

WEST\255519617.1

i

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

SOPHOS, INC.

Petitioner
v.

FINJAN, INC.

Patent Owner

CASE IPR Unassigned

Patent No. 8,677,494

PETITION FOR
INTER PARTES REVIEW OF U.S. PATENT NO. 8,677,494

Mail Stop “PATENT BOARD”
Patent Trial & Appeal Board
U.S. Patent and Trademark Office
P.O. Box 1450
Alexandria, VA 22313-1450

WEST\255519617.1

TABLE OF CONTENTS

Page

I. INTRODUCTION .. 1

II. COMPLIANCE WITH FORMAL REQUIREMENTS 1

A. Mandatory Notices Under 37 C.F.R. §§ 42.8(b)(1)-(4) 1

1. Real Parties-In-Interest .. 1

2. Related Matters .. 1

3. Lead and Back-up Counsel .. 2

4. Powers of Attorney and Service Information 2

B. Proof of Service on the Patent Owner .. 3

C. Fee .. 3

III. GROUNDS FOR STANDING ... 3

IV. STATEMENT OF PRECISE RELIEF REQUESTED 3

V. IDENTIFICATION OF CHALLENGE ... 3

VI. LEVEL OF ORDINARY SKILL IN THE ART .. 4

VII. SUMMARY OF THE ’494 PATENT .. 4

A. Effective Filing Date .. 4

B. Overview of the Prosecution History ... 6

C. Patent Specification and Claims ... 7

VIII. CLAIM CONSTRUCTION ... 12

IX. STATE OF THE ART PRIOR TO THE ’494PATENT 15

X. THERE IS A REASONABLE LIKELIHOOD THAT PETITIONER
WILL PREVAIL WITH RESPECT TO AT LEAST ONE CLAIM OF
THE ’494PATENT ... 17

XI. DETAILED EXPLANATION OF THE GROUNDS FOR
REJECTION ... 17

A. Challenge to Claims 1, 10, and 18 based on ThunderBYTE
Anti-Virus Utilities User Manual in view of Ji 17

B. Challenge to Claim 14 based on ThunderBYTE Anti-Virus
Utilities User Manual in view of Ji and Chen 29

WEST\255519617.1

C. Challenge to Claims 1, 10, 14, and 18 based on Arnold in view
of Chen and Ji ... 36

D. Challenge to Claims 1, 10, 14, and 18 based on Chen in view of
Arnold and Ji .. 44

XII. THE CHALLENGES ARE NOT REDUNDANT 50

XIII. CONCLUSION ... 51

WEST\255519617.1

TABLE OF EXHIBITS

EXHIBIT DESCRIPTION

1001 U.S. Patent No. 8,677,494 to Edery et al.

1002 Expert Declaration of Paul Clark

1003 Curriculum Vitae of Paul Clark

1004 File History for U.S. Patent No. 8,677,494

1005 U.S. Provisional Patent Application No. 60/030,639 to Touboul et

al.

1006 ThunderBYTE Anti-Virus Utilities User Manual, ThunderBYTE

B.V. (1995)

1007 Information Disclosure Statement filed in U.S. Patent Application

No. 08/605,285 on October 25, 1996

1008 U.S. Patent No. 5,440,723 to Arnold et al.

1009 U.S. Patent No. 5,623,600 to Ji et al.

1010 U.S. Patent No. 5,951,698 to Chen et al.

1011 Finjan, Inc. v. Sophos Inc., 14-cv-1197 – Finjan Opening Claim

Construction Brief

1012 File History for U.S. Patent Application No. 11/370,114

1013 File History for U.S. Patent Application No. 09/861,229

1014 U.S. Patent No. 6,804,780

1015 U.S. Patent No. 6,092,194

WEST\255519617.1

ii

1016 U.S. Patent No. 6,480,962

1017 Excerpts of Finjan v. McAfee et al., Trial Transcripts

1018 Information Disclosure Statement filed in U.S. Patent Application

No. 08/684,580 on October 25, 1996

1019 Excerpts of Microsoft Press Computer Dictionary, Second

Edition, Microsoft Press (1994)

1020 Mangosoft, Inc. v. Oracle Corp., 1:02-cv-545-SM – Claim

Construction Order

WEST\255519617.1

1

I. INTRODUCTION

 It is hereby requested that the United States Patent and Trademark Office

proceed with an inter partes review of claims 1, 10, 14, and 18 of U.S. Patent No.

8,677,494 (Exhibit 1001) (hereinafter “the ’494 patent”).

 The ’494 patent relates generally to detecting suspicious computer

operations in downloaded files. The claims are directed to receiving an incoming

Downloadable, deriving security profile data for the Downloadable, and storing the

security profile data in a database. The security profile data includes a list of

suspicious computer operations that may be attempted by the Downloadable. As

explained below, the claimed systems had been developed and were well known in

the virus detection and computer security field long before the application for the

’494 patent had been filed. Specifically, it was well known to receive downloaded

files that could be infected with malware, examine the files to identify suspicious

computer operations that may be attempted by the files, and store the identified

data in a database. All of the claims of the ’494 patent are therefore invalid over

the prior art identified below, each of which was cited during prosecution of the

’494 patent.

WEST\255519617.1

2

II. COMPLIANCE WITH FORMAL REQUIREMENTS

A. Mandatory Notices Under 37 C.F.R. §§ 42.8(b)(1)-(4)

1. Real Parties-In-Interest

 Sophos Limited and wholly owned subsidiary, Sophos Inc., are the real

parties-in-interest.

2. Related Matters

To the knowledge of Petitioner, a decision in this proceeding would affect or

be affected by the following matters where Finjan is asserting the ’494 patent: (1)

Finjan, Inc. v. Sophos Inc., 3:14-1197 (N.D. Cal.), (2) Finjan, Inc. v. Websense,

Inc., Case No. 3:14-cv-1353 (N.D. Cal.), and (3) Finjan, Inc. v. Palo Alto

Networks, Inc., Case No. 3:14-cv-4908 (N.D. Cal.).

3. Lead and Back-up Counsel

Lead Counsel for Petitioner is James M. Heintz, DLA Piper LLP (US), Reg.

No. 41,828, who can be reached by email at Sophos-Finjan-

494IPR@dlapiper.com, by phone at 703-773-4148, by fax at 703-773-5200, and by

mail at 11911 Freedom Drive, Suite 300, Reston, VA 20190. Backup counsel for

Petitioner is Nicholas Panno of DLA Piper LLP (US), Reg. No. 68,513, who can

be reached by email at Sophos-Finjan-494IPR@dlapiper.com, by phone at 703-

773-4157, by fax at 703-773-5157, and by mail at 11911 Freedom Drive, Suite

300, Reston, VA 20190.

4. Powers of Attorney and Service Information

WEST\255519617.1

3

 Powers of attorney are being filed with the designation of counsel in

accordance with 37 C.F.R. § 42.10(b). Service information for lead and back-up

counsel is provided in the designation of lead and back-up counsel above. Service

of any documents via hand delivery may be made at the postal mailing address of

the respective lead and back-up counsel designated above.

B. Proof of Service on the Patent Owner

 As identified in the attached Certificate of Service, a copy of this Petition in

its entirety is being served on the Patent Owner’s attorney of record at the address

listed in the USPTO’s records by overnight courier pursuant to 37 C.F.R. § 42.6.

C. Fee

 The undersigned authorizes the Director to charge the fee specified by 37

C.F.R. § 42.15(a) and any additional fees that might be due in connection with this

Petition to Deposit Account No. 50-1442.

III. GROUNDS FOR STANDING

 In accordance with 37 C.F.R. § 42.104(a), the Petitioner certifies that the

’494 patent is available for inter partes review and that the Petitioner is not barred

or estopped from requesting an inter partes review challenging the patent claims

on the grounds identified in this Petition.

WEST\255519617.1

4

IV. STATEMENT OF PRECISE RELIEF REQUESTED

 In accordance with 37 C.F.R. § 42.22, the Petitioner respectfully requests

that claims 1, 10, 14, and 18 of the ’494 patent be invalidated for the reasons set

forth below.

V. IDENTIFICATION OF CHALLENGE

 In accordance with 35 U.S.C. § 311 and 37 C.F.R. § 42.104(b), inter partes

review of claims 1, 10, 14, and 18 of the ’494 patent is requested in view of the

following grounds:

 A. Claims 1, 10, and 18 are invalid under 35 U.S.C. § 103 (pre-AIA) as

being obvious over ThunderBYTE Anti-Virus Utilities User Manual (“TBAV”) in

view of U.S. Patent No. 5,623,600 to Ji et al. (“Ji”).

 B. Claim 14 is invalid under 35 U.S.C. § 103 (pre-AIA) as being obvious

over TBAV in view of Ji and U.S. Patent No. 5,951,698 to Chen et al. (“Chen”).

 C. Claims 1, 10, 14, and 18 are invalid under 35 U.S.C. § 103 (pre-AIA)

as being obvious over U.S. Patent No. 5,440,723 to Arnold et al. (“Arnold”) in

view of Chen and Ji.

 D. Claims 1, 10, 14, and 18 are invalid under 35 U.S.C. § 103 (pre-AIA)

as being obvious over Chen in view of Arnold and Ji.

VI. LEVEL OF ORDINARY SKILL IN THE ART

 A person of ordinary skill in the art at the time of the alleged invention of

the ’494 patent would generally have a bachelor’s degree or the equivalent in

WEST\255519617.1

5

computer science, computer engineering, or a related degree, and three to four

years of experience in the fields of network software and security, or equivalent

work experience. This person would have been aware of the computer security

technology discussed herein and would have been capable of understanding and

applying the prior art references discussed herein, alone or in combination. Ex.

