diagram of the data extraction method of
FIG. 7;

FIG. 9 is a flow diagram of the logical operation method
ofFIG. 7;

FIG. 10 is a flow diagram of the comparison operation
method of FIG. 7;

FIG. 11 is a flow diagram of the method of entering a
literal value to memory;

FIG. 12 is a flow diagram of a conditional branch opera­
tion;

FIG. 13 is a flow diagram of an arithmetic and bitwise
operation;

FIG. 14 is a flow diagram of a lookup operation; and
FIG. 15 is a flow diagram of a record operation.

DETAILED DESCRIPTION

Referring now to FIG. 1, an example network topology is
shown. In this example, the main site 100 contains a system
administrator function embodied in workstation 102. This
workstation is coupled to the network which includes work­
stations 104, router 110 and gateway 106. Router 110 is
coupled via satellite 112 to a remote site via gateway 122.
Gateway 106 is coupled via router 108 to the Internet. The
remote site 120 comprises workstations 124 which are
coupled to the network and via gateway 122 to the Internet.
The particular configuration shown herein is chosen as an
example only and is not limitive of the type of network on
which the present invention can work. The number configu­
rations that networks can take are virtually limitless and
techniques for setting up these configurations are well
known to those skilled in the art. The present invention can
operate on any of these possible configurations.

FIG. 2 shows the network of FIG. 1 in which the present
invention has been installed. In FIG. 2, elements also shown
in FIG. 1 have the same reference numerals. As shown, the
system administrator 102 includes a control module 210, a
packet filter generator 208, a display 206 and a storage
medium 212. Packet filters 204 have been installed on the
system administrator, workstations 104 and gateway 106.
Gateway 106 has two such filters, one on its connection to
the network and one on its connection to the router 108.
Routers 108 and 110 each have a programming script table
which is generated by the security system, but which forms
no part of the present invention, and will not be described in
detail. These tables correspond to the tables that are cur­
rently utilized to program routers, as is well known to those
skilled in the art.

Packet filters 204 are also installed on the gateway 122 of
the remote site 120. One packet filter is installed on the
connection between the satellite 112 and the gateway 122, a
second packet filter is installed on the connection between
the Internet and gateway 122 and a third packet filter is
installed on the connection between the gateway and the
network.

Information flows on the network in the form of packets,
as is well known to those skilled in the art. The location of

4
the packet filters in FIG. 2 is chosen so that data flow to or
from a particular object of the network, such as a worksta­
tion, router or gateway can be controlled. Thus, workstations
104 each have a packet filter so that the information flow

5 to/from these workstations is separately controlled. At the
remote site 120, however, the packet filter is placed on the
connection between the gateway 122 and the network, thus
there is no individual control over the data flow to/from the
workstations 124. If such individualized control were
required, packet filters could be placed on each of t~e

10 workstations 124, as well. Each of the packet filters Is
installed at the time that the network is set up or the security
system is installed, although additional packet filters can be
installed at a later date. The packet filters are installed on the
host device .such as the workstation or gateway at which

15 protection is desired.
Each of the packet filters operates on a set of instructions

which has been generated by the packet filter generator 208
in the system administrator 102. These instructions enable
complex operations to be performed on the packet, rather w .
than merely checking the content of the packet agamst a
table containing the parameters for acceptance or rejection
of the packet. Thus, each packet filter can handle change~ in
security rules with great flexibility as well as handle multiple
security rules without changing the structure of the packet 25
filter itself.

The system administrator enters the security rules via a
graphical user interface (GUI) which is displayed upon the
monitor 206 and explained in more detail with respect to

30 FIG. 3. This information is processed by the packet filter
generator 208 and the resulting code is transmitted to the
appropriate packet filter or filters in the network to perform
the function that is desired. Control module 210 enables the
system administrator to keep track of the operations of the

35 network and storage 212 can be utilized to keep logs of
operations on the network and attempts of illegal entry into
the network. The system operator can thereby be provided
with full reports as to the operation of the network and the
success or failure of the security rules. This enables the

40 security administrator to make those changes that are appro­
priate in order to maintain the security of the network
without limiting its connectivity.

