Technical Standard

Protocols for X/Open PC Interworking:
SMB, Version 2

tHE ()pen Group

Page 1 of 267 Verizon Exhibit 1004

[This page intentionally left blank]

Page 2 of 267

|] ¥
o

” | X/Open CAE Specification

Protocols for X/Open PC Interworking: SMB, Version 2

X/Open Company Ltd.

Page 3 of 267

© September 1992, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/ Open CAE Specification
Protocols for X/Open PC Interworking: SMB, Version 2

ISBN: 1 872630 45 6
X/Open Document Number: C209

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza

Forbury Road

Reading

Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

ii X/0Open CAE Specification (1992)

Page 4 of 267

| Contents

Chapter

Chapter

Chapter

1

1.1
1.2
1.3

2.1
2.2
2.2.1
2.2.2

3.1
3.2
3.3
3.3.1
3.3.2
3.33
3.4
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.6
3.7
3.7.1
3.7.2
3.7.3
3.8
3.8.1
3.8.2
3.9
3.10
3.10.1
3.10.2
3.11
3.12

Introduction.......eeeeeeeeeveceeane.

Why Republish........ccccon.
This Documentccccoovvveeieniennnn.

Overview of Document Layout......

SMB File-sharing Service Model..........conceerrcsnecnenn,

SMB Protocol Principles....................

Security Overview ...

Share-level Security Mode.............
User-level Security Mode..............

SMB Protocol Conventions....

Summary of SMBs ..o

SMB Environment Definitions........

Share-level and User-level Security Modes..........ccccoccivviniinncnns

Share-level Security Mode............

User-level Security Mode with Extended Protocols...........cccc...
User-level Security with Core Protocol...........ccoiiiiiins

Connection Protocols......c.ccccveein.

Namingcccoccovvrcinncinn s
Resource Namesooceeveeeennene
NetBIOS Namesccccooceviviveenene.

Uniform Naming Convention......
Canonical Pathnames...................

Long Names.........cccoccinincnnnes
Wildeards ...,
File Paradigm..........ccccccoovvinnnn.

RegularFiles ..o,

OpenModes........ccooiciiinnnnns

Write Behaviour ...

Locking Conventions.............ccccc.e....

Byte Locking ..o,

Opportunistic Locking...................

Chaining of Extended SMB Requestsccccoiiiniiiiniininnnns

Exception and Error Handling........

Disorderly LMX Session DissolUtion.............cocciiiiiiininiccnns

Errorsand Error Handling............

TIMeoULS ..o,
Downward-compatibility Support

Protocols for X/Open PC Interworking: SMB, Version 2

Page S of 267

[J%) DN = = =

[S2 NS IR Sy I

10
12
12
12
13
14
15
15
15
16
16
16
17
17
18
18
19
20
20
20
22
24
24
24
25
25

iii

Chapter

Chapter

iv

Page 6 of 267

4

4.1
4.2
4.3
43.1
432
433
434
4.3.5
4.3.6
437
4.4
441
44.2
443
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
5.3.1
5.3.2
5.33
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10
5.4
5.5
5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.6.5

Contents

LMX Considerations...............oeeeeeceeeeeeeeeeneeeeeseescesseeesesssesssensas 27
LMX Username Mapping........cccoociiiriniiciinicinneinensees e 27
LMX Filename Mapping ... s 28
LMX File Mapping.......ccocciiiiiiiiiie e s 30

SMB File ALIFIDULES ..oviviiee e 30
CAEFile Access PermiSSionscccvovioiiii i 30
File System ISSUEScciiiiiiiii i e 30
CAE Special Files ...t 31
Deleting or Renaming a File ..., 31
Long Filenames ... eneeeeneeas 31
Extended ALrDULES ..o 31
LMX File LOCKING. ..o 33
Interlocking Behaviour ... 33
Locking TIMEOULSciiiiiiiiiicicciicine e eenneenneas 34
Read-only LOCKS ... e 34
LMX Server Caching ... 35
LMX Print SPOOINGcoviiiiiiiii i s s 35
SIMB EITOr COAES......oiiiiiiiie et 35
Security POLICY ..o e 36
Negotiated DIALECE........c.coiiiiiiiii e 36
INEEWOTK ISSUES ...t 36

Data Objects and CONSLANES..............ccoeeevomerrrevnnecereiireesersissecsenns 37
SIMB FOIIMAL. ...ttt 37
SMB Command COAeS. ..ot 40
Data ODBJECES ...ttt st et 43

TIME FIelAS ..o s 43
Date FIelaS ..o s 43
File Attributes FieldSo 43
BUFTEIES ..ottt 44
File-sharing Control ... 44
RESOUICE TYPES. ..ot e 45
ACCESS IMOAES ... 46
Open FUNCHON ...t 46
Resource Names, Pathnames, Filenames and Network Pathnames.....46
FHle TAENEIIEIS ... ivie et ettt e 47
SIMB DHAIECES ..ot ettt ettt 48
THIMEOULS ...ttt ettt e et ee e e eee e eee e 48
SIMB EITOr COAES......oiiiiiiiie et 49
SMB Error Class Mappings........ccccvrioeiicininescneieeeiessesseeseeneenas 49
Error Codes for the SUCCESS ClIasscoooiiiiiioiiiieecececeeee 49
Error Codes for the ERRDOS CIassc..coooiiiiiiiiiiii e 49
Error Codes for the ERRSRV CIassc..cocooviiiiiiiiiiiiecceceeeeee 51
Error Codes for the ERRHRD ClIass.......c.ccccoooiiiiiiiiiiiciceceeee 52

X/Open CAE Specification (1992)

Contents

Chapter 6 Core SMB Connection Management Requests.................. 55
6.1 SMBnegprot Specification ... e 55
6.2 SMBLCON SPeCifICatioNc.cvieni it st 57
6.3 SMBtdis SPECIfICAtIONovucuieciiiiiiriens e e 59
6.4 SMBexit SPeCIfICALIONivuiuiiiiiiiiiiricnt e e 61
Chapter 7 Core SMB File Operation Requests........ococomererconcreriicsnecnnnn, 63
7.1 SMBcreate SPecification ... 63
7.2 SMBmMKNew Specification ... e 67
7.3 SMBopen SPecifiCation ...t et 70
7.4 SMBread Specification ..o e 73
7.5 SMBwrite SPeciflcation..... ..o e 76
7.6 SMBIseek SPecification ... e e 79
7.7 SMBIOck SPecification.cciiiiriiiiii e et 81
7.8 SMBunlock Specification...... ..o 83
7.9 SMBflush SPecification ... 85
7.10 SMBclose SPeCificationcccviiiiniiinieninen et 87
7.11 SMBMY SPecifiCation ...c..ccoi ettt 89
7.12 SMBunlink Specification ... e 92
Chapter 8 Core SMB Directory and Attribute Operations.................. 95
8.1 SMBmMKdir Speciflcationocovi i 95
8.2 SMBrmdir Specification......c.coueiiii e e 97
8.3 SMBsearch SpPecification ... 99
8.4 SMBgetatr Specification ... 103
8.5 SMBsetatr SpecifiCationo e 105
8.6 SMBdskattr Specification ... 107
8.7 SMBchkpath Specification ... e 109
Chapter 9 Core SMB Spool Operation Requests........ccoeveenerrrricnnecennn. 111
9.1 SMBsplopen Specification..... ... 111
9.2 SMBSPIWT SPeCification......c.ciiiiriiin it s 113
9.3 SMBsplclose SPeciflcation........oocviiiiinicnener e 115
9.4 SMBsplretq Specification ... 117
Chapter 10 Core Plus SMB File Operations........rconeceeionneceenn. 121
10.1 SMBnegprot Specification i e 121
10.2 SMBreadbraw Specification. ..o 123
10.3 SMBwritebraw Speciflcation ..ot 125
10.4 SMBlockread Specification ... e 128
10.5 SMBwriteunlock Specification ... s 130
10.6 SMBwriteclose SPeciflcation ... 132
Chapter 11 Extended 1.0 SMB Connection Management Requests ... 135
11.1 SMBnegprot Specification i e 135
11.2 SMBsecpkgX Specification.... ..o e 139
11.3 SMBsesssetupX Specification ... 144
11.4 SMBtcONX SPecifICationccoviiiiiiint e e 147
Protocols for X/Open PC Interworking: SMB, Version 2 A%

Page 7 of 267

Chapter

Chapter

Chapter

Chapter

Chapter

vi

Page 8 of 267

12

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

13

13.1
13.2
13.3
13.4
13.5

14

14.1
14.2
14.3
14.4

15

15.1
15.2
15.3
15.4
15.5

16

16.1
16.1.1
16.1.2
16.1.3
16.1.4
16.1.5
16.1.5.1
16.1.5.2
16.1.5.3
16.1.5.4
16.1.6
16.1.7
16.2
16.3
16.4
16.5
16.6

Contents

Extended 1.0 SMB File Operations.........ocooneeeeronneceenn. 151
SMBopenX Specification ... e 151
SMBlockingX Specification ..o e 156
SMBreadX Specification ...t e 160
SMBwritebraw SpecifiCation ..o 163
SMBwriteclose SPeciflcation ... 166
SMBwriteX Speciflcation........ocovi i e 168
SMBreadbmpx SPecification ..o 171
SMBwritebmpx Specification ... 174

Extended 1.0 SMB Directory and Attribute Operations.... 179
SMBAirst Specification ... e s 179
SMBfclose SPecification...... oo 181
SMBFfunique SPecification ... e 182
SMBgetattrE Specification.o e 183
SMBsetattrE Speciflcation ..o e 185

Extended 1.0 SMB Miscellaneous Requests.........ccccccmmc. 187
SMBcOpY SPecifiCation ... e e 187
SMBecho SpecifiCation.......c.ov i e 191
SMBI0Ct] SPECIfICALION ... e 193
SMBmMOve SPeciflcation..........cciiiiinien e 194

Extended 2.0 Protocol Additions and Modifications........... 197
SMBsesssetupX Specification ... e 197
SMBcopy SPecifiCation ... e e 201
SMBfindnclose Specificationo, 202
SMBfindclose Specification ... e 203
SMBuloggoffX Specification ..o e 204

Extended 2.0 Protocol SMBrans2eeeconneeeenn. 207
SIMIBLFANSZ ...ttt et bbb 207

Request FOrmats. ... 207
Response FOrmat.. ... e 209
Transaction FIOW ... e 210
SEIVICR .ttt 211
Extended AttriDULe ... 212
Errors Encountered When Creating EAS ... 212
Encapsulation of EAs in the SMB Protocol...........cccoonnn. 212
FEA SIIUCLUTE ..ottt 212
GEA SITUCLUTE L.ttt e 214
Information Levels ... e 214
Defined SMBtrans2 Protocols...........ccuiiiici s 214
TRANSACTZ2_OPEN ..ottt st 216
TRANSACTZ_FINDFIRSTccoiiiiiiiiiniiiieenee e s 221
TRANSACTZ_FINDNEXTcooiiiiiiniiiiiinneneene et eeeeeeees 225
TRANSACTZ_QFSINFO ...ttt s 229
TRANSACTZ_SETESINFO ..ottt e 231

X/0Open CAE Specification (1992)

Contents

16.7 TRANSACTZ_QPATHINFOciiiiiiiiiii e et 233
16.8 TRANSACTZ_SETPATHINFOcocooiiiiiiiniiiniiininn e 236
16.9 TRANSACTZ_QFILEINFO......c.iiiiiiniin it 238
16.10 TRANSACT2_SETFILEINFO ...t s 241
16.11 TRANSACTZ_FINDNOTIFYFIRST......occiiiiiiiiiine e 243
16.12 TRANSACTZ_FINDNOTIFYNEXTcoiiiniiiiinninenenneeneeenens 246
16.13 TRANSACTZ_MEKDIR ..ottt esesse s esesseens 249
Appendix A SMB Transmission Analysis.......eeioneseeionsecsenn, 251
Al INErOAUCHION ...t 251
A2 DOS FUNCHONS ...ttt 252
A3 OS5/ 2 FUNCHIONS ..ttt sttt 259
Appendix B LAN Manager Remote Administration Protocol........... 263
B.1 OVEIVIBW ...ttt 263
B.2 Remote APIProtocol. ...t 264
B.3 LMX Access Control Lists Mapping.........ccoccoecvncnninninninccnen 265
B.4 Transaction API Request Format...........ccocooiiiiniccicen, 267
B.4.1 Parameter SECtion ... 267
B.4.2 Data SECHION ...ttt e s 267
B.5 Transaction API Response Format..........cccoiiiiiinen 268
B.5.1 Parameter SECtion ... 268
B.5.2 Data SECHION ...ttt e s 268
B.6 DesScriptor SEHNESc.oviiiiiiiiiiei e 269
B.6.1 Descriptor String TYPes ... 269
B.6.2 Pointer Types and Returned Data ... 271
B.7 EXAMPIES ..ottt 272
B.7.1 INetShareDel. ...t 272
B.7.2 INetShare Add. ... 272
B.7.3 NetShare ENUM ... e 273
B.8 APTNUMDETS ...t ettt s 275
Appendix C The X/Open Security Package ... 277
Cl1 E() FUNCLIONS ..ottt 277
C2 U() FUNCEOMS ...t 278
Appendix D SMB Encryption Techniques ..., 279
D.1 SMB A ULhentiCationccoiiiiiiiiie ettt 279
D.1.1 SMBNegprot RESPONSE.......c.cooiiiiiiiiiiici ittt e s 279
D.1.2 SMBtcon, SMBtconX, SMBsesssetupX Requests..........cccocvenninen. 279
Appendix E TOP/INEtBIOS........oceseeseresticsssseessessssissssssssssssissssssssssssiisssssees 281
Appendix F REC TO0T oot sssissesssssisesssssissessssiasesssnns 349
Protocols for X/Open PC Interworking: SMB, Version 2 vii

Page 9 of 267

Appendix G

viii

Page 10 of 267

Contents

D02 oottt 419
ATY w.oooeveeessseesssses s s 505
.. 511

X/Open CAE Specification (1992)

A
[|

|| Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:
» CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Protocols for X/Open PC Interworking: SMB, Version 2 ix

Page 11 of 267

Preface

o Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:
o Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

¢ Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

« Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

» a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

X X/0Open CAE Specification (1992)
Page 12 of 267

Preface

» a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/0Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done in any one of the following ways:

« anonymous ftp to ftp.xopen.org
« ftpmail (see below)
« reference to the Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information using ftpmail, send a message to ftpmail@xopen.org with the
following four lines in the body of the message:

open
cd pub/Corrigenda
get index

quit

This will return the index of publications for which Corrigenda exist. Use the same email
address to request a copy of the full corrigendum information following the email instructions.

This Document

Of all the types of computers, personal computers are the most abundant. Originally intended
to be a personal productivity tool, an ever-increasing number of them are being connected to
computer networks, thus becoming parts of distributed information systems.

Personal computers normally run under single-user operating systems with interfaces differing
from those specified in the X/Open Portability Guide. However, X/Open realises how
important it is to facilitate interworking between personal computers and X/Open-compliant
systems in a standardised way.

Two areas have to be addressed to achieve this goal; interoperability, and programming
interfaces to server functions facilitating applications portability. Interoperability means that
personal computers and X/Open-compliant systems can interchange information using the
same network protocols. Standardisation of programming interfaces to server functions, in
addition lo standardisation of protocols, makes il possible to wrile distributed client/server
applications whose server component will be portable to all X/Open-compliant systems.

For interoperability via asynchronous serial links, X/Open has already defined in the X/Open
Portability Guide, Issue 3 a file transfer protocol and a set of features provided on X/Open-
compliant systems for terminal emulators. Now it is time to address interworking in local area
networks (LANS).

In the X/Open (PC)NFS and SMB Developers’ Specifications interoperability of personal
computers and X/Open-compliant systems is addressed. The applications portability
components, containing definitions of programmatic interfaces to server functions, are
documented in the X/Open CAE Specification, IPC Mechanisms for SMB and the X/Open CAE
Specification, Use of XTI to Access NetBIOS.

Protocols for X/Open PC Interworking: SMB, Version 2 xi
Page 13 of 267

xii

Preface

When connecting personal computers and X/Open-compliant systems via standard transport
protocols, there appear to be two possibly overlapping but distinct market segments. In the first
one, personal computers are added to existing networks of X/Open-compliant systems which
already have a distributed file system, the most widely-adopted one being the Network File
System originally designed by Sun Microsystems. In the second one, X/Open-compliant servers
are added to LANSs consisting primarily of personal computers. For personal computers running
under DOS or OS/2 operating systems, which is the vast majority, the generally accepted non-
proprietary protocol is the Server Message Block from Microsoft Corporation.

Therefore, for connecting personal computers to X/Open-compliant systems, both the (PC)NFS
(see the X/Open Developers’ Specification, Protocols for X/Open PC Interworking: (PC)NFS)
and the SMB protocols have been adopted by X/Open.

The following diagram illustrates the relationship of the service protocols (defined in the
X/0Open (PC)NFS and SMB Developers’ Specifications) to their underlying transport protocols.
It also reflects the organisation of the two documents. The (PC)NFS specification describes the
protocols for NFS, RPC and XDR. The SMB specification describes the protocols for SMB, the
mapping of NetBIOS over an OSI transport (TOP/NetBIOS) and the mapping of NetBIOS over
an Internet Protocol Suite transport (RFC1001/RFC1002).

NFS
SMB
RPC/XDR
TOP/NetBIOS RFC 1001/1002
TCP UDP
Connection- Defined Defined
Connectionless oriented outside the outside the
Transport Transport Specification Specification
Services Services
(ISP TA51)
Defined
outside the Defined Ip
Specification outside the
Specification Defined
outside the
Specification

Since SMB and NFES protocols do not easily map onto the seven layer OSI Reference Model, the
diagram does not use it.

X/0Open CAE Specification (1992)

Page 14 of 267

Preface

Throughout the specification “DOS’” is used to refer to the MS-DOS or PCDOS personal
computer operating system.

Protocols for X/Open PC Interworking: SMB, Version 2 xiii
Page 15 of 267

Xiv

."‘?

Trade Marks

Ethernet® is a registered trade mark of Xerox Corporation.

LAN Manager™ is a trade mark of Microsoft Corporation.

Ms-DOS® is a registered trade mark of Microsoft Corporation.

NFS® is a registered trade mark of Sun Microsystems.

08/2%isa registered trade mark of International Business Machines Corporation.
Palatino® is a registered trade mark of Linotype AG and/or its subsidiaries.
PC-NFS™ is a trade mark of Sun Microsystems.

UNIX® is a registered trade mark of UNIX System Laboratories Inc. in the U.S.A. and other
countries.

X/Open™ and the “X’* device are trade marks of X/Open Company Ltd. in the UK. and other
countries.

X/0Open CAE Specification (1992)

Page 16 of 267

|
|
f !

Reférenced Documents

The following documents are referenced in this specification:

IPC
X/0Open CAE Specification, IPC Mechanisms for SMB
(Document No.: C195, ISBN: 1-872630-28-6).

NetBIOS
X/Open CAE Specification, Use of XTI to Access NetBIOS, contained in X/Open CAE

Specification, X/Open Transport Interface (XTI)
(Document No.: C196, ISBN: 1-872630-29-4).

0S/2
Microsoft OS/2 Programmer’s Reference, Volume 4.

(PC)NFS
X/Open Developers’ Specification, Protocols for X/Open PC Interworking: (PC)NFS
(Document No.: D030, ISBN: 1-872630-00-6).

SMB
X/0Open Developers’ Specification, Protocols for X/Open PC Interworking: SMB
(Document No.: D110, ISBN: 1-872630-01-4).

XNFS
X/0Open CAE Specification, Protocols for X/Open Interworking: XNFS, Issue 4
(Document No.: C218, ISBN: 1-872630-66-9).

XPG3
X/Open Portability Guide, Issue 3, January 1989.

Protocols for X/Open PC Interworking: SMB, Version 2 XV

Page 17 of 267

Referenced Documents

XVi X/Open CAE Specification (1992)
Page 18 of 267

Jv Chapter 1

[
y

| Introduction

1.1 ~ Why Republish

A previous version of this specification has been published. The previous version described the
SMB protocol up to a dialect level called extended. Since that time, a new dialect has been added
and several errors and omissions were found in the specification. This version of the
specification corrects the errors and omissions and contains the definition for the extended 2.0
SMB dialect. The extended protocol of the previous version of this document is now called
extended 1.0 which is to be distinguished from the new extended 2.0 dialect.

1.2 This Document

The relevant parts of this CAE Specification include the specification of the SMB protocol itself,
definition of the conventions used in mapping SMB redirector semantics onto X/Open
semantics, specifications of the binding of the NetBIOS interface to popular protocol stacks, and
selection of protocol profiles to permit interoperability.

Information regarding NetBIOS is provided because the great majority of SMB redirector
implementations of the SMB protocols rely on NetBIOS as well.

The interface to the NetBIOS implementation on the CAE system is outside the scope of this
specification. Within this document only the NetBIOS service definition to the Internet Protocol
Suite (RFC 1001/1002) (see Appendices F and G) and an OSI transport (TOP/NetBIOS) (see
Appendix E on page 281) are considered.

In this second publication, the SMB definitions necessary for Inter-process Communication (IPC)
from SMB redirectors to processes executing on the same CAE system as the LMX server have
been removed. These definitions are found in the X/Open CAE Specification, IPC Mechanisms
for SMB.

This specification does include the SMB protocol and the SMB service definition to be
implemented by an LMX server. The SMB service definition of the SMB redirector as well as
user interfaces necessary to access network resources are outside the scope of this specification.

Protocols for X/Open PC Interworking: SMB, Version 2 1

Page 19 of 267

Overview of Document Layout Introduction

1.3

2

Overview of Document Layout
Chapter 2 provides an overview of the service and security model for the SMB protocol.

Chapter 3 discusses the conventions related to the rules the SMB protocol maintains. This
chapter describes the environments maintained within the SMB protocol model as well as rules
governing file locking and user security.

Chapter 4 describes conventions that can be followed for mapping the SMB protocol model
described in Chapter 3 into the CAE environment. This chapter provides guidelines for such
things as how filenames in the CAE environment are viewed by the SMB protocol environment.

Chapter 5 defines the basic structure, data items and constant definitions for the SMB protocol.
The core dialect is defined in Chapter 6 through Chapter 9.

Additions to the core dialect that make up the core plus dialect are found in Chapter 10.
Chapter 11 through Chapter 14 define the extended 1.0 SMB dialect.

The additions for the extended 2.0 SMB dialect are covered in Chapter 15 and Chapter 16.

A description of the mapping of DOS and OS/2 system calls to SMB protocol requests,
descriptions of support of NelBIOS names on TCP/IP and OSI protocols, and additional SMB
protocols that may be used for LMX server administration are contained in the appendices to
this specification.

X/Open CAE Specification (1992)

Page 20 of 267

_,:'_I,.*': Chapter 2

SMB File-sharing Service Model

This CAE Specification describes the X/Open LAN Manager (LMX) architecture, the Server
Message Block (SMB) protocol, and their applicability to interoperability between X/Open-
compliant LAN Manager implementations running in an X/Open Common Applications
Environment (CAE) and SMB redirectors running DOS or OS/2.

LMX provides a file and print-sharing service which preserves, as far as possible, the same
semantics as provided by a DOS or OS/2 system to an application. This service is provided by
mapping the SMB redirector semantics onto those supported by the CAE system in which the
LMX server runs.

This model is in contrast to a file-sharing service, in which the LMX server provides a complete
emulation of the SMB redirector's file storage architecture, but does not permit access to that
emulation from applications running on the same CAE system. The intent behind the LMX
approach is to permit applications existing on SMB redirectors and CAE systems to cooperate in
the processing of information. Within this architecture the SMB redirector can assume that only
the file contents are stored in the same format as in the SMB redirector’s operating system. That
is, directory information does not need to be stored on the CAE system in a file or have the same
layout as in the SMB redirector’s operating system.

In LMX resources are shared by making the name of the resource available for access from the
network. For example, the LMX server named XOPEN will make a resource DOCUMENTS that
contains this document available. This allows users on SMB redirectors to connect to this
resource and access this data. In this example the resource DOCUMENTS could point to a
directory tree that contains the files belonging to this document. The user will see this directory
and its files as if they are on the local SMB redirector’s system.

Protocols for X/Open PC Interworking: SMB, Version 2 3

Page 21 of 267

SMB Protocol Principles SMB File-sharing Service Model

2.1

4

SMB Protocol Principles

File and print sharing are implemented using the SMB protocol. This protocol is used between
two types of system: SMB redirectors and LMX servers. When a user on an SMB redirector
wants to make use of SMB file and print services available in the network the user needs an SMB
redirector implementation of the SMB protocol. Upon request the SMB redirector will connect to
an LMX server. Throughout this document the term LMX server does not imply any particular
design.

The SMB protocol requires a reliable connection-oriented virtual circuit provided by a NetBIOS
implementation.

Each LMX server in the network will offer resources. When a user on an SMB redirector wishes
to use a resource, or resources, from an LMX server, the user of the SMB redirector will cause the
SMB redirector to set up a single LMX session with the desired LMX server using NetBIOS. The
action of setting up the LMX session includes using NetBIOS to locate the system in the network
then negotiating the level of SMB support desired by the SMB redirector. If multiple resources
are desired by the SMB redirector, the SMB redirector will use the single LMX session to perform
all SMB exchanges. So, if the user requests use of both a file system share and a printer share on
the same LMX server, then only one LMX session exists between the SMB redirector and this
LMX server system.

Once the LMX session has been established the SMB redirector will take initiative to request
services offered by the LMX server by sending SMB requests across the LMX session. Each SMB
request is executed by the LMX server and the result is sent back to the SMB redirector in an
SMB response. SMB redirector implementations may support multiple simultaneous
connections to different LMX servers.

The SMB protocols can be divided into:
« core protocol
« core plus protocol
« extended 1.0 protocol
« extended 2.0 protocol

each one being a superset of the previous one. The extended protocols offer a richer set of
functionality and are required for some of the IPC mechanisms described in the X/Open CAE
Specification, IPC Mechanisms for SMB.

In the extended protocols, mechanisms exist to have users authorised by the LMX server (see
Section 2.2). If an SMB protocol supporting user authorisation is negotiated the LMX server will
authorise the one user working on the SMB redirector upon request of the SMB redirector. This
is commonly referred to as a logon procedure.

Once the level of protocol is negotiated, and if necessary the user has been authorised, the SMB
redirector will request access to a specific resource. The resource requested may be a directory
tree, spooled device, I/0 device, etc. If the requested resource has been made available by the
LMX server for access by that user, file and spool operations can be executed (for example, open
file, show print queue) from now on.

X/0Open CAE Specification (1992)

Page 22 of 267

SMB File-sharing Service Model Security Overview

2.2 Security Overview

The networks using the SMB protocol will contain not only multi-user systems with user-based
security models, but also single-user systems that have no concept of user IDs or permissions.
Once these systems are connected to the network, however, they are in a multi-user
environment and need a method of access control. First, unsecure systems need to be able to
provide some sort of bona fides to other systems in the network which do have permissions.
Second, unsecure nodes need to control access to their resources by others.

The SMB protocol defines a mechanism that enables the network software to provide the
security where it is missing from the operating system, and supports user-based security where
it is provided by the operating system. The mechanism also allows systems with no concept of
user ID to demonstrate access authorisation to systems which do have a permission mechanism.

The LMX server will define the security mode that is being used; it cannot be negotiated by the
SMB redirector. Within the SMB protocols two forms of security exist:

« share-level security mode

Can be applied to restrict the access to a shared resource, placing access control at the level of
the resource.

« user-level security mode

Can assign user context to anyone establishing an LMX session. This way different access
rights can be granted to people connecting to the same resource. This form of security can
only be used when an extended SMB protocol has been negotiated.

2.2.1 Share-level Security Mode

A share-level security mode LMX server makes a resource available to all users on the network.
Any user who knows the name of the LMX server, the name of the resource, and the password,
has the same access to everything (for example, read-only) within a resource. The password is
optional.

For example, the LMX server named XOPEN offers the resource DOCUMENTS. This is a file
system subtree where each individual file or directory will have the same permissions for all
users, for example, read-only or read /write. Access to this resource is controlled by a password.
The LMX server could make a second resource available with a different password and different
access rights pointing to the same directory with the files belonging to this document.

2.2.2 User-level Security Mode

A user-level security mode LMX server also makes a resource available, but in addition requires
the user to provide a username and optional password in order to gain access.

Thus the LMX server is now able to allow differing access rights depending on the validated
user. The access rights may not only be specified per resource but may be set individually for
each file or directory accessible via a resource name. One user may have full access, another
read-only and perhaps another no access to different files and directories within the shared
resource.

For example, on the LMX server named XOPEN with the resource DOCUMENTS a user called
BOB could be the author of the document and a user called JAN a reviewer for the document.
Now BOB can have read/write access to the document while JAN is only able to read the files
belonging to the document.

Protocols for X/Open PC Interworking: SMB, Version 2 5
Page 23 of 267

SMB File-sharing Service Model

6 X/0Open CAE Specification (1992)
Page 24 of 267

i
b

*‘:?il Chapter 3

I/ SMB Protocol Conventions

Much of the SMB protocol definition is design and implementation-independent. In addition to
the SMB protocol and specific meaning of fields, the LMX server has to obey certain rules. This
chapter includes a summary of SMBs and defines generic conventions for LMX servers, such as:

1. SMB Environments

user-level and share-level security modes

connection protocols

naming

wildcards and the interpretation of wildcard pathnames

file attributes

N g e

locking, including opportunistic locking, and an implicit variety of locking for enhancing
the performance of applications which do not make explicit lock requests

oo

chaining, and the mechanism for making multiple requests in a single SMB
9. exception and error handling
10. timeouts

11. downward-compatibility support

3.1 Summary of SMBs

The following table lists the SMBs (requests and responses) which are required for various levels
of the SMB protocol. The table gives the name of each request/response and a brief description,
the section of this specification in which the SMB is described, and indicates whether the request
is part of the core (C), core plus (C+), extended 1.0 (E) or extended 2.0 (E2) SMB protocol. The
SMBs used to implement file and print sharing are defined here. Additional SMBs can be found
in the X/Open CAE Specification, IPC Mechanisms for SMB and the appendices to this
specification.

In the following tables, the SMB names ending with capital X indicate that the SMB request
permits chaining (see Section 3.9 on page 22).

Protocols for X/Open PC Interworking: SMB, Version 2 7

Page 25 of 267

Summary of SMBs

SMB Protocol Conventions

Name Description Section Protocol
SMBchkpath Verify path is directory 8.7 C
SMBclose Close file 7.10 C
SMBcopy Copy file 14.1 E
SMBcreate Create/Open file 7.1 C
SMBdskattr Get the LMX server file 8.6 C
system information
SMBecho Test an LMX session 14.2 E
SMBexit Indicate process exit 6.4 C
SMBfilose Close active search 13.2 E
SMBffirst Active search 13.1 E
SMBfindclose Close an active search 15.4* E2
SMBfindnclose Notification of close for 15.3* E2
an active search
SMBflush Flush data for file(s) 79 C
SMBfiunique One-time active search ~ 13.3 E
SMBgetatr Get file attributes 8.4 C
SMBgetattrk Get extended file 13.4 E
attributes
SMBlock Lock byte-range of file 7.7 C
SMBlockingX Lock multiple ranges 12.2 E
and X
SMBlockread Lock and read byte-range 10.3 C+
SMBlseek Set current file pointer 7.6 C
SMBmkdir Create new directory 8.1 C
SMBmknew Create new file 7.2 C
SMBmove Move files by copying 14.4 E
SMBmv Change name of file(s) 7.11 C
SMBnegprot Negotiate Protocol 6.1 *
SMBopen Open File 7.3 C
SMBopenX Extended open and X 12.1 E
SMBread Read from file 7.4 C
SMBreadbmpx Read block multiplexed 12.5 E
SMBsecpkgX Negotiate security 11.2 E
packages and X
SMBtrans2(TRANSACTZ2_FINDFIRST) Active search 16.3 E2
SMBtrans2(TRANSACTZ2_FINDNEXT) Active search 16.4 E2
SMBtrans2(TRANSACT2_MKDIR) Create new directory 16.13 E2
SMBtrans2(TRANSACTZ2_OPEN) Open File 16.2 E2
SMBtrans2(TRANSACTZ2_SETFSINFO) Set file system 16.6 E2
information
SMBtrans2(TRANSACT2_QPATHINFO) Query file information 16.7 E2
SMBtrans2(TRANSACTZ2_SETPATHINFO) Set file information 16.8 E2
SMBtrans2(TRANSACTZ2_QFILEINFO) Query file information 16.9 E2
SMBtrans2(TRANSACTZ2_SETFILEINFO) Set file information 16.10 E2
SMBtrans2(TRANSACTZ2_FINDNOTIFYFIRST) Monitor file or directory 16.11 E2
changes

‘ SMBtrans2(TRANSACTZ_FINDNOTIFYNEXT) Continue monitoring 16.12 E2

(*) The SMBnegprot response changes if either extended dialect of SMB is being negotiated.

8 X/QOpen CAE Specification (1992)
Page 26 of 267

SMB Protocol Conventions

Name

SMBreadbraw
SMBreadX
SMBrmdir
SMBsearch

SMBsesssetupX
SMBulogoffiX

' SMBsetatr
SMBsetattrE

SMBsplclose

SMBsplopen
SMBsplretq
SMBsplwr
SMBtcon
SMBtconX
SMBtdis
SMBunlink
SMBunlock
SMBwrite
SMBwritebmpx
SMBwritebraw
SMBwriteclose
SMBwriteunlock

| SMBwriteX

Protocols for X/Open PC Interworking: SMB, Version 2
Page 27 of 267

Summary of SMBs

Description

Read block raw

Read and X

Delete empty directory
Directory wildcard
lookup

Session setup and X
User logoff and X

Set file attributes

Set extended file
attributes

Close and queue spool
file

Create spool file

Get spool queue info
Write to spool file

Tree connect

Tree connect and X

Tree disconnect

Delete file

Unlock byte-range of file
Write to file

Write block multiplexed
Write block raw

Write and close file
Write and unlock byte-
range

Write and X

Section Protocol |

10.1 C+
12.3 E
8.2 C
8.3 C
11.3 E
15.5* E2
8.5 C
13.5 E
9.3 C
9.1 C
9.4 C
9.2 C
6.2 C
11.4 E
6.3 C
7.12 C
7.8 C
7.5 C
12.6 E
10.2 C+
10.5 E
10.4 C+
12.4 E

SMB Environment Definitions SMB Protocol Conventions

3.2

10

SMB Environment Definitions

The following environments are defined for the purpose of specifying the SMB protocol. An
LMX server does not need to construct such an environment, as long as the required semantics
are preserved.

The hierarchy of environments is summarised below:

LMX Session Environment

User Environment (UID)

Resource Environment (TID)
Process Environment (PID)
Multiplex Request Environment (MID)
File Environment (FID)

LMX Session Environment

This consists of one LMX session established between an SMB redirector and an LMX
server. The LMX session represents the logical connection between the SMB redirector and
the LMX server. This connection is initiated by the SMB redirector and is only considered
an LMX session after the SMBnegprot protocol exchange has successfully completed. Only
one protocol dialect can be negotiated on a single LMX session.

An LMX session is implemented using a NetBIOS session.

For each LMX session the maximum buffer size for subsequent SMB requests and
responses is set by the LMX server and sent to the SMB redirector. It is the SMB
redirector’s responsibility not to send larger SMB requests than expected by the LMX
server.

An LMX server may drop the LMX session after the last resource environment has been
terminated. When an LMX session becomes inactive for some period of time and the LMX
server is not maintaining any file environment information for the SMB redirector, the
LMX server may choose to terminate the LMX session. This allows other SMB redirectors
to connect and use the LMX session resource. It is the responsibility of the SMB redirector
to reestablish the LMX session after it has been terminated due to this timeout.

If the LMX session environment is terminated, all PIDs, TIDs and FIDs within it will be
invalidated.

User Environment, also called the Logon Environment

This is represented by a user ID (UID). A UID uniquely identifies a user within a given
LMX session environment. Within dialects of this document, there is exactly one UID per
LMX session. An LMX server executing in user-level security mode uses this to identify
the scope and type of access allowed for this user. In share-level security mode this
environment is not used.

If the user environment is terminated in the extended 2.0 dialect via SMBulogoffX, all FIDs
and TIDs currently held by the UID are invalidated. In the extended 1.0 dialect no
termination SMB exists other than the termination of the LMX session.

Resource Environment

This is represented by a TID. A TID uniquely identifies a resource being shared within the
LMX session between the SMB redirector and the LMX server. The TID is requested by the
SMB redirector and assigned by the LMX server. The resource being shared may be a
directory tree, spooled device, I/O device, etc. More than one TID may exist within a
single LMX session environment.

X/Open CAE Specification (1992)

Page 28 of 267

SMB Protocol Conventions SMB Environment Definitions

In an LMX server executing in share-level security mode, the TID also identifies the scope
and type of accesses allowed across the connection.

Within the core SMB protocol it is possible for the LMX server to set a new maximum
buffer size for subsequent SMB requests within this resource environment. The new
maximum buffer size is not only valid for the new resource environment, but for all
resources environments established within the LMX session. It is the SMB redirector’s and
the LMX server'’s responsibility not to send larger SMBs than negotiated.

If a resource environment is terminated (via an SMBtdis request) all PIDs and FIDs within
it will be invalidated. The LMX server will close all files, free all locks, release all active file
searches and terminate all processes created on behalf of that TID.

4. Process Environment

This is represented by a process ID (PID). A PID uniquely identifies an SMB redirector
process or thread within a given LMX session environment. Most SMB requests include a
PID to indicate which process initiated the request. SMB redirectors inform LMX servers
of the creation of a new process by simply introducing a new PID. The LMX server does
not maintain any process relationships.

Within the core SMB protocol the SMBexit request terminates the process environment.
Otherwise, there is no mechanism for the LMX server to determine a process exit on the
SMB redirector. It is the SMB redirector’s responsibility to close a resource when the last
SMB redirector process referencing the resource closes it.

Files opened by one process may be manipulated by another process in the same resource
environment (that is, possessing the same TID).

If in the SMB core protocol a process environment is terminated, the LMX server will
invalidate all FIDs created by that PID.

5. File Environment

This is represented by a file ID (FID). An FID identifies an open file and is unique within a
given LMX session environment. Another LMX session environment may be given an FID
of the same value, but the FID will refer to a different open instance of the same or different
file. The scope of the FID is the user environment. This means a file may be opened and its
FID passed to another process (using a different PID in the same LMX session) for use
without being opened by this process. The second process must use the same UID and
TID as the process which opened the file.

If a file environment is terminated (via an SMB request) or invalidated, all locks placed on
that FID will be released.

6. Multiplexed Request

This is represented by a multiplexed ID (MID). This is not an environment, but a part of
the SMB request that needs to be discussed at this time. An MID uniquely identifies an
SMB request within the LMX session. By using the MID, an SMB redirector is able to send
multiple requests to the LMX server and determine which SMB response is associated with
each SMB request. There is no termination of the Multiplex Request Environment. It is
maintained for the SMB redirector’s use only. The core and core plus protocol do not use
an MID.

Protocols for X/Open PC Interworking: SMB, Version 2 11
Page 29 of 267

Share-level and User-level Security Modes SMB Protocol Conventions

3.3

3.3.1

3.3.2

12

Share-level and User-level Security Modes

Share-level Security Mode

The following section applies to the access of LMX servers that use share-level security. By
default all SMB requests are refused as unauthorised. When an administrator of the LMX server
chooses to allow access to resources, he or she would establish each share with the following
attributes:

« The resource type (see Section 5.3.6 on page 45) that will be used in SMBtcon and SMBtconX
requests.

» The mapping of the resource type to the resource on the CAE system (for example, file
system subtrees will be identified on the CAE system with the root of the offered subtree
being the directory shared).

» An indication of which access to this resource is permitted (for example, read-only).

» Optionally, a password (to be supplied in the SMBtcon or SMBtconX request) is required
before access to the resource is permitted.

Note that when a file system subtree is shared, all files underneath that directory are then
affected. If a particular file is within the range of multiple offers, connecting to any of the offers
gains access to the file; the access rights gained (for example, read versusread /write) will depend
upon the attributes of the offer that the SMB redirector connected to. The LMX server will not
check for nested directories with more restrictive permissions.

For example, if the LMX server is offering a read/write share JAZZ, corresponding to path
fusr/jazz, and a read-only share JAZZCAT, corresponding to path /usr/jazz/catalog, an SMB
redirector which connected to the JAZZ share would be permitted read /write access to the file
catalog/myrecs, even though that file is also contained within the scope of a read-only share.

User-level Security Mode with Extended Protocols

LMX servers with user-based file security (in user-level security mode) will require the SMB
redirector to present a username and password (if any) along with the requested UID value prior
to accessing resources.

A username and password are sent by the SMB redirector and validated by the LMX server via
the SMBsesssetupX protocol. If the username and password are valid the LMX server responds
with a UID that is used to identify the user on all subsequent SMB requests and prove to the
LMX server that this user has been authenticated. The SMB redirector must associate the UID
with the user and include the UID for all network resource accesses made by that user.

The SMBtcon and SMBtconX protocols are still used to define the directory subtree or other
resource available to the user, but the LMX server uses the UID to allow differing types of access
to the same resources under a given TID. Note that a single SMB redirector may issue multiple
SMBtcon or SMBtconX in order to gain access to multiple shared resources.

An LMX server in user-level security mode will still require administrative action to make a
share available. The attributes of the share are the same as for share-level security mode, except
that a single password is no longer used for the share.

If the LMX server responds to an SMBnegprot request and selects the extended protocol, it will
indicate in the SMB response the security mode in effect. This allows the SMB redirector to
know whether the User Logon information is needed in the SMBsesssetupX request.

X/Open CAE Specification (1992)

Page 30 of 267

SMB Protocol Conventions Share-level and User-level Security Modes

3.33

Each LMX server may maintain a list of valid users. It may then verify every access by these
users.

From the LMX server’s point of view, the UID is therefore not associated with a particular shared
resource, but with the authenticated user. The UID may be used to access any shared resource
controlled by the LMX server which has been connected to via the TREE CONNECT! protocol.

User-level Security with Core Protocol

There is no support within the core protocol to allow user-level security for SMB redirectors that
are only capable of working with the core protocol. An LMX server in user-level security mode
may decline connections with an SMB redirector requesting only the core protocol.

In an effort to be flexible, the LMX server may select to support the core-only SMB redirector by
mapping the SMB redirector into the user-level security environment. This mapping could be
performed by the following steps:

1. If the SMB redirector’s system name is defined as a username (and the password supplied
with SMBtcon matches), the user logon will be performed using that value.

2. If the above fails, the LMX server may reject the request or assign a default username
(probably allowing limited access).

3. The UID will then be ignored and all access will be validated assuming the username
selected above.

The above allows LMX servers in user-level security mode’ to accommodate SMB redirectors
supporting only the SMB core protocol.

1. The term TREE CONNECT is used to represent either the SMBtcon or SMBtconX request usage.

Protocols for X/Open PC Interworking: SMB, Version 2 13
Page 31 of 267

Connection Protocols SMB Protocol Conventions

3.4

14

Connection Protocols

No network traffic is generated when an LMX server makes resources available for sharing. The
required information is simply stored until requests from SMB redirectors arrive.

The SMB protocol makes use of a NetBIOS transport facility. NetBIOS defines a set of network
transport facilities. The interface is outside the scope of this document. The NetBIOS functions
can be implemented over a variety of transport protocols, however within this document only
the mapping of NetBIOS over TCP and UDP (see Appendices F and G) and NetBIOS over ISO
transport services (see Appendix E on page 281) are considered.

To establish an LMX session the SMB redirector will establish a NetBIOS session with the LMX
server. Therefore the LMX server listens on the LMX NetBIOS name (see Section 3.5 on page 15).

After the LMX session has been established the SMB redirector will negotiate the SMB protocol
level sending an SMBnegprot. The SMBnegprot must be the first SMB request sent on the
NetBIOS session. In the SMBnegprot response the LMX server will specify the maximum buffer
size that the SMB redirector is allowed to request or send. Due to the nature of the NetBIOS
transport service the maximum buffer size will be in the range of 1K to 64K bytes. Each SMB
request or response will be sent as a single NetBIOS message.

When the user of the SMB redirector issues a cornmand Lo connect Lo a particular share, the SMB
redirector generates an SMBtcon or SMBtconX request containing the name of the shared
resource and the associated password. The password could be empty. If the LMX server is in
user-level security mode the username and password will be supplied via the SMBsesssetupX
request. If no SMBsesssetupX request is received, the LMX server may use the SMB redirector’s
system name as described in Section 3.3.3 on page 13 to perform user authorisation.

When running in share-level security mode, on receiving the SMBtcon or SMBtconX request, the
LMX server verifies the resource name/password combination and returns either an error code
or an identifier (the TID).

The resource name is included in the TREE CONNECT request and the identifier (TID)
identifying the connection is returned. The meaning of this identifier (TID) is LMX server-
specific; the SMB redirector must not associate any specific meaning to it.

The SMB redirector must associate the identifier with the device name being redirected
(specified by the user in the command which initiated the TREE CONNECT) and include the
TID for all future network resource accesses.

X/0Open CAE Specification (1992)

Page 32 of 267

SMB Protocol Conventions Naming

3.5

3.5.1

3.5.2

Naming

Within the SMB protocols three types of name formats can be distinguished:
» NetBIOS names
« names according to the Uniform Naming Convention (UNC)
» long filenames

An LMX server supports the following hierarchy of names for file and print sharing:

file and pathname
resource name
LMX servername

The first layer, the LMX servername, is used by the SMB redirector to identify the specific LMX
server desired. This LMX servername is typically used by the user on the SMB redirector when
he wants to connect to a particular resource maintained by that LMX server. The mapping of the
LMX servername to the NetBIOS name may be obtained by converting the LMX servername to
upper case, padding up to the fifteenth byte with 0x20 and adding 0x20 in the sixteenth byte.
This approach restricts the length of the LMX servername to 15 characters.

Resource Names

Each LMX server supports a collection of resource names. A resource name represents a resource
provided by the LMX server. This name is at a minimum in 8.3 format (refer to Section 3.5.3 on
page 16), however, actual restrictions on this name are implementation-specific. Examples of
resources are:

» file system subtrees
 printers

» IPC facilities (outside the scope of this specification, see the X/Open CAE Specification, IPC
Mechanisms for SMB)

« administrative data, which can be accessed and modified via remote administration (see
Appendix B on page 263)

« directly accessible devices (outside the scope of this specification)

A resource name is also commonly referred to as a share name. The resource name for IPC
facilities IPC$ and the resource name for administrative data ADMINS are reserved and cannot
be used for other services.

NetBIOS Names

NetBIOS names are used to establish a NetBIOS session between the LMX server and the SMB
redirector, the LMX session. Other NetBIOS names are used for messaging services, as
described in the X/Open CAE Specification, IPC Mechanisms for SMB. A NetBIOS name has a
length of 16 bytes. NetBIOS names have no structure; that is, there is no concept of network
number, host number, socket number, and so on. Each participant in a communication uses a
NetBIOS name. NetBIOS names are dynamically claimed and relinquished. There are two types
of NetBIOS name: unique, which can be claimed by only one system at a time, and group, which
can be claimed by several systems at a time.

Since NetBIOS names are used to connect systems with the SMB protocol, some structure on the
NetBIOS name is imposed. For the LMX servername, the first fifteen bytes normally comprise

Protocols for X/Open PC Interworking: SMB, Version 2 15
Page 33 of 267

Naming SMB Protocol Conventions

3.5.3

3.5.4

3.5.5

16

the LMX servername in all upper-case characters. Any remaining bytes are padded with trailing
blanks (ASCH 0x20) to bring the total length of the NetBIOS name to 15 bytes. LMX
servernames are usually simple, unstructured names, such as XOPEN-PCIG, TOOLSVR,
JASONZ.

The sixteenth byte is used to distinguish various uses of the SMB protocol, as follows:

0x00 Used by the SMB redirector to name its end of a file-sharing connection; also used for
the sending end of messaging circuits and the sending and receiving ends of class 2
mailslot datagrams (see the X/Open CAE Specification, IPC Mechanisms for SMB). A
NetBIOS name ending in 0x00 is also said to be in redirector format.

0x20 Used by LMX servers as the NetBIOS name to which they listen for incoming
connections (LMX network name). A NetBIOS name ending in 0x20 is also said to be in
server format.

It is important to note that a single system may use all forms at various times, depending upon
the type of interaction and the system with which it is interacting.

So, as an example, the SMB redirector will use a NetBIOS name ending in 0x00 as the caller name
and a NetBIOS name ending in 0x20 for the LMX servername.

Uniform Naming Convention

UNC names are constructed from names having an 8.3 format that are separated by a backslash
(\). An 8.3 format name consists of two components: a one to eight-byte basename must be
present and an optional one to three-byte extension may be added. If the second component is
specified, the two components are separated by a period (.), hence the term 8.3 format. Within
an 8.3 format name the following bytes are illegal:

o "/N[]:| «>+=1,%70x20 (space)
« bytes less than 0x20

Note that the characters * and ? are used in some SMB requests as wildcard characters.

Canonical Pathnames

For all of the dialects defined in this document, except for the extended 2.0 SMB protocol, file
and directory names need to follow the Uniform Naming Convention (UNC). The backslash (\)
separator is the directory separator. Two special directory names, . and .., must be recognised.
They have the usual CAE meanings; . points to its own directory, .. points to its parent
directory. In the root directory of the file system subtree, . and .. are not present.

Note that it is the LMX server’s responsibility to ensure that virtual root as defined by the TID.

Long Names

The extended 2.0 protocol allows for the creation of long file and directory names with a total
length up to 255 characters. These names are case-insensitive and may be case-preserving
(implementation-dependent). That is, the names File and file will represent the same name.
Long names have a free format, compared to UNC names. It is possible to create a long name
for a file which contains multiple instances of the component separator .. Directories are still
delimited by the \ character.

X/0Open CAE Specification (1992)

Page 34 of 267

SMB Protocol Conventions Wildcards

3.6 Wildcards

Some SMB requests support wildcard filenames as the last 8.3 or long filename format of a
pathname. These are filenames which refer to a number of files based on a pattern-match
defined by the wildcard string. Only filenames which are acceptable under the filename
convention (see Section 4.2 on page 28) can be matched by wildcards.

Each part of an 8.3 format name - the basename and the extension (if applicable) - is treated
separately. For long filenames the . in the name is significant even though there is no longer a
restriction on the size of each of the components on either side of the ..

» The * character matches an entire part, as will an empty specification of that part. If received,
it is interpreted to mean filling the remainder of the component in the name with ? and
performing the search with this wildcard character. Any characters that occur after the * are
ignored.

