US008677494B2

a2 United States Patent

(10) Patent No.: US 8,677,494 B2

Edery et al. @45) Date of Patent: *Mar. 18,2014
(54) MALICIOUS MOBILE CODE RUNTIME (56) References Cited
MONITORING SYSTEM AND METHODS
U.S. PATENT DOCUMENTS
(75) Inventors: Yigal Mordechai Edery, Pardesia (IL);
Nirmrod Itzhak Vered. Goosh 4,562,305 A 12/1985 Gaftney, Jr.
red, 5,077,677 A 12/1991 Murphy et al.
Tel-Mond (IL); David R. Kroll, San X
Jose, CA (US); Shlomo Touboul, (Continued)
Kefar-Haim (IL
efar-Haim (IL) FOREIGN PATENT DOCUMENTS
(73) Assignee: Finjan, Inc., Wilmington, DE (US) EP 0636977 7/1994
)) o) EP 1021276 7/2000
(*) Notice: Subject to any disclaimer, the term of this Continued
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS
This patent is subject to a terminal dis- Zhong, et al., “Security in the Large: is Java’s Sandbox Scalable?,”
claimer. Seventh IEEE Symposium on Reliable Distributed Systems, pp. 1-6,
Oct. 1998.
(21) Appl. No.: 13/290,708 (Continued)
(22) Filed: Nov. 7, 2011 Primary Examiner — Christopher Revak
(74) Attorney, Agent, or Firm — Bey & Cotropia PLL.C
(65) Prior Publication Data (57) ABSTRACT
US 2012/0117651 Al May 10, 2012 Protection systems and methods provide for protecting one or
more personal computers (“PCs”) and/or other intermittently
or persistently network accessible devices or processes from
oot undesirable or otherwise malicious operations of Java TN
Related US. Application Data applets, ActiveX™ controls, JavaScript™ scripts, Visual
(63) Continuation of application No. 12/471,942, filed on Basic scripts, add-ins, downloaded/uploaded programs or
May 26, 2009, now Pat. No. 8,079,086, which is a other “Downloadables” or “mobile code” in whole or part. A
. protection engine embodiment provides for monitoring infor-
(Continued) mation received, determining whether received information
does or is likely to include executable code, and if so, causes
(51) Int.ClL mobile protection code (MPC) to be transferred to and ren-
HO4L 29/06 (2006.01) dered operable within a destination device of the received
GO6F 11/30 (2006.01) information. An MPC embodiment further provides, within a
GO6F 15/16 (2006.01) Downloadable-destination, for initiating the Downloadable,
(52) US.CL enabling malicious Downloadable operation attempts to be
LSS5 G 726/24;,713/175 received by the MPC, and causing (predetermined) corre-
(58) Field of Classification Search sponding operations to be executed in response to the
None attempts.

See application file for complete search history.

919

W

Start

18 Claims, 10 Drawing Sheets

Retrieve protection parameters and form
mabile protection code according to the
parameters

’”/1011

Retrieve protection parameters and form
protection policies according lo the
parameters

1013

g

Couple the mobile protection code,
protection palicies and received-
information to form a protection agent (e.g.
MPC first, policies second, and R third)

1015

End

SOPHOS

EXHIBIT 1001 - PAGE 0001

US 8,677,494 B2

Related U.S. Application Data

continuation of application No. 11/370,114, filed on
Mar. 7, 2006, now Pat. No. 7,613,926, which is a con-
tinuation of application No. 09/861,229, filed on May
17, 2001, now Pat. No. 7,058,822, which is a continu-
ation-in-part of application No. 09/539,667, filed on
Mar. 30, 2000, now Pat. No. 6,804,780, which is a con-
tinuation of application No. 08/964,388, filed on Nov. 6,
1997, now Pat. No. 6,092,194, said application No.
09/861,229 is a continuation-in-part of application No.
09/551,302, filed on Apr. 18, 2000, now Pat. No. 6,480,
962, and a continuation of application No. 08/790,097,
filed on Jan. 29, 1997, now Pat. No. 6,167,520.

(60) Provisional application No. 60/205,591, filed on May
17, 2000, provisional application No. 60/030,639, filed

on Nov. 8, 1996.

(56)

5,263,147
5,278,901
5,311,591
5,319,776
5,359,659
5,361,359
5,398,196
5412,717
5,414,833
5,440,723
5,452,442
5,483,649
5,485,409
5,485,575
5,524,238
5,572,643
5,579,509
5,606,668
5,621,889
5,623,600
5,623,601
5,638,446
5,675,711
5,692,047
5,692,124
5,696,822
5,720,033
5,724,425
5,740,248
5,740,441
5,761,421
5,765,030
5,765,205
5,784,459
5,796,952
5,805,829
5,809,230
5,825,877
5,832,208
5,832,274
5,850,559
5,854,916
5,859,966
5,864,683
5,867,651
5,878,258
5,881,151
5,884,033
5,880,043
5,892,004
5,951,698
5,956,481
5,958,050

References Cited
U.S. PATENT DOCUMENTS

11/1993
1/1994
5/1994
6/1994

10/1994

11/1994
3/1995
5/1995
5/1995
8/1995
9/1995
1/1996
1/1996
1/1996
6/1996

11/1996

11/1996
2/1997
4/1997
4/1997
4/1997
6/1997

10/1997

11/1997

11/1997

12/1997
2/1998
3/1998
4/1998
4/1998
6/1998
6/1998
6/1998
7/1998
8/1998
9/1998
9/1998

10/1998

11/1998

11/1998

12/1998

12/1998
1/1999
1/1999
2/1999
3/1999
3/1999
3/1999
3/1999
4/1999
9/1999
9/1999
9/1999

Francisco et al.
Shieh et al.
Fischer

Hile et al.
Rosenthal
Tajalli et al.
Chambers
Fischer
Hershey et al.
Arnold et al.
Kephart
Kuznetsov et al.
Gupta et al.
Chess et al.
Miller et al.
Judson
Furtney et al.
Shwed
Lermuzeaux et al.
Ji et al.

Vu

Rubin

Kephart et al.
McManis
Holden et al.
Nachenberg

Deo

Chang et al.
Fieres et al.
Yellin et al.

Van Hoff et al.
Nachenberg et al.
Breslau et al.

Davis et al.
Cohen et al.
Pereira

Dan et al.
Chen et al.
Cutler et al.
Angelo et al.
Nachenberg
Hayman et al.
Boebert et al.
Dan et al.
Pizi et al.
Yamamoto
Duvall et al.
Ji et al.
Atkinson et al.
Chen et al.
Walsh et al.
Griffin et al.

P B e e e e B D e 0 e B B 0 e 0 e e B 0> B B 0 e 0 0 e B 0 e 0 B 0 B e 0 e B B

Devarakonda et al.

Page 2
5,960,170 A 9/1999 Chen et al.
5,963,742 A 10/1999 Williams
5,964,889 A 10/1999 Nachenberg
5,974,549 A 10/1999 Golan
5,978,484 A 11/1999 Apperson et al.
5,983,348 A 11/1999 Ji
5,987,611 A 11/1999 Freund
6,070,239 A 5/2000 McManis
6,088,801 A 7/2000 Grecsek
6,088,803 A 7/2000 Tso et al.
6,092,194 A 7/2000 Touboul
6,125,390 A 9/2000 Touboul
6,154,844 A 11/2000 Touboul et al.
6,167,520 A 12/2000 Touboul
6,263,442 Bl 7/2001 Mueller et al.
6,339,829 Bl 1/2002 Beadle et al.
6,351,816 Bl 2/2002 Mueller et al.
6,425,058 Bl 7/2002 Arimilli et al.
6,434,668 Bl 8/2002 Arimilli et al.
6,434,669 Bl 8/2002 Arimilli et al.
6,480,962 Bl 11/2002 Touboul
6,487,666 Bl 11/2002 Shanklin et al.
6,519,679 B2 2/2003 Devireddy et al.
6,571,338 Bl 5/2003 Shaio et al.
6,598,033 B2 7/2003 Ross etal.
6,643,696 B2 11/2003 Davis et al.
6,732,179 Bl 5/2004 Brown et al.
6,804,780 B1 10/2004 Touboul
6,917,953 B2 7/2005 Simon et al.
7,058,822 B2 6/2006 Edery et al.
7,143,444 B2 11/2006 Porras et al.
7,210,041 Bl 4/2007 Gryaznov et al.
7,308,648 Bl 12/2007 Buchthal et al.
7,343,604 B2 3/2008 Grabarnik et al.
7,418,731 B2 8/2008 Touboul
7,613,926 B2 112009 Edery et al.
7,647,633 B2 1/2010 Edery et al.
8,079,086 B1* 12/2011 Ederyetal. 726/24
2003/0014662 Al 1/2003 Gupta et al.
2003/0074190 Al 4/2003 Allison
2003/0101358 Al 5/2003 Porras et al.
2004/0073811 Al 4/2004 Sanin
709/218 2004/0088425 Al 5/2004 Rubinstein et al.
2005/0050338 Al 3/2005 Liang et al.
2005/0172338 Al 8/2005 Sandu et al.
2006/0031207 Al 2/2006 Bjarnestam et al.
2006/0048224 Al 3/2006 Duncan et al.
2008/0066160 Al 3/2008 Becker et al.
2010/0195909 Al 8/2010 Wasson et al.
FOREIGN PATENT DOCUMENTS
EP 1091276 4/2001 o GOG6F 1/00
EP 1132796 9/2001
Jp 08-263447 10/1996
WO 95/27249 10/1995
WO 95/33237 12/1995
WO 98/21683 5/1998
WO 2004/063948 7/2004
WO WO 2004/063948 7/2004 . GOGF 17/30
OTHER PUBLICATIONS

Rubin, et al., “Mobile Code Security,” IEEE Internet, pp. 30-34, Dec.

1998.

Schmid, et al. “Protecting Data From Malicious Software,” Proceed-
ing of the 18™ Annual Computer Security Applications Conference,

pp. 1-10, 2002.

Corradi, et al., “A Flexible Access Control Service for Java Mobile

Code,” IEEE, pp. 356-365, 2000.

International Search Report for Application No. PCT/IB97/01626, 3

pp., May 14, 1998 (mailing date).

International Search Report for Application No. PCT/IL05/00915, 4
pp., dated Mar. 3, 2006.
Written Opinion for Application No. PCT/IL05/00915, 5 pp., dated
Mar. 3, 2006 (mailing date).
International Search Report for Application No. PCT/IB01/01138, 4

pp., Sep. 20, 2002 (mailing date).

SOPHOS

EXHIBIT 1001 - PAGE 0002

US 8,677,494 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

International Preliminary Examination Report for Application No.
PCT/IB01/01138, 2 pp., dated Dec. 19, 2002.

Sitaker, Kragen, “Rapid Genetic Evolution of Regular Expressions”
[online], The Mial Archive, Apr. 24, 2004 (retrieved on Dec. 7, 2004),
5 pp., Retrieved from the Internet: http://www.mail-archive.com/
kragen-tol@canonical.org/msg00097 html.

“Lexical Analysis: DFA Minimization & Wrap Up” [online], Fall,
2004 [retrieved on Mar. 2, 2005], 8 pp., Retrieved from the Internet:
http://www.owlnet.rice.edu/~comp4 12/Lectures/LO6LexWrapup4.
pdf.

“Minimization of DFA” [online], [retrieved on Dec. 7, 2004], 7 pp.,
Retrieved from the Internet: http://www.cs.odu.eduw/~toida/nerzic/
390teched/regular/fa/min-fa html.

“Algorithm: NFS -> DFA” [online], Copyright 1999-2001 [retrieved
on Dec. 7, 2004], 4 pp., Retrieved from the Internet: http://rw4.cs.
uni-sb.de/~ganimal/GANIFA/page16_ e htm.

“CS 3813: Introduction to Formal Languages and Automata—State
Minimization and Other Algorithms for Finite Automata,” 3 pp., May
11, 2003, Retrieved from the Internet: http://www.cs.msstate.
edu/~hansen/classes/3813fall0 1/slides/06Minimize.pdf.

Watson, Bruce W., “Constructing Minimal Acyclic Deterministic
Finite Automata,” [retrieved on Mar. 20, 2005], 38 pp., Retrieved
from the Internet: http://www.win.tue.nl/~watson/2R870/down-
loads/madfa_ algs.pdf.

Chang, Chia-Hsiang, “From Regular Expressions to DFA’s Using
Compressed NFA’s,” Oct. 1992, 112 pp., http://www.cs.nyu.edu/
web/Research/Theses/chang_ chia-hsiang.pdf.

“Products,” Articles published on the Internet, “Revolutionary Secu-
rity for a New Computing Paradigm” regarding SurfinGate™, 7 pp.
“Release Notes for the Microsoft ActiveX Development Kit,” Aug.
13, 1996, activex.adsp.or.jp/inetsdk/readme.txt, pp. 1-10.

Doyle, et al., “Microsoft Press Computer Dictionary,” Microsoft
Press, 2d Edition, pp. 137-138, 1993.

Finjan Software Ltd., “Powerful PC Security for the New World of
Java™ and Downloadables, Surfin Shield™,” Article published on
the Internet by Finjan Software Ltd., 2 pp. 1996.

Finjan Sofrtware Ltd., “Finjan Announces a Personal Java™ Firewall
for Web Browsers—the SurfinShield™ 1.6 (formerly known as
SurfinBoard),” Press Release of Finjan Releases SurfinShield 1.6, 2
pp., Oct. 21, 1996.

Finjan Software Ltd., “Finjan Announces Major Power Boost and
New Features for SurfinShield™ 2.0,” Las Vegas Convention Center/
Pavillion 5 P5551, 3 pp., Nov. 18, 1996.

Finjan Software Ltd., “Finjan Software Releases SurfinBoard, Indus-
try’s First JAVA Security Product for the World Wide Web,” Article
published on the Internet by Finjan Software Ltd., 1 p., Jul. 29, 1996.
Finjan Software Ltd., “Java Security: Issues & Solutions,” Article
published on the Internet by Finjan Software Ltd., 8 pp. 1996.
Finjan Software Ltd., Company Profile, “Finjan—Safe Surfing, The
Java Security Solutions Provider,” Article published on the Internet
by Finjan Software Ltd., 3 pp., Oct. 31, 1996.

“IBM AntiVirus User’s Guide, Version 2.4,”, International Business
Machines Corporation, pp. 6-7, Nov. 15, 1995.

Khare, R., “Microsoft Authenticode Analyzed” [online], Jul. 22,
1996 [retrieved on Jun. 25, 2003], 2 pp., Retrieved from the Internet:
http://www.xent.com/FoRK-archive/smmer96/0338 html.

LaDue, M., Online Business Consultant: Java Security: Whose Busi-
ness is [t?, Article published on the Internet, Home Page Press, Inc.,
4 pp., 1996.

Microsoft, “Microsoft ActiveX Software Development Kit” [online],
Aug. 12, 1996 [retrieved on Jun. 25, 2003], pp. 1-6, Retrieved from
the Internet: activex.adsp.orjp/inetsdk/help/overview.htm.
Microsoft® Authenticode Technology, “Ensuring Accountability
and Authenticity for Software Components on the Internet,”
Microsoft Corporation, Oct. 1996, including Abstract, Contents,
Introduction, and pp. 1-10.