1003 ¶ 52.

VII. SUMMARY OF THE ’494 PATENT

 A. Effective Filing Date

 The ’494 patent, entitled “Malicious Mobile Code Runtime Monitoring

System and Methods,” issued on March 18, 2014, and arises from U.S. patent

application No. 13/290,708 (“the ’708 application”), which was filed on November

7, 2011. The patent was assigned upon issuance to Finjan, Inc. According to

USPTO records, this patent is currently assigned to Patent Owner.

 The ’494 patent claims the benefit of provisional applications No.

60/205,591 (filed May 17, 200) and No. 60/030,639 (filed November 8, 1996).

Thus, assuming the ’494 patent correctly claims the benefit of the ’639 application,

the earliest possible effective filing date of the ’494 patent is November 8, 1996.

Ex. 1003 ¶¶ 47-51. Several other patents claiming the benefit of the same

provisional application (U.S. Patent Nos. 6,092,194; 6,167,520; 6,480,962; and

WEST\255519617.1

6

7,058,822) have been invalidated as a result of Federal Court or PTAB

proceedings.

 B. Overview of the Prosecution History

 The ’708 application was filed on November 7, 2011. A non-final rejection

was mailed on July 23, 2012, which rejected the claims of the ’708 application for

double patenting and under 35 U.S.C. § 102(e) as being anticipated by U.S. Patent

No. 5,983,348 to Ji. Ex. 1004, pp. 757-766. Applicants addressed the rejections by

filing a terminal disclaimer and a petition to accept unintentionally delayed claim

of priority to the ’639 application. Ex. 1004, pp. 721-256. This petition was

dismissed on Novmber 27, 2012 because it was not accompanied by a copy of

the’639 application. Ex. 1004, pp. 719-720. A final rejection was mailed on

January 7, 2013, accepting the terminal disclaimer and citing the same U.S. Patent

No. 5,983,348 to Ji. Ex. 1004, pp. 711-717. On May 7, 2013, Applicants filed a

declaration by inventor Shlomo Touboul purporting to establish an invention date

prior to the filing date of the Ji patent. Ex. 1004, pp. 182-190. Specifically,

Touboul declares that his "sole invention was in [his] mind and developed by at

least November 18, 1996," which is after the filing date of the ‘639 application. Ex.

1004, p. 189. A notice of allowance was mailed on August 29, 2013. Ex. 1004, pp.

118-124. Applicants subsequently filed a petition to withdraw from issue, a new

petition to accept unintentionally delayed claim of priority to the ’639 application,

WEST\255519617.1

7

and a request for continued examination on October 1, 2013, and a corrected

petition on December 6, 2013. Ex. 1004, ppp. 65-77, 94-102. The USPTO granted

the petition for acceptance of a claim for late priority to the ’639 application on

December 24, 2013, and the patent issued on March 18, 2014. Ex. 1001, p.1; Ex.

1004, pp. 53-54.

 C. Patent Specification and Claims

 The ’494 patent relates generally to protecting personal computers (PCs) or

other devices from malicious software obtained over a network. The ’494 patent

refers to executable files and software obtained over a network as

“Downloadables” and focuses on identifying malicious Downloadables. The

specification of the ‘494 patent itself has little specific teaching of the claimed

subject matter beyond providing descriptions that are broadly in the same field as

the claims. Ex. 1002 ¶39.

 The disclosure of the ’639 application most closely resembles the subject

matter claimed by the ‘494 patent. The ’639 application relates generally to a

system and method for protecting computers from hostile Downloadables. Ex.

1005, p. 1, ll. 6-8; Ex. 1002 ¶40. A Downloadable is described as “an executable

application program which is automatically downloaded from a source computer

and run on the destination computer.” Ex. 1005, p. 2, ll. 1-4; Ex. 1002 ¶40.

Examples of Downloadables include executables as well as applets for Java and

WEST\255519617.1

8

Active X. Ex. 1005, p. 2, ll. 4-7; Ex. 1002 ¶40. According to the ’639 application,

viruses may be attached to Downloadables. Ex. 1005, p. 1, ll. 20-22; p. 2, ll. 7-9;

Ex. 1002 ¶40.

 The method taught by the ’639 application includes receiving a

Downloadable, and, when the Downloadable does not get identified as a previously

identified hostile Downloadable, deriving Downloadable security profile data from

the received Downloadable. Ex. 1005, p. 3, ll. 13-21; Ex. 1002 ¶41.

 Specifically, an internal network security system 110 examines

Downloadables, determines whether they are hostile, and prevents hostile

Downloadables from reaching an internal computer network 115 (e.g., a corporate

local area network (LAN)). Ex. 1005, p. 6, ll. 2-17; Ex. 1002 ¶42. The internal

network security system 110 is shown in FIG. 2 and includes a central processing

unit (CPU) 205, communications interfaces 210, 225, input/output (I/O) interfaces

215, a data storage device 230, memory 235, and a signal bus 220. Ex. 1005, p. 6,

l. 19 – p. 8, l. 4; Ex. 1002 ¶42. The security program 255 in memory 235 controls

the operations of the internal network security system 110. Ex. 1005, p. 8, ll. 1-4;

Ex. 1002 ¶42. The security database 240 in the data storage device 230 stores

Downloadable security profiles (DSPs). Ex. 1005, p. 8, ll. 14-19; Ex. 1002 ¶42.

WEST\255519617.1

9

 FIG. 3 illustrates security program 255 details. An ID generator 315 of the

security program 255 receives a Downloadable from external computer network

105. Ex. 1005, p. 9, ll. 14-16; Ex. 1002 ¶43.

WEST\255519617.1

10

 A first comparator 320 of the security program 255 determines if the

Downloadable is identical to a known non-hostile or hostile Downloadable 307 and

discards the Downloadable if it is identical to a known hostile Downloadable. Ex.

1005, p. 9, l. 20 – p. 10, l. 5; Ex. 1002 ¶44. Known Downloadables 307 (hostile

and non-hostile) along with corresponding DSP data 310 are stored in the data

storage device 230. Ex. 1005, p. 8, ll. 13-19; Ex. 1002 ¶44. DSP data 310 includes

the fundamental computer operations included in the known hostile

Downloadables 307 (e.g., read, write, file management operations, system

management operations, memory management operations, CPU allocation

operations). Ex. 1005, p. 9, ll. 9-13; Ex. 1002 ¶44.

WEST\255519617.1

11

 In the event that the Downloadable is unknown (either not identical to a

known hostile Downloadable or not identical to a known non-hostile

downloadable), a code scanner 325 of the security program 255 decomposes the

code of the unknown Downloadable into DSP data and sends the Downloadable

and DSP data to a second comparator 330 of the security program 255. Ex. 1005,

p. 10, ll. 9-20; Ex. 1002 ¶45. Decomposing the code includes disassembling the

machine code of the Downloadable, resolving a command in the machine code,

and determining whether the resolved command is a suspect command (e.g., a

memory allocation command or loop command). Ex. 1005, p. 15, l. 15 – p. 16, l. 2;

Ex. 1002 ¶45. Code containing suspect commands is decoded, and the command

and command parameters are registered as DSP data that can be stored in the data

storage device 230; Ex. 1002 ¶45.

 The second comparator 330 compares the DSP data against stored security

policies 305 to determine whether the Downloadable includes a hostile operation.

Ex. 1005, p. 10, l. 21 – p. 11, l. 5; Ex. 1002 ¶46. The known Downloadables 307

stored in the data storage device 230 include Downloadables that the second

comparator 330 determines to be hostile. The DSP data 310 associated with these

hostile Downloadables includes the fundamental operations performed by the

Downloadables (i.e., the hostile operations). Ex. 1005, p. 9, ll. 3-13; Ex. 1002 ¶46.

WEST\255519617.1

12

VIII. CLAIM CONSTRUCTION

 In accordance with 37 C.F.R. § 42.104(b)(3), Petitioner provides the

following statement regarding construction of the ’494 patent claims.

 A. Legal Standard

 Claims in an inter partes review of an unexpired patent are to be given their

“broadest reasonable interpretation in light of the specification.” 37 C.F.R.

42.100(b). This standard is often referred to as “BRI”.

 B. Construction of the Terms Used in the Claims

 Because the claim construction standard in this proceeding differs from that

used in U.S. district court litigation, Petitioner expressly reserves the right to assert

different claim construction positions under the standard applicable in district court

for any term of the ’494 patent in any district court litigation. Claim construction is

further discussed in Ex. 1002 ¶¶ 53-66.

 1. “Downloadable” (claims 1, 10, 14, and 18): Under the BRI,

this limitation should be understood to mean “an executable application program

which is downloaded from a source computer and can be run on the destination

computer”, as defined in the ’639 application. Ex. 1005, p. 2, ll. 1-4; Ex. 1002 ¶60.

This construction is also consistent with the ’494 patent, which describes a

Downloadable as “information including executable code.” This definition is what

one of ordinary skill in the art would understand from the specification of the ’494

WEST\255519617.1

13

patent. Ex. 1001, col. 9, ll. 46-52; Ex. 1002 ¶60. This construction is also

consistent with what was agreed upon by Petitoner and Patent Owner in related

proceedings cited above. Ex. 1011, p. 4.