« The ? character matches exactly one character. Multiple ? characters at the end of a part
match that number of characters or fewer.

For example, the strings ABC.TXT and A TXT would match the wildcard *TXT, but ABC.T
would not; AB.C and ABC.C would match A??.C, but ABCD.C would not; ** would match all
filenames.

Some SMBs, such as SMBmv and SMBcopy, use wildcards to transform filenames. In this case,
two wildcard patterns would be supplied; the non-special characters in filenames matching the
first wildcard would be replaced with the non-special characters in the same relative positions
from the second wildcard, and the wild fields would be left unchanged.

For example, the wildcards *F and *FOR would transform ABC.F to ABC.FOR, but ABC.F1
would not match the first wildcard and would not be transformed; A?B??.C and X?Y??.TXT
would transform A1B2.C to X1Y2.TXT, but A1B234.C would not match the first wildcard.

3.7 File Paradigm

All resource type information is stored using a file paradigm. For the resource type the
following file types are defined:

» regular files on file system subtrees
« spool files for printers
Other types defined that are outside the scope of this specification are:
« named pipes for IPC facilities
« mailslots for IPC facilities
« devices on directly accessible devices

Note that directories are never treated as files, but require special SMB requests to be read.

Protocols for X/Open PC Interworking: SMB, Version 2 17
Page 35 of 267

File Paradigm SMB Protocol Conventions

3.7.1

3.7.2

18

Regular Files
In SMB requests the following attributes are known:
read-only file " If this attribute is set, write access is denied. Otherwise read and write
access is allowed.
hidden file The file is excluded from normal directory searches.
system file The file is excluded from normal directory searches.
volume ID 11-byte volume label to identify a file system subtree. It is implemented

as a special file and must reside on the root directory of the file system
subtree. Some SMB redirectors expect this to be a file.

directory The file is a directory.

archive file If this attribute is set it indicates that the file has been changed since the
last backup. Typically it is set whenever the file has been written to and
will be cleared by backup programmes.

)

The volume ID attribute cannot be specified together with other attributes. The other attributes
can be set concurrently. Files without any attribute set are referred to as regular files.

Open Modes

There are two groups of file exclusion which can be selected via the SMB protocol when a file is
opened. A file opened in any deny mode may be opened again only for accesses allowed by the
deny mode. The two groups and their subtypes are:

Group 1

DENY NONE Anyone else may read and/or write.

DENY ALL Deny other users any access to this file.

DENY READ Other users may access for writing.

DENY WRITE Other users may access for reading.

The deny modes provide exclusion at the file level. A file opened in any deny mode may be
opened again only for the access allowed by the deny mode. This exclusion applies to all
subsequent opens of the file even if it is from the same process requesting the original deny
mode open. The DENY READ and DENY ALL modes deny opening a file for execution
(reference Section 5.3.5 on page 44).

Subsequent opens of a file may specify more restrictive deny modes as long as the new
exclusions do not conflict with the existing deny modes granted.

X/0Open CAE Specification (1992)

Page 36 of 267

SMB Protocol Conventions

The following table outlines access to the file:

;

File Paradigm

Existing New open requesting
Deny Mode access |DENY ALL|DENY WRITE | DENY READ|DENY NONE
DENY ALL R/W |fail fail fail fail
READ |fail fail fail fail
WRITE |fail fail fail fail
DENY WRITE R/W |fail fail fail READ
READ |fail READ fail READ
WRITE | fail fail READ READ
DENY READ R/W |fail fail fail WRITE
READ |fail WRITE fail WRITE
WRITE | fail fail WRITE WRITE
DENY NONE R/W |fail fail fail ALL
READ |fail ALL fail ALL
WRITE | fail fail ALL ALL
Group 2
Compatibility Within an LMX session, once a file has been opened in compatibility mode, all

subsequent opens of that file by any process must be in compatibility mode
until the last open instance has been closed. If a process opened a file for any
access, another process using the same LMX session may open the same file
for any access.

Across LMX sessions, compatibility mode opens are mapped as follows:

DENY WRITE
DENY ALL

| Compatibility Read Only <>
Compatibility Write Access <>

The rules for group 1 open modes apply.

3.7.3 Write Behaviour
The SMB protocols make assumptions on the state of written data; that is, whatever data is
written is assumed to be what will be read at a later instant. The actual placing of the data onto
the storage medium is a function of the LMX server. Yet, the SMB protocols do allow the SMB
redirector to make suggestions about the placing of the data.
There are two types of write behaviour:
Write through ~ The data is to be placed on the storage medium prior to the response to the
write request.
Write behind It is acceptable to cache the data internally to the server and respond to the
write request immediately.
These write behaviour modes are only availabe in the extended dialects of the SMB protocols.
The core and core plus dialects assume a write through behaviour.
Protocols for X/Open PC Interworking: SMB, Version 2 19

Page 37 of 267

Locking Conventions SMB Protocol Conventions

3.8

3.8.1

3.8.2

20

Locking Conventions

Byte Locking

The SMB protocol supports a form of record locking for read access or write access. This lock
covers a range of bytes and cannot overlap any other locked range. Access to a locked range of
bytes from a process which did not obtain the lock is prevented. Processes need not take a lock
to determine if any other process had that range locked as well.

Opportunistic Locking

Opportunistic locking is a performance enhancement available in the extended protocols which
enables an SMB redirector to reduce the number of SMB requests to a minimum when it is the
only SMB redirector accessing a file opened in non-exclusive mode. This form of locking allows
the SMB redirector to cache locking requests as long as no other process is attempting to access
the file. The support of opportunistic locking is the one instance within the SMB protocols
where the LMX server will make requests of the SMB redirector.

An SMB redirector requests an opportunistic lock (or oplock) in two ways:

1. by setting bit 5 (and optionally bit 6 for additional notifications such as file deletion) in the
smb_flg field of the SMB header (see Section 5.1 on page 37) of the SMBopen, SMBcreate or
SMBmknew core SMB requests. The oplock is granted by bit 5 being set in the smb_flg field
of the SMB response. If bit 5 is not set in the response then the oplock was not granted.

2. by setting bit 1 (and optionally bit 2) of the smb_flags field in the SMBopenX extended SMB
request. The oplock is granted by bit 15 of smb_action being set in the response.

An opportunistic lock may only be granted if no other SMB redirector has the file open. An LMX
server need not implement opportunistic locking; such an implementation would simply deny
all oplock requests.

The LMX server must break the oplock and notify the SMB redirector in the following cases:
« another process attempts to open the file

o if bit 6 and bit 2 were set in the oplock request and an operation that changes the file (for
example, SMBunlink, SMBmv, SMBmove) was received by the LMX server

When an LMX server decides to break an oplock, it must perform the following steps:
1. Hold off the request which caused it to break the oplock.
2. Send to the SMB redirector which has the oplock an SMBlockingX request with MID = -1.

3. Permit the SMB redirector to flush any data that was cached by sending the appropriate
SMB WRITE requests. The SMB redirector must flush any cached byte-range locks as well.
These lock requests can be embedded in the SMBlockingX request which must be issued in
response to the broken oplock notification.

4. Finally, the SMB redirector sends an SMbBlockingX request responding to the request issued
in step 1. If the SMBlockingX request contained any lock requests, a response by the LMX
server must be generated. If the request did not contain lock requests, no response by the
LMX server is generated. Note that the SMBlockingX request should contain no unlock
requests, as the SMB redirector was not explicitly locking to the LMX server while it had an
opportunistic lock.

The SMB redirector with the oplock may choose to close the file during step 3 processing. If it
does so, the LMX server may grant an opportunistic lock to the new requesting SMB redirector if
all other conditions are met.

X/0Open CAE Specification (1992)

Page 38 of 267

SMB Protocol Conventions Locking Conventions

If the SMB redirector has issued an SMB CLOSE request on the file at the same time the LMX
server has attempted to break the oplock, the SMB redirector will ignore the SMBlockingX
request; the LMX server must handle the SMB CLOSE request correctly and not expect a
response to its attempt to cancel the oplock.

It is possible that notification of a broken oplock (the SMBlockingX request), and some other
request from the SMB redirector, cross on the network. In this case, the LMX server must note
that the notification is outstanding and cause all SMB requests to fail (by returning zero-length
data, for example). The SMB redirector will respond to the broken oplock notification and retry
the SMB request.

An LMX server is permitted to detect access to an opportunistically-locked file from an LMX
server-resident process and break the lock; however, this functionality is not mandatory.

Protocols for X/Open PC Interworking: SMB, Version 2 21
Page 39 of 267

Chaining of Extended SMB Requests SMB Protocol Conventions

3.9 Chaining of Extended SMB Requests

Certain extended SMB protocol requests (those whose names end with X) can have an additional
SMB request chained to them; however, each SMB request which permits chaining allows only a
subset of the possible SMB requests to be chained. The chaining of SMB requests allows for a
reduction in the number of request/response actions that need to be taken in some instances.
For example, if an application on the SMB redirector requests a lock of a byte range followed by
a read of the data in this byte range, the SMB redirector may choose to cache the sending of the
locking request until the actual read occurs then send an SMBlockingX, SMBreadX chained
request.

The following rules must be obeyed by chained SMB requests:

1.

22

The chained SMB request does not repeat the SMB header information. Rather, it starts
with its own smb_wect field. The smb_com?Z field in each SMB. .. X request specifies the SMB
command code for the chained SMB request.

All chained SMB requests and their data must fit within the negotiated maximum buffer
size. This size limitation also applies to the amount of data in the SMB request.

There is one SMB request sent containing the chained SMB requests and there is one SMB
response Lo the chained SMB requests. The LMX server must not elect to send separale
SMB responses to each of the chained SMB requests.

All chained SMB responses must fit within the negotiated maximum buffer size. This
limits the maximum value on an embedded READ, for example. It is the SMB redirector’s
responsibility not to request more bytes than will fit within the multiple SMB response.

If the last request of a chained series is a chained SMB request (that is, SMB...X), the
smb_com?Z field must be 0x00ff (also referred to as the NIL command).

The LMX server will implicitly use the result of the prior SMB requests in chained SMB
requests. For example, the TID obtained via SMBtconX would be used in a chained
SMBopenX, and the FID obtained in the SMBopenX would be used in a chained SMBread. If
chained requests reference an FID, the smb_fid field in each SMB request must contain the
same FID value. In other words, each SMB request can only reference the same FID (and
TID) as the other SMB request in the combined request. The chained SMB requests can be
thought of as performing a single (multi-part) operation on the same resource.

The first SMB request to encounter an error will stop all further processing of chained SMB
requests. The LMX server shall not undo SMB requests that succeeded.

Suppose SMBopenX and SMBread were requested; if the LMX server were able to open the
file successfully but the read encountered an error, the file would remain open. This is
exactly the same as if the SMB requests had been sent separately.

If an error occurs while processing chained SMB requests, the SMB response element of the
chained SMB responses in the buffer will be the one which encountered the error. Other
unprocessed chained SMB requests will have been ignored when the LMX server
encountered the error and will not be represented in the chained SMB response. More
specifically, the last valid smb_com2 (if not the NIL command) will represent the SMB
command code on which the error occurred. If no valid smb_comZ is present, then the error
occurred on the first SMB request and smb_com contains the SMB command code which
failed. In all cases, the error class and code are returned in the smb_rclsand smb_err fields
of the SMB header at the start of the SMB response.

Each chained SMB request and SMB response contains the offset (from the start of the SMB
header) to the next chained SMB request/response in its own smb_off2 field. This permits

X/Open CAE Specification (1992)

Page 40 of 267

SMB Protocol Conventions Chaining of Extended SMB Requests

chained SMB requests to be built without packing them. There may be space between the
end of the previous SMB request (as defined by smb_wct and smb_bcc) and the start of the
next chained SMB request; this simplifies the building of chained SMB requests.

10. The data in each SMB response is expected to be truncated to the negotiated maximum
number of 512 byte blocks which will fit (aligned at a 32-bit boundary) in the maximum
buffer size, with any remaining bytes in the final buffer.

Protocols for X/Open PC Interworking: SMB, Version 2 23
Page 41 of 267

Exception and Error Handling SMB Protocol Conventions

3.10

3.10.1

3.10.2

24

Exception and Error Handling

Exception handling within the SMB environment is built upon the various environments (see
Section 3.2 on page 10). When any environment is terminated in either an orderly or disorderly
fashion, all contained environments are terminated.

Disorderly LMX Session Dissolution
The rules for disorderly LMX session termination are as follows:

» An LMX server may terminate the LMX session to an SMB redirector at any time if the SMB
redirector is generating invalid SMB requests. However, wherever possible the LMX server
should first return an error code to the SMB redirector indicating the cause of the LMX
session abort.

o If an LMX server gets a hard error on an LMX session (such as a send failure) all LMX
sessions from that SMB redirector may be aborted.

An SMB redirector is expected to reestablish an LMX session in the case where it was dropped
by the LMX server due to inactivity.

On write-behind activity, a subsequent WRITE or CLOSE of the file will return the fact that a
previous WRITE failed. Normally, write-behind failures are limited to hard disk errors and file
system out-of-space conditions.

Errors and Error Handling

In the case of success for file and print sharing, the LMX server must return error class SUCCESS
and error code SUCCESS. For situations where no error is defined by the SMB protocol, the error
class ERRSRV and error code ERRerror are to be returned.

The contents of SMB response parameters other than the SMB header fields are not guaranteed
in the case of an error return. In particular, the LMX server may choose to return only the SMB
header portion from the SMB request in the SMB response; that is, the SMB header fields
smb_wct and smb_bcc (see Section 5.1 on page 37) may both be zero (0).

X/Open CAE Specification (1992)

Page 42 of 267

SMB Protocol Conventions Timeouts

3.11 Timeouts

The extended protocols provide for timeouts on the LMX server. SMB requests which may
timeout include:

« opens to directly accessible devices
+ byte-range locking

» read or write on directly accessible devices, mailslots and named pipes (refer to the X/Open
CAE Specification, IPC Mechanisms for SMB)

If an LMX server cannot support timeouts, then the error <ERRSRV, ERRtimeout> is returned,
just as if a timeout had occurred, if the resource is not available immediately upon request. A
timeout can indicate a delay time, an indefinite delay, or that a system default should be used.
Default timeouts apply to direct access devices, mailslots and named pipes only.

3.12 Downward-com patibility Support

The core and extended SMB protocol requests and responses are variable length. Thus
additional fields may be added in the smb_vwv[] and the smb_buf]] areas in future dialects (see
Section 5.1 on page 37). LMX servers must be implemented such that additional fields in either
of these areas will not cause the SMB request to fail. If additional fields are encountered, which
are not recognised by the LMX server’s level of implementation, they should be ignored. This
allows for future upgrade of the SMB protocol and eliminates the need for reserved fields.

Protocols for X/Open PC Interworking: SMB, Version 2 25
Page 43 of 267

SMB Protocol Conventions

26 X/0Open CAE Specification (1992)
Page 44 of 267

I.:':,L-,." Chapter 4

|/ LMX Considerations

This chapter highlights possible behaviours of LMX servers and deals with aspects that are
caused by hosting LMX servers in the CAE.

The conventions an LMX server must adhere to are:
1. user mapping from SMB redirectors to CAE environment

2. filename mapping, which defines the mapping from the namespace provided by the SMB
canonical pathname format to the namespace of CAE

3. access and attribute mapping, which defines the mapping from CAE access rights to SMB
file attributes and vice versa

4. locking, which defines the mapping from the SMB-supported locking operations to those
locking operations supported by CAE

Other items where LMX servers may choose differing approaches are:
1. SMB protocol dialect (or dialects) and password encryption

consequences of the CAE file system

LMX server caching

method of support for printer spooling

S S

usage of the underlying network, including the choice of the network protocol,
interoperability with other file-sharing principles and extensions beyond a single
subnetwork

4.1 LMX Username Mapping

CAE file system security is based on a user or process having a CAE UID and one or more CAE
GIDs (refer to the X/Open Portability Guide, Issue 3, Volume 2, XSI System Interface and
Headers). Personal computers remotely accessing a CAE file system via an LMX server must not
compromise the CAE file system security.

An LMX server must provide a mechanism to map a user to a CAE UID and CAE GIDs. This
mapping may be different for share-level and user-level security mode (refer to Section 3.3 on
page 12). For example, an LMX server running in user-level security mode may map each user
to its own unique CAE UID and CAE GIDs, while an LMX server running in share-level security
mode may map all users to a common CAE UID and CAE GIDs. This mapping of a username
and password into the CAE environment may use the CAE user account system to hold the
usernames and passwords. Or, there may be a separate user account system for users of SMB
redirectors that maps these users into the CAE environment. Regardless of the approach taken,
an LMX server must guarantee that a user does not have any more access permissions than a
CAE process with the same CAE UID and CAE GIDs.

When running in user-level security mode, the UID used in the SMB requests may be relative to
the LMX session. The LMX server therefore needs to map each pair (LMX session, UID) to the
individual CAE UID and CAE GIDs.

Protocols for X/Open PC Interworking: SMB, Version 2 27

Page 45 of 267

LMX Filename Mapping LMX Considerations

4.2

28

LMX Filename Mapping

This convention governs the mapping between SMB pathnames (see Section 3.5.4 on page 16)
and names maintained in the file system on the CAE system. The SMBsesssetupX request uses a
bit (bit 4 in the smb_flg; see Section 5.1 on page 37) in the SMB header which indicates whether or
not the pathnames in subsequent SMB requests have been translated to SMB canonical
pathnames. LMX servers must support this bit being set.

In addition to this flag, in the extended protocols another bit (bit 3 in the smb_flg) in the SMB
header indicates whether the SMB redirector desires case-insensitive pathnames. If this bit is set,
operations should be case-insensitive. LMX servers must support this bit being set.

If an LMX server does not support the functionality of either bit 3 or bit 4 when not set, the
server may choose to ignore these bits and attempt to use the pathname provided in the SMB
request in the manner it would for the condition where the bits are set. This means that when an
SMB redirector performs a request with one (or both) of these bits cleared and the server does
not support that form of pathname, the SMB redirector will receive an error condition produced
by the normal functioning of the LMX server (that is, file not found).

With regard to both these flags, the LMX server must generate pathnames in SMB responses
which match the requested form. If the SMB redirector did not request canonical pathnames, the
LMX server must not map pathnames in responses, but simply use the local representation.

Pathnames following the Uniform Naming Convention (see Section 3.5.4 on page 16) from the
SMB redirector side are to be mapped by the LMX server into the CAE file system. Characters
with values larger or equal to 0x80 may not be supported or converted from upper to lower-case
(and vice versa) by LMX servers. All other characters are mapped according to the following
rules:

1. Filenames with . and extension are used as is.

2. Convert all characters of value less than 0x80 to lower case (unless case-sensitive mode
was requested).

3. The directory separator \ is converted to /.
4. Accept the special names . and .. as is.

5. Leave any other special characters as they are. If any forbidden characters (see below)
remain in a name, reject the request.

Names of files on the CAE system are mapped by the LMX server to canonical pathnames
according to the following rules. An LMX server implementation may map a wider range of
CAE filenames into a canonical pathname bypassing some of the restrictions below. However,
all mappings need to obey rules one to three.

1. Names which are all lower case are split into filename and extension at the first period (.).
If case-insensitive mode was requested, all characters of value less than 0x80 are converted
to upper case.

2. The special files . and .. are not translated and are used as is.
3. The directory separator / is converted to \.

4. If case-insensitive mode was requested, names containing an upper-case letter are invisible
and inaccessible from the SMB redirector. If case-sensitive mode was requested files of
mixed case are visible to the SMB redirector.

5. Basenames longer than 8 characters are invisible and inaccessible from the SMB redirector
depending on the dialect chosen. The extended 2.0 dialect allows for longer file and

X/0Open CAE Specification (1992)

Page 46 of 267

LMX Considerations

10.

LMX Filename Mapping

directory names.

Names containing a leading . (that is, a null basename part) are invisible and inaccessible
from the SMB redirector.

Names containing a trailing . (that is, a null extension with an extension separator present)
are invisible and inaccessible from the SMB redirector.

Names containing more than one . are invisible and inaccessible from the SMB redirector.

Names containing more than three characters following a . are invisible and inaccessible
from the SMB redirector.

Names containing characters not permitted in canonical pathnames are invisible and
inaccessible from the SMB redirector. Those illegal characters are:

." (as anything but a separator for the extension)
" " (the space character, ASCII 0x20)
any value less than ASCI 0x20

0x2B "+", 0x5B "[", 0x5D "]", Ox2A "*", 0x3F "?", 0x3A ":", 0x5C "\",
0x3B ";", 0x2F "/, 0x3D "=", 0x3C "<", 0x3E ">", 0x22 """, 0x7C " | ",

0x2C""

Examples:

CAE filename
A

a
acn

main.c

123456789
12345678
/users/acn/main.c
file.

MSnet

ACN

file.baad

S.C.X

SMB redirector (case-insensitive mode)

ACN

MAIN.C

<not accessible: too long>

12345678

\USERS\ACN\MAIN.C

<not accessible: trailing dot>

<not accessible: upper-case letter>
<not accessible: upper-case letter>
<not accessible: extension too long>
<not accessible: too many dots>

Protocols for X/Open PC Interworking: SMB, Version 2

Page 47 of 267

29

LMX File Mapping LMX Considerations

4.3

43.1

4.3.2

4.3.3

30

LMX File Mapping

SMB File Attributes

SMB file attributes (see Section 3.7 on page 17) are not the same as CAE file attributes. The
mapping of the read-only and directory attributes is the minimum set of required functionality.
Any other attributes not supported by the LMX server may be ignored. If the read-only attribute
is specified, the SMB redirector has no write permission. For files created, the LMX server will
turn off the CAE write permission. If the directory attribute is specified, the requested name will
map to a CAE directory. LMX servers may support more SMB file attributes but are not allowed
to use different semantics for the read-only and directory attribute.

Changing the read-only attribute via SMBsetatr or SMBsetattrE will affect the write mode of the
file from the LMX server’s perspective; hence, in user-level security mode the UID specified must
map to that of a CAE process with appropriate privilege.

CAE File Access Permissions

CAE provides a umask (refer to the X/Open Portability Guide, Issue 3, Volume 2, XSI System
Interface and Headers) to define the default file access permissions to be used when a new file is
created. An LMX server must provide a mechanism to define the umask to be used for CAE files
created on behalf of the users. The mechanism is implementation-dependent. For example, an
implementation may provide a common umask for all users or may define a umask per user.

In CAE environments, it is necessary to have both the read and search attributes on a directory
to be allowed to view and transverse the directory (refer to the X/Open Portability Guide, Issue
3, Volume 2, XSI System Interface and Headers). An LMX server must provide support that
allows for SMB redirectors to create directories that can be viewed and transversed.

When the LMX server opens a file on behalf a user (that is,the SMB redirector’s user mapped to a
CAE UID and CAE GIDs) the CAE access permissions for that file must be obeyed.

File System Issues

CAE provides a method whereby the maximum allowed size of an individual file can be
controlled. This control is provided via ulimit (refer to the X/Open Portability Guide, Issue 3,
Volume 2, XSI System Interface and Headers). An LMX server may provide support where this
feature can be used to govern the maximum file size allowed for all users of the LMX server or
even individual users.

If this support is provided, it is not possible to retrieve the value for ulimit from SMB redirectors.
Therefore, SMB redirectors cannot tell the difference between a file size restriction or a file
system being out-of-space. The manner by which an LMX server handles the CAE ulimit feature
is implementation-dependent.

The LMX server will report either the free space of a single file system or the total free space of
all file systems that the shared file system subtree, accessible from the SMB redirector, may span.
Thus it is possible to get into a state where a directory path on the LMX server has run out of free
space, but another directory path has not. In this state, SMB redirectors will report to the user
that there is free space available on the server and yet the user will not be able to write data to
files on the file system subtree or vice versa.

It is possible in a CAE environment that the LMX server has no control over the creation time
given to a particular file. Therefore, support for the setting of the creation time provided by an
SMB redirector is implementation-dependent.

X/0Open CAE Specification (1992)

Page 48 of 267

LMX Considerations LMX File Mapping

4.3.4

4.3.5

4.3.6

4.3.7

When returning available space on the LMX server to the SMB redirector (see Section 8.6 on page
107), it may be necessary for the SMB server to report an allocation unit that is larger than the
512-byte units of the CAE system in order to avoid overflowing the number of allocation units
available in the SMB response. This can result in a rounding error for the free space information.

Some CAE systems provide no way for a program to block until the local file cache has actually
flushed to the disk, but simply indicate that a flush has been scheduled and will complete soon.
An LMX server should nonetheless take steps to maximise the probability that the data is truly
on disk before the SMB redirector is notified.

CAE Special Files

LMX servers may allow access to CAE special files, such as CAE-defined FIFOs or character and
block special files (refer to the X/Open Portability Guide, Issue 3, Volume 2, XSI System Interface
and Headers). Support for special file access is not a requirement for LMX servers.

Deleting or Renaming a File

The specification for deleting or renaming a file via an SMB request (for an example, see Section
7.12 on page 92 or Section 7.11 on page 89) specify that for a file to be deleted no other process
may have the file open. In a CAE environment, it may not be possible for the LMX server to
determine whether another CAE application has the file to be deleted open. Therefore, it is
implementation-dependent whether the LMX server will not allow an SMB redirector to delete
or rename a file while another CAE application has the file open for use. Additionally, it is
possible for a CAE application to delete or rename a file while an SMB redirector has the file
open for use. The actions taken by the LMX server under these circumstances are
implementation-dependent.

Long Filenames

When using the extended 2.0 protocol dialect, an LMX server may support the use of long
filenames. These are filenames which do not conform to the 8.3 format (refer to Section 3.5.5 on
page 16). It is possible that the CAE system on which the LMX server is executing does not
support filenames to the maximum length allowed in the long filename definition. In this case,
the LMX server may support names longer than the 8.3 format yet restrict the maximum length
of the name to the length supported by the CAE system. As an example, suppose the CAE
system supports names up to fourteen characters in length. An LMX server on this system is
allowed to provide long name support to the SMB redirectors and restrict the maximum length
of such names to fourteen characters. It is not required that an LMX server supporting long
filenames guarantees support of the maximum name length in the long filename definition.

Extended Attributes

The extended 2.0 protocol allows for the storage and retrieval of extended attributes on a file
stored on the LMX server. Extended attributes are name=value pairs where the length of the
combination of the name=value pair will not exceed 65535 bytes. Both the name and the value
portion of the pair are free format and application-specific. The application will store and
retrieve the information based on the name. Support for extended attributes is optional.

Some SMB redirectors will store a collection of default extended attributes (EAs) when the
support for extended attributes is provided by the LMX server. Known examples of names and
values for EAs stored are:

.COMMENTS= An ASCIIZ string giving some general discussion on the contents of the file.

Protocols for X/Open PC Interworking: SMB, Version 2 31
Page 49 of 267

LMX Considerations

LMX File Mapping
HISTORY= An ASCIIZ string indicating creation and change history for the file.
.KEYPHRASES= A collection of key words or phrases that pertain to the file.
SUBJECT= A subject line for the file.
TYPE= The type of the file; that is, it is a document file, plain text or a spreadsheet.

For moving or copying files in an environment where LMX servers may or may not be
supporting EAs, SMB redirectors will copy all of the data contents of a file between servers and
warn the user about loss of EA information. The specifics of the SMB error codes that must be
supported by the LMX server to generate this warning are discussed in Chapter 16 on page 207.

32 X/Open CAE Specification (1992)

Page 50 of 267

LMX Considerations LMX File Locking

4.4 LMXFile Locking

The locking model and functionality provided by the SMB protocols (and thus expected by SMB

redirector processes) and the model being used by applications running in a CAE environment

are quite different. This mismatch makes it impossible to require an LMX server to properly
mediate interlocking between an SMB redirector process and CAE application accessing the
same file.

Some forms of interlocking mediation are possible. If an LMX server chooses to support file

locking, it should support at least the features described in this section.

The SMB protocol does deny modes on open (see Section 3.7.2 on page 18) and byte-range locks.

The core SMB protocol supports only one type of byte-range lock via the SMBlock request that

excludes that byte-range from any other lock, read or write access by other SMB redirectors. The

extended protocols support additionally read-only locks via SMBlockingX.

The CAE does not define any forms of deny mode as in the SMB protocols. The CAE, however,

specifies two forms of locks (see the X/Open Portability Guide, Issue 3, Volume 2, XSI System

Interface and Headers):

F RDLCK Lock byte range allowing multiple readers (shared lock); a process may write to
the range (with or without an F_RDLCK) if no other process has an F_RDLCK on
that range. The file must have been opened with read access.

F WRLCK Lock byte range allowing R/W (read and write) for locking process only (exclusive
lock). The file must have been opened with write access.

These locks are advisory, rather than mandatory. With advisory locking, cooperating processes

must acquire locks to determine whether any other process has locked that range as well.

4.4.1 Interlocking Behaviour

Deny Modes

An LMX server must mediate deny modes between multiple SMB redirector processes. But it

cannot completely enforce those access denials against other LMX server-resident applications,

since those other processes may not be making lock requests against the file, and the CAE does
not provide a mandatory locking function. LMX servers may provide some forms of deny-mode
between an SMB redirector and a CAE application.

When interlocking for deny modes is supported, the LMX server may place the following locks

when an SMB redirector requests a byte-range lock:

' SMB requested mode Action
Opens for DENY ALL with all access modes, DENY | No action.
WRITE with READ access mode, and COMPATIBILITY
with all access modes.
Opens for DENY NONE or DENY READ with READ | F_RDLCK only.
access mode.
Opens for DENY NONE, DENY READ or DENY WRITE | F WRLCK only.
with WRITE and R/W access modes. In the case of
DENY WRITE with R/W access, the record to be locked
will be promoted to F WRLCK. A record to be unlocked
will be demoted to F_RDLCK.
Protocols for X/Open PC Interworking: SMB, Version 2 33

Page 51 of 267

LMX File Locking LMX Considerations

442

4.4.3

34

Although LMX servers acquire an advisory lock prior to each READ or WRITE when
interlocking is in effect, application developers should use byte-range locks whenever
cooperating with CAE applications. This specification requires an LMX server to return an error
if an access to a locked range takes place, which will cause many applications to fail.

Byte-range Locking

LMX servers must provide byte-range locking to SMB redirectors. There are some restrictions
on the ability of an LMX server to completely emulate the required functionality of the SMB
byte-range lock as it interacts with the access mode in which the file was opened. A file opened
read-only access cannot have an F_WRLCK placed on it, as a CAE advisory write lock requires
write permission. Because of this, an LMX server cannot simulate the SMB redirector R/W
record locking semantics for read-only access.

Since the semantics of the SMB byte-range lock are mandatory rather than advisory, an LMX
server must cause accesses by an SMB redirector to locked byte ranges to fail. Ideally, LMX
servers would also cause access to those ranges from LMX server-resident processes to fail. This
can only be accomplished if the LMX server-resident process is cooperative, that is, places
advisory locks on byte ranges of interest, and if the LMX server places advisory locks on behalf
of SMB redirector SMB requests.

The semantics of SMB locking require that an SMB redirector attempting to access (without
locking) a range of bytes already locked by an LMX server-resident process must receive an error
for that request. This means that an LMX server must place advisory locks for all SMB redirector
SMB requests. These implicit locks exist solely for the time required for the requested operation
and do not persist beyond that time. If an SMB redirector has already explicitly requested a lock,
the LMX server need only maintain that lock and permit the SMB redirector to explicitly release
it.

SMB byte-range locks can be larger than CAE file locks. The LMX server must support byte-
range locks beyond standard CAE offsets.

Locking Timeouts

The extended dialect’s requests for locking define timeout values that indicate how long the
SMB redirector would like to wait before a lock attempt is failed. Support for these timeout
values is not a requirement for an LMX server and may be ignored. If an LMX server cannot
support timeouts, then the error <ERRSRV, ERRtimeout> is returned, just as if a timeout had
occurred, if the resource is not available immediately upon request.

Read-only Locks

In the extended protocols, an LMX server may choose not to support read-only locks. It will
then treat any request for such a lock as though a read /write lock has been requested.

X/0Open CAE Specification (1992)

Page 52 of 267

LMX Considerations LMX Server Caching

4.5 LMXServer Caching

An LMX server may perform its own internal caching in an effort to increase performance for
SMB redirectors. A simple example of this would be if the LMX server responds to write
requests prior to making the CAE call necessary to write the data in the CAE system. This action
by the LMX server is referred to as write-behind in the remainder of this document. By
responding prior to writing the data, it means the SMB redirector may receive the response prior
to the data being reflected in the CAE file system. If an LMX server does caching, it is required
that it maintain this internal cache in such a manner that other SMB redirectors will see the same
data if they make a read request prior to the CAE write by the server. It is not required that after
an SMB redirector performs a write request, and receives the write response, that the data is
reflected immediately to other CAE applications on the LMX server system. If an LMX server
performs write-behind, it is required that the server honour SMBflush requests and not respond
to these requests prior to flushing all appropriate, internally-cached data to the CAE file system.

4.6 LMXPrint Spooling

The SMB protocols allow for status information on print jobs submitted to the LMX server. The
LMX server, however, may choose Lo deal with print requesls by a number of methods. One
example would be for the LMX server to queue print requests internally to the server and then
issue the requests to the CAE print spooling environment one job at a time, waiting for each job
to complete before the next is spooled. This approach allows the LMX server to maintain state
information concerning print requests that can be returned to the SMB redirector when
necessary. Another approach is to couple the LMX server print queueing support with the CAE
print spooling support. Depending on the degree the two are merged, it may not be possible for
the LMX server to maintain the exact status of the print request, but a reasonable status must be
estimated when necessary.

The print spooling protocols defined in Chapter 9 allow for the transmission of printer setup
data, and give an indication of the type of data contained in the file (that is, text or graphics).

An LMX server implementation may choose to use or discard the printer setup data. The text or
graphics mode indicator may be used by the LMX server to perform printer initialisation, or
ignored.

4.7 SMB Error Codes

Chapter 5 defines a number of constants and descriptions of possible meanings for SMB error
codes. In subsequent chapters, as each SMB is described, a table mapping possible error
conditions to error codes is provided. If an LMX server implementation experiences an error
condition that is not described in the table for the specific SMB, the LMX server may return any
of the error codes defined in this document that best describe the error condition.

The ERRHRD class may cause an SMB redirector to notify the user of the error via an exception
handling routine. Where the ERRHRD and ERRDOS class of errors overlap, the LMX server
implementation has the option to use either class.

Protocols for X/Open PC Interworking: SMB, Version 2 35
Page 53 of 267

Security Policy LMX Considerations

4.8

4.9

4.10

36

Security Policy

An LMX server must provide a security policy. It may provide either share-level security, user-
level security, or a combination approach (refer to Section 2.2 on page 5 and Section 3.3 on page
12).

Another aspect of security is the support for encryption of user passwords. An LMX server may
choose to support the encryption technique described in Appendix D or Section 11.2 on page
139. It is also acceptable for an LMX server not to support password encryption at all.

Negotiated Dialect

An LMX server may choose to support only one, a combination of, or all of the SMB dialects
described in this document. Since the process of negotiating an SMB dialect is open-ended it is
also possible that an LMX server supports dialects not described in this specification.

Network Issues

This specification assumes the LMX server implementation uses the transport support described
in Appendix E on page 281 (TOP/NetBIOS), Appendix F on page 349 (RFC 1001) and Appendix
G on page 419. It is for this reason that these RFCs are republished in this document.

For the binding of NetBIOS to the TCP/IP protocol suite (refer to Appendices F and G) only
those aspects for B-node functionality are required.

An implementation may choose to support the full M-node functionality, as that is a superset of
B-node.

For the binding of NetBIOS to OSI transport (refer to Appendix E on page 281) the NetBIOS user
agent is optional.

This specification defines a default method by which LMX servernames are mapped to NetBIOS
names (refer to Section 3.5.2 on page 15). It is possible that an LMX server implementation and
compatible SMB redirector implementation may use additional methods of mapping LMX
servernames to NetBIOS names.

SMB protocols are only specified to run on a single LAN subnetwork, but interoperation in
connected subnetworks is not precluded.

X/0Open has defined other types of PC connectivity support; refer to the X/Open Developers’
Specification, Protocols for X/Open PC Interworking: (PC)NFS. (PC)NFS and SMB protocol
implementations, or other connectivity implementations, on the same server are not required to
interwork with respect to additional features beyond those provided by XSI (for example,
extended DOS file open modes). Additionally, if the CAE system is supporting access to other
CAE systems via XNFS (reference X/Open CAE Specification, Protocols for X/Open
Interworking: XNFS), it may be possible to configure an LMX server to allow SMB redirectors
access to the resources of the other CAE systems via the XNFES connection, but this is not a
requirement.

X/Open CAE Specification (1992)

Page 54 of 267

Jv Chapter 5

[
y

| Data Objects and Constants

This chapter describes the SMB format, common data structures, flag fields and other objects
commonly used in SMB requests and responses. It also defines various symbolic constants and
indicates their (required) values. Throughout the specification the following definitions will be
used:

8-bit field Anoctet; sometimes referred to as a byte.
16-bit Two 8-bit fields with the least significant 8-bit field first (little-endian).

32-bit Two 16-bit elements with the least significant 16-bit element first (little-endian).

5.1 SMB Form at

All SMB requests and responses (except where noted) have a common header, as follows:

Offset | Type Field Name | Description

00 8-bit field smb_idfl4] contains 0xff,0x53,0x4d,0x42

04 8-bit field smb_com command code

05 8-bit field smb_rcls error class

06 8-bit field smb_reh reserved for future

07 16-bit field | smb_err error code

09 8-bit field smb_flg flags

10 16-bit field | smb_res[7] reserved for future

24 16-bit field | smb_tid authenticated resource identifier
26 16-bit field | smb_pid caller’s process ID

28 16-bit field | smb_uid unauthenticated user ID

30 16-bit field | smb_mid multiplex ID

32 8-bit field smb_wct count of 16-bit fields that follow
33 16-bit field | smb_vwv[] variable number of 16-bit fields
- 16-bit field | smb_bcc count of 8-bit fields that follow

| - | 8-bit field | smb_buf] | variable number of 8-bit fields

The structure defined from smb_idf through smb_wct is the fixed portion of the SMB structure
sometimes referred to as the SMB header. Following the header there is a variable number of
16-bit fields (defined by smb_wct), and following that is smb_bcc which defines an additional
variable number of 8-bit fields. The SMB header fields are defined as follows:

smb_idf SMB identification string, always 0xff,0x53,0x4d,0x42.

smb_com SMB command code (see Section 5.2 on page 40).

smb_rcls Error class (see Section 5.6 on page 49), set in the SMB response only.
smb_err Error code (see Section 5.6 on page 49), set in the SMB response only.
smb_flg A bit-encoded field. The flag bits are defined as follows:

Bit 0 When set (returned) by the LMX server in the SMBnegprot response,
this bit indicates that the LMX server supports the SMBlockread and
SMBwriteunlock requests.

Protocols for X/Open PC Interworking: SMB, Version 2 37

Page 55 of 267

SMB Format
smb_tid
smb_pid
smb_uid

38

Page 56 of 267

Data Objects and Constants

Bit 1 Used only in requests when an extended SMB protocol is negotiated.
When set, the SMB redirector guarantees a receive buffer is already
posted; this has implications for the type of underlying transport
service which may be used in sending a response.

Bit 2 Reserved; MBZ (Must Be Zero).

Bit 3 When on, all pathnames in the protocol must be treated as case-
insensitive. If one of the extended protocols is negotiated and the bit
is set off, the pathnames are case-sensitive. The LMX server can
assume the value is always set to on.

Bit 4 Used only in the SMBsesssetupX request. When on, the SMB
redirector indicates that all pathnames will be specified as canonical
pathnames, already obeying the file naming conventions (see Section
3.5 on page 15). When off, pathnames are in the LMX server
representation. The LMX server can assume the value is always set
to on.

Bit 5 Used only in the SMBopen, SMBcreate and SMBmknew
requests/responses. When set in a request, the SMB redirector asks
that the file be opportunistically locked, a feature of the extended
SMB protocols. If the LMX server places the opportunistic lock, this
bit is set in the SMB response. This bit is referred to as the oplock bit.

Bit 6 Used only in the SMBopen, SMBcreate and SMBmknew requests when
an extended protocol is negotiated; meaningful only if bit 5 is also
set. When set, the SMB redirector is asking to be notified of any
operation which can modify the file (for example, delete, setting of
attributes, rename, etc.). This allows the redirector to cache the
complete file. If not set, the SMB redirector need only be notified if
another open request is received for the file. This bit is referred to as
the opbatch bit.

Bit 7 Always set in responses. The smb_com (command code) field usually
contains the same value in a request from the SMB redirector to the
LMX server as in the matching SMB response from the LMX server to
the SMB redirector. This bit unambiguously distinguishes the SMB
request from the SMB response. On a multiplexed LMX session on a
system where both LMX server and SMB redirector are active, this bit
can be used by the system’s SMB delivery system to help identify
whether this protocol should be routed to a waiting SMB redirector
or to the LMX server.

Used by the LMX server to identify a resource (for example, a file system
subtree). The value Oxffff is reserved. The LMX server is responsible for
enforcing use of a valid TID where appropriate (see Section 3.2 on page 10).

Generated by the SMB redirector to uniquely identify a process within the
SMB redirector’s system. An SMB response will always contain the same
value in smb_pid (and smb_mid) as in the corresponding SMB request.

User identifier. It is used by the extended protocol when the LMX server is
executing in user-level security mode to validate access on requests which
reference named resources (such as file open). Refer to Section 3.2 on page 10,
Section 3.3 on page 12 and Section 4.3.1 on page 30 for additional information.
Thus differing users accessing the same TID may be granted differing access to

X/0Open CAE Specification (1992)

Data Objects and Constants SMB Format

the resources defined by the TID based on smb_uid. The username and
password requested are validated by the LMX server via the SMBsesssetupX
exchange (refer to Section 11.3 on page 144). The LMX server returns a value
in smb_uid that will be used by the SMB redirector to represent the user
identity requested.

Note that 0xfffe (-2) is reserved as an invalid UID. In share-level security
mode this field is not used.

smb_mid This field is used for multiplexing multiple SMBs on a single LMX session.
The PID (in smb_pid) and the MID (in smb_mid) uniquely identify a request and
are used by the SMB redirector to correlate incoming SMB responses to
previously sent SMB requests (refer to Section 3.2 on page 10).
Protocols for X/Open PC Interworking: SMB, Version 2 39

Page 57 of 267

SMB Command Codes

5.2

40

SMB Command Codes

Data Objects and Constants

This table shows the mapping between the symbolic name for an SMB request or response and
the value to be placed in the smb_com field of the SMB header. The Protocol column indicates the
protocol class to which the request belongs:

C Core protocol; all dialects.

C+ Core plus protocol as generated by the 1.03 dialect.

E Extended protocol; only those dialects defined as extended 1.0.

E2 Extended protocol; only those dialects defined as extended 2.0.

Name

' SMBmkdir

SMBrmdir
SMbBopen
SMBcreate
SMBclose
SMBflush
SMBunlink
SMBmv
SMBgetatr
SMBsetatr
SMBread
SMBwrite
SMBlock
SMBunlock
SMBctemp
SMBmknew
SMBchkpth
SMBexit
SMBlseek
SMBlockread
SMBwriteunlock
SMBreadbraw
SMBreadbmpx
SMBreadbs
SMBwritebraw
SMBwritebmpx
SMBwritebs
SMBwritec
reserved
SMBsetattrE
SMBgetattrk
SMBlockingX
SMBtrans
SMBtranss

Page 58 of 267

smb_com
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0a
0x0b
0x0c
0x0d
0x0e
0x0f
0x10
Ox11
0x12
0x13
0x14
Oxla
Ox1b
Oxlc
Ox1d
Oxle
Ox1f
0x20
0x21
0x22
0x23
0x24
0x25
0x26

Protocol

OO0O0O0O0OJOOOOOOO0OO00O0000 0]

DEOOEDNE ! HEEOEEO00
¥ Yooy

Not generated by dialects of LAN Manager; included for reference purposes only.

eserved

See Note.

X/Open CAE Specification (1992)

Data Objects and Constants SMB Command Codes

Name smb_com Protocol
SMBioctl 0x27 E
SMBioctls 0x28 E
SMBcopy 0x29 E
SMBmove Ox2a E
SMBecho 0x2b E
SMBwriteclose Ox2c E
SMBopenX Ox2d E
SMBreadX Ox2e E
SMBwriteX Ox2f E
SMBtrans? 0x32 E2
SMBtranss2 0x33 E2
SMBfindclose 0x34 E2
SMBfindnclose 0x35 E2
SMBlogon 0x60 -
SMBbind 0x61 -
SMBunbind 0x62 -
SMBgetaccess 0x63 -
SMBlink Ox64 -
SMBfork 0x65 - Reserved for
SMBgetpath 0x68 - proprietary
SMBreadh 0x69 - dialects
SMBrdchk 0Ox6b -
SMBmknod Ox6¢ -
SMBrlink Ox6d -
SMBgetlatr Ox6e -
SMBtcon 0x70 C
SMBtdis 0x71 C
SMBnegprot 0x72 C
SMBsesssetupX 0x73 E
SMBulogofiX 0x74 E2
SMBtconX 0x75 E
SMBdskattr 0x80 C
SMBsearch 0x81 C
SMBffirst 0x82 E
SMBfunique 0x83 E
SMBftlose 0x84 E
SMBsplopen Oxc0 C
SMBsplwr Oxcl C
SMBsplclose Oxc2 C
SMBsplretq 0xc3 C
SMBsends 0xd0 C
SMBsendb Oxdl1 C
SMBfwdname Oxd?2 C
SMBcancelf Oxd3 C
SMBgetmac Oxd4 C
SMBsendstrt Oxd5 C
SMBsendend Oxd6 C
Protocols for X/Open PC Interworking: SMB, Version 2 41

Page 59 of 267

SMB Command Codes Data Objects and Constants

., Name smb_com Protocol
SMBsendtxt Oxd7 C
Never valid Oxfe Never sent

' Implementation-dependent Oxff -

Note: The SMBtrans request is used within the extended SMB protocols only for services
described in the X/Open CAE Specification, IPC Mechanisms for SMB and is outside
the scope of this specification.

42 X/Open CAE Specification (1992)
Page 60 of 267

Data Objects and Constants Data Objects

3.3 Data Objects
This section defines various fields, objects and structures used in more than one SMB request or
response.
5.3.1 Time Fields
There are two time field formats; one 16 bits in length, and one 32 bits in length. Many SMBs
contain a 16-bit quantity whose value indicates a particular time. Unless otherwise specified, the
time is encoded in the following format:
h ' h | h h|h m m m m|m m| x| x| X | x| X
hhhhh Bits 11-15 contain the current hour; range is 0-23.
mmmmmm Bits 5-10 contain the current minute; range is 0-59.
XXXXX Bits 0-4 contain the current seconds in units of two seconds; range is 0-29.
Other SMBs contain a 32-bit value which represents a time, in seconds, relative to midnight on
January 1, 1970 (the Epoch). This 32-bit value is a signed, but always positive, 32-bit integer, and
is split into two 16-bit values in the SMB. The low-order 16-bit values are always first, followed
immediately by the high-order 16-bit values. This pair is usually referred to as time low and
time high.
5.3.2 Date Fields
Many SMBs contain a 16-bit value indicating a particular date. Unless otherwise specified, the
date is encoded in the following format:
vyl 'y vy vy y m m m| m| d| d|d|d| d
YYyyyy Bits 9-15 contain the current year, less 1980; range is 0-119, indicating 1980-2099.
Note that the base year is not 1970.
mmimm Bits 5-8 contain the current month; range 1-12, where 1 is January.
ddddd Bits 0-4 contain the current day of the month; range 1-31.
5.3.3 File Attributes Fields
Many SMBs contain one or more 16-bit values, each of which encodes file attributes. Unless
otherwise specified, the attributes are encoded in the following format:
Bit 0 The file is read-only.
Bit 1 The file is hidden.
Bit 2 The file is a system file.
Bit 3 The file is a volume identifier.
Protocols for X/Open PC Interworking: SMB, Version 2 43

Page 61 of 267

Data Objects Data Objects and Constants

5.3.4

5.3.5

44

Bit 4 The file is a directory.
Bit 5 The file is flagged as changed since last archive.

All other bits are reserved and Must Be Zero. If none of the attribute bytes are set, the file
attributes refer to a regular file. Note that use of this field is governed by the File Attributes
conventions (see Section 4.3.1 on page 30).

Buffers

Many of the core SMBs contain typed buffers in the smb_buffield. A buffer consists of a single 8-
bit field, indicating the type of buffer, followed by a string of 8-bit fields, which are the contents
of the buffer. The buffer type defines the termination method for the buffer contents. The buffer
types are:

01 Data Block. The buffer contains a 16-bit value containing the length of the data block,
followed by that number of 8-bit fields of data. This buffer is not null-terminated.

02 Dialect. The buffer is a null-terminated string of bytes making up a dialect name (see
Section 5.4 on page 48).

04 ASCIZ. The buffer is a null-terminated string of ASCII characters.

05 Variable Block. The buffer contains a 16-bit value containing the length of the data block,
followed by that number of 8-bit fields of data. This buffer is not null-terminated.

File-sharing Control

SMBs which open files make use of a 16-bit value to control the extent of file sharing to be
permitted. This 16-bit value has the following format:

Olw/| 000|000 |r | x| x| x|y y|Vy| Yy

Bits 8-13 and bit 15 are reserved and should be ignored by the LMX server.

w Write-through mode. Neither read-ahead nor write-behind caching for this file is
permitted. An LMX server should not respond to any SMB request involving this file
until all data related to the SMB request is on stable store (that is, on disk). This mode
is generated in extended protocols only.

r Reserved. Ignored by the LMX server.
XXX Exclusion mode. Values are:
0 DOS compatibility mode (exclusive to an LMX session, but that LMX session
may have multiple opens).
1 DENY ALL (exclusive to this operation).
2 DENY WRITE. Other users may access the file in READ mode. Open for
executing is not allowed.
3 DENY READ. Other users may access the file in WRITE mode.
4 DENY NONE. Allow other users to access the file in any mode for which they

have permission.

X/0Open CAE Specification (1992)

Page 62 of 267

Data Objects and Constants Data Objects

5.6 Illegal. SMB redirectors should not specify these values.
7 FCB open mode (see below).
yvvyy Type of access requested. Values are:
0 Open the file for reading.
1 Open the file for writing.
2 Open the file for reading and writing.
3 Open the file for executing (extended protocols only).

4-14 Illegal. SMB redirectors should not specify these values.
15 Illegal, except for FCB open (see below).
For the exclusion modes see Section 3.7.2 on page 18.