FIG. 3 shows the computer screen 206 in FIG. 2 in more
detail. The screen is broken into four windows, two smaller

45 windows at the left side and two larger windows at the right
side. Network objects and services are two aspects of the
network which must be defined in the security method of the
present invention. Window 304 is used to define network
objects such as the workstations, gateways and other com-

50 puter hardware connected to the system. It is also possible
to group various devices together such as, for example, the
finance department, the research and development depart­
ment, the directors of the company. It is thus possible to
control data flow not only to individual computers on the

55 network, but also to groups of computers on the network by
the appropriate placement of packet filters. This allows the
system operator have a great deal of flexibility in the
managing of communications on the network. It is possible
for example to have the chief financial officer as well as

60 other higher ranking officials of the company such as the
CEO and the directors able to communicate directly with the
finance group, but filter out communications from other
groups. It is also possible to allow electronic mail from all
groups but to limit other requests for information to a

65 specified set of computers. This allows the system operator
to provide internal as well as external security for the
network. The object definition would include the address of

Page 21 of 25

5,606,668
5

the object on the network, as well as a name or group
whether the object is internal or external to the network,
whether or not a packet filter has been installed on this object
and a graphical symbol. The graphical symbol is used in
connection with the rule base manager 302.

Similarly, network services are defined in block 306 on
the screen. These network services can include login, route,
syslog and telnet, for example. Each service is defined by
generic and specific properties. The generic properties
include the code string that identifies the service, for
example "dport" (destination port) which is equal to 23 for
telnet. The code string that identifies the incoming and
outgoing packets are identified. Specific properties include
the name of the service, the port used to provide the service,
the timeout in seconds of how long a connectionless session
may stay inactive, that is, having no packet transmitted in
either direction before assuming that the session is com­
pleted. Other elements of a service definition might include
the program number for RPC services and the outbound
connections for accepted services that use connectionless
protocols such UDP. The graphic symbol and its color are
specified.

Block 302 is the rule base manager which allows the new
security rule to be entered into the system in a graphical
manner, thus freeing the system administrator from having
to write code to implement a particular security rule or to
change a security rule. Only four elements are required to
enter the new security rule into the system. The first element
is the source of the data packet and the third element is the
destination of the packet. The second element is the type of
service that is involved and the fourth element is the action
that should be taken. The action that can be taken includes
accept the packet in which case the packet is passed from the
source to the destination or reject the packet in which case
the source is not passed from the source to the destination.

6
FIG. 4 shows a flow chart of the subsystem for converting

the information on the GUI to a filter script which contains
the rules utilized for the packet filter. In the preferred
embodiment, the output of the filter script generator is

5 compiled into object code which is then implemented by the
packet filter module, as described below.

The subsystem 400 starts at 402, proceeds to block 404
which is obtains the first rule from the GUI. The first rule is
the first line on the screen in which a new security rule has

10 been identified, as shown in FIG. 3. Control then proceeds
to block 406 in which code is generated to match the rule
source network objects. That is, the source of the packet is
entered into the source code block as representing one of
objects of the system from which the data packet will

15 emanate. Control then passes to block 408 in which code is
generated in the destination code block to indicate which
object of the network the data packet is destined for. Control
then passes to block 410 in which code is generated to match
the rule services that were chosen. The rule services have

20 been defined previously and are stored within the system or,
if not defined, will be defined at the time the security rule
regulating the service is entered into the system. Control
then passes to block 412 in which code is generated to accept
or reject the packet if the data blocks 406, 408 and 410 were

25 matched, that is, the results of the checks were true. The
action to accept or reject is based upon the action chosen in
the security rule. Control then passes to'the decision block
414 which determines whether or not more rules are to be
entered into the system. If no more rules are to be entered

30 into the system, the subsystem terminates at block 418. If
more rules are to be entered into the system, control passes
to block 416 which obtains the next rule and passes control
back to block 406 at which time the process repeats and the
next security rule, found on the next line the GUI is

If the packet is rejected, no action can be taken or a negative
acknowledgement can be sent indicating that the packet was
not passed to the destination. In addition, a further element
which can be specified is the installation location for the rule
which specifies on which objects the rule will be enforced
(see FIG. 2). If an installation location is not specified, the 40
system places the packet filter module on the communica­
tion destination by default. These objects are not necessarily
the destination. For example, a communication from the
Internet and destined for a local host must necessarily pass
through a gateway. Therefore, it is possible to enforce the 45
rule on the gateway, even though the gateway is neither the
source nor the destination. By entering the data with acro­
nyms or graphic symbols, each rule can quickly be entered
and verified without the need for writing, compiling and
checking new code for this purpose. Thus, the system 50
administrator need not be an expert in programming a
computer for security purposes. As long as the service is one

35 processed.
Communication protocols are layered, which is also

referred as a protocol stack. The ISO (International Stan­
dardization Organization) has defined a general model
which provides a framework for design of communication
protocol layers. This model serves as a basic reference for
understanding the functionality of existing communication
protocols.