 2. “suspicious computer operations” (claims 1 and 10): Under

the BRI, this limitation should be understood to mean “computer instructions that

are deemed to be potentially hostile”. This construction is consistent with the

disclosure in the ’639 application regarding “potentially hostile operations” and

“suspect commands.” Ex. 1005, p. 8, l. 19 – p. 9, l. 3; p. 15, l. 19 – p. 16, l. 2; Ex.

1002 ¶62. This construction is also consistent with the ’494 patent, which describes

“harmful, undesirable, suspicious or other ‘malicious’ operations that might

otherwise be effectuated by remotely operable code.” Ex. 1001, col. 2, ll. 54-56;

Ex. 1002 ¶62.

 3. “database” (claims 1 and 10): Under the BRI, this limitation

should be understood to mean “any structured store of data”. The ’639 application

does not define “database”, but one of ordinary skill in the art would understand

the term “database” to have this meaning. See, e.g., Ex. 1020, p. 29 (wherein

database files are given as examples of structured stores of data). This construction

is consistent with the disclosure in the ’639 application of a data storage device

230 that stores a security database 240. Ex. 1005, p. 7, ll. 16-20; Ex. 1002 ¶64.

This construction is also consistent with the ’494 patent, which teaches “[a]ny

WEST\255519617.1

14

suitable explicit or referencing list, database or other storage structure(s) or storage

structure configuration(s) can also be utilized to implement a suitable user/device

based protection scheme” Ex. 1001, col. 17, ll. 10-14; Ex. 1002 ¶64.

 4. “program script” (claim 14): Under the BRI, this limitation

should be understood to mean “a set of instructions that can be executed by a

computer through an interpreter or some other program with a computer.”. The

’639 application does not define “program script”, but one of ordinary skill in the

art would understand the term “program script” to have this meaning. See, e.g., Ex.

1019, p. 350. This construction is consistent with the disclosure in the ’639

application regarding Downloadables containing Java applets or ActiveX applets.

Ex. 1005, p. 2, ll. 1-7; Ex. 1002 ¶66. This construction is also consistent with the

’494 patent, which describes “downloadable application programs, Trojan horses

and program code groupings, as well as software ‘components’, such as JavaTM

applets, ActiveXTM controls, JavaScript/Visual Basic scripts, add-ins, etc.” Ex.

1001, col. 2, ll. 59-64; Ex. 1002 ¶66. Those of ordinary skill in the art would

understand that JavaTM applets, ActiveXTM controls, JavaScript/Visual Basic

scripts contain instructions that can be executed by a computer through an

interpreter or some other program. Ex. 1002 ¶66.

WEST\255519617.1

15

IX. STATE OF THE ART PRIOR TO THE ’494 PATENT

 The state of the art prior to the ’494 patent is discussed generally in Ex. 1002

¶¶35-38. By the time of the filing of the ‘494 patent, malware downloaded from a

network was a well-known threat. Companies like Norton, McAfee, and Trend

Micro were known to offer established products available to detect and prevent

hostile downloadable software from being installed through the use of local and

firewall resident scanners. In particular, these commercially available solutions

generally included data files intended to assist an executable scanner in the

identification of malware.

 These companies and others continuously monitored developments in

malware to identify new malware and update their product data files to enable

identification of the new malware. Data file updates were distributed to end users

periodically to keep their systems up to date.

 However, it was widely known that new malware could appear on an end

user system faster than it could be detected and incorporated into the data files by

scanner software distributors. For example, it was widely known at the timein 1996

that files could be downloaded onto computers from networks. FTP, HTTP, and

other network protocols were in general use, and computers used these protocols to

interface with networks to download files, including executable files and files

containing program script. See, e.g., Ex. 1009, col. 1, ll. 15-42; col. 2, l. 39 – col.

WEST\255519617.1

16

3, l. 16. Such files were known to be potentially contain suspicious computer

instructions, such as malware. Often, malware was distributed to computers via

networks in executable or script files before it could be detected by the distributors

of malware protection software. See, e.g., Ex. 1006, p. 165.

 To that end, it was well known by the time of the filing of the ‘494 patent to

include modules for end user systems and other network-deployed systems to

allow them to detect and respond to programs that contained suspicious

instructions, and therefore potentially hostile software, in the absence of a

signature in the scanner’s data file.

 As discussed below, all of the elements of claims 1, 10, 14, and 18 of the

’494 patent are known in the prior art, and it would have been obvious to combine

the prior art in the manner recited in those claims.

X. THERE IS A REASONABLE LIKELIHOOD THAT PETITIONER
WILL PREVAIL WITH RESPECT TO AT LEAST ONE CLAIM OF THE
’494 PATENT

 A petition for inter partes review must demonstrate “a reasonable likelihood

that the Petitioner would prevail with respect to at least one of the claims

challenged in the petition.” 35 U.S.C. § 314(a). This Petition meets that threshold.

There is a reasonable likelihood that Petitioner will prevail in establishing that at

least one of claims 1, 10, 14, and 18 of the ’494 patent is invalid under 35 U.S.C. §

103 as explained below.

WEST\255519617.1

17

XI. DETAILED EXPLANATION OF THE GROUNDS FOR REJECTION

 A detailed explanation of the pertinence and manner of applying the prior art

references to claims 1, 10, 14, and 18 of the ’494 patent is provided below in

accordance with 37 C.F.R. §§ 42.104(b)(4) and 42.104(b)(5). Except as noted, the

detailed explanation set forth below assumes that the claims of the ’494 patent are

construed consistent with the claim constructions set forth above.

 A. Challenge to Claims 1, 10, and 18 based on TBAV in view of Ji

 TBAV qualifies as prior art to the ’494 patent under 35 U.S.C. § 102(a)

because TBAV has a copyright date of 1995 and was publicly available by at least

October 25, 1996, as evidenced by the fact that it was disclosed by a patent

applicant in an Information Disclosure Statement which was filed in U.S. Patent

Application No. 08/605,285 on October 25, 1996 and an Information Disclosure

Statement which was filed in U.S. Patent Application No. 08/684,580 on October

25, 1996. See Ex. 1007, pp. 2 and 6; Ex. 1018, pp. 2 and 65. October 25, 1996 is

prior to the earliest possible effective filing date of the application of the ’494

patent on November 8, 1996. Ex. 1006, cover page; Ex. 1007, pp. 2 and 6. Ji

qualifies as prior art to the ’494 patent under 35 U.S.C. § 102(e) because Ji was

granted on an application filed in the U.S. on September 26, 1995, which is prior to

the earliest possible ’494 patent effective filing date.

WEST\255519617.1

18

 TBAV: TBAV is a user manual for the ThunderBYTE anti-virus software.

TBAV describes a software program that protects computer systems against both

known and unknown viruses. The TBAV software includes TbScan, a virus

scanner, and TbScanX, a memory resident version of TbScan. Ex. 1006, pp. 1-2;

Ex. 1002 ¶ 70.

 TbScan is run upon user request or automatically (e.g., on startup via the

AUTOEXEC.BAT file), and can be used to scan some or all files that have been

downloaded or that have otherwise been stored on disks, fixed drives, and/or

network drives. Ex. 1006, pp. 48-51; Ex. 1002 ¶ 71. TbScan includes a signature

scanner and a heuristic scanner. The signature scanner detects known viruses

whose signatures are stored in a signature file. The heuristic scanner disassembles

files using a built-in disassembler and searches for suspicious instruction

sequences within the files using a built-in code analyzer. Ex. 1006, pp. 1-2, 153-

155; Ex. 1002 ¶ 71. The heuristic scanner disassembles files and interprets their

instructions. The heuristic scanner disassembles the files to allow scanning to be

restricted to an area of a file where a virus might reside, to make it possible to use

algorithmic detection methods on encrypted viruses, and to make it possible to

detect suspicious instruction sequences. Ex. 1006, p. 154; Ex. 1002 ¶ 71.

 TbScan looks into a file’s contents and interprets the file’s instructions to

detect their purpose (e.g., formatting a disk or infecting a file). Heuristic flags are

WEST\255519617.1

19

assigned to suspicious instructions, such as instructions that are common to viruses

but uncommon to normal programs. TBAV discloses that a heuristic flag is a

character indicating a specific type of suspicious instruction. Ex. 1006, pp. 155,

180-185; Ex. 1002 ¶ 72. For example, the flags include “# - Decryptor code found”

(indicating that the file contains instructions that perform self-decryption

operations), “A – Suspicious Memory Allocation” (indicating the program contains

instructions that perform non-standard memory search and/or allocation

operations), “B – Back to entry” (indicating the program contains instructions that

perform endless loop operations), “D – Direct disk access” (indicating the program

contains instructions that perform a write operation to a disk directly), “L –

program load trap” (indicating the program contains instructions that perform an

operation to trap the execution of other software), “S – Search for executables”

(indicating the program contains instructions that perform a search operation for

executable files), and “U – Undocumented system call” (indicating the program

contains instructions that perform unknown DOS call or interrupt operations),

among others. Ex. 1006, pp. 180-185; Ex. 1002 ¶ 72.

 The heuristic flags are associated with scores, so that if the total score (i.e.,

the sum of heuristic flag scores) for a file exceeds a predefined limit, the file is

assumed to contain a virus. Ex. 1006, pp. 153-155. Multiple predefined limits can

be established, so that a file having a score above a sensitive limit “might” be

WEST\255519617.1

20

infected, and a file having a score above a higher limit is assumed to include a

virus. Ex. 1006, p. 155; Ex. 1002 ¶ 73.