Special semantics, called an FCB open, are associated with a file-sharing control value of 0x00ff.
This type of open will cause a DOS compatibility open with the read/write modes set to the
maximum permissible. Generally, this will cause any access violations to be detected when the
first read and /or write is attempted, rather than during open processing.

The open for execute bit maps to read-only, and writes to these files from SMB redirectors are
not allowed while that attribute is set.

5.3.6 Resource Types

In SMBtcon and SMBtconX an ASCIZ buffer (type 04) is used to specify the resource type. The

following are acceptable:

A: File system share.

LPT1: Spoolable device.

COMM Character mode device.

IPC$ Mailslots or named pipes.

SMBopenX contains a 16-bit field denoting a resource type. The permissible values for this field

are:

0 File or directory, as determined by the attribute field smb_attr related to the same file.

1 Stream mode named pipe - see the X/Open CAE Specification, IPC Mechanisms for SMB.

2 Message mode named pipe - see the X/Open CAE Specification, IPC Mechanisms for SMB.

3 Printer device.

4 Character mode device. When an extended protocol has been negotiated, it allows a device
to be opened (via SMBopenX) for driver-level I/0. This provides direct access to real-time
and interactive devices such as modems, scanners, etc.

Protocols for X/Open PC Interworking: SMB, Version 2 45

Page 63 of 267

Data Objects Data Objects and Constants

5.3.7

5.3.8

5.3.9

46

Named Pipes, Mailslots and Messaging

Named pipes, mailslots and messaging are IPC mechanisms defined in the X/Open CAE
Specification, IPC Mechanisms for SMB which are outside the scope of this specification. To
support named pipes and mailslots extended SMB protocol elements are required that will use
specific resource types as defined above. Two such types of devices are defined:

COMM Communication devices like modems or terminals.

LPT1 Printer devices which will be accessed directly.

Access Modes

Some SMBs which open files return an indication of the type of access granted to the requestor.
This 16-bit field takes the following values:

0 Read-only access granted.

—

Write-only access granted.

Read/write access granted.

[\
w

Reserved; do not use.

Open Function

The open function field controls the way a file should be treated when it is opened for use by
certain extended SMB requests. This 16-bit field is bit-encoded:

Bits 0-1 This field determines the action to be taken if the file exists. The values and meanings
for this field are:

0 The request should fail and an error returned indicating the prior existence of the
file.

1 The file should be appended to.
2 The file should be truncated to zero (0) length.
3 Reserved; this value should not be used.

Bit 4 If the file does not exist and this bit is clear, the request should fail; if this bit is set, the
file should be created.

All other bits are reserved and should be ignored by the LMX server.

Resource Names, Pathnames, Filenames and Network Pathnames
A pathnameis a1 to 255 byte long UNC name that routes to a directory.

A filename is an 8.3 format or long filename format name that routes to a file. In the case of the
extended 2.0 dialect a filename may be up to 255 bytes in length. A pathname may be included
to specify a directory where the file resides.

A network pathname is a filename proceeded by the LMX servername and has the following
format:

\\<LMX servername>\<pathname>\<filename>
where:

<LMX servername> is a one to fifteen byte LMX servername.

X/Open CAE Specification (1992)

Page 64 of 267

Data Objects and Constants Data Objects

<pathname> is a collection of component names in either the 8.3 format or in a long
filename format.

<filename> is the final 8.3 or long filename format name.

5.3.10 File Identifiers

Many SMB requests and responses contain a 16-bit file identifier (FID). These are created by the
LMX server upon an open request and need to be maintained by the SMB redirector. All values
but —1 (OXxFFFF) are valid. The -1 is used to specify all FIDs or no FID, depending on the context
by which it is used.

Protocols for X/Open PC Interworking: SMB, Version 2 47
Page 65 of 267

SMB Dialects Data Objects and Constants

5.4

3.9

48

SMB Dialects

To distinguish between various levels of SMB protocols the SMB redirector will send in the
SMBnegprot request (see Section 6.1 on page 55) a set of dialect strings from which the LMX
server will select one to be used for the LMX session. The currently known dialect strings are:

- Dialect String " Referred to as

PC NETWORK PROGRAM 1.0 core pI‘OtOCOl
MICROSOFT NETWORKS 1.03 | core plus dialect
MICROSOFT NETWORKS 3.0 extended 1.0 protocol
LANMAN 1.0 extended 1.0 protocol
LM1.2X002 extended 2.0 protocol

MICROSOFT NETWORKS 3.0 and LANMAN 1.0 specify the same SMB protocol dialect.
MICROSOFT NETWORKS 3.0 is used by DOS SMB redirectors and LANMAN 1.0 is used by
0S/2 SMB redirectors. The MICROSOFT NETWORKS 1.03 string specifies a slightly extended
version of the core protocol. The LMI1.2X002 protocol specifies the second extension to the
protocols. This dialect is used to provide longer names to files and other file characteristics to
the SMB environment.

Timeouts

Some of the SMB protocols allow for the operation to time out prior to its success or failure. This
timeout feature allows SMB redirectors to attempt to open devices which may not open
immediately. For example, an application that requires the services of a modem may be running
on the SMB redirector system. An LMX server may provide a modem pool and allow SMB
redirector access to this modem pool. When the SMB redirector attempts to open a modem
device, the open request may be queued until a modem is free. By specifying a timeout on the
open request, the SMB redirector is able to return a busy error to the user of the modem
application when all of the modems are busy rather than wait indefinitely.

Timeout values within the SMB protocol are typically 32-bit values representing the number of
milliseconds the SMB redirector would like before the request is returned with an error
(exceptions are noted in the text when a timeout is defined). Some timeout values are reserved
for the following function:

0 Return immediately if the request cannot be satisfied at this time.
-1 Wait indefinitely.

-2 Wait for an LMX server-defined default. This default time is implementation-dependent.
Suggested defaults depend on the type of activity requested. For example, writes may have
an infinite timeout, but opens may have a timeout in the range of 10 to 20 seconds.

X/0Open CAE Specification (1992)

Page 66 of 267

Data Objects and Constants SMB Error Codes

5.6

5.6.1

5.6.2

SMB Error Codes

This section specifies the error class and error code values for the SMB headers. In SMB
responses the error class will be set in the SMB header field smb_rcls. The error code will be set
in the SMB header field smb_err. If a value is not listed it is considered reserved for future use.
Some of the error codes will only occur when SMBs are used to implement the X/Open CAE
Specification, IPC Mechanisms for SMB, which is outside the scope of this specification.

In the case of success, the LMX server must return error class SUCCESS and error code
SUCCESS. An undefined error (for example, caused by a corrupted SMB, internal LMX server
error) should be in error class ERRSRV and error code ERRerror.

SMB Error Class Mappings

Unless otherwise stated, the following error classes may be returned.

' Name " Value | bescription

SUCCESS 0x00 | The request was successful.

ERRDOS 0x01 | Erroris considered to be operating system related.
ERRSRV 0x02 | Erroris generated by the LMX server.

ERRHRD 0x03 | Erroris a hardware error.

ERRXOS 0x04 | Reserved.

ERRRMX1 Oxel | Reserved.

ERRRMX?2 OxeZ2 | Reserved.

ERRRMX3 Oxe3 | Reserved.

ERRCMD Oxff | Command was not in the SMB format.

The ERRXOS, ERRRMXI1, ERRRMX?2 and ERRRMX3 error classes are not used in the SMB
protocols defined in this specification.

Error Codes for the SUCCESS Class

The following error codes may be generated with the SUCCESS error class.

Name

SUCCESS
BUFFERED
LOGGED
DISPLAYED

Value _

0x00
0x54
0x55

Description

The request was successful.

Message was buffered (used in Messaging).
Message was logged (used in Messaging).

5.6.3

0x56 | Message was displayed (used in Messaging).

al

Note: Messaging is described in the X/Open CAE Specification, IPC Mechanisms for SMB
and is outside the scope of this specification.

Error Codes for the ERRDOS Class

In general, the ERRDOS class is used to return OS-specific errors to SMB redirectors. Since the
SMB redirector needs to understand these error codes for all LMX servers, it is impossible to
define CAE-specific errors. Instead, the list of possible error codes, with some explanatory text,
appears below. An LMX server may elect to return one of these more specific error codes any
time a system-specific error occurs.

The Name column gives the symbolic name for the error. The Value column indicates the
numeric value for the constant, and a description follows in the Description column. A hint to
the CAE error code (see Chapter 2.3, Error Numbers, of the X/Open Portability Guide, Issue 3,
Volume 2, XSI System Interface and Headers) that may be mapped to the SMB error code is
given in the description text.

Protocols for X/Open PC Interworking: SMB, Version 2 49
Page 67 of 267

SMB Error Codes

_r Name
ERRbadfunc

ERRbadfile
ERRbadpath
ERRnofids

ERRnoaccess

ERRbadfid
ERRnomem

ERRbadmem
ERRbadenv
ERRbadaccess
ERRbaddata

ERRres
ERRbaddrive
ERRremcd

ERRdiffdevice

ERRnofiles

ERRbadshare

ERRlock

ERRfilexists

Page 68 of 267

Value _
Invalid function. The LMX server’s OS did not

10
12
13

14
15
16

17

18

32

33

80

Data Objects and Constants

Description

recognise or could not perform a system call
generated by the LMX server; for example, set
the directory file attribute on a data file, invalid
seek mode. [EINVAL)]

File not found. The last component of a file’s
pathname could not be found. [ENOENT]
Directory invalid. A directory component in a
pathname could not be found. [ENOENT]

Too many open files. The LMX server has no
FIDs available. [EMFILE]

Access denied, the requestor’s context does not
permit the requested function. This includes
the following conditions: invalid rename
command, write to FID open for read-only,
read on FID open for write-only, attempt to
delete a non-empty directory. [EPERM]

Invalid FID. The FID specified was not
recognised by the LMX server. [EBADF]

Insufficient LMX server memory to perform
the requested function. [ENOMEM]

Invalid memory block address. [EFAULT]
Invalid environment.

Invalid open mode.

Invalid data (generated only by IOCTL calls
within the LMX server). [E2BIG]

Reserved.

Invalid drive specified. [ENXIO]

A Delete Directory request attempted to
remove the LMX server’s current directory.
Not the same device (for example, a rename
across different file systems was attempted).
[EXDEV]

A File Search command can find no more files
matching the specified criteria.

The sharing mode specified for an Open
conflicts with existing FID on the file.
[ETXTBSY]

A Lock request conflicted with an existing lock
or specified an invalid mode, or an Unlock
request attempted to remove a lock held by
another process. [EDEADLOCK]

The file named in a Create Directory, Make
New File or Link request already exists. The
error may also be generated in the Create and

Rename transaction. [EEXIST]

X/Open CAE Specification (1992)

Data Objects and Constants

Name
ERRbadpipe
ERRpipebusy
ERRpipeclosing
ERRnotconnected
ERRmoredata

ERROR_EAS_DIDNT_FIT

SMB Error Codes

Value | Description
230 | Named pipe invalid.
231 | Allinstances of the requested pipe are busy.
232 | Named pipe close in progress.
233 | No process on the other end of the named pipe.
234 | There is more data to be returned.
275 | There are no extended attributes, or the

ERROR_EAS_NOT_SUPPORTED 282

5.6.4

Error Codes for the ERRSRV Class

number of attributes available did not fit into
the SMB response.

The LMX server does not support storage of
extended attributes.

The following error codes may be generated with the ERRSRV error class:

: ‘Name
ERRerror

ERRbadpw

ERRbadtype
ERRaccess

ERRinvnid
ERRinvnetname
ERRinvdevice

ERRqfull

ERRqtoobig

ERRinvpfid
ERRsmbcmd

ERRsrverror
ERRfilespecs

ERRbadlink
ERRbadpermits

Value |

1

»

49

50

52
64

65
67

68
69

Protocols for X/Open PC Interworking: SMB, Version 2
Page 69 of 267

Description

Non-specific error code. It is returned under the following
conditions: resource other than file system space exhausted
(for example,TIDs), first command on the LMX session was
not SMBnegprot, multiple SMBnegprots attempted, or internal
LMX server error.

Bad password - name/password pair in an SMBtcon,
SMBtconX or SMBsesssetupX are invalid.

Reserved.

The requestor does not have the necessary access rights
within the specified context for the requested function. The
context is defined by the TID or the UID. [EACCES]

The TID specified in a command was invalid.

Invalid LMX servername in SMBtcon or SMBtconX

Invalid device - printer request made to non-printer
connection or non-printer request made to printer
connection.

Print queue full (that is, too many queue items) - returned by
open print file.

Print queue full (that is, no space or queued item too big).
Invalid print file specified in smb_fid.

The LMX server did not recognise the command code
received.

The LMX server encountered an internal error.

The FID and pathname parameters contained an invalid
combination of values.

Reserved.

The access permissions specified for a file or directory are
not a valid combination. The LMX server cannot set the
requested attribute.

51

SMB Error Codes

5.6.5

52

Name

' ERRbadpid

ERRsetattrmode

ERRpaused
ERRmsgoff
ERRnoroom
ERRrmuns
ERRtimeout
ERRnoresource
ERRtoomanyuids
ERRbaduid

ERRuseMPX
ERRuseSTD

ERRcontMPX
ERRBadPW
ERRnosupport

Name

ERRnowrite
ERRbadunit
ERRnotready
ERRbadcmd
ERRdata
ERRbadreq
ERRseek
ERRbadmedia
ERRbadsector
ERRnopaper
ERRwrite
ERRread
ERRgeneral
ERRbadshare
ERRlock

Page 70 of 267

Value
70

71

81
82
83
87
88
89
90
91

250

251

252
254

OxFFFF

Valug
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33

Data Objects and Constants

Description

Reserved.

The attribute mode in the Set File Attribute request is
invalid.

Message server is paused. (Reserved for messaging.)

Not receiving messages. (Reserved for messaging.)

No room to buffer message. (Reserved for messaging.)

Too many remote usernames. (Reserved for messaging.)
Operation timed out.

No resources currently available for SMB request.

Too many UIDs active on this LMX session.

The UID given (smb_uid) is not known as a valid ID on this
LMX session.

Temporarily unable to support Raw mode operation, use
MPX mode.

Temporarily unable to support Raw mode operation, use
standard read/write.

Continue in MPX mode.

Reserved.

Function not supported.

Error Codes for the ERRHRD Class

The following error codes may be generated for hard errors on the LMX server with the
ERRHRD error class. CAE error mapping hints to each of these errors are noted at the end of the
error description.

The ERRHRD error class may cause an SMB redirector to notify the user of the error condition
via an exception handling routine. Where ERRHRD and ERRDOS error classes overlap, the
LMX server implementation has the option to choose an appropriate class for the error.

Description
Attempt to write on write-protected diskette. [EROFS]
Unknown unit. [ENODEV]

Drive not ready. [EUCLEAN]

Unknown command.

Data error (CRC). [EIO]

Bad request structure length. [ERANGE]

Seek error.

Unknown media type.

Sector not found.

Printer out of paper.

Write fault.

Read fault.

General hardware failure.

An open conflicts with an existing open. [ETXTBSY]

A Lock request conflicted with an existing lock or specified
an invalid mode, or an Unlock request attempted to remove
a lock held by another process. [EDEADLOCK]

X/Open CAE Specification (1992)

Data Objects and Constants SMB Error Codes

Name " Value | Description
' ERRwrongdisk ' 34 | The wrong disk was found in a drive.
ERRFCBUnavail 35 | No FCBs are available to process the request.
ERRsharebufexc 36 | A sharing buffer has been exceeded.
ERRdiskfull 39 | No space on file system. [ENOSPC]
Protocols for X/Open PC Interworking: SMB, Version 2 53

Page 71 of 267

Data Objects and Constants

54 X/Open CAE Specification (1992)
Page 72 of 267

Jv Chapter 6

[
y

| Core SMB Connection Management Requests

This section defines the elements of the core SMB protocol related to connection management.
They are:

SMBnegprot negotiate protocol
SMBtcon tree connect
SMBtdis tree disconnect
SMBexit process exit

6.1 SMBnegprot Specification

SMBne gprot Detailed Description
This core protocol request is sent as the first request to establish the LMX session, negotiating the
protocol dialect that the SMB redirector and LMX server will use when communicating with
each other. The SMB redirector sends a list of dialects that he can communicate with. The LMX
server responds with a selection of one of those dialects (numbered 0 to n) or -1 indicating that
none of the dialects were acceptable. Exactly one negotiate message must be sent on each
NetBIOS session; subsequent negotiate requests must be rejected with an error response and no
action will be taken.
The SMB protocol does not impose any particular structure on the dialect strings. Implementors
of particular protocols may choose to include, for example, version numbers in the string. An
LMX server may choose to support one or more of the dialects identified in Section 5.4 on page
48. The fields described here are only valid when the core protocol has been negotiated. The
other SMB dialects impose some differences on the SMBnegprot format; refer to the sections
discussing the different dialects for information on these differences.
SMBne gprot Deviations
None.
SMBnegprot Field Descriptions
Field descriptions for the core protocol (SMBnegprof) are as follows:

- From SMB reﬁdirecﬁtor - To SMB reciirectgr

_ Field Name Field Value | Field Name Field Value

smb_com SMBnegprot smb_com SMBnegprot

smb_wct 0 smb_wct 1

smb_bcc min = 2 smb_vwv|[0)] smb_index

smb_buf]] dialect0 smb_bcc 0

I dialectn
Protocols for X/Open PC Interworking: SMB, Version 2 55

Page 73 of 267

SMBnegprot Specification Core SMB Connection Management Requests

SMBne gprot Error Code Descriptions

If any error occurs, the server will return <ERRSRV, ERRerror>; otherwise, <SUCCESS,
SUCCESS> will be returned.

SMBne gprot Preconditions

The SMB redirector attempting to negotiate a protocol must have established a NetBIOS session
with the server.

SMBne gprot Postconditions

The SMB redirector that negotiated this protocol must be able to handle all aspects of the dialect
negotiated.

SMBnegprot Side Effects

The LMX server will keep record of which dialect the SMB redirector negotiated and will use
only that dialect in conversations with the SMB redirector.

Conventions

None.

56 X/0Open CAE Specification (1992)
Page 74 of 267

Core SMB Connection Management Requests SMBtcon Specification

6.2 SMBtcon Specification

SMBtcon Detailed Description

This core protocol request is sent to establish direct access to a resource on an LMX server. The
exact behaviour of this request and the semantics of the password argument depend upon the
security mode of the LMX server.

« share-level security mode

The password establishes the user’s rights to access this resource. It must match the
password (if any) defined by the server administrator when the resource was made available
for sharing (offered).

« user-level security mode

Based on the negotiated dialect, an LMX server in user-level security must behave in one of
two different ways:

— If one of the extended SMB protocol dialects was selected the SMB redirector has already
issued an SMBsesssetupX request. This request contained a username and password and
resulted in the LMX server assigning a valid UID (refer to Section 3.3.2 on page 12). In
this case, the password field will be meaningless and must be ignored.

— If the core or core plus dialect was selected, the SMB redirector will issue an SMBtcon
request as if the LMX server were in share-level security mode. The LMX server may
select to support a mapping to user-level security (refer to Section 3.3.3 on page 13). The
password supplied with the SMBtcon request can be used for this validation.

SMBtcon Deviations

None.

SMBtcon Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBtcon smb_com SMBtcon

smb_wct 0 smb_wct 2

smb_bcc min=4 smb_vwv|[0] smb_maxxmt

smb_bufl] smb_path smb_vwv[1] TID
smb_password smb_bcc 0

| smb_device |
smb_path An ASCIZ buffer (type 04; refer to Section 5.3.4 on page 44) containing a

resource name preceded by the LMX servername. The format is like a
network pathname (refer to Section 5.3.9 on page 46). For example, a resource
called src residing on a server called Imserverl would be referenced by
\\Imserverl\src.

smb_password An ASCIIZ (type 04) buffer containing the password for the resource. Total
length of the buffer must be less than or equal to 15 bytes. For the extended
protocols the encrypted password string can be up to 24 bytes.

smb_device An ASCIIZ (type 04) buffer containing the resource type. Refer to Section 5.3.6
on page 45.
Protocols for X/Open PC Interworking: SMB, Version 2 57

Page 75 of 267

SMBtcon Specification Core SMB Connection Management Requests

smb_maxxmt A 16-bit integer defining the largest message that the SMB redirector can send
to the LMX server and vice versa.
TID (Tree ID) A 16-bit integer used by the LMX server in subsequent SMB

redirector requests to refer to a resource relative to smb_path. Most access to
the server requires a valid TID, whether the resource is password protected or
not. The smb_tid field in the SMB header of this request is ignored. The value
Oxffff is reserved.

SMBtcon Error Code Descriptions

iCAE Code | DOS Class |DOS Code DescriE)tion

- SUCCESS | SUCCESS 'Everything worked, no problems.
- ERRDOS |ERRnomem A memory related resource has depleted.
- ERRDOS ERRbadpath The CAE path related to the resource is not

valid.
- ERRSRV ERRinvdevice | Resource type mismatch for connect.
- ERRSRV ERRaccess User not authorised to access specified resource.
- ERRSRV ERRerror Ran out of TIDs.
- ERRSRV ERRerror First command on the NetBIOS session wasn't
SMBnegprot.
- ERRSRV ERRerror LMX server internal error.

- ERRSRV ERRbadpw Bad password, name/password pair in an
SMBtcon is invalid.

- ERRSRV ERRinvnetname | Invalid resource name supplied in the SMBtcon.

SMBtcon Preconditions

1. The SMB redirector attempting to set up this SMBtcon must have established an LMX
session with the LMX server.

2. The path, password and device name must all be valid instances of those types.

SMBtcon Postconditions

1. If there are no errors the TID is valid to be used in future SMB requests until it is nullified
with an SMBtdisrequest. Otherwise, the TID should not be used in future transactions.

2. If there are no errors the smb_maxxmt size will represent the negotiated maximum buffer
size for the LMX session.

SMBtcon Side Effects

None.

Conventions

» Resource Names (see Section 5.3.9 on page 46) applies to the smb_path field.

58 X/0Open CAE Specification (1992)
Page 76 of 267

Core SMB Connection Management Requests SMBtdis Specification

6.3 SMBtdis Specification
SMBtdis Detailed Description
This core protocol request is sent to invalidate the resource (file or print) sharing connection
identified by the TID.
SMBtdis Deviations
None.
SMBtdis Field Descriptions
_ From SMB redirector _ To SMB redirector
' Field Name Field Value | Field Name Field Value
smb_com SMBtdis smb_com SMBtdis
smb_wct 0 smb_wct 0
| smb_bcc 0 | smb_bcc 0
There are no parameters of interest besides the TID (passed in the smb_tid field of the SMB
header). If an invalid TID is sent, the server will ignore the request and return an error.
SMBtdis Error Code Descriptions
., CAE Code DOS Class DOS Code Description
- SUCCESS | SUCCESS Everything worked, no problems.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.
- ERRSRV ERRinvnid TID specified in command was invalid.
| - ERRSRV ERRerror LMX server internal error.
SMBtdis Preconditions
1. The SMB redirector attempting to invalidate this TID must have established an LMX
session with the LMX server.
2. The SMB redirector attempting to invalidate this TID should have established this TID as a
valid one with the LMX server.
SMBtdis Postconditions
1. If there are no errors then the TID will be invalidated and the SMB redirector should not
use the TID again.
2. If an error other than TID Invalid occurs, the TID will be invalidated and the SMB
redirector should not use the TID again.
Protocols for X/Open PC Interworking: SMB, Version 2 59

Page 77 of 267

SMBtdis Specification Core SMB Connection Management Requests

SMBtdis Side Effects

The TID that was sent no longer has any meaning to the LMX server.

Conventions

None.

60 X/0Open CAE Specification (1992)
Page 78 of 267

Core SMB Connection Management Requests SMBexit Specification

6.4 SMBexit Specification
SMBexit Detailed Description
This core protocol request informs the LMX server that an SMB redirector process has
terminated.
The LMX server will release any locks and close any resources owned by the exiting process.
Note that there is no process creation SMB request. PIDs are assigned by the SMB redirector.
SMBexit Deviations
An LMX server should accept this request from any LMX session regardless of dialect.
SMBexit Field Descriptions
_r From SMB redirector To SMB redirector
_ Field Name Field Value | Field Name Field Value
smb_com SMBexit smb_com SMBexit
smb_wct 0 smb_wct 0
smb:bcc 0 | smb: bce 0
The smb_pid field from the SMB header indicates the process to be terminated.
SMBexit Error Code Descriptions
_7 CAE Code _ DOS Class _ DOS Code | Description
- SUCCESS | SUCCESS Everything worked, no problems.
= ERRSRV ERRinvnid Bad TID.
= | ERRSRV | ERRerror | Some other error occurred. |
SMBexit Preconditions
The SMB redirector must have registered a UID and established a TID with the LMX server.
SMBexit Postconditions
None.
SMBexit Side Effects
None.
Conventions
None.
Protocols for X/Open PC Interworking: SMB, Version 2 61

Page 79 of 267

Core SMB Connection Management Requests

62 X/Open CAE Specification (1992)
Page 80 of 267

,r Chapter 7

_r Core SMB File Operation Requests

This section defines the elements of the core SMB protocol related to normal file access. They

are:

SMBcreate open a file; create it if it doesn't exist
SMBmknew create and open a new file; fail if it exists
SMBopen open an existing file

SMBread read from a file

SMBwrite write to a file

SMBlseek set the current position in a file
SMBlock lock a range of bytes in a file
SMBunlock unlock a range of bytes in a file
SMBflush force any buffers of a file to disk
SMBclose close a file

SMBmv rename a file

SMBunlink delete a file

7.1 SMBcreate Specification

SMBcreate Detailed Description

This core protocol request is used to create and open a new regular file, or open an existing
regular file and truncate its length to zero. The file-sharing mode for the open operation cannot
be specified. The FID returned can be used in subsequent commands.

SMBcreate Deviations

1. The archive, system and hidden file attribute bits may be ignored, in accordance with the
File Attribute mapping convention (see Section 4.3.1 on page 30).

2. The create time specified is used to set the LMX server's last modify time for the file.

SMBcreate Field Descriptions

From SMB redirector

Field Name Field Value
smb_com SMBcreate
smb_wct 3

smb_vwv[0] smb_attr
smb_vwv[1-2] smb_time
smb_bcc min=2
smb_bufl] smb_pathname

Protocols for X/Open PC Interworking: SMB, Version 2

Page 81 of 267

To SMB redirector
Field Name Field Value
smb_com SMBcreate
smb_wct 1
smb_vwv[0] smb_fid
smb_bcc 0

63

SMBcreate Specification Core SMB File Operation Requests

smb_attr This is a file attribute field (see Section 5.3.3 on page 43). It defines the
attributes to be given to the newly-created file. The bits 3 and 4 (volume label
and directory) are not allowed to be set. If the file already exists, this field is
ignored.

smb_time A 32-bit integer which sets the LMX server’s idea of the last modify time for
the file. A value of zero indicates a null time field (see Section 5.3.1 on page
43).

smb_pathname An ASCIZ (type 04) buffer containing the name of the file to be created.

smb_fid This signed integer is the FID returned by the LMX server for the opened file.
The SMB redirector will use that FID in other requests to refer to this
particular file.

64 X/Open CAE Specification (1992)
Page 82 of 267

Core SMB File Operation Requests

SMBcreate Error Code Descriptions

CAE Code |DOS Class | DOS Code
EACCES ERRDOS ERRnoaccess
EACCES ERRDOS ERRnoaccess
EACCES ERRDOS ERRnoaccess
EAGAIN ERRDOS ERRbadshare
EFAULT ERRSRV ERRerror
EINTR ERRSRV ERRerror
EISDIR ERRDOS ERRnoaccess
EMFILE ERRDOS ERRnofids
ENFILE ERRDOS ERRnofids
ENOENT | ERRDOS ERRbadfile
ENOSPC ERRSRV ERRerror
ENOTDIR |ERRDOS ERRbadpath
ENXIO ERRSRV ERRerror
EROFS ERRSRV ERRerror
ETXTBSY ERRSRV ERRaccess

- ERRSRV ERRinvnid

- ERRSRV ERRinvdevice

- ERRSRV ERRaccess

- ERRSRV ERRaccess

- ERRSRV ERRbaduid

- _ SUCCESS _ SUCCESS

Protocols for X/Open PC Interworking: SMB, Version 2
Page 83 of 267

SMBcreate Specification

' Description
File does not exist and the directory in which the
file is to be created does not permit writing.

| Search permission is denied on a component of
the path-prefix.

File exists and write permission is denied.

File exists, mandatory file/record locking is set,
land there are outstanding record locks on the
file.

Path points outside the allocated address space
of the process.

A signal was caught during the operation.
Named file is an existing directory.

Maximum number of file descriptors
currently open in this process.

are

System file table is full.
Component of path-prefix does not exist or
pathname is null.

File must be created, and the system is out of
resources necessary to create files.

| Component of path-prefix is not a directory.

Named file is a character-special or block-special
file and the device associated with this special
file does not exist; or O_NDELAY is set, file is a
FIFO, O_WRONLY is set and no process has the
file open for reading.

Named file resides on read-only file system.

File is a pure procedure file that is being
executed.

TID specified in command is invalid.

File creation request made to a share that is not a
file system subtree.

Named file exists as a directory, special file or
{named pipe.

'Write and Create permissions required, or the
file attributes specified a volume label.

' The UID given (smb_uid) is not known as a valid
ID on this LMX session.

| Everythin&worked. no E)roblems.

65

SMBcreate Specification Core SMB File Operation Requests

SMBcreate Preconditions

L.

The SMB redirector has sent a valid SMB request with a valid TID for a file system subtree
and valid UID.

The SMB redirector must have write permission on the file's parent directory in order to
create a new file, or write permission on the file itself in order to truncate it. The
permission is granted via the security mode used (refer to Section 3.3 on page 12).

SMBcreate Postconditions

L.

4.

The LMX server obeys the rules for mapping the new file into the CAE file system. If the
read-only attribute is set, the CAE write permission bits for the mode of the file are turned
off.

The LMX server’s last modify time for the file will be set according to smb_time. If smb_time
was zero, the last modify time for the file will be left unchanged.

The SMB redirector will be granted read/write access to the file if it was created (even if
the read-only bit was set). If the file existed, access rights will be granted according to the
existing access mode.

The newly-created or truncated file is opened in the DOS read/write compatibility mode.

SMBcreate Side Effects

File is created or truncated.

Conventions

« Attribute (see Section 4.3.1 on page 30).

« Filename (see Section 3.5 on page 15).

« Opportunistic Locking (see Section 3.8.2 on page 20).

66

X/0Open CAE Specification (1992)

Page 84 of 267

Core SMB File Operation Requests SMBmknew Specification

7.2 SMBmknew Specification

SMBmknew Detailed Description

This core protocol request is equivalent to the SMBcreate request except that it will fail if the
named file already exists.

SMBmknew Deviations
1. The archive, system and hidden file attribute bits are ignored.

2. The create time specified is used to set the LMX server’s last modify time for the file.

SMBmknew Field Descriptions

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBmknew smb_com SMBmknew
smb_wct 3 smb_wct 1
smb_vwv[0] smb_attr smb_vwv[0] smb_fid
smb_vwv[1-2] smb_time smb_bcc 0
smb_bcc min=2
smb_bufl] smb_path
smb_attr A file attribute field (refer to Section 5.3.3 on page 43) containing attributes to

be given to the new file. The bits 3 and 4 (volume label and directory) are not
allowed to be set.

smb_time A 32-bit integer to be used as the file creation time.
smb_path An ASCIIZ (type 04) buffer containing the name of the file to be created.
smb_fid A 16-bit integer containing the FID the SMB redirector will use to refer to the
opened file.
Protocols for X/Open PC Interworking: SMB, Version 2 67

Page 85 of 267

SMBmknew Specification

SMBm knew Error Code Descriptions

Core SMB File Operation Requests

1

' CAE Code DOSClass |'DOS Code Description

EACCES ERRDOS ERRnoaccess Search permission is denied on a component of
the path-prefix, or the parent directory does not
permit writing.

EACCES ERRDOS | ERRnoaccess Requested permission is denied for the named
file.

EEXIST ERRDOS ERRnoaccess O_CREAT and O_EXCL are set and the file exists.

EFAULT ERRSRV ERRerror Path points outside the allocated address space
of the process.

EINTR ERRSRV ERRerror A signal was caught during the operation.

EMFILE ERRDOS ERRnofids Maximum number of file descriptors are
currently open in this process.

ENFILE ERRDOS | ERRnofids System file table is full.

ENOENT |ERRDOS |ERRbadfile Component of path-prefix does not exist.
ENOSPC | ERRSRV ERRerror The system is out of resources necessary to create
files.

ENOTDIR |ERRDOS ERRbadpath Component of path-prefix is not a directory.
EROFS ERRSRV ERRerror Named file resides on read-only file system.
- ERRSRV ERRaccess Write and create permissions for the directory
required.
- ERRSRV ERRinvnid TID specified in command is invalid.
- ERRSRV ERRinvdevice |File creation request made to a share that is not a
file system subtree.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.
- SUCCESS | SUCCESS Everything worked, no problems.

SMBm knew Preconditions

1. The SMB redirector has sent a valid SMB request, with a valid UID and valid TID for a file

system subtree.

2. The SMB redirector must have appropriale permissions in order Lo create the new file.

3. The named file must not exist before the request is sent.

SMBm knew Postconditions

68

I. A new file with the given pathname will be created and opened, or an error will be
returned.

2. The LMX server obeys the rules for mapping the new file into the CAE file system. If the
read-only file attribute is set, the CAE write permission bit of the mode for the new file
must be turned off.

3. The LMX server's last modify time for the file will be set to smb_time. If smb_time is zero,
the LMX server will assign the current time.

4. The SMB redirector is granted read/write access to the file regardless of smb_attr.

5. The newly-created file is opened in DOS read/write compatibility mode.

X/0Open CAE Specification (1992)

Page 86 of 267

Core SMB File Operation Requests SMBmknew Specification

SMBmknew Side Effects

None.

Conventions
« Attribute (see Section 4.3.1 on page 30).
» Filename (see Section 3.5 on page 15).

« Opportunistic Locking (see Section 3.8.2 on page 20).

Protocols for X/Open PC Interworking: SMB, Version 2 69
Page 87 of 267

SMBopen Specification Core SMB File Operation Requests

7.3

70

SMBopen Specification

SMBopen Detailed Description

This core protocol request is used to open an existing regular file and obtain an FID which is
used to refer to the file in subsequent requests. It cannot be used to open directories or LMX
named pipes (refer to the X/Open CAE Specification, IPC Mechanisms for SMB).

SMBopen Deviations

The archive, system and hidden file attribute bits in the output attribute field are treated
according to Section 4.3.1 on page 30.

SMBopen Field Descriptions

_ From SMB redirector _ To SMB redirector
_ Field Name Field Value _ Field Name Field Value
smb_com SMBopen smb_com SMBopen
smb_wct 2 smb_wct 7
smb_vwv[0] smb_mode smb_vwv[0] smb_fid
smb_vwv[1] smb_iattr smb_vwv[1] smb_oattr
smb_bcc min=2 smb_vwv[2-3] smb_time
smb_buf]] smb_path smb_vwv[4-5] smb_size
smb_vwv[6] smb_access
smb_bcc 0
smb_mode A file-sharing control field which indicates the access modes and deny modes
being requested (see Section 5.3.5 on page 44).
smb_iattr Attributes to be assigned to the file. Ignored.
smb_path An ASCIIZ (type 04) buffer containing the name of the file to be opened.
smb_fid A 16-bit signed integer containing the FID returned for the opened file.
smb_oattr Attributes currently assigned to the file (see Section 5.3.3 on page 43).
smb_time A 32-bit integer time of the last modification to the opened file (see Section
5.3.1 on page 43).
smb_size A 32-bit signed integer which contains the current size of the opened file, in
bytes.
smb_access An access mode field (see Section 5.3.7 on page 46) indicating the access

permission set actually granted to the opening process.

X/0Open CAE Specification (1992)

Page 88 of 267

Core SMB File Operation Requests

SMBopen Error Code Descriptions

CAE Code | DOS Class
EACCES ERRDOS
EACCES ERRDOS
EAGAIN | ERRDOS
EFAULT ERRSRV
EINTR ERRSRV
EISDIR ERRDOS
EMFILE ERRDOS
ENFILE ERRDOS
ENOENT |ERRDOS
ENOTDIR |ERRDOS
ENXIO ERRSRV
EROFS ERRSRV
ETXTBSY |ERRDOS
- ERRSRV
- ERRSRV
- ERRSRV
- ERRSRV
- ERRDOS
- SUCCESS

'DOS Code
ERRnoaccess

ERRnoaccess

ERRbadshare

ERRerror

ERRerror
ERRnoaccess

ERRnofids

ERRnofids
ERRbadfile

ERRbadpath
ERRerror
ERRerror

ERRnoaccess

ERRaccess

ERRinvnid
ERRinvdevice

ERRbaduid

ERRnoaccess

 SUCCESS

Protocols for X/Open PC Interworking: SMB, Version 2

Page 89 of 267

SMBopen Specification

' Description

| Search permission is denied on a component of
the path-prefix.

Requested access permission is denied for the
Inamed file.

File exists, mandatory file/record locking is set,
|and there are outstanding record locks on the
file.

Path points outside the allocated address space
of the process.
A signal was caught during the open operation.
Named file is a directory and oflag is write or
read/write.

Maximum number of file descriptors are
currently open in this process.

System file table is full.

File does not exist, or component of pathname
does not exist.

Component of path-prefix is not a directory.

Generic LMX server open failure.

Named file resides on read-only file system and
requested access permission is write or
read/write.

File is a pure procedure file that is being
executed and requested access permission
‘ specifies write or read /write.

Permission conflict between requested
(permission and permissions for the shared
resource; for example, open for write of a file in
‘ a read-only file system subtree.

TID specified in command is invalid.

File creation request made to a share that is not a
file system subtree.

|'The UID given (smb_uid) is not known as a valid
ID on this LMX session.

Open mode failure. See rules for Compatibility
and DENY mode opens.

 Everything worked, no problems.

71

SMBopen Specification Core SMB File Operation Requests

SMBopen Preconditions
1. The SMB redirector has sent a valid SMB request, with a valid UID and a valid TID.
2. The file being opened must exist.

3. The pathname specified is not an LMX named pipe.

SMBopen Postconditions

1. The file will be opened in the requested mode with the returned FID, or an error will be
returned.

2. The file will be opened only if the user has the appropriate permissions and there is no
conflict between already-granted access or deny modes and the requested access or deny
modes.

SMBopen Side Effects

The file exclusion mode requested will be in effect for subsequent open commands.

Conventions
» Access (see Section 4.3.2 on page 30).
« Attribute (see Section 4.3.1 on page 30).
« Filename (see Section 3.5 on page 15).

« Opportunistic Locking (see Section 3.8.2 on page 20).

72 X/Open CAE Specification (1992)
Page 90 of 267

Core SMB File Operation Requests SMBread Specification

7.4 SMBread Specification

SMBread Detailed Description

This core protocol request will read bytes from a regular file and, if an extended protocol is
negotiated, from a named pipe, mailslot or directly accessible device. End-of-file is indicated by
returning fewer bytes than requested; a read starting at or beyond end-of-file returns zero bytes.

SMBread Deviations

None.

SMBread Field Descriptions

-

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBread smb_com SMBread
smb_wct 5 smb_wct 5
smb_vwv[0] smb_fid smb_vwv[0] smb_count
smb_vwv[1] smb_bytecount smb_vwv[1-4] rsvd (MBZ)
smb_vwv[2-3] smb_offset smb_bcc length of data + 3
smb_vwv[4] smb_countleft smb_buf smb_data
smb_bcc 0
smb_fid A 16-bit signed integer indicating the file from which smb_data should be read.

smb_bytecount A 16-bit unsigned integer indicating the amount of data to be read. The SMB
redirector will ensure that the amount requested will fit in the negotiated
maximum buffer size.

smb_offset A 32-bit unsigned integer defining the file pointer position.

smb_countleft A 16-bit unsigned integer. This field is advisory, and some SMB redirectors
will set it to zero, in which case it should be ignored. If the value is not zero,
then it is an estimate of the total number of bytes that will be read, including
those read by this request. This additional information may be used by the
LMX server to optimise buffer allocation and/or read-ahead.

smb_count A 16-bit unsigned integer giving the actual number of bytes returned to the
SMB redirector. This must be equal to smb_bytecount, unless:

1. End-of-file was reached before reading smb_bytecount bytes. The number
of bytes actually read, along with that data, is returned.

2. smb_offSet pointed at or beyond end-of-file. A zero (0) value is returned.
rsvd These four 16-bit fields are reserved and must be zero.

smb_data A Data Block (type 01) buffer containing the actual data read from the file (see
Section 5.3.4 on page 44).

Protocols for X/Open PC Interworking: SMB, Version 2 73
Page 91 of 267

SMBread Specification

SMBread Error Code Descriptions

_ CAE Code | DOS Class
EIO ERRHRD
ENXIO ERRHRD
EBADF ERRSRV

EAGAIN | ERRDOS

EDEADLK |ERRSRV

ENOLCK | ERRDOS

- ERRDOS

- ERRDOS
- ERRDOS

- ERRSRV
- ERRSRV

= ERRSRV
- ERRSRV

- ' SUCCESS

SMBread Preconditions

'DOS Code
ERRdata

ERRwrite

ERRerror

ERRIlock

ERRerror

ERRnoaccess

ERRnoaccess

ERRbadaccess
ERRbadfid

ERRerror
ERRinvdevice
ERRinvnid
ERRbaduid

 SUCCESS

Core SMB File Operation Requests

' Description

A problem has occurred in the physicalVO.

The device associated with the file descriptor is a
block-special or character-special file and the
value of the file pointer is out of range.

An FID was validated by the LMX server but
unacceptable to the system.

O_NDELAY set and (a) read from empty CAE
FIFO attempted, or (b) file open on the LMX
server and a record lock on the file exists.

The read would block and deadlock would
result.

File is open on the LMX server in enforced-lock
mode, a record lock exists on the file, and the file
was opened with O_NDELAY set.

Attempt to read from a portion of the file that
the LMX server knows has been locked or been
opened in deny-read.

Read permission required.

Attempt to read from an FID that the LMX
server does not have open.

Corrupt SMB request has been encountered.
Attempt to read from an open spool file.

Invalid TID in request.

The UID given (smb_uid) is not known as a valid
ID on this LMX session.

 Everything worked, no problems.

1. The SMB redirector has sent a valid SMB request.

2. The SMB redirector’s read request will fit in an SMB bulffer of the negotiated size.

3. The SMB redirector must have a valid TID for a file system resource with the appropriate
permissions for the read operation.

4. The SMB redirector must have a valid FID and at least read access.

SMBread Postconditions

1. If the read was successful, the LMX server has returned to the SMB redirector either the
data for all of the requested read or all the data that was available up to the EOF.

2. If the read failed, the LMX server has returned to the SMB redirector an SMB response
indicating the reason for the failure of this read or a previous block operation.

74
Page 92 of 267

X/0Open CAE Specification (1992)

Core SMB File Operation Requests SMBread Specification

SMBread Side Effects

None.

Conventions

« Locking (see Section 4.4 on page 33).

Protocols for X/Open PC Interworking: SMB, Version 2 75
Page 93 of 267

SMBwrite Specification Core SMB File Operation Requests

7.5 SMBwrite Specification

SMBwrite Detailed Description

This core protocol request writes bytes from a regular file and, if an extended protocol is
negotiated, to a named pipe, mailslot or directly accessible device. It can also be used to truncate
a file to a given point or extend a file beyond its current size.

SMBwrite Deviations

None.

SMBwrite Field Descriptions

-

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBwrite smb_com SMBwrite
smb_wct 5 smb_wct 1
smb_vwv[0] smb_fid smb_vwv[0)] smb_count
smb_vwv[1] smb_bytecount smb_bcc 0
smb_vwv[2-3] smb_offset
smb_vwv[4] smb_countleft
smb_bcc length of data + 3
| smb_buf]] smb_data
smb_fid The FID to be written to.

smb_bytecount An unsigned integer indicating the number of bytes to be written. If this value
is zero, the file should be truncated or extended to the size indicated in
smb_offset. If extended, the bytes between the old and new EOF will be zero.

smb_offset A 32-bit unsigned integer defining the file position at which the data should be
written.

smb_countleft A 16-bit unsigned integer. This field is advisory, and some SMB redirectors
will set it to zero, in which case it should be ignored. If the value is not zero,
then it is an estimate of the total number of bytes that will be written,
including those written by this request. This additional information may be
used by the LMX server to optimise buffer allocation or perform write-behind.

smb_data A Data Block (type 01) buffer containing the actual bytes to be written (see
Section 5.3.4 on page 44).

smb_count A 16-bit unsigned integer containing the actual number of bytes written. If
this is less than smb_bytecount but no explicit error is returned, then
insufficient file system space prevented more than smb_count of bytes from
being written.

76 X/QOpen CAE Specification (1992)
Page 94 of 267

SMBwrite Error Codes

Core SMB File Operation Requests

SMBuwrrite Specification

CAE Code DOS Class |DOS Code Description

EIO ERRHRD | ERRdata A problem occurred during physical 1/0.

ENXIO ERRHRD | ERRwrite An error occurred on the FID being written to.

EBADF ERRDOS | ERRbadfid A valid smb_fid mapped to an LMX server FID
not accepted by the operating system.

EAGAIN | ERRDOS ERRnoaccess Resources for 1/0 temporarily exhausted

EFBIG SUCCESS | SUCCESS 'The file has grown too large (size exceeds ulimit)
and no more data can be written to the file. An

‘smb_count of 0 will be returned to the SMB
redirector in the count field of the SMB response.
This indicates to the SMB redirectors that the file
system is full.

ENOSPC SUCCESS |SUCCESS No space on the file system; smb_count will be 0,
indicating the file system is full.

EPIPE ERRHRD | ERRbadunit Write to a named pipe with no reader.

EDEADLK |ERRSRV ERRerror The write would block due to locking, but
O_NDELAY was set.

ERANGE |ERRSRV ERRerror Attempted write size is outside of the minimum
and maximum ranges that can be written to the
supplied FID.

ENOLCK |ERRDOS ERRnoaccess A record lock has been taken on the file, or the
SMB redirector has attempted to write to a
portion of the file that the LMX server knows
has been locked, opened in deny-write open
mode, or opened in read-only mode.

- ERRDOS ERRbadaccess | Write permission required.

- ERRDOS | ERRbadfid Invalid FID specified.

- ERRSRV ERRerror Corrupt SMB request was received.

- ERRSRV ERRinvdevice |Attempt to write to an open spool file.

- ERRSRV ERRinvnid Invalid TID specified.

- ERRSRV ERRbaduid | The UID given (smb_uid) is not known as a valid
ID on this LMX session.

- SUCCESS |SUCCESS Everything worked, no problems.

SMBwrite Preconditions

1. The SMB redirector has sent a valid SMB request.
2. The SMB redirector’s write request will fit in an SMB buffer.

3. The SMB redirector must have a valid TID to a regular file system resource with
appropriate permissions for the write operation.

4. The SMB redirector must have a valid FID with at least write access.

Protocols for X/Open PC Interworking: SMB, Version 2 77
Page 95 of 267

SMBwrite Specification Core SMB File Operation Requests

SMBwrite Postconditions

1. If the write was successful, the LMX server has returned to the SMB redirector either a
count value for a write of the entire amount or a count value for less than the entire write
amount if file system space is exhausted or the file has reached the maximum file size.

2. If the write failed, the LMX server has returned to the SMB redirector an SMB request
indicating the reason for the failure of this write or a previous block operation.

SMBwrite Side Effects
The data is not necessarily reflected in the file system until an SMBflush or the FID is closed.

Conventions

« Locking (see Section 4.4 on page 33).

78 X/QOpen CAE Specification (1992)

Page 96 of 267

Core SMB File Operation Requests SMBiIseek Specification

7.6 SMBIseek Specification

SMBIseek Detailed Description

The SMBIseek core protocol request sets the current file pointer for a regular file. The response
returns the new file pointer expressed as the offset from the start of the file, and may be beyond
the current end-of-file. An attempt to seek to a position before the beginning-of-file sets the file
pointer to beginning-of-file.

Note that the current file pointer at the start of this command reflects the offset plus data length
specified in the previous read, write or seek request, and the pointer set by this command will be
replaced by the offset specified in the next read, write or seek command.

SMBIseek Deviations

None.

SMBIseek Field Descriptions

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBIseek smb_com SMBIseek
smb_wct 4 smb_wct 2
smb_vwv[0] smb_fid smb_vwv[0-1] smb_offset
smb_vwv[1] smb_mode smb_bcc 0
smb_vwv[2-3] smb_offset
smb_bcc 0
smb_fid The FID whose pointer is to be manipulated.
smb_mode A 16-bit fleld indicating where (beginning=0, current position=1, end=2) the

seek is to take place.

smb_offset A 32-bit signed integer. In the request, indicates how far to move from the
position indicated by smb_mode. Positive values move forward in the file
towards EOF; negative values move backward through the file towards BOF.
In the response, indicates the resulting position after the move, relative to
BOF.

Protocols for X/Open PC Interworking: SMB, Version 2 79
Page 97 of 267

SMBiIseek Specification

SMBIseek Error Code Descriptions

Core SMB File Operation Requests

CAE Code |DOS Class 'DOS Code ' Description
'EBADF ERRDOS ERRbadfid 'FID is valid but not accepted by the system.
EINVAL ERRDOS ERRnoaccess Invalid smb_mode.
ESPIPE ERRDOS ERRnoaccess Cannot seek on this file (named pipe).
- ERRDOS ERRbadfid The SMB redirector has supplied an invalid FID.
- ERRDOS ERRnoaccess The SMB redirector’s context does not permit
this access.
- ERRSRV ERRinvnid TID specified in command is invalid.
- ERRSRV ERRinvdevice |Attempt to seek on a non-regular file.
- ERRSRV ERRerror The LMX server has received a corrupt SMB
request.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.
- SUCCESS | SUCCESS Everything worked, no problems.

SMBIseek Preconditions

1. The SMB redirector has sent a valid SMB request with a valid TID for a file system

resource.
2. The SMB redirector must have acquired a valid FID from the LMX server.

3. The SMB redirector has specified a valid smb_mode value.

SMBIseek Postconditions

1. If the SMBIseek was successful, the LMX server has returned to the SMB redirector the new
file pointer position.

2. If the SMBiseek was unsuccessful, the LMX server has returned an error indicating the
failure of this operation or of a previous block operation.
SMBIseek Side Effects
The current file position maintained by the LMX server is changed to the offset returned Lo the

SMB redirector.

Conventions

None.