Microsoft Corporation, Web Page Atticle “Frequently Asked Ques-
tions About Authenticode,” last updated Feb. 17, 1997, printed Dec.
23, 1998, URL: http://www.microsoft.com/workshop/security/
authcode/signfaq.asp#9, pp. 1-13.

Okamoto, E., et al., “ID-Based Authentication System for Computer
Virus Detection,” IEEE/IEE Electronic Library online, Electronics
Letters, vol. 26, Issue 15, ISSN 0013-5194, Jul. 19, 1990, Abstract
and pp. 1169-1170, URL: http://iel.ihs.com:80/cgi-bin/iel_cgi?se...
2¢hts%26ViewTemplate%3ddocview%5fb%2ehts.

Omura, J. K., “Novel Applications of Cryptography in Digital Com-
munications,” IEEE Communications Magazine, pp. 21-29, May
1990.

Zhang, X. N., “Secure Code Distribution,” IEEE/IEE Electronic
Library online, Computer, vol. 30, Issue 6, pp. 76-79, Jun. 1997.

D. Grune, et al., “Parsing Techniques: A Practical Guide,” John Wiley
& Sons, Inc., New York, New York, USA, pp. 1-326, 2000.

Scott, etal., “Abstracting Application-Level Web Security,” ACM, pp.
396-407, 2002.

ThunderByte Antivirus for Windows.

InterScan VirusWall from Trend Micro.

ViruSafe from Eliashim.

Intel LANProtect from Intel.

The Java Security Manager from Sun Microsystems.

McAfee Web Shield.

McAfee WebScan.

McAfee VirusScan.

McAfee N etShield.

Dr. Solomon’s Antivirus Toolkit for Windows 95.

Dr. Solomon’s Antivirus Toolkit for Windows NT.

Dr. Solomon’s WinGuard.

Dr. Solomon’s Virus Guard.

Dr. Solomon’s Virus Shield.

Dr. Solomon’s Virex.

Dr. Solomon’s “Merlin” Anti-Virus Engine.

Dr. Solomon’sIMcAfee “Olympus™ Anti-Virus Engine.

ActiveX Web Tutorial.

Java FAQ (1995-1998).

Norton AntiVirus TUfor Windows@95 User’s Guide. Published by
Symantec in 1995. (179 pages).

Jaeger, at al., “Building Systems that Flexibly Control Downloadable
Executable Content,” ProceedinQs of the Sixth USENIX UNIX
Security Symposium, Jul. 1996. (19 paQes).

Rasmusson, Andreas and Jansson, Sverker, “Personal Security Assis-
tance for Secure Internet Commerce,” Sep. 16, 1996. (12 pages).
Bharat et al. Migratory Applications® Nov. 15, 1995. (10 oaoes).
Dean, Drew, et al., “Java Security: From HotJava to Netscape and
Beyond,” 1996 IEEE Symposium on Security and Privacy, May 6,
1996. (11 pages).

Sterbenz, Andreas, An Evaluation of the Java Security Model,* IEEE,
Dec. 1996. f13pages).

Fritzinger, J. Steven, et al., Java Security,® Sun Microsystems, Dec.
1996 (7 paQes).

Bank Joseoh A. “Java Security,” Dec. 8, 1995. (14 paoes).

Claunch, “Java Blocking,” http://groups.google.com/group/muc.
lists.firewalls/msg/2a5ec02e00a37071. Sep. 25, 1996. Accessed
date: May 10, 2011. (2 paces).

Chappell, *Understanding ActiveX and OLE: A Guide for Develop-
ers and Managers (Strategic Technology), Sep. 1, 1996, Microsoft
Press. (91 pages).

Crosbie, etal., “Active Defense of a Computer System Using Autono-
mous Agents”. Feb. 15, 1995. (14 pages).

“Trend Micro’s Virus Protection Added to Sun Microsystems Netra
Internet Servers,”Business Wire, Oct. 1, 1996, available at http://
www.cs.indiana. edu/ ~kinzler/pubs/viruswall.html.

“Symantec Announces Norton Antivirus 2.0 for Windows NT,”
Symantec Corporation press release, Sep. 16, 1996, available at http:/
Iwww.symantec.comlabout/news/release/article. jsp?prid=
19960916_01.

“Dark Avenger Mutation Engine No Threat to Protected PCs,”
McAfee, Inc. press elease, May 11, 1992, available at http://
securitydigest.org/virus/mirror/www.phreak.orgvirus1/1992/
vinl05.191.

SOPHOS

EXHIBIT 1001 - PAGE 0003

US 8,677,494 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

“Dark Avenger Mutation Engine No Threat to Protected PCs,”
McAfee, Inc. press elease, May 11, 1992, available at http://
securitydigest.org/virus/mirror/www.phreak.orgvirus1/1992/
vinl05.191.

Gryaznov, D.O., “Scanners ofthe Year 2000: Heuristics,” Proceed-
ings ofthe Fifth International Virus Bulletin Conference, pp. 225-234
(1995), available at http://vxheavens.com|lib/adgOO html.
“Symantec Announces Norton Internet Email Gateway at Internet
World—Booth # 369 on Dec. 11, 12, and 13,” Symantec Corporation
press release, Dec. 11, 1996, available at http:/ Iwww.symantec
.comlabout/news/release/article jsp?prid= 19961211_03.
“Presenting Java,” by John Dec. (1995).

“The Java Language Specification” by Gosling, et al. (1996).

“The Java Programming Language,” by Ken Arnold and James Gos-
ling (1996).

“The Java Virtual Machine Specification,” by Tim Lindholm and
Frank Yellin (1997).

“Computer Viruses and Artificial Intelligence,” by David Stang (Sep.
1995).

“Java Security and a Firewall Extension for Authenticity Control of
Java Applets,” by Magnus Johansson (Jan. 29, 1997).

“Static Analysis of Programs With Application to Malicious Code
Detection,” by Raymond Lo (1992).

File History for U.S. Patent No. 6,804,780.

“Virus Detection Alternatives,” by Patrick Min (Jul. 1992).
“Dynamic Detection and Classification of Computer Viruses Using
General Behaviour Patterns,” by LeCharlier, et al. (Sep. 1995).

The Giant Black Book of Computer Viruses by Mark Ludwig (1995).
HotJava: The Security Story.

The Java Filter.

“A Java Filter,” by Balfanz, et al.

“Improved JavaScript and Java Screening Function,” by Claunch
(May 4, 1996).

“New Version of Java, JavaScript, ActiveX Screening,” by Claunch
(Jul. 3, 1996).

“A Toolkit and Methods for Internet Firewalls,” by Ranum, et al.
“Identifying and Controlling Undesirable Program Behaviors,” by
Maria King.

“PACLI’s: An Access Control List Approach to Anti-Viral Security,”
by Wichers, et al.

Endrijonas, Janet, Rx PC The Anti-Virus Handbook. Published in the
U.S. in 1993 by TAB Books, a division of McGraw-Hili, Inc. (201
paQes).

“Secure Code Distribution,” by X. Nick Zhang (Jun. 1997).

IBM AntiVirus User’s Guide (Nov. 15, 1995).

“Breadth of Runtime Environments and Security Make Java a Good
Choice for the Internet” (1996).

Omura, Jim K., “Novel Applications of Cryptography in Digital
Communications,” IEEE Communications Magazine, pp. 21-29,
May 1990.

Okamoto, E., et al., “ID-Based Authentication System for Computer
Virus Detection,” IEEE/IEE Electronic Library online, Electronics
Letters, vol. 26, Issue 15, ISSN 0013-5194, Jul. 19, 1990, Abstract
and pp. 1169-1170, URL: http://iel.ihs.com:80/cgibinliel cgi?se ...
2¢ehts%26View Template%3ddocview%5fb%2ehts.

IBM AntiVirus User’s Guide Version 2.4, International Business
Machines Corporation, pp. 6-7, Nov. 15, 1995.

Leach, Norvin, et al., “IE 3.0 Applets Will Earn Certification,” PC
Week, vol. 13, No. 29,2 pp., Jul. 22, 1996.

“Finjan Software Releases SurfinBoard, Industry’s First JAVA Secu-
rity product for the World Wide Web,” Article published on the
Internet by Finjan Software Ltd., 1 p., Jul. 29, 1996.

“Powerful PC Security for the New World of JAVATM and
Downloadables, Surfin Shield™.,” Article published on the Internet
by Finjan Software Ltd., 2 pp. 1996.

Microsoft® Authenticode Technology, “Ensuring Accountability
and Authenticity for Software Components on the Internet,”
Microsoft Corporation, including Abstract, Contents, Introduction,
and pp. 1-10, Oct. 1996.

Finjan Announces a Personal Java™ Firewall for Web Browsers—
the SurfinShield™ 1.6 (formerly known as SurfinBoard), Press
Release of Finjan Releases SurfinShield 1.6, 2 pp., Oct. 21, 1996.
Company Profile, “Finjan-Safe Surfing. The Java Security Solutions
Provider,” Article published on the Internet by Finjan Software Ltd.,
3 pp., Oct. 31, 1996.

“Finjan Announces Major Power Boost and New Features for
SurfinShield™ 2.0,” Las Vegas Convention Center/Pavilion 5 P5551,
3 pp., Nov. 18, 1996.

“Java Security: Issues & Solutions,” Article published on the Internet
by Finjan Software Ltd., 8 pp., 1996.

“Products,” Article published on the Internet, 7 pp.

Mark LaDue, “Online Business Consultant: Java Security: Whose
Business Is It?,” Article published on the Internet, Home Page Press,
Inc., 4 pp., 1996.

Web Page Article, “Frequently Asked Questions About
Authenticode,” Microsoft Corporation, last updated Feb. 17, 1997,
printed Dec. 23, 2998, URL: http://www.microsoft.com/workshop/
security/authcodee/signfaq.asp#9, pp. 1-13.

Zhang, X.N., “Secure Code Distribution,” IEEE/IEE Electronic
Library online, Computer vol. 30, Issue 6, pp. 76-79, Jun. 1997.
Binstock, Andrew, “Multithreading, Hyper-Threading, Multipro-
cessing: Now, What’s the Difference?,” httn:thlv’\v\v-inteL.com!cd/
ids!devdoQcr!asmo-na/enfl/20456.htm, Pacific Data Works, LLC,
downloaded Jul. 7, 2008, 7 pp.

VirexPC Version 2.0 or later from Microcom.

AntiVirus Kit From 1 stAide Software.

FluShot+ Series of Products by Ross Greenberg.

Symantec Antivirus ofthe Mac version 3.0 or later.

“Synthesizing Fast Intrusion Prevention/Detection Systems From
High-Level Specifications,” by Sekar, et al. (1999).

Art of Computer Virus Research and Defense b Peter Szor (Feb.
2005).

“Process Execution Controls as a Mechanism to Ensure Consis-
tency,” by Eugen Bacic (1990).

“Process Execution Controls: Revisited,” by Bacic (1990).

“A Flexible Access Control Service for Java Mobile Code,” by Cor-
radi, et al. (2000).

“Java Security: Issues & Solutions™ (1996).

“Microsoft Authenticode analyzed,” by Rohit Khare (Jul. 22, 1996).
“Java Security: Whose Business Is It?” by Mark LaDue (1996).
Microsoft Authenticode Technology (Oct. 1996).

“Mobile Code Security,” by Rubin, et al.

“Protecting Data From Malicious Software,” by Schmid, et al.
“Security in the Large: Is Java’s Sandbox Scalable?” by Zhong, et al.
(Apr. 1998).

“A Domain and type Enforcement UNIX Prototype,” by Badger, et al.
(Jun. 1995).

“Heuristic Anti-Virus Technology,” by Frans Veldman.

“Standards for Security in Open Systems,” by Warwick Ford (1989).
“Secure File Transfer Over TCP/IP,” by Brown, et al. (Nov. 1992).
“Standards in Commercial Security,” by Nick Pope.

“X.400 Security Features,” by Tony Whyman.

“Using CASE Tools to Improve the Security of Applications Sys-
tems,” by Hosmer, et al. (1988).

“Miro: Visual Specification of Security,” by Heydon, et al. (Oct.
1990).

“An Evaluation of Object-Based Programming with Visual Basic,” by
Dukovic, et al. (1995).

“Visual Basic 5.0 Significantly Improved,” by W. Dennis Swift (Jun.
1997).

“Development of an Object Oriented Framework for Design and
Implementation of Database Powered Distributed Web Applications
With the DEMETER Project as a Real-Life Example,” by Goschka,
et al. (1997).

Detecting Unusual Program Behavior Using the Statistical Compo-
nent ofthe Nextgeneration Intrusion Detection Expert System
(NIDES), by Anderson, et al. (May 1995).

“A Generic Virus Scanner in C++,” by Kumar, et al. (Sep. 17, 1992).
“A Model for Detecting the Existence of Software Corruption in Real
Time,” by Voas, et al. (1993).

“Protection Against Trojan Horses by Source Code Analysis,” by
Saito, et al. (Mar. 1993).

SOPHOS

EXHIBIT 1001 - PAGE 0004

US 8,677,494 B2

Page 5
(56) References Cited and pp. 1169-1170, URL: http://iel.ihs.com:80/cgibin/iel
cgi?se .. .2ehts%26 ViewTemplate%3ddocview% 5fb%ehts.
OTHER PUBLICATIONS IBM AntiVirus User’s Ouide Version 2.4, International Business

“Information Agents for Automated Browsing,” by Dharap, et al.
(1996).

“Static Analysis Virus Detection Tools for Unix Systems,” by
Kerchen, et al. (1990).

“Managing Trust in an Information-Labeling System,” by Blaze, et
al. (Nov. 4, 1996).

List of Secure Internet Programming Publications from www.cs.
printceton.edu.

“A Guide to the Selection of Anti-Virus Tools and Techniques,” by
Polk, et al. (Dec. 2, 1992).

“An Integrated Toolkit for Operating System Security,” by Rabin, et
al. (Aug. 1988).

“A Web Navigator With Applets in Caml,” by Francois Ronaix (May
1996).

“Intel Launches Virus Counterattack,” by Charles Bruno (Aug.
1992).

Intel LANProtect Software User’s Guide (1992).

“Parents Can Get PC Cruise Control,” by George Mannes (Jul. 1996).
“A New Techniques for Detecting Polymorphic Computer Viruses,”
by Carey Nachenberg (1995).
“Heuristic ~ Scanners: Artificial
Zwienenberg (Sep. 1995).

Intel LANProtect, 30-Day Test Drive Version User’s Manual.
Slade, Robert, “Guide to Computer Viruses: How to a void Them,
How to Get Rid of Them, and How to Get Help” (Apr. 1996).

A Pathology of Computer Viruses by David Ferbranche (Nov. 1994).
Earl Boebert’s post to the greatcircle firewalls mailing list. Taken
from http://www.greatcircle.com/lists/firewalls/archive/firewalls.
199410 (Oct. 16, 1994).

CSL Bulletin: Connecting to the Internet: Security Considerations.
Taken from http://csrc.nist.gov/publications/nistbul/cs193-07 txt
(Jul. 1993).

FAQ: Interscan Viruswall. Taken from http://\veb,archive.org/web/
1997060505033 1/www..antivirus.com/faq/finterscanfaq html (last
updated Aug. 8, 1996).