 TbScan provides the option to output scan results to a log file. The results in

the log file include the heuristic flags assigned to each file. Ex. 1006, p. 60; Ex.

1002 ¶ 74. If suspicious instructions are found in a file during a scan, the heuristic

flags in the log file indicate their presence and describe the nature of the suspicious

instructions. In addition to these flags, if a detailed log level is selected for the log,

TbScan adds a description to the log file. Ex. 1006, pp. 76-77; Ex. 1002 ¶ 74.

 TbScan scans files with filename extensions that indicate the file is a

program file (e.g., .EXE, .COM, .BIN, .SYS, .OV?). TbScan can be configured to

also scan files with filename extensions that suggest the file can be infected by

viruses (e.g., .DLL, .SCR, .MOD, .CPL, .00?, and .APP). Ex. 1006, p. 57; Ex. 1002

¶75. Files such as .DLLs contain executable code that is executed by other

programs, so these files can be infected by malware, as those of ordinary skill in

the art would understand. Ex. 1002 ¶75.

 TBAV also includes a TbGenSig program that can be called by TbScan to

define signature records for suspicious files. Ex. 1006, pp. 4, 57; Ex. 1002 ¶76.

TbScan is used to extract instructions from files that are being examined, such as

files that are believed to be infected with viruses. The signature comprises

suspicious instructions form a signature for of the potential virus infecting the file.

WEST\255519617.1

21

Ex. 1006, pp. 166-168; Ex. 1002 ¶76. A virus name, one or more keywords, and

the instructions are added to a file (e.g., USERSIG.DAT). Ex. 1006, p. 168; Ex.

1002 ¶76. Note that TBAV explicitly uses *.DAT files as databases (see also,

ANTI-VIR.DAT). Ex. 1006, pp. 4, 36; Ex. 1002 ¶76. TbGenSig further adds the

virus name, the keywords, and the suspicious instructions to the TBSCAN.SIG file.

Ex. 1006, p.165; Ex. 1002 ¶76. Note that the signature instructions include

suspicious instructions. TBAV shows an example signature for the Haifa.Mozkin

virus wherein suspicious instructions are labeled (e.g., “?2*2” is a skip instruction

to make it harder to define a signature, “4l” and “4h” are counter incrementation

and decrementation, “75f1” is a jump instruction). Thus, TbGenSig identifies

suspicious instructions and saves them, along with other identifying data, in the

TBSCAN.SIG file. Ex. 1006, pp. 165, 173-174; Ex. 1002 ¶76.

 TbScanX is a memory resident version of TbScan that automatically scans

files that are being executed, copied, de-archived, or downloaded. Ex. 1006, p. 2;

Ex. 1002 ¶ 77. TbScanX is “virtually identical to TbScan” with the only difference

being that it is memory-resident. Ex. 1006, p. 84; Ex. 1002 ¶ 77. TbScanX tracks

all file operations and automatically scans executed files and executable files that

are copied, created, downloaded, modified, or unarchived. Ex. 1006, p. 84; Ex.

1002 ¶ 77.

WEST\255519617.1

22

 Ji: Ji is directed to a system for detecting and eliminating viruses on a

computer network. An FTP proxy server scans all incoming and outgoing files for

viruses and transfers the files if they do not contain viruses. Ex. 1009, p. 1 (57);

Ex. 1002 ¶ 78.

 Ji teaches a gateway node 33 comprising a CPU 42, memory 44, and other

computer components. Ex. 1009, col. 3, l. 64 – col. 4, l. 16; Ex. 1002 ¶ 79. The

memory 44 includes an FTP proxy server 60, which controls file transfers to and

from the gateway node 33, thereby controlling file transfers to and from a network.

Ex. 1009, col. 4, l. 56 – col. 5, l. 2; Ex. 1002 ¶ 79. When a client node sends a

connection request 600, an instance of the FTP proxy server 60 is created 602. The

FTP proxy server 60 receives the data transfer request and file name associated

with the request 606. Ex. 1009, col. 6, l. 55 – col. 7, l. 28; Ex. 1002 ¶ 79.

 FIG. 6C of Ji shows what happens when the request is an inbound request

(e.g., a download). FTP proxy server 60 receives an inbound file from FTP daemon

78 and analyzes it. Ex. 1009, col. 8, l. 57 – col. 9, l. 2; Ex. 1002 ¶ 80. Specifically,

a connection is established over the network 642, and the file is sent from a server

to the FTP daemon and from the FTP daemon to the FTP proxy server 644. Ex.

1009, col. 8, ll. 40-58; Ex. 1002 ¶ 80. If the file is a type that can contain viruses

(e.g., an executable), the file is analyzed. Ex. 1009, col. 7, ll. 33-40; col. 8, l. 58 –

col. 9, l. 2; Ex. 1002 ¶ 80.

WEST\255519617.1

23

 In light of the above, TBAV, either alone or in combination with Ji, would

have rendered systems and methods that receive Downloadables, derive security

WEST\255519617.1

24

profile data for the Downloadables (including suspicious computer operations),

and store the security profile data in a database obvious to one of ordinary skill in

the art. Ex. 1002 ¶ 81. This combination renders each of claims 1, 10, 14, and 18

obvious as shown in the following charts. See Ex. 1002 ¶¶ 82-103.

Claim 1(pre) TBAV and Ji
A computer-based
method, comprising
the steps of:

TBAV discloses a computer-based method of running
software utilities on a computer system to provide virus
protection. Ex. 1006, pp. 1-5; Ex. 1002 ¶ 82.

Claim 1(a) TBAV and Ji
receiving an
incoming
Downloadable;

TBAV includes TbScan, which scans the files on a
computer system. Ex. 1006, pp.47-48; Ex. 1002 ¶ 83.
TBAV includes TbScanX, which automatically scans a file
when it is downloaded. Ex. 1006, p. 2, 84; Ex. 1002 ¶ 84.

 To the extent claim 1 requires immediate scanning after downloading,

TBAV includes TbScanX. Ex. 1006, p. 2, 84; Ex. 1002 ¶ 84.

Claim 1(b) TBAV and Ji
deriving security
profile data for the
Downloadable,
including a list of
suspicious computer
operations that may be
attempted by the
Downloadable; and

TBAV includes TbScan, which performs heuristic
analysis of files. Heuristic analysis includes detecting
suspicious instruction sequences within a file and
applying heuristic flags to the file. The heuristic flags
indicate the suspicious instructions. Ex. 1006, pp. 153-
155, 180-185. TbScan performs scans of files, including
files that have been downloaded, whenever TbScan is run.
Ex. 1006, pp.47-48. Additionally, TbScanX (a memory
resident version of TbScan) automatically scans a file
when it is downloaded. Ex. 1006, pp. 1-2, 76-77, 84, 153-
155, 180-185; Ex. 1002 ¶ 85.

 Because the heuristic flags indicate the suspicious instructions, the list of

heuristic flags in the file is a list of suspicious instructions. Additionally, it would

WEST\255519617.1

25

have been obvious to one of ordinary skill in the art to provide more details about

the suspicious instructions in the file. TBAV teaches that if a detailed log level is

selected for the log, TbScan adds a description to the log file. Ex. 1006, pp. 76-77;

Ex. 1002 ¶ 86. Also, TBAV teaches specific suspicious instructions in a signature

definition, and it would have been obvious to one of ordinary skill in the art that

this level of detail could be included in the log file as well. Ex. 1006, pp. 173-174;

Ex. 1002 ¶ 86.

 To the extent TBAV does not explicitly describe TbScanX performing

heuristic analysis, TbScanX is described as “virtually identical to TbScan” except

that it is memory-resident. Ex. 1006, p. 84; Ex. 1002 ¶ 87. Thus, at minimum, it

would have been obvious to one of ordinary skill in the art to provide any features

of TbScan in the memory-resident version of TbScanX, including heuristic

analysis. Ex. 1002 ¶ 87.

Claim 1(c) TBAV and Ji
storing the
Downloadable security
profile data in a
database.

TBAV teaches that heuristic analysis results, including
the heuristic flags describing the suspicious instructions,
can be output to a file. Ex. 1006, p. 60; Ex. 1002 ¶ 88.
TBAV also teaches using TbScan to extract instructions
from files that are believed to be infected with viruses.
The instructions form a signature for the virus infecting
the file. TbGenSig adds the signature to the
TBSCAN.SIG file. Ex. 1006, p.165-168; Ex. 1002 ¶ 89.

 TBAV teaches outputting heuristic analysis results to a file and storing

signatures in a file. Ex. 1002 ¶ 90. A person of ordinary skill in the art would

WEST\255519617.1

26

understand either or both of these files could be is a database containing that

contains one or more data entries. In either case, the data in the file is made

available for review by a user or use by TbScan at a later time. Ex. 1006, pp. 60,

165; Ex. 1002 ¶ 90. Thus, at minimum, it would have been obvious to one of

ordinary skill in the art in view of TBAV to store suspicious computer operations

in a database. Ex. 1002 ¶ 90.

Claim 10(pre) TBAV and Ji
A system for
managing
Downloadables,
comprising:

TBAV discloses software utilities running on a computer
system that provide virus protection against downloaded
viruses. The utilities manage infected downloaded files (e.g.,
the TbDel utility of TBAV deletes infected files). Ex. 1006, pp.
1-5, 84; Ex. 1002 ¶ 91.