Layer

7
6
5
4
3
2

ISO MODEL

Functionality

Application
Presentation
Session
Transport
Network
Data Link
(Hardware Interface)
Physical

Example

Te1net, NFS, Novell NCP
XDR
RPC
TCP, Novel SPX
IP, Novell IPX
Network Interface Card

of the services already entered into the system, the computer
serving as the host for the system administrator function will
process the information into a set of instructions for the 55
appropriate packet filter, as described in greater detail below.

Block 308 is a system snapshot which summarizes the
setup and operations of the security system. It is not required

Ethernet, Token Ring, T1
(Hardware Connection)

Different communication protocols employ different lev­
els of the ISO model. A protocol in a certain layer may not
be aware to protocols employed at other layers. This is an to practice the present invention. The system snapshot

displays a summary of the system using graphical symbols.
The summary can include, for example, the host icon, host
name, rule base name, which is the name of the file con­
taining the rule base, and the date the rule base was installed

60 important factor when making security actions. For
example, an application (Level 7) may not be able to identify
the source computer for a communication attempt (Levels
2-3), and therefore, may not be able to provide sufficient

on the host. It can also show the status of the host indicating
whether or not there have been communications with the 65

host as well as the number of packets inspected by, dropped
and logged by the host.

security.
FIG. 5 shows how a filter packet module of the present

invention is utilized within the ISO model. The communi­
cation layers of the ISO model are shown at 502 at the left

Page 22 of 25

5,606,668
7 8

FIG. 2. Control then passes to block 604 in which the filter
operations are obtained and then to block 606 in which the
memory 618 is initialized. In block 608, the first virtual
machine operation is obtained and performed in block 610.

hand portion of FIG. 5. Level 1, block 504, is the hardware
connection of the network which may be the wire used to
connect the various objects of the network. The second level,
block 506 in FIG. 5 is the network interface hardware which
is located in each computer on the network. The packet filter
module of the present invention intercedes between this
level and level 3 which is the network software. Briefly, for
the sake of completeness, the other levels of the ISO model
are level 4, block 510 which relates to the delivery of data
from one segment to the next, level 5, block 512, synchro­
nizes the opening and closing of a "session" on the network.
Level 6, block 514 relates to the changing of data between
various computers on the network, and level 7, block 516 is

5 The virtual machine contains a memory mechanism such as
a stack or register 618 which may be utilized to store
intermediate values. The utilization of this stack or register
is shown in greater detail in connection with table 1 below.
Control then passes to decision block 614 in which it is

10
determined whether or not the stop state has been reached.
If the stop state has been reached, the decision will have
been made to accept or reject the packet, which decision is
implemented at block 616. If the packet has been passed, the
packet will proceed as shown in FIG. 5. If the packet is
rejected, it will be dropped and a negative acknowledgement

the application program.
A packet entering the computer on which the packet filter

module resides passes through layers 1 and 2 and then is
diverted to the packet filter 520, shown on the right hand
portion of FIG. 5. The packet is received in block 522. In
block 524, the packet is compared with the security rule and

15 may be sent as shown in blocks 528 and 530.1fthe stop state
has not been reached in block 614, the next operation is
obtained in block 616 and the process repeats starting with
block 610.

a determination is made as to whether or not the packet
matches the rule. If the packet matches the rule, it may be 20

logged on the system administrator's log and, if an illegal
attempt has been made to enter the system, an alert may be
issued. Control then passes to block 534 in which a decision
is made whether or not to pass the packet based upon the
requirements of the security rule. If the decision is to pass 25

the packet, the packet is then passed to level 3, block 508.
If a decision is not to pass the packet, a negative acknowl­
edgement (NACK) is sent at block 528, if this option has
been chosen, and control passes to block 530 where the
packet is dropped, that is, it is not passed to its destination. 30