Network Security and SunScreen SPF-100: Technical White Paper,
Sun Microsystems, 1995.

“Why Do We Need Heuristics?” by Frans Veldman (Sep. 1995).
“Leading Content Security Vendors Announce Support for Check
Point Firewall—1.3.0; New Partners for Anti-Virus Protection, URL
Screening and Java Security,” Business Wire, Oct. 7, 1996, available
at http://www.allbusiness.comltechnolo gyl computernetworks-
computer -networksecurity 172743 15-1 html#ixzz1gkbKf4g1.
“McAfee Introduces Web shield; Industry’s First Secure Anti-Virus
Solution for Network Firewalls: Border Network Technologies and
Secure Computing to Enter into Web Shield OEM Agreements,”
Business Wire, May 14, 1996, available at http://findarticles.comlp/
articles/mi_ mOEINIis_ 1996_ May_ 14/ai_ 182834561.

“Trend Micro Announces Virus and Security Protection for Microsoft
Proxy Server; Also Blocks Java Applets, ActiveX,” Business Wire,
Oct. 29, 1996, available at http://www.thefreelibrary.
comlTrend+Micro+announces+virus+and+security+protection+
for+MicrosofL.-a0I8810512.

Finjan’s Opposition to Websense’s Renewed Motion for Judgment as
aMatter of Law, dated Dec. 21,2012, filed in Finjan, Inc. v. Symantec
Corp., Sophos, Inc., and Websense, Inc., CA. No. 10-cv-593 (OMS).
Declaration of Paul Batcher Re Websense, Inc.s. Proffer of Evidence
Re Laches, dated.Dec. 19, 2012, filed in Finjan, Inc. v. Symantec
Corp., Sophos, Inc., and Websense, Inc., CA. No. 10-cv-593 (OMS)
(Redacted Dec. 26, 2012).

Opposition to Symantec’s Motion for IMOL, dated Dec. 17, 2012,
filed in Finjan, Inc. v. Symantec Corp., Sophos, Inc., and Websense,
Inc., CA. No. 10-cv-593 (OMS) (Redacted Dec. 27, 2012).

Omura, Jim K., “Novel Applications of Crypotgraphy in Digital
Communications,” IEEE Communications Magazine, pp. 21-29,
May 1990.

Okamoto, E., et al., “ID-Based Authentication System for Computer
Virus Detection,” IEEEI IEE Electronic Library online, Electronics
Letters, vol. 26, Issue 15, ISSN 0013-5194, Jul. 19, 1990, Abstract

Intelligence,” by Righard

Machines Corporation, pp. 6-7, Nov. 15, 1995.

Leach, Norvin, et al., “IE 3.0 Applets Will Earn Certification,” PC
Week, vol. 13, No. 29, 2 pp., Jul. 22, 1996.

Finjan Announces a Personal Javal98 Firewall for Web Browsers—
the SurfinShield™ 1.6 (fonnerly known as SurfinBoard), Press
Release of Finjan Releases SurfinShield 1.6,2 pp., Oct. 21, 1996.
Web Page Article, “Frequently Asked Questions About
Authenticode,” Microsoft Corporation, last updated Feb. 17, 1997,
printed Dec. 23, 1998, URL: http://www.microsoft.com/workshop/
security/authcodee/signfaq.asp#9, pp. 1-13.

Binstock, Andrew, “Multithreading, Hyper-Threading, Multipro-
cessing: Now, What’s the Difference?,” http://www.intel.com/cd/ids/
developer/asmo-na/eng/20456.htm, Pacific Data Works, LLC, down-
loaded Jul. 7, 2008,7 pp.

“Frequently Asked Questions About Authenticode,” Microsoft Cor-
poration, updated Feb. 17, 1997.

“WWWProxyto Cut Off Java,” by Carl Claunch (Apr. 12, 1996).
“Combating Viruses Heuristically,” by Frans Veldman (Sep. 1993).
“MCF: A Malicious Code Filter,” by Lo, et al. (May 4, 1994).
Anti-Virus Tools and Techniques for Computer Systems by Polk, et
al. (1995).

“Dynamic Detection and Classification of Computer Viruses Using
General Behaviour Patterns,” by LeCharlier, et al. (Jul. 2, 1995).
“Towards a Testbed for Malicious Code Detection,” by Lo, et al.
(1991).

“Blocking Java Applets at the Firewall,” by Martin, et al.

Virus Detection and Elimination by Rune Skardhamar (1996).
Computer Viruses and Anti-Virus Warfare by Jan Hruska (1992).
“Active Content Security,” by Brady, et al. (Dec. 13, 1999).

“Low Level Security in Java,” by Frank Yellin.

“Email With a Mind oflts Own: The Safe-Tcl Language for Enabled
Mail,” by Nathaniel Borenstein.

“Mobile Agents: Are They a Good Idea?” by Chess, et al. (Dec. 21,
1994).

“Remote Evaluation,” by Stamos, et al. (Oct. 1990).

“Active Message Processing: Messages as Messengers,” by John
Vittal (1981).

“Programming Languages for Distributed Computing Systems,” by
Bal, et al. (Sep. 1989).

“Scripts and Agents: The New Software High Ground,” by John
Ousterhout (Oct. 20, 1995).

“The HotJava Browser: A White Paper”.

The Java Virtual Machine Specification, Sun Microsystems (Aug. 21,
1995).

“Security of Web Browser Scripting Languages: Vulnerabilities,
Attacks and Remedies,” by Anupam, et al. (Jan. 1998).

“ActiveX and Java: The Next Virus Carriers?”.

“Gateway Level Corporate Security for the New World of Java and
Downloadables” (1996).

“Practical Domain and Type Enforcement for UNIX,” by Badger, et
al. (1995).

“A Sense of Self for Unix Processes,” by Forrest, et al. (1996).
“Antivirus Scanner Analysis 1995,” by Marko Helenius (1995).
“State Transition Analysis: A Rule-Based Intrusion Detection
Approach,” by Ilgun, et al. (Mar. 1995).

“Automated Detection of Vulnerabilities in Privileged Programs by
Execution Monitoring,” by Ko, et al. (1994).

“Execution Monitoring of Security-Critical Programs in Distributed
Systems: A Specification-Based Approach,” by Ko, et al. (1997).
“Classification and Detection of Computer Intrusions,” by Sandeep
Kumar (Aug. 1995).

ThunderBYTE Anti-Virus Utilities User Manual (1995).

Doyle, et al., “Microsoft Press Computer Dictionary,” Microsoft
Press, 2nd Edition, pp. 137-138,1993.

Schmitt, D.A., “.EXE files, OS-2 style,” PC Tech Journal, vol. 6, No.
11, p. 76(13), Nov. 1988.

International Search Report for Application No. PCT/IB97/01626,
dated May 14, 1999,2 pp.

Supplementary European Search Report for Application No. EP 97
950351, dated Nov. 17, 2004,2 pp.

SOPHOS

EXHIBIT 1001 - PAGE 0005

US 8,677,494 B2
Page 6

(56) References Cited
OTHER PUBLICATIONS

File History for Canadian Application No. 2,275,771, 84 pp.

File History for European Application No. 97950351.3, 58 pp.

File History for Japanese Application No. 10-522345,48 pp.
Lemay, Laura, et al., “Approach of Java Language, Applet, AWT and
Advanced Apparatus,” First Edition, 25 pp. (translated), Aug. 20,
1996 (CS-NB-1999-00238-001).

Order Construing the Terms of U.S. Patent Nos. 6,092,194,
6,804,780, 7,058,822; 6,357,010; and 7,185,361,4 pp., Dec. 11,
2007.

PlaintiffFinjan Software, Ltd. ’s Opening Claim Construction Brief,
38 pp., Sep. 7, 2007.

Defendant Secure Computing Corporation’s Opening Claim Con-
struction Brief, 46 pp., Sep. 7, 2007.

PlaintiffFinjan Software, Ltd. ’s Answering Claim Construction
Brief (Public Version), 45 pp., Sep. 28, 2007.

Defendant Secure Computing Corporation’s Responsive Claim Con-
struction Brief (Public Version), 37 pp., Sep. 28, 2007.

Secure Computing Corporation’s Disclosure of Prior Art Pursuant to
35U.S.c. § 282, 6 pp., Feb. 1, 2008.

Stang, David J., “Computer Viruses and Artificial Intelligence,” Virus
Bulletin Conference, pp. 235-257, Sep. 1995.

Johannsen, Magnus, “Java Security and a Firewall Extension for
Authenticity Control of Java Applets,” Thesis Proposal, Computer
Science Department, University of Colorado at Colorado Springs, S
pp., Jan. 29, 1997.

Joint Appendix ofIntrinsic and Extrinsic Evidence Regarding Claim
Construction Briefing, vol. 1, Oct. 4, 2007.

Joint Appendix ofIntrinsic and Extrinsic Evidence Regarding Claim
Construction Briefing, vol. 2, Oct. 4, 2007.

Final Joint Claim Construction Chart, Aug. 24, 2007.

Joint Post-Hearing Claim Construction Chart, Oct. 30, 2007.
Plaintiffs Trial Brief (Public Version), Jan. 14, 2008.

Marcionek, David, “A Complete ActiveX Web Control Tutorial,”
Available at http://www.codeproject.com/KB/COM/
CompleteActiveX.aspx (2006).

Docket for Finjan Sofiware Ltd. v. Secure Computing Corporation, et
at., U.S. District Court, District of Delaware (Wilmington), Civil
Docket No. 1 :06-¢v-00369-GMS, 52 pp., retrieved on Oct. 24, 2008
from https:llecf.ded.uscourts.gov/cgibinIDktRpt.pl?6532182820
13655-L 567 0-1.

Docket for Finjan Software Ltd. v. Aladdin Knowledge Systems, Inc.,
et al., U.S. District Court, District of Delaware (Wilmington), Civil
Docket No. 1 :08-cv-00300-GMS, 5 pp., retrieved on Oct. 24, 2008
from https:llecf.ded.uscourts.gov/cgi-bin-DktRpt.
pl?994267838982431-L 567 0-1.

Firewall Toolkit (FWTK) 2.0 Beta Release, 1996.

International Search Report for Application No. PCT/ILOSI0091S, 2
pp., dated Mar. 3, 2006.

Written Opinion for Application No. PCT/ILOSI00915, S pp., dated
Mar. 3, 2006 (mailing date).

International Search Report for Application No. PCT/IBOI/01138, 3
pp., Sep. 20, 2002 (mailing date).

International Preliminary Examination Report for Application No.
PCT/IBOI/01138, 2 pp., dated Dec. 19, 2002.

Gerzic, Amer, “Write Your Own Regular Expression Parser,” Nov.
17, 2003, 18 pp., Retrieved from the Internet: http://www.codeguru.
com/Cpp/Cpp/cpp__mfc/parsing/article. php/c4093/.

Power, James, “Lexical Analysis,” 4 pp., May 14, 2006, Retrieved
from the Internet: http://www.cs.may.ie/~jpower/Courses/compil-
ers/notes/lexical.pdf.

Sitaker, Kragen, “Rapid Genetic Evolution of Regular Expressions”
[online], The Mial Archive, Apr. 24, 2004 (retrieved on Dec. 7,2004),
S pp., Retrieved from the Internet: http://www.mail-archive.com/
kragen-tol@canonical.org/msg00097 html.

“Lexical Analysis: DF A Minimization & Wrap Up” [online], Fall,
2004 [retrieved on Mar. 2, 2005], 8 pp., Retrieved from the Internet:
http://'www.owlnet.rice.edu/~comp4 12/Lectures/LO6Lex Wrapup4.
pdf.

“Minimization ofDFA” [online], [retrieved on Dec. 7, 2004], 7 pp.,
Retrieved from the Internet: http://www.cs.odu.edw/~toida/nerzic/
390teched/regular/fa/min-fa html.

“Algorithm: NFS ->DFA” [online], Copyright 1999-2001 [retrieved
on Dec. 7, 2004],4 pp., Retrieved from the Internet: http://rw4.cs.uni-
sb.de/~ganimal/ GANIFA/page16__e htm.

“CS 3813: Introduction to Formal Languages and Automata—State
Minimization and Other Algorithms for Finite Automata,” 3 pp., May
11, 2003, Retrieved from the Internet: http://www.cs.msstate.
edu/~hansenclasses/3813fall0 1/slides/06 Minimize.pdf.

Watson, Bruce W., “Constructing Minimal Acyclic Deterministic
Finite Automata,” [retrieved on Mar. 20, 2005],38 pp., Retrieved
from the Internet: http://www.win.tue.nl/~watson/2R870/down-
loads/madfa_ algs. pdf.

Chang, Chia-Hsiang, “From Regular Expressions to DFA’s Using
Compressed NF A’s,” Oct. 1992, 112 pp., http://www.cs.nyu.edu/
web/Research/Theses/chang chi-hsiang.pdf.

Khare, R., “Microsoft Authenticode Analyzed” [online], Jul. 22,
1996 [retrieved on Jun. 25, 2003],2 pp., Retrieved from the Internet:
http://www.xent.comlFoRKarchive/smmer96/0338.html.

Moritz, R., “Why We Shouldn’t Fear Java,” Java Report, pp. 51-56,
Feb. 1997.

Microsoft, “Microsoft ActiveX Software Development Kit” [online],
Aug. 12, 1996 [retrieved on Jun. 25, 2003], pp. 1-6, Retrieved from
the Internet: activex.adsp.or.jp/inetsdklhelp/overview.htm.

D. Grune, et al., “Parsing Techniques: A Practical Guide,” John Wiley
& Sons, Inc., New York, New York, USA, pp. 1-326,2000.

Power, James, “Notes on Formal Language Theory and Parsing,”
National University of Ireland, pp. 1-40, 1999.

Scott, et al., “Abstracting Application-Level Web Security,” ACM,
pp. 396-407,2002.

Non-Final Office Action, dated Jul. 23, 2012, for U.S. Appl. No.
13/290,708, 10 pp.

Amendment and Response to Office Action (Dated Jul. 23, 2012)
Under 37 CFR. 1.111 filed Oct. 23, 2012 for U.S. Appl. No.
13/290,708,9 pp.

Final Office Action, dated Jan. 7, 2013, for U.S. Appl. No.
13/290,708, 7 pp.

Judgment, dated Dec. 21, 2012, filed in Finjan, Inc. v. Symantec
Corp., Sophos, Inc., and Websense, Inc., C.A. No. 10-cv-593 (GMS).
Finjan’s Opposition to Sophos’ Renewed Motion for Judgment as a
Matter of Law, dated Dec. 21, 2012, filed in Finjan, Inc. v. Symantec
Corp., Sophos, Inc., and Websense, Inc., C.A. No. 10-cv-593 (GMS).
Finjan’s Opposition to Symantec’s Motion for Judgment as a Matter
of Law at the Close of Evidence, dated Dec. 21, 2012, filed in Finjan,
Inc. v. Symantec Corp., Sophos, Inc., and Websense, Inc., CA. No.
10-cv-593 (OMS).