Claim 10(a) TBAV and Ji
a receiver for
receiving an
incoming
Downloadable;

TBAV includes TbScan, which scans the files on a computer
system. Ex. 1006, pp.47-48; Ex. 1002 ¶ 92.
TBAV includes TbScanX, which automatically scans a file
when it is downloaded. Ex. 1006, p. 2, 84; Ex. 1002 ¶ 93.
Ji teaches an FTP proxy server 60 that receives an inbound file
from FTP daemon 78 and analyzes it. Ex. 1009,col. 8, l. 57 –
col. 9, l. 2; Ex. 1002 ¶ 94.

 To the extent claim 1 requires immediate scanning after downloading,

TBAV includes TbScanX. Ex. 1006, p. 2, 84; Ex. 1002 ¶ 93.

 TBAV teaches receiving downloaded files, which one of ordinary skill in the

art would understand can be done by a receiver. It was well known when TBAV

was published that in order to receive data from a network, a system requires

hardware and software that interfaces with the network. Such hardware and

software constitutes a receiver. Ex. 1002 ¶ 95. Therefore, the receiver is at least

WEST\255519617.1

27

implicitly taught by TBAV, since a person of ordinary skill in the art would

understand the computer receiving downloaded files would have the necessary

hardware and software to receive them. Ex. 1002 ¶ 95. Indeed, TBAV explicitly

teaches use in a networked environment. Ex. 1009, pp. 8, 11, 21-24, 33, 42, 51, 84-

85, 150; Ex. 1002 ¶ 95.

 To the extent TBAV does not explicitly describe a receiver, Ji teaches an

FTP proxy server 60 that receives an inbound file that a client is trying to

download so the file can be scanned for viruses before being passed on to the

client. Ex. 1009,col. 8, l. 57 – col. 9, l. 2; Ex. 1002 ¶ 96. TBAV and Ji are both

directed to virus scanning software that can scan incoming downloaded files. Thus,

at minimum, it would have been obvious to one of ordinary skill in the art to apply

the teachings of a receiver in Ji to the system of TBAV. Ex. 1002 ¶ 96.

Claim 10(b) TBAV and Ji
a Downloadable scanner
coupled with said
receiver, for deriving
security profile data for
the Downloadable,
including a list of
suspicious computer
operations that may be
attempted by the
Downloadable; and

TBAV includes TbScan, which performs heuristic
analysis of files. Heuristic analysis includes detecting
suspicious instruction sequences within a file and
applying heuristic flags to the file. The heuristic flags
indicate the suspicious instructions. performs scans of
files, including files that have been downloaded,
whenever TbScan is run. Ex. 1006, pp.47-48.
Additionally, TbScanX (a memory resident version of
TbScan) automatically scans a file when it is
downloaded. Ex. 1006, pp. 1-2, 76-77, 84, 153-155,
180-185; Ex. 1002 ¶ 97.

 Because the heuristic flags indicate the suspicious instructions, the list of

heuristic flags in the file is a list of suspicious instructions. Additionally, it would

WEST\255519617.1

28

have been obvious to one of ordinary skill in the art to provide more details about

the suspicious instructions in the file. TBAV teaches that if a detailed log level is

selected for the log, TbScan adds a description to the log file. Ex. 1006, pp. 76-77;

Ex. 1002 ¶ 98. Also, TBAV teaches specific suspicious instructions in a signature

definition, and it would have been obvious to one of ordinary skill in the art that

this level of detail could be included in the log file as well. Ex. 1006, pp. 173-174;

Ex. 1002 ¶ 98.

 To the extent TBAV does not explicitly describe TbScanX performing

heuristic analysis, TbScanX is described as “virtually identical to TbScan” except

that it is memory-resident. Ex. 1006, p. 84; Ex. 1002 ¶ 99. Thus, at minimum, it

would have been obvious to one of ordinary skill in the art to provide any features

of TbScan in the memory-resident TbScanX variant, including heuristic analysis.

Ex. 1002 ¶ 99.

Claim 10(c) TBAV and Ji
a database manager
coupled with said
Downloadable
scanner, for storing
the Downloadable
security profile data
in a database.

TBAV teaches that heuristic analysis results, including the
heuristic flags describing the suspicious instructions, can be
output to a file. Ex. 1006, p. 60; Ex. 1002 ¶ 100.
TBAV also teaches using TbScan to extract instructions
from files that are believed to be infected with viruses. The
instructions form a signature for the virus infecting the file.
TbGenSig adds the signature to the TBSCAN.SIG file. Ex.
1006, p.165-168; Ex. 1002 ¶ 101.

 TBAV teaches outputting heuristic analysis results to a file and storing

signatures in a file. A person of ordinary skill in the art would understand either or

WEST\255519617.1

29

both of these files could be a flat file or database containing one or more data

entries. In either case, the data in the file is made available for review by a user or

use by TbScan at a later time. Ex. 1006, pp. 60, 165; Ex. 1002 ¶ 102. Thus, at

minimum, it would have been obvious to one of ordinary skill in the art in view of

TBAV to store suspicious computer operations in a database. Ex. 1002 ¶ 1020

Claim 18 TBAV and Ji
The system of Claim 10
wherein said Downloadable
scanner comprises a
disassembler for disassembling
the incoming Downloadable.

TBAV’s TbScan includes a disassembler that
disassembles files so they can be scanned for
suspicious instructions. Ex. 1006, pp. 2, 153-155;
Ex. 1002 ¶ 103.

 B. Challenge to Claims 1, 10, 14, and 18 based on Arnold in view of

Chen and Ji

 Chen qualifies as prior art to the ’494 patent under 35 U.S.C. § 102(e)

because Chen was granted on an application filed in the U.S. on October 2, 1996,

which is prior to the earliest possible ’494 patent effective filing date.

 Chen is directed to a system for detecting and removing viruses from macros

that determines whether a targeted file contains a macro and, if so, decodes the

macro and scans it for viruses. Ex. 1010, p. 1 (57); Ex. 1002 ¶ 105.

 Macros are combinations of instructions that are recorded and made

available for future use, e.g. through a user pressing an assigned key. Macros may

be embedded within application data files. These macros can be executed

automatically and can contain viruses. Ex. 1010, col. 1, ll. 37-52; Ex. 1002 ¶ 106.

WEST\255519617.1

30

A person of ordinary skill in the art would understand a macro to be a sequence of

instructions executed through an interpreter (e.g., at the application level by a

program configured to accept the combinations of instructions) and not directly

executable by the operating system. Ex. 1002 ¶ 106.

 Chen teaches a computer system 100 comprising a CPU 104, a memory 106,

a communications unit 112 for communicating with other computers, and other

computer components. Ex. 1010, col. 4, ll. 42-59; Ex. 1002 ¶ 107. The CPU 104

executes instructions received from the memory 106 to access computer files,

determine whether they include macros, locate the macros, scan the macros to

determine whether viruses are present in the macros (including unknown viruses),

and take action against the viruses. Ex. 1010, col. 5, ll. 3-9; Ex. 1002 ¶ 107.

Specifically, the memory 106 includes a macro virus detection module 206. Ex.

1010, col. 5, ll. 10-14; Ex. 1002 ¶ 107. The macro virus detection module 206

includes a macro locating and decoding module 302, a macro virus scanning

module 304, a macro treating module 306, a virus information module 308, a file

correcting module 310, and a data buffer 312. Ex. 1010, col. 5, l. 64 – col. 6, l. 9;

Ex. 1002 ¶ 107.

WEST\255519617.1

31

 Files are targeted for access by user selection or upon events taking place

(e.g., on system boot, whenever certain files are opened, at periodic intervals),

preferably prior to launch of an application program that may run macros in the

files. Ex. 1010, col. 6, ll. 10-30; Ex. 1002 ¶ 108. The macro locating and decoding

module 302 selects targeted files to be scanned for viruses by first determining

whether a file in question is a type of tile that may include a macro. If the file may

include a macro, the macro locating and decoding module 302 examines the file to

determine whether a macro is actually present. If a macro is present, the macro is

located and decoded into binary code and stored so it can be scanned for viruses.

Ex. 1010, col. 12, ll. 4-65; Ex. 1002 ¶ 108.

 The macro virus scanning module 304 detects combinations of suspicious

instructions, which are macro instruction combinations that are likely to be used by

WEST\255519617.1

32

macro viruses. Example suspicious instructions include macro enablement

instructions, which allow formatting of a file to indicate that the file includes a

macro for execution, and macro reproduction instructions, which allow a macro

virus to be replicated. The macro virus scanning module 304 identifies suspicious

instructions based on instruction identifiers (e.g., binary strings) by scanning

decoded macros for the instruction identifiers. If suspicious instructions are found,

the macro virus scanning module 304 determines that the file is infected by an

unknown virus, flags the decoded macro as infected, and stores information

associating the decoded macro to the instruction identifiers that triggered the virus

detection. Ex. 1010, col. 8, l. 40 – col. 9, l. 15; Ex. 1002 ¶ 109.

 Specifically, as shown in FIG. 6, a decoded macro is scanned for known

viruses using signature scanning and, if no known viruses are present, is then

scanned for unknown viruses. To identify unknown viruses, the macro virus

scanning module 304 obtains a set of instruction identifiers useful to detect suspect

instructions that are likely to be used by macro viruses. Ex. 1010, col. 13, ll. 7-32;

Ex. 1002 ¶ 110.

WEST\255519617.1

33

WEST\255519617.1

34

 The macro instructions, which have been decoded into binary code, are

analyzed to identify the suspect instructions. For example, unique binary code

portions are known to correspond to suspect instructions, and the instruction

identifiers include the unique binary code portions. Ex. 1010, col. 14, ll. 24-64; Ex.