80
Page 98 of 267

X/0Open CAE Specification (1992)

Core SMB File Operation Requests

1.7

SMBlock Specification

SMBIlock Specification

SMBlock Detailed Description

This command is sent by an SMB redirector process to lock a given byte range of a regular file. A
lock prevents attempts to lock, read or write the byte range by any other SMB redirector.
Multiple non-overlapping lock ranges are allowed on the same file. Overlapping locks are not
allowed. Byte ranges beyond the current end-of-file may be locked; however, such locks will not
cause allocation of file space. A lock may only be unlocked by the process (PID) that performed

the lock.

SMBlock Deviations
Refer to Section 4.4 on page 33.

SMBlock Field Descriptions

_ From SMB redirector | To SMB redirector
Fie}d Name Field Value | FieJd Name Field Value
smb_com SMBlock smb_com SMBlock
smb_wct 5 smb_wct 0
smb_vwv[0] smb_fid smb_bcc 0
smb_vwv[1-2] smb_count
smb_vwv|[3-4] smb_offset
| smb_bcc 0
smb_fid The FID to be locked.
smb_count A 32-bit unsigned integer containing the number of bytes in the lock range.
smb_offSet A 32-bit unsigned integer containing the offset to the start of the lock range.

SMBlock Error Code Descriptions

CAE Code |DOS Class |DOS Code Description
EBADF 'ERRSRV | ERRerror ‘A valid FID was rejected by the underlying
system.
EACCES ERRDOS | ERRnoaccess File access rights do not match requested locks.
EACCES ERRDOS | ERRlock A lock has already been taken out on this record.
ENOLCK |ERRDOS ERRlock Insufficient resources to place the requested
lock.
EDEADLK | ERRSRV ERRerror The lock request would block and cause a
deadlock with another process.
- ERRDOS | ERRbadfid An invalid FID was specified.
- ERRDOS | ERRlock Byte range is already locked by another serving
process.
- ERRSRV ERRerror Aninvalid SMB request was sent.
- ERRSRV ERRinvnid TID specified in command is invalid.
- ERRSRV ERRinvdevice |Attempt to lock on a non-regular file.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.
- SUCCESS | SUCCESS Everything worked, no problems.

Protocols for X/Open PC Interworking: SMB, Version 2
Page 99 of 267

81

SMBlock Specification Core SMB File Operation Requests

SMBIlock Preconditions

1. The SMB redirector has sent a valid SMB request with valid access to the file system
subtree.

2. The SMB redirector must have a valid FID.

SMBIlock Postconditions

The given byte range of the file will be locked preventing access by other SMB redirectors not
using the same FID.

SMBIlock Side Effects

Only requests using the PID as sent in the SMBlock request may access the locked record(s).

Conventions

« Locking (see Section 4.4 on page 33).

82 X/Open CAE Specification (1992)
Page 100 of 267

Core SMB File Operation Requests SMBunlock Specification

7.8 SMBunlock Specification

SMBunlock Detailed Description

This core protocol request is used to unlock a byte range. The byte range specified must be
exactly the same as that specified in a previous successful lock request from the same SMB
redirector process (that is, the PID must be the same). An unlock request for a range that was
not locked is treated as an error.

SMBunlock Deviations

None.

SMBunlock Field Descriptions

r T 1

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBunlock smb_com SMBunlock
smb_wct 5 smb_wct 0
smb_vwv[0] smb_fid smb_bcc 0
smb_vwv[1-2] smb_count
smb_vwv[3-4] smb_offset
smb_bcc 0

This request is identical in format to SMBlock (see Section 7.7 on page 81).

SMBunlock Error Code Descriptions

Additional applicable error codes can be found in the specification of SMBlock (see Section 7.7 on

page 81).
CAE Code DOS Class DOS Code 5escription _
- ERRDOS ERRIlock ' The record cannot be unlocked with this PID or
|a lock on this range does not exist for this PID.
- SUCCESS | SUCCESS Everything worked, no problems.

SMBunlock Preconditions

1. The SMB redirector has sent a valid SMB request with a valid TID for a file system
resource.

2. The SMB redirector must have a valid FID.

3. The byte range and PID specified must exactly match a byte range and PID specified in a
previous successful lock operation on this FID.

SMBunlock Postconditions

The specified byte range of the file will be unlocked, or an error will be returned.

Protocols for X/Open PC Interworking: SMB, Version 2 83
Page 101 of 267

SMBunlock Specification Core SMB File Operation Requests

SMBunlock Side Effects

The record is now open for reading/writing/locking by other SMB redirectors.

Conventions

« Locking (see Section 4.4 on page 33).

84 X/Open CAE Specification (1992)
Page 102 of 267

Core SMB File Operation Requests SMBflush Specification

7.9 SMBflush Specification
SMBflush Detailed Description
This core request flushes data and allocation information for a specified file or for all files open
under this LMX session.
SMBflush Deviations
Some CAE systems provide no way for a programme to block until the local file cache has
actually flushed to the disk, but simply indicate that a flush has been scheduled and will
complete soon. An LMX server should nonetheless take steps to maximise the probability that
the data is truly on disk before the SMB redirector is notified.
An LMX server may always flush all files supported on the LMX session even if a single-file
flush was requested.
SMBflush Field Descriptions
| From SMB redirector B To SMB redirector
| Field Name Field Value . Field Name Field Value
smb_com SMBflush smb_com SMBflush
smb_wct 1 smb_wct 0
smb_vwv[0] smb_fid smb_bcc 0
| smb_bec 0 | |
smb_fid The FID to be flushed. If this field is set to Oxffff (that is, —1), all files open in
the LMX session environment will be flushed.
SMBflush Error Code Descriptions
' CAECode DOSClass |[DOSCode | Description
- ERRSRV ERRinvnid Bad TID.
- ERRDOS ERRbadfid The specified FID is not open.
- ERRSRV ERRerror Other CAE errors mapped here.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.
- SUCCESS | SUCCESS Everything worked, no problems. |
SMBflush Preconditions
1. The SMB redirector must have issued a valid SMB request with a valid UID and valid TID
for a shared resource.
2. The specified FID must be open, or it must be Oxffff.
Protocols for X/Open PC Interworking: SMB, Version 2 85

Page 103 of 267

SMBflush Specification Core SMB File Operation Requests

SMBflush Postconditions
1. All modified data and retrieval state information is scheduled to be flushed to stable store.

2. Buffered named pipe data, if any, is flushed through to the cooperating processes.

SMBflush Side Effects

Eventually, the data will be written to stable store.

Conventions

None.

86 X/QOpen CAE Specification (1992)
Page 104 of 267

Core SMB File Operation Requests

7.10 SMBclose Specification

SMBclose Detailed Description

SMBclose Specification

This core protocol request is sent by an SMB redirector process to invalidate the given FID for
that process. All locks held by the SMB redirector process on that FID will be released as part of
the close. The FID cannot be used by the SMB redirector for further file access requests.

SMBclose Deviations

None.

SMBclose Field Descriptions

From SMB redirector | To SMB redirector
_ Field Name Field Value | Field Name Field Value

smb_com SMBclose smb_com SMBclose

smb_wct 3 smb_wct 0

smb_vwv[0] smb_fid smb_bcc 0

smb_vwv[1-2] smb_time

smb:bcc 0
smb_fid The FID to be closed.
smb_time An LMX server may optionally update the last modification time for the file to

smb_time. A zero (0) or Oxffffffff smb_time results in the LMX server using the
default value.

SMBclose Error Code Descriptions

| CAE Code | DOS Class
EBADF ERRDOS

- ERRDOS
- ERRSRV

- ERRSRV
- ERRSRV

- SUCCESS

SMBclose Preconditions

DOS Code

'ERRbadfid

ERRbadfid
ERRinvnid

ERRinvdevice
ERRbaduid

SUCCESS

Description

The FID is valid but no longer accepted by the
operating system.

The SMB redirector has supplied an invalid FID.
TID specified in command is invalid.

Attempt to close an open spool file.

The UID given (smb_uid) is not known as a valid
ID on this LMX session.

' Everything worked, no problems.

1. The SMB redirector has sent a valid SMB request, with a valid UID and TID.
2. The SMB redirector has sent a valid FID for an open file.

Protocols for X/Open PC Interworking: SMB, Version 2

Page 105 of 267

87

SMBclose Specification Core SMB File Operation Requests

SMBclose Postconditions

1. If the file being closed was written to, all the modified buffers for the file will be flushed to
the file system.

2. Any remaining locks on the FID (including opportunistic locks) will be removed.
3. The last modify time for the file will be set to the time specified by the SMB redirector.

4. The FID will be invalidated for further file access requests.

SMBclose Side Effects

None.

Conventions

None.

88 X/QOpen CAE Specification (1992)
Page 106 of 267

Core SMB File Operation Requests SMBmv Specification

7.11

SMBmv Specification

SMBmv Detailed Description

This core protocol request changes the name of one or more files or directories. Multiple files
may be renamed in response to a single request, as SMBmv supports filenames with wildcards in
the last 8.3 component of the pathname; wildcards elsewhere in pathnames are not permitted.

Every file that matches the attribute field and the first pathname is renamed according to the
second pathname, provided that file does not already exist (see Section 3.6 on page 17 for more
details of the name transformation).

Wildcards are not allowed in the destination path for directories. A move of a directory cannot
have a destination located in the directory itself or any subdirectory within the source directory.
In these conditions the error <ERRDOS, ERRbadpath> is to be returned.

If a * is received it indicates to the LMX server to fill the remainder of the component with ?.
Any characters provided after the * will be ignored and the usual ? wildcard mapping applies.

A file to be renamed can be open. If it is opened by the requesting process, the open must be in
compatibility mode. Otherwise, the rename fails with <ERRDOS, ERRnoaccess>. If the file is
opened by another process, that process has an oplock on the file, and the process has asked for
extended notification, the rename request will block until after the oplock has been broken. If
the process with the oplock closed the file, the rename takes place; if not, it fails.

There must not already be a different file existing with the new name. If there is, the rename will
fail. If wildcards are used in a rename operation, and only some of the renames fail for any
reason, the request will fail silently; that is, no error will be returned.

Because an LMX server may serve multiple requests on the same resource simultaneously, there
may be interactions between the execution of this request and ongoing searches of the same
resource (SMBsearch, SMBffirst, SMBfunique, SMBftlose). Although there is no prohibition on
renaming directories actively being searched, an LMX server may cause the search to appear to
have reached the end of the directory since no more entries will be found.

SMBmv Deviations

Some LMX servers will ignore the attribute field; others treat it according to the Attribute
convention.

An LMX server may choose to return the error <ERRDOS, ERRdiffdevice> if the move requested
spans two different CAE file systems.

SMBmv Field Descriptions

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBmv smb_com SMBmv
smb_wct 1 smb_wct 0
smb_vwv[0] smb_attr smb_bcc 0
smb_bcc min =4
smb_buf]] smb_oldpath

smb_newpath

smb_attr A file attribute field. An LMX server should match file attributes against this
field when selecting files which match smb_oldpath to rename. Items that
match this field are added with regular files to the list of items moved.

Protocols for X/Open PC Interworking: SMB, Version 2 89
Page 107 of 267

SMBmv Specification

smb_oldpath

smb_newpath

Core SMB File Operation Requests

An ASCIZ (type 04) buffer containing the name of the file or files to be
renamed. Only the filename component (not directory components) may
contain wildcards.

An ASCHZ (type 04) buffer containing the new name(s) to be given to the
file(s) which match smb_oldpath.

SMBmv Error Code Descriptions

_ CAE Code
ENOTDIR

ENOENT
EACCES

EEXIST
EXDEV
EROFS
EMLINK
ENOSPC
EBUSY

ETXTBSY

: DOS Class
ERRDOS

ERRDOS
ERRSRV

ERRDOS
ERRDOS
ERRHRD
ERRDOS
ERRDOS
ERRDOS

ERRDOS

ERRSRV
ERRSRV
ERRSRV

' SUCCESS

SMBmv Preconditions
1. SMB, UID and TID are valid; TID is for a file system resource.

=W

'DOS Code
ERRbadpath

ERRbadfile
ERRaccess

ERRnoaccess
ERRdiffdevice
ERRnowrite
ERRnoaccess
ERRnoaccess
ERRnoaccess

ERRnoaccess

ERRaccess
ERRerror
ERRbaduid

 SUCCESS

Description

A component in the old pathname is not a |
directory.
The old file does not exist.

A component in a pathname denies the required
permission.

The new file already exists.

Attempt to rename to a different device.
Attempt to write on a read-only file system.
Too many links to old file.

The directory is full.

The old path is the mounted point for a file
system.

The old path is the last link to an executing
programme.

An attempt was made to change a volume label.
Internal error.

The UID given (smb_uid) is not known as a valid
ID on this LMX session.

| Everything worked, no problems.

smb_oldpath must refer to one or more files.
Transformation with smb_newpath must not match any existing files.

Process has appropriate permissions for all directories in both path arguments; write

permissions on last directory in each path argument.

SMBm v Postconditions

smb_oldpath no longer points to any existing files. (This condition may not persist in the
presence of other file-sharing activity, or if some of the new names conflicted with already-

existing files.)

90
Page 108 of 267

X/0Open CAE Specification (1992)

Core SMB File Operation Requests SMBmv Specification

SMBmv Side Effects

Searches involving renamed directories may be prematurely terminated.

Conventions
» Access (see Section 4.3.2 on page 30).
« Attribute (see Section 4.3.1 on page 30).
« Filename (see Section 3.5 on page 15).
« Opportunistic Locking (see Section 3.8.2 on page 20).
» Wildcards (see Section 3.6 on page 17).

Protocols for X/Open PC Interworking: SMB, Version 2 91
Page 109 of 267

SMBunlink Specification Core SMB File Operation Requests

7.12

92

SMBunlink Specification

SMBunlink Detailed Description

This core protocol request is sent to delete a regular file or files. Read-only files may not be
deleted unless the read-only attribute is set in the SMBunlink request. Wildcards in the filename
part of the pathname are supported.

The effect of the SMBunlink will be LMX server implementation-dependent. Normally only the
referenced filename can be deleted. If another SMB redirector has the file open, the contents of
the file will remain available until that SMB redirector closes the handle to the file. If
opportunistic locking is supported and another SMB redirector has been granted an oplock on
the file, the process has asked for notification of the SMBunlink request. The SMBunlink request
being processed will block until the oplock has been broken (reference Section 3.8.2 on page 20).

If a wildcard pathname matches more than one file, and not all of the files could be unlinked, the
request fails silently.

The smb_attr field may be applied as an additional filter on files matching the wildcard string in
smb_path. LMX servers may optionally provide this filtering function.
SMBunlink Deviations

Only the specified directory entry is immediately deleted. The file contents are deleted only
when all the file’s directory entries have been deleted and all the FIDs associated with it have
been destroyed.

Some LMX servers may ignore the smb_attr field. Others will treat it in accordance with the
attribute convention (refer to Section 3.7 on page 17).

LMX servers require the user to have write permission in the target file's parent directory.

SMBunlink Field Descriptions

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBunlink smb_com SMBunlink
smb_wct 1 smb_wct 0
smb_vwv[0] smb_attr smb_bcc 0
smb_bcc min = 2
smb_buf]] smb_path
smb_attr A file attribute field. Some LMX servers treat it as indicating the attributes
that the target file must have.
smb_path An ASCIIZ (type 04) buffer indicating the file to be unlinked.

X/0Open CAE Specification (1992)

Page 110 of 267

Core SMB File Operation Requests SMBunlink Specification

SMBunlink Error Code Descriptions

CAE Code DOS Class |DOS Code Description

ENOTDIR |ERRDOS ERRbadpath A component in the path-prefix is not a
directory.

ENOENT |ERRDOS |ERRbadfile The specified file does not exist.

EACCES ERRSRV ERRaccess A component in the path denies the required
permission.

EPERM ERRDOS ERRnoaccess | The specified file is a directory.

EROFS ERRHRD | ERRnowrite Attempt to modify a read-only file system.
EBUSY ERRDOS |ERRnoaccess | The specified file is a directory.

ETXTBUSY | ERRDOS ERRnoaccess The specified file is the last link to a shared text
file.

- ERRSRV ERRaccess Attempt to delete a volume label, or delete
permission required.

- ERRSRV ERRinvdevice |Attempt to unlink a non-regular file.

ERRSRV ERRerror Internal error.
- ERRSRV ERRbaduid | The UID given (smb_uid) is not known as a valid
| ID on this LMX session.

- _ SUCCESS |SUCCESS Everythin&worked, no E)roblems.

SMBunlink Preconditions

1. The SMB request, UID and TID are valid; the TID refers to a file system resource with write
permissions.

2. smb_path refers to one or more existing files.

3. The directory containing the files to be unlinked must allow writes by the requesting
process.

4. The files to be unlinked are not opened (except by the request process in compatibility
mode).
SMBunlink Postconditions

The file's directory entries are removed.

SMBunlink Side Effects

None.

Conventions
» Access (see Section 4.3.2 on page 30).
« Attribute (see Section 4.3.1 on page 30).
« Filename (see Section 3.5 on page 15).
» Opportunistic Locking (see Section 3.8.2 on page 20).
» Wildcards (see Section 3.6 on page 17).

Protocols for X/Open PC Interworking: SMB, Version 2 93
Page 111 of 267

Core SMB File Operation Requests

94 X/Open CAE Specification (1992)
Page 112 of 267

_‘f".:’ Chapter 8

Q Core SMB Directory and Attribute Operations

This section defines the elements of the core SMB protocol which manipulate directories and
attributes. They are:

SMBmkdir create an empty directory

SMBrmdir delete an empty directory

SMBsearch perform a wildcard lookup in a directory
SMBgetatr get file attributes

SMBsetatr set file attributes

SMBdskattr get information about the LMX server's file system
SMBchkpath ensure a path is valid and points to a directory

8.1 SMBmkdir Specification

SMBmkdir Detailed Description

This core protocol request creates a new directory which must not already exist. Write
permission is required in the specified directory’s parent directory.

SMBmkdir Deviations

The LMX server obeys the rules for mapping the new directory into the CAE file system (refer to
Section 4.3.1 on page 30).

SMBmkdir Field Descriptions

_ From SMB redirector | To SMB redirector
_ Field Name Field Value | Field Name Field Value
smb_com SMBmkdir smb_com SMBmkdir
smb_wct 0 smb_wct 0
smb_bcc min=2 smb_bcc 0
| smb_buf] smb_path _ |
smb_path An ASCIIZ (type 04) buffer containing the name of the directory to be created.
Protocols for X/Open PC Interworking: SMB, Version 2 95

Page 113 of 267

SMBmkdir Specification Core SMB Directory and Attribute Operations

SMBmkdir Error Code Descriptions

| CAE Code :DOS Class DQS Code :]?escription - - _
ENOTDIR |ERRDOS ERRbadpath A component of the path-prefix was not a
directory.

ENOENT |ERRDOS ERRbadpath A component of the path-prefix did not exist.

EACCES ERRDOS ERRnoaccess A component of the path-prefix denied search
permission.

EROFS ERRHRD |ERRnowrite Attempt to write a read-only file system.

EEXIST ERRDOS ERRfilexists The specified path already exists.
ENOSPC ERRDOS |ERRnoaccess | The parent’s directory is full.

EIO ERRHRD |ERRdata Physical I/0 error on disk.
EMLINK | ERRDOS |ERRnoaccess | Too many links to the parent directory.
- ERRSRV ERRerror Internal error.

- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.

- SUCCESS | SUCCESS ' Everything worked, no problems.

SMBmkdir Preconditions
1. Valid SMB request, UID and TID; TID is for a file system subtree.

2. The parent directory of the new directory must have the necessary access rights to create a
directory.

SMBmkdir Postconditions

The directory is created in the file system.

SMBmkdir Side Effects

None.

Conventions

» Filename (see Section 3.5 on page 15).

96 X/0Open CAE Specification (1992)
Page 114 of 267

Core SMB Directory and Attribute Operations SMBrmdir Specification

8.2 SMBrmdir Specification
SMBrmdir Detailed Description
This core protocol request deletes an empty directory. The requesting UID must have write
permission in the target directory’s parent directory.
Because an LMX server may serve multiple requests on the same resource simultaneously, there
may be interactions between the execution of this request and ongoing searches of the same
resource (SMBsearch, SMBffirst, SMBfinique, SMBftlose). Although there is no prohibition on
deleting directories actively being searched, an LMX server may cause the search to appear to
have reached the end of the directory since no more entries will be found.
SMBrmdir Deviations
None.
SMBrmdir Field Descriptions
r - From SMB redirector - To SMB redirector 1
| Field Name Field Value . Field Name Field Value
smb_com SMBrmdir smb_com SMBrmdir
smb_wct 0 smb_wct 0
smb_bcc min=2 smb_bcc 0
smb_buf] | smb_path |
smb_path An ASCIZ (type 04) buffer containing the name of the directory to delete.
SMBrmdir Error Code Descriptions
_» CAE Code DOS Class | DOS Code ' Description _
ENOTDIR |ERRDOS ERRbadpath |A component in the path-prefix is not a
‘ directory.
ENOENT |ERRDOS ERRbadfile The specified directory does not exist.
EACCES ERRDOS ERRnoaccess A component in the path denies the required
permission.
EROFS ERRHRD | ERRnowrite Attempt to modify a read-only file system.
EBUSY ERRDOS ERRnoaccess | The directory is in use and cannot be removed at
this time.
EEXIST ERRDOS ERRnoaccess | Attempt to remove a non-empty directory.
- ERRSRV ERRerror Internal error.
- ERRSRV ERRbaduid 'The UID given (smb_uid) is not known as a valid
|1D on this LMX session.
- ' SUCCESS | SUCCESS ' Everything worked, no problems.
Protocols for X/Open PC Interworking: SMB, Version 2 97

Page 115 of 267

SMBrmdir Specification Core SMB Directory and Attribute Operations

SMBrmdir Preconditions
1. Valid SMB request, UID and TID; TID refers to a file system subtree.

2. The UID has write access to the parent directory of the target.

SMBrmdir Postconditions

The directory is deleted.

SMBrmdir Side Effects

An in-progress search from another process may receive an inconsistent view of the resource.

Conventions
» Access (see Section 4.3.2 on page 30).

» Filename (see Section 3.5 on page 15).

98 X/0Open CAE Specification (1992)
Page 116 of 267

Core SMB Directory and Attribute Operations SMBsearch Specification

8.3 SMBsearch Specification

SMBsearch Detailed Description

This core protocol request searches a directory for one or more regular files matching a wildcard
template. Two forms of the SMBsearch request exist: SearchFirst and SearchNext.

Every search begins when an SMB redirector sends a SearchFirst request to the LMX server
asking for n files that match a specified wildcard template. The LMX server sends a response
containing the directory information for up to n files found which match the template. The
response contains a search handle defined below.

The SMB redirector may then resume the search at any search handle of a previous SMBsearch
response. The LMX server responds to SearchNext with the directory information for up to n
additional matching files, picking up from the point indicated by the search handle.

The SMB redirector does not indicate when a search is complete; that is, there is no SearchDone
request.
SMBsearch Deviations

Since the SMB redirector never closes a search, the LMX server must use some heuristics in
determining when to release resources associated with a search. These heuristics should never
result in a search being declared terminated by the LMX server while it is still possible for the
SMB redirector to continue it. Some possible heuristics are:

1. An SMBexitrequest from the same process is received.
The TID containing the search is broken.

The LMX session containing the search times out.

bl

Anerror of any sort is returned in response to an SMBsearch request.

For the root directory of the directory subtree located by the TID the directory entries . and ..
are not returned to the SMB redirector. If a volume label is returned it should be a printable
string. Some SMB redirector applications will print this string, but no other semantics are
associated with it.

The system, archive and hidden bits of the file attribute fields are treated in accordance with the
Attribute convention (see Section 4.3.1 on page 30).

An LMX server must guarantee never to return information on a given file twice in the same
SMBsearch sequence, provided find_buf search_id contents are not reused by the SMB redirector.
Some CAE systems can rearrange the information within a directory without the LMX server’s
knowledge; for example, entries may be moved around to pack a directory, etc. Because of this,
LMX servers may not be able Lo guarantee that all files are reported once; that is, some files
matching smb_pathname and smb_attr may not be reported to the SMB redirector.

Protocols for X/Open PC Interworking: SMB, Version 2 99
Page 117 of 267

SMBsearch Specification

SMBsearch Field

Request Format:

Core SMB Directory and Attribute Operations

Descriptions

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBsearch smb_com SMBsearch
smb_wct 2 smb_wct 1
smb_vwv[0] smb_count smb_vwv[0] smb_count
smb_vwv[1] smb_attr smb_bcc min=3
smb_bcc min=>5 smb_data

smb_count

smb_attr

smb_pathname

smb_search_id

smb_data

smb_pathname
smb: search_id[|

A signed integer. In the request, the maximum number of entries to find and
return in the response (n); in the response, the number of entries actually
returned. If no matching entries were found between the point where this
particular SearchFirst or SearchNext began, a zero (0) should be returned. The
number of entries returned will be the minimum of:

— the number of entries requested
— the number of (complete) entries that will fit in the negotiated SMB buffer

— the number of entries that match the requested name pattern and
attributes

An attribute field. If supported, the LMX server will only return directory
entries whose attributes match this field as well as the wildcard pathname.
Unless this field specifies the volume label, normal files whose names match
the wildcard are always returned. If this field specifies the volume label, only
the volume label information is returned.

An ASCIZ (type 04) buffer containing the wildcard path to search. Only the
last component of the pathname may contain a wildcard.

A Variable Block (type 05), 21 or 0 bytes in length. If this is a zero-byte Data
Block, it is a SearchFirst request; otherwise it is a SearchNext request containing
the find_buf search_id (see below) returned in the last dir_info structure in a
previous SearchFirst or SearchNext response.

A Variable Block (type 05) containing an array of dir_info structures, tightly
packed. The total size of the array is 43*smb_count.

The dir_info structure contains information about each file which matched the wildcard
smb_pathname (and, optionally, the smb_attr attributes). The structure contains:

Position |Field Name .bescription

00 find_buf search_id | A 21—b3/te string whose structure is defined below.

21 find_buf attr The attribute field for the file.

23 find_buf time A 16-bit time field, indicating the time of last modification.
25 find_buf date A 16-bit date field, indicating the date of last modification.

27 find_buf size A 32-bit integer giving the size of the file.

31 find_buf pname A blank-padded string, 13 characters in length, giving the

100
Page 118 of 267

name of the file in printable form. For example, AB.Tx
would be encoded as AB.Tx vevvvvve. (v is a blank space.)

X/Open CAE Specification (1992)

Core SMB Directory and Attribute Operations SMBsearch Specification

The find_buf search_id referred to as the search handle above appears in two places: in the
SearchNext request, and at the beginning of each dir_info structure. It contains state information
the LMX server needs to continue a search. Its structure is as follows:

' Position | Field Name Description

00 sr_resl Reserved for SMB redirector use. This field must be
maintained by the LMX server. In other words, the value
specified by the SMB redirector system must be returned in
the appropriate search handle of the response.

01 sr_servdata 16-byte field reserved for LMX server use. Usually maintains
state to continue searches; see paragraph below.
17 sr_res2[4] 4-byte field reserved for SMB redirector use. This field must

be maintained by the LMX server in the same manner as the
| sr_res] field.

4

DOS SMB redirectors using the dialects PC NETWORK PROGRAM 1.0, MICROSOFT
NETWORKS 1.03 and MICROSOFT NETWORKS 3.0 used the sr_servdata field in order to
enhance the performance of the search sequence. If those SMB redirectors exist on the network,
then the sr_servdata field is defined and the LMX server must maintain the following structure of
information:

Position | Description

0-10 A compressed 11-byte string maintaining the search pattern for the directory
search. This will include any meta-characters for the search. The . in DOS
filenames (preceding the 3-byte filename extension) is ssumed, in that it is not
maintained in the string but rather inserted prior to the last 3 characters of the
field. The first 8 characters are blank padded unless meta-characters are used. In
the case of meta-characters, a * is expanded out into the appropriate number of
question marks.

11 An unsigned byte. No assumptions are made on this value except that it should
be non-zero.
12-13 An unsigned 16-bit integer which maintains the directory index value for this

search entry. This value starts counting from zero and continues in a linear
sequence. Some SMB redirectors are known to modify this value to allow them
to resume a directory search at an arbitrary location.

14-15 An unsigned 16-bit integer that may be used by the LMX server. It should not be
zero.

Protocols for X/Open PC Interworking: SMB, Version 2 101
Page 119 of 267

SMBsearch Specification Core SMB Directory and Attribute Operations

SMBsearch Error Code Descriptions
'Error DOS | Error DOS

| CAE Code | Class Code 'Description
EACCES ERRDOS ERRnoaccess No permission for the specified pathname.
EIO ERRHRD |ERRdata Physical 1/0 error on disk.

EMFILE ERRSRV ERRnoresource |Exhausted process file handle supply.
ENFILE ERRSRV ERRnoresource |Exhausted system file handle supply.

ENOENT | SUCCESS | SUCCESS Ignored (a file disappeared or didn't exist).
ENOTDIR |ERRDOS ERRbadpath Component in pathname was not a directory.
EOF ERRDOS ERRnofiles Search can find no more files.

- ERRSRV ERRerror LMX server internal error.

- ERRDOS ERRbadfid search_id was not active.

- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMX session.
- SUCCESS |SUCCESS Everything worked, no problems.

SMBsearch Preconditions
1. Valid SMB, UID and TID; the TID refers to a file system subtree.
2. The UID has appropriate permission on all directories in smb_pathname.

3. The LMX server has not declared the search terminated.

SMBsearch Postconditions

1. After a SearchFirst request, the various directories under search are opened as necessary,
and sufficient state is maintained to continue the search.

2. After a SearchNext, the retained state information is updated to permit continuing the
search without returning dir_info on the same file twice.
SMBsearch Side Effects
Various directories are open for reading as long as the search is active. This may delay other
requests from other SMB redirectors (for example, SMBrmdir).
Conventions
» Access (see Section 4.3.2 on page 30).
o Attribute (see Section 4.3.1 on page 30).
» Filename (see Section 3.5 on page 15).

» Wildcard (see Section 3.6 on page 17).

102 X/Open CAE Specification (1992)
Page 120 of 267

Core SMB Directory and Attribute Operations SMBgetatr Specification

8.4 SMBgetatr Specification
SMBgetatr Detailed Description
This core protocol request is used to obtain information about a regular file or directory.
SMBgetatr Deviations
1. The archive, system and hidden file attribute bits are treated according to the attribute
mapping convention.
2. The smb_time value returned will be the file’s last modified time (as set by a previous close
operation).
SMBgetatr Field Descriptions
: From SMB redirector To SMB redirector
| Field Name Field Value . Field Name Field Value
smb_com SMBgetatr smb_com SMBgetatr
smb_wct 0 smb_wct 10
smb_bcc min=2 smb_vwv[0] smb_attr
smb_bufl] smb_path smb_vwv[1-2] smb_time
smb_vwv[3-4] smb_size
smb_vwv[5-9] reserved (MBZ)
| smb_bcc 0
smb_path An ASCIIZ (type 04) buffer containing the name of the regular file or directory
for which information is requested.
smb_attr A 16-bit attribute fleld describing the file.
smb_time A 32-bit time giving the last modify time for the file.
smb_size A 32-bit integer containing the current size of the file in bytes.
SMBgetatr Error Code Descriptions
' CAECode 'DOSClass |DOSCode | Description |
EACCES ERRDOS ERRnoaccess Component of path-prefix denies search
permission.
EINTR ERRSRV ERRerror A signal was caught during some system call.
ENOENT ERRDOS ERRbadfile File does not exist, or component of pathname
‘ does not exist.
ENOTDIR |ERRDOS ERRbadpath Component of path-prefix is not a directory.
- ERRDOS ERRnoaccess Read permission required.
- ERRSRV ERRinvtid |'TID specified in command is invalid.
- ERRSRV ERRinvdevice | Invalid resource type: TID was not for a file
system subtree.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.
- SUCCESS | SUCCESS | Everything worked, no problems.
Protocols for X/Open PC Interworking: SMB, Version 2 103

Page 121 of 267

SMBgetatr Specification Core SMB Directory and Attribute Operations

SMBgetatr Preconditions
1. The SMB redirector has the appropriate permission to the file system subtree.

2. smb_path refers to an existing file or directory.

SMBge tatr Postconditions

The smb_attr and smb_time fields are accurate for files and directories; smb_size is correct only for
files and is meaningless for directories.

SMBgetatr Side Effects

None.

Conventions
o Attribute (see Section 4.3.1 on page 30).

+ Filename (see Section 3.5 on page 15).

104 X/Open CAE Specification (1992)
Page 122 of 267

Core SMB Directory and Attribute Operations SMBsetatr Specification

8.5 SMBsetatr Specification

SMBsetatr Detailed Description

This core protocol request is used to set information about an existing regular file or directory.

SMBsetatr Deviations

1. The archive, system and hidden file attribute bits are treated according to the file attributes
conventions. Reference Section 4.3.1 on page 30 for additional information on file attribute
handling.

2. The smb_time specified will become the last modify time for the file.

SMBsetatr Field Descriptions

_ ﬁrommirector mnector
| Field Name Field Value | Field Name Field Value
smb_com SMBsetatr smb_com SMBsetatr
smb_wct 8 smb_wct 0
smb_vwv[0] smb_attr smb_bcc 0
smb_vwv[1-2] smb_time
smb_vwv[3-7] reserved (MBZ)
smb_bcc min=2
smb_buf]] smb_path
| smb:nul |
smb_attr A file attribute field, to be given to the file (see Section 3.5 on page 15 for
details of the Attribute convention).
smb_time A 32-bit time giving the last modify time for the file. A value of 0 indicates the
last modify time should be unchanged.
smb_path An ASCIIZ (type 04) buffer containing the name of the regular file or directory
for which information is to be set.
smb_nul An ASCIIZ (type 04) buffer containing the null string.
Protocols for X/Open PC Interworking: SMB, Version 2 105

Page 123 of 267

SMBsetatr Specification Core SMB Directory and Attribute Operations

SMBse tatr Error Code Descriptions

CAE Code DOSClass DOS Code ' Description _
'EACCES ERRDOS ERRnoaccess Search permission is denied on a component of
the path-prefix.

EACCES ERRSRV ERRaccess The UID does not have appropriate privilege
and is not the owner of the file and the read-only
attribute flag was changed.

EINTR ERRSRV ERRerror A signal was caught during the system call.

ENOENT | ERRDOS ERRbadfile File does not exist, or component of pathname
does not exist.

ENOTDIR |ERRDOS ERRbadpath Component of path-prefix is not a directory.

EPERM ERRSRV ERRaccess The UID does not have appropriate privilege
and is not the owner of the file and time is non-
zero.

EROFS ERRSRV ERRaccess The file system containing the file is read-only.

- ERRSRV ERRinvnid TID specified in command is invalid.
- ERRSRV ERRinvdevice | The TID does not refer to a file system subtree.

- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.

- SUCCESS | SUCCESS ' Everything worked, no problems.

SMBsetatr Preconditions

1. The SMB redirector has sent a valid SMB request with a valid UID and a valid TID for a file
system subtree.

2. smb_path refers to an existing file or directory.

3. The specified UID or TID represents appropriate privilege to perform the action.

SMBse tatr Postconditions

The file attribute and time will be set accordingly, or an error will be returned.

SMBsetatr Side Effects

1. If the read-only attribute was changed, the access mode for the file will have been changed
accordingly. For example, when the read-only attribute is removed the LMX server will set
those write permission bits for a file not explicitly masked out by the current umask value.

2. The last modify time for the file will be changed if the specified time was non-zero.

Conventions
» Access (see Section 4.3.2 on page 30).
o Attribute (see Section 4.3.1 on page 30).

» Filename (see Section 3.5 on page 15).

X/Open CAE Specification (1992)

Page 124 of 267

Core SMB Directory and Attribute Operations

8.6

SMBdskattr Specification

SMBdskattr Detailed Description

SMBdskattr Specification

This core protocol request returns some information on the resource’s associated file system

subtree.

SMBdskattr Deviations

An LMX server may return zero (0) in the smb_vwv[4] (media identifier code) field.

SMBdskattr Field Descriptions

: Field Name

smb_com
smb_wct
smb_bcc

From SMB redirector
Field Value
SMBdskattr

SMBdskattr Error Code Descriptions

CAE Code |DOS Class | DOS Code

' ENOENT
ENOTDIR

EIO

ERRHRD

ERRHRD

ERRHRD
ERRSRV
ERRSRV
ERRSRV

ERRSRV
ERRSRV

 SUCCESS

ERRnotready
ERRnotready

ERRdata
ERRaccess
ERRinvnid
ERRinvdevice

ERRerror
ERRbaduid

 SUCCESS

Protocols for X/Open PC Interworking: SMB, Version 2

Page 125 of 267

To SMB redirector
" Field Name Field Value
' smb_com SMBdskattr
smb_wct 5
smb_vwv[0] number of allocation
units/server
smb_vwv[1] number of
blocks/allocation unit
smb_vwv|2] block size (in bytes)
smb_vwv[3] number of free
allocation units
smb_vwv[4] reserved (media
identifier code)
smb_bcc 0
bescription

The file system has been removed from the
system.

The file system has been removed from the
system.

Physical 170 error on disk.

Read permission is required.

Invalid TID specified.

Invalid resource type (that is, no file system
subtree) specified.

Other CAE and internal errors.

The UID given (smb_uid) is not known as a valid
ID on this LMX session.

| Everythingworked. no E)roblems.

107

SMBdskattr Specification Core SMB Directory and Attribute Operations

SMBdskattr Preconditions

The SMB request, UID and TID must be valid and represent the appropriate access rights to
perform the action.

SMBdskattr Postconditions

None.

SMBdskattr Side Effects

None.

Conventions

» File System Issues (see Section 4.3.3 on page 30).

108 X/Open CAE Specification (1992)
Page 126 of 267

Core SMB Directory and Attribute Operations SMBchkpath Specification

8.7 SMBchkpath Specification

SMBchkpath Detailed Description

This core protocol request verifies that a path exists and is a directory. For example, SMB
redirectors which maintain a concept of a working directory might use SMBchkpath to verify the
validity of a change working directory command. Note that an LMX server does not have a
concept of working directory. The SMB redirector must always supply a full pathname (relative
to the TID).

SMBchkpath Deviations

None.

SMBchkpath Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBchkpath smb_com SMBchkpath

smb_wct 0 smb_wct 0

smb_bcc min=2 smb_bcc 0

smb_buf] smb_path

smb_path An ASCHZ (type 04) buffer containing the name of the directory to be

checked.

SMBchkpath Error Code Descriptions

CAE Code |DOS Class |DOS Code Description

ENOTDIR | ERRDOS ERRbadpath A component of the path was not a directory.
ENOENT | ERRDOS ERRbadfile | The specified directory does not exist.

EACCES ERRDOS ERRnoaccess A component of the path lacked search permission.

EACCES ERRSRV ERRaccess No read permission in specified directory.
ENXIO ERRDOS ERRbadpath | The specified path wasn't a directory.
ENFILE ERRDOS | ERRnofids System file table full.
EMFILE ERRDOS ERRnofids LMX session has too many open files.
EIO ERRHRD | ERRdata Physical I/0O error on disk.

- ERRSRV ERRinvnid Invalid TID specified.

- ERRSRV ERRerror Internal error.

- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid ID
on this LMX session.

- _SUCCESS _SUCCESS | Everythin&worked, no E)roblems.

SMBchkpath Preconditions

SMB request, UID and TID are valid and represent the appropriate access rights to perform the
action.

Protocols for X/Open PC Interworking: SMB, Version 2 109
Page 127 of 267

SMBchkpath Specification Core SMB Directory and Attribute Operations

SMBchkpath Postconditions

If no error is returned, smb_path referred to a valid existing directory which is readable by the
SMB redirector.

SMBchkpath Side Effects

None.

Conventions

» Filename (see Section 3.5 on page 15).

110 X/Open CAE Specification (1992)
Page 128 of 267

,r Chapter 9

_r Core SMB Spool Operation Requests

This section defines the elements of core SMB protocol which support spooling and printing
operations. They are:

SMBsplopen create a new spool file

SMBspiwr write to a spool file

SMBsplclose close a spool file and queue it for spooling
SMBsplretq return information on the spool queue

9.1 SMBsplopen Specification

SMBsplopen Detailed Description

This core protocol request will create a spool file. The file will be deleted once it has been
printed. The LMX server will grant write permission to the creator of the file. No other LMX
session will be given any access permissions to the file.

All users will have read permission on the print spool queue, but only the print LMX server has
write permission to it.

SMBsplopen Deviations

Some LMX servers do not distinguish between text and graphics modes.

SMBsplopen Field Descriptions

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBsplopen smb_com SMBsplopen
smb_wct 2 smb_wct 1
smb_vwv[0] smb_psdlen smb_vwv[0] smb_fid
smb_vwv[1] smb_mode smb_bcc 0
smb_bcc min =2
I smb_buf smb_ident |
smb_psdlen A 16-bit integer giving the length of printer setup data to be sent. This means

that the first smb_psdien bytes of data sent to this spool file will be treated by
the LMX server as setup data.

smb_mode A 16-bit field providing additional control over the printing of this file. The
field can have the following values:

0 Text mode. Some LMX servers expand ASCII TABs to spaces in this
mode.

1 Graphics mode. The LMX server treats the data as raw octets and will not
interpret or change it.

Protocols for X/Open PC Interworking: SMB, Version 2 111

Page 129 of 267

SMBsplopen Specification Core SMB Spool Operation Requests

112

smb_ident An ASCHZ (type 04) buffer containing a suggested name for the spool file.
The LMX server may ignore, truncate, or otherwise use this information in any
way.

smb_fid The FID of the spool file. Data written to this FID will be spooled.

SMBsplopen Error Code Descriptions

' CAECode |DOS Class 'DOS Code Description
' - 'ERRSRV ERRerror ‘The request SMB was invalid or malformed.
- ERRSRV ERRerror The LMX server cannot find the spool queue for
this file.
- ERRSRV ERRqfull Insufficient resources to create the print job.
- ERRSRV ERRqtoobig The queue is full; no entry is available to create
the job.
- ERRSRV ERRerror The LMX server has exhausted some resource

and cannot create the print job.

EACCES ERRDOS ERRnoaccess Search permission is denied on a component of
the path-prefix.

EINTR ERRSRV ERRerror A signal was caught during a system call.

EMFILE ERRDOS ERRnofids Maximum number of file descriptors are
currently open in this process.

ENFILE ERRDOS ERRnofids System file table is full.

EROFS ERRSRV ERRerror The spool file or spool queue resides on a read-

only file system.
- ERRSRV ERRinvdevice |The TID does not refer to a printer resource.

- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.

- _SUCCESS _SUCCESS _Everythin&worked, no E)roblems.

SMBsplopen Preconditions

The SMB request, UID and TID are valid and represent the appropriate access rights for the
action.

SMBsplopen Postconditions

1. Ifsuccessful, smb_fid contains the FID to be used in subsequent SMBsplwr requests for this
spool file.

2. Although some resources were reserved to create the spool file, there is no guarantee that
sufficient resources exist for a given amount of data to be spooled within this spool file.

SMBsplopen Side Effects

A spool file has been created on the LMX server.

Conventions

« Print Spooling (see Section 4.6 on page 35).

X/Open CAE Specification (1992)

Page 130 of 267

Core SMB Spool Operation Requests SMBsplwr Specification

9.2 SMBsplwr Specification

SMBsplwr Detailed Description

This core protocol request appends the data block to the spool file specified by the FID. The first
block sent to a spool file must contain the printer setup data; the length of this data was specified
in the SMBsplopen request. Additional data may appear with the first block sent.

SMBsplwr Deviations

It is possible that LMX servers are such that if an SMBsplwr request contained a message of
length greater than the maximum transmit size for the TID specified, the LMX server would
abort the LMX session to the SMB redirector (see Section 6.1 on page 55 and Section 6.2 on page
57). Rather than aborting, the LMX server could accept an amount of data which is the lesser of
the amount the SMB redirector indicated would be sent and the size of the data in the buffer.

SMBsplwr Field Descriptions

_ From SMB redirector | To SMB redirector
_ Field Name Field Value | Field Name Field Value
smb_com SMBsplwr smb_com SMBsplwr
smb_wct 1 smb_wct 0
smb_vwv[0)] smb_fid smb_bcc 0
smb_bcc min=4
| smb_buf smb_data _
smb_fid The FID for a spool file. Obtained in an SMBsplopen response.
smb_data A Data Block (type 01) buffer, containing data to be written to the spool file.

The first bytes of the first smb_data field sent to a newly-opened spool file are
considered to be printer setup data; the length of this setup data is specified in
the smb_psdlen field of the SMBsplopen request.

SMBsplwr Error Code Descriptions

CAE Code |DOSClass |DOS Code 'Description
' EBADF 'ERRDOS | ERRbadfid FID is valid, but no longer accepted by the
underlying operating system.
ERRDOS |ERRbadfid Invalid FID.

EAGAIN |ERRDOS | ERRnoaccess A temporary resource limitation prevented this
data from being written.
EIO ERRHRD | ERRwrite A physical 170 error has occurred.
- ERRSRV ERRqtoobig A part of the spooler subsystem failed due to
lack of file system space.

- ERRSRV ERRinvnid The TID in the command is invalid.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.
I - SUCCESS | SUCCESS Everything worked, no problems.
Protocols for X/Open PC Interworking: SMB, Version 2 113

Page 131 of 267

SMBsplwr Specification Core SMB Spool Operation Requests

SMBsplwr Preconditions

1. The SMB request, UID and TID are valid and represent the appropriate access rights for the
action.

2. The spool file specified by smb_fid must have been opened with SMBsplopen.

SMBsplwr Postconditions

If no error is returned, the data sent in the request will be written to the spool file.

SMBsplwr Side Effects

None.

Conventions

« Print Spooling (see Section 4.6 on page 35).

114 X/Open CAE Specification (1992)
Page 132 of 267

Core SMB Spool Operation Requests SMBsplclose Specification

9.3 SMBsplclose Specification
SMBsplclose Detailed Description
This core protocol request invalidates the specified FID and queues the file for spooling. The FID
must reference a spool file.
SMBsplclose Deviations
None.
SMBsplclose Field Descriptions
_ From SMB redirector _ To SMB redirector
. Field Name Field Value | Field Name Field Value
smb_com SMBspiclose smb_com SMBspiclose
smb_wct 1 smb_wct 0
smb_vwv[0] smb_fid smb_bcc 0
smb_bcc 0 |
smb_fid The FID of the spool file to be closed and queued for spooling.
SMBsplclose Error Code Descriptions
., CAE Code DOS Class DOS Code 'Description
EBADF ERRSRV ERRerror The LMX server could not use a valid FID.
- ERRDOS ERRbadfid The FID in the request is not valid.
- ERRSRV ERRinvdevice |The FID does not refer to an open spool file.
- ERRSRV ERRinvnid The TID in the command is invalid.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.
| - (SUCCESS |[SUCCESS ' Everything worked, no problems.
SMBsplclose Preconditions
1. The SMB request, UID and TID are valid and represent the appropriate access rights for the
action.
2. smb_fid must refer to a spool file opened with SMBsplopen.
SMBsplclose Postconditions
1. Ifnoerrors have occurred, the spool file will be closed and the job scheduled.
2. Ifanerror has occurred, it is possible that the data was not printed and may have been lost.
Protocols for X/Open PC Interworking: SMB, Version 2 115

Page 133 of 267

SMBspiclose Specification Core SMB Spool Operation Requests

SMBsplclose Side Effects
1. The data is spooled. Refer to Section 4.6 on page 35.

2. During or after the printing of the file, the resources consumed by it will be released.

Conventions

« Print Spooling (see Section 4.6 on page 35).

116 X/Open CAE Specification (1992)
Page 134 of 267

Core SMB Spool Operation Requests SMBsplretq Specification

9.4 SMBsplretq Specification
SMBsplretq Detailed Description
This core protocol request obtains a list of the elements currently in the print spool queue on the
LMX server. Zero or less than the requested number of elements will be returned only when the
beginning or end of the queue is encountered.
SMBsplretq Deviations
Some LMX servers cannot search the queue backwards, and will respond to requests for
backward searches with a forward search instead. The in intercept bit in the smb_status field of
smb_data will never be used.
SMBslpretq Field Descriptions
_r From SMB redirector To SMB redirector
_ Field Name Field Value | Field Name Field Value
smb_com SMBsplretq smb_com SMBsplretq
smb_wct 2 smb_wct 2
smb_vwv|[0] smb_maxcount smb_vwv|[0] smb_count
smb_vwv[l] smb_st_index smb_vwv[1] smb_res_index
smb_bcc 0 smb_bcc min =3
| _ smb_buf smb_data
smb_maxcount A 16-bit integer specifying the maximum number of entries to return. If
positive, search forward in the queue; if negative, search backwards. If
smb_maxcount entries require more data than can fit in a message, those entries
which fit are returned and no error is generated.
smb_st_index A 16-bit integer indicating the first entry in the queue to return. A value of 0
indicates the start of the queue; other values should only come from the
smb_res_index field of previous SMBsplretqresponses.
smb_count A 16-bit integer indicating how many entries were actually returned.
smb_res_index A 16-bit integer giving the index of the entry following the last entry returned;
it may be used as the start index in a subsequent request to resume the queue
listing.
smb_data A Data Block (type 01) buffer containing an array of smb_count queue element
structures. Each queue element is 28 bytes in length and contains the
following fields:
00 16-bit field smb_date
02 16-bit field smb_time
04 8-bit field smb_status
05 16-bit field smb_file
07 32-bit field smb_size
11 8-bit fleld smb_res
12 8-bit field smb_name[16] |
smb_date A 16-bit field containing the date for when the file was
created. Refer to Section 5.3.2 on page 43.
Protocols for X/Open PC Interworking: SMB, Version 2 117

Page 135 of 267

SMBsplretq Specification

smb_time

smb_status

smb_file

smb_size
smb_res

smb_name

Core SMB Spool Operation Requests

A 16-bit field telling time for when the file was created.
Refer to Section 5.3.1 on page 43.

An 8-bit field indicating the file’s status in the print spool
queue as follows:

0x01 held or stopped

0x02 printing

0x03 awaiting print

0x04 in intercept (never used)
0x05 file had error

0x06 printer error

0x07-Oxff reserved; do not use

A 16-bit integer containing the spool job ID, as generated on
the LMX server during the processing of the SMBsplopen
request for this spool file.

A 32-bit integer containing the size of the file in bytes.
An 8-bit reserved field; MBZ (Must Be Zero).

A 16-byte string identifying the spool file. This may be the
originating SMB redirector's name or the spool filename.
The spool filename is created by the LMX server when an
SMBsplopen request is received. This string is left-justified
and NULL-filled in the field.