“Internet Secutiry Gets Less Costly and Easier to Manage: Integralis
Announces MIMEsweeper Compatible with Check Point FireWall-1
on Single NT Server; E-mail virus detection and content management
can reside on Firewall server, saving money and supports costs”
[online], The Free Library, Sep. 16, 1996 [retrieved on Mar. 20,
2012], 4 pp., Retrieved From the Internet: http://www.thefreelibrary.
com/Internet+Security+gets+Less+Costly+and+and+Easier+
to+Manage%3a+Integralis...-a018675791%22%3EInternet%20
Security%20gets%20Less%20Costly%20and%20Easier%20to%
20Manage: %20Integralis%20 Announces%20MIMEsweeper%20
Compatible%20with%20Check%20Point%20FireWall-
1%200n%20Single%20NT%20Server;%20E-mail%20virus%
20detection%20and%20content%20management%20can%20
reside%200n%20Firewall%?20server,%20saving%20money%o
20and%20support%20costs (Current Link: http://www.
thefreelibrary.com/Internet Security gets Less Costly and Easier to
Manage: Integralis...-a018675791).

* cited by examiner

SOPHOS

EXHIBIT 1001 - PAGE 0006

U.S. Patent Mar. 18,2014 Sheet 1 of 10 US 8,677,494 B2
100
107
Redundancy SupporiJW 104 102
Subsystem1 &7 101 ResourceServer-1 %~
(Sandbox Protected) 121
Resource-1 V2~
105 External
Subsystem-N [Network 103
(Unprotected) (Internet) V4
\ ResourceServer-N 131
YR
Subsystem-M Resource-M 132
(Protected) Resource-N 12~
FIG. 1a
104a 104b
140a 140b
ISP-Server r4 Corporate Server r /4 3
141b 141b Nz
~sb server X server Firewall
. “«
Protection Engine D PE oE D
(PE)
irw 144 T e T
M 142a 142b 1420
lMPC,D
b MPC,D/ ' MPC,D
1458 | i
R | User 145 14& User User WMS
! | Devicen A7 : Device-n Device-n
i | 146 146 146
b l Client |2 = CIientJ |cnent L2
FIG. 1b FIG. 1c

SOPHOS
EXHIBIT 1001 - PAGE 0007

US 8,677,494 B2

Sheet 2 of 10

Mar. 18, 2014

U.S. Patent

¢OM
sureaford Loy1Q
67 L
L wayskg SunperedQ
16z 23810} Q0BT
Krowropy] Junyiom § SUOTJEOTUNIITIO))
60z~ 807~/ 07 -~
/(SN
1apeay] umIpsy 95e101g
aqepesy Jonduior (s)eoras(mnding (s)ao1a0(7 Jnduy (5)10852001g
s07 vor -~ g0t~ w2~
wnipay o8e10)§

3]qepesy Jamdwo) v/

907 \

007

EXHIBIT 1001 - PAGE 0008

SOPHOS

US 8,677,494 B2

Sheet 3 of 10

Mar. 18, 2014

U.S. Patent

€ "OlA
€0€
A
N
ore
e || i,
oum&\ EL) N uonosioig we
. 01¢ O3aX N £PE
(oyuy ajqeIndaxy . OdW
/A1qEIN29XF-UON)] . — IbE
uoneuLIOJUY > >
POAIEOOY m_nmuuhumxm_ N
[femauiy JEINETS)
0¢ ~ 10t \\

j

00¢

EXHIBIT 1001 - PAGE 0009

SOPHOS

US 8,677,494 B2

Sheet 4 of 10

Mar. 18, 2014

U.S. Patent

UOITRULIOJUT JOYI0 JO

Sueyiayu ‘Karpod ‘resn

v "OId

auiBu3 abeyoey pajpajoid

[vE) ¢
lojuopy

O3axXN

Loy

uOoREULIOJU|

]
]
L}
1
)
]
]
1
]
]
(]
[
]
+
1
1
|
LEP
]
1
¥
]
)
()
!
1
1
]
i
1
]
]
]
1
)
L

abeioyg

V4 Sov

i

A_ uss) Ao1j0d T T 0a ™

£y aubuz

90¥

Y w85 2dN_H—» Bupur
[4%4 OdiW
1o}eiausc) Juaby

Mooy +pe1-

T

13214 8y

LA

|

I sepliod
»= uoneonusuiny

" JRunoss

suibug
Joysues|

A]
Lev bax
S
-1opERY
.J uoREORURINY T —| iopsjeqg 8po) I
i

(D3XN)
ejqeINaaxg joN

ooy

EXHIBIT 1001 - PAGE 0010

SOPHOS

US 8,677,494 B2

Sheet 5 of 10

Mar. 18, 2014

U.S. Patent

q9 "HIA
gebs
] E ersay
s06 H ags : —
Dol [E
AR AL B T e -
B LEBEH “aepg
[A20= Tl g
eV o d
PO _|\L payEpizod
Iy ’]
4 1 sulbsg Bumurt
)
50%
7O 53 .. a
9 "DId s "1 s
Bururt oy

fx44] ATRRITLRES P

= T yualw 91 195k L O
PEL T __ m

N.nﬂ.f.w] _Wawﬂ_nﬁ w " [Sa:L
, W L3 _.

g s S sop ' g R | =
TED 5 melwuieied exepe) g | ERA | | lquosy 1
s) IS] [SEU9E} 4 _ - — _ﬁ ‘ !MS ﬁ_/,m/
£T8 o USPISIE WNSAG v 09 M oy mewe moeme R 205
e samAumeg Josn —f bu.uw_w_u -

LEY 3

ot ERREIY LIAE S Z R
ELE o | smiawaieg epop Bimemas L 108 4 A m odiks, Bty
[2EIP § %4 3 LG5 205 *

(B8] -
(nsggacad

1}

FO5

EXHIBIT 1001 - PAGE 0011

SOPHOS

U.S. Patent Mar. 18,2014 Sheet 6 of 10 US 8,677,494 B2

701 702
Memory Space-N Memiory Spaces-P{ and P2

343
‘(i)r(\EPQZ) E {__| Destination

Sandbox Engine

146

rall

MC Initiator RSN
342
FIG. 7a
3

704 703 “\

801
¥ » Packege Extractor 127505
Memory Space-P1 Memory Space-P2 Executable installer vz 803
342 343 Sandbox Engine Installer
[Policies i/ Resource Access Diverter ﬂ/a(,)f
731 Resource Access Divel 505
Resource Access Analyzer 1“2~ gng
Policy Enforcer ”507
MPC De-Instalier

FI1G.7b FIG. 8

SOPHOS
EXHIBIT 1001 - PAGE 0012

US 8,677,494 B2

Sheet 7 of 10

Mar. 18, 2014

U.S. Patent

pu3z
A

6 "OIA
uonBURSDP-UOIIELLION]
i 2y} 0] paiaAliep aq o}
LLB s|qepeojumod-legualod asned

t

uopgeulsag-uonERLIOUI DY) 0}
\z6 pasaAlep aq 0} Juabe uonoajoid ay) asney

saojjod uonoajoad
Aue + (Sjgepeojumo-pajoalop & mau)
a|gepeojumog-iejualed ‘apoo uonosoud
a)iqoLw 0) dseuioo Juabe uopodjold © Wiy

6L6

©ON

& ®pod

4

oo

24 10kERSUILPY ‘(ShusND LRON

LL6 + i

A Aaaiep Jua.uND Juasauy i

606 :
[

sapnjou|
Gi6

\\\L 8pPOD BjqeINIIXS S9pN|oUl S|GEPECIUMOG

cLE -lenusiod sy) Jayjaum auluusia

pajsnij
1086

—2 SSBUIYHOMISNI] 30IN0S BuluLISIag

(.e1gepeojumog-ienuajod, €)
2 uoHRUIISDP UONEBUIIONI
£06 pajosjoud e Buiney uonswaoiu oAlP0DY |

i

uonesado
(14anies -6°9) JojedjUNWIWOD-2) J03UcIN

LOB

EXHIBIT 1001 - PAGE 0013

SOPHOS

US 8,677,494 B2

Sheet 8 of 10

Mar. 18, 2014

U.S. Patent

qo1 914

5104

El0l

101

pu3

(P13 1y pue ‘puooas saidljod ‘1844 Dd
'f°9) Juabe uonoajoid e wioj o} uoieWIOI
-pands) pue saiolod uonoajosd
‘apod uoi93}0.d a)iqow ay} ajdnon)

!

sJojoweled
ay} o) Bujpioooe sajoyod uonosjod
U0} pue sigaweled uoyosioid anaey

!

sigjowe.ed
3y 0y buip1o3oe spoo uoyos)oid sjgoLw
wJoj pue siajaweled uonoajold ansliey

yels

616

Y01 "O1d

pu3

G001

2|(qBPRO|UMOQ-Pa]oa)ap
B 9|qepeojumoq-enusiod ay) Japisuoo
‘9po2 9|ge}nNoaxa sapnjoul
fjay) a10w sjqepeojumoq-jenusiod
3} Jeu) sjeajput £0p1 pue 100} sda)s §)

€004

A

suJaljed apod Jo uonewIojul Areulq apnjaul
SJuajuad ajlj dY) Jayleym aulwisleq

f

1004

adk sy
J|qejnaaxa Ue Sajedipul s|gepeojumog
-|enuajod auy Jayjaym sutuilag

Helg

£16

EXHIBIT 1001 - PAGE 0014

SOPHOS

U.S. Patent Mar. 18,2014 Sheet 9 of 10 US 8,677,494 B2

Install mobile protection code elements /V1101
and policies within a destination device

/

Load the downloadble without actually /V1102
initiating it
l
\J

Form an access interceptor for intercepting 1103
downloadable destination device access
attempts within the destination device

y

Initiate the Downloadable within the 1105
destination device

i
-

1107

Malicious
access

No
- — - 1109
Determine policies in accordance with the |,
access attempt
Execute the policies (including causing an
allowable response expected by the 4/1 111
Donwloadable to be returned to the
Downloadable)

FIG. 11

SOPHOS
EXHIBIT 1001 - PAGE 0015

US 8,677,494 B2

Sheet 10 of 10

Mar. 18, 2014

U.S. Patent

qa<T " OI14d

C e

Jsasnbai ssasoe
ez 2|Igqepeojumo 243 o) Bulpuodsaiioo
cLZL Aojjod 2 sulvuisiap o3 sawijod paioys AaanDd

*

IdVv Pagipow sy} eia
L —.NP. uww_l_ﬂvm.- SS3IDOE DIqEPBO|UMO(] E DIAIDOIDM

S ™~

60TT

ezl "OI1d

2DP OO uonoajoad
2z Slqouw 2] o} sisanbaa ssanoe snoioljew
€0CL Hanp Ol IdV 29epeoc|usmoq] 3Yj ALpoIn

i

sS|qepeocjusmod 24} |123suU]
LoZL
{ ey) Ij

€O0I1X

EXHIBIT 1001 - PAGE 0016

SOPHOS

US 8,677,494 B2

1
MALICIOUS MOBILE CODE RUNTIME
MONITORING SYSTEM AND METHODS

PRIORITY REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of assignee’s U.S. patent
application Ser. No. 12/471,942, filed May 26, 2009 by inven-
tors Yigal Mordechai Edery, et al., now U.S. Pat. No. 8,079,
086, entitled “Malicious Mobile Code Runtime Monitoring
System and Methods,” which is a continuation of assignee’s
U.S. patent application Ser. No. 11/370,114, filed Mar. 7,
2006 by inventors Yigal Mordechai Edery, et al., now U.S.
Pat. No. 7,613,926, entitled “Method and System for Protect-
ing a Computer and a Network from Hostile Downloadables,”
which is a continuation of assignee’s U.S. patent application
Ser.No. 09/861,229, filed on May 17,2001 by inventors Yigal
Mordechai Edery, etal., now U.S. Pat. No. 7,058,822, entitled
“Malicious Mobile Code Runtime Monitoring System And
Methods,” all of which are hereby incorporated by reference.
U.S. patent application Ser. No. 09/861,229, now U.S. Pat.
No. 7,058,822, claims benefit of provisional U.S. patent
application Ser. No. 60/205,591, entitled “Computer Net-
work Malicious Code Run-Time Monitoring,” filed on May
17, 2000 by inventors Nimrod Itzhak Vered, et al., which is
hereby incorporated by reference. U.S. patent application Ser.
No. 09/861,229, now U.S. Pat. No. 7,058,822, is also a Con-
tinuation-In-Part of assignee’s U.S. patent application Ser.
No. 09/539,667, entitled “System and Method for Protecting
a Computer and a Network From Hostile Downloadables,”
filed on Mar. 30, 2000 by inventor Shlomo Touboul, now U.S.
Pat. No. 6,804,780, and hereby incorporated by reference,
which is a continuation of assignee’s U.S. patent application
Ser. No. 08/964,388, filed on Nov. 6, 1997 by inventor
Shlomo Touboul, now U.S. Pat. No. 6,092,194, also entitled
“System and Method for Protecting a Computer and a Net-
work from Hostile Downloadables™ and hereby incorporated
by reference, which application claims the benefit of provi-
sional U.S. application Ser. No. 60/030,639, filed Nov. 8,
1996 by inventors Shlomo Touboul, entitled “System and
Method For Protecting a Computer From Hostile Download-
ables.” U.S. Ser. No. 09/861,229, now U.S. Pat. No. 7,058,
822, is also a Continuation-In-Part of assignee’s U.S. patent
application Ser. No. 09/551,302, entitled “System and
Method for Protecting a Client During Runtime From Hostile
Downloadables,” filed on Apr. 18, 2000 by inventor Shlomo
Touboul, now U.S. Pat. No. 6,480,962, which is hereby incor-
porated by reference, which is a continuation of U.S. appli-
cation Ser. No. 08/790,097, filed Jan. 29, 1997 by inventor
Shlomo Touboul, now U.S. Pat. No. 6,167,520, entitled “Sys-
tem and Method For Protecting a Client From Hostile Down-
loadables” which claims the benefit of U.S. provisional appli-
cation No. 60/030,639, filed on Nov. 8, 1996 by inventor
Shlomo Touboul, entitled “System and Method For Protect-
ing a Computer From Hostile Downloadables.”

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to computer networks, and
more particularly provides a system and methods for protect-
ing network-connectable devices from undesirable down-
loadable operation.

2. Description of the Background Art

Advances in networking technology continue to impact an
increasing number and diversity of users. The Internet, for
example, already provides to expert, intermediate and even

20

25

40

45

55

60

65

2

novice users the informational, product and service resources
of over 100,000 interconnected networks owned by govern-
ments, universities, nonprofit groups, companies, etc. Unfor-
tunately, particularly the Internet and other public networks
have also become a major source of potentially system-fatal
or otherwise damaging computer code commonly referred to
as “viruses.”

Efforts to forestall viruses from attacking networked com-
puters have thus far met with only limited success at best.
Typically, a virus protection program designed to identify and
remove or protect against the initiating of known viruses is
installed on a network firewall or individually networked
computer. The program is then inevitably surmounted by
some new virus that often causes damage to one or more
computers. The damage is then assessed and, if isolated, the
new virus is analyzed. A corresponding new virus protection
program (or update thereof) is then developed and installed to
combat the new virus, and the new program operates success-
fully until yet another new virus appears—and so on. Of
course, damage has already typically been incurred.

