US005856822A

United States Patent [(1] Patent Number: 5,856,822
Du et al. 451 Date of Patent: Jan. 5, 1999
[54] TOUCH-PAD DIGITAL COMPUTER Primary Examiner—Steven J. Saras

POINTING-DEVICE
[75] Inventors: Sterling S. Du, Palo Alto; Yung-Yu
Joe Lee, San Jose, both of Calif.
[73] Assignee: 02 Micro, Inc., Santa Clara, Calif.
[21] Appl. No.: 549,422
[22] Filed: Oct. 27, 1995
[51] It CLE e G09G 5/08
[52] US. Cl e 345/145; 345/157; 345/173
[58] Field of Searchccccccoeecnenenncneee 345/157, 158,
345/159, 173, 174, 175, 179, 180, 145
[56] References Cited
U.S. PATENT DOCUMENTS
4,734,685 3/1988 Watanabeccccocevveverinvennne 345/157
5,305,017 4/1994 Gerpheide 345/174
5,327,161 7/1994 Logan et al. 345/157
5424756 6/1995 O et Al werorrereeeeeererrersreeen 345/158

OTHER PUBLICATIONS

Diehl, Stanford, “Touchpads to Navigate By,” Byte, p. 150,
Oct. 1995.

Assistant Examiner—David Lewis
Attorney, Agent, or Firm—Donald E. Schreiber

[57] ABSTRACT

A touch-pad digital computer pointing-device, for control-
ling a position of a cursor appearing on a display screen of
a digital computer, senses and resolves respective locations
within an active area at which concurrent multi-finger con-
tacts occur. Multi-finger contacts with the active area acti-
vate or deactivate a drag-lock operating mode, computer
power conservation, and other touch-pad operating charac-
teristics such as the touch-pad’s sensitivity to finger contact.
The touch-pad also senses a velocity and direction for finger
contact with the active area for use in transmitting data to the
computer which effects continuous cursor movement across
the computer’s display screen in a direction fixed by the
initial direction of contact movement across the active area.
While there is no finger contact with the active area, the
touch-pad monitors the active area and adjusts its operation
to compensate for changes in the surrounding environment
such as changes in temperature, humidity and atmospheric
pressure.

1 Claim, 5 Drawing Sheets

-1

I
|
I
|
I
I
!
I
~

I
I
| 284—21 |

N

2894

&S

TCL EXHIBIT 1024
Page 1 of 42

5,856,822

Sheet 1 of 5

Jan. 5, 1999

U.S. Patent

{

H
\
W

f1G.

*

O
L

TCL EXHIBIT 1024

Page 2 of 42

5,856,822

Sheet 2 of 5

Jan. 5, 1999

U.S. Patent

A TR J_
Nl |
_
_
. ¢]
. |
[] NNN § N “
naiy !
Buyo e |
%20[9 N 967 _
0| smy-A w N] .
" B _
|
I I g~ %
W Wh w2 L LS
o — —_— |
R — JE— _ NOY AVY
— 1ap022 — .ap029 | .
Inauy — mw&nm — %x<|m _ TAYA ¢
bunog — — _ 16308
%901 — __ — - |1 ~
| sxy—x Nz — W — W | 817
nSN —~ o%_n 91 I
le "
|
,,,,,,,,, =W]

: JI

0

D¢l

TCL EXHIBIT 1024

Page 3 of 42

5,856,822

Sheet 3 of 5

Jan. 5, 1999

U.S. Patent

TCL EXHIBIT 1024

Page 4 of 42

U.S. Patent Jan. 5, 1999 Sheet 4 of 5 5,856,822

FIG. 4

AT
-
— |
, ATh
i ‘ |
- 176
| . i_—zga=_=: ——— =188
TN T T e T T T T 8k
|] |
| T A
L | A9
] 4 |
-]] — |
nﬂmmn“"ﬂmu”umﬂ“ﬁ“"lml"
uuBuLL |
|

242~

TCL EXHIBIT 1024
Page 5 of 42

U.S. Patent Jan. 5, 1999 Sheet 5 of 5 5,856,822
42
J
20
974 212 | & ~276 778
&2 6:?> Touch éﬁ Auxilié?y'lnput
Host Computer 3 Pad Jevice
M(]m PCB OO OoTomon
< >‘IJJJIIIIIIIII E—_—
Illllllllllllljl " EB]""
\-268
302