SMBsplretq Error Code Descriptions

' CAE Code 'DOSClass |DOS Code Description
- 'ERRHRD .ERRnotready .Any of several errors could be mapped to this
error code.
- ERRHRD | ERRerror A resource limitation was exceeded.

- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid

ID on this LMX session.

- ' SUCCESS | SUCCESS Everything worked, no problems.

SMBsplretq Preconditions

1. The maximum SMB size permits at least 28* smb_max_count bytes of data in addition to the
SMB header and request subheader.

SMBsplretq Postconditions

None.

118
Page 136 of 267

X/0Open CAE Specification (1992)

Core SMB Spool Operation Requests SMBsplretq Specification

SMBsplretq Side Effects

None.

Conventions
This is a request where the UID and the TID need not be valid for service.

« Print Spooling (see Section 4.6 on page 35).

Protocols for X/Open PC Interworking: SMB, Version 2 119
Page 137 of 267

Core SMB Spool Operation Requests

120 X/Open CAE Specification (1992)
Page 138 of 267

oy
L]

I Chapter 10

Core Plus SMB File Operations

This section defines the elements of the core plus SMB protocol which provide for file
operations. They are:

SMBnegprot negotiate modifications when the core plus dialect is selected by the LMX
server

SMBreadbmpx read block multiplexed
SMBwritebmpx write block multiplexed
SMBreadbraw read block raw from a file
SMBwritebraw ~ write block raw to a file
SMBlockread lock a byte range and read it
SMBwriteunlock write to a byte range and unlock it

SMBwriteclose write to a file and close it

10.1 SMBnegprot Specification

SMBnegprot Detailed Description

This SMB protocol request is sent to establish the protocol dialect that the SMB redirector and
LMX server will use when communicating with each other. The SMB redirector sends a list of
dialects that it can use for communication. The LMX server responds with a selection of one of
those dialects (numbered 0 to n) or -1 indicating that none of the dialects were acceptable.
Exactly one negotiate message must be sent on each NetBIOS session; subsequent negotiate
requests must be rejected with an error response and no action will be taken. The rules for the
use of SMBnegprot outlined in Section 6.1 on page 55 hold here as well.

SMBne gprot Deviations

None.

SMBnegprot Field Descriptions
Field descriptions for other dialects of the SMB protocol (SMBnegprot) are:

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value

smb_com SMBnegprot smb_com SMBnegprot

smb_wct 0 smb_wct 13

smb_bcc min=2 smb_vwv[0] smb_index

smb_buf]] dialect0 smb_vwv[1-4] smb_rsvd(
smb_vwv[5] smb_blkmode
smb_vwv[6-12] smb_rsvdl
smb_bcc 0

Protocols for X/Open PC Interworking: SMB, Version 2 121

Page 139 of 267

SMBnegprot Specification Core Plus SMB File Operations

The fields are defined as:

dialectn A Dialect (type 02) buffer containing the name of a dialect (refer to Section 5.4
on page 48).

smb_index The dialect selected by the LMX server; corresponds to the indexth dialect
string in the request, where the first string is numbered 0.

smb_rsvd(Reserved; MBZ (Must Be Zero).

smb_blkmode Whether or not SMBreadbraw and SMBwritebraw are supported.
Bit 0 If set, SMBreadbraw is supported.
Bit 1 If set, SMBbwritebraw is supported.
Bit 2-15 Reserved; Must Be Zero.

Some SMB redirectors when negotiating the core plus dialect ignore these bits
and assume both SMBs are acceptable.

smb_rsvdl Reserved; MBZ (Must Be Zero).

smb_bcc This area is ignored in the core plus dialect.

Note that bit 0 of the smb_flg field in the SMB header of the response will be interpreted by the
SMB redirector to indicate support for SMBlockread and SMBwriteunlock.

SMBnegprot Error Code Descriptions

If any error occurs, the LMX server will return <ERRSRV, ERRerror>; otherwise, <SUCCESS,
SUCCESS> will be returned.

SMBnegprot Preconditions

The SMB redirector attempting to negotiate a protocol must have established a NetBIOS session
with the LMX server.

SMBnegprot Postconditions

The SMB redirector that negotiated this protocol must be able to handle all aspects of the SMB
dialect negotiated.

SMBnegprot Side Effects

The LMX server will keep a record of which dialect the SMB redirector negotiated and will use
only that dialect in conversations with the SMB redirector.

Conventions

None.

122 X/Open CAE Specification (1992)
Page 140 of 267

Core Plus SMB File Operations SMBreadbraw Specification

10.2 SMBreadbraw Specification

SMBreadbraw Detailed Description

The read block raw request is used to maximise the performance of reading a large block of data
from a file on the LMX server. Any supported file type can be read via SMBreadbraw. Up to
65,535 bytes can be read in one request/response regardless of the maximum negotiated buffer
size.

When the SMB redirector sends this request, it guarantees no other request will be issued on the
same LMX session until the response is received from the LMX server. Given this guarantee, the
LMX server responds by sending just the requested data in a single transport message. No
header of any sort is generated. Because the entire response is sent as a single message, the SMB
redirector can determine how much data was actually sent.

If the request is to read more data than is present in the file, the read response will be of the
length actually read from the file. If the read begins at or after EOF, or some other error is
encountered, a zero-length message is sent in response. An SMB redirector will send a read
request other than SMBreadbraw to find out what happened, at which time an EOF indication or
error is returned in the response to that request.

If an error should occur at the SMB redirector end, all data must be received and thrown away.
The LMX server will not be informed.

SMBreadbraw Deviations

Support for the timeout field for file types other than named pipes is optional. If timeouts are
not supported, all requests are treated as non-blocking.

SMBreadbraw Field Descriptions

| From SMB redirector To SMB redirector
_ Field Name Iiield Value _ Field Name Field Value
smb_com SMBreadbraw raw data
smb_wct 8
smb_vwv|[0] smb_fid
smb_vwv[1-2] smb_offset
smb_vwv[3] smb_maxcnt
smb_vwv[4] smb_mincnt
smb_vwv[5-6] smb_timeout
smb_vwv[7] smb_rsvd
_ smb:bcc 0
smb_fid The FID for the read.
smb_offset A 32-bit unsigned integer giving the offset into the file, in bytes, at which the
read is to begin.
smb_maxcnt An unsigned 16-bit field indicating the number of bytes to be read.
smb_mincnt If a timeout is specified, this is the minimum number of bytes that must be

read for the request to return before timing out.

smb_timeout A 32-bit integer giving the number of milliseconds to wait for at least
smb_mincnt bytes of data to be read. A value of zero (0) indicates the read
should not block. A timeout of —1 means the LMX server should wait
indefinitely. A timeout of -2 indicates the default timeout for the named pipe

Protocols for X/Open PC Interworking: SMB, Version 2 123
Page 141 of 267

SMBreadbraw Specification Core Plus SMB File Operations

124

should be used.

smb_rsvd A 16-bit reserved field, which should be ignored.
The response contains no headers or other overhead, and is a single message containing the
bytes that were read. A zero-length message indicates either smb_offset pointed beyond the
current EOF or some other error occurred.
SMBreadbraw Error Code Descriptions
No errors may be returned in the response to this request. Instead, any errors are saved until the
next request for this file, at which time they will be returned.
SMBreadbraw Preconditions

1. The SMB redirector has sent a valid SMB request with a valid TID for a readable resource.

2. The FID is valid and the process has read access.

SMBreadbraw Postconditions

The LMX server has returned to the SMB redirector either all of the requested raw data, all of the
data up to the EOF, or a response with no data.

SMBreadbraw Side Effects

Since the LMX server is not allowed to return errors with this SMB request, a return of 0 bytes
can indicate either EOF, file system read error, outstanding break or block, or that the LMX
server is temporarily out of some required resource. In the case of a 0 byte return, the SMB
redirector should follow up with an SMBread or SMBreadmpx request at which time the LMX
server can return an error if necessary.

Conventions

« Locking (see Section 4.4 on page 33).

X/0Open CAE Specification (1992)

Page 142 of 267

Core Plus SMB File Operations SMBwritebraw Specification

10.3 SMBwritebraw Specification

SMBwritebraw Detailed Description

The write block raw message exchange provides a high-performance mechanism for transferring
large amounts of data to be written to a file on the LMX server. Any supported file type,
including spool files, may be written with this exchange.

The SMBwritebraw exchange behaves much like an SMBwritebmpx exchange, except that instead
of additional data being sent in secondary requests, all the additional data is sent in a single raw
message; that is, the first segment of data is sent in the primary request, and the remainder in a
single message with no SMB header or SMBwritebraw subheader.

If all the data to be written fits in the primary request, a zero-length secondary request is still
sent; even if the secondary request is zero-length, a secondary response must be generated when
write-through mode was specified.

If the LMX server is busy or otherwise unable to support the raw write of the remaining data, the
data sent with the primary request is still written (to stable store if write-through mode was set).
If any other error occurs, the data is discarded. In either case, an appropriate error is returned in
a secondary response. A primary response is only sent if the primary request was satisfied with
no errors and the LMX server is prepared for a raw message.

SMBwrite braw Deviations

The smb_timeout and smb_remaining fields will not be supported with I/0 devices.

SMBwritebraw Field Descriptions

SMB redirectors using the core plus dialect of the SMB protocol use a slightly different form of
the SMBwritebraw primary request, and expect a slightly modified primary response. Both forms
are shown below.

Primary SMBwritebraw (core plus only):

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBwritebraw smb_com SMBwritebraw
smb_wct 10 smb_wct 0
smb_vwv[0] smb_fid smb_bcc 0
smb_vwv[1] smb_tcount
smb_vwv[2] smb_rsvd
smb_vwv[3-4] smb_offset
smb_vwv[5-6] smb_timeout
smb_vwv[7] smb_wmode
smb_vwv[8-9] smb_rsvd
smb_bcc min=0
smb_buf] smb_data
smb_fid The FID of the file to be written to.
smb_tcount An unsigned 16-bit field giving the total number of bytes that will be written

to the file. This value must be correct in at least one of the requests in the
exchange; in other requests, it may be an over-estimate.

smb_rsvd These fields are reserved and should be ignored by the LMX server.

Protocols for X/Open PC Interworking: SMB, Version 2 125
Page 143 of 267

SMBwritebraw Specification Core Plus SMB File Operations

smb_offset

smb_timeout

smb_wmode

smb_data

A 32-bit integer giving the position in the file at which the bytes in the request
should be written.

A 32-bit integer giving the number of milliseconds the LMX server may block
while trying to complete the write. This value is ignored for regular files. For
170 devices and named pipes (refer to the X/Open CAE Specification, IPC
Mechanisms for SMB), the LMX server will wait this much time to complete
the write. If smb_timeout is —1, the LMX server will wait indefinitely; if it is -2,
the server will wait the default amount of time for the file. An LMX server
may choose to treat all timeouts as 0; that is, do not block.

A 16-bit flag field controlling the write mode. If bit 0 is set, write-through
mode is requested; the LMX server will write all data atomically and
acknowledge the write with the secondary response. If clear, write-behind is
permitted; the LMX server need not write atomically and need not report
completion. If bit 1 is set, the LMX server should fill in the smb_remaining field
in the primary response.

The actual data to be written. This is a string of bytes in no particular format.

Note that, in the core plus protocol dialect, there is no padding between the end of the
smb_vwv[] block and the data to be written.

Secondary SMBwritebraw:
_ From SMB redirector _ To SMB redirector
_ Field Name Field Value _ Field Name Field Value
raw data smb_com SMBwritec
smb_wct 1
smb_vwv[0] smb_count
_ smb:bcc 0
smb_count The total number of bytes written. If this is different from the smallest

126
Page 144 of 267

smb_tcount sent by the SMB redirector, some error occurred (for example, out
of free space on the file system).

X/0Open CAE Specification (1992)

Core Plus SMB File Operations

SMBwritebraw Error Code Descriptions

| CAE Code DOS Class |DOS Code
- ERRDOS ERRbadfid
- ERRDOS ERRnoaccess
- ERRDOS ERRbadaccess
- ERRSRV ERRerror
- ERRSRV ERRinvnid
- ERRSRV ERRnoresource
- ERRSRV ERRtimeout
- ERRSRV ERRuseMPX
- ERRSRV ERRuseSTD
- ERRSRV ERRbaduid
- _ SUCCESS _ SUCCESS

SMBwrite braw Preconditions

SMBwrritebraw Specification

: Description
Invalid FID.

File opened in deny write mode, or write range
overlaps a lock.

Invalid open mode for the attempted operation.
Corrupt SMB.

Invalid TID.

The LMX server is temporarily out of a needed
resource.

Requested operation timed out.
Can't do raw mode at this
SMBwritebmpx.

Can’'t do raw mode at this time; use SMBwrite or
SMBwriteX.

The UID given (smb_uid) is not known as a valid
ID on this LMX session.

time; use

' Everything worked, no problems.

1. The primary SMB was valid and specified a valid TID for a writable resource.

2. The FID was valid, and the process had write access to the file.

3. Before sending the secondary message, the LMX server must have sent a primary response.
The LMX server has been able to write the accompanying data to disk, allocated the
needed memory for a buffer, and sent the response to the SMB redirector.

SMBwrite braw Postconditions

1. If write-through mode is set, a primary response or secondary response indicates the data
in the primary response has been written to stable store (unless some error other than
ERRuseSTD or ERRuseMPX was returned).

2. After a primary response is received, the LMX server is ready for a raw secondary

message.

SMBwritebraw Side Effects

None.

Conventions

« Locking (see Section 4.4 on page 33).

Protocols for X/Open PC Interworking: SMB, Version 2
Page 145 of 267

127

SMBlockread Specification Core Plus SMB File Operations

10.4

128

SMBIlockread Specification

SMBlockread Detailed Description

This lock and read protocol request has the effect of explicitly locking the bytes in the specified
range and then reading them. The lock is maintained until explicitly released by the SMB
redirector or the SMB redirector closes the file. Only the bytes actually read by this request are
locked, not the bytes specified in the advisory smb_countleft field.

Support for this SMB is optional; an LMX server should set the appropriate bit in the smb_flg
field of the SMBnegprot response (see Section 6.1 on page 55 for other dialects of the SMB
protocol and Section 5.1 on page 37).

SMBIlockread Deviations

None.

SMBlockread Field Descriptions

The request and response format are identical to that of SMBread (see Section 7.4 on page 73).

SMBlockread Error Code Descriptions

For a more complete description of the potential error codes resulting from this SMB message
see Section 7.4 on page 73 and Section 7.7 on page 81.

CALE Code |DOS Class |DOS Code Description
- ERRDOS |ERRnoaccess No read access to TID.
EBADF ERRDOS |ERRbadfid Invalid FID.
- ERRDOS | ERRlock The intended read range overlaps a lock held by

another process.
EPERM ERRDOS ERRbadaccess |No read access for the file.

ERRSRV ERRerror Corrupt SMB.
- ERRSRV ERRinvdevice |TID is not for a file system subtree.
- ERRSRV ERRinvnid Invalid TID.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.
- SUCCESS |SUCCESS Everything worked, no problems.

SMBIlockread Preconditions

1. The SMB redirector has sent a valid SMB with a valid TID for a readable file system
resource.

2. The FID is valid, and the process has read access to the file.

3. The range of bytes to be read is not already locked by some other process.

X/Open CAE Specification (1992)

Page 146 of 267

Core Plus SMB File Operations SMBlockread Specification

SMBlockread Postconditions

1. The requested number of bytes (smb_bytecount) has been locked, read and returned, in that
order.

2. The current file position is left after the bytes read.

SMBlockread Side Effects

1. Other SMB redirector processes will be unable to access the locked record until the SMB
redirector holding the lock has released it or unless they are using the same FID.

2. The LMX server may have pre-read the remaining bytes (smb_countleft - smb_bytecount) to
increase the performance of subsequent reads from the same process.

Conventions

« Locking (see Section 4.4 on page 33).

Protocols for X/Open PC Interworking: SMB, Version 2 129
Page 147 of 267

SMBwriteunlock Specification Core Plus SMB File Operations

10.5

130

SMBwriteunlock Specification

SMBwriteunlock Detailed Description

This write and unlock protocol request has the effect of writing to a range of bytes and then
unlocking them. This request is usually complementary to an earlier usage of SMBlockread on
the same range of bytes. Only the range of bytes actually written to is unlocked, not the range
specified in the advisory smb_countleft field. If an error occurs during the write, the byte range
should not be unlocked.

Aside from the lack of special handling of zero-length writes, this request behaves in an identical
fashion to a core protocol SMBwrite request followed by a core protocol SMBunlock request.

Support for this SMB is optional; an LMX server should set the appropriate bit in the smb_flg
field of the SMBnegprot response (see Section 6.1 on page 55 for other dialects of SMB protocol
and Section 5.1 on page 37).

SMBwriteunlock Deviations

See Section 7.5 on page 76 and Section 7.8 on page 83.

SMBwriteunlock Field Descriptions

The SMBwriteunlock request and response format are identical to those of SMBwrite (see Section
7.5 on page 76).

SMBwriteunlock Error Code Descriptions

For a list of other error codes generated during the handling of this SMB see Section 7.5 on page
76 and Section 7.8 on page 83.

CAE Code 'DOSClass DOS Code Description
' - 'ERRDOS ERRlock ‘The r&quested range was locked by a different '
process.
- SUCCESS |SUCCESS Everything worked, no problems.

SMBwriteunlock Preconditions

1. The SMB redirector has sent a valid SMB request with a TID for a writable file system
subtree.

2. The FID must be valid and the process must have write access.

3. The write operation must succeed before the unlock operation is attempted.

SMBwriteunlock Postconditions
1. Either the write succeeded or an error was returned.

2. If the write succeeded, the byte range was unlocked.

X/Open CAE Specification (1992)

Page 148 of 267

Core Plus SMB File Operations SMBwriteunlock Specification

SMBwriteunlock Side Effects
Same as for SMBwrite and SMBunlock.

Conventions

« Locking (see Section 4.4 on page 33).

Protocols for X/Open PC Interworking: SMB, Version 2 131
Page 149 of 267

SMBwriteclose Specification Core Plus SMB File Operations

10.6

132

Page 150 of 267

SMBwriteclose Specification

SMBwriteclose Detailed Description

The write and close protocol request is used to first write the specified bytes and then close the
file. Any supported file type, including spool files, may be specified in this request. This request
behaves identically to an SMBwrite request followed by an SMBclose request. Any buffered data
must be flushed to stable store or to the device before the response is sent.

SMBwriteclose Deviations

See Section 7.5 on page 76 and Section 12.6 on page 168 for details.

SMBwriteclose Field Descriptions

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBwriteclose smb_com SMBwriteclose
smb_wct (6 or12) smb_wct 1
smb_vwv|[0] smb_fid smb_vwv|[0] smb_count
smb_vwv[1] smb_count smb_bcc 0
smb_vwv(2-3] smb_offSet
smb_vwv|[4-5] smb_time
smb_vwv[6-11] smb_rsvd
smb_bcc (1 + smb_count)
smb_bufl] smb_pad

smb_data
The FID to be closed.

smb_fid

smb_count

smb_offset

smb_time

smb_rsvd

smb_pad

smb_data

In the request, the number of bytes of data to be written. In the response, the
number of bytes that were actually written.

A 32-bit offset into the file, in bytes, at which the data is to be written.

A 32-bit time value to be used as the last modify time for the file. A value of
zero indicates the last modified time should be unchanged.

This six 16-bit field is only present if smb_wct is 12. These fields should be
ignored.

A single 8-bit field which is used to pad out the beginning of the smb_data area
to a 32-bit address boundary.

A string of bytes, in no particular format, whose length is given by smb_count.
This is the data to be written.

SMBwriteclose Error Code Descriptions

Exactly the errors returned by SMBwriteX and SMBclose can be returned for this request. If an
error occurs during the write operation, the file will still be closed. Only one error can be
returned in the response; if errors occur during both the write and close operations, the close

error is reported.

X/Open CAE Specification (1992)

Core Plus SMB File Operations SMBuwriteclose Specification

SMBwriteclose Preconditions
1. The SMB redirector has sent a valid SMB with a TID for a writable resource.

2. The FID is valid and the process has write access to the file.

SMBwriteclose Postconditions

1. The data in the call is written to the file. If an error occurred, it will be reported unless a
close error occurs as well.

2. The file is closed and any errors are reported.

SMBwriteclose Side Effects

Any buffered data for the file is written, and any outstanding locks are released in random order.

Conventions

« Locking (see Section 4.4 on page 33).

Protocols for X/Open PC Interworking: SMB, Version 2 133
Page 151 of 267

Core Plus SMB File Operations

134 X/Open CAE Specification (1992)
Page 152 of 267

V' Chapter 11

o

Extended 1.0 SMB Connection Management Requests

o

This section defines those elements of the extended 1.0 SMB protocol dialects which support
connection and LMX session management. They are:

SMBnegprot negotiate modifications when an extended dialect is selected by the LMX
server
SMBsecpkgX negotiate security packages and related information

SMBsesssetupX set up a session, log on a user

SMBtconX extended Tree Connect

11.1 SMBnegprot Specification

SMBnegprot Detailed Description

This SMB protocol request is sent to establish the protocol dialect that the SMB redirector and
LMX server will use when communicating with each other. The SMB redirector sends a list of
dialects that it can use for communication. The LMX server responds with a selection of one of
those dialects (numbered 0 to n) or —1 indicating that none of the dialects were acceptable.
Exactly one negotiate message must be sent on each NetBIOS session; subsequent negotiate
requests must be rejected with an error response and no action will be taken. The rules to the
use of SMBnegprot outlined in Section 6.1 on page 55 hold here as well.

SMBnegprot Deviations

None.

Protocols for X/Open PC Interworking: SMB, Version 2 135

Page 153 of 267

SMBnegprot Specification

Extended 1.0 SMB Connection Management Requests

SMBnegprot Field Descriptions

Field descriptions for other dialects of the SMB protocol (SMBnegprot) are:

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBnegprot smb_com SMBnegprot
smb_wct 0 smb_wct 13
smb_bcc min = 2 smb_vwv[0)] smb_index
smb_buff] dialect0 smb_vwv[1] smb_secmode
smb_vwv[2] smb_maxxmt
. smb_vwv[3] smb_maxmux
dialectn smb_vwv[4] smb_maxvcs
smb_vwv[5] smb_blkmode
smb_vwv[6-7] smb_sesskey
smb_vwv[8] smb_srv_time
smb_vwv[9] smb_srv_date
smb_vwv[10] smb_srv_tzone
smb_vwv[11-12] smb_rsvd
smb_bcc
smb_buf]] smb_cryptkeyl]
The fields are defined as:
dialectn A Dialect (type 02) buffer containing the name of a dialect (refer to Section 5.4
on page 48).
smb_index The dialect selected by the LMX server; corresponds to the indexth dialect

smb_secmode

smb_maxxmt

136
Page 154 of 267

string in the request, where the first string is numbered 0.
This flag field describes the LMX server'’s security mode.

Bit 0 If set, the LMX server is in user-level security mode; if clear, share-
level.

Bit 1 If set, the LMX server supports password encryption in SMB form
(see Section 11.3 on page 144 and Appendix D on page 279).

Bit 2 If set, the LMX server supports the SMBsecpkgX extended security
package negotiation (see Section 11.2 on page 139).

Bit 3-15 Reserved; MBZ (Must Be Zero).

The LMX server’s maximum SMB buffer size in bytes. Minimum value is 1K
byte. This provides sufficient room for most requests and responses. All SMB
requests including chained requests must fit in this buffer size.

This is the maximum SMB message size which the SMB redirector can send to
the LMX server. This size may be larger than the smb_bufSize value in the
SMBsesssetupX request, sent to the LMX server from the SMB redirector, which
is the maximum SMB message size the LMX server may send to the SMB
redirector.

For example, if the LMX server’s buffer size (smb_maxxmt in the SMBnegprot
response) were 4K byte and the SMB redirectors’s buffer size were only 2K
byte (smb_buBize in the SMBsesssetupX request), the SMB redirector could send
up to 4K byte of data in an SMBwrite (or SMBwriteX) request but may request
no more than 2K byte of data in SMBread (or SMBreadX) requests. The largest

X/0Open CAE Specification (1992)

Extended 1.0 SMB Connection Management Requests SMBnegprot Specification

response from the LMX server would also be 2K byte.

smb_maxmux The maximum number of simultaneous multiplexed reads supported per
LMX session; must be at least 1.

smb_maxvcs The maximum number of NetBIOS sessions supported per LMX session.
Must be 1.

smb_blkmode Whether or not SMBreadbraw and SMBwritebraw are supported.
Bit 0 If set, SMBreadbraw is supported.
Bit 1 If set, SMBbwritebraw is supported.
Bit 2-15 Reserved; Must Be Zero.

Some SMB redirectors when negotiating LANMAN 1.0 dialect ignore these
bits and assume both SMBs are acceptable.

smb_sesskey A 32-bit value of the LMX session key; uniquely identifies an LMX session.

smb_srv_time 16-bit current time according to the LMX server (see Section 5.3.1 on page 43).

smb_srv_date 16-bit current date according to the LMX server (see Section 5.3.2 on page 43).

smb_srv_tzone A 16-bit value for the number of minutes the current time zone is away from
GMT.

smb_rsvd A 32-bit reserved field. Must be zero.

smb_bcc In the case of SMBnegprot, the field gives the length of the token in

smb_cryptkey.

smb_cryptkey This is an unformatted array of bytes which contains an opaque token to be
used for password encryption (see Section 11.2 on page 139, Section 11.3 on
page 144 and Appendix D on page 279).

Note that bit 0 of the smb_flg field in the SMB header of the response will be interpreted by the
SMB redirector to indicate support for SMBlockread and SMBwriteunlock.

SMBne gprot Error Code Descriptions

If any error occurs, the LMX server will return <ERRSRV, ERRerror>; otherwise, <SUCCESS,
SUCCESS> will be returned.

SMBnegprot Preconditions

The SMB redirector attempting to negotiate a protocol must have established a NetBIOS session
with the LMX server.

SMBne gprot Postconditions

The SMB redirector that negotiated this protocol must be able to handle all aspects of the SMB
dialect negotiated.

Protocols for X/Open PC Interworking: SMB, Version 2 137
Page 155 of 267

SMBnegprot Specification Extended 1.0 SMB Connection Management Requests

SMBnegprot Side Effects

The LMKX server will keep record of which dialect the SMB redirector negotiated and will use
only that dialect in conversations with the SMB redirector.

If the SMB redirector is to perform password encryption, it must store and use the smb_cryptkey
token in accordance with the encryption function selected (see Section 11.2 on page 139) or with
the SMB encryption mechanism (see Section 11.3 on page 144 and Appendix D on page 279).

Conventions

None.

138 X/Open CAE Specification (1992)
Page 156 of 267

Extended 1.0 SMB Connection Management Requests

11.2

SMBsecpkgX Specification

SMBsecpkgX Specification

SMBsecpkgX Detailed Description

The SMBsecpkgX extended protocol request is used to negotiate the security package to be used
for a given LMX session. Part of the negotiation determines the authentication and password
encryption algorithms required to establish the identity of the user sitting at the SMB redirector
system. The SMBsecpkgX request and response are only used when the LMX server is in user-
level security mode and both the SMB redirector and the LMX server understand Extended User
Authentication (see Section 2.2 on page 5).

The SMB redirector will send an SMBsecpkgX request to the LMX server immediately after
receipt of an SMBnegprot response which set bits 1 and 2 in the smb_secmode field, only if the SMB
redirector supports Extended User Authentication.

An LMX server may reject an SMBsesssetupX request which was not preceded by an acceptable
SMBsecpkgX exchange, or it may instead support SMB-style authentication and encryption
mechanisms (see Section 11.3 on page 144). An LMX server may provide a mechanism to control
this choice, on either a per-server or per-share basis.

In addition to supporlting negotiation of a security package and its components, the SMBsecpkgX
exchange also supports a mechanism for authentication of the serving system to the SMB
redirector similar to the SMB redirector to the LMX server mechanism supported by the
combination of SMBnegprot and SMBsesssetupX requests.

After the successful exchange of SMBsecpkgX request and response the SMB redirector will use
as its UID for the LMX session the value of the smb_uid field in the response header. This is the
only case in which the LMX server selects the value of smb_uid to be used for the LMX session.
In all other cases (that is, no SMBsecpkgX exchange) the value of smb_uid is selected by the SMB
redirector.

SMBsecpkgX Deviations

Use of the SMBsecpkgX exchange is only defined for the client-server dialogue package-type. An
LMX server may implement other package-types without conflict.

Within the client-server package-type negotiation, only the X/Open security package is defined.
An LMX server may choose to support additional packages of that type.

SMBsecpkgX Field Descriptions

smb_pkglist 1

smb_pkglist n

Protocols for X/Open PC Interworking: SMB, Version 2
Page 157 of 267

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBsecpkgX smb_com SMBsecpkgX
smb_wct 4 smb_wct 4
smb_vwv[0] smb_com?2 smb_vwv[0] smb_com?2
smb_vwv[1] smb_off2 smb_vwv[1] smb_off2
smb_vwv[2] smb_pkgtype smb_vwv[2] smb_index
smb_vwv[3] smb_numpkgs smb_vwv[3] smb_pkgarglen
smb_bcc min=4 smb_bcc
smb_bufl] smb_buf{] smb_pkgargs

139

SMBsecpkgX Specification Extended 1.0 SMB Connection Management Requests

smb_pkgtype

smb_numpkgs

smb_pkglist

smb_index

smb_pkgarglen

smb_pkgargs

A 16-bit fleld containing the package-type being negotiated by this
SMBsecpkgX request and response. The only value defined is 0, the package-
type for the dialogue between an SMB redirector and the LMX server.

A 16-bit integer containing the number of packages of type smb_pkgtype being
offered by the SMB redirector. This must be greater than zero.

Each smb_pkglist is a structure describing a particular package. The structures
are concatenated together, with no padding, to form the smb_bufsection of the
request.

The smb_pkglist structure looks like:

Field Name Field :l“ype 'Contents
' smb_pkgnamlen ' 16-bit field 'Length, in bytes, of package name in

this structure.

smb_pkgarglen | 16-bit field Length of package-specific info (in
bytes).

smb_pkgname byte array The name of the package described
by this structure. This is not
padded.

smb_pkgargs byte array Package-specific information. The

format of this counted array is
defined by the package name
associated with it.

1

A 16-bit integer containing the number of the package selected by the LMX
server. The first smb_pkglist in the request corresponds to an smb_index value
of 0; the second corresponds to 1; etc. If the LMX server can support none of
the offered packages, a —1 is returned.

A 16-bit integer giving the length, in bytes, of the package-specific information
being returned from the LMX server to the SMB redirector. This may be zero
for some packages.

This is an unstructured array of bytes containing package-specific information
in a format determined by the package selected by smb_index. The format may
be different from that of the smb_pkgargs in the request for the same package.

X/Open has defined one package of type 0; this package has smb_pkgname X/OPEN. The
smb_pkgargs for this package are defined below.

140
Page 158 of 267

X/0Open CAE Specification (1992)

Extended 1.0 SMB Connection Management Requests SMBsecpkgX Specification
., Request _ Response
Type Name . Type Name
16-bit field xp_flags 16-bit field xp_esel
string Xp_name 16-bit field xp_usel
16-bit field xp_edialects type 01 xp_ouinf
string xp_e0 type 01 xp_nuinf
. . type 01 xp_Cr
string xp_en
16-bit field xp_udialects
string xp_u0
string xp_un
type 01 xp_Cs
xp_flags A set of flags modifying use of this exchange.
Bit 0 If set, the LMX server must respond to the challenge, Cs, contained in
this request. If clear, the SMB redirector does not require the LMX
server to authenticate itself.
Bits 1-15 Undefined; MBZ (Must Be Zero).
Xp_name A null-terminated string containing the username. This name, possibly

xp_edialects

Xxp_en

xp_udialects

Xp_un

xp_esel

xp_usel

truncated, should be used by the LMX server to identify which user is to be
authenticated.

The number of bi-directional encryption function (referred to as E()) names
which follow in the pkgargs structure. This must be greater than zero.

Each null-terminated string names a particular E() function. The meaning of
these names must be agreed upon by implementors of SMB redirectors and
LMX servers.

The number of password encryption function (U()) names which follow. This
must be greater than zero.

Each null-terminated string names a particular U() function. As with E()
functions, the meaning of these names must be mutually agreed upon by SMB
redirector and LMX server systems.

This data (type 01) buffer contains a challenge string. The response string,
xp_Cr, will be generated using the E() selected by the LMX server, and the
password stored on the LMX server for the user indicated by xp_username.
The SMB redirector can use the password, as typed by the user, xp_ouinf and
the challenge response to ensure that the LMX server in fact knew the user’s
password as well. The particular algorithm for accomplishing this depends
upon the E() and U() functions negotiated. This field is meaningless and
should be ignored if bit 0 of xp_flagsis not set.

The index of the xp_en which the LMX server has selected. This index is zero-
based, in the same fashion as smb_index (above). If none of the offered xp_en
functions are supported by the LMX server, a —1 will be returned in this field
and an error will be returned.

The index of the xp_un which the LMX server has selected. This index is
zero-based. If none of the offered xp_un functions are supported by the LMX
server, a —1 will be returned in this field and an error will be returned.

Protocols for X/Open PC Interworking: SMB, Version 2 141

Page 159 of 267

SMBsecpkgX Specification Extended 1.0 SMB Connection Management Requests

142

xp_ouinf A data (type 01) buffer, whose contents are used in combination with the
user’s password and the chosen U() to reproduce the password as stored on
the LMX server. This string may be unused for some U() and would be of
zero length if such a U() were selected.

xp_nuinf A data buffer whose contents are to be used if the password for this user is
changed via some administrative protocol. Some LMX servers may not
support such an administrative protocol, and some U() functions require no
such data or permit reuse of such data; in any of these cases, the length of this
buffer will be zero.

xp_Cr A data buffer containing the response to xp_Cs, see above. This field will be
ignored and should be of zero length if bit 0 of xp_flags was not set.

SMBsecpkgX Error Code Descriptions

: CAE Code | DOSClass |DOS Code kDescrifption

- 'ERRSRV 'ERRbadpermits 'For either the E() or U() functions, there was no '
match between the functions supported on the
SMB redirector and LMX server.

- ERRSRV ERRerror The SMB redirector has already negotiated this
package-type.

- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.

- SUCCESS | SUCCESS Everything worked, no problems.

If the user named in the xp_name field does not exist on the LMX server, the LMX server should
nonetheless generate a properly formatted response with data that appears to be valid. The SMB
redirector attempt to set up an LMX session should be rejected after the SMBsesssetupX request is
received.

SMBsecpkgX Preconditions

The LMX server must have set bits 1 and 2 of the smb_secmode field in its SMBnegprot response on
this same NetBIOS session.

SMBsecpkgX Postconditions

If the optional SMB redirector challenge was used, the SMB redirector can rely upon the LMX
server actually knowing the user’s password.

SMBsecpkgX Side Effects

All authentication exchanges after this SMB exchange will use the selected E() as an encryption
and decryption mechanism. All passwords passed over the connection after this SMB exchange
will be encoded using the selected U() and xp_ouinf/ xp_nuinfinformation.

X/0Open CAE Specification (1992)

Page 160 of 267

Extended 1.0 SMB Connection Management Requests SMBsecpkgX Specification

Conventions
« Chaining (see Section 3.9 on page 22).

Only SMBsesssetupX may be chained to SMBsecpkgX. Furthermore, this can only be successfully
done if:

1. Only one E() and U() function is offered in the SMBsecpkgX request. If distinct functions
are offered, the SMB redirector cannot know a priori which E() or U() function to use to
compute the encrypted user password.

2. The U() function does not require the use of xp_ouinfto compute the encrypted password.

Protocols for X/Open PC Interworking: SMB, Version 2 143
Page 161 of 267

SMBsesssetupX Specification Extended 1.0 SMB Connection Management Requests

11.3

144

SMBsesssetupX Specification

SMBsesssetupX Detailed Description

This extended protocol request is used to further set up the LMX session normally just
established via the SMBnegprot request/response. The SMBsesssetupX request serves two
purposes: identification of the user for this LMX session, and negotiation of SMB redirector-side
communication parameters.

o User Identification

The actual semantics for this request are governed by the security mode of the LMX server.
See Section 2.2 on page 5 for a discussion of these modes.

In user-level security mode, the SMB redirector will establish a mapping between a particular
username on the LMX server and a UID which the SMB redirector will use to represent that
user. A password may be sent by the SMB redirector to authenticate that the person using
the SMB redirector is indeed the username to be mapped to. Further, the password may be
encrypted to ensure security.

The LMX server validates the username and password supplied and, if valid, it establishes a
mapping between the LMX session’s UID and the actual UID corresponding to the specified
username and password. That actual UID will be used for access checks required by requests
issued on behalf of the UID on this LMX session.

The value of the UID is relative to an LMX session; it is possible for the same UID value to
represent two different users on two different LMX sessions on the LMX server. The LMX
server must map the pair of <LMX session ID, UID> to the different accounts.

In share-level security mode, the username and password are unused. The LMX server
should use a unique, reserved account and corresponding actual UID to perform access
checks for all requests.

¢ SMB Redirector Communications Parameters

The LMX server, in its response to the SMBnegprot request, has set some parameters for the
communication it was expecting from the SMB redirector. In the SMBsesssetupX request, the
SMB redirector must indicate the parameters for the communication it is expecting from the
LMX server. These values may be different; for example, the LMX server may be able to
receive a maximum message size of 16K bytes, while the SMB redirector can only receive 1K
bytes.

Some LMX servers may need to renegotiate buffer sizes after the SMBsesssetupX exchange.
This renegotiation is available through the SMBtcon request, but not through SMBtconX.

SMBsesssetupX Deviations

None.

X/0Open CAE Specification (1992)

Page 162 of 267

SMBsesssetupX Field Descriptions

Extended 1.0 SMB Connection Management Requests

SMBsesssetupX Specification

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value
smb_com SMBsesssetupX smb_com SMBsesssetupX
smb_wct 10 smb_wct 3
smb_vwv|[0] smb_com?2 smb_vwv|[0] smb_com?2
smb_vwv[1] smb_off2 smb_vwv[1] smb_off2
smb_vwv[2] smb_bufSize smb_vwv[2] smb_action
smb_vwv[3] smb_mpxmax smb_bcc 0
smb_vwv[4] smb_vc_num
smb_vwv|[5-6] smb_sesskey
smb_vwv[7] smb_apasslen
smb_vwv[8-9] smb_rsvd
smb_bcc min val=0
smb_bufl] smb_apasswd

smb_aname

smb_comZ and smb_off2 descriptions can be found in Section 3.9 on page 22.

smb_bufSize

smb_mpxmax

smb_vc_num

smb_sesskey

smb_apasslen
smb_rsvd

smb_apasswd

smb_aname

smb_action

The size of the largest message the SMB redirector is willing to receive. It
must be true that smb_bufSize < smb_maxxmt (see Section 6.1 on page 55).

The maximum number of requests which the SMB redirector will have
outstanding on a single LMX session. It must be true that smb_mpxmax <
smb_maxmux (see Section 6.1 on page 55).

Permits multiple LMX sessions to be associated with a single NetBIOS session.
If zero (0), this LMX session is the first or only NetBIOS session. If
smb_vc_num is zero (0) and there are other previously established LMX
sessions still connected from this SMB redirector, it is recommended that the
LMX server abort the previous LMX session to free up the resources held.

A 32-bit integer which identifies to which LMX session that this NetBIOS
session is associated. Ignored when smb_vc_numis zero (0). This value would
be obtained from the smb_sesskey field in the response to the SMBnegprot
associated with the LMX session this NetBIOS session is to be made a part of.

Length of the smb_apasswd field.
A 32-bit reserved field; the LMX server should ignore this field.

A character string containing the password, possibly encrypted. Ignored by
an LMX server in share-level security mode.

An ASCIHZ (not type 04) buffer containing the username to be associated with
smb_uid and validated with smb_apasswd. Ignored by an LMX server in share-
level security mode. The length of this field is derived from the difference
between smb_bcc and smb_apasslen.

A bit-encoded field indicating the results of a successful LMX session setup. If
bit 0 is clear, everything went normally. If bit 0 is set, the LMX session was
setup but a default or guest account was used instead of the account
requested. (An LMX server in share-level security mode would set this bit).

Protocols for X/Open PC Interworking: SMB, Version 2 145
Page 163 of 267

SMBsesssetupX Specification Extended 1.0 SMB Connection Management Requests

SMBsesssetupX Error Code Descriptions

CAE Code DOS Class DOS Code Description
- ERRSRV ERRerror Internal LMX server error.
- ERRSRV ERRbadpw Username and password pair was invalid.

- ERRSRV ERRtoomanyuids LMX server does not support this many UIDs in
one LMX session.

- ERRSRV ERRerror No SMBnegprot request has been issued on this
NetBIOS session.

- ERRSRV ERRnosupport | This request cannot be chained to the request
which precedes it in this message.

- _SUCCESS _SUCCESS _Evellthing worked, noproblems.

SMBsesssetupX Preconditions

1. The SMB redirector attempting the SMBsesssetupX must have established an LMX session
with the LMX server and negotiated an extended protocol dialect.

2. The username and password must both be valid instances of those types.
3. smb_comZ must be a legal chained command.
4. There are many other preconditions based upon the SMBs that may be chained. These are
enumerated in the specifications for those SMBs.
SMBsessse tupX Postconditions
1. If there are no errors the value in smb_uid is used as a valid UID in future SMBs.
2. There are many other postconditions based upon the SMBs that may be chained. These are
enumerated in the specifications for these SMBs.
SMBsesssetupX Side Effects
Conversion of paths to a canonical pathname is controlled by bit 4 of the smb_fg in the header of
this request (see Section 5.1 on page 37).
Conventions
» Opportunistic Locking (see Section 3.8.2 on page 20).
» Chaining (see Section 3.9 on page 22).
The SMBs which may be chained after SMBsesssetupX are:

SMBchkpath ~ SMBfinique SMBopen SMBsearch SMBtconX
SMBcopy SMBgetatr SMBopenX SMBsetatr SMBunlink
SMBcreate SMBmkdir SMBrename SMBsplopen SMBtrans
SMBdskattr ~ SMBmknew SMBrmdir SMBsplretq NIL
SMBffirst SMBmv

146 X/Open CAE Specification (1992)
Page 164 of 267

Extended 1.0 SMB Connection Management Requests

SMBtconX Specification

11.4 SMBtconX Specification
SMBtconX Detailed Description
This extended protocol request will establish direct access to a resource (file system subtree,
spooled device, etc.) on an LMX server. The functionality provided by this request matches very
closely that of the core protocol SMBtcon request. The differences are:
1. SMBtconX permits another request to be chained to it (for example, SMBopenX).
2. A flag can be set in the SMBtconX request which will invalidate the TID in the request, then
acquire a new TID for the requested resource and return it.
3. The maximum receive buffer sizes cannot be renegotiated.
4. The resource type need not be explicitly identified.
SMBtconX Deviations
None.
SMBtconX Field Descriptions
From SMB redirector | To SMB redirector
| Field Name Field Value | Field Name Field Value
smb_com SMBtconX smb_com SMBtconX
smb_wct 4 smb_wct 2
smb_vwv[0] smb_com?2 smb_vwv[0] smb_com?2
smb_vwv[]] smb_off? smb_vwv[1] smb_off?
smb_vwv[2] smb_flags smb_bcc min val=3
smb_vwv[3] smb_spasslen smb_buf]] smb_service
smb_bcc min val=3
smb_buf]] smb_spasswd
smb_path
| smb_dev
smb_comZ and smb_off2 descriptions can be found in Section 3.9 on page 22.
smb_flags A 16-bit field containing additional control flags. The only flag currently
defined is bit 0; if set, the TID in the request is to be closed (as if an SMBtdis
request were received for it) before the new resource is obtained.
smb_spasslen A 16-bit field giving the length of the smb_spasswd field. If this value is zero,
smb_bcc must contain the end-of-string terminator (that is, a zero character) for
the password value.
smb_spasswd A string of bytes containing the password for the resource. May be encrypted.
Refer to Appendix D on page 279.
smb_path An ASCIIZ buffer (not type 04) containing the resource name preceded by the
LMX servername (refer to Section 5.3.9 on page 46). For example, a resource
called src residing on a server called Imserverl would be referenced by
\\Imserverl\src. If not specified by the SMB redirector, a zero byte must be
present.
Protocols for X/Open PC Interworking: SMB, Version 2 147

Page 165 of 267

SMBtconX Specification

smb_dev

Extended 1.0 SMB Connection Management Requests

An ASCIIZ buffer giving the resource type the SMB redirector will use to refer

to the newly-attached resource. If this value is not of a well-known form to
the LMX server it is treated as a wildcard; in this case, the LMX server will

return the actual resource type (see Section 53.6 on page 45).

in the

smb_service field of the response. If not specified by the SMB redirector, a zero

byte must be present.

smb_service
requested resource.

SMBtconX Error Code Descriptions

| CAE Code |DOS Class | DOS Code
= ERRSRV ERRerror
= ERRSRV ERRerror
= ERRSRV ERRerror
= ERRSRV ERRbadpw
- ERRSRV ERRinvnetname
~ _ SUCCESS _ SUCCESS

SMBtconX Preconditions

An ASCIIZ buffer identifying the actual resource type corresponding to the

Bescription

Ran out of TIDs.

First command on the NetBIOS session was not
an SMBnegprot.

LMX server internal error.

Bad password; name/password pair in the
SMBtconX is invalid.
Invalid resource
SMBtconX.

name supplied in the

| Everything worked, no problems.

1. The SMB redirector attempting to setup this SMBtconX must have established an LMX

session with the LMX server.

2. The smb_path, smb_spasswd and smb_dev must all be valid instances of those types.

3. The process attempting to setup this SMBtconX must have negotiated an extended
protocol dialect (for example, LANMAN 1.0 or LM1.2X002).

SMBtconX Postconditions

1. If there are no errors the TID and service string are valid and may be used in future SMB

requests.

2. If bit 0 in smb_flags was set, the resource defined by the TID in the request has been

disconnected from this LMX session.

SMBtconX Side Effects

None.

Conventions

« Filename (see Section 3.5 on page 15).

» Chaining (see Section 3.9 on page 22).

148
Page 166 of 267

X/0Open CAE Specification (1992)

Extended 1.0 SMB Connection Management Requests SMBtconX Specification

Requests which may be chained to SMBtconX are:

SMBchkpath ~ SMBfunique ~ SMBmv SMBrmdir SMBsplretq
SMBcopy SMBgetatr SMBopen SMBsearch SMBtrans
SMBcreate SMBmkdir SMBopenX SMBsetatr SMBunlink
SMBdskattr ~ SMBmknew SMBrename SMBsplopen NIL
SMBffirst

Protocols for X/Open PC Interworking: SMB, Version 2 149
Page 167 of 267

Extended 1.0 SMB Connection Management Requests

150 X/Open CAE Specification (1992)
Page 168 of 267

12.1

oy
L]

I Chapter 12

Extended 1.0 SMB File Operations

This section defines the elements of the extended 1.0 SMB protocol which provide for normal
operations on files. They are:

SMBopenX open of a file with chaining
SMBlockingX locking on a file with chaining
SMBreadX read from a file with chaining
SMBwritebraw write block raw to a file
SMBwriteclose ~ write to a file and close it
SMBwriteX write to a file with chaining
SMBopenX Specification

SMBopenX Detailed Description

This extended protocol request opens a file, providing enhanced functionality over that of

SMBopen.

SMBopenX Deviations

1. The archive, system and hidden file attribute bits are treated according to the file attributes
convention. Refer to Section 4.3.1 on page 30.

2. LMX servers which cannot maintain a creation time for their files will ignore the create

time field.

SMBopenX Field Descriptions

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBopenX smb_com SMBopenX
smb_wct 15 smb_wct 15
smb_vwv[0] smb_comZ2 smb_vwv[0] smb_comZ2
smb_vwv[1] smb_off2 smb_vwv[1] smb_off2
smb_vwv[2] smb_flags smb_vwv[2] smb_fid
smb_vwv[3] smb_mode smb_vwv[3] smb_attributes
smb_vwv[4] smb_sattr smb_vwv[4-5] smb_time
smb_vwv[5] smb_attr smb_vwv[6-7] smb_size
smb_vwv[6-7] smb_time smb_vwv[8] smb_access
smb_vwv[8] smb_ofun smb_vwv[9] smb_type
smb_vwv[9-10] smb_size smb_vwv[10] smb_state
smb_vwv[11-12] smb_timeout smb_vwv[11] smb_action
smb_vwv[13-14] smb_resv smb_vwv[12-13] smb_fileid
smb_bcc min=1 smb_vwv[14] smb_resv
smb_bufl] smb_pathname smb_bcc 0

Protocols for X/Open PC Interworking: SMB, Version 2

Page 169 of 267

151

SMBopenX Specification Extended 1.0 SMB File Operations

smb_comZ and smb_off2 descriptions can be found in Section 3.9 on page 22.

smb_flags

smb_mode
smb_sattr
smb_attr

smb_time

smb_ofun

smb_size

smb_timeout

smb_pathname
smb_fid

smb_attributes

smb_access
smb_type

smb_state

152
Page 170 of 267

Controls various special actions. If bit 0 is set, the additional information
(smb_vwv[3-10]) fields will be valid in the response. Bits 1 and 2 control
opportunistic locking (see Section 3.8.2 on page 20). The other bits are
reserved.

The open mode for the file (see Section 5.3.5 on page 44).

The set of attributes that the file must have in order to be found while
searching to see if it exists. Regardless of the contents of this field, normal files
always match (see Section 5.3.3 on page 43).

The set of attributes that the new file is to have if the file needs to be created
(see Section 5.3.3 on page 43).

In the request, this is the 32-bit integer time to be assigned to the file as a time
of creation (if the file must be created). In the response, this is the 32-bit
integer time of last modification. Refer to Section 5.3.1 on page 43.

This open function field controls actions to be taken on the file during the
open (see Section 5.3.8 on page 46).

In the request, this 32-bit integer is the number of bytes to be reserved on file
creation or truncation. In the response, the 32-bit integer contains the number
of bytes in the file after any open actions have been taken (see smb_ofun
above). This field is advisory.

This 32-bit integer is the number of milliseconds to wait on a blocked open
before returning without obtaining a resource. A value of zero (0) means no
delay (that is, do not queue the request). A value of -1 indicates to wait
forever. See Section 3.11 on page 25.

An ASCIIZ buffer containing the name of the file to be opened.
An FID representing this open instance of the file.

A file attribute field describing the actual attributes of the file after the open.
See Section 5.3.3 on page 43.