To make matters worse, certain classes of viruses are not
well recognized or understood, let alone protected against. It
is observed by this inventor, for example, that Downloadable
information comprising program code can include distribut-
able components (e.g. Java™ applets and JavaScript scripts,
ActiveX™ controls, Visual Basic, add-ins and/or others). It
can also include, for example, application programs, Trojan
horses, multiple compressed programs such as zip or meta
files, among others. U.S. Pat. No. 5,983,348 to Shuang, how-
ever, teaches a protection system for protecting against only
distributable components including “Java applets or ActiveX
controls”, and further does so using resource intensive and
high bandwidth static Downloadable content and operational
analysis, and modification of the Downloadable component;
Shuang further fails to detect or protect against additional
program code included within a tested Downloadable. U.S.
Pat. No. 5,974,549 to Golan teaches a protection system that
further focuses only on protecting against ActiveX controls
and not other distributable components, let alone other
Downloadable types. U.S. Pat. No. 6,167,520 to Touboul
enables more accurate protection than Shuang or Golan, but
lacks the greater flexibility and efficiency taught herein, as do
Shuang and Golan.

Accordingly, there remains a need for efficient, accurate
and flexible protection of computers and other network con-
nectable devices from malicious Downloadables.

SUMMARY OF THE INVENTION

The present invention provides protection systems and
methods capable of protecting a personal computer (“PC”) or
other persistently or even intermittently network accessible
devices or processes from harmful, undesirable, suspicious or
other “malicious” operations that might otherwise be effec-
tuated by remotely operable code. While enabling the capa-
bilities of prior systems, the present invention is not nearly so
limited, resource intensive or inflexible, and yet enables more
reliable protection. For example, remotely operable code that
is protectable against can include downloadable application
programs, Trojan horses and program code groupings, as well
as software “components”, such as Java™ applets,
ActiveX™ controls, JavaScript™/Visual Basic scripts, add-
ins, etc., among others. Protection can also be provided in a
distributed interactively, automatically or mixed configurable
manner using protected client, server or other parameters,
redirection, local/remote logging, etc., and other server/client

SOPHOS

EXHIBIT 1001 - PAGE 0017

US 8,677,494 B2

3

based protection measures can also be separately and/or
interoperably utilized, among other examples.

In one aspect, embodiments of the invention provide for
determining, within one or more network “servers” (e.g. fire-
walls, resources, gateways, email relays or other devices/
processes that are capable of receiving-and-transferring a
Downloadable) whether received information includes
executable code (and is a “Downloadable”). Embodiments
also provide for delivering static, configurable and/or exten-
sible remotely operable protection policies to a Download-
able-destination, more typically as a sandboxed package
including the mobile protection code, downloadable policies
and one or more received Downloadables. Further client-
based or remote protection code/policies can also be utilized
in a distributed manner. Embodiments also provide for caus-
ing the mobile protection code to be executed within a Down-
loadable-destination in a manner that enables various Down-
loadable operations to be detected, intercepted or further
responded to via protection operations. Additional server/
information-destination device security or other protection is
also enabled, among still further aspects.

A protection engine according to an embodiment of the
invention is operable within one or more network servers,
firewalls or other network connectable information re-com-
municating devices (as are referred to herein summarily one
or more “servers” or “re-communicators”). The protection
engine includes an information monitor for monitoring infor-
mation received by the server, and a code detection engine for
determining whether the received information includes
executable code. The protection engine also includes a pack-
aging engine for causing a sandboxed package, typically
including mobile protection code and downloadable protec-
tion policies to be sent to a Downloadable-destination in
conjunction with the received information, if the received
information is determined to be a Downloadable.

A sandboxed package according to an embodiment of the
invention is receivable by and operable with a remote Down-
loadable-destination. The sandboxed package includes
mobile protection code (“MPC”) for causing one or more
predetermined malicious operations or operation combina-
tions of a Downloadable to be monitored or otherwise inter-
cepted. The sandboxed package also includes protection poli-
cies (operable alone or in conjunction with further
Downloadable-destination stored or received policies/MPCs)
for causing one or more predetermined operations to be per-
formed if one or more undesirable operations of the Down-
loadable is/are intercepted. The sandboxed package can also
include a corresponding Downloadable and can provide for
initiating the Downloadable in a protective “sandbox”. The
MPC/policies can further include a communicator for
enabling further MPC/policy information or “modules” to be
utilized and/or for event logging or other purposes.

A sandbox protection system according to an embodiment
of the invention comprises an installer for enabling a received
MPC to be executed within a Downloadable-destination (de-
vice/process) and further causing a Downloadable applica-
tion program, distributable component or other received
downloadable code to be received and installed within the
Downloadable-destination. The protection system also
includes a diverter for monitoring one or more operation
attempts of the Downloadable, an operation analyzer for
determining one or more responses to the attempts, and a
security enforcer for effectuating responses to the monitored
operations. The protection system can further include one or
more security policies according to which one or more pro-
tection system elements are operable automatically (e.g. pro-
grammatically) or in conjunction with user intervention (e.g.

20

25

35

40

45

60

65

4

as enabled by the security enforcer). The security policies can
also be configurable/extensible in accordance with further
downloadable and/or Downloadable-destination informa-
tion.

A method according to an embodiment of the invention
includes receiving downloadable information, determining
whether the downloadable information includes executable
code, and causing a mobile protection code and security
policies to be communicated to a network client in conjunc-
tion with security policies and the downloadable information
if the downloadable information is determined to include
executable code. The determining can further provide mul-
tiple tests for detecting, alone or together, whether the down-
loadable information includes executable code.

A further method according to an embodiment of the
invention includes forming a sandboxed package that
includes mobile protection code (“MPC”), protection poli-
cies, and a received, detected-Downloadable, and causing the
sandboxed package to be communicated to and installed by a
receiving device or process (“user device”) for responding to
one or more malicious operation attempts by the detected-
Downloadable from within the user device. The MPC/poli-
cies can further include a base “module” and a “communica-
tor” for enabling further up/downloading of one or more
further “modules” or other information (e.g. events, user/user
device information, etc.).

Another method according to an embodiment of the inven-
tion includes installing, within a user device, received mobile
protection code (“MPC”) and protection policies in conjunc-
tion with the user device receiving a downloadable applica-
tion program, component or other Downloadable(s). The
method also includes determining, by the MPC, a resource
access attempt by the Downloadable, and initiating, by the
MPC, one or more predetermined operations corresponding
to the attempt. (Predetermined operations can, for example,
comprise initiating user, administrator, client, network or pro-
tection system determinable operations, including but not
limited to modifying the Downloadable operation, extricating
the Downloadable, notifying a user/another, maintaining a
local/remote log, causing one or more MPCs/policies to be
downloaded, etc.)

Advantageously, systems and methods according to
embodiments of the invention enable potentially damaging,
undesirable or otherwise malicious operations by even
unknown mobile code to be detected, prevented, modified
and/or otherwise protected against without modifying the
mobile code. Such protection is further enabled in a manner
that is capable of minimizing server and client resource
requirements, does not require pre-installation of security
code within a Downloadable-destination, and provides for
client specific or generic and readily updateable security mea-
sures to be flexibly and efficiently implemented. Embodi-
ments further provide for thwarting efforts to bypass security
measures (e.g. by “hiding” undesirable operation causing
information within apparently inert or otherwise “friendly”
downloadable information) and/or dividing or combining
security measures for even greater flexibility and/or effi-
ciency.

Embodiments also provide for determining protection
policies that can be downloaded and/or ascertained from
other security information (e.g. browser settings, administra-
tive policies, user input, uploaded information, etc.). Differ-
ent actions in response to different Downloadable operations,
clients, users and/or other criteria are also enabled, and
embodiments provide for implementing other security mea-
sures, such as verifying a downloadable source, certification,
authentication, etc. Appropriate action can also be accom-

SOPHOS

EXHIBIT 1001 - PAGE 0018

US 8,677,494 B2

5

plished automatically (e.g. programmatically) and/or in con-
junction with alerting one or more users/administrators, uti-
lizing user input, etc. Embodiments further enable desirable
Downloadable operations to remain substantially unaffected,
among other aspects.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a is a block diagram illustrating a network system in
accordance with an embodiment of the present invention;

FIG. 15 is a block diagram illustrating a network sub-
system example in accordance with an embodiment of the
invention;

FIG. 1c is a block diagram illustrating a further network
subsystem example in accordance with an embodiment of the
invention;

FIG. 2 is a block diagram illustrating a computer system in
accordance with an embodiment of the invention;

FIG. 3 is a flow diagram broadly illustrating a protection
system host according to an embodiment of the invention;

FIG. 4 is a block diagram illustrating a protection engine
according to an embodiment of the invention;

FIG. 5 is a block diagram illustrating a content inspection
engine according to an embodiment of the invention;

FIG. 6a is a block diagram illustrating protection engine
parameters according to an embodiment of the invention;

FIG. 65 is a flow diagram illustrating a linking engine use
in conjunction with ordinary, compressed and distributable
sandbox package utilization, according to an embodiment of
the invention;

FIG. 7a is a flow diagram illustrating a sandbox protection
system operating within a destination system, according to an
embodiment of the invention;

FIG. 75 is a block diagram illustrating memory allocation
usable in conjunction with the protection system of FIG. 7a,
according to an embodiment of the invention;

FIG. 8 is a block diagram illustrating a mobile protection
code according to an embodiment of the invention;

FIG. 9 is a flowchart illustrating a protection method
according to an embodiment of the invention;

FIG. 10a is a flowchart illustrating method for determining
if a potential-Downloadable includes or is likely to include
executable code, according to an embodiment of the inven-
tion;

FIG. 105 is a flowchart illustrating a method for forming a
protection agent, according to an embodiment of the inven-
tion;

FIG. 11 is a flowchart illustrating a method for protecting a
Downloadable destination according to an embodiment of the
invention;

FIG. 124 is a flowchart illustrating a method for forming a
Downloadable access interceptor according to an embodi-
ment of the invention; and

FIG. 124 is a flowchart illustrating a method for imple-
menting mobile protection policies according to an embodi-
ment of the invention.

DETAILED DESCRIPTION

In providing malicious mobile code runtime monitoring
systems and methods, embodiments of the invention enable
actually or potentially undesirable operations of even
unknown malicious code to be efficiently and flexibly
avoided. Embodiments provide, within one or more “servers”
(e.g. firewalls, resources, gateways, email relays or other
information re-communicating devices), for receiving down-
loadable-information and detecting whether the download-

—

5

20

25

30

40

50

6

able-information includes one or more instances of execut-
able code (e.g. as with a Trojan horse, zip/meta file etc.).
Embodiments also provide for separately or interoperably
conducting additional security measures within the server,
within a Downloadable-destination of a detected-Download-
able, or both.

Embodiments further provide for causing mobile protec-
tion code (“MPC”) and downloadable protection policies to
be communicated to, installed and executed within one or
more received information destinations in conjunction with a
detected-Downloadable. Embodiments also provide, within
an information-destination, for detecting malicious opera-
tions of the detected-Downloadable and causing responses
thereto in accordance with the protection policies (which can
correspond to one or more user, Downloadable, source, des-
tination, or other parameters), or further downloaded or
downloadable-destination based policies (which can also be
configurable or extensible). (Note that the term “or”, as used
herein, is generally intended to mean “and/or” unless other-
wise indicated.)

FIGS. 1a through 1¢ illustrate a computer network system
100 according to an embodiment of the invention. FIG. 1a
broadly illustrates system 100, while FIGS. 15 and 12 of 1¢
illustrate exemplary protectable subsystem implementations
corresponding with system 104 or 106 of FIG. 1a.

Beginning with FIG. 1a, computer network system 100
includes an external computer network 101, such as a Wide
Area Network or “WAN” (e.g. the Internet), which is coupled
to one or more network resource servers (summarily depicted
as resource server-1 102 and resource server-N 103). Where
external network 101 includes the Internet, resource servers
1-N (102, 103) might provide one or more resources includ-
ing web pages, streaming media, transaction-facilitating
information, program updates or other downloadable infor-
mation, summarily depicted as resources 121, 131 and 132.
Such information can also include more traditionally viewed
“Downloadables” or “mobile code” (i.e. distributable com-
ponents), as well as downloadable application programs or
other further Downloadables, such as those that are discussed
herein. (It will be appreciated that interconnected networks
can also provide various other resources as well.)

Also coupled via external network 101 are subsystems
104-106. Subsystems 104-106 can, for example, include one
or more servers, personal computers (“PCs”), smart appli-
ances, personal information managers or other devices/pro-
cesses that are at least temporarily or otherwise intermittently
directly or indirectly connectable in a wired or wireless man-
ner to external network 101 (e.g. using a dialup, DSL, cable
modern, cellular connection, IR/RF, or various other suitable
current or future connection alternatives). One or more of
subsystems 104-106 might further operate as user devices
that are connectable to external network 101 via an internet
service provider (“ISP”) or local area network (“LLAN”), such
as a corporate intranet, or home, portable device or smart
appliance network, among other examples.

FIG. 1a also broadly illustrates how embodiments of the
invention are capable of selectively, modifiably or extensibly
providing protection to one or more determinable ones of
networked subsystems 104-106 or elements thereof (not
shown) against potentially harmful or other undesirable
(“malicious”™) effects in conjunction with receiving down-
loadable information. “Protected” subsystem 104, for
example, utilizes a protection in accordance with the teach-
ings herein, while “unprotected” subsystem-N 105 employs
no protection, and protected subsystem-M 106 might employ
one or more protections including those according to the
teachings herein, other protection, or some combination.

SOPHOS

EXHIBIT 1001 - PAGE 0019

US 8,677,494 B2

7

System 100 implementations are also capable of providing
protection to redundant elements 107 of one or more of sub-
systems 104-106 that might be utilized, such as backups,
failsafe elements, redundant networks, etc. Where included,
such redundant elements are also similarly protectable in a
separate, combined or coordinated manner using embodi-
ments of the present invention either alone or in conjunction
with other protection mechanisms. In such cases, protection
can be similarly provided singly, as a composite of compo-
nent operations or in a backup fashion. Care should, however,
be exercised to avoid potential repeated protection engine
execution corresponding to a single Downloadable; such
“chaining” can cause a Downloadable to operate incorrectly
or not at all, unless a subsequent detection engine is config-
ured to recognize a prior packaging of the Downloadable.

FIGS. 15 and 1c¢ further illustrate, by way of example, how
protection systems according to embodiments of the inven-
tion can be utilized in conjunction with a wide variety of
different system implementations. In the illustrated
examples, system elements are generally configurable in a
manner commonly referred to as a “client-server” configura-
tion, as is typically utilized for accessing Internet and many
other network resources. For clarity sake, a simple client-
server configuration will be presumed unless otherwise indi-
cated. It will be appreciated, however, that other configura-
tions of interconnected elements might also be utilized (e.g.
peer-peer, routers, proxy servers, networks, converters, gate-
ways, services, network reconfiguring elements, etc.) in
accordance with a particular application.