Similarly, if an application generates a packet which is to be
sent to another destination, the packet leaves the ISO model
at level 3, block 508 and enters block 522 and proceeds by
an identical process except that if the packet is to be passed
it is passed to level 2, block 506 and not level 3, block 508. 35

On level 2, the packet is then sent onto the network at block
504, level 1. If the packet does not match the rule, the next
rule will be retrieved and the packet examined to see if it
matches this rule. A default rule is provided which matches
any packet regardless of the source destination or service 40

specified. This "empty rule" only has an action, which is to
drop the packet. If no other rule is matched, this rule will be
retrieved and will be effective to drop the packet. Dropping
the packet is the safest step to take under these circum­
stances. The "empty rule" could, of course, be written to 45

pass the packet.
Referring to FIG. 6, 600 is a detailed description of the

block 520 of FIG. 5. The generalized description in FIG. 6
and the more detailed descriptions shown in FIGS. 7-10

50
comprise a definition of the term "packet filter module" as
the term is utilized herein. The capabilities shown in those
figures are the minimal capabilities for the packet filter
module to operate. FIGS. 11-15 show addition features
which may also be included in the packet filter module, but

55
are not required in the minimal definition of the term.

The packet filter module is embodied in a "virtual
machine", which, for the purposes of this application, may
be defined as an emulation of the machine shown in FIGS.
6-10 residing in the host computer, which is a computer on 60

the network.

The type of operations that can be performed in step 5,
block 610 are shown more clearly in FIG. 7. In FIG. 7, block
610 and block 614 are identical to the blocks shown in FIG.
6. Connection 613 is interrupted by three operations which
are shown in parallel. For the operation that is to be
performed in block 610, control will pass to the appropriate
block 702, 704 or 706 in which that task will be performed.
In block 702 data extraction will be performed, in block 704
logical operations will be performed and in block 706 a
comparison operation will be performed. As shown at the
right hand portion of FIG. 7, other blocks can be added in
parallel to the operations capable of being performed by the
virtual machine. The subset shown as blocks 702, 704 and
706 are the essential elements of the virtual machine of the
present invention. These elements are shown in greater
detail in FIGS. 8, 9 and 10, respectively. Additional elements
which may optionally be included in the operations capable
of being performed by the virtual machine are shown in
FIGS. 11-15, respectively.

The data extraction block 702 is shown in greater detail in
FIG. 8. The process starts at block 802 and control passes to
block 804 in which data is extracted from a specific address
within the packet 806. This address is taken from the stack
memory 618 or from the instruction code. The amount of
data extracted is also determined by the stack memory or the
instruction code. The extracted data is put into the memory
stack 810 at block 808. The process terminates at block 812.
In these figures, control flow is shown by arrows having a
single line whereas data flow is shown by arrows having
double lines.

FIG. 9 shows logical operation 704 in greater detail. The
logical operation starts at block 902 and control passes to
block 904 in which the first value is obtained from the
memory 906. In block 908 a second value is obtained from
the memory and the logical operation is performed in block
910. If the logical operation is true, a one is placed in the
memory 906 at block 912 and if the logical operation is
false, a zero is placed in the memory 906 at block 914. The
process terminates at block 916.

The third and last required operation for the virtual
machine is shown in greater detail in FIG. 10. The com­
parison operation, block 706, starts at block 1002 and
control passes to block 1004 in which the first value is
obtained from memory 1006. Control passes to block 1008
in which a second value is obtained from memory 1006. A

The virtual machine starts at block 602 in which the
packet is received, which corresponds to block 522 of FIG.
5. Control passes to block 604 in which the filter operations
are obtained from the instruction a memory (not shown).
These filter operations are the filter operations that have
been generated by the packet filter generator 208 shown in

65 comparison operation between the first and second values
takes place at block 1010. If the comparison operation is
true, a one is placed in memory 1006 at block 1012 and if

Page 23 of 25

5,606,668
9

the comparison operation is false a zero is placed in memory
1006 at block 1014. The process terminates in block 1016.

The following operations are not shown in FIG. 7 but may
be added at the right side of the figure at the broken lines and
are connected in the same manner as blocks 702, 704 and 5

706, that is, in parallel. FIG. 11 shows the entering of a literal
value into the memory. The process starts at block 1102 and
control passes to block 1106 in which the literal value is
obtained from the instruction code. The value is placed into
the memory at block 1108 and the process ends at block 10

1110.