The actual access rights granted to this process (see Section 5.3.7 on page 46).
A resource type fleld (see Section 5.3.6 on page 45

Describes the status of a named pipe as follows. Refer to the X/Open CAE
Specification, IPC Mechanisms for SMB.

Bit 15 Blocking. Zero (0) indicates that reads/writes block if no data is
available; 1 indicates thal reads/writes return immediately if no
data is available.

Bit 14 Endpoint. Zero (0) indicates SMB redirector end of a named
pipe; 1 indicates the LMX server end of a named pipe.

Bits 10-11 Type of named pipe. 00 indicates the named pipe is a stream
mode pipe; 01 indicates the named pipe is a message mode pipe.

Bits 8-9 Read Mode. 00 indicates to read the named pipe as a stream
mode named pipe; 01 indicates to read the named pipe as a
message mode named pipe.

X/0Open CAE Specification (1992)

Extended 1.0 SMB File Operations SMBopenX Specification

smb_action Describes the results of the open operation. This 16-bit field contains two
fields:

Bit 15 Lock Status. Set true only if an opportunistic lock was requested
by the SMB redirector and was granted by the LMX server. This
bit should be false (0) if no lock was requested, the lock could
not be granted, or the LMX server does not support
opportunistic locking.

Bits 0-1 Open Action. The LMX server should set this to match the
requested action from the smb_ofiin field:

1 The file existed and was opened.
2 The file did not exist and was therefore created.
3 The file existed and was truncated.
smb_fileid This 16-bit field is reserved; MBZ (Must Be Zero).
smb_resv Reserved; MBZ.
Protocols for X/Open PC Interworking: SMB, Version 2 153

Page 171 of 267

SMBopenX Specification

SMBopenX Error Code Descriptions

| CAE Code | DOS Class
EACCES ERRDOS
EACCES ERRDOS
EAGAIN ERRDOS
EEXIST ~ ERRSRV
EFAULT ERRSRV
EINTR ERRSRV
EISDIR ERRDOS
EMFILE ERRSRV
ENFILE ERRDOS
ENOENT ERRDOS
ENOSPC ERRSRV
ENOTDIR | ERRDOS
ENXIO ERRSRV
EROFS ERRSRV
ETXTBSY ERRSRV
: ERRSRV
: ERRSRV
: ERRSRV
- |SUCCESS

154
Page 172 of 267

'DOS Code
ERRnoaccess

ERRnoaccess
ERRshare

ERRerror

ERRerror

ERRerror
ERRnoaccess

ERRerror

ERRnofids
ERRbadfile

ERRerror
ERRbadpath
ERRerror
ERRerror

ERRerror

ERRinvnid
ERRinvdevice

ERRbaduid

 SUCCESS

Extended 1.0 SMB File Operations

' Description

Component of path—preﬁx denies search |

permission.

Access permission is denied for the named file.
File exists, mandatory file/record locking is set,
and there are outstanding record locks on the
file.

The create could not occur due to the existence
of a file that did not have matching attributes
(smb_sattr).

Path points outside the allocated address space
of the process.

A signal was caught during some system call.
Named file is a directory and access is write or
read/write.

Maximum number of file descriptors are
currently open in this process.

System file table is full.

File does not exist, or component of pathname
does not exist.

File must be created, and the system is out of
resources necessary to create files.

Component of path-prefix is not a directory.

The requested file is a CAE special file and the
system cannot support access to the file at this
time.

File resides on read-only file system and

requested access permission is write or
read/write.
File is pure procedure file that is being executed
and requested access specifies write or
read/write.
Invalid TID.

Invalid resource type; TID does not refer to a
printer share.

The UID given (smb_uid) is not known as a valid
ID on this LMX session.

 Everything worked, no problems.

X/0Open CAE Specification (1992)

Extended 1.0 SMB File Operations SMBopenX Specification

SMBopenX Preconditions

The SMB redirector has sent a valid SMB request with a valid TID which is at least writable by
this process.

SMBopenX Postconditions

The named file was possibly created or truncated, and then opened.

SMBopenX Side Effects
If an opportunistic lock was granted, the notification mechanisms described in Section 3.8.2 on
page 20 are active.
Conventions
» Access (see Section 4.3.2 on page 30).
« Attributes (see Section 4.3.1 on page 30).
» Filenames (see Section 3.5 on page 15).
» Opportunistic Locking (see Section 3.8.2 on page 20).
« Chaining (see Section 3.9 on page 22).

The following are the only valid chained requests for this SMB: SMBread, SMBreadX, SMBioctl
and NIL.

Protocols for X/Open PC Interworking: SMB, Version 2 155
Page 173 of 267

SMBlockingX Specification Extended 1.0 SMB File Operations

12.2

156

SMBlockingX Specification

SMBlockingX Detailed Description

This extended protocol request is used to lock and/or unlock one or more byte ranges of a
particular regular file.

If the number of unlock ranges is non-zero, the byte ranges indicated by byte offset and length
will be unlocked.

If the number of lock ranges is non-zero, the byte ranges indicated by byte offset and length will
be locked, if possible. Locking byte ranges beyond the EOF is permitted. Access is permitted to
any SMB redirector using the file descriptor provided with the lock request, but only requests
using the PID that did the locking may do the unlocking. Attempts to lock bytes that have been
previously locked will fail.

If the LMX server is unable to acquire all of the locks that the SMB redirector requested (after
waiting for the length of the timeout, if specified), all the locks acquired with this request will be
removed and the entire request fails.

Closing a file with locks still in force causes the locks to be released in an undefined order.

SMBlockingX Deviations

LMX servers may choose not to support lock timeouts, and may treat all requests as though a
timeout of 0 had been requested.

LMX servers may choose not to support read-only locks, and will treat any request for such a
lock as though a read /write lock had been requested.

Locking requests generated within the SMB protocol have a 32-bit unsigned offset for the
beginning of the lock. The mapping of this offset within the CAE system on behalf of the SMB
redirector is implementation-dependent.

SMBlockingX Field Descriptions

From SMB redirector To SMB redirector

Field Name Field Value Field Name Field Value
smb_com SMBlockingX smb_com SMBlockingX
smb_wct 8 smb_wct 2
smb_vwv[0)] smb_com?2 smb_vwv[0)] smb_com?2
smb_vwv[]] smb_off2 smb_vwv[1] smb_off2
smb_vwv[2] smb_fid smb_bcc 0
smb_vwv[3] smb_locktype
smb_vwv[4-5] smb_timeout
smb_vwv[6] smb_unlocknum
smb_vwv[7] smb_locknum
smb_bcc 10*(number of

lock/unlock

structs)
smb_buf] smb_unlkrng

smb_lkrng

X/Open CAE Specification (1992)

Page 174 of 267

Extended 1.0 SMB File Operations SMBlockingX Specification

smb_comZ and smb_off2 descriptions can be found in Section 3.9 on page 22.

smb_fid
smb_locktype

smb_timeout

smb_unlocknum

smb_locknum

The FID to use to perform locks or unlocks.

A bit-field which specifies the type of locks (mode) to be placed on the file.
The mode is ignored for performing unlocks. The bits are defined as follows:

Bit 0 If set, indicates read-only lock requested. If a read-only lock is
granted, other read-only lock requests on the same range of
bytes will be permitted, but read/write locks (bit 0 not set) will
be denied until all the read-only locks are released. Support for
this request is optional.

Bit 1 If set, this indicates that an opportunistic lock is being broken,
and in the response thereto, this bit will be set by the LMX server
in an SMBlockingX request sent to the SMB redirector under the
conditions outlined in Section 3.8.2 on page 20.

Bits 2-15 Reserved; ignored by the LMX server on receipt of request, and
set to zero by the LMX server when sending a request.

A 32-bit integer indicating the amount of time, in milliseconds, to wait in an
attempt to acquire all requested locks. A value of zero signals the LMX server
not to wait at all but to return an error immediately if any lock could be
obtained. A value of -1 indicates the LMX server should wait indefinitely to
obtain the locks. (Note that requests with —1 timeouts could easily lead to
deadlock.) Support for this field is optional; an LMX server may ignore all
values and behave as if a timeout of 0 (that is, no wait) was always requested
(reference X/Open CAE Specification, IPC Mechanisms for SMB).

A signed 16-bit field indicating the number of smb_unlkrng structures attached
to this request.

A signed 16-bit field indicating the number of smb_Ikrng structures attached to
this request.

The smb_unlkrng and smb_lkrng structures are identical. Each describes a range of bytes to be
unlocked or locked, respectively. The structure is:

Position | Field Name Description
00 smb_Ipid 'The PID of the process owning the lock.
02 smb_lkoff A 32-bit unsigned integer containing the offset, in bytes, to

the start of the range to be unlocked or locked.

06 smb_Iklen A 32-bit unsigned integer containing the length, in bytes, of

the range to be unlocked or locked.

Protocols for X/Open PC Interworking: SMB, Version 2 157

Page 175 of 267

SMBlockingX Specification Extended 1.0 SMB File Operations

SMBlockingX Error Code Descriptions

See Section 7.7 on page 81 and Section 7.8 on page 83 for other error codes.

CAE Code |DOS Class |DOS Code 'Description
' - 'ERRDOS ERRbadfile File was not found.
- ERRDOS ERRbadfid An invalid FID was specified.
- ERRDOS ERRlock A lock request conflicted with an existing lock,

the mode specified was invalid, or an unlock
request was attempted by other than the owning

PID.
- ERRSRV ERRerror Invalid SMB request was sent.
- ERRSRV ERRinvdevice |Requested a lock on a non-file system subtree.
- ERRSRV ERRinvnid Invalid TID was specified.

- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.

- SUCCESS | SUCCESS ' Everything worked, no problems.

SMBlockingX Preconditions
1. The SMB redirector has sent a valid SMB request.
2. The SMB redirector must have a valid TID to a file system subtree.
3. The SMB redirector has specified a valid FID and has appropriate privileges.
If the request is generated by the LMX server, the FID corresponds to a file which the SMB
redirector had opened with an opportunistic lock.
SMBlockingX Postconditions

1. Locking a range of bytes will fail if any subranges or overlapping ranges are locked. In
other words, if any of the specified bytes are already locked, the lock will fail.

2. Either all of the requested ranges will be locked or none will. That is, if a lock on any of the
specified ranges fails, any of the ranges previously locked by this request will be unlocked.
Locked ranges not locked by this request remain locked.

3. If the lock request timed out, the response will return an ERRlock as if a lock could not be
obtained and a zero timeout was specified.

If the request was generated by the LMX server, any data being cached on the SMB redirector
has been flushed and/or invalidated, and the LMX server can permit the operation which caused
the opportunistic lock break to complete.

SMBlockingX Side Effects

Any process using the FID specified in the request has access to the locked bytes, but other
processes will be denied the locking of the same bytes.

158 X/Open CAE Specification (1992)
Page 176 of 267

Extended 1.0 SMB File Operations SMBlockingX Specification

Conventions
» Access (see Section 4.3.2 on page 30).
« Attributes (see Section 4.3.1 on page 30).
« Locking (see Section 4.4 on page 33).
« Filenames (see Section 4.2 on page 28).
 Opportunistic Locking (see Section 3.8.2 on page 20).
« Chaining (see Section 3.9 on page 22).
The SMBlockingX request may only have an SMBread or SMBreadX chained request.

Protocols for X/Open PC Interworking: SMB, Version 2 159
Page 177 of 267

SMBreadX Specification

Extended 1.0 SMB File Operations

12.3 SMBreadX Specification

SMBreadX Detailed Description

The SMBreadX extended protocol request is used to read data from any of the supported file
types mentioned in Section 3.7 on page 17. The request allows reads to be timed out and offers a
generalised alternative to the SMBread request.

SMBreadX Deviations

Not all LMX servers support all types listed in Section 5.3.6 on page 45. Some LMX servers may
ignore the smb_timeout and smb_remaining fields for some types.

SMBreadX Field Descriptions

-

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBreadX smb_com SMBreadX
smb_wct 10 smb_wct 12
smb_vwv[0)] smb_com?2 smb_vwv[0)] smb_com?2
smb_vwv[1] smb_off2 smb_vwv[1] smb_off2
smb_vwv[2] smb_fid smb_vwv[2] smb_remaining
smb_vwv[3-4] smb_offset smb_vwv[3-4] smb_rsvd
smb_vwv[5] smb_maxcnt smb_vwv[5] smb_dsize
smb_vwv[6] smb_mincnt smb_vwv[6] smb_doff
smb_vwv[7-8] smb_timeout smb_vwv[7-10] smb_rsvd
smb_vwv|9] smb_countleft smb_bcc (data length + pad)
smb_bcc 0 smb_buf] smb_pad

smb_data

smb_comZ and smb_off2 descriptions can be found in Section 3.9 on page 22.

smb_fid
smb_offset

smb_maxcnt

smb_mincnt

smb_timeout

160
Page 178 of 267

The FID from which the data should be read.

A 32-bit integer containing the offset into the file (in bytes) at which the read
should start.

An unsigned 16-bit field indicating the maximum number of bytes to read.
Note that a single SMBreadX request cannot return more than the minimum of
smb_maxcnt and the maximum negotiated buffer size for the LMX session.
(See Section 11.3 on page 144 and Section 6.1 on page 55).

An unsigned 16-bit value indicating the minimum number of bytes to return.

A 32-bit integer containing the number of milliseconds the LMX server should
wait before returning. If smb _mincnt bytes are read before this time has
expired, the LMX server should generate a response immediately. For regular
files this field is ignored.

When reading from a named pipe (refer to the X/Open Developers’
Specification, Protocols for X/Open PC Interworking: SMB), there are several
special values which the SMB redirector can specify in this field:

0 If no data is available in the named pipe, respond immediately with
smb_dsize set to zero (0).

X/Open CAE Specification (1992)

Extended 1.0 SMB File Operations SMBreadX Specification

smb_countleft

smb_remaining

-1 Block forever until at least smb_mincnt bytes of data are available, and
return that data.

-2 Use the default timeout associated with the named pipe being read
(reference X/Open CAE Specification, IPC Mechanisms for SMB).

>0 Wait until smb_mincnt data bytes are available or the timeout occurs. If
there is a timeout, respond with a timeout error and whatever data was
available.

This unsigned 16-bit field contains a hint to the LMX server indicating
approximately how many more bytes will be read from this FID before the
next non-read operation is requested for it. This is generated to help the LMX
server increase performance by reading ahead in the file in anticipation of
another SMBreadX request. An LMX server may ignore this field.

This signed 16-bit integer is always —1 for regular files. For named pipes and
CAE special files, this 16-bit integer indicates the number of bytes that could
be read from this file without blocking. This value need only be an
approximation, and it may become inaccurate after the response is sent back
to the SMB redirector. An LMX server may choose not to support this
functionality and always return —1.

smb_dsize This unsigned 16-bit field contains the number of bytes of data actually read
and returned in this response.

smb_doff This unsigned 16-bit field indicates the offset from the SMB header to the start
of the returned data, in bytes. This permits variable-sized padding.

smb_rsvd These two 16-bit and four 16-bit fields are padding that force the SMBreadX
response to be the same size as the SMBwriteX request. They must be zero.

smb_pad This field is between zero and three 8-bit fields in length, as governed by the
smb_doff field. It may be used by an LMX server to pad the size of the
SMBreadX response out to a 16-bit or 32-bit boundary which provides the best
performance.

smb_data The actual data read from the file.

Protocols for X/Open PC Interworking: SMB, Version 2 161

Page 179 of 267

SMBreadX Specification Extended 1.0 SMB File Operations

SMBreadX Error Code Descriptions

For more information pertaining to potential error codes generated by this SMB request see
Section 7.4 on page 73 and Section 7.10 on page 87.

_ CAE Code .DOS Class .DOS Code _Descriﬁption

- 'ERRDOS | ERRnoaccess Access denied. The requester’s context does not '
permit the requested action or a read request is
in conflict with an existing lock.

- ERRDOS ERRbadfid Invalid FID. The SMB redirector has attempted
to use an FID not recognised by the LMX server.

- ERRDOS | ERRlock Attempt to read bytes which were locked for
write.

- ERRDOS ERRbadaccess | Invalid open mode for the attempted operation
(for example, reading a write-only file).

- ERRSRV ERRerror Error is returned to SMB redirectors for non-
specific errors such as corrupt SMB requests.
- ERRSRV ERRinvnid Error is returned to SMB redirectors attempting

some action with an invalid TID.
- ERRSRV ERRtimeout The requested named pipe operation timed out.

- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.

- (SUCCESS | SUCCESS ' Everything worked, no problems.

SMBreadX Preconditions

1. SMB request, UID and TID are valid and represent the appropriate access rights to perform
the action.

2. The FID must be valid, and the SMB redirector must have appropriate permissions for the
read operation.
SMBreadX Postconditions
1. The read data is returned.
2. The LMKX server’s current file pointer (see Section 7.6 on page 79) is advanced by the
amount of data actually read.
SMBreadX Side Effects
None for normal files.
For named pipes or CAE special files, the data that was read is removed; a repeated read at the
same offset will return new data.
Conventions
» Chaining (see Section 3.9 on page 22).
Only SMBclose request may be chained to the SMBreadX request.

162 X/Open CAE Specification (1992)
Page 180 of 267

Extended 1.0 SMB File Operations SMBwritebraw Specification

12.4 SMBwritebraw Specification
SMBwritebraw Detailed Description
The write block raw message exchange provides a high-performance mechanism for transferring
large amounts of data to be written to a file on the LMX server. Any supported file type,
including spool files, may be written with this exchange.
The SMBwritebraw exchange behaves much like an SMBwritebmpx exchange, except that instead
of additional data being sent in secondary requests, all the additional data is sent in a single raw
message; that is, the first segment of data is sent in the primary request, and the remainder in a
single message with no SMB header or SMBwritebraw subheader.
If all the data to be written fits in the primary request, a zero-length secondary request is still
sent; even if the secondary request is zero-length, a secondary response must be generated when
write-through mode was specified.
If the LMX server is busy or otherwise unable to support the raw write of the remaining data, the
data sent with the primary request is still written (to stable store if write-through mode was set).
If any other error occurs, the data is discarded. In either case, an appropriate error is returned in
a secondary response. A primary response is only sent if the primary request was satisfied with
no errors and the LMX server is prepared for a raw message.
SMBwritebraw Deviations
The smb_timeout and smb_remaining fields will not be supported with I/0 devices.
SMBwritebraw Field Descriptions
Primary SMBwritebraw (extended other than core plus):
From SMB redirector To SMB redirector
| Field Name Field Value | Field Name Field Value
smb_com SMBwritebraw smb_com SMBwritebraw
smb_wct 12 smb_wct 1
smb_vwv[0] smb_fid smb_vwv[0] smb_remaining
smb_vwv[1] smb_tcount smb_bcc 0
smb_vwv[2] smb_rsvd
smb_vwv[3-4] smb_offset
smb_vwv[5-6] smb_timeout
smb_vwv[7] smb_wmode
smb_vwv[8-9] smb_rsvd
smb_vwv[10] smb_dsize
smb_vwv[11] smb_doff
smb_bcc min=0
smb_buf] smb_pad
smb_data _
smb_fid The FID of the file to be written to.
smb_tcount An unsigned 16-bit field giving the total number of bytes that will be written
to the file. This value must be correct in at least one of the requests in the
exchange; in other requests, it may be an over-estimate.
smb_rsvd These fields are reserved and should be ignored by the LMX server.
Protocols for X/Open PC Interworking: SMB, Version 2 163

Page 181 of 267

SMBwrritebraw Specification Extended 1.0 SMB File Operations

smb_offset

smb_timeout

smb_wmode

smb_dsize
smb_doff
smb_pad

smb_data

smb_remaining

A 32-bit integer giving the position in the file at which the bytes in the request
should be written.

A 32-bit integer giving the number of milliseconds the LMX server may block
while trying to complete the write. This value is ignored for regular files. For
I/0 devices and named pipes (refer to X/Open CAE Specification, IPC
Mechanisms for SMB), the LMX server will wait this much time to complete
the write. If smb_timeout is -1, the LMX server will wait indefinitely; if it is -2,
the server will wait the default amount of time for the file. An LMX server
may choose to treat all timeouts as 0; that is, do not block.

A 16-bit flag field controlling the write mode. If bit 0 is set, write-through
mode is requested; the LMX server will write all data atomically and
acknowledge the write with the secondary response. If clear, write-behind is
permitted; the LMX server need not write atomically and need not report
completion. If bit 1 is set, the LMX server should fill in the smb_remaining field
in the primary response.

The number of data bytes in this request.
The offset in bytes from the beginning of the SMB header to smb_data.

Between zero and three unused bytes; the SMB redirector may use these to
pad out the smb_data area to a properly-aligned boundary.

The actual data to be written. This is a string of bytes in no particular format.

A 16-bit integer which is always —1 for regular files or if bit 1 of smb_wmode is
not set. Otherwise, this is the number of bytes available to be read from the
170 device or named pipe specified by the FID. If the LMX server does not
support this functionality, —1 should always be returned.

Secondary SMBwritebraw:

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
raw data smb_com SMBwritec
smb_wct 1
smb_vwv[0] smb_count
smb_bcc 0

smb_count

164
Page 182 of 267

The total number of bytes written. If this is different from the smallest
smb_tcount sent by the SMB redirector, some error occurred (for example, out
of free space on the file system).

X/0Open CAE Specification (1992)

Extended 1.0 SMB File Operations

SMBwritebraw Error Code Descriptions

| CAE Code DOS Class |DOS Code
- ERRDOS ERRbadfid
- ERRDOS ERRnoaccess
- ERRDOS ERRbadaccess
- ERRSRV ERRerror
- ERRSRV ERRinvnid
- ERRSRV ERRnoresource
- ERRSRV ERRtimeout
- ERRSRV ERRuseMPX
- ERRSRV ERRuseSTD
- ERRSRV ERRbaduid
- _ SUCCESS _ SUCCESS

SMBwrite braw Preconditions

SMBwrritebraw Specification

: Description
Invalid FID.

File opened in deny write mode, or write range
overlaps a lock.

Invalid open mode for the attempted operation.

Corrupt SMB.

Invalid TID.

The LMX server is temporarily out of a needed
resource.

Requested operation timed out.
Can't do raw mode at this
SMBwritebmpx.

Can't do raw mode at this time; use SMBwrite or
SMBwriteX.

The UID given (smb_uid) is not known as a valid
ID on this LMX session.

time; use

_Evegthin&worked, noEroblems.

1. The primary SMB was valid and specified a valid TID for a writable resource.

2. The FID was valid, and the process had write access to the file.

3. Before sending the secondary message, the LMX server must have sent a primary response.
The LMX server has been able to write the accompanying data to disk, allocated the
needed memory for a buffer, and sent the response to the SMB redirector.

SMBwrite braw Postconditions

1. If write-through mode is set, a primary response or secondary response indicates the data
in the primary response has been written to stable store (unless some error other than
ERRuseSTD or ERRuseMPX was returned).

2. After a primary response is received, the LMX server is ready for a raw secondary

message.

SMBwritebraw Side Effects

None.

Conventions

« Locking (see Section 4.4 on page 33).

Protocols for X/Open PC Interworking: SMB, Version 2
Page 183 of 267

165

SMBuwrriteclose Specification Extended 1.0 SMB File Operations

12.5

166

SMBwriteclose Specification

SMBwriteclose Detailed Description

The write and close protocol request is used to first write the specified bytes and then close the
file. Any supported file type, including spool files, may be specified in this request. This request
behaves identically to an SMBwrite or SMBwriteX request followed by an SMBclose request. Any
buffered data must be flushed to stable store or to the device before the response is sent.

Since the call is related to either the SMBwrite or SMBwriteX request, the length of the request
may change; an SMB redirector may construct the request like SMBwrite, with six 16-bit fields in
the variable word vector, or like SMBwriteX, with twelve 16-bit fields in the smb_vwv. The LMX
server must be prepared to accept either form.

SMBwriteclose Deviations

See Section 7.5 on page 76 and Section 12.6 on page 168 for details.

SMBwriteclose Field Descriptions

_ From SMB redirector To SMB redirector
_ Field Name Field Value _ Field Name Field Value
smb_com SMBwriteclose smb_com SMBwriteclose
smb_wect (6 or12) smb_wect 1
smb_vwv[0)] smb_fid smb_vwv[0)] smb_count
smb_vwv[1] smb_count smb_bcc 0
smb_vwv[2-3] smb_offset
smb_vwv[4-5] smb_time
smb_vwv[6-11] smb_rsvd
smb_bce (1 + smb_count)
smb_buf] smb_pad
smb_data
smb_fid The FID to be closed.
smb_count In the request, the number of bytes of data to be written. In the response, the
number of bytes that were actually written.
smb_offset A 32-bit offset into the file, in bytes, at which the data is to be written.
smb_time A 32-bit time value to be used as the last modify time for the file. A value of
zero indicates the last modified time should be unchanged.
smb_rsvd This six 16-bit field is only present if smb_wct is 12. These fields should be
ignored.
smb_pad A single 8-bit field which is used to pad out the beginning of the smb_data area
to a 32-bit address boundary.
smb_data A string of bytes, in no particular format, whose length is given by smb_count.

Page 184 of 267

This is the data to be written.

X/Open CAE Specification (1992)

Extended 1.0 SMB File Operations SMBuwriteclose Specification

SMBwriteclose Error Code Descriptions

Exactly the errors returned by SMBwriteX and SMBclose can be returned for this request. If an
error occurs during the write operation, the file will still be closed. Only one error can be
returned in the response; if errors occur during both the write and close operations, the close
error is reported.
SMBwriteclose Preconditions

1. The SMB redirector has sent a valid SMB with a TID for a writable resource.

2. The FID is valid and the process has write access to the file.

SMBwriteclose Postconditions

1. The data in the call is written to the file. If an error occurred, it will be reported unless a
close error occurs as well.

2. The file is closed and any errors are reported.

SMBwriteclose Side Effects

Any buffered data for the file is written, and any outstanding locks are released in random order.

Conventions

« Locking (see Section 4.4 on page 33).

Protocols for X/Open PC Interworking: SMB, Version 2 167
Page 185 of 267

SMBwriteX Specification

12.6

168

Extended 1.0 SMB File Operations

SMBwrite X Specification

SMBwrite X Detailed Description

This extended protocol request is used to write to any supported file type (see Section 3.7 on
page 17). The SMBwriteX command allows writes to be timed out and offers a generalised
alternative to the SMBwrite and SMBsplwr requests.

Note that a zero-length write does not truncate the file as was true of the SMBwrite request;
rather a zero-length write merely transfers zero bytes of information to the file. The SMBwrite
request may be used to truncate the file.

SMBwrite X Deviations

Some LMX servers may limit support of extended features for CAE special files. For example,
smb_timeout and/or smb_remaining may not be supported and locking versus non-blocking may
be a configured parameter, etc.

Some CAE systems provide no way for a programme to block until the local file cache has
actually flushed to the disk, but simply indicate that a flush has been scheduled and will
complete soon. An LMX server should nonetheless take steps to maximise the probability that
the data is truly on disk before the SMB redirector is notified.

SMBwrite X Field Descriptions

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBwriteX smb_com SMBwriteX
smb_wct 12 smb_wct 6
smb_vwv[0] smb_com?2 smb_vwv[0] smb_com?2
smb_vwv[1] smb_off2 smb_vwv[1] smb_off2
smb_vwv[2] smb_fid smb_vwv[2] smb_count
smb_vwv[3-4] smb_offset smb_vwv[3] smb_remaining
smb_vwv[5-6] smb_timeout smb_vwv[4-5] smb_rsvd
smb_vwv[7] smb_wmode smb_bcc 0
smb_vwv[8] smb_countleft
smb_vwv[9] smb_rsvd
smb_vwv[10] smb_dsize
smb_vwv[11] smb_doff
smb_bcc min=0
smb_buf] smb_pad
smb_data
smb_fid The FID handle of the file to which the data should be written.
smb_offset A 32-bit unsigned integer giving the position in the file at which the data is to
be written.
smb_timeout A 32-bit signed field giving the time (in milliseconds) within which a write

must complete. A value of zero (0) indicates the write should never block.
This field is ignored for regular files.

For other than regular file types (refer to X/Open CAE Specification, IPC
Mechanisms for SMB), this value has two special values. If the timeout is —1,
the LMX server should block indefinitely waiting for the write. If the timeout
is -2, the LMX server should use the default timeout for the file type.

X/Open CAE Specification (1992)

Page 186 of 267

Extended 1.0 SMB File Operations SMBuwrriteX Specification

smb_wmode

smb_countleft

smb_rsvd
smb_dsize

smb_doff

smb_pad

smb_data

smb_count

smb_remaining

smb_rsvd

A 16-bit field containing flags, defined as follows:

Bit 0 If set, an LMX server must not respond to the SMB redirector
before the data is actually written to the disk (that is, write-
through).

Bit 1 If set, the LMX server should set smb_remaining correctly for
writes to named pipes or I/0 devices.

Bit 2 For named pipes only. If set, RawwriteNamedPipe should be
used. (See the X/Open CAE Specification, IPC Mechanisms for
SMB).

Bit 3 For named pipes only. If set, this data is the start of a message.
All other bits are reserved and should be ignored.

This unsigned 16-bit field is an advisory field telling the LMX server
approximately how many bytes will be written to this file before the next
non-write operation. It should include the number of bytes to be written by
this request. An LMX server may ignore this field or use it to perform
optimisations.

A 16-bit reserved fileld; MBZ.
An unsigned 16-bit field giving the amount of data to be written, in bytes.

A 16-bit field giving the offset from the start of the SMB header to the
beginning of the data to be written. Specifying this field allows an SMB
redirector to efficiently align the data buffer.

The 8-bit fields between the end of the SMBwriteX header and the beginning of
the data as pointed to by smb_doff. These fields should be ignored.

The actual data to be written. This is not in a buffer form; it is simply a string
of bytes.

A 16-bit field giving the actual number of bytes written. The value would be
different from smb_dsize if, for example, the file system became full or a file
size limit imposed by ulimit was reached (refer to Section 4.3.3 on page 30).

This 16-bit integer should be —1 for regular files. For named pipes and 1/0
devices, if bit 1 of smb_wmode is set, the server should return the amount of
data available to be read on this named pipe after the read. This value may be
approximate, and a server may simply force this field to be —1.

A 32 bit reserved field. It should be zero (0).

Protocols for X/Open PC Interworking: SMB, Version 2 169

Page 187 of 267

SMBwriteX Specification Extended 1.0 SMB File Operations

SMBwrite X Error Code Descriptions

CAE Code |DOSClass |DOS Code ' Description
' - 'ERRDOS | ERRnoaccess TID non-writable or other prohibition of access.
- ERRDOS ERRbadfid Invalid FID. The SMB redirector has attempted
to use an FID not recognised by the LMX server.
- ERRDOS ERRlock The write overlapped an existing byte-range

lock placed by another process.

- ERRDOS ERRbadaccess | Invalid open mode for the attempted operation
(for example, writing a read-only file).

- ERRSRV ERRerror Error is returned to the SMB redirector for non-
specific errors such as corrupt SMB requests.
- ERRSRV ERRinvnid Invalid TID.

- ERRSRV ERRtimeout The requested operation timed out.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.

- ' SUCCESS | SUCCESS Everything worked, no problems.

SMBwrite X Preconditions

SMB request, UID and TID are valid and represent the appropriate access rights to perform the
action.

SMBwrite X Postconditions

If no error occurred, the data was buffered to be written to disk. The current file pointer for this
file is advanced.

SMBwrite X Side Effects

A write-through write will cause the written data to be flushed to stable store, and may cause all
buffered data for the file to be flushed.

Conventions

Chaining (see Section 3.9 on page 22).

The following are the only valid requests which may be chained to an SMBwriteX request:
SMBread, SMBreadX, SMBlockingX, SMBclose, SMBlockread and NIL.

170 X/Open CAE Specification (1992)
Page 188 of 267

Extended 1.0 SMB File Operations SMBreadbmpx Specification

12.7 SMBreadbm px Specification

SMBreadbm px Detailed Description

The read block multiplexed request is used to maximise the performance of reading a large block
of data from the LMX server to the SMB redirector on a multiplexed LMX session. The
SMBreadbmpx request can be applied to any supported file type.

Each SMBreadbmpx request will cause one or more associated responses to be sent from the LMX
server. Each response contains as much of the remaining data to be read as will fit, and
responses are generated until all the requested data has been transmitted. The LMX server can
rely on the SMB redirector to maintain synchronisation; if the SMB redirector encounters a
problem while it is receiving responses to an SMBreadbmpx request, it is responsible for
discarding all those responses and will not notify the LMX server in any way. After solving the
problem, the SMB redirector may reissue the request; the LMX server need not retain state
concerning a completed SMBreadbmpx request. No acknowledgement of receipt from the SMB
redirector is needed; the underlying transport is expected to ensure all responses arrive at the
SMB redirector in the correct order.

Note that the request and all responses make up a single complete SMB exchange; thus, the TID,
PID and UID are expected to remain constant. Also, the SMBreadbmpx exchange is supported on
multiplexed NetBIOS sessions. What this means is that the SMB redirector may issue other SMB
requests while the (multiple) SMBreadbmpx responses are being sent from the LMX server to the
SMB redirector. Because of this, the response must contain the MID and PID of the original
SMBreadbmpx request.

During an SMBreadbmpx exchange, the SMB redirector should not issue SMB requests which
conflict with this; for example, the SMB redirector should not issue an SMBclose request on the
same file for which it is still receiving SMBreadbmpx responses.

SMBreadbm px Deviations

LMX servers may not support timeouts on all possible file types.

SMBreadbm px Field Descriptions

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBreadbmpx smb_com SMBreadbmpx
smb_wct 8 smb_wct 8
smb_vwv[0] smb_fid smb_vwv[0-1] smb_offset
smb_vwv[1-2] smb_offset smb_vwv[2] smb_tcount
smb_vwv[3] smb_maxcnt smb_vwv[3] smb_remaining
smb_vwv[4] smb_mincnt smb_vwv[4-5] smb_rsvd
smb_vwv[5-6] smb_timeout smb_vwv[6] smb_dsize
smb_vwv[7] smb_rsvd smb_vwv[7] smb_doff
smb_bcc 0 smb_bcc min=0
smb_bufl] smb_pad
smb_data
smb_fid The FID of the file to be read from.
smb_offset A 32-bit integer giving the position in the file at which to read (in the request)

or the position in the file at which the data returned in this response began.

Protocols for X/Open PC Interworking: SMB, Version 2 171
Page 189 of 267

SMBreadbmpx Specification Extended 1.0 SMB File Operations

smb_maxcnt

smb_mincnt

smb_timeout

smb_rsvd

smb_tcount

smb_remaining

smb_dsize

smb_doff

smb_pad

smb_data

172
Page 190 of 267

Maximum number of bytes to return; the desired read size.

The minimum number of bytes to read. For regular files, this value is usually
zero. When the timeout is used, this is the minimum number of bytes which
will satisfy the read; if fewer bytes are available, the request will block until
enough are available or the timeout is reached.

A 32-bit integer giving the number of milliseconds to wait for smb_mincnt
bytes of data to become readable. A timeout of zero (0) indicates the call
should never block. This value is ignored for regular files and may be ignored
for 1/0 devices. For named pipes, there are two special values: -1 means the
request should block forever until at least smb_mincnt bytes become available;
—2 means the default timeout associated with the named pipe should be used.

These fields are reserved and should be ignored in requests and set to zero in
responses.

An integer giving the total number of bytes expected to be returned in all
responses to this request. This value will usually start at smb_maxcnt and may
be reduced by file truncations while the read is in progress, etc. This value
must be accurate in at least the last response generated (that is, contain the
actual number of bytes sent in all responses) but may be an overestimate in
earlier responses.

If this value in the last response is less than smb_maxcnt, EOF was encountered
during the read. If this value is exactly zero (0), the original offset into the file
began after EOF; in this case, only one response may be generated.

This integer should be -1 for regular files. For devices or named pipes this
indicates the number of bytes remaining to be read from the file after the bytes
returned in the response were de-queued. LMX servers need not support this
function and should return -1 if they do not support it.

The number of data bytes returned in the individual response.

The offset in bytes from the beginning of the SMB to the beginning of the data
being returned. This offset permits the LMX server to use an efficient
alignment of the data within the SMB response.

Zero (0) to three (3) bytes of padding. This is the space after the end of the
SMBreadbmpx subheader which is unused because the data was aligned. The
smb_doffpoints to the first byte after this bytestring.

The actual data bytes read.

X/0Open CAE Specification (1992)

Extended 1.0 SMB File Operations SMBreadbmpx Specification

SMBreadbm px Error Code Descriptions

See Section 12.3 on page 160 for other error codes.

CAE Code |DOS Class |DOS Code 'Description
' - 'ERRDOS ERRnoaccess | File was opened in Deny Read mode.
EBADFID |ERRDOS ERRbadfid The FID was wvalid but unacceptable to the
underlying OS.
- ERRDOS ERRlock Read overlapped a byte-range lock granted to

another process.

- ERRDOS ERRbadaccess | Some conflict in open mode occurred.

- ERRSRV ERRerror Invalid SMB.

- ERRSRV ERRinvnid Invalid TID.

- ERRSRV ERRnoresource |A temporary resource limitation in the LMX
server caused this request to fail.

- ERRSRV ERRtimeout A timeout occurred.
- ERRSRV ERRuseSTD Temporarily out of sufficient buffers.

- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.

- SUCCESS |SUCCESS ' Everything worked, no problems.

SMBreadbm px Preconditions

1. SMB request, UID and TID are valid and represent the appropriate access rights to perform
the action.

2. The FID is valid.

SMBreadbm px Postconditions
1. For1/0 devices or named pipes the returned data was consumed from the device.

2. After completion the current file position pointer will be right after the read data or at EOF.

SMBreadbm px Side Effects

Because of the nature of the request, the operation may not be atomic on the LMX server;
requests on the same file from other processes may change the results of this request.

Conventions

« Locking (see Section 4.4 on page 33).

Protocols for X/Open PC Interworking: SMB, Version 2 173
Page 191 of 267

SMBwritebmpx Specification Extended 1.0 SMB File Operations

12.8

174

SMBwritebm px Specification

SMBwritebm px Detailed Description

This extended protocol request provides a high performance mechanism for writing large
amounts of data while other activity is being generated by the SMB redirector. The
SMBwritebmpx operation can be performed on any supported file type.

Unlike most SMBs, there are two forms of both request and response: primary and secondary.
The collection of all requests and responses related to a given primary SMBwritebmpx request is
called an SMBwritebmpx exchange.

An SMBwritebmpx exchange begins when the SMB redirector sends a primary request. This
request sets many of the parameters for the exchange and contains the first part of the data to be
written. If an error occurred while handling this request, the LMX server sends a secondary
response indicating the error and ends the exchange; otherwise, the LMX server sends a primary
response indicating it is ready for more data. Then, if the amount of data to be written is greater
than what could fit in the primary request, the SMB redirector sends secondary requests until all
data has been sent. If the exchange was in write-through mode, the LMX server sends a
secondary response; otherwise, the LMX server relies on the transport to ensure delivery of all
requests and does not generate an additional reply.

If an error occurs after the primary response is sent, any secondary requests must be discarded.
If write-through mode was requested, error information is returned to the SMB redirector in the
secondary response. If not, the error is cached and returned in the response to the next request
issued by the SMB redirector for that file.

Other requests may be issued on the same LMX session while the exchange is in progress. The
TID, PID, UID and MID are expected to be identical in all requests and responses in a given
SMBwritebmpx exchange.

If write-through mode is specified, the LMX server will collect all the data and write it to the disk
atomically; otherwise, in write-behind mode, the LMX server need not make this guarantee.
SMBwritebm px Deviations

Timeouts for I/O devices are implementation-dependent.

Some CAE systems provide no way for a programme to block until the local file cache has
actually flushed to the disk, but simply indicate that a flush has been scheduled and will
complete soon. An LMX server should nonetheless take steps to maximise the probability that
the data is truly on disk before the SMB redirector is notified.

X/Open CAE Specification (1992)

Page 192 of 267

Extended 1.0 SMB File Operations SMBwritebmpx Specification

SMBwritebm px Field Descriptions

Primary Re quest/Response

Page 193 of 267

From SMB redirector | To SMB redirector
_ Field Name Field Value | Field Name Field Value
smb_com SMBwritebmpx smb_com SMBwritebmpx
smb_wct 12 smb_wct 1
smb_vwv[0] smb_fid smb_vwv[0] smb_remaining
smb_vwv[1] smb_tcount smb_bcc 0
smb_vwv[2] smb_rsvd
smb_vwv[3-4] smb_offset
smb_vwv[5-6] smb_timeout
smb_vwv[7] smb_wmode
smb_vwv[8-9] smb_rsvd
smb_vwv[10] smb_dsize
smb_vwv[11] smb_doff
smb_bcc min=0
smb_buf] smb_pad
smb:data _
smb_fid The FID of the file to be written to.
smb_tcount An unsigned 16-bit field giving the total number of bytes that will be written
to the file. This value must be correct in at least one of the requests in the
exchange; in other requests, it may be an over-estimate.
smb_rsvd These fields are reserved and should be ignored by the LMX server.
smb_offset A 32-bit integer giving the position in the file at which the bytes in the request
should be written.
smb_timeout A 32-bit integer giving the number of milliseconds the LMX server may block
while trying to complete the write. This value is ignored for regular files. For
I/0 devices and named pipes (refer to the X/Open CAE Specification, IPC
Mechanisms for SMB), the LMX server will wait this much time to complete
the write. If smb_timeout is -1, the LMX server will wait indefinitely; if it is -2,
the server will wait the default amount of time for the file. An LMX server
may choose to treat all timeouts as 0; that is, do not block.
smb_wmode A 16-bit flag field controlling the write mode. If bit 0 is set, write-through
mode is requested; the LMX server will write all data atomically and
acknowledge the write with the secondary response. If clear, write-behind is
permitted; the LMX server need not write atomically and need not report
completion. If bit 1 is set, the LMX server should fill in the smb_remaining field
in the primary response.
smb_dsize The number of data bytes in this request.
smb_doff The offset in bytes from the beginning of the SMB header to smb_data.
smb_pad Between zero and three unused bytes; the SMB redirector may use these to
pad out the smb_data area to a properly-aligned boundary.
smb_data The actual data to be written. This is a string of bytes in no particular format.
Protocols for X/Open PC Interworking: SMB, Version 2 175

SMBwritebmpx Specification

smb_remaining

Extended 1.0 SMB File Operations

A 16-bit integer which is always —1 for regular files or if bit 1 of smb_wmode is

not set. Otherwise, this is the number of bytes available to be read from the
170 device or named pipe specified by the FID. If the LMX server does not
support this functionality, —1 should always be returned.

Secondary Re quest/Response

smb_count

From SMB redirector

: Field Name

smb_com
smb_wct
smb_vwv[0]
smb_vwv[1]
smb_vwv[2-3]
smb_vwv[4-5]
smb_vwv[6]
smb_vwv[7]
smb_bcc
smb_buf]

Field Value

SMBwritebs
8

smb_fid
smb_tcount
smb_offset
smb_rsvd
smb_dsize
smb_doff
min=0
smb_pad
smb_data

To SMB redirector
Field Name Field Value
smb_com SMBwritec
smb_wct 1
smb_vwv[0] smb_count
smb_bcc 0

The total number of bytes written. If this is different from the smallest
smb_tcount sent by the SMB redirector, some error occurred (for example, out
of free space on the file system).

All other fields are identical to the primary request.

SMBwritebm px Error Code Descriptions

For other error codes see Section 12.6 on page 168. If a secondary response is not being
generated by the LMX server, any error should be cached and returned in the response to the
next request from the same process involving this FID.

CAE Code DOS Class

ERRSRV

ERRSRV
ERRSRV

ERRSRV

SUCCESS

'DOS Code

ERRnoresource

ERRtimeout
ERRuseSTD

ERRbaduid

SUCCESS

SMBwritebm px Preconditions

' Description

Unable to allocate enough buffer space.

Timeout occurred.

Some resource limitation prevents the LMX
server from supporting SMBwritebmpx at this
time; more limited write requests (SMBwrite,
SMBwriteX) should be used instead.

The UID given (smb_uid) is not known as a valid
ID on this LMX session.

Everything worked, no problems.

1. The SMB redirector has sent a valid SMB request with a valid TID for a writable resource.

2. The FID is valid and the process has write access.

176

Page 194 of 267

X/0Open CAE Specification (1992)

Extended 1.0 SMB File Operations SMBwritebmpx Specification

SMBwritebm px Postconditions

1. After the LMX server responds to the primary request to write-behind, the data in the
primary write-behind request has been written.

2. After the secondary response, either an error was returned or all the data was written
atomically.

3. After the last secondary request in a write-behind mode exchange is received, all the data
is available to be read but might not yet be written to stable store.

4. If write-through mode was not specified, the LMX server has cached any errors to be sent
as a response to the next request from this process related to this file.

SMBwritebm px Side Effects

Because write-behind mode does not guarantee atomic write of all data, it is possible that this
exchange is interfered with. It is possible, for example, that data from other processes could be
interspersed with the data written by an exchange.

Conventions

None.

Protocols for X/Open PC Interworking: SMB, Version 2 177
Page 195 of 267

Extended 1.0 SMB File Operations

178 X/Open CAE Specification (1992)
Page 196 of 267

‘.[Chapter 13

Extended 1.0 SMB Directory and Attribute Operations

N

This section defines the elements of the extended SMB protocol that support directory and
attribute access. They are:

SMBfirst start/continue an extended wildcard directory lookup
SMBftlose end an extended wildcard directory lookup
SMBfunique perform a one-time extended wildcard directory lookup

SMBgetattrE get extended file attributes

SMBsetattrE set extended file attributes

13.1 SMBffirst Specification

SMBffirst Detailed Description

The SMBffirst extended protocol request behaves exactly like the SMBsearch core request, except
the LMX server can expect the SMB redirector to terminate the search by issuing an SMBftlose
request. Because of this expectation, the LMX server should not use heuristics to terminate the
search, and should instead preserve all search state and resources until the SMBftlose request is
received or the LMX session is closed.

As in the case of SMBsearch, there are two forms of the SMBffirst request: FindFirst, indicated by a
null smb_search_id, and FindNext, which has a valid smb_search_id specified.

If a FindFirst request (an SMBffirst request whose smb_search_id is null) fails (no entries are
found), the LMX server should respond with a failure and terminate the search. No SMBftlose
request should be expected.

Otherwise, SMBffirst behaves in all respects like SMBsearch.

SMBffirst Deviations
See Section 8.3 on page 99.

SMBffirst Field Descriptions
See Section 8.3 on page 99.

SMBffirst Error Code Descriptions
See Section 8.3 on page 99.

SMBffirst Preconditions

1. SMB request, UID and TID are valid and represent the appropriate access rights to perform
the action on a searchable disk resource.

2. The process has read/search permissions on all directories encountered.

3. For a FindNext request, the matching FindFirst/ FindNext request must not have failed.

Protocols for X/Open PC Interworking: SMB, Version 2 179

Page 197 of 267

SMBffirst Specification Extended 1.0 SMB Directory and Attribute Operations

SMBffirst Postconditions
1. [If the FindFirst fails, the search is terminated.

2. As long as SMBfirst requests continue to succeed, search state and resources are
maintained; directories may remain open, etc.

3. After each FindNext, state information is updated in such a way as to ensure the search can
continue without returning dir_info on the same file twice.
SMBffirst Side Effects
Various directories may remain open for reading during the lifetime of an active search. This
may interfere with requests from other processes on involved directories.
Conventions
» Access (see Section 4.3.2 on page 30).
« Attributes (see Section 4.3.1 on page 30).
« Filename (see Section 3.5 on page 15).

» Wildcard (see Section 3.6 on page 17).

180 X/0Open CAE Specification (1992)
Page 198 of 267

Extended 1.0 SMB Directory and Attribute Operations SMBftlose Specification

13.2 SMBfclose Specification

SMBfclose Detailed Description

The SMBflose extended protocol request terminates an active search begun by SMBffirst.

SMBfclose Deviations

None.

SMBfclose Field Descriptions

The SMBflose request and response are identical to the SMBsearch request and response (see
Section 8.3 on page 99). The fields are interpreted differently:

smb_com This should be SMB£flose in both request and response.

smb_count This 16-bit integer should be ignored in the request and must be zero in the
response.

smb_attr This attribute field should be ignored.

smb_pathname This ASCIZ (type 04) buffer should be empty; that is, the buffer contains a
single ASCII NULL character.

smb_search_id This variable block (type 05) buffer should be one of the find _buf search_id
structures returned in any response to the search being terminated. This
buffer identifies the search which is to be terminated.

smb_data This variable block (type 05) should be zero length; that is, the length for the
buffer should be zero (0), and no data bytes should be appended.

SMBfclose Error Code Descriptions
Same as for SMBsearch (see Section 8.3 on page 99).

SMBfclose Preconditions

1. SMB request, UID and TID are valid and represent the appropriate access rights to perform
the action.

2. The search identified by smb_search_id must be active.

SMBfclose Postconditions

Any allocated resources for the identified search are released, and the search is no longer active.

SMBfclose Side Effects

None.

Conventions

None.

Protocols for X/Open PC Interworking: SMB, Version 2 181
Page 199 of 267

SMBfiunique Specification Extended 1.0 SMB Directory and Attribute Operations

13.3

182

SMBfunique Specification

SMBfunique Detailed Description

The SMBfinique extended 1.0 protocol request behaves exactly like the SMBsearch core request,
except the LMX server can terminate the search immediately after sending the response. The
SMBfunique request, while it does support a wildcard smb_pathname, is designed to return
information on only a few (possibly one) files. If more files match than can fit into the response,
the LMX server can disregard them.

SMBfunique Deviations

See Section 8.3 on page 99.

SMBfunique Field Descriptions

See Section 8.3 on page 99. The LMKX server should expect that smb_search_id will always be a
zero-length variable block (type 05) buffer.

SMBfunique Error Code Descriptions

See Section 8.3 on page 99.

SMBfunique Preconditions

1. SMBrequest, UID and TID are valid and represent the appropriate access rights to perform
the action.

2. The process has read /search permissions on all directories encountered.

SMBfunique Postconditions
No state or resources are maintained on the LMX server after the response is sent; the search is
considered inactive.
SMBfunique Side Effects
Because SMBfinique is a one pass search, interaction with other requests due to directories
remaining open for long periods of time should be greatly reduced; however, they may not be
eliminated.
Conventions

» Access (see Section 4.3.2 on page 30).

» Altributes (see Section 4.3.1 on page 30).

» Filename (see Section 3.5 on page 15).

» Wildcard (see Section 3.6 on page 17).