The FIG. 15 example shows how a suitable protected sys-
tem 104a (which can correspond to subsystem-1 104 or sub-
system-M 106 of FIG. 1) can include a protection-initiating
host “server” or “re-communicator” (e.g. ISP server 140q),
one or more user devices or “Downloadable-destinations”
145, and zero or more redundant elements (which elements
are summarily depicted as redundant client device/process
145q). In this example, ISP server 140a includes one or more
email, Internet or other servers 141a, or other devices or
processes capable of transferring or otherwise “re-communi-
cating” downloadable information to user devices 145.
Server 141a further includes protection engine or “PE” 1424,
which is capable of supplying mobile protection code
(“MPC”) and protection policies for execution by client
devices 145. One or more of user devices 145 can further
include a respective one or more clients 146 for utilizing
information received via server 140a, in accordance with
which MPC and protection policies are operable to protect
user devices 145 from detrimental, undesirable or otherwise
“malicious” operations of downloadable information also
received by user device 145.

The FIG. 1c¢ example shows how a further suitable pro-
tected system 1045 can include, in addition to a “re-commu-
nicator”, such as server 1425, a firewall 143¢ (e.g. as is typi-
cally the case with a corporate intranet and many existing or
proposed home/smart networks.) In such cases, a server 14156
or firewall 143 can operate as a suitable protection engine
host. A protection engine can also be implemented in a more
distributed manner among two or more protection engine host
systems or host system elements, such as both of server 141
band firewall 143, or in a more integrated manner, for
example, as a standalone device. Redundant system or system
protection elements 11) can also be similarly provided in a
more distributed or integrated manner (see above).

System 1045 also includes internal network 144 and user
devices 145. User devices 145 further include a respective one
or more clients 146 for utilizing information received via
server 140a, in accordance with which the MPCs or protec-

—_

0

25

40

45

50

60

8

tion policies are operable. (As in the previous example, one or
more of user devices 145 can also include or correspond with
similarly protectable redundant system elements, which are
not shown.)

It will be appreciated that the configurations of FIGS.
1a-1c are merely exemplary. Alternative embodiments might,
for example, utilize other suitable connections, devices or
processes. One or more devices can also be configurable to
operate as a network server, firewall, smart router, a resource
server servicing deliverable third-party/manufacturer post-
ings, a user device operating as a firewall/server, or other
information-suppliers or intermediaries (i.e. as a “re-commu-
nicator” or “server”) for servicing one or more further inter-
connected devices or processes or interconnected levels of
devices or processes. Thus, for example, a suitable protection
engine host can include one or more devices or processes
capable of providing or supporting the providing of mobile
protection code or other protection consistent with the teach-
ings herein. A suitable information-destination or “user
device” can further include one or more devices or processes
(such as email, browser or other clients) that are capable of
receiving and initiating or otherwise hosting a mobile code
execution.

FIG. 2 illustrates an exemplary computing system 200, that
can comprise one or more ofthe elements of FIGS. 1a through
1c. While other application-specific alternatives might be
utilized, it will be presumed for clarity sake that system 100
elements (FIGS. la-c) are implemented in hardware, soft-
ware or some combination by one or more processing systems
consistent therewith, unless otherwise indicated.

Computer system 200 comprises elements coupled via
communication channels (e.g. bus 201) including one or
more general or special purpose processors 202, such as a
Pentium® or Power PC®, digital signal processor (“DSP”),
etc. System 200 elements also include one or more input
devices 203 (such as~mouse, keyboard, microphone, pen,
etc.), and one or more output devices 204, such as a suitable
display, speakers, actuators, etc., in accordance with a par-
ticular application.

System 200 also includes a computer readable storage
media reader 205 coupled to a computer readable storage
medium 206, such as a storage/memory device or hard or
removable storage/memory media; such devices or media are
further indicated separately as storage device 208 and
memory 209, which can include hard disk variants, floppy/
compact disk variants, digital versatile disk (“DVD”) vari-
ants, smart cards, read only memory, random access memory,
cache memory, etc., in accordance with a particular applica-
tion. One or more suitable communication devices 207 can
also be included, such as a modem, OSL, infrared or other
suitable transceiver, etc. for providing inter-device commu-
nication directly or via one or more suitable private or public
networks that can include but are not limited to those already
discussed.

Working memory further includes operating system
(“OS”) elements and other programs, such as application
programs, mobile code, data, etc. for implementing system
100 elements that might be stored or loaded therein during
use. The particular OS can vary in accordance with a particu-
lar device, features or other aspects in accordance with a 110
particular application (e.g. Windows, Mac, Linux, Unix or
Palm OS variants, a proprietary OS, etc.). Various program-
ming languages or other tools can also be utilized, such as
C++, Java, Visual Basic, etc. As will be discussed, embodi-
ments can also include a network client such as a browser or
email client, e.g. as produced by Netscape, Microsoft or oth-
ers, a mobile code executor such as an OS task manager, Java

SOPHOS

EXHIBIT 1001 - PAGE 0020

US 8,677,494 B2

9

Virtual Machine (“JVM”), etc., and an application program
interface (“API”), such as a Microsoft Windows or other
suitable element in accordance with the teachings herein. (It
will also become apparent that embodiments might also be
implemented in conjunction with a resident application or
combination of mobile code and resident application compo-
nents.)

One or more system 200 elements can also be implemented
in hardware, software or a suitable combination. When imple-
mented in software (e.g. as an application program, object,
downloadable, servlet, etc. in whole or part), a system 200
element can be communicated transitionally or more persis-
tently from local or remote storage to memory (or cache
memory, etc.) for execution, or another suitable mechanism
can be utilized, and elements can be implemented in compiled
or interpretive form. Input, intermediate or resulting data or
functional elements can further reside more transitionally or
more persistently in a storage media, cache or more persistent
volatile or non-volatile memory, (e.g. storage device 207 or
memory 208) in accordance with a particular application.

FIG. 3 illustrates an interconnected re-communicator 300
generally consistent with system 1405 of FIG. 1, according to
anembodiment of the invention. As with system 1405, system
300 includes a server 301, and can also include a firewall 302.
In this implementation, however, either server 301 or firewall
302 (if a firewall is used) can further include a protection
engine (310 or 320 respectively). Thus, for example, an
included firewall can process received information in a con-
ventional manner, the results of which can be further pro-
cessed by protection engine 310 of server 301, or information
processed by protection engine 320 of an included firewall
302 can be processed in a conventional manner by server 301.
(For clarity sake, a server including a singular protection
engine will be presumed, with or without a firewall, for the
remainder of the discussion unless otherwise indicated. Note,
however, that other embodiments consistent with the teach-
ings herein might also be utilized.)

FIG. 3 also shows how information received by server 301
(or firewall 302) can include non-executable information,
executable information or a combination of non-executable
and one or more executable code portions (e.g. so-called
Trojan horses that include a hostile Downloadable within a
friendly one, combined, compressed or otherwise encoded
files, etc.). Particularly such combinations will likely remain
undetected by a firewall or other more conventional protec-
tion systems. Thus, for convenience, received information
will also be referred to as a “potential-Downloadable”, and
received information found to include executable code will be
referred to as a “Downloadable” or equivalently as a
“detected-Downloadable” (regardless of whether the execut-
able code includes one or more application programs, distrib-
utable “components” such as Java, ActiveX, add-in, etc.).

Protection engine 310 provides for detecting whether
received potential-Downloadables include executable code,
and upon such detection, for causing mobile protection code
(“MPC”) to be transferred to a device that is a destination of
the potential-Downloadable (or ‘“Downloadable-destina-
tion”). Protection engine 310 can also provide protection
policies in conjunction with the MPC (or thereafter as well),
which MPC/policies can be automatically (e.g. programmati-
cally) or interactively configurable in accordance user,
administrator, downloadable source, destination, operation,
type or various other parameters alone or in combination (see
below). Protection engine 310 can also provide or operate
separately or interoperably in conjunction with one or more
of certification, authentication, downloadable tagging, source
checking, verification, logging, diverting or other protection

—_

0

—

5

20

60

65

10

services via the MPC, policies, other local/remote server or
destination processing, etc. (e.g. which can also include pro-
tection mechanisms taught by the above-noted prior applica-
tions; see FIG. 4).

Operationally, protection engine 310 of server 301 moni-
tors information received by server 301 and determines
whether the received information is deliverable to a protected
destination, e.g. using a suitable monitor/data transfer mecha-
nism and comparing a destination-address of the received
information to a protected destination set, such as a protected
destinations list, array, database, etc. (All deliverable infor-
mation or one or more subsets thereof might also be moni-
tored.) Protection engine 310 further analyzes the potential-
Downloadable and determines whether the potential-
Downloadable includes executable code. If not, protection
engine 310 enables the not executable potential-Download-
able 331 to be delivered to its destination in an unaffected
manner.

In conjunction with determining that the potential-Down-
loadable is a detected-Downloadable, protection engine 310
also causes mobile protection code or “MPC” 341 to be
communicated to the Downloadable-destination of the
Downloadable, more suitably in conjunction with the
detected-Downloadable 343 (see below). Protection engine
310 further causes downloadable protection policies 342 to be
delivered to the Downloadable-destination, again more suit-
ably in conjunction with the detected-Downloadable. Protec-
tion policies 342 provide parameters (or can additionally or
alternatively provide additional mobile code) according to
which the MPC is capable of determining or providing appli-
cable protection to a Downloadable-destination against mali-
cious Downloadable operations.

(One or more “checked”, tag, source, destination, type,
detection or other security result indicators, which are not
shown, can also be provided as corresponding to determined
non-Downloadables or Downloadables, e.g. for testing, log-
ging, further processing, further identification tagging or
other purposes in accordance with a particular application.)

Further MPCs, protection policies or other information are
also deliverable to a the same or another destination, for
example, in accordance with communication by an MPC/
protection policies already delivered to a downloadable-des-
tination. Initial or subsequent MPCs/policies can further be
selected or configured in accordance with a Downloadable-
destination indicated by the detected-Downloadable, destina-
tion-user or administrative information, or other information
providable to protection engine 310 by a user, administrator,
user system, user system examination by a communicated
MPC, etc. (Thus, for example, an initial MPC/policies can
also be initially provided that are operable with or optimized
for more efficient operation with different Downloadable-
destinations or destination capabilities.)

While integrated protection constraints within the MPC
might also be utilized, providing separate protection policies
has been found to be more efficient, for example, by enabling
more specific protection constraints to be more easily updated
in conjunction with detected-Downloadable specifics, post-
download improvements, testing, etc. Separate policies can
further be more efficiently provided (e.g. selected, modified,
instantiated, etc.) with or separately from an MPC, or in
accordance with the requirements of a particular user, device,
system, administration, later improvement, etc., as might also
be provided to protection engine 310 (e.g. via user/MPC
uploading, querying, parsing a Downloadable, or other suit-
able mechanism implemented by one or more servers or
Downloadable-destinations).

SOPHOS

EXHIBIT 1001 - PAGE 0021

US 8,677,494 B2

11

(It will also become apparent that performing executable
code detection and communicating to a downloadable-Des-
tination an MPC and any applicable policies as separate from
a detected-Downloadable is more accurate and far less
resource intensive than, for example, performing content and
operation scanning, modifying a Downloadable, or providing
completely Downloadable-destination based security.)

System 300 enables a single or extensible base-MPC to be
provided, in anticipation or upon receipt of a first Download-
able, that is utilized thereafter to provide protection of one or
more Downloadable-destinations. It is found, however, that
providing an MPC upon each detection of a Downloadable
(which is also enabled) can provide a desirable combination
of configurability of the MPC/policies and lessened need for
management (e.g. given potentially changing user/destina-
tion needs, enabling testing, etc.).

Providing an MPC upon each detection of a Downloadable
also facilitates a lessened demand on destination resources,
e.g. since information-destination resources used in execut-
ing the MPC/policies can be re-allocated following such use.
Such alternatives can also be selectively, modifiably or exten-
sibly provided (or further in accordance with other applica-
tion-specific factors that might also apply.) Thus, for
example, a base-MPC or base-policies might be provided to a
user device that is/are extensible via additionally download-
able “modules” upon server 301 detection of a Downloadable
deliverable to the same user device, among other alternatives.

In accordance with a further aspect of the invention, it is
found that improved efficiency can also be achieved by caus-
ing the MPC to be executed within a Downloadable-destina-
tion in conjunction with, and further, prior to initiation of the
detected Downloadable. One mechanism that provides for
greater compatibility and efficiency in conjunction with con-
ventional client-based Downloadable execution is for a pro-
tection engine to form a sandboxed package 340 including
MPC 341, the detected-Downloadable 343 and any policies
342. For example, where the Downloadable is a binary
executable to be executed by an operating system, protection
engine 310 forms a protected package by concatenating,
within sandboxed package 340, MPC 341 for delivery to a
Downloadable-destination first, followed by protection poli-
cies 342 and Downloadable 343. (Concatenation or tech-
niques consistent therewith can also be utilized for providing
a protecting package corresponding to a Java applet for
execution by a NM of a Downloadable-destination, or with
regard to ActiveX controls, add-ins or other distributable
components, etc.)

The above concatenation or other suitable processing will
result in the following. Upon receipt of sandboxed package
340 by a compatible browser, email or other destination-
client and activating of the package by a user or the destina-
tion-client, the operating system (or a suitable responsively
initiated distributed component host) will attempt to initiate
sandboxed package 340 as a single Downloadable. Such pro-
cessing will, however, result in initiating the MPC 341 and—
in accordance with further aspects of the invention—the MPC
will initiate the Downloadable in a protected manner, further
in accordance with any applicable included or further down-
loaded protection policies 342. (While system 300 is also
capable of ascertaining protection policies stored at a Down-
loadable-destination, e.g. by poll, query, etc. of available
destination information, including at least initial policies
within a suitable protecting package is found to avoid asso-
ciated security concerns or inefficiencies.)

Turning to FIG. 4, a protection engine 400 generally con-
sistent with protection engine 310 (or 320) of FIG. 3 is illus-
trated in accordance with an embodiment of the invention.

20

25

40

45

60

65

12

Protection engine 400 comprises information monitor 401,
detection engine 402, and protected packaging engine 403,
which further includes agent generator 431, storage 404, link-
ing engine 405, and transfer engine 406. Protection engine
400 can also include a buffer 407, for temporarily storing a
received potential-Downloadable, or one or more systems for
conducting additional authentication, certification, verifica-
tion or other security processing (e.g. summarily depicted as
security system 408.) Protection engine 400 can further pro-
vide for selectively re-directing, further directing, logging,
etc. of a potential/detected Downloadable or information cor-
responding thereto in conjunction with detection, other secu-
rity, etc., in accordance with a particular application.

(Note that FIG. 4, as with other figures included herein,
also depicts exemplary signal flow arrows; such arrows are
provided to facilitate discussion, and should not be construed
as exclusive or otherwise limiting.)

Information monitor 401 monitors potential-Download-
ables received by a host server and provides the information
via buffer 407 to detection engine 402 or to other system 400
elements. Information monitor 401 can be configured to
monitor host server download operations in conjunction with
a user or a user-device that has logged-on to the server, or to
receive information via a server operation hook, servlet, com-
munication channel or other suitable mechanism.

Information monitor 401 can also provide for transferring,
to storage 404 or other protection engine elements, configu-
ration information including, for example, user, MPC, pro-
tection policy, interfacing or other configuration information
(e.g. see FIG. 6). Such configuration information monitoring
can be conducted in accordance with a user/device logging
onto or otherwise accessing a host server, via one or more of
configuration operations, using an applet to acquire such
information from or for a particular user, device or devices,
via MPC/policy polling of a user device, or via other suitable
mechanisms.