1002 ¶ 111. The macro virus scanning module 304 compares the decoded binary

code with the instruction identifiers to reveal the presence of the unique binary

code portions, and thus the suspicious instructions, within the macro. Ex. 1010,

col. 14, ll. 13-31; Ex. 1002 ¶ 111. The macro virus scanning module 304 can scan

for multiple suspicious instructions to confirm the likely presence of a macro virus.

If multiple suspicious instructions are found, the macro is flagged as infected by an

unknown virus. Information associating the decoded macro to the instruction

identifiers that resulted in positive detection is stored in the data buffer 312 for use

by other modules such as the macro treating module 306. Ex. 1010, col. 15, ll. 43-

54; Ex. 1002 ¶ 111.

 In light of the above, TBAV, either alone or in combination with Ji and/or

Chen, would have rendered systems and methods that receive Downloadables,

derive security profile data for the Downloadables (including suspicious computer

operations), and store the security profile data in a database, wherein the

Downloadables include program script, obvious to one of ordinary skill in the art.

WEST\255519617.1

35

Ex. 1002 ¶ 112. This combination renders claim 14 obvious as described in the

following chart. See Ex. 1002 ¶¶ 113-115.

Claim 14 TBAV, Ji, and Chen
The system of Claim
10 wherein the
Downloadable
includes program
script.

TBAV teaches scanning files that do not have filename
extensions that indicate the files are program files,
including .DLLs. Ex. 1006, p. 57; Ex. 1002 ¶ 113.
Chen teaches files containing macros that are scanned by a
macro virus detection module 206. Ex. 1010, col. 1, ll. 37-
52, col. 5, ll. 48-52; Ex. 1002 ¶ 114.

 TBAV describes Downloadables including .DLLs and other files that can

contain executable code but are not program files. The code in a .DLL can be

executed by another program. Ex. 1002 ¶ 115. To the extent TBAV does not

describe Downloadables including program script, Chen teaches scanning macros

for viruses. Ex. 1010, col. 1, ll. 37-52, col. 5, ll. 48-52; Ex. 1002 ¶ 115. TBAV and

Chen are both directed to virus scanning software. As discussed above, a person of

ordinary skill in the art would understand program script to be a set of instructions

that can be executed through an interpreter or some other program with a

computer. Ex. 1002 ¶ 115.A person of ordinary skill in the art would further

understand that higher level script languages, like any other computer language,

can contain malicious instructions. A macro is an example of program script often

executed automatically without the user’s knowledge and thus poses high potential

threat. Thus, at minimum, it would have been obvious to one of ordinary skill in

WEST\255519617.1

36

the art to apply the teachings of Chen to the system of TBAV to allow the system

of TBAV to scan for viruses in both executable files and files containing program

script. Ex. 1002 ¶ 115.

 C. Challenge to Claims 1, 10, 14, and 18 based on Arnold in view of

Chen and Ji

 Arnold: Arnold qualifies as prior art to the ’494 patent under 35 U.S.C. §

102(b) because Arnold was granted on August 8, 1995, which is more than one

year prior to the earliest possible ’494 patent effective filing date.

 Arnold is directed to a method wherein an undesired software entity is

detected within a data processing system. An identifying signature is extracted for

the undesired software entity and added to a database so it may be used by a

scanner to prevent subsequent infections of the system and a network of systems.

Ex. 1008, p. 1 (57); Ex. 1002 ¶ 117.

 The method of Arnold is performed by a computer system 10 that can be

connected to a network via network adapter 31. Ex. 1008, col. 3, l. 49 – col. 4, l.

28; Ex. 1002 ¶ 118. The method includes the steps of (A) monitoring for

anomalous behavior that may be caused by a virus, (B) scanning for and removal

of known viruses, (C) deploying decoy programs to capture virus samples, (D)

segregating a captured virus sample into portions that likely vary among instances

and portions that are likely invariant, (E) extracting a viral signature from the

WEST\255519617.1

37

invariant portions and storing the signature in a database, (F) informing other

network computers of the viral infection, and (G) generating a distress signal. Ex.

1008, col. 4, ll. 29-56; Ex. 1002 ¶ 118.

 When an anomaly is detected, and no known viruses are found, the anomaly

may be due to an unknown virus. A decoy program is used to obtain a sample of

the unknown virus. Ex. 1008, col. 6, ll. 3-7; Ex. 1002 ¶ 119. The sample is filtered

to generate invariant portions of code that are unlikely to vary between instances of

the virus. Ex. 1008, col. 7, ll. 11-21; Ex. 1002 ¶ 119. The invariant portions are

machine language “code” portions of a program, which are less likely to vary than

non-executable “data” portions of the program. Code-data segregation is

performed to separate the code from the data, for example by using static

disassembly techniques. Ex. 1008, col. 7, l. 59 – col. 8, l. 27; Ex. 1002 ¶ 119.

 A viral signature is extracted from the likely invariant code portions. Ex.

1008, col. 9, ll. 13-16; Ex. 1002 ¶ 120. Specifically, input files (IFs 32) containing

invariant portions of viral code are supplied. Ex. 1008, col. 10, ll. 13-21; Ex. 1002

¶ 120. A list of n-grams (instances of n consecutive bytes) contained in an IF 32

containing previously identified invariant portions of virus machine code is

formed. Probabilities for n-grams are estimated by comparing the n-grams to a

corpus of programs, and probabilities for exact and fuzzy matches for candidate

signatures are generated and combined to obtain an overall evaluation of each

WEST\255519617.1

38

candidate signature. Finally, the outcome for at least some of the candidate

signatures is reported and stored in a file. Ex. 1008, col. 10, l. 63 – col. 11, l. 20;

Ex. 1002 ¶ 120. For each virus, one or more candidate signatures having the best

score(s) is selected to represent the virus. Ex. 1008, col. 19, ll. 15-20; Ex. 1002 ¶

120. As these signatures are generated from previously identified invariant portions

of code that caused anomalous behavior, they represent known suspicious

instructions. Ex. 1002 ¶ 120.

 A specific embodiment of a computer system 10 is shown in the block

diagram of FIG. 8. An anomaly detector 72 detectes anomalous behavior of the

CPU 14. Upon detection of anomalous behavior, a scanner 74 compares valid

signatures from a signature database (SDB 74a) to programs stored in the memory

to identify known viruses. Ex. 1008, col. 28, ll. 43-62; Ex. 1002 ¶ 121.

 If no known virus is found, a decoy program unit 76 deploys a decoy

program and, if a modification to the decoy program is detected, the undesirable

software entity is isolated and supplied to the invariant code identifier 38. The

invariant code identifier 38 identifies candidate signatures and provides them to the

n-gram processor 40. The n-gram processor 40 processes the candidate signatures

and, if a valid signature for the unknown undesirable software identity is found, the

valid signature is stored in the SDB 74a. Ex. 1008, col. 29, ll. 1-23; Ex. 1002 ¶

122.

WEST\255519617.1

39

 Chen and Ji are described above in section IX(A) and qualify as prior art to

the ’494 patent as explained therein. In light of the above, Arnold, either alone or

in combination with Chen and Ji, would have rendered systems and methods that

receive Downloadables, derive security profile data for the Downloadables

(including suspicious computer operations), and store the security profile data in a

database obvious to one of ordinary skill in the art. Ex. 1002 ¶ 123. This

combination renders each of claims 1, 10, 14, and 18 obvious as shown in the

following charts. See Ex. 1002 ¶¶ 124-141.

Claim 1(pre) Arnold, Chen, and Ji
A computer-based
method, comprising
the steps of:

Arnold teaches a data processing system 10 that is suitable
for practicing the teaching of the invention. Ex. 1008, col.
3, l. 49 – col. 4, l. 28; col. 27, ll. 16-20; Ex. 1002 ¶ 124.

Claim 1(a) Arnold, Chen, and Ji
receiving an Arnold teaches a data processing system 10 that is

WEST\255519617.1

40

incoming
Downloadable;

connected to a network via a network adapter 31. Ex. 1008,
col. 4, ll. 1-2 and 23-28; Ex. 1002 ¶ 125.
Ji teaches an FTP proxy server 60 that receives an inbound
file from FTP daemon 78 and analyzes it. Ex. 1009,col. 8, l.
57 – col. 9, l. 2; Ex. 1002 ¶ 126.

 Arnold teaches scanning files on a network-connected computer, and one of

ordinary skill in the art would recognize that these files can be incoming

downloaded files. To the extent Arnold does not explicitly describe receiving an

incoming Downloadable, Ji teaches an FTP proxy server 60 that receives an

inbound file that a client is trying to download so the file can be scanned for

viruses before being passed on to the client. Ex. 1009,col. 8, l. 57 – col. 9, l. 2; Ex.

1002 ¶ 127. Arnold and Ji are both directed to virus scanning software that can

scan files on a network-connected computer. Thus, at minimum, it would have

been obvious to one of ordinary skill in the art to apply the teachings of Ji of

receiving a Downloadable to the system of Arnold. Ex. 1002 ¶ 127.

Claim 1(b) Arnold, Chen, and Ji
deriving security
profile data for the
Downloadable,
including a list of
suspicious computer
operations that may
be attempted by the
Downloadable; and

Arnold teaches deriving a signature for a virus by analyzing
an invariant section of code from a program. Ex. 1008, col.
10, l. 63 – col. 11, l. 20; col. 19, ll. 15-20; Ex. 1002 ¶ 128.
Chen teaches comparing decoded binary code with
instruction identifiers to reveal the presence of code portions
corresponding to the instructions of the instruction
identifiers. Ex. 1010, col. 14, ll. 13-64; Ex. 1002 ¶ 129.