X/0Open CAE Specification (1992)

Page 200 of 267

Extended 1.0 SMB Directory and Attribute Operations SMBgetattrE Specification

13.4 SMBgetattrE Specification

SMBgetattrE Detailed Description

This extended 1.0 protocol request returns extended attribute information for a given open
regular file.

SMBgetattrE Deviations

1. LMX servers which cannot maintain a creation date and time for their files will return the
last modify date and time instead.

2. The attribute field is treated according to the Attribute convention.

SMBgetattrE Field Descriptions

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBgetattrE smb_com SMBgetattrE
smb_wct 1 smb_wct 11
smb_vwv[0] smb_fid smb_vwv[0] smb_cdate
smb_bcc 0 smb_vwv[1] smb_ctime
smb_vwv[2] smb_adate
smb_vwv[3] smb_atime
smb_vwv[4] smb_mdate
smb_vwv[5] smb_mtime

smb_vwv[6-7]
smb_vwv[8-9]

smb_datasize
smb_allocsize

smb_vwv[10)] smb_attr

| smb_bcc 0
smb_fid The FID for which extended attribute information should be returned.
smb_cdate A date field giving the creation date for the file. See Section 5.3.2 on page 43.
smb_ctime A time field giving the creation time for the file. See Section 5.3.1 on page 43.
smb_adate A date field giving the last access date for the file.
smb_atime A time field giving the last access time for the file.
smb_mdate A date field giving the last modify date for the file.
smb_mtime A time field giving the last modify time for the file.
smb_datasize A 32-bit integer giving the current size of the file (offset to EOF) in bytes.
smb_allocsize A 32-bit integer giving the amount of space allocated to the file. LMX servers

on systems which do not support pre-allocation of space will set this field to
the same value as smb_datasize.

smb_attr An attribute field giving the attributes of the file (see Section 3.7 on page 17).

Protocols for X/Open PC Interworking: SMB, Version 2 183
Page 201 of 267

SMBgetattrE Specification Extended 1.0 SMB Directory and Attribute Operations

SMBge tattrE Error Code Descriptions

' CAE Code DOS Class DOS Code :Description -
EBADF ERRDOS | ERRbadfid Invalid or no longer an acceptable FID.
EINTR ERRSRV ERRerror A signal was caught during a system call.

- ERRSRV ERRinvnid TID specified in command is invalid.

= ERRSRV ERRinvdevice | TID not for a disk resource.
- SUCCESS | SUCCESS ' Everything worked, no problems.

SMBgetattrE Preconditions

1. SMB request, UID and TID are valid and represent the appropriate access rights to perform
the action.

2. The FID must be valid.

SMBgetattrE Postconditions

None.

SMBgetattrE Side Effects

None.

Conventions

« Attribute (see Section 4.3.1 on page 30).

184 X/Open CAE Specification (1992)
Page 202 of 267

Extended 1.0 SMB Directory and Attribute Operations SMBsetattrE Specification

13.5 SMBsetattrE Specification

SMBsetattrE Detailed Description

This extended 1.0 protocol request is used to set extended attribute information for an open
regular file.

SMBsetattrE Deviations

LMX servers which cannot maintain a creation time for their files will ignore the create date and
time fields.

SMBsetattrE Field Descriptions

r T 1

_ From SMB redirector | To SMB redirector
_ Field Name Field Value | Field Name Field Value
smb_com SMBsetattrE smb_com SMBsetattrE
smb_wct 7 smb_wct 0
smb_vwv[0] smb_fid smb_bcc 0
smb_vwv[1] smb_cdate
smb_vwv[2] smb_ctime
smb_vwv[3] smb_adate
smb_vwv[4] smb_atime
smb_vwv[5] smb_mdate
smb_vwv[6] smb_mtime
smb_bcc min=0
| smb_rsvd | |
smb_fid The FID whose extended attributes are to be changed.
smb_cdate A date field containing the creation date for the file. See Section 5.3.2 on page
43.
smb_ctime A time field containing the creation time for the file. See Section 5.3.1 on page
43.
smb_adate A date field containing the last access date for the file.
smb_atime A time field containing the last access time for the file.
smb_mdate A date field containing the last modify date for the file.
smb_mtime A time field containing the last modify time for the file.
smb_rsvd A reserved character string; LMX servers should ignore this field.
Protocols for X/Open PC Interworking: SMB, Version 2 185

Page 203 of 267

SMBsetattrE Specification Extended 1.0 SMB Directory and Attribute Operations

SMBsetattrE Error Code Descriptions

CAE Code 'DOS Class DOS Code ' Description
'EACCES | ERRSRV ERRaccess ‘The UID does not have appropriate privilege '
and is not the owner of the file.
EBADF ERRDOS | ERRbadfid Invalid or no longer an acceptable FID.
EINTR ERRSRV ERRerror A signal was caught during the operation.
EPERM ERRSRV ERRaccess The UID does not have appropriate privilege
and is not the owner of the file.
EROFS ERRSRV ERRaccess File system is read-only.
- ERRSRV ERRinvnid TID specified in command is invalid.
- ERRSRV ERRinvdevice |TID does not specify a disk resource.
- SUCCESS | SUCCESS Everything worked, no problems.

SMBsetattrE Preconditions

1. SMB request, UID and TID are valid and represent the appropriate access rights to perform
the action.

2. The FID is valid.

SMBsetattrE Postconditions

A file time and date will remain unchanged if the corresponding date and time in the request
was zero.

SMBsetattrE Side Effects

None.

Conventions

» Access (see Section 4.3.2 on page 30).

186 X/0Open CAE Specification (1992)
Page 204 of 267

' Chapter 14

|

_ Extended 1.0 SMB Miscellaneous Requests

This section defines the remaining elements of the extended 1.0 SMB protocol. They are:

SMBcopy copy one or more files

SMBecho test an LMX session

SMBioctl 170 device control

SMBmove move one or more files by renaming

14.1 SMBcopy Specification

SMBcopy Detailed Description

This extended 1.0 protocol request copies one or more files from a given path to a new path on a
single LMX server. The source path may include wildcards. The destination may be a directory
or a single file, but it may not include wildcards. If the destination is a directory, the source
file(s) are copied into that directory; if the destination is a regular file, the source file(s) are
appended to it (possibly after the destination is truncated).

SMBcopy Deviations

None.

SMBcopy Field Descriptions

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBcopy smb_com SMBcopy
smb_wct 3 smb_wct 1
smb_vwv[0] smb_tid2 smb_vwv[0] smb_cct
smb_vwv[1] smb_ofun smb_bcc min=0
smb_vwv[2] smb_flags smb_buf smb_errfile
smb_bcc min=2
smb_bufl] smb_path

smbjnew ;path

smb_tid2 The TID corresponding to smb_new_path. The TID for smb_path is sent in
smb_tid in the SMB header. If smb_tidZ is —1, the TID in smb_tid should be used
for smb_new_path as well; this permits SMBcopy to be chained to SMBtconX.

smb_ofun This is an open function field (see Section 5.3.8 on page 46). If smb_new_path is
a simple file smb_ofun applies at the start of the operation; in the case of
wildcards all subsequent files will then be appended. It is applied to each
copied file when smb_new_path is a directory.

smb_flags This 16-bit field contains a set of flags controlling the copy operations:

Bit 0 If set, the destination must be a file.

Protocols for X/Open PC Interworking: SMB, Version 2 187

Page 205 of 267

SMBcopy Specification

smb_path

smb_new_path

smb_cct

smb_errfile

188
Page 206 of 267

Extended 1.0 SMB Miscellaneous Requests

Bit 1 If set, the destination must be a directory.

Bit 2 Copy destination mode: O=binary (indicating the contents of the file
are not to be interpreted), 1=ASCI (indicating DOS format text file).
This bit is ignored.

Bit 3 Copy source mode: O=binary (indicating the contents of the file are
not to be interpreted), 1=ASCIH (indicating DOS format text file).
This bit is ignored.

Bit 4 If set, all writes must be verified by comparing the copied destination
to the original source(s).

Bit 5 If set, indicates a tree copy is requested. A tree copy means the
contents of the directory and any subdirectories are to be copied.
This bit only has meaning if the extended 2.0 SMB dialect was
negotiated.

All other bits are reserved and should be ignored.

An ASCIZ buffer containing the name of the file(s) to be copied; wildcard

characters are permitted. The path is interpreted relative to smb_tid in the
SMB header.

An ASCIIZ buffer containing the name of the destination to which the source
file(s) are to be copied. Wildcards may not be used. The path is interpreted
relative to smb_tidZ in the SMBcopy subheader.

A 16-bit integer containing the actual number of files copied.

This is an ASCIIZ buffer which may contain the name of the source file on
which an error was encountered during a copy operation. When a copy error
is encountered, the expanded source filename is returned in smb_errfile and the
error code is returned in smb_err (in the SMB header).

X/Open CAE Specification (1992)

Extended 1.0 SMB Miscellaneous Requests

SMBcopy Error Code Descriptions

CAE Code |DOS Class | DOS Code
EACCES ERRDOS ERRnoaccess
EAGAIN ERRDOS ERRshare
EEXIST ERRSRV ERRfilexists
EINTR ERRSRV ERRerror
EISDIR ERRDOS ERRnoaccess
EMFILE ERRSRV ERRerror
ENFILE ERRDOS ERRnofids
ENOENT | ERRDOS ERRbadfile
ENOSPC ERRSRV ERRerror
ENOTDIR |ERRDOS ERRbadpath
ENXIO ERRSRV ERRerror
EROFS ERRSRV ERRerror
ETXTBSY |ERRSRV ERRerror

- ERRSRV ERRinvnid

- ERRSRV ERRinvdevice

- ERRDOS ERRnofiles

- ERRDOS ERRbadshare

= ERRSRV ERRbaduid

. _ SUCCESS | SUCCESS

SMBcopy Preconditions

SMBcopy Specification

' Description

Component of path—pref‘]x denies search
permission.
' There are outstanding record locks on the file.

Destination file exists.

A signal was caught during the open operation.
‘ Can'’t copy onto a directory.
Maximum number of file descriptors
currently open in this process.

are

System file table is full.

File does not exist, or component of pathname
(does not exist.

The system is out of resources necessary to
create files.

Component of either path-prefix is not a
directory.

One of the TIDs is not for a file system subtree.

Destination file system subtree is read-only.
|Can't copy onto programme being executed.

Invalid TID.
| One of the TIDs is not for a file system subtree.

No more files matching the specified criteria.
Share conflict when creating a destination file.

The UID given (smb_uid) is not known as a valid
|ID on this LMX session.

Everythin&worked, no E)roblems.

1. The SMB redirector has sent a valid SMB with a valid smb_tid and smb_tidZ for file system
subtrees; the smb_tidZ resource must allow writes.

2. The SMB redirector has appropriate read/search permission on source and destination
paths, and write permission on the destination file or into the destination directory.

SMBcopy Postconditions

Not all files may have been copied; smb_errfile will indicate which copy failed.

SMBcopy Side Effects

Some files may be overwritten if smb_ofun flags requested it.

Protocols for X/Open PC Interworking: SMB, Version 2
Page 207 of 267

189

SMBcopy Specification Extended 1.0 SMB Miscellaneous Requests

Conventions
» Access (see Section 4.3.2 on page 30).
» Filename (see Section 3.5 on page 15).

» Wildcards (see Section 3.6 on page 17).

190 X/Open CAE Specification (1992)
Page 208 of 267

Extended 1.0 SMB Miscellancous Requests SMBecho Specification

14.2 SMBecho Specification
SMBecho Detailed Description
This extended protocol request is used to test an LMX session by exchanging messages between
the SMB redirector and LMX server. Since it is used to verify communications, the request may
be issued at any time during the life of an LMX session, except before an SMBnegprot request has
been issued, and not while a raw exchange is in progress (for example, SMBwritebraw).
The LMX server will respond with the exact number of messages specified in the request.
SMBecho Deviations
None.
SMBecho Field Descriptions
_ From SMB redirector To SMB redirector
| Field Name Field Value | Field Name Field Value
smb_com SMBecho smb_com SMBecho
smb_wct 1 smb_wct 1
smb_vwv[0)] smb_reverb smb_vwv[0)] smb_sequence
smb_bcc min=0 smb_bcc min=0
smb_buf smb_data | smb_buf]] smb_data
smb_reverb A 16-bit integer indicating the number of responses the LMX server should
generate for this request. If zero, no response at all will be generated.
smb_data This string of bytes is test data which is specified by the SMB redirector in its
request and returned by the LMX server in every response. The string of bytes
is not formatted; the LMX server must be careful to exactly reproduce it and
set smb_bcc correctly in the responses.
smb_sequence A 16-bit integer containing the sequence number of this particular response.
The first response would have smb_sequence = 1, and the last response would
set smb_sequence to smb_reverb.
SMBecho Error Code Descriptions
' CAE Code 'DOS Class | DOS Code ' Description
- ERRSRV ERRnoaccess | LMX session has not been established.
- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.
- ERRSRV ERRnosupport | Requested function is not supported.
I - ' SUCCESS | SUCCESS ' Everything worked, no problems.
No CAE errors are possible.
Protocols for X/Open PC Interworking: SMB, Version 2 191

Page 209 of 267

SMBecho Specification Extended 1.0 SMB Miscellaneous Requests

SMBecho Preconditions

None.

SMBecho Postconditions

None.

SMBecho Side Effects

None.

Conventions

None.

192 X/Open CAE Specification (1992)
Page 210 of 267

Extended 1.0 SMB Miscellaneous Requests SMBioctl Specification

14.3 SMBioctl Specification

SMBioctl Detailed Description

This extended protocol request permits detailed control of I/0O devices by the SMB redirector.
The actual forms of control available are device-specific and implementation-dependent.
SMBioctl Deviations

Because the mapping between ioctl request numbers and actual functionality varies from
implementation to implementation, it is impossible to provide this functionality in a portable
manner. Nonetheless, SMB redirectors using the LMX server may generate SMBioctl requests.

An LMX server which does not support the SMBioctl request should return error code
ERRnosupport in error class ERRSRV if it receives such a request.

Protocols for X/Open PC Interworking: SMB, Version 2 193
Page 211 of 267

SMBmove Specification Extended 1.0 SMB Miscellaneous Requests

144 SMBmove Specification

SMBmove Detailed Description

This extended protocol request is used to move files between directories on the LMX server.
Directories as well as regular files may be moved into a new directory. The SMBmove protocol
removes the deviations of SMBmv and allows for relocating files to different file system subtrees.
A move of a directory cannot have a destination located in the directory itself or any
subdirectory within the source directory. In these conditions the error <ERRDOS, ERRbadpath>
is to be returned.

The source path may include wildcards in the last component of the path, but the destination
path must specify a single file or directory (that is, no wildcards). If the destination is a
directory, the source file(s) are moved into that directory; if the destination is a regular file, all
source files but the last one are lost, and the last one is renamed to the destination path. The
sequence in which files match a wildcard specification is undefined, so the specific file which
will be given the destination name cannot be specified.

SMBmove Deviations

None.

SMBmove Field Descriptions

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBmove smb_com SMBmove
smb_wct 3 smb_wct 1
smb_vwv|[0] smb_tid2 smb_vwv|[0] smb_count
smb_vwv[1] smb_ofun smb_bcc min=0
smb_vwv[2] smb_flags smb_buff] smb_errfile
smb_bcc min=2
smb_buff] smb_path

smb_new_path

smb_tid2 The TID corresponding to smb_new_path. The TID for smb_path is sent in
smb_tid in the SMB header. If smb_tidZ2 is —1, the TID in smb_tid should be used
for smb_new_path as well; this permits SMBmove to be chained to SMBtconX.

smb_ofun This is an open function field (see Section 5.3.8 on page 46). If smb_new_path is
a simple file smb_ofun applies at the start of the operation; in the case of
wildcards all subsequent files will then be appended. It is applied to each
moved file when smb_new_pathis a directory.

smb_flags This 16-bit field contains a set of flags controlling the copy operations:
Bit 0 If set, the destination must be a file.
Bit 1 If set, the destination must be a directory.

Bit 4 If set, all writes must be verified by comparing the copied destination
to the original source(s).

All other bits are reserved and should be ignored.

194 X/Open CAE Specification (1992)
Page 212 of 267

Extended 1.0 SMB Miscellaneous Requests

smb_path

SMB header.

smb_new_path

SMBmove Specification

An ASCIIZ buffer containing the name of the file(s) to be moved; wildcard
characters are permitted.

The path is interpreted relative to smb_tid in the

An ASCIIZ buffer containing the name of the destination to which the source

file(s) are to be copied. Wildcards may not be used. The path is interpreted
relative to smb_tidZ2 in the SMBmove subheader.

smb_count

smb_errfile

A 16-bit integer containing the actual number of files moved.

This is an ASCIZ buffer which may contain the name of the source file on

which an error was encountered, the expanded source filename is returned in
smb_errfile and the error code is returned in smb_err (in the SMB header).

SMBmove Error Code Descriptions

%

' CAECode |DOS Class | DOS Code
EACCES ERRDOS ERRnoaccess
EACCES ERRDOS ERRnoaccess
EEXIST ERRDOS ERRfilexists
EINTR ERRSRV ERRerror
EMLINK ERRSRV ERRerror
ENOENT | ERRDOS ERRbadfile
ENOSPC ERRSRV ERRerror
ENOTDIR |ERRDOS ERRbadpath
EROFS ERRSRV ERRnoaccess
EXDEV ERRDOS ERRnoaccess

- ERRDOS ERRnofiles

- ERRDOS ERRbadshare
- ERRSRV ERRerror

- ERRSRV ERRinvnid

- ERRSRV ERRnosupport
- ERRSRV ERRaccess

- ERRSRV ERRbaduid

- _ SUCCESS _ SUCCESS

Protocols for X/Open PC Interworking: SMB, Version 2
Page 213 of 267

Description 1
| Search permission is denied on a component of '
either path-prefix.

No write access to destination directory.
Directory or file already exists.
| A signal was caught during a system call.

Maximum number of links to a file would be
| exceeded.

A component of either path-prefix does not
exist, smb_path does not exist, or smb_new_path is
‘ a null string.

Directory the link cannot be

extended.

containing

A component of either path-prefix is not a
directory.
Read-only file system.

| smb_path and smb_new_path are on different
logical devices.

No files match smb_path.

Share conflict when creating or appending to a
destination file.

Corrupt SMB request.
Invalid TID.
Requested function is not supported.

allow writes.

The UID given (smb_uid) is not known as a valid
ID on this LMX session.

No errors.

The resource represented by the TID does not

195

SMBmove Specification Extended 1.0 SMB Miscellaneous Requests

196

SMBmove Preconditions

1.

The SMB redirector has sent a valid SMB request; both TIDs are for file system subtrees; the
SMB redirector has delete permission under the source TID and create permission under
the destination TID.

The source file(s) or directory must exist.

Files must not be open by other SMB redirectors. If they are, the error <ERRDOS,
ERRbadshare> is returned.

The SMB redirector has write permission in the destination directory and delete (write)
permission in the source directory.

SMBmove Postconditions

1.

If the move succeeded, none of the matching source files can be found under the old
names, and the files are now accessible under the new names.

If a move fails, the reason for the failure is returned in smb_errfile, along with an error
return. No remaining moves are attempted, and smb_count reflects the actual number of
files moved.

SMBmove Side Effects

Moves of multiple files to a single regular file result in the loss of all but the last file.

Conventions

» Access (see Section 4.3.2 on page 30).

» Filenames (see Section 3.5 on page 15).

» Wildcards (see Section 3.6 on page 17).

X/Open CAE Specification (1992)

Page 214 of 267

|

\;' Chapter 15

f Extended 2.0 Protocol Additions and Modifications

This chapter documents the changes and additions to the extended 1.0 dialect that take effect
when the extended 2.0 dialect is negotiated. These SMBs and the SMBtransZ (refer to Chapter 16
on page 207) constitute the additions to the extended 1.0 dialect for the extended 2.0 dialect.
There is no affect on the SMBnegprot protocol for the extended 2.0 protocol. Refer to the
extended 1.0 protocol description for details.

15.1 SMBsesssetupX Specification

SMBsesssetupX Detailed Description

This extended 2.0 protocol request is used to further set up the LMX session normally just
established via the SMBnegprot request/response. The SMBsesssetupX request serves one
additional purpose over the activities performed in the extended 1.0 dialect. That purpose is to
allow the SMB redirector system to challenge the LMX server with an encryption key. The LMX
server must use the encryption key to return a response. Based on the response value, the SMB
redirector can determine whether the LMX server is really the LMX server desired or an
imposter.

o User Identification

The actual semantics for this request are governed by the security mode of the LMX server.
See Section 3.3 on page 12 for a discussion of these modes.

In user-level security mode, the SMB redirector will establish a mapping between a particular
username on the LMX server and a UID which the SMB redirector will use to represent that
user. A password may be sent by the SMB redirector to authenticate that the person using
the SMB redirector is indeed the username to be mapped to. Further, the password may be
encrypted to ensure security.

The LMX server validates the name and password supplied and, if valid, it generates a UID
corresponding to the specified username. That actual UID will be sent in all subsequent
requests by the SMB redirector and used by the LMX server for access checks required by
requests.

The value of the UID is relative to an LMX session; it is possible for the same UID value to
represent two different users on two different LMX sessions on the LMX server. The LMX
server must map the pair of <LMX session ID, UID> to the different accounts. In share-level
security mode, the username and password are not used. The LMX server should use a
unique, reserved account and corresponding UID to perform access checks for all requests.

¢ SMB redirector Communications Parameters

The LMX server, in its response to the SMBnegprot request, has set some parameters for the
communication it was expecting from the SMB redirector. In the SMBsesssetupX request, the
SMB redirector indicates the parameters for the communication it is expecting from the LMX
server. These values may be different; for example, the LMX server may be able to receive a
maximum message size of 16K bytes, while the SMB redirector can only receive 1K bytes.

Some LMX servers may need to renegotiate buffer sizes after the SMBsesssetupX exchange.
This renegotiation is available through the SMBtcon request, but not through SMBtconX.

Protocols for X/Open PC Interworking: SMB, Version 2 197

Page 215 of 267

SMBsesssetupX Specification

Extended 2.0 Protocol Additions and Modifications

SMBsessse tupX Deviations

None.

SMBsesssetupX Field Descriptions

From SMB redirector To SMB redirector
Field Name Field Value Field Name Field Value
smb_com SMBsesssetupX smb_com SMBsesssetupX
smb_wct 10 smb_wct 3
smb_vwv|[0] smb_com?2 smb_vwv|[0] smb_com?2
smb_vwv[1] smb_off2 smb_vwv[1] smb_off2
smb_vwv[2] smb_bufSize smb_vwv[2] smb_action
smb_vwv[3] smb_mpxmax smb_bcc Minimum = 0
smb_vwv[4] smb_vc_num smb_buf smb_encresp|]
smb_vwv|[5-6] smb_sesskey
smb_vwv[7] smb_apasslen
smb_vwv[§] smb_encryptlen
smb_vwv[9] smb_encryptoff
smb_bcc min val=0
smb_buf] smb_apasswd
smb_aname

smb_comZ2 Description can be found in Section 3.9 on page 22.

smb_of? Description can be found in Section 3.9 on page 22.

smb_bufSize The size of the largest message the SMB redirector is willing to receive. It

smb_mpxmax

smb_vc_num

smb_sesskey

smb_apasslen
smb_encryptlen
smb_encryptoff

smb_encresp|]

smb_apasswd

Page 216 of 267

must be true that smb_bufSize < smb_maxxmt (see Section 6.1 on page 55).

The maximum number of requests which the SMB redirector will have
outstanding on a single LMX session. It must be true that smb_mpxmax <
smb_maxmux (see Section 6.1 on page 55).

Permits multiple NetBIOS sessions to be associated with a single LMX session.
If zero (0), this NetBIOS session is the first or only NetBIOS session associated
with the NetBIOS session being set up. If smb_vc_numis zero (0) and there are
other previously established NetBIOS session still connected from this SMB
redirector, it is recommended that the LMX server abort the previous NetBIOS
session and free up the resources held.

A 32-bit integer which identifies to which LMX session this NetBIOS session is
associated. Ignored when smb_vc num is zero (0). This value would be
obtained from the smb_sesskey field in the response to the SMBnegprot
associated with the LMX session this NetBIOS session is to be made a part of.

Length of the smb_apasswd field.
The size of the encryption key used to challenge the LMX server.
The byte offset from the start of the SMB header to the encryption key.

The LMX server response to the encryption key challenge from the SMB
redirector.

A character string containing the password, possibly encrypted. Ignored by
an LMX server in share-level security mode.

X/Open CAE Specification (1992)

Extended 2.0 Protocol Additions and Modifications SMBsesssetupX Specification

smb_aname An ASCIIZ (not type 04) buffer containing the username to be associated with
smb_uid and validated with smb_apasswd. Ignored by an LMX server in share-
level security mode. The length of this field is derived from the difference
between smb_bcc and smb_apasslen.

smb_action A bit-encoded field indicating the results of a successful LMX session setup. If
bit 0 is clear, everything went normally. If bit 0 is set, the LMX session was
setup but a default or guest account was used instead of an individual account
represented by the username provided. (An LMX server in share-level
security mode would set this bit.)

SMBsesssetupX Error Code Descriptions

| CAE Code |DOS Class DOS Code Description
- 'ERRSRV ERRerror Internal LMX server error.
- ERRSRV ERRbadpw Username/password pair was invalid.
- ERRSRV ERRtoomanyuids| The LMX server does not support this many
UIDs in one LMX session.
- ERRSRV ERRerror No SMBnegprot request has been issued on

this NetBIOS session.

- ERRSRV ERRnosupport | This request cannot be chained to the
request which precedes it in this message.

- _SUCCESS _SUCCESS | Everythin&worked, no E)roblems.

SMBsesssetupX Preconditions

1. The process attempting to secure an LMX session must have established an LMX session
with the LMX server and negotiated an extended dialect.

2. The username and password must both be valid instances of those types.
3. smb_comZ must be a legal chained command.
4. There are many other preconditions based upon the SMBs that may be chained. These are
enumerated in the specifications for those SMBs.
SMBsesssetupX Postconditions
1. If there are no errors the UID is valid to be used in future SMBs.
2. There are many other postconditions based upon the SMBs that may be chained. These are
enumerated in the specifications for these SMBs.
SMBsesssetupX Side Effects
Conversion of paths to a canonical pathname is controlled by bit 4 of the smb_flg flag in the
header of this request (see Section 5.1 on page 37).
Conventions
« Opportunistic Locking (see Section 3.8.2 on page 20).
« Chaining (see Section 3.9 on page 22).

Protocols for X/Open PC Interworking: SMB, Version 2 199
Page 217 of 267

SMBsesssetupX Specification Extended 2.0 Protocol Additions and Modifications

The SMBs which may be chained after SMBsesssetupX are:

SMBchkpath SMBfunique ~ SMBopen SMBsearch SMBtconX
SMBcopy SMBgetatr SMBopenX SMBsetatr SMBunlink
SMBcreate SMBmkdir SMBrename SMBsplopen SMBtrans
SMBdskattr ~ SMBmknew SMBrmdir SMBsplretq NIL
SMBffirst SMBmv

200 X/0Open CAE Specification (1992)
Page 218 of 267

Extended 2.0 Protocol Additions and Modifications SMBcopy Specification

15.2 SMBcopy Specification

SMBcopy Detailed Description

The SMBcopy protocol for the extended 2.0 dialect is unchanged from the extended 1.0 dialect
except that the request may now be used to specify a copy of entire directory subtrees (tree
copy) on the LMX server. The tree copy mode is selected by setting bit 5 of the smb_flags field in
the SMBcopy request (reference bit 5 in SMBcopy Field Descriptions on page 187). When the
tree copy option is selected the destination must not be an existing file and the source mode
must be binary. A request with bit 5 of the smb_flags field set and either bit 0 or bit 3 set is not
allowed and the LMX server returns the error code <ERRDOS, ERRbadfile>. When the tree copy
mode is selected the smb_cct field of the response protocol is undefined.

Protocols for X/Open PC Interworking: SMB, Version 2 201
Page 219 of 267

SMBfindnclose Specification Extended 2.0 Protocol Additions and Modifications

15.3

202

SMBfindnclose Specification

SMBfindnclose Detailed Description

The SMBfindnclose protocol closes the association between a directory handle returned following
a resource monitor established using an SMBtrans2(FINDNOTIFYFIRST) request to the LMX
server and the resulting system directory monitor. This request allows the LMX server to free
any resources held in support of the open handle.

SMBfindnclose Field Descriptions

From SMB redirector ' To SMB redirector
' Field Name Field Value " Field Name Field Value
' smb_com SMBfindnclose ' smb_com SMBfindnclose
smb_wct 1 smb_wct 0
smb_vwv[0] smb_handle smb_bcc 0
smb_bcc 0 smb_bcc 0
smb_handle The directory handle associated with a previous

SMBtrans2(TRANSACT2_FINDNOTIFYFIRST).

SMBfindnclose Error Code Descriptions

CAE Code |DOS Class |DOS Code ' Description
' - 'ERRDOS | ERRbadfid 'The SMB redirector has supplied an invalid
directory handle.
- ERRSRV ERRinvnid TID specified in command is invalid.
- ERRSRV ERRerror Other CAE error.
- SUCCESS | SUCCESS Operation succeeded.

SMBfindnclose Preconditions

None.

SMBfindnclose Postconditions

If the directory handle was valid, it is made invalid and resources used to support the directory
search operations have been freed.

SMBfindnclose Side Effects

None.

Conventions

None.

X/0Open CAE Specification (1992)

Page 220 of 267

Extended 2.0 Protocol Additions and Modifications SMBfindclose Specification

15.4 SMBfindclose Specification
SMBfindclose Detailed Description
The SMBfindclose protocol closes the association between a search handle returned following a
successful SMBtrans2(TRANSACTZ_FINDFIRST) request to the LMX server and the resulting
system file search. This request allows the LMX server to free any resources held in support of
the open handle.
SMBfindclose Field Descriptions
_r From SMB redirector To SMB redirector
. Field Name Field Value | Field Name Field Value
smb_com SMBfindclose smb_com SMBfindclose
smb_wct 1 smb_wct 0
smb_vwv[0] smb_handle smb_bcc 0
smb_bcc 0 | smb_bcc 0
smb_handle The directory handle associated with a previous
SMBtrans2(TRANSACT2_FINDNOTIFYFIRST).
SMBfindclose Error Code Descriptions
_ CAE Code DOS Class DOS Code :Description
- ERRDOS ERRbadfid The SMB redirector has supplied an invalid
directory handle.
- ERRSRV ERRinvnid TID specified in command is invalid.
- ERRSRV ERRerror Other CAE error.
| - SUCCESS | SUCCESS Operation succeeded.
SMBfindclose Preconditions
None.
SMBfindclose Postconditions
If the directory handle was valid, it is made invalid and resources used to support the directory
search operations have been freed.
SMBfindclose Side Effects
None.
Conventions
None.
Protocols for X/Open PC Interworking: SMB, Version 2 203

Page 221 of 267

SMBuloggoftX Specification Extended 2.0 Protocol Additions and Modifications

15.5 SMBuloggoftfX Specification

SMBuloggoffX Detailed Description

This protocol is used to logoff the user (identified by the UID value in smb_uid) previously
logged on via the SMBsesssetupX protocol.

The LMX server will remove this UID from its list of valid UIDs for this LMX session. Any
subsequent protocol containing this UID (in smb_uid) received on this LMX session will be
returned with an access error.

Another SMBsesssetupX must be sent in order to reenstate the user on the LMX session.

LMX session termination also causes the UIDs registered on the LMX session to be invalidated.
When the LMX session is reestablished, SMBsesssetupX request must again be used to validate
each user.

The only valid protocol that can be chained in an SMBuloggoffX is SMBsessetupX.

SMBuloggoffX Field Descriptions

_ From SMB redirector To SMB redirector
Field Name Field Value | Field Name Field Value
smb_com SMBuloggofiX smb_com SMBuloggofiX
smb_wct 2 smb_wct 2
smb_vwv[0)] smb_com?2 smb_vwv[0)] smb_com?2
smb_vwv[1] smb_off? smb_vwv[1] smb_off?
| smb_bcc 0 smb_bcc 0
smb_comZ2 The secondary command value.
smb_off2 Offset from start of the SMB header to the secondary command.

SMBuloggoffX Error Code Descriptions

' CAE Code _ DOS Class _ DOS Code | DescriE)tion
- ERRSRV ERRinvnid TID specified in command is invalid.
- ERRSRV ERRerror Other CAE error.

- ERRSRV ERRbaduid The UID given (smb_uid) is not known as a valid
ID on this LMX session.

- SUCCESS | SUCCESS | Operation succeeded.

SMBuloggoffX Preconditions

None.

SMBuloggoffX Postconditions

If the user was previously logged on, his logon identity as specified in the SMBsesssetupX is
removed, but the LMX session remains.

204 X/Open CAE Specification (1992)
Page 222 of 267

Extended 2.0 Protocol Additions and Modifications SMBuloggoftX Specification

SMBuloggoffX Side Effects

Another SMBsesssetupX must be sent to log the user into the LMX server.

Conventions

None.

Protocols for X/Open PC Interworking: SMB, Version 2 205
Page 223 of 267

Extended 2.0 Protocol Additions and Modifications

206 X/QOpen CAE Specification (1992)
Page 224 of 267

Chapter 16

Extended 2.0 Protocol SMBtrans2

The SMBtrans2 protocol is used to extend the original file-sharing protocols with extended
attribute and long filename support. An FID obtained from the new requests may be used in

previously defined SMB requests and vice versa.

The format of enhanced and new commands is defined commencing at the smb_wct field. All
messages will include the standard SMB header defined in Section 5.1 on page 37. When an
error is encountered, an LMX server may choose to return only the header portion of the
response (i.e., smb_wct and smb_bcc both contain zero).

16.1 SMBtrans2
16.1.1 Request Formats
Transaction SMB Request Formats
Primary Request Secondary Request
Field Name Field Value Field Name Field Value
smb_com SMBtrans2 smb_com SMBtrans2
smb_wct 14+smb_suwcnt | smb_wct 8
smb_vwv|[0] smb_tpscnt smb_vwv|[0] smb_tpscnt
smb_vwv[1] smb_tdscnt smb_vwv[1] smb_tdscnt
smb_vwv[2] smb_mprent smb_vwv[2] smb_pscnt
smb_vwv[3] smb_mdrcnt smb_vwv[3] smb_psoff
smb_vwv[4] smb_msrcnt smb_vwv[4] smb_psdisp
smb_vwv[5] smb_flags smb_vwv[5] smb_dscnt
smb_vwv[6-7] smb_timeout smb_vwv[6] smb_dsoff
smb_vwv[8] smb_rsvdl smb_vwv[7] smb_dsdisp
smb_vwv[9] smb_pscnt smb_vwv[8] smb_fid
smb_vwv[10] smb_psoff smb_bcc
smb_vwv[11] smb_dscnt smb_param
smb_vwv[12] smb_dsoff smb_data
smb_vwv[13] smb_suwent
smb_vwv[l4-] smb_setup[]
smb_bcc
smb_buf smb_name
smb_param
smb_data
smb_tpscnt A 16-bit unsigned integer containing the total number of parameter bytes
being sent. This value may be revised downward in any or all secondary
requests. The smallest value of smb_tpscnt sent during this transaction must
equal the sum of all the smb_pscnt fields in all requests sent during the
transaction.
smb_tdscnt A 16-bit unsigned integer containing the total number of data bytes being sent.
This value may be revised downward in any or all secondary requests. The
smallest value of smb_tdscnt sent during this transaction must equal the sum
of all the smb_dscnt fields in all requests sent during the transaction.
Protocols for X/Open PC Interworking: SMB, Version 2 207

Page 225 of 267

SMBtrans2?

smb_mprent

smb_mdrcnt

smb_msrcnt

smb_flags

smb_timeout

smb_rsvdl

smb_pscnt

smb_psoff

smb_psdisp

smb_dscnt

smb_dsoff

smb_dsdisp

smb_fid

208
Page 226 of 267

Extended 2.0 Protocol SMBtrans?

A 16-bit integer containing the maximum number of parameter bytes the SMB
redirector expects to be returned. The LMX server may not exceed this limit in
its response.

A 16-bit unsigned integer containing the maximum number of data bytes the
SMB redirector expects to be returned. The LMX server may not exceed this
limit in its response.

A 16-bit integer containing the maximum number of setup fields the SMB
redirector expects to be returned. The LMX server may not exceed this limit in
its response. The value of smb_msrcnt must be less than or equal to 255 and is
stored in the low-order byte of the field; the high-order byte is reserved and
must be zero.

A 16-bit field containing flags altering the behaviour of the request. The flags
are:

Bit 0 If set, the TID on which this transaction was requested is closed
after the transaction is completed.

Bit 1 If set, the transaction is one way; that is, no final response should
be generated by the LMX server. An interim response, il
required by the flow of the transaction, should be produced
regardless of the setting of this bit.

Bits 2-15 Reserved; MBZ.

A 32-bit integer specifying the number of milliseconds to wait for completion
of the requested operation before causing a timeout. A value of zero (0)
means no delay (that is, do not queue the request). A value of -1 indicates to
wait forever. See Section 3.11 on page 25.

A 16-bit reserved field which must be zero.

A 16-bit unsigned integer indicating the number of parameter bytes being sent
in this particular request; i.e., the size of smb_param.

A 16-bit integer giving the offset, in bytes, from the start of the SMB header to
the beginning of the smb_param field. This permits smb_param to be preceded
in the request by pad bytes to result in better alignment of the buffer.

A 16-bit integer giving the absolute displacement amongst all parameter bytes
for this transaction for the parameter bytes contained in this request. This is
used by the LMX server to correctly assemble all the parameter bytes received
even if the requests were received out of sequence.

A 16-bit unsigned integer indicating the number of data bytes being sent in
this particular request; i.e., the size of smb_data.

A 16-bit integer giving the offset, in bytes, from the start of the SMB header to
the beginning of the smb_data field. This permits smb_data to be preceded in
the request by pad bytes to result in better alignment of the buffer.

A 16-bit integer giving the displacement amongst all data bytes for this
transaction of the data bytes contained in this request. This is used by the
LMX server to correctly assemble all the data bytes received even if the
requests were received out of sequence.

A 16-bit integer containing the FID for file-based requests. Otherwise the
value is OxfFff.

X/0Open CAE Specification (1992)

Extended 2.0 Protocol SMBtrans? SMBtrans’?

smb_suwcnt

smb_setupl]

smb_bcc

smb_name

smb_param

smb_data

A 16-bit integer containing the number of setup 16-bit fields sent in the
primary request. This value must be less than or equal to 255 and is stored in
the low-order byte of the 16-bit field; the high-order value is reserved and
must be zero.

An array of 16-bit fields of setup data.

Contains the total size in bytes of the data to follow, including any pad bytes
added for alignment. The length of this array is given by smb_swcnt and may
be zero.

A null-terminated ASCIIZ string containing the transaction name. No pad
bytes are permitted before this field; it must immediately follow the smb_bcc
field.

An array of bytes, beginning at smb_psoffbytes into the request and containing
smb_pscnt bytes. Padding may precede this field, as smb_psdisp points to its
beginning; for the same reason, smb_param is not required to precede smb_data
in each message.

An array of bytes, beginning at smb_dsoffbytes into the request and containing
smb_dscnt byles. Padding may precede this field, as smb_dsdisp points Lo its
beginning; for the same reason, this fleld is not always required to follow
smb_param.

16.1.2 Response Format

Transaction SMB Response Formats

Interim Response Final Response
Field Name Field Value | Field Name Field Value
smb_com SMBtrans2 smb_com SMBtrans2
smb_wct 0 smb_wct 10+smb_suwcnt
smb_bcc 0 smb_vwv[0)] smb_tprent

smb_vwv[1] smb_tdrent
smb_vwv[2] smb_rsvd
smb_vwv[3] smb_prent
smb_vwv[4] smb_proff
smb_vwv[5] smb_prdisp
smb_vwv[6] smb_drent
smb_vwv[7] smb_droff
smb_vwv[8] smb_drdisp
smb_vwv[9] smb_suwcnt
smb_vwv[10-] smb_setup
smb_bcc

smb_param

smb_data

The meaning of the parameters is identical to the definitions above with the parameter names
changed; for example, smb_tprent is the total number of parameter bytes being returned, and is
used in the same way as smb_tpscnt in the request messages.

As was the case in the request messages, the ordering of smb_param and smb_data is not required,
since smb_prdisp and smb_drdisp are sufficient to locate each correctly.

Protocols for X/Open PC Interworking: SMB, Version 2 209

Page 227 of 267

SMBtrans? Extended 2.0 Protocol SMBtrans?

16.1.3 Transaction Flow

A small set of rules governs the flow of the various protocol elements making up a transaction,
including which request or response type to send at any particular time.

1. The SMB redirector sends the first (primary) request which identifies the total bytes
(parameters and data) which are to be sent, and contains the setup 16-bit fields, and as
many of the parameter and data bytes as will fit in the maximum negotiated buffer size.
This request also identifies the maximum number of bytes (setup, parameters and data) the
LMX server may return when the transaction is completed. The parameter bytes are
immediately followed by the data bytes (the length fields identify the break point). If all
the bytes fit in the single buffer, skip to step 4.

2. The LMX server responds with a single interim response meaning O.K. send the
remainder of the bytes, or (if error response) terminate the transaction.

3. The SMB redirector then sends a secondary request full of bytes to the LMX server. This
step is repeated until all bytes have been delivered to the LMX server.

4. The LMX server sets up and performs the transaction with the information provided.

5. Upon completion of the transaction, if bit 1 of smb_flag was not set in the primary request,
the LMX server sends back up to the number of parameter and data bytes requested (or as
many as will fit in the negotiated buffer size). This step is repeated until all bytes requested
have been returned. Fewer than the requested number of bytes (from smb_mdrent and
smb_mprent) may be returned.

The flow of a transaction when the request parameters and data do not all fit in a single buffer is:

SMB redirector - SMBtransZ request (data) >> LMX server
SMB redirector << OK send remaining data < LMKXserver
SMB redirector - SMBtrans2 secondary request 1 (data) >> LMX server
SMB redirector - SMBtrans2 secondary request 2 (data) >> LMX server
SMB redirector - SMBtrans2 secondary request n (data) >> LMX server
(LMX server sets up and performs the
SMBtrans?)
SMB redirector << SMBtrans2 response 1 (data) < LMXserver
SMB redirector << SMBtrans2 response 2 (data) < LMXserver
SMB redirector << SMBtrans2 response n (data) < LMXserver
The flow for the Transaction protocol when the request parameters and data do all fit in a single
buffer is:
SMB redirector - SMBtransZ request (data) >> LMX server
(LMX server sets up and performs the
SMBtrans?)
SMB redirector << SMBtrans2 response 1 (data) < LMXserver
(only one if all data fit in buffer)
SMB redirector << SMBtrans2 response 2 (data) < LMXserver
SMB redirector << SMBtrans2 response n (data) < LMXserver

Note that the primary request through to the final response make up the complete protocol:
thus, the TID, PID, UID and MID are expected to remain constant and can be used by both the
LMX server and SMB redirector to route the individual messages of the protocol to the correct
process. Also, it is the responsibility of the LMX server to assemble the multiple requests into
the final complete request to execute. Similarly, the SMB redirector will assemble the response
sequence.

210 X/Open CAE Specification (1992)
Page 228 of 267

Extended 2.0 Protocol SMBtrans? SMBtrans’?

16.1.4

The simplest form of an SMBtransZ is to send a single primary request and (optionally) receive a
single, final response.

Service

The SMBtransZ protocol allows transfer of parameter and data blocks greater than the maximum
negotiated buffer size between the SMB redirector and the LMX server.

The SMBtrans2 command scope includes (but is not limited to) IOCTL device requests and file
system requests which require the transfer of an extended attribute list.

The SMBtransZ protocol is used to transfer a request for any of a set of supported functions on
the LMX server which may require the transfer of large data blocks. The function requested is
identified by the first 16-bit field in the SMBtrans2 smb_setup[] field. Other function-specific
information may follow the function identifier in the smb_setup[] or in the smb_param fields. The
functions supported are not defined by the protocol, but by SMB redirector and LMX server
implementations. The protocol simply provides a means of delivering them and retrieving the
results.

The number of bytes needed in order to perform the SMBtransZ request may be more than will fit
in the negotiated buffer size.

At the time of the request, the SMB redirector knows the number of parameter and data bytes
expected to be sent and passes this information to the LMX server in the primary request fields
smb_tpscnt and smb_tdscnt. This may be reduced by lowering the total number of bytes expected
(smb_tpscnt and/or smb_tdscnt) in the secondary request.

Thus when the amount of parameter bytes received (the total of each smb_pscnt) equals the total
amount of parameter bytes expected (smallest smb_tpscnt), then the LMX server has received all
the parameter bytes.

Likewise, when the amount of data bytes received (total of each smb_dscnt) equals the total
amount of data bytes expected (smallest smb_tdscnf), then the LMX server has received all the
data bytes.

The parameter bytes should normally be sent first, followed by the data bytes. However, the
LMX server knows where each begins and ends in each buffer by the offset fields (smb_psoffand
smb_dsoffi and the length fields (smb_pscnt and smb_dscnt). The displacement of the bytes is also
known (smb_psdisp and smb_dsdisp). Thus the LMX server is able to reassemble the parameter
and data bytes regardless of the order sent by the SMB redirector.

If all parameter bytes and data bytes fit into a single buffer, then no secondary request is sent.

The SMB redirector knows the maximum amount of data and parameter bytes the LMX server
may return from smb_mprent and smb_mdrent of the request. The LMX server informs the SMB
redirector of the actual amounts being returned in each buffer of the response in the fields
smb_tprent and smb_tdrent.

The LMX server may reduce the expected bytes by lowering the total number of bytes expected
(smb_tprent and/or smb_tdrent) in any response.

When the amount of parameter bytes received (total of each smb_prent) equals the total amount
of parameter bytes expected (smallest smb_tprent), then the SMB redirector has received all the
parameter bytes.

Likewise, when the amount of data bytes received (total of each smb_drcnf) equals the total
amount of data bytes expected (smallest smb_tdrcnt), then the SMB redirector has received all the
data bytes.

Protocols for X/Open PC Interworking: SMB, Version 2 211
Page 229 of 267

SMBtrans? Extended 2.0 Protocol SMBtrans?

16.1.5

16.1.5.1

16.1.5.2

16.1.5.3

212

The parameter bytes should normally be returned first, followed by the data bytes. However, the
SMB redirector knows where each begins and ends in each buffer by the offset fields (smb_proff
and smb_droffi and the length fields (smb_prent and smb_drenf). The displacement of the bytes
relative to the start of each response is also known (smb_prdisp and smb_drdisp). Thus the SMB
redirector is able to reassemble the parameter and data bytes regardless of the order the
information is returned.

Extended Attribute

An overview of EAs was given in Section 4.3.7 on page 31. The extended 2.0 SMB dialect allows
for the creation, viewing and manipulation of EAs. Support for EAs is optional and it is possible
for an LMX server to negotiate the extended 2.0 protocol dialect and not support EAs. In this
case, a null EA list is provided on all SMBtransZ requests that return EAs and the error
<ERRDOS, ERROR_EAS_NOT_SUPPORTED:> is returned.

A null EA list is a zero'ed FEA structure (defined below), or in other words, four zero bytes.

Errors Encountered When Creating EAs

An LMX server is not required to support EAs when the extended 2.0 dialect is selected. If the
LMX server does not support EAs, the error <ERRDOS, ERROR_EAS_NOT_SUPPORTED> will
be returned when the SMB redirector attempts to set EAs on a file and a null EA list will be
returned when EAs are requested by the SMB redirector. In the case where EAs are supported,
when the LMX server is attempting to store EAs sent during the creation of the file and it is not
possible to store the EAs due to memory restrictions or file system space, the error code
<ERRSRV, ERRerror> or the error code <ERRSRV, ERRnoresources> may be returned. In this
case, the creation of the file will fail and no FID will be returned to the SMB redirector.

Encapsulation of EAs in the SMB Protocol

There are two forms of structures that may be returned when passing EAs in the SMB protocol.
The first is the full extended attribute structure, or FEA structure, and the second is a shorter
form for getting the extended attribute names available, or the GEA structure. The GEA
structure is used only in SMB requests. FEA structures are used in both SMB requests and
responses.

Extended attributes are carried in the SMB requests and responses in these FEA and GEA
structures. To contain multiple EAs a “list” structure is used. Both the FEA and GEA structures
are encapsulated in this list structure. The list structure is a 32-bit integer size value followed by
the FEA or GEA structure. This size value includes its own field length and is the total length of
all contained structures in the list.

FEA Structure

The FEA structure contains the values for extended attributes (EAs) on a file. An extended
attribute is a "name’,"value” pair where the name is an ASCIIZ string and the value is an
unformatted binary area. It is up to the user application to impose format on the value
information. This structure is used to carry EAs inside the SMB protocol. When the text below
references an EA list inside the protocol, this is the structure containing the user-defined EA.

X/0Open CAE Specification (1992)

Page 230 of 267

Extended 2.0 Protocol SMBtrans? SMBtrans?

The "name”,"value” pair is represented by the following structure:

r

Name Description

f£EA A single byte that specifies EA flags. The only flag
defined at this time is FEA_NEEDEA which is equal to
0x80. When set to 1, the FEA_NEEDEA flag indicates
that EAs are needed on the file.

cbNameLen A single byte that specifies the length of the EA name
not including the null-terminating character.

cbValueLen A 16-bit unsigned integer specifying the length of the EA
value.

cbNamel] Zero-terminated string of cbNameLen+1 bytes. This
data immediately follows the cbValueLen field.

cbValue[] Variable number of EA wvalue bytes. This data

immediately follows the chName[] field.

The encapsulated FEA list as it is stored in the SMB protocol is illustrated below.
FEA Length
(32-bit integer)
Flag
8-bit
NameiLengtih
8-bit
Value Length
16-bit
Null-terminated name

Value data

Flag

8-bit

Name Length

8-bit

Value Length

16-bit
Null-terminated name

Value data

As can be seen above, a null FEA list has a length value of 8 followed by a zero flags field, a zero
name length and a zero value length.

Protocols for X/Open PC Interworking: SMB, Version 2 213
Page 231 of 267

SMBtrans’? Extended 2.0 Protocol SMBtrans?

16.1.5.4 GEA Structure
The GEA structure contains the names for EAs on a file. An EA name is an ASCIIZ string.

The EA name is represented by the following structure:

' Name ' Description
cbNameLen A sing;le byte that specifies the length of the EA name '
not including the null-terminating character.
cbName] The byte location of the name. This name immediately

follows the cbNameLen field.

L

The encapsulated GEA list is shown below as it is stored in the SMB protocol.