Detection engine 402 includes code detector 421, which
receives a potential-Downloadable and determines, more
suitably in conjunction with inspection parameters 422,
whether the potential-Downloadable includes executable
code and is thus a “detected-Downloadable”. (Code detector
421 can also include detection processors for performing me
decompression or other “decoding”, or such detection-facili-
tating processing as decryption, utilization/support of secu-
rity system 408, etc. in accordance with a particular applica-
tion.)

Detection engine 402 further transfers a detected-down-
loadable (“XEQ”) to protected packaging engine 403 along
with indicators of such detection, or a determined non-ex-
ecutable (“NXEQ”) to transfer engine 406. (Inspection
parameters 422 enable analysis criteria to be readily updated
or varied, for example, in accordance with particular source,
destination or other potential Downloadable impacting
parameters, and are discussed in greater detail with reference
to FIG. 5). Detection engine 402 can also provide indicators
for delivery of initial and further MPCs/policies, for example,
prior to or in conjunction with detecting a Downloadable and
further upon receipt of an indicator from an already down-
loaded MPC/policy. A downloaded MPC/policy can further
remain resident at a user device with further modules down-
loaded upon or even after delivery of a sandboxed package.
Such distribution can also be provided in a configurable man-
ner, such that delivery of a complete package or partial pack-
ages are automatically or interactively determinable in accor-
dance with user/administrative preferences/policies, among
other examples.

SOPHOS

EXHIBIT 1001 - PAGE 0022

US 8,677,494 B2

13

Packaging engine 403 provides for generating mobile pro-
tection code and protection policies, and for causing delivery
thereof (typically with a detected-Downloadable) to a Down-
loadable-destination for protecting the Downloadable-desti-
nation against malicious operation attempts by the detected
Downloadable. In this example, packaging engine 403
includes agent generator 431, storage 404 and linking engine
405.

Agent generator 431 includes an MPC generator 432 and a
protection policy generator 433 for “generating” an MPC and
a protection policy (or set of policies) respectively upon
receiving one or more “generate MPC/policy” indicators
from detection engine 402, indicating that a potential-Down-
loadable is a detected-Downloadable. MPC generator 432
and protection policy generator 433 provide for generating
MPCs and protection policies respectively in accordance with
parameters retrieved from storage 404. Agent generator 431
is further capable of providing multiple MPCs/policies, for
example, the same or different MPCs/policies in accordance
with protecting ones of multiple executables within a zip file,
or for providing initial MPCs/policies and then further MPCs/
policies or MPC/policy “modules” as initiated by further
indicators such as given above, via an indicator of an already
downloaded MPC/policy or via other suitable mechanisms.
(It will be appreciated that pre-constructed MPCs/policies or
other processing can also be utilized, e.g. via retrieval from
storage 404, but with a potential decrease in flexibility.)

MPC generator 432 and protection policy generator 433
are further configurable. Thus, for example, more generic
MPCs/policies can be provided to all or a grouping of ser-
viced destination-devices (e.g. in accordance with a similarly
configured/administered intranet), or different MPCs/poli-
cies that can be configured in accordance with one or more of
user, network administration, Downloadable-destination or
other parameters (e.g. see FIG. 6). As will become apparent,
a resulting MPC provides an operational interface to a desti-
nation device/process. Thus, a high degree of flexibility and
efficiency is enabled in providing such an operational inter-
face within different or differently configurable user devices/
processes or other constraints.

Such configurability further enables particular policies to
be utilized in accordance with a particular application (e.g.
particular system uses, access limitations, user interaction,
treating application programs or Java components from a
particular known source one way and unknown source
ActiveX components, or other considerations). Agent genera-
tor 431 further transfers a resulting MPC and protection
policy pair to linking engine 405.

Linking engine 405 provides for forming from received
component elements (see above) a sandboxed package that
can include one or more initial or complete MPCs and appli-
cable protection policies, and a Downloadable, such that the
sandboxed package will protect a receiving Downloadable-
destination from malicious operation by the Downloadable.
Linking engine 405 is implementable in a static or config-
urable manner in accordance, for example, with characteris-
tics of a particular user device/process stored intermittently or
more persistently in storage 404. Linking engine 405 can also
provide for restoring a Downloadable, such as a compressed,
encrypted or otherwise encoded file that has been decom-
pressed, decrypted or otherwise decoded via detection pro-
cessing 20 (e.g. see FIG. 6b). It is discovered, for example,
that the manner in which the Windows OS initiates a binary
executable or an ActiveX control can be utilized to enable
protected initiation of a detected-Downloadable. Linking
engine 405 is, for example, configurable to form, for an ordi-
nary single-executable Downloadable (e.g. an application

20

25

40

45

60

65

14

program, applet, etc.) a sandboxed package 340 as a concat-
enation of ordered elements including an MPC 341, appli-
cable policies 342 and the Downloadable or “XEQ” 343 (e.g.
see FIG. 4).

Linking engine 405 is also configurable to form, for a
Downloadable received by a server as a compressed single or
multiple-executable Downloadable such as a zipped or meta
file, a protecting package 340 including one or more MPCs,
applicable policies and the one or more included executables
of'the Downloadable. For example, a sandboxed package can
be formed in which a single MPC and policies precede and
thus will affect all such executables as a result of inflating and
installation. An MPC and applicable policies can also, for
example, precede each executable, such that each executable
will be separately sandboxed in the same or a different man-
ner according to MPC/policy configuration (see above) upon
inflation and installation. (See also FIGS. 5 and 6.) Linking
engine is also configurable to form an initial MPC, MPC-
policy or sandboxed package (e.g. prior to upon receipt of a
downloadable) or an additional MPC, MPC-policy or sand-
boxed package (e.g. upon or following receipt of a download-
able), such that suitable MPCs/policies can be provided to a
Downloadable-destination or other destination in a more dis-
tributed manner. In this way, requisite bandwidth or destina-
tion resources can be minimized (via two or more smaller
packages) in compromise with latency or other consider-
ations raised by the additional required communication.

A configurable linking engine can also be utilized in accor-
dance with other requirements of particular devices/pro-
cesses, further or different elements or other permutations in
accordance with the teachings herein. (It might, for example
be desirable to modify the ordering of elements, to provide
one or more elements separately, to provide additional infor-
mation, such as a header, etc., or perform other processing in
accordance with a particular device, protocol or other appli-
cation considerations.)

Policy/authentication reader-analyzer 481 summarily
depicts other protection mechanisms that might be utilized in
conjunction with Downloadable detection, such as already
discussed, and that can further be configurable to operate in
accordance with policies or parameters (summarily depicted
by security/authentication policies 482). Integration of such
further protection in the depicted configuration, for example,
enables a potential-Downloadable from a known unfriendly
source, a source failing authentication or a provided-source
that is confirmed to be fictitious to be summarily discarded,
otherwise blocked, flagged, etc. (with or without further pro-
cessing). Conversely, a potential-Downloadable from a
known friendly source (or one confirmed as such) can be
transferred with or without further processing in accordance
with particular application considerations. (Other configura-
tions including pre or post Downloadable detection mecha-
nisms might also be utilized.)

Finally, transfer engine 406 of protection agent engine 303
provides for receiving and causing linking engine 405 (or
other protection) results to be transferred to a destination user
device/process. As depicted, transfer engine 406 is config-
ured to receive and transfer a Downloadable, a determined
non-executable or a sandboxed package. However, transfer
engine 406 can also be provided in a more configurable man-
ner, such as was already discussed for other system 400
elements. (Anyone or more of system 400 elements might be
configurably implemented in accordance with a particular
application.) Transfer engine 406 can perform such transfer,
for example, by adding the information to a server transfer
queue (not shown) or utilizing another suitable method.

SOPHOS

EXHIBIT 1001 - PAGE 0023

US 8,677,494 B2

15

Turning to FIG. 5 with reference to FIG. 4, a code detector
421 example is illustrated in accordance with an embodiment
of the invention. As shown, code detector 421 includes data
fetcher 501, parser 502, file-type detector 503, inflator 504
and control 506; other depicted elements. While implement-
able and potentially useful in certain instances, are found to
require substantial overhead, to be less accurate in certain
instances (see above) and are not utilized in a present imple-
mentation; these will be discussed separately below. Code
detector elements are further configurable in accordance with
stored parameters retrievable by data fetcher 501. (A coupling
between data fetcher 501 and control 506 has been removed
for clarity sake.)

Data fetcher 501 provides for retrieving a potential-Down-
loadable or portions thereof stored in buffer 407 or param-
eters from storage 404, and communicates such information
or parameters to parser 502. Parser 502 receives a potential-
Downloadable or portions thereof from data fetcher 501 and
isolates potential-Downloadable elements, such as file head-
ers, source, destination, certificates, etc. for use by further
processing elements.

File type detector 502 receives and determines whether the
potential-Downloadable (likely) is or includes an executable
file type. File-reader 502 can, for example, be configured to
analyze a received potential-Downloadable for a file header,
which is typically included in accordance with conventional
data transfer protocols, such as a portable executable or stan-
dard “.exe” file format for Windows OS application pro-
grams, a Java class header for Java applets, and so on for other
applications, distributed components, etc. “Zipped”, meta or
other compressed files, which might include one or more
executables, also typically provide standard single or multi-
level headers that can be read and used to identify included
executable code (or other included information types). File
type detector 502 is also configurable for analyzing potential-
Downloadables for all potential file type delimiters or a more
limited subset of potential file type delimiters (e.g. “.exe” or
“.com” in conjunction with a DOS or Microsoft Windows as
Downloadable-destination).

Known file type delimiters can, for example, be stored in a
more temporary or more persistent storage (e.g. storage 404
of FIG. 4) which file type detector 502 can compare to a
received potential-Downloadable. (Such delimiters can thus
also be updated in storage 404 as a new file type delimiter is
provided, or a more limited subset of delimiters can also be
utilized in accordance with a particular Downloadable-desti-
nation or other considerations of a particular application.)
File type detector 502 further transfers to controller 506 a
detected file type indicator indicating that the potential-
Downloadable includes or does not include (i.e. or likely
include) an executable file type.

In this example, the aforementioned detection processor is
also included as pre-detection processor or, more particularly,
a configurable file inflator 504. File inflator 504 provides for
opening or “inflating” compressed files in accordance with a
compressed file type received from file type detector 503 and
corresponding file opening parameters received from data
fetcher 501. Where a compressed file (e.g. a meta file)
includes nested file type information not otherwise reliably
provided in an overall file header or other information, infla-
tor 504 returns such information to parser 502. File inflator
504 also provides any now-accessible included executables to
control 506 where one or more included files are to be sepa-
rately packaged with an MPC or policies.

Control 506, in this example, operates in accordance with
stored parameters and provides for routing detected non-
Downloadables or Downloadables and control information,

20

25

40

45

60

65

16

and for conducting the aforementioned distributed download-
ing of packages to Downloadable-destinations. In the case of
a non-Downloadable, for example, control 506 sends the
non-Downloadable to transfer engine 406 (FIG. 4) along with
any indicators that might apply. For an ordinary single-ex-
ecutable Downloadable, control 506 sends control informa-
tion to agent generator 431 and the Downloadable to linking
engine 405 along with any other applicable indicators (see
641 of FIG. 6b). Control 506 similarly handles a compressed
single-executable Downloadable or a multiple downloadable
to be protected using a single sandboxed package. For a
multiple-executable Downloadable, control 506 sends con-
trol information for each corresponding executable to agent
generator agent generator 431, and sends the executable to
linking engine 405 along with controls and any applicable
indicators, as in 6435 of FIG. 6b. (The above assumes, how-
ever, that distributed downloading is not utilized; when
used—according to applicable parameters—control 506 also
operates in accordance with the following.)

Control 506 conducts distributed protection (e.g. distrib-
uted packaging) by providing control signals to agent genera-
tor 431, linking engine 405 and transfer engine 406. In the
present example, control 506 initially sends controls to agent
generator 431 and linking engine 405 (FIG. 4) causing agent
generator to generate an initial MPC and initial policies, and
sends control and a detected-Downloadable to linking engine
405. Linking engine 405 forms an initial sandboxed package,
which transfer engine causes (in conjunction with further
controls) to be downloaded to the Downloadable destination
(643a of FIG. 6b). An initial MPC within the sandboxed
package includes an installer and a communicator and per-
forms installation as indicated below. The initial MPC also
communicates via the communicator controls to control 506
(FIG. 5) in response to which control 506 similarly causes
generation of MPC-M and policy-M modules 643¢, which
linking engine 405 links and transfer engine 406 causes to be
sent to the Downloadable destination, and so on for any
further such modules.

(It will be appreciated, however, that an initial package
might be otherwise configured or sent prior to receipt of a
Downloadable in accordance with configuration parameters
or user interaction. Information can also be sent to other user
devices, such as that of an administrator. Further MPCs/
policies might also be coordinated by control 506 or other
elements, or other suitable mechanisms might be utilized in
accordance with the teachings herein.)

Regarding the remaining detection engine elements illus-
trated in FIG. 5, where content analysis is utilized, parser 502
can also provide a Downloadable or portions thereof to con-
tent detector 505. Content detector 505 can then provide one
or more content analyses. Binary detector 551, for example,
performs detection of binary information; pattern detector
552 further analyzes the Downloadable for patterns indicat-
ing executable code, or other detectors can also be utilized.
Analysis results therefrom can be used in an absolute manner,
where a first testing result indicating executable code con-
firms Downloadable detection, which result is then sent to
control 506. Alternatively, however, composite results from
such analyses can also be sent to control 506 for evaluation.
Control 506 can further conduct such evaluation in a sum-
mary manner (determining whether a Downloadable is
detected according to a majority or minimum number of
indicators), or based on a weighting of different analysis
results. Operation then continues as indicated above. (Such
analysis can also be conducted in accordance with aspects of
a destination user device or other parameters.)

SOPHOS

EXHIBIT 1001 - PAGE 0024

US 8,677,494 B2

17

FIG. 6a illustrates more specific examples of indicators/
parameters and known (or “knowledge base”) elements that
can be utilized to facilitate the above-discussed system 400
configurability and detection. For clarity sake, indicators,
parameters and knowledge base elements are combined as
indicated “parameters.” It will be appreciated, however, that
the particular parameters utilized can differ in accordance
with a particular application, and indicators, parameters or
known elements, where utilized, can vary and need not cor-
respond exactly with one another. Any suitable explicit or
referencing list, database or other storage structure(s) or stor-
age structure configuration(s) can also be utilized to imple-
ment a suitable user/device based protection scheme, such as
in the above examples, or other desired protection schema.

Executable parameters 601 comprise, in accordance with
the above examples, executable file type parameters 611,
executable code parameters 612 and code pattern parameters
613 (including known executable file type indicators, header/
code indicators and patterns respectively, where code patterns
are utilized). Use parameters 602 further comprise user
parameters 621, system parameters 622 and general param-
eters 623 corresponding to one or more users, user classifi-
cations, user-system correspondences or destination system,
device or processes, etc. (e.g. for generating corresponding
MPCs/policies, providing other protection, etc.). The remain-
ing parameters include interface parameters 631 for provid-
ing MPC/policy (or further) configurability in accordance
with a particular device or for enabling communication with
a device user (see below), and other parameters 632.