 To the extent Arnold does not explicitly describe deriving a list of suspicious

computer operations, it would have been obvious to one of ordinary skill in the art

WEST\255519617.1

41

that the signature generated by Arnold is indicative of a sequence of suspicious

computer operations because it represents an invariant portion of code that caused

observed anomalous behavior. Ex. 1008, col. 6, ll. 3-7; col. 7, ll. 11-21; Ex. 1002 ¶

130. Furthermore, Chen teaches comparing instruction identifers to decoded binary

code. The instruction identifers include unique binary code portions known to

correspond to suspect instructions. The presence of the unique binary code portions

within the decoded binary code reveals the presence of the suspicious instructions

within the file. Ex. 1010, col. 14, ll. 13-31; Ex. 1002 ¶ 130. Arnold and Chen are

both directed to virus scanning software that can detect unidentified viruses within

a file. Thus, at minimum, it would have been obvious to one of ordinary skill in the

art to apply the teachings of Chen of identifying suspicious computer operations in

a file to the system of Arnold. Ex. 1002 ¶ 130.

Claim 1(c) Arnold, Chen, and Ji
storing the
Downloadable security
profile data in a
database.

Arnold teaches identifying valid signatures from among
candidate signatures using an invariant code identifier 38
and storing them in a database using an n-gram processor
40. Ex. 1008, col. 29, ll. 14-23; Ex. 1002 ¶ 131.

Claim 10(pre) Arnold, Chen, and Ji
A system for
managing
Downloadables,
comprising:

Arnold teaches a data processing system 10 that is
suitable for practicing the teaching of the invention. Ex.
1008, col. 3, l. 49 – col. 4, l. 28; col. 27, ll. 16-20; Ex.
1002 ¶ 132.

Claim 10(a) Arnold, Chen, and Ji
a receiver for
receiving an incoming
Downloadable;

Arnold teaches a data processing system 10 that is
connected to a network via a network adapter 31. Ex.
1008, col. 4, ll. 1-2 and 23-28; Ex. 1002 ¶ 132.
Ji teaches an FTP proxy server 60 that receives an

WEST\255519617.1

42

inbound file from FTP daemon 78 and analyzes it. Ex.
1009,col. 8, l. 57 – col. 9, l. 2; Ex. 1002 ¶ 133.

 Arnold teaches scanning files on a network-connected computer comprising

a network adapter, and one of ordinary skill in the art would recognize that these

files can be incoming downloaded files received via the network adapter. To the

extent Arnold does not explicitly describe receiving an incoming Downloadable, Ji

teaches an FTP proxy server 60 that receives an inbound file that a client is trying

to download so the file can be scanned for viruses before being passed on to the

client. Ex. 1009,col. 8, l. 57 – col. 9, l. 2; Ex. 1002 ¶ 134. Arnold and Ji are both

directed to virus scanning software that can scan files on a network-connected

computer. Thus, at minimum, it would have been obvious to one of ordinary skill

in the art to apply the teachings of Ji to the system of Arnold to use the network

adapter to receive a Downloadable. Ex. 1002 ¶ 134.

Claim 10(b) Arnold, Chen, and Ji
a Downloadable scanner
coupled with said
receiver, for deriving
security profile data for
the Downloadable,
including a list of
suspicious computer
operations that may be
attempted by the
Downloadable; and

Arnold teaches deriving a signature for a virus by
analyzing an invariant section of code from a program.
Ex. 1008, col. 10, l. 63 – col. 11, l. 20; col. 19, ll. 15-
20; Ex. 1002 ¶ 135.
Chen teaches a macro virus scanning module 304 for
comparing decoded binary code with instruction
identifiers to reveal the presence of code portions
corresponding to the instructions of the instruction
identifiers. Ex. 1010, col. 14, ll. 13-64; Ex. 1002 ¶ 136.

 To the extent Arnold does not explicitly describe deriving a list of suspicious

computer operations, it would have been obvious to one of ordinary skill in the art

WEST\255519617.1

43

that the signature generated by Arnold is indicative of suspicious computer

operations because it represents an invariant portion of code that caused observed

anomalous behavior. Ex. 1008, col. 6, ll. 3-7; col. 7, ll. 11-21; Ex. 1002 ¶ 137.

Furthermore, Chen teaches a macro virus scanning module 304 for comparing

instruction identifers to decoded binary code. The instruction identifers include

unique binary code portions known to correspond to suspect instructions. The

presence of the unique binary code portions within the decoded binary code reveals

the presence of the suspicious instructions within the file. Ex. 1010, col. 14, ll. 13-

31; Ex. 1002 ¶ 137. Arnold and Chen are both directed to virus scanning software

that can detect unidentified viruses within a file. Thus, at minimum, it would have

been obvious to one of ordinary skill in the art to apply the teachings of Chen of

identifying suspicious computer operations in a file to the system of Arnold. Ex.

1002 ¶ 137.

Claim 10(c) Arnold, Chen, and Ji
a database manager
coupled with said
Downloadable scanner, for
storing the Downloadable
security profile data in a
database.

Arnold teaches identifying valid signatures from
among candidate signatures using an invariant code
identifier 38 and storing them in a database using an
n-gram processor 40. Ex. 1008, col. 29, ll. 14-23; Ex.
1002 ¶ 138.

Claim 14 Arnold, Chen, and Ji
The system of Claim 10
wherein the Downloadable
includes program script.

Chen teaches files containing macros that are scanned
by a macro virus detection module 206. Ex. 1010, col.
1, ll. 37-52, col. 5, ll. 48-52; Ex. 1002 ¶ 139.

WEST\255519617.1

44

 To the extent Arnold does not describe Downloadables including program

script, Chen teaches scanning macros for viruses. Ex. 1010, col. 1, ll. 37-52, col. 5,

ll. 48-52; Ex. 1002 ¶ 140. Arnold and Chen are both directed to virus scanning

software. A person of ordinary skill in the art would understand “program script”

to be a sequence of instructions executed through an interpreter and not directly

executable by the operating system. A macro is one example of program script. Ex.

1002 ¶ 140. Thus, at minimum, it would have been obvious to one of ordinary skill

in the art to apply the teachings of Chen to the system of Arnold to allow the

system of Arnold to scan for viruses in both executable files and files containing

program script. Ex. 1002 ¶ 140.

Claim 18 Arnold, Chen, and Ji
The system of Claim 10
wherein said Downloadable
scanner comprises a
disassembler for disassembling
the incoming Downloadable.

Arnold teaches an invariant code identifier 38
that separates machine language “code” portions
of a program from non-executable “data”
portions of the program using static disassembly
techniques. Ex. 1008, col. 7, l. 59 – col. 8, l. 27;
col. 29, ll. 10-17; Ex. 1002 ¶ 141.

 D. Challenge to Claims 1, 10, 14, and 18 based on Chen in view of

Arnold and Ji

 Chen, Arnold, and Ji are described above in section IX(A) and qualify as

prior art to the ’494 patent as explained therein. In light of the above, Chen, either

alone or in combination with Arnold and Ji, would have rendered systems and

methods that receive Downloadables, derive security profile data for the

WEST\255519617.1

45

Downloadables (including suspicious computer operations), and store the security

profile data in a database obvious to one of ordinary skill in the art. Ex. 1002 ¶

142. This combination renders each of claims 1, 10, 14, and 18 obvious as shown

in the following charts. See Ex. 1002 ¶¶ 143-165.

Claim 1(pre) Chen, Arnold, and Ji
A computer-based
method, comprising
the steps of:

Chen teaches a computer system 100 comprising a CPU
104, a memory 106, and other computer components. The
memory 106 includes a macro virus detection module 206.
Ex. 1010, col. 4, ll. 42-59; col. 5, ll. 10-14; Ex. 1002 ¶ 143.

Claim 1(a) Chen, Arnold, and Ji
receiving an
incoming
Downloadable;

Chen teaches a computer system 100 comprising a
communications unit for communicating with other
computers. Ex. 1010, col. 4, ll. 42-59; Ex. 1002 ¶ 144.
Chen teaches targeting files for virus scanning. Ex. 1010,
col. 6, ll. 10-30; Ex. 1002 ¶ 145.
Ji teaches an FTP proxy server 60 that receives an inbound
file from FTP daemon 78 and analyzes it. Ex. 1009,col. 8, l.
57 – col. 9, l. 2; Ex. 1002 ¶ 146.

 Chen teaches scanning files on a computer that can communicate with other

computers, and one of ordinary skill in the art would recognize that these files can

be incoming downloaded files. To the extent Chen does not explicitly describe

receiving an incoming Downloadable, Ji teaches an FTP proxy server 60 that

receives an inbound file that a client is trying to download so the file can be

scanned for viruses before being passed on to the client. Ex. 1009,col. 8, l. 57 –

col. 9, l. 2; Ex. 1002 ¶ 147. Chen and Ji are both directed to virus scanning

software that can scan files on a computer that communicates with other

computers. Thus, at minimum, it would have been obvious to one of ordinary skill

WEST\255519617.1

46

in the art to apply the teachings of Ji of receiving a Downloadable to the system of

Chen. Ex. 1002 ¶ 147.