GEA Length (32-bit integer)
NameiLengtih)
8-bit

Null-terminated name

Name Length
8-bit
Null-terminated name

16.1.6 Information Levels

Many of the extended 2.0 protocols have an information level passed as an argument. This
information level is described here. The information level controls the amount and type of
information on a file that is returned to the SMB redirector. The information level has the
following valid values and meanings:

1 DOS-compatible. This returns information in a manner consistant with DOS or the other
dialect levels. Specifically, no extended attribute information is returned to the SMB
redirector.

2 This value indicates that the size of the complete extended attribute list (that is, name and
value pair) is to be returned to the SMB redirector in an EA encapsulating structure, but the
FEA list is not included. This is performed by including a null FEA list (that is, all sizes
zero) in the smb_data field of the response.

3 This indicates that the complete collection of FEA structures contained in an EA
encapsulating structure is to be returned to the SMB redirector. The FEA structures
returned are stored in the smb_data field of the SMB response.

16.1.7 Defined SMBtrans2 Protocols
This section specifies the defines used by the SMBtransZ protocol.

The following function codes are transferred in smb_setup[0] and are used by the LMX server to
identify the specific function required.

214 X/Open CAE Specification (1992)
Page 232 of 267

Extended 2.0 Protocol SMBtrans? SMBtrans?

Manifest Value Meaning

TRANSACTZ2_OPEN 0x00 Open or create a file. i

TRANSACTZ_FINDFIRST 0x01 Find the first file in a directory.

TRANSACTZ _FINDNEXT 0x02 Continue search of a directory.

TRANSACTZ_QFSINFO 0x03 Query information about a file system.

TRANSACTZ_SETFSINFO 0x04 Set information on a file system.

TRANSACTZ_QPATHINFO 0x05 Query information about a special file or
directory.

TRANSACT2 SETPATHINFO 0x06 Set information on a special file or
directory.

TRANSACTZ_QFILEINFO 0x07 Query information about a file.

TRANSACTZ _SETFILEINFO 0x08 Set information on a file.

TRANSACTZ2_FINDNOTIFYFIRST 0x0b Commence monitoring changes on a file
or directory.

TRANSACTZ FINDNOTIFYNEXT 0x0c Continue monitoring changes on a file
or directory.

TRANSACTZ2_MKDIR 0x0d Create a directory.

Protocols for X/Open PC Interworking: SMB, Version 2 215
Page 233 of 267

TRANSACTZ2 OPEN Extended 2.0 Protocol SMBtrans?2

16.2 TRANSACT2_OPEN

The function code TRANSACTZ_OPEN in smb_setup[0] in the primary SMBtransZ requests
identifies a request to open or create a file with extended attributes.

Primary Request Format

smb_wct Value = 15.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total size of extended attribute list.

smb_mprent Maximum return parameter length.

smb_mdrcnt Value = 0. No data returned.

smb_msrcnt Value = 0. No setup fields to return.

smb_flags Bit 0 and bit 1 must be zero.

smb_timeout Maximum milliseconds to wait for resource to open.
smb_rsvdl Reserved. Must be zero.

smb_pscnt Value = tpscnt. Parameters must be in primary request.
smb_psoff Offset from the start of an SMB header to the parameter bytes.
smb_dscnt Number of data bytes being sent in this buffer.

smb_dsoff Offset from the start of an SMB header to the data bytes.
smb_suwcnt Value = 1.

smb_setup[0] Value = TRANSACTZ_OPEN.

smb_bcc Total bytes following including pad bytes.

smb_param]] The parameter block for the the TRANSACTZ_OPEN function is the open-

specific information in the following format:

216 X/0Open CAE Specification (1992)
Page 234 of 267

Extended 2.0 Protocol SMBtrans?

rLocation Name
smb_param[0-1] open_flags?

smb_param[2-3] open_mode

smb_param[4-5] open_sattr

smb_param[6-7] open_attr
smb_param[8-11] open_time

smb_param[12-13] open_ofun
smb_param[14-17] open_size

smb_param[18-21] open_rsvd[5]

TRANSACT2_OPEN

Meaning

Bit 0 If set, return additional
information.

Bit 1 If set, set single user total file

lock (if only access).

Bit 2 If set, the LMX server should
notify the SMB redirector on
any action which can modify
the file (SMBunlink, SMBsetatr,
SMBmv, etc). If not set, the
LMX server need only notify
the SMB redirector on another
open request.

Bit 3 If set, return total length of EAs
for the file.

File open mode. Reference Section 5.3.5
on page 44.

The set of attributes that the file must
have in order to be found while
searching to see if it exists. Regardless
of the contents of this field, normal files
always match.

File attributes (for create). Reference
Section 5.3.3 on page 43.

Create time. Reference Section 5.3.1 on
page 43.

Open function.

Bytes to reserve on create or truncate.
This field is advisory only.

Reserved. Must be zero.

smb_param[22-23] open_pathname[] File pathname.
smb_datal] FEALIST structure for the file opened.

Secondary Request Format

There may be zero or more of these.

smb_wct Value = 9.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_pscnt Value = 0. All parameters were in the primary request.
smb_psoff Value = 0. No parameters in secondary request.
smb_psdisp Value = 0. No parameters in secondary request.
smb_dscnt Number of data bytes being sent in this buffer.
smb_dsoff Offset from the start of an SMB header to the data bytes.

Protocols for X/Open PC Interworking: SMB, Version 2
Page 235 of 267

217

TRANSACTZ_OPEN

218

smb_dsdisp
smb_fid
smb_bcc

smb_datal[]

Response Format

smb_wct
smb_tprent
smb_tdrent
smb_prent
smb_proff
smb_prdisp
smb_drent
smb_droff
smb_drdisp
smb_suwcnt
smb_bcc

smb_param]]

Page 236 of 267

Byte displacement for these data bytes.
Value = 0xffff. No FID in this request.

Extended 2.0 Protocol SMBtrans?

Total bytes following including pad bytes.

Data bytes.

Value = 10.

Total parameter length retuned.

Value = 0. No data bytes.

Number of parameter bytes returned in this buffer.

Offset from the start of an SMB header to the parameter bytes.

Value = 0.
Value = 0.
Value = 0.
Value = 0.
Value = 0.

Byte displacement for these parameter bytes

No data bytes.

No data bytes
No data bytes

No setup return fields.

Total bytes following including pad bytes.

The parameter block for the the TRANSACTZ_OPEN function response is the
open-specific return information in the following format:

X/0Open CAE Specification (1992)

Extended 2.0 Protocol SMBtrans?

Location Name
smb_param[0-1] open_fid
smb_param[2-3] +open_attribute
smb_param[4-7] +open_time
smb_param[8-11] +open_size
smb_param[12-13] +open_access

smb_param[14-15] +open_type

smb_param[16-17] +open_state

smb_param[18-19] open_action

Protocols for X/Open PC Interworking: SMB, Version 2

Page 237 of 267

TRANSACT2_OPEN

Meaning

FID.

Attributes of file or device. Reference
Section 5.3.3 on page 43.

Last modification time. Reference
Section 5.3.1 on page 43.

32-bit integer specifying the current file
size.

Access permissions actually allowed.
Reference Section 5.3.7 on page 46.

File type. Reference Section 5.3.6 on
page 45.

State of IPC device (for example, named
pipe). Reference X/Open CAE
Specification, IPC Mechanisms for SMB.

Bit 15 Blocking. Zero (0)
indicates that reads/writes
block if no data is
available; 1 indicates that

reads/writes return
immediately if no data is
available.

Bit 14 Endpoint. Zero (0)

indicates SMB redirector
end of a named pipe; 1
indicates the LMX server
end of a named pipe.

Bits 10-11 Type of named pipe. 00
indicates the named pipe
is a stream mode pipe; 01
indicates the named pipe
is a message mode pipe.

Bits 8-9 Read Mode. 00 indicates
to read the named pipe as
a stream mode named
pipe; 0l indicates to read
the named pipe as a
message mode named
pipe.

Action taken.

Bit 15 Lock Status. Set true only
if an opportunistic lock
was requested by the SMB
redirector and was granted
by the LMX server. This
bit should be false (0) if no
lock was requested, the

219

TRANSACTZ2 _OPEN Extended 2.0 Protocol SMBtransZ2

Location Name Meaning
lock could not be granted,
or the LMX server does
not support opportunistic
locking.
Bits 0-1 Open Action. The LMX

server should set this to
match the requested action
from the smb_ofin field:

1 The file existed and
was opened.

2 The file did not exist
and was therefore
created.

3 The file existed and
was truncated.

smb_param[20-23] open_fileid A unique number for this instance of the
file. Similar to a file node number. This
value is informational only. If the LMX
server does not support the value it may
be set to zero.

smb_param[24-25] open_oferror 16-bit integer offset into FEALIST data
of first error which occurred while
setting the extended attributes.

smb_param[12-13] ++open_EAlength 16-bit integer specifying the total EA
length for the opened file.

Where:
+ items returned only if bit 0 of open_flagsZ is set in primary request

++ items returned only if bit 3 of open_flagsZ is set in primary request

220 X/0Open CAE Specification (1992)
Page 238 of 267

Extended 2.0 Protocol SMBtrans? TRANSACT?Z FINDFIRST

16.3 TRANSACT2_FINDFIRST

The function code TRANSACTZ_FINDFIRST in smb_setup[0] in the primary SMBtrans2 request
identifies a request to find the first file that matches the specified file specification.

Primary Request Format

smb_wct Value = 15.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_mprent Maximum return parameter length.

smb_mdrcnt Maximum return data length.

smb_msrent Value = 0. No setup fields to return.

smb_flags Bit 0 and bit 1 must be zero.

smb_timeout Value = 0. Not used for find first.

smb_rsvdl Reserved. Must be zero.

smb_pscnt Value = smb_tpscnt. All parameters must be in primary request.
smb_psoff Offset from the start of an SMB header to the parameter bytes.
smb_dscnt Number of data bytes being sent in this buffer.

smb_dsoff Offset from the start of an SMB header to the data bytes.
smb_suwcnt Value = 1.

smb_setup[0] Value = TRANSACTZ_FINDFIRST

smb_bcc Total bytes following including pad bytes.

smb_param|] The parameter block for the TRANSACTZ_FINDFIRST function is the find

first-specific information in the following format:

Protocols for X/Open PC Interworking: SMB, Version 2 221
Page 239 of 267

TRANSACTZ _FINDFIRST Extended 2.0 Protocol SMBtransZ2

Location Name Meaning

smb_param[0-1] findfirst_Attribute Search attribute.
smb_param[2-3] findfirst_SearchCount Number of entries to find.

smb_param[3-4] findfirst_flags Find flags:
Bit 0 If set, close search after this
request.
Bit1 If set, close search if end of

search reached.

Bit 2 If set, the SMB redirector
requires resume key for
each entry found.

smb_param[5-6] findfirst_FileInfoLevel Search level.

smb_param[7-10] findfirst_rsvd Reserved. Must be zero.

smb_param[11] findfirst_FileName[] Beginning of name of the file to find.

smb_param]] smb_datal[] Additional FileInfoLevel-dependent
match information. For a search
requiring extended attribute

matching the data buffer contains
the FEALIST data for the search.
This location follows after the
findfirst_FileName field.

Secondary Re quest Format

There may be zero or more of these.

smb_wct
smb_tpscnt
smb_tdscnt
smb_pscnt
smb_psoff
smb_psdisp
smb_dscnt
smb_dsoff
smb_dsdisp
smb_fid
smb_bcc
smb_fid

smb_datal[]

222
Page 240 of 267

Value =9.

Total number of parameter bytes being sent.
Total number of data bytes being sent.

Value = 0. All parameters in primary request.
Value = 0. No parameters in secondary request.
Value = 0. No parameters in secondary request.
Number of data bytes being sent in this buffer.
Offset from the start of an SMB header to the data bytes.
Byte displacement for these data bytes.

Value = O0xffff. No FID in this request.

Total bytes following including pad bytes.
Value = 0xffff. No FID in this request.

Data bytes (size = value of smb_dscnt).

X/0Open CAE Specification (1992)

Extended 2.0 Protocol SMBtrans?

TRANSACT2 _FINDFIRST

First Response Format

smb_wct
smb_tprent
smb_tdrent
smb_rsvd
smb_prent
smb_proff
smb_prdisp
smb_drent
smb_droff
smb_drdisp
smb_suwcnt
smb_bcc

smb_param]]

smb_datal]

Value = 10.

Value = 10.

Total length of return data buffer.

Reserved. Must be zero.

Number of parameter bytes returned in this buffer.
Offset from the start of an SMB header to the parameter bytes.
Value = 0. Byte displacement for parameter bytes.
Number of data bytes returned in this buffer.

Offset from the start of an SMB header to the data bytes.
Byte displacement for these data bytes.

Value = 0 No setup return fields.

Total bytes following including pad bytes.

The parameter block for the TRANSACTZ_FINDFIRST function response is the
find first-specific return information in the following format:

Location Name

smb_param[0] findfirst_dir_handle Directory search handle.

smb_param[0] findfirst_searchcount Number of matching entries found.

smb_param[0] findfirst_eos End of search indicator.
]
]

Meaning

smb_param[0] findfirst_offerror Error offset if EA error.

smb_param[0] findfirst_lastname If zero, the LMX server does not require
findnext_FileName|] in order to continue
search. If not zero, offset from start of
returned data to filename of last found
entry returned.

Return data bytes (size = value of smb_dscnt). The data block contains the
level-dependent information about the matches found in the search. If bit 2 in
the findfirst_flags is set, each returned file descriptor block will be proceeded
by a four-byte resume key.

Subsequent Response Format

Page 241 of 267

smb_wct Value = 10.
smb_tprent Value = 8.
smb_tdrent Total length of return data buffer.
smb_prent Value = 0.
smb_proff Value = 0.
smb_prdisp Value = 0.
smb_drent Number of data bytes returned in this buffer.
smb_droff Offset from the start of an SMB header to the data bytes.
Protocols for X/Open PC Interworking: SMB, Version 2 223

TRANSACTZ _FINDFIRST Extended 2.0 Protocol SMBtrans?2

smb_drdisp
smb_suwcnt
smb_bcc

smb_datal]

224
Page 242 of 267

Byte displacement for these data bytes.
Value = 0. No setup return fields.
Total bytes following including pad bytes.

Return data bytes (size = smb_dscnt). The data block contains the level-
dependent information about the matches found in the search. If bit 2 in the
findfirst_flags is set, each returned file descriptor block will be proceeded by a
four-byte resume key.

X/0Open CAE Specification (1992)

Extended 2.0 Protocol SMBtrans?2 TRANSACT?2 FINDNEXT

164 TRANSACT2_FINDNEXT

The function code TRANSACTZ2_FINDNEXT in smb_setup[0] in the primary SMBtrans2 request
identifies a request to continue a file search started by a TRANSACTZ_FINDFIRST search.

Primary Request Format

smb_wct Value = 15.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_mprent Maximum return parameter length.

smb_mdrcnt Maximum return data length.

smb_msrent Value = 0. No setup fields to return.

smb_flags Bit 0 and bit 1 must be zero.

smb_timeout Value = 0. Not used for find next.

smb_rsvdl Reserved. Must be zero.

smb_pscnt Value = smb_tpscnt. All parameters must be in primary request.
smb_psoff Offset from the start of an SMB header to the parameter bytes.
smb_dscnt Number of data bytes being sent in this buffer.

smb_dsoff Offset from the start of an SMB header to the data bytes.
smb_suwcnt Value = 1.

smb_setup[0] Value = TRANSACTZ_FINDNEXT

smb_bcc Total bytes following including pad bytes.

smb_param|] The parameter block for the TRANSACTZ_FINDNEXT function is the find

next-specific information in the following format:

Protocols for X/Open PC Interworking: SMB, Version 2 225
Page 243 of 267

TRANSACTZ _FINDNEXT Extended 2.0 Protocol SMBtransZ2

Location Name Meaning

smb_param[1-2] findnext_DirHandle Directory search handle.
smb_param[3-4] findnext_SearchCount Number of entries to find.
smb_param[5-6] findnext_FileInfoLevel Search level.
smb_param[7-10] findnext_ResumeKey Server reserved resume key.

smb_param[11-12] findnext_flags Find flags:
Bit 0 If set, close search after this
request.
Bit1 If set, close search if end of

search reached.

Bit 2 If set, the SMB redirector
requires resume key for
each entry found. If clear,
rewind after search.

smb_param[13] findnext_FileName|] Beginning of name of file to resume

search.

smb_param]] smb_datal] Additional FileInfoLevel-dependent
match information. For a search
requiring extended attribute

matching the data buffer contains
the FEALIST data for the seach.

Secondary Re quest Format

There may be zero or more of these.

smb_wct
smb_tpscnt
smb_tdscnt
smb_pscnt
smb_psoff
smb_psdisp
smb_dscnt
smb_dsoff
smb_dsdisp
smb_fid
smb_bcc

smb_datal[]

226
Page 244 of 267

Value =9.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Value = 0. All parameters in primary request.

Value = 0. No parameters in secondary request.

Value = 0. No parameters in secondary request.
Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.
Byte displacement for these data bytes.

Search handle returned from TRANSACTZ_FINDFIRST
Total bytes following including pad bytes.

Data bytes (size = smb_dscnt).

X/0Open CAE Specification (1992)

Extended 2.0 Protocol SMBtransZ2 TRANSACTZ _FINDNEXT

First Response Format

smb_wct Value = 10.

smb_tprent Value = 6.

smb_tdrent Total length of return data buffer.

smb_rsvd Reserved. Must be zero.

smb_prent Number of parameter bytes returned in this buffer.
smb_proff Offset from the start of an SMB header to the parameter bytes.
smb_prdisp Value = 0. Byte displacement for parameter bytes.
smb_drent Number of data bytes returned in this buffer.

smb_droff Offset from the start of an SMB header to the data bytes.
smb_drdisp Byte displacement for these data bytes.

smb_suwcnt Value = 0. No setup return fields.

smb_bcc Total bytes following including pad bytes.

smb_param]] The parameter block for the TRANSACTZ_FINDNEXTfunction response is the
find next-specific return information in the following format:

Location Name Meaning
:smb_param[O] findnext_searchcount Number of matching entries found. .
smb_param[l] findnext_eos End of search indicator.
smb_param[2] findnext_offerror Error offset if EA error.
]

smb_param[3] findfirst_lastname If zero, LMX server does not require
findnext_FileName[] in order to continue
search. If not zero, offset from start of
returned data to filename of last found
entry returned.
smb_param[4] smb_datal] Return data bytes (size = smb_dscnt).
The data block contains the level-
dependent information about the
matches found in the search. If bit 2 in
the findfirst_flags is set, each returned file
descriptor block will be proceeded by a
four-byte resume key.

Subse quent Response Format

smb_wct Value = 10.
smb_tprent Value = 6.
smb_tdrent Total length of return data buffer.
smb_rsvd Reserved. Must be zero.
smb_prent Value = 0.
smb_proff Value = 0.
smb_prdisp Value = 0.
Protocols for X/Open PC Interworking: SMB, Version 2 227

Page 245 of 267

TRANSACTZ _FINDNEXT Extended 2.0 Protocol SMBtrans?2

smb_drent
smb_droff
smb_drdisp
smb_suwcnt
smb_bcc

smb_datal]

228
Page 246 of 267

Number of data bytes returned in this buffer.

Offset from the start of an SMB header to the data bytes.
Byte displacement for these data bytes.

Value = 0. No setup return fields.

Total bytes following including pad bytes.

Return data bytes (size = smb_dscnt). The data block contains the level-
dependent information about the matches found in the search. If bit 2 in the
findfirst_flags is set, each returned file descriptor block will be proceeded by a
four-byte resume key.

X/0Open CAE Specification (1992)

Extended 2.0 Protocol SMBtransZ2 TRANSACTZ2_QFSINFO

16.5 TRANSACT2_QFSINFO

The function code TRANSACTZ_QFSINFO in smb_setup[0] in the primary SMBtransZ requests
identifies a request to query information about a file system.

Primary Request Format

smb_wct Value = 15.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_mprent Maximum return parameter length.

smb_mdrcnt Maximum return data length.

smb_msrcnt Value = 0. No setup fields to return.

smb_flags Bit 0 and bit 1 must be zero.

smb_timeout Value = 0. Not used for SMBtrans2(TRANSACTZ2_QFSINFOQ).
smb_rsvdl Reserved. Must be zero.

smb_pscnt Value = 2. Parameters are in primary request.

smb_psoff Offset from the start of an SMB header to the parameter bytes.
smb_dscnt Value = 0. No data sent with SMBtrans2(TRANSACTZ2_QFSINFO).
smb_dsoff Value = 0. No data sent with gfsinfo.

smb_suwcnt Value = 1.

smb_setup[0] Value = TRANSACTZ_QFSINFO.

smb_bcc Total bytes following including pad bytes.

smb_param]] The parameter block for the TRANSACTZ_QFSINFO function is the qfsinfo-

specific information in the following format:

Location Name Meaning

'smb_param[O—l] gSinfo_FSInfoLevel Level of information required. Refer to
DosQFileInfo in the Microsoft OS/2
Programmer’s Reference, Volume 4.

Response Format

smb_wct Value = 10.
smb_tprent Value = 0.
smb_tdrcent Total length of return data buffer.
smb_rsvd Reserved. Must be zero.
smb_prent Value = 0. No return parameter bytes for TRANSACTZ_QFSINFO.
smb_proff Offset from the start of an SMB header to the parameter bytes.
smb_prdisp Value = 0. Byte displacement for parameter bytes.
smb_drent Number of data bytes returned in this buffer.
Protocols for X/Open PC Interworking: SMB, Version 2 229

Page 247 of 267

TRANSACTZ_QFSINFO Extended 2.0 Protocol SMBtrans?2

smb_droff Offset from the start of an SMB header to the data bytes.

smb_drdisp Byte displacement for these data bytes.

smb_suwcnt Value = 0. No setup return fields.

smb_bcc Total bytes following including pad bytes.

smb_datal] Return data bytes (size = smb_dscnt). The data block contains the level-

dependent information about the file system.

230 X/0Open CAE Specification (1992)
Page 248 of 267

Extended 2.0 Protocol SMBtrans? TRANSACT? SETFSINFO

16,6 TRANSACT2_SETFSINFO

The function code TRANSACTZ_SETFSINFO in smb_setup[0] in the primary SMBtransZ2 requests
identifies a request to set information for a file system subtree.

Primary Request Format

smb_wct
smb_tpscnt
smb_tdscnt
smb_mprent
smb_mdrcnt
smb_msrcnt
smb_flags
smb_timeout
smb_rsvdl
smb_pscnt
smb_psoff
smb_dscnt
smb_dsoff
smb_suwcnt
smb_setup[0]
smb_bcc

smb_param]]

smb_datal]

Value = 15.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Maximum return parameter length.

Value = 0. No data returned.

Value = 0. No setup fields to return.

Bit 0 and bit 1 must be zero.

Value = 0. Not used for setfsinfo.

Reserved. Must be zero.

Value = 4. All parameters must be in primary request.
Offset from the start of an SMB header to the parameter bytes.
Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.
Value = 1.

Value = TRANSACTZ_SETFSINFO.

Total bytes following including pad bytes.

The parameter block for the TRANSACTZ_SETFSINFO function is the
setfsinfo-specific information in the following format:

Location Name Meaning

;mb_param[O—l] setBBinfo_FSInfoLevel Level of information provided. Refer to
DosQFileInfo in the Microsoft OS/2
Programmer’s Reference, Volume 4.

Level-dependent file system information.

Secondary Request Format

There may be zero or more of these.

smb_wct Value = 9.
smb_tpscnt Total number of parameter bytes being sent.
smb_tdscnt Total number of data bytes being sent.
smb_pscnt Value = 0. All parameters in primary request.
smb_psoff Value = 0. No parameters in secondary request.
smb_psdisp Value = 0. No parameters in secondary request.
Protocols for X/Open PC Interworking: SMB, Version 2 231

Page 249 of 267

TRANSACTZ_SETFSINFO

232

smb_dscnt
smb_dsoff
smb_dsdisp
smb_fid
smb_bcc

smb_datal[]

Response Format

smb_wct
smb_tprent
smb_tdrcent
smb_rsvd
smb_prent
smb_proff
smb_prdisp
smb_drent
smb_droff
smb_drdisp
smb_suwcnt

smb_bcc

Page 250 of 267

Extended 2.0 Protocol SMBtrans?

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.
Byte displacement for these data bytes.

Value = Oxffff. No FID in request.

Total bytes following including pad bytes.

Data bytes (size = smb_dscnt).

Value = 10.

Value = 0.

Value = 0. No data bytes.

Reserved. Must be zero.

Value = 0. No return parameters for setfsinfo.
Offset from the start of an SMB header Lo the parameter bytes.
Value = 0. Byte displacement for parameter bytes.
Value = 0. No data bytes.

Value = 0. No data bytes.

Value = 0. No data bytes.

Value = 0. No setup return fields.

Value = 0.

X/0Open CAE Specification (1992)

Extended 2.0 Protocol SMBtransZ2 TRANSACTZ_QPATHINFO

16.7 TRANSACT2_QPATHINFO

The function code TRANSACTZ_QPATHINFO in smb_setup[0] in the primary SMBtransZ requests
identifies a request to query information about specific file or subdirectory.

Primary Request Format

smb_wct
smb_tpscnt
smb_tdscnt
smb_mprent
smb_mdrcnt
smb_msrcnt
smb_flags
smb_timeout
smb_rsvdl
smb_pscnt
smb_psoff
smb_dscnt
smb_dsoff
smb_suwcnt
smb_setup[0]
smb_bcc

smb_param]]

smb_datal]

Value = 15.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Maximum return parameter length.

Maximum return data length.

Value = 0. No setup fields to return.

Bit 0 and bit 1 must be zero.

Value = 0. Not used for gpathinfo.

Reserved. Must be zero.

Value = smb_tpscnt. All parameters must be in primary request.
Offset from the start of an SMB header to the parameter bytes.
Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.
Value = 1.

Value = TRANSACTZ_QPATHINFO.

Total bytes following including pad bytes.

The parameter block for the TRANSACTZ_QPATHINFO function is the
gpathinfo-specific information in the following format:

Location Name Meaning

smb_param[0-1] qpathinfo_FSInfoLevel Level of information required. Refer
to DosQFileInfo in the Microsoft
0S/2 Programmer’s Reference,
Volume 4.

smb_param[2-5] qpathinfo_rsvd Reserved. Must be zero.
smb_param[6] qpathinfo_PathName[] File/directory name.

Additional FileInfoLevel-dependent information.

Secondary Request Format

There may be zero or more of these.

smb_wct Value = 9.
smb_tpscnt Total number of parameter bytes being sent.
smb_tdscnt Total number of data bytes being sent.
smb_pscnt Value = 0. All parameters in primary request.
Protocols for X/Open PC Interworking: SMB, Version 2 233

Page 251 of 267

TRANSACTZ_QPATHINFO

234

smb_psoff
smb_psdisp
smb_dscnt
smb_dsoff
smb_dsdisp
smb_fid
smb_bcc

smb_datal]

Extended 2.0 Protocol SMBtrans?

Value = 0. No parameters in secondary request.

Value = 0. No parameters in secondary request.
Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.
Byte displacement for these data bytes.

Value = Oxffff. No FID in request.

Total bytes following including pad bytes.

Data bytes (size = smb_dscnt).

First Response Format

smb_wct
smb_tprent
smb_tdrcnt
smb_rsvd
smb_prent
smb_proff
smb_prdisp
smb_drent
smb_droff
smb_drdisp
smb_suwcnt
smb_bcc

smb_param]]

smb_datal]

Value = 10.

Value = 2.

Total length of return data buffer.

Reserved. Must be zero.

Value = 2. Parameter bytes returned for TRANSACTZ_QFSINFO.
Offset from the start of an SMB header to the parameter bytes.
Value = 0. Byte displacement for parameter bytes.

Number of data bytes returned in this buffer.

Offset from the start of an SMB header to the data bytes.

Byte displacement for these data bytes.

Value = 0. No set up return fields.

Total bytes following including pad bytes.

The parameter block for the TRANSACTZ_QPATHINFO response is the
gpathinfo-specific return information in the following format:

Location Name

, Meaning
smb_param[0-1] qpathinfo_offerror Error offset if EA error.

Return data bytes (size = smb_dscnt). The data block contains the requested
level-dependent information about the path.

Subse quent Response Format

smb_wct
smb_tprent
smb_tdrcnt
smb_rsvd
smb_prent
smb_proff
smb_prdisp

Page 252 of 267

Value = 10.
Value = 2.
Total length of return data buffer.

Reserved. Must be zero.

Value = 0.
Value = 0.
Value = 0.

X/0Open CAE Specification (1992)

Extended 2.0 Protocol SMBtransZ2 TRANSACTZ_QPATHINFO

smb_drent
smb_droff
smb_drdisp

smb_suwcnt

Number of data bytes returned in this buffer.
Offset from the start of an SMB header to the data bytes.
Byte displacement for these data bytes.

Value = 0. No set up return fields.

smb_bcc Total bytes following including pad bytes.
smb_datal] Return data bytes (size = smb_dscnt). The data block contains the requested
level-dependent information about the path.
Protocols for X/Open PC Interworking: SMB, Version 2 235

Page 253 of 267

TRANSACTZ2 _SETPATHINFO Extended 2.0 Protocol SMBtransZ2

16.8 TRANSACT2_SETPATHINFO

The function code TRANSACTZ_SETPATHINFO in smb_setup[0] in the primary SMBtrans2
requests identifies a request to set information for a file or directory.

Primary Request Format

smb_wct Value = 15.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_mprent Maximum return parameter length.

smb_mdrcnt Value = 0. No data returned.

smb_msrcnt Value = 0. No setup fields to return.

smb_flags Bit 0 and bit 1 must be zero.

smb_timeout Value = 0. Not used for setpathinfo.

smb_rsvdl Reserved. Must be zero.

smb_pscnt Value = smb_tpscnt. All parameters must be in primary request.

smb_psoff Offset from the start of an SMB header to the parameter bytes.

smb_dscnt Number of data bytes being sent in this buffer.

smb_dsoff Offset from the start of an SMB header to the data bytes.

smb_suwcnt Value = 1.

smb_setup[0] Value = TRANSACTZ_SETPATHINFO.

smb_bcc Total bytes following including pad bytes.

smb_param]] The parameter block for the TRANSACTZ SETPATHINFO function is the
setpathinfo-specific information in the following format:
Location Name Meaning B
smb_param[0-1] setpathinfo_PathInfoLevel Information level supplied.
smb_param|(2-5] setpathinfo_rsvd Reserved. Must be zero.

smb_param[6] setpathinfo_pathname[] Pathname to set information on.

smb_data[] Additional FileInfolLevel-dependent information.

Secondary Re quest Format

There may be zero or more of these.

smb_wct Value = 9.
smb_tpscnt Total number of parameter bytes being sent.
smb_tdscnt Total number of data bytes being sent.
smb_pscnt Value = 0. All parameters in primary request.
smb_psoff Value = 0. No parameters in secondary request.
smb_psdisp Value = 0. No parameters in secondary request.
236 X/0Open CAE Specification (1992)

Page 254 of 267

Extended 2.0 Protocol SMBtrans? TRANSACTZ SETPATHINFO

smb_dscnt Number of data bytes being sent in this buffer.
smb_dsoff Offset from the start of an SMB header to the data bytes.
smb_dsdisp Byte displacement for these data bytes.

smb_fid Value = 0xffff. No FID in this request.

smb_bcc Total bytes following including pad bytes.

smb_datal] Data bytes (size = smb_dscnt).

Response Format

smb_wct Value = 10.

smb_tprent Value = 2.

smb_tdrent Value = 0. No data bytes.

smb_rsvd Reserved. Must be zero.

smb_prent Value = 2. Parameter bytes being returned.
smb_proff Ofset [rom the start of an SMB header Lo the parameter bytes.
smb_prdisp Value = 0. Byte displacement for parameter bytes.
smb_drent Value = 0. No data bytes.

smb_droff Value = 0. No data bytes.

smb_drdisp Value = 0. No data bytes.

smb_suwcnt Value = 0. No set up return fields.

smb_bcc Total bytes following including pad bytes.

smb_param|] The parameter block for the TRANSACTZ_SETPATHINFO function response is
the setpathinfo-specific return information in the following format:

Location Name Meaning

smb_param[0-1] setpathinfo_offerror Offset into FEALIST data of first error
which occurred while setting the
extended attributes.

Protocols for X/Open PC Interworking: SMB, Version 2 237
Page 255 of 267

TRANSACTZ_QFILEINFO

16.9

238

Extended 2.0 Protocol SMBtrans?

TRANSACT2_QFILEINFO

The function code TRANSACTZ_QFILEINFO in smb_setup[0] in the primary SMBtransZ2 requests
identifies a request to query information about a specific file.

Primary Re quest Format

smb_wct
smb_tpscnt
smb_tdscnt
smb_mprent
smb_mdrcnt
smb_msrcnt
smb_flags
smb_timeout
smb_rsvdl
smb_pscnt
smb_psoff
smb_dscnt
smb_dsoff
smb_suwcnt
smb_setup[0]
smb_bcc

smb_param]]

smb_data[]

Value = 15.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Maximum return parameter length.

Maximum return data length.

Value = 0. No setup fields to return

Bit 0 and bit 1 must be zero.

Value = 0. Not used for gfileinfo.

Reserved. Must be zero.

Value = 4 All parameters are in primary request.

Offset from the start of an SMB header to the parameter bytes.
Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.
Value = 1.

Value = TRANSACTZ_QFILEINFO.

Total bytes following including pad bytes.

The parameter block for the TRANSACTZ_QFILEINFO function is the
qgfileinfo-specific information in the following format:

Location Name Meaning

smb_param[0-1] dfileinfo_FileHandle FID.

smb_param(2-3] dfileinfo_FileInfoLevel Level of information required. Refer
to DosQFileInfo in the Microsoft
0S/2 Programmer’s Reference,
Volume 4.

Additional FileInfoLevel-dependent information.

Secondary Re quest Format

There may be zero or more of these.

smb_wct
smb_tpscnt
smb_tdscnt
smb_pscnt

smb_psoff

Page 256 of 267

Value = 9.

Total number of parameter bytes being sent.
Total number of data bytes being sent.
Value = 0.

Value = 0.

X/0Open CAE Specification (1992)

Extended 2.0 Protocol SMBtransZ2 TRANSACTZ_QFILEINFO

smb_psdisp Value = 0.

smb_dscnt Number of data bytes being sent in this buffer.
smb_dsoff Offset from the start of an SMB header to the data bytes.
smb_dsdisp Byte displacement for these data bytes.

smb_fid The FID.

smb_bcc Total bytes following including pad bytes.

smb_data[] Data bytes (size = smb_dscnb).

First Response Format

smb_wct Value = 10.

smb_tprent Value = 2.

smb_tdrent Total length of return data buffer.

smb_rsvd Reserved. Must be zero.

smb_prent Value = 2. No parameter bytes returned for gfileinfo.
smb_proff Offset from the start of an SMB header to the parameter bytes.
smb_prdisp Value = 0. Byte displacement for these parameter bytes.
smb_drent Number of data bytes returned in this buffer.

smb_droff Offset from the start of an SMB header to the data bytes.
smb_drdisp Byte displacement for these data bytes.

smb_suwcnt Value = 0. No set up return fields.

smb_bcc Total bytes following including pad bytes.

smb_param]] The parameter block for the TRANSACTZ_QFILEINFO response is the
qfileinfo-specific return information in the following format:

Location Name Meaning
smb_param[0-1] dfileinfo_offerror Error offset if EA error.

smb_datal] Return data bytes (size = smb_dscnt). The data block contains the requested
level-dependent information about the file.

Subsequent Response Format

smb_wct Value = 10.
smb_tprent Value = 2.
smb_tdrent Total length of return data buffer.
smb_rsvd Reserved. Must be zero.
smb_prent Value = 0.
smb_proff Value = 0.
smb_prdisp Value = 0.
smb_drent Number of data bytes returned in this buffer.
Protocols for X/Open PC Interworking: SMB, Version 2 239

Page 257 of 267

TRANSACTZ2_QFILEINFO Extended 2.0 Protocol SMBtransZ2

smb_droff Offset from the start of an SMB header to the data bytes.

smb_drdisp Byte displacement for these data bytes.

smb_suwcnt Value = 0. No set up return fields.

smb_bcc Total bytes following including pad bytes.

smb_datal[] Return data bytes (size = smb_dscnt). The data block contains the requested

level-dependent information about the file.

240 X/0Open CAE Specification (1992)
Page 258 of 267

Extended 2.0 Protocol SMBtrans? TRANSACTZ2 SETFILEINFO

16.10 TRANSACT2_SETFILEINFO

The function code TRANSACTZ_SETFILEINFO in smb_setup[0] in the primary SMBtrans2
requests identifies a request to set information for a specific file.

Primary Request Format

smb_wct Value = 15.

smb_tpscnt Total number of parameter bytes being sent.

smb_tdscnt Total number of data bytes being sent.

smb_mprent Maximum return parameter length.

smb_mdrcnt Value = 0. No data returned.

smb_msrcnt Value = 0. No setup fields to return.

smb_flags Bit 0 and bit 1 must be zero.

smb_timeout Value = 0. Not used for setfileinfo.

smb_rsvdl Reserved. Must be zero.

smb_pscnt Value = 6. Parameters must be in primary request.
smb_psoff Offset from the start of an SMB header to the parameter bytes.
smb_dscnt Number of data bytes being sent in this buffer.
smb_dsoff Offset from the start of an SMB header to the data bytes.
smb_suwcnt Value = 1.

smb_setup[0] Value = TRANSACTZ_SETFILEINFO.
smb_bcc Total bytes following including pad bytes.
smb_param]] The parameter block for the TRANSACTZ SETFILEINFO function is the

setfileinfo-specific information in the following format:

Location Name Meaning

smb_param[0-1] setfileinfo_FileHandle FID.

smb_param[2-3] setfileinfo_FileInfoLevel Level of information required. Refer
to DosQFileInfo in the Microsoft
0S/2 Programmer’s Reference,
Volume 4.

smb_param[4-5] setfileinfo_IOFlag Flag field:
0x0010 Write through.
0x0020 No cache.

smb_datal] Additional FileInfoLevel-dependent information. For level = 2, smb_datal]
contains the FEALIST structure to set for this file.

Protocols for X/Open PC Interworking: SMB, Version 2 241
Page 259 of 267

TRANSACTZ_SETFILEINFO

Extended 2.0 Protocol SMBtrans?

Secondary Re quest Format

There may be zero or more of these.

smb_wct
smb_tpscnt
smb_tdscnt
smb_pscnt
smb_psoff
smb_psdisp
smb_dscnt
smb_dsoff
smb_dsdisp
smb_fid
smb_bcc

smb_datal[]

Response Format

smb_wct
smb_tprent
smb_tdrcent
smb_rsvd
smb_prent
smb_proff
smb_prdisp
smb_drent
smb_droff
smb_drdisp
smb_suwcnt
smb_bcc

smb_param]

Page 260 of 267

Value =9.

Total number of parameter bytes being sent.
Total number of data bytes being sent.

Value = 0.

Value = 0. No parameters in secondary request.
Value = 0.

Number of data bytes being sent in this buffer.
Offset from the start of an SMB header to the data bytes.
Byte displacement for these data bytes.

The FID.

Total bytes following including pad bytes.

Data bytes (size = smb_dscnt).

Value = 10.

Value = 2.

Value = 0. No data bytes.

Reserved. Must be zero.

Value = 2. Parameter bytes being returned.

Offset from the start of an SMB header to the parameter bytes.
Value = 0. Byte displacement for these parameter bytes.
Value = 0. No data bytes.

Value = 0. No data bytes.

Value = 0. No data bytes.

Value = 0. No set up return fields.

Total bytes following including pad bytes.

The parameter block for the TRANSACTZ_SETFILEINFO function response is
the setfileinfo-specific return information in the following format:

Location Name Meaning

Smb_param[O—l] setfileinfo_offerror Offset into FEALIST data of first error
which occurred while setting the
extended attributes.

X/0Open CAE Specification (1992)

Extended 2.0 Protocol SMBtrans? TRANSACTZ2 FINDNOTIFYFIRST

16.11 TRANSACT2_FINDNOTIFYFIRST

The function code TRANSACTZ_FINDNOTIFYFIRST in smb_setup[0] in the primary SMBtrans2
request identifies a request to commence monitoring changes to a specific file or directory.

Primary Request Format

smb_wct
smb_tpscnt
smb_tdscnt
smb_mprent
smb_mdrcnt
smb_msrcnt
smb_flags
smb_timeout
smb_rsvdl
smb_pscnt
smb_psoff
smb_dscnt
smb_dsoff
smb_suwcnt
smb_setup[0]
smb_bcc

smb_param]]

smb_datal]

Value = 15.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Maximum return parameter length.

Maximum return data length.

Value = 0. No setup fields to return.

Bit 0 and bit 1 must be zero.

Specifies duration to wait for changes.

Reserved. Must be zero.

Value = tpscnt. All parameters must be in primary request.
Offset from the start of an SMB header to the parameter bytes.
Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.
Value = 1.

Value = TRANSACTZ_FINDNOTIFYFIRST

Total bytes following including pad bytes.

The parameter block for the TRANSACTZ_FINDNOTIFYFIRST function is the
find first-specific information in the following format:

Location Name Meaning

smb_param[0-1] findnfirst_Attribute Search attribute.
smb_param[2-3] findnfirst_ChangeCount Number of changes to wait for.
smb_param[4-5] findnfirst_Level Information level required.
smb_param[6-9] findfirst_rsvd Reserved. Must be zero.

smb_param[10] findnfirst_PathSpec[] Path to monitor.

Additional level-dependent match data.

Secondary Request Format

There may be zero or more of these.

smb_wct
smb_tpscnt
smb_tdscnt
smb_pscnt

smb_psoff

Value = 9.

Total number of parameter bytes being sent.
Total number of data bytes being sent.

Value = 0. All parameters in primary request.

Value = 0. No parameters in secondary request.

Protocols for X/Open PC Interworking: SMB, Version 2 243

Page 261 of 267

TRANSACTZ_FINDNOTIFYFIRST

244

smb_psdisp
smb_dscnt
smb_dsoff
smb_dsdisp
smb_fid
smb_bcc

smb_data[]

Extended 2.0 Protocol SMBtrans?

Value = 0. No parameters in secondary request.
Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.
Byte displacement for these data bytes.

Value = 0xffff. No FID in this request.

Total bytes following including pad bytes.

Data bytes (size = smb_dscnt).

First Response Format

smb_wct
smb_tprent
smb_tdrent
smb_rsvd
smb_prent
smb_proff
smb_prdisp
smb_drent
smb_droff
smb_drdisp
smb_suwcnt
smb_bcc

smb_param]]

smb_datal]

Value = 10.

Value = 6.

Total length of return data buffer.

Reserved. Must be zero.

Number of parameter bytes returned in this buffer.
Offset from the start of an SMB header to the parameter bytes.
Value = 0. Byte displacement for these parameter bytes.
Number of data bytes returned in this buffer.

Offset from the start of an SMB header to the data bytes.
Byte displacement for these data bytes.

Value = 0. No set up return fields.

Total bytes following including pad bytes.

The parameter block for the TRANSACTZ FINDNOTIFYFIRST function
response is the find first-specific return information in the following format:

Location Name Meaning

:smb_param[O—l] findnfirst_handle Monitor handle.
smb_param(2-3] findnfirst_changecount Number of changes which occurred
within timeout.

smb_param[4-5] findnfirst_offerror Error offset if EA error.

Data bytes (size = smb_dscnt). The data block contains the level-dependent
information about the changes which occurred .

Subse quent Response Format

smb_wct
smb_tprent
smb_tdrent
smb_rsvd
smb_prent

smb_proff

Page 262 of 267

Value = 10.

Value = 6.

Total length of return data buffer.
Reserved. Must be zero.

Value = 0.

Value = 0.

X/0Open CAE Specification (1992)

Extended 2.0 Protocol SMBtrans? TRANSACTZ2 FINDNOTIFYFIRST

smb_prdisp Value = 0.

smb_drent Number of data bytes returned in this buffer.

smb_droff Offset from the start of an SMB header to the data bytes.

smb_drdisp Byte displacement for these data bytes.

smb_suwcnt Value = 0. No set up return fields.

smb_bcc Total bytes following including pad bytes.

smb_data[] Data bytes (size = smb_dscnt). The data block contains the level-dependent

information about the changes which occurred.

Protocols for X/Open PC Interworking: SMB, Version 2 245
Page 263 of 267

TRANSACTZ2 FINDNOTIFYNEXT Extended 2.0 Protocol SMBtransZ2

16.12 TRANSACT2_FINDNOTIFYNEXT

The function code TRANSACTZ_FINDNOTIFYNEXT in smb_setup[0] in the primary SMBtrans2
request identifies a request to continue monitoring changes to a file or directory specified by a
TRANSACT _FINDNOTIFYFIRSTrequest.

Primary Request Format

smb_wct
smb_tpscnt
smb_tdscnt
smb_mprent
smb_mdrcnt
smb_msrcnt
smb_flags
smb_timeout
smb_rsvdl
smb_pscnt
smb_psoff
smb_dscnt
smb_dsoff
smb_suwcnt
smb_setup[0]
smb_bcc

smb_param]]

smb_datal]

Value = 15.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Maximum return parameter length.

Maximum return data length.

Value = 0. No setup fields to return.

Bit 0 and bit 1 must be zero.

Duration of monitor period.

Reserved. Must be zero.

Value = 0. All parameters in primary request.

Offset from the start of an SMB header to the parameter bytes.
Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.
Value = 1.

Value = TRANSACTZ_FINDNOTIFYNEXT

Total bytes following including pad bytes.

The parameter block for the TRANSACTZ_FINDNOTIFYNEXT function is the
find next-specific information in the following format:

Location Name Meaning

Smb_param[O-l] findnnext_DirHandle Directoxjy monitor handle.
smb_param[2-3] findnnext_ChangeCount Number of changes to wait for.

Data bytes (size = smb _dscnt). Additional level-dependent monitor
information.

Secondary Request Format

There may be zero or more of these.

smb_wct
smb_tpscnt
smb_tdscnt
smb_pscnt
smb_psoff
smb_psdisp

246
Page 264 of 267

Value =9.

Total number of parameter bytes being sent.
Total number of data bytes being sent.

Value = 0. All parameters in primary request.
Value = 0. No parameters in secondary request.

Value = 0. No parameters in secondary request.

X/0Open CAE Specification (1992)

Extended 2.0 Protocol SMBtrans?

smb_dscnt
smb_dsoff
smb_dsdisp
smb_fid
smb_bcc

smb_datal]

TRANSACT2 _FINDNOTIFYNEXT

Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.
Byte displacement for these data bytes.

Search handle.

Total bytes following including pad bytes.

Data bytes (size = smb_dscnt).

First Response Format

smb_wct
smb_tprent
smb_tdrent
smb_rsvd
smb_prent
smb_proff
smb_prdisp
smb_drent
smb_droff
smb_drdisp
smb_suwcnt
smb_bcc

smb_param|]

smb_datal]

Value = 10.

Value = 4.

Total length of return data buffer.

Reserved. Must be zero.

Number of parameter bytes returned in this buffer.
Ofset from the start of an SMB header Lo the parameter bytes.
Value = 0. Byte displacement for these parameter bytes.
Number of data bytes returned in this buffer.

Offset from the start of an SMB header to the data bytes.
Byte displacement for these data bytes.

Value = 0. No set up return fields.

Total bytes following including pad bytes.

The parameter block for the TRANSACTZ _FINDNOTIFYNEXT function
response is the find notify next-specific return information in the following
format:

Location Name

:smb_param[O—l] findnnext_changecount Number of changes during the
monitor period.

Meaning

smb_param[2-3] findnnext_offerror Error offset if EA error.

Data bytes (size = smb_dscnt). The data block contains the level-dependent
information about the changes which occurred.

Subsequent Response Format

Page 265 of 267

smb_wct Value = 10.
smb_tprent Value = 4.
smb_tdrent Total length of return data buffer.
smb_rsvd Reserved. Must be zero.
smb_prent Value = 0.
smb_proff Value = 0.
smb_prdisp Value = 0.
Protocols for X/Open PC Interworking: SMB, Version 2 247

TRANSACTZ2 _FINDNOTIFYNEXT Extended 2.0 Protocol SMBtrans?2

smb_drent Number of data bytes returned in this buffer.

smb_droff Offset from the start of an SMB header to the data bytes.

smb_drdisp Byte displacement for these data bytes.

smb_suwcnt Value = 0. No set up return fields.

smb_bcc Total bytes following including pad bytes.

smb_datal] Data bytes (size = smb_dscnf). The data block contains the level-dependent

information about the changes which occurred.

248 X/Open CAE Specification (1992)
Page 266 of 267

Extended 2.0 Protocol SMBtransZ2 TRANSACTZ2 _MKDIR

16.13 TRANSACT2_MKDIR

The function code TRANSACTZ2_MKDIR in smb_setup[0] in the primary SMBtransZ2 requests
identifies a request to create a directory with extended attributes.

Primary Request Format

smb_wct
smb_tpscnt
smb_tdscnt
smb_mprent
smb_mdrcnt
smb_msrcnt
smb_flags
smb_timeout
smb_rsvdl
smb_pscnt
smb_psoff
smb_dscnt
smb_dsoff
smb_suwcnt
smb_setup[0]
smb_bcc

smb_param]]

smb_datal[]

Value = 15.

Total number of parameter bytes being sent.

Total number of data bytes being sent.

Maximum return parameter length.

Value = 0. No data returned.

Value = 0. No setup fields to return.

Bit 0 and bit 1 must be zero.

Value = 0.

Reserved. Must be zero.

Value = 0. All parameters in primary request.

Offset from the start of an SMB header to the parameter bytes.
Number of data bytes being sent in this buffer.

Offset from the start of an SMB header to the data bytes.
Value = 1.

Value = TRANSACTZ_MKDIR.

Total bytes following including pad bytes.

The parameter block for the TRANSACTZ MKDIR function is the mkdir-
specific information in the following format:

Location Name Meaning

;mb_param[O—B] mkdir_rsvd Reserved. Must be zero.
smb_param[4] mkdir_dirname[] Beginning of directory name.

Data bytes (size = smb_dscnt). FEALIST structure for the directory to be
created.

Secondary Request Format

There may be zero or more of these.

smb_wct Value = 9.
smb_tpscnt Total number of parameter bytes being sent.
smb_tdscnt Total number of data bytes being sent.
smb_pscnt Value = 0. All parameters in primary request.
smb_psoff Value = 0. No parameters in secondary request.
smb_psdisp Value = 0. No parameters in secondary request.
Protocols for X/Open PC Interworking: SMB, Version 2 249

Page 267 of 267