FIG. 6b illustrates a linking engine 405 according to an
embodiment of the invention. As already discussed, linking
engine 405 includes a linker for combining MPCs, policies or
agents via concatination or other suitable processing in accor-
dance with an OS, JVM or other host executor or other appli-
cable factors that might apply. Linking engine 405 also
includes the aforementioned post-detection processor which,
in this example, comprises a compressor 508. As noted, com-
pressor 508 receives linked elements from linker 507 and,
where a potential-Downloadable corresponds to a com-
pressed file that was inflated during detection, re-forms the
compressed file. (Known file information can be provided via
configuration parameters, substantially reversal of inflating
or another suitable method.) Encryption or other post-detec-
tion processing can also be conducted by linking engine 508.

FIGS. 7a, 7b and 8 illustrate a “sandbox protection” sys-
tem, as operable within a receiving destination-device,
according to an embodiment of the invention.

Beginning with FIG. 7a, a client 146 receiving sandbox
package 340 will “recognize” sandbox package 340 as a
(mobile) executable and cause a mobile code installer 711
(e.g. an OS loader, JVM, etc.) to be initiated. Mobile code
installer 711 will also recognize sandbox package 340 as an
executable and will attempt to initiate sandbox package 340 at
its “beginning” Protection engine 400 processing corre-
sponding to destination 700 use of a such a loader, however,
will have resulted in the “beginning” of sandbox package 340
as corresponding to the beginning of MPC 341, as noted with
regard to the above FIG. 4 example.

Such protection engine processing will therefore cause a
mobile code installer (e.g. OS loader 711, for clarity sake) to
initiate MPC 341. In other cases, other processing might also
be utilized for causing such initiation or further protection
system operation. Protection engine processing also enables
MPC 341 to effectively form a protection “sandbox” around
Downloadable (e.g. detected-Downloadable or “XEQ”) 343,
to monitor Downloadable 343, intercept determinable Down-
loadable 343 operation (such as attempted accesses of Down-

20

25

40

45

60

65

18

loadable 343 to destination resources) and, if “malicious”, to
cause one or more other operations to occur (e.g. providing an
alert, offloading the Downloadable, offloading the MPC, pro-
viding only limited resource access, possibly in a particular
address space or with regard to a particularly “safe” resource
or resource operation, etc.).

MPC 341, in the present OS example, executes MPC ele-
ment installation and installs any policies, causing MPC 341
and protection policies 342 to be loaded into a first memory
space, PI. MPC 341 then initiates loading of Downloadable
343. Such Downloadable initiation causes OS loader 711 to
load Downloadable 343 into a further working memory
space-P2 703 along with an API import table (“IAT”) 731 for
providing Downloadable 631 with destination resource
access capabilities. It is discovered, however that the IA T can
be modified so that any call to an API can be redirected to a
function within the MPC. The technique for modifying the IA
T is documented within the MSDN (Microsoft Developers
Network) Library CD in several articles. The technique is also
different for each operating system (e.g. between Windows
9x and Windows NT), which can be accommodated by agent
generator configurability, such as that given above. MPC 341
therefore has at least initial access to API IAT 731 of Down-
loadable 632, and provides for diverting, evaluating and
responding to attempts by Downloadable 632 to utilize sys-
tem APIs 731, or further in accordance with protection poli-
cies 342. In addition to API diverting, MPC 341 can also
install filter drivers, which can be used for controlling access
to resources such as a Downloadable-destination file system
orregistry. Filter driver installation can be conducted as docu-
mented in the MSDN or using other suitable methods.

Turning to FIG. 8 with reference to FIG. 74, an MPC 341
according to an embodiment of the invention includes a pack-
age extractor 801, executable installer 802, sandbox engine
installer 803, resource access diverter 804, resource access
(attempt) analyzer 805, policy enforcer 806 and MPC de-
installer 807. Package extractor 801 is initiated upon initia-
tion of MPC 341, and extracts MPC 341 elements and pro-
tection policies 342. Executable installer 802 further initiates
installation of a Downloadable by extracting the download-
able from the protected package, and loading the process into
memory in suspended mode (so it only loads into memory, but
does not start to run). Such installation further causes the
operating system to initialize the Downloadable’s IAT 731 in
the memory space of the downloadable process, P2, as
already noted.

Sandbox engine installer 803 (running in process space PI)
then installs the sandbox engine (803-805) and policies 342
into the downloadable process space P2. This is done in
different way in each operating system (e.g. see above).
Resource access diverter 804 further modifies those Down-
loadable-API 1AT entries that correspond with protection
policies 342, thereby causing corresponding Downloadable
accesses via Downloadable-API IAT 731 to be diverted
resource access analyzer 805.

During Downloadable operation, resource access analyzer
or “RAA” 805 receives and determines a response to diverted
Downloadable (i.e. “malicious™) operations in accordance
with corresponding protection policies of policies 342. (RAA
805 or further elements, which are not shown, can further
similarly provide for other security mechanisms that might
also be implemented.) Malicious operations can for example
include, in a Windows environment: file operations (e.g. read-
ing, writing, deleting or renaming a file), network operations
(e.g. listen on or connect to a socket, send/receive data or view
intranet), OS registry or similar operations (read/write a reg-
istry item), OS operations (exit as/client, kill or change the

SOPHOS

EXHIBIT 1001 - PAGE 0025

US 8,677,494 B2

19

priority of a process/thread, dynamically load a class library),
resource usage thresholds (e.g. memory, CPU, graphics), etc.

Policy enforcer 806 receives RAA 805 results and causes a
corresponding response to be implemented, again according
to the corresponding policies. Policy enforcer 806 can, for
example, interact with a user (e.g. provide an alert, receive
instructions, etc.), create a log file, respond, cause a response
to be transferred to the Downloadable using “dummy” or
limited data, communicate with a server or other networked
device (e.g. corresponding to a local or remote administrator),
respond more specifically with a better known Download-
able, verify accessibility or user/system information (e.g. via
local or remote information), even enable the attempted
Downloadable access, among a wide variety of responses that
will become apparent in 20 view of the teachings herein.

The FIG. 9 flowchart illustrates a protection method
according to an embodiment of the invention. In step 901, a
protection engine monitors the receipt, by a server or other
re-communicator of information, and receives such informa-
tion intended for a protected information-destination (i.e. a
potential-Downloadable) in step 903. Steps 905-911 depict
an adjunct trustworthiness protection that can also be pro-
vided, wherein the protection engine determines whether the
source of the received information is known to be
“unfriendly” and, if so, prevents current (at least unaltered)
delivery of the potential-Downloadable and provides any
suitable alerts. (The protection engine might also continue to
perform Downloadable detection and nevertheless enable
delivery or protected delivery of a non-Downloadable, or
avoid detection if the source is found to be “trusted”, among
other alternatives enabled by the teachings herein.)

If, in step 913, the potential-Downloadable source is found
to be of an unknown or otherwise suitably authenticated/
certified source, then the protection engine determines
whether the potential-Downloadable includes executable
code in step 915. If the potential-Downloadable does not
include executable code, then the protection engine causes
the potential-Downloadable to be delivered to the informa-
tion-destination in its original form in step 917, and the
method ends. If instead the potential-Downloadable is found
to include executable code in step 915 (and is thus a
“detected-Downloadable”), then the protection engine forms
a sandboxed package in step 919 and causes the protection
agent to be delivered to the information-Destination in step
921, and the method ends. As was discussed earlier, a suitable
protection agent can include mobile protection code, policies
and the detected-Downloadable (or information correspond-
ing thereto).

The FIG. 10a flowchart illustrates a method for analyzing
a potential-Downloadable, according to an embodiment of
the invention. As shown, one or more aspects can provide
useful indicators of the inclusion of executable code within
the potential-Downloadable. In step 1001, the protection
engine determines whether the potential-Downloadable indi-
cates an executable file type, for example, by comparing one
or more included file headers for file type indicators (e.g.
extensions or other descriptors). The indicators can be com-
pared against all known file types executable by all protected
Downloadable destinations, a subset, in accordance with file
types executable or desirably executable by the Download-
able-destination, in conjunction with a particular user, in con-
junction with available information or operability at the des-
tination, various combinations, etc.

Where content analysis is conducted, in step 1003 of FIG.
104, the protection engine analyzes the potential-Download-
able and determines in accordance therewith whether the
potential-Downloadable does or is likely to include binary

—_

0

20

25

40

45

60

65

20

information, which typically indicates executable code. The
protection engine further analyzes the potential-Download-
able for patterns indicative of included executable code in
step 1003. Finally, in step 1005, the protection engine deter-
mines whether the results of steps 1001 and 1003 indicate that
the potential-Downloadable more likely includes executable
code (e.g. via weighted comparison of the results with a
suitable level indicating the inclusion or exclusion of execut-
able code). The protection engine, given a suitably high con-
fidence indicator of the inclusion of executable code, treats
the potential-Downloadable as a detected-Downloadable.

The FIG. 105 flowchart illustrates a method for forming a
sandboxed package according to an embodiment ofthe inven-
tion. As shown, in step 1011, a protection engine retrieves
protection parameters and forms mobile protection code
according to the parameters. The protection engine further, in
step 1013, retrieves protection parameters and forms protec-
tion policies according to the parameters. Finally, in step
1015, the protection engine couples the mobile protection
code, protection policies and received-information to form a
sandboxed package. For example, where a Downloadable-
destination utilizes a standard windows executable, coupling
can further be accomplished via concatenating the MPC for
delivery of MPC first, policies second, and received informa-
tion third. (The protection parameters can, for example,
include parameters relating to one or more of the Download-
able destination device/process, user, supervisory constraints
or other parameters.)

The FIG. 11 flowchart illustrates how a protection method
performed by mobile protection code (“MPC”) according to
an embodiment of the invention includes the MPC installing
MPC elements and policies within a destination device in step
1101. In step 1102, the MPC loads the Downloadable without
actually initiating it (i.e. for executables, it will start a process
in suspended mode). The MPC further forms an access moni-
tor or “interceptor” for monitoring or “intercepting” down-
loadable destination device access attempts within the desti-
nation device (according to the protection policies in step
1103, and initiates a corresponding Downloadable within the
destination device in step 1105.

If, in step 1107, the MPC determines, from monitored/
intercepted information, that the Downloadable is attempting
or has attempted a destination device access considered unde-
sirable or otherwise malicious, then the MPC performs steps
1109 and 1111; otherwise the MPC returns to step 1107. In
step 1109, the MPC determines protection policies in accor-
dance with the access attempt by the Downloadable, and in
step 1111, the MPC executes the protection policies. (protec-
tion policies can, for example, be retrieved from a temporary,
e.g. memory/cache, or more persistent storage.)

As shown in the FIG. 12a example, the MPC can provide
for intercepting Downloadable access attempts by a Down-
loadable by installing the Downloadable (but not executing it)
in step 1201. Such installation will cause a Downloadable
executor, such as a the Windows operating system, to provide
all required interfaces and parameters (such as the IAT, pro-
cess ill, etc.) for use by the Downloadable to access device
resources of the host device. The MPC can thus cause Down-
loadable access attempts to be diverted to the MPC by modi-
fying the Downloadable IAT, replacing device resource loca-
tion indicators with those of the MPC (step 1203).

The FIG. 126 example further illustrates an example of
how the MPC can apply suitable policies in accordance with
an access attempt by a Downloadable. As shown, the MPC
receives the Downloadable access request via the modified

SOPHOS

EXHIBIT 1001 - PAGE 0026

US 8,677,494 B2

21

IAT in step 1211. The MPC further queries stored policies to
determine a policy corresponding to the Downloadable
access request in step 1213.

The foregoing description of preferred embodiments of the
invention is provided by way of example to enable a person
skilled in the art to make and use the invention, and in the
context of particular applications and requirements thereof.
Various modifications to the embodiments will be readily
apparent to those skilled in the art, and the generic principles
defined herein may be applied to other embodiments and
applications without departing from the spirit and scope of
the invention. Thus, the present invention is not intended to be
limited to the embodiments shown, but is to be accorded the
widest scope consistent with the principles, features and
teachings disclosed herein. The embodiments described
herein are not intended to be exhaustive or limiting. The
present invention is limited only by the following claims.

What is claimed is:

1. A computer-based method, comprising the steps of:

receiving an incoming Downloadable;

deriving security profile data for the Downloadable,

including a list of suspicious computer operations that
may be attempted by the Downloadable; and

storing the Downloadable security profile data in a data-

base.

2. The computer-based method of claim 1 further compris-
ing storing a date & time when the Downloadable security
profile data was derived, in the database.

3. The computer-based method of claim 1 wherein the
Downloadable includes an applet.

4. The computer-based method of claim 1 wherein the
Downloadable includes an active control.

5. The computer-based method of claim 1 wherein the
Downloadable includes program script.

6. The computer-based method of claim 1 wherein suspi-
cious computer operations include calls made to an operating
system, a file system, a network system, and to memory.

7. The computer-based method of claim 1 wherein the
Downloadable security profile data includes a URL from
where the Downloadable originated.

—_

0

—

5

20

25

30

22

8. The computer-based method of claim 1 wherein the
Downloadable security profile data includes a digital certifi-
cate.

9. The computer-based method of claim 1 wherein said
deriving Downloadable security profile data comprises dis-
assembling the incoming Downloadable.

10. A system for managing Downloadables, comprising:

a receiver for receiving an incoming Downloadable;

a Downloadable scanner coupled with said receiver, for
deriving security profile data for the Downloadable,
including a list of suspicious computer operations that
may be attempted by the Downloadable; and

a database manager coupled with said Downloadable scan-
ner, for storing the Downloadable security profile data in
a database.

11. The system of claim 10 wherein said database manager
also stores a date & time when the Downloadable security
profile data was derived by said Downloadable scanner, in the
database.

12. The system of claim 10 wherein the Downloadable
includes an applet.

13. The system of claim 10 wherein the Downloadable
includes an active control.

14. The system of claim 10 wherein the Downloadable
includes program script.

15. The system of claim 10 wherein suspicious computer
operations include calls made to an operating system, a file
system, a network system, and to memory.

16. The system of claim 10 wherein the Downloadable
security profile data includes a URL from where the Down-
loadable originated.

17. The system of claim 10 wherein the Downloadable
security profile data includes a digital certificate.

18. The system of claim 10 wherein said Downloadable
scanner comprises a disassembler for disassembling the
incoming Downloadable.

E I I N

SOPHOS

EXHIBIT 1001 - PAGE 0027

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,677,494 B2 Page 1 of 1
APPLICATION NO. : 13/290708

DATED : March 18, 2014

INVENTORC(S) : Yigal Mordechai Edery et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
Title page, item (75) Inventors -
Change “Nirmrod Itzhak Vered” to -- Nimrod Itzhak Vered --.
On Title Page 4, Column 2, Line 18, change

“printed Dec. 23, 2998, URL: http://www.microsft.com/workshop/”
to -- printed Dec. 23, 1998, URL: http:..www.microsoft.com/workshop/ --.

Signed and Sealed this
Ninth Day of September, 2014

Debatle 7 ZLea

Michelle K. Lee
Deputy Director of the United States Patent and Trademark Office

SOPHOS
EXHIBIT 1001 - PAGE 0028