A conditional branch operation is shown in FIG. 12. The
process starts at block 1202 and control passes to block 1204
in which the branch condition, taken from the instruction
code, is checked. If the branch condition is true, the value is 15

obtained from the memory stack 1206 at block 1208 and
checked at block 1210. If the results of the comparison in
block 1210 is true, the next step is set to N and the process
terminates at block 1216. If the comparison in block 1210 is
false, the process terminates at block 1216. If the branch
condition is false, at block 1204, control passes directly to
block 1214.

20

An arithmetic or bitwise operation is shown in FIG. 13.
The process starts at block 1302 and control passes to block
1304 in which the first value is obtained from memory 1306.
The second value is obtained from memory 1306 at block
1308 and an arithmetic or bitwise operation is performed on
the two values obtained from the memory 1306 in block
1310. The result of the arithmetic or bitwise operation is
placed in the memory in block 1312 and the process termi­
nates in block 1314.

FIG. 14 illustrates a lookup operation which is useful if
data needs to passed from a first set of instructions imple­
menting a security rule to a second set of instructions for a
second security rule. As shown in block 606 of FIG. 6, the
memory is initialized whenever a new security rule is
processed. Therefore, information placed in the memory by

25

30

35

40

a first security rule will not be available for use by a second
security rule. In order to overcome this problem, a separate
memory 1410 is supplied which contains Tables 1-3 which
can be utilized for this purpose. The entry of data into the
tables is shown in FIG. 15 and described below. The lookup
operation starts at 1402 and control passes to 1404 in which
values are obtained from memory 1406. Control passes to 45
block 1408 in which data is obtained from Tables 1-3 at
block 1410 by searching the values in the referred Table.
Control passes to block 1412 in which a decision is made as
to whether the block is in the Table. If the decision is yes,
a one is placed in memory 1406 at block 1416. If the

50
decision is no, a zero is placed in memory 1406 at block
1414. The process terminates at block 1418.

Referring to FIG. 15, the process starts at block 1502 and
control passes to block 1504 in which values are obtained
from memory 1506. Control then passes to block 1508 in 55
which values obtained from memory 1506 are placed in the
appropriate locations in Tables 1-3 at block 1510. Control
passes to block 1512 in which a decision is made as to
whether or not the storage values in the Table has succeeded.
If the storage has succeeded a one is placed in memory 1506 60
at block 1516. If the process has not succeeded, a zero is
placed in memory 1506 at block 1514. The process termi­
nates at block 1518.

10
being a TCP service and having a specific TCP destination
port. It will be identified by having a TCP protocol value of
6 in byte location 9 of the packet and by having a destination
Telnet protocol number of 23 in byte location 22 of the
packet, the value being a two-byte value. This is found in
every Telnet request packet.

The first operation in Table 1 is to extract the IP protocol
from the packet location 9 and place this in memory. As
shown in the "Memory Values" column at the right side of
Table 1, this value, 6, is placed at the top of the stack.

The second operation, the TCP protocol (port) number,
which is stated to be 6 above, is placed at the second location
in memory. In step 3, the values of the first two layers ofthe
stack are compared, obtaining a positive result. ·

Packet Filter
Code

pushbyte [9]

2 push 6

eq

4 pushs [22]

5 push 23

6 eq

7 and

8 btrue drop

TABLE 1

Drop Telnet Process

Virtual Machine Operation

Extract Operation: Extract
IP protocol number from
packet location 9 to memory
Enter Literal Value to
Memory: Put TCP protocol
number in memory
Comparison Operation:
Compare IP protocol to
TCP, obtaimng a positive
result
Extract Operation: Extract
TCP protocol number from
packet location 22 to
memory
Enter Literal Value to
Memory: Put TELNET
protocol number in memory
Comparison Operation:
Compare TCP protocol to
TELNET, obtaimng a
positive result
Logical Operation: Check
if protocol both TCP and
TELNET are matched
Conditional Branch
Operation: If memory value
is true, branch to drop state

Memory Values
(Stack Order)