Claim 1(b) Chen, Arnold, and Ji
deriving security profile
data for the Downloadable,
including a list of suspicious
computer operations that
may be attempted by the
Downloadable; and

Chen teaches comparing decoded binary code with
instruction identifiers to reveal the presence of code
portions corresponding to the instructions of the
instruction identifiers. Ex. 1010, col. 14, ll. 13-64;
Ex. 1002 ¶ 148.

Claim 1(c) Chen, Arnold, and Ji
storing the Downloadable
security profile data in a
database.

Chen teaches that information associating the
decoded macro to the instruction identifiers that
resulted in positive detection is stored in the data
buffer 312. Ex. 1010, col. 15, ll. 43-54; Ex. 1002 ¶
149.
Arnold teaches identifying valid signatures from
among candidate signatures and storing them in a
database. Ex. 1008, col. 29, ll. 14-23; Ex. 1002 ¶
150.

 Chen teaches storing information associating a decoded macro to instruction

identifiers in a data buffer, and a person of ordinary skill in the art would

understand that the same data may also be stored in a database. To the extent Chen

does not explicitly describe storing the information in a database, Arnold teaches

storing candidate signatures in a database. Ex. 1008, col. 29, ll. 14-23; Ex. 1002 ¶

151. Chen and Arnold are both directed to virus scanning software wherein data

about detected malicious files is stored. Thus, at minimum, it would have been

obvious to one of ordinary skill in the art to apply the teachings of Arnold of a

WEST\255519617.1

47

database manager (n-gram processor 40) storing virus scan analysis data in a

database to the system of Chen. Ex. 1002 ¶ 151.

Claim 10(pre) Chen, Arnold, and Ji
A system for
managing
Downloadables,
comprising:

Chen teaches a computer system 100 comprising a CPU
104, a memory 106, and other computer components. The
memory 106 includes a macro virus detection module 206.
Ex. 1010, col. 4, ll. 42-59; col. 5, ll. 10-14; Ex. 1002 ¶ 152.

Claim 10(a) Chen, Arnold, and Ji
a receiver for
receiving an
incoming
Downloadable;

Chen teaches a computer system 100 comprising a
communications unit for communicating with other
computers. Ex. 1010, col. 4, ll. 42-59; Ex. 1002 ¶ 153.
Chen teaches targeting files for virus scanning. Ex. 1010,
col. 6, ll. 10-30; Ex. 1002 ¶ 154.
Ji teaches an FTP proxy server 60 that receives an inbound
file from FTP daemon 78 and analyzes it. Ex. 1009,col. 8, l.
57 – col. 9, l. 2; Ex. 1002 ¶ 155.

 Chen teaches scanning files on a computer comprising a communications

unit for communicating with other computers, and one of ordinary skill in the art

would recognize that these files can be incoming downloaded files received via the

communications unit. To the extent Chen does not explicitly describe receiving an

incoming Downloadable, Ji teaches an FTP proxy server 60 that receives an

inbound file that a client is trying to download so the file can be scanned for

viruses before being passed on to the client. Ex. 1009,col. 8, l. 57 – col. 9, l. 2; Ex.

1002 ¶ 156. Chen and Ji are both directed to virus scanning software that can scan

files on a computer that communicates with other computers. Thus, at minimum, it

would have been obvious to one of ordinary skill in the art to apply the teachings

WEST\255519617.1

48

of Ji to the system of Chen to use the communications unit to receive a

Downloadable. Ex. 1002 ¶ 156.

Claim 10(b) Chen, Arnold, and Ji
a Downloadable scanner
coupled with said
receiver, for deriving
security profile data for
the Downloadable,
including a list of
suspicious computer
operations that may be
attempted by the
Downloadable; and

Chen teaches a macro virus scanning module 304 that
compares decoded binary code with instruction
identifiers to reveal the presence of code portions
corresponding to the instructions of the instruction
identifiers. Ex. 1010, col. 14, ll. 13-64; Ex. 1002 ¶ 157.

Claim 10(c) Chen, Arnold, and Ji
a database manager
coupled with said
Downloadable scanner,
for storing the
Downloadable security
profile data in a
database.

Chen teaches that information associating the decoded
macro to the instruction identifiers that resulted in
positive detection is stored in the data buffer 312. Ex.
1010, col. 15, ll. 43-54; Ex. 1002 ¶ 158.
Arnold teaches identifying valid signatures from among
candidate signatures using an invariant code identifier
38 and storing them in a database using an n-gram
processor 40. Ex. 1008, col. 29, ll. 14-23; Ex. 1002 ¶
159.

 Chen teaches storing information associating a decoded macro to instruction

identifiers in a data buffer, and a person of ordinary skill in the art would

understand that the same data may also be stored in a database by a database

manager. To the extent Chen does not explicitly describe a database manager for

storing the log file in a database, Arnold teaches storing candidate signatures in a

database using an n-gram processor 40. Ex. 1008, col. 29, ll. 14-23; Ex. 1002 ¶

160. Chen and Arnold are both directed to virus scanning software wherein data

WEST\255519617.1

49

about detected malicious files is stored. Thus, at minimum, it would have been

obvious to one of ordinary skill in the art to apply the teachings of Arnold of a

database manager (n-gram processor 40) storing virus scan analysis data in a

database to the system of Chen. Ex. 1002 ¶ 160.

Claim 14 Chen, Arnold, and Ji
The system of Claim 10
wherein the Downloadable
includes program script.

Chen teaches files containing macros that are scanned
by a macro virus detection module 206. Ex. 1010, col.
1, ll. 37-52, col. 5, ll. 48-52; Ex. 1002 ¶ 161.

 To the extent Chen does not explicitly use the term “program script”, a

person of ordinary skill in the art would understand “program script” to be a

sequence of instructions executed through an interpreter and not directly

executable by the operating system. A macro is one example of program script. Ex.

1002 ¶ 162.

Claim 18 Chen, Arnold, and Ji
The system of Claim 10
wherein said
Downloadable scanner
comprises a
disassembler for
disassembling the
incoming
Downloadable.

Chen teaches decoding macros into binary code. Ex.
1010, col. 14, ll. 24-64; Ex. 1002 ¶ 163.
Arnold teaches an invariant code identifier 38 that
separates machine language “code” portions of a
program from non-executable “data” portions of the
program using static disassembly techniques. Ex. 1008,
col. 7, l. 59 – col. 8, l. 27; col. 29, ll. 10-17; Ex. 1002 ¶
164.

 Chen teaches decoding macros into binary code. Additionally, Arnold

teaches an invariant code identifier 38 that separates machine language “code”

portions of a program from non-executable “data” portions of the program using

WEST\255519617.1

50

static disassembly techniques. Ex. 1008, col. 7, l. 59 – col. 8, l. 27; col. 29, ll. 10-

17; Ex. 1002 ¶ 165. Chen and Arnold are both directed to identifying suspicious

code within code strings, with Chen examining macros and Arnold examining

executable files. Thus, at minimum, it would have been obvious to one of ordinary

skill in the art to apply the teachings of Arnold of an invariant code identifier using

static disassembly techniques to the system of Chen to allow the system of Chen to

work with both macros and executable files. Ex. 1002 ¶ 165.

XII. THE CHALLENGES ARE NOT REDUNDANT

 Challenge A is stronger than Challenges B, C, and D in that Challenge A

features a single primary reference TBAV that largely teaches the entire method of

claim 1 and system of claims 10 and 18, with secondary references largely

providing clarification or secondary features. Challenge B is stronger than

Challenges A, C, and D in that challenge B combines the primary reference of

TBAV with Chen to teach the system of claim 14. Challenge C is stronger than

challenges A, B, and D in that the primary reference Arnold provides great detail

about how security profile data can be derived and stored. Challenge D is stronger

than Challenges A, B, and C in that the primary reference Chen strongly correlates

suspicious computer operations with the results of its scan and deals largely with

program script. For at least the foregoing reasons, none of the challenges are

redundant.

WEST\255519617.1

51

XIII. CONCLUSION

 For the foregoing reasons, Petitioner requests that Trial be instituted and

claims 1, 10, 14, and 18 be cancelled.

 Respectfully Submitted,

 /James M. Heintz/
James M. Heintz
Registration Number 41,828
DLA Piper LLP (US)
11911 Freedom Drive, Suite 300
Reston, VA 20190
(703) 773-4148

Nicholas J. Panno
Registration Number 68,513
DLA Piper LLP (US)
11911 Freedom Drive, Suite 300
Reston, VA 20190
(703) 773-4149

 Attorneys for Petitioner

Patent No. 6,249,868
Petition for Inter Partes Review

WEST\255519617.1

1

CERTIFICATE OF SERVICE

 The undersigned hereby certifies that a copy of the foregoing petition for

inter partes review and all Exhibits and other documents filed together with the

petition were served on April 8, 2015, via courier, directed to patent owner and

patent owner correspondent at the following addresses:

Bey & Cotropia Pllc
Attn: Dawn-Marie Bey
213 Bayly Ct
Richmond, VA 23229-7343
804.404.2637
dbey@beycotropia.com

Paul J. Andre
KRAMER LEVIN NAFTALIS &
FRANKEL LLP
990 Marsh Road
Menlo Park, CA 94025
Telephone: (650) 752-1700
Facsimile: (650) 752-1800
pandre@kramerlevin.com

FINJAN, INC.
1313 N. Market Street
Suite 5100
Wilmington, DE 19801

FINJAN, INC.
2000 University Ave
Suite 600
East Palo Alto, CA 94303

By: /James M. Heintz/
James M. Heintz
Reg. No. 41828
Counsel for Petitioner