6

6 6

23

23 23

The values of 6 at the top two layers of the stack are
deleted and a 1, indicative of the positiver result, is placed
at the top of the stack. In step 4, the TCP protocol number
for packet location 23 is extracted and placed in the memory
location at the second layer of the stack. In step 5, the literal
value which is the Telnet protocol number is placed into the
memory at the third layer of the stack. In step 6, the memory
layers 2 and 3 containing the TCP protocol for Telnet is
compared with the expected value, obtaining a positive
result. The values of the second and third layers of the stack
are deleted and replaced by a 1, indicative of the positive
result. In step 7, a logical operation is performed to see if
both the TCP and Telnet have been matched. This is deter­
mined by a AND operation. In this case the result is positive
and the ones in the first two layers of the stack are deleted
and replaced by a 1 indicative of the positive result. In step
8, a conditional branch operation is performed in which if
the memory value is true, the program branches to the drop
state. In this case, the result is true and the program branches
to the drop state in which the Telnet request is not passed. An example of a security rule is implemented using the

packet filtering method of the present invention will now be
described utilizing as an example the security rule to disal­
low any Telnet services in the system. Telnet is defined as

65 Thus the rule to drop Telnet has been implemented.
While a particular embodiment of the present invention

has been disclosed herein, it would be obvious to those

Page 24 of 25

. 5,606,668
11

skilled in the art that certain changes and modifications can
be made, which are included within the scope of the present
invention. Thus, while in the embodiment disclosed herein
the packet filter operations are generated as a script which is
then compiled into object code, it is obvious to those skilled
in the art that these instructions can be generated directly in
object code or an interpreter can be utilized in order to avoid
the need to compile the script into object code. It would also
be obvious to those skilled in the art to perform the opera­
tions of the virtual machine in an equivalent manner. For
example, the comparison operation can be performed by
subtracting a value from the variable and performing an
equality operation on the result All such changes and
modifications can be made without departing from the
invention as defined by the appended claims.

I claim:
1. A method of inspecting inbound and outbound data

packets in a computer network, the inspection of said data
packets occurring according to a security rule, the method
comprising the steps of:

a) generating a definition of each aspect or the computer
network inspected by said security rule;

12
5. The method according to claim 4 wherein said object

definitions include the address of said object
6. The method according to claim 1 wherein the filter

language instructions of step c) are in the form of script and
5 further comprising a compiler to compile said script into

said instructions executed in step e).
7. The method according to claim 1 wherein in said

generating steps a) and b) the aspects of the network and of
the security rule are defined graphically.

10 8. In a security system for inspecting inbound and out-
bound data packets in a computer network, said security
system inspecting said data packets in said computer net­
work according to a security rule, where each aspect of said

15 computer network inspected by said security rule has been
previously defined, said security rule previously defined in
terms of said aspects and converted into packet filter lan­
guage instructions, a method for operating said security
system comprising the steps of:

20 a) providing a packet filter module coupled to said com­
puter network in at least one entity of said computer
network to be controlled by said security rule, said
packet filter module emulating a virtual packet filtering b) generating said security rule in terms of said aspect

definitions, said security rule controlling as least one of
said aspects; 25

machine inspecting said data packets passing into and
out of said computer network;

c) converting said security rule into a set of packet filter
language instructions for controlling the operation of a
packet filtering module which inspects said data pack­
ets;

d) providing a packet filter module coupled to said
computer network for inspecting said data packets in
accordance with said security rule, said packet filter
module implementing a virtual packet filtering
machine; and

e) said packet filter module executing said packet filter
language instructions for operating said virtual packet
filtering machine to either accept or reject the passage

30

35

b) said packet filter module reading and executing said
packet filter language instructions for performing
packet filtering operations;

c) storing the results obtained in said step of reading and
executing said packet filter language instructions in a
storage device; and

d) said packet filter module utilizing said stored results,
from previous inspections, for operating said packet
filter module to accept or reject the passage of said data
packet into and out of said computer network.

9. The method according to claim 8 wherein said aspects
include network objects.

of said data packets into and out of said computer
network.

10. The method according to claim 8 wherein said aspects
40 include network services.

2. The method according to claim 1 wherein said aspects
include network objects.

3. The method according to claim 1 wherein said aspects
include network services.

4. The method according to claim 2 wherein said aspects 45

include network services.

11. The method according to claim 9 wherein said aspects
include network services.

12. The method according to claim 11 wherein said object
definitions include the address of said object

* * * * *

Page 25 of 25