— T — T C T — T —

// \\ | // \\ [// \\ | // \\ | // \\
\—-.@/:\}-L/:\}-L/:\-:ii/:\éi/
B I__"'_/_ e {______/_ L l__:‘___/__ L _____/_ L ’_____/_]

\ \ \ \
312 316 322 326 308
AY
5 2
18)X
B 7/_"_\? /—‘ r 294 296 ‘:—\ 7/_*_\?]
\ 22, | |\ 2D,
N_ 7 Jl ! ~_~

TCL EXHIBIT 1024
Page 6 of 42

5,856,822

1

TOUCH-PAD DIGITAL COMPUTER
POINTING-DEVICE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to pointing-
devices used in conjunction with digital computer displays,
and, more particularly, to small touch-pads which, in
response to a finger’s movement across a touch-pad’s active
area, cause motion of a cursor across a computer’s display
screen.

2. Description of the Prior Art

Pointing-devices for controlling a cursor on a digital
computer’s display screen are essential for using a computer
that employs a graphic user interface (“GUI”). Various
different types of pointing-devices are available such as
mice, trackballs, joysticks, digitizer tablets and touch-pads.
Each of these different devices exhibits certain limitations.

For example, operating a mouse requires an appreciable
amount of free area on a relatively smooth work surface
immediately adjacent to the computer. Sliding, i.e.
translating, a mouse across such a work surface rolls a ball
that is secured within the mouse, and that contacts the
surface. Rolling of the ball within the mouse effects a
corresponding movement of the cursor across the display
screen. Moreover, a computer program that receives the
mouse’s output signal may filter the mouse’s signal to
provide special effects. For example, the same translation of
a mouse may move the cursor a greater or lesser distance
across the computer’s screen depending upon the speed of
the mouse’s translation. However, even with such filtering
and even with an appreciable amount of free work surface
area, achieving a desired cursor movement frequently
requires lifting the mouse and moving it through the air
without touching the work surface.

A trackball essentially is a mouse turned upside down.
Consequently, rather than rolling a ball by translating the
trackball’s base across a surface, the trackball’s base
remains fixed and one rolls the ball directly with a finger.
Consequently, a trackball enjoys an advantage over a mouse
in that it requires only a fixed amount of space on a desk, or
in a laptop or notebook personal computer. However, a
trackball experiences problems with contamination because
it must have an upward facing opening around the ball
through which dust particles may enter its mechanism.
Trackballs may also experience contamination problems if
they are manipulated by a dirty finger.

A joystick is an elongated member that usually protrudes
upward from a fixed base. A joystick converts a displace-
ment of the elongated member from a pre-established neu-
tral position into a continuous movement of the cursor
displayed on a computer’s screen. Consequently, a displace-
ment of the joystick does not provide absolute control over
the cursor’s position as does the movement of a mouse or
trackball. Rather, at best a joystick controls only the direc-
tion and speed of the cursor’s movement. Therefore, several
successive joystick displacements may be required to posi-
tion a cursor at a desired location on a computer’s screen.

As contrasted with a mouse, a trackball, or a joystick; a
digitizer tablet permits immediately specifying, usually
using a special stylus, an exact position at which a cursor is
to be located on a computer’s display screen. However, the
one-to-one correlation between positions on a digitizer tab-
let’s working surface and positions on the computer’s dis-
play screen requires that an adequately high resolution

10

15

20

25

40

45

50

55

60

65

2

digitizer be a physically large device. Consequently, gener-
ally a digitizer tablet is unsuitable for use with a laptop or
notebook personal computer.

Particularly for laptop or notebook personal computers,
touch-pads alleviate many of the problems experienced with
other types of pointing-devices. Touch-pads are small digi-
tizer tablets that, similar to a mouse or trackball, provide
relative rather than absolute control over a cursor’s position
usually in response to a finger’s movement across the
touch-pad’s active area. Similar to a trackball, touch-pads
occupy only a small, fixed amount of work surface area.
Moreover, a touch-pad may be sealed so it doesn’t suffer
from the contamination problems generally experienced by
trackballs. However, because a touch-pad is physically
small, effecting large cursor movements across a computer’s
display screen may require several successive finger strokes
across the touch-pad’s active area. To address this particular
limitation of touch-pads, U.S. Pat. No. 5,327,161 (“the *161
patent”), which issued on an application filed by James D.
Logan and Blair Evans, discloses a touch-pad which, similar
to a joystick, causes a cursor on a computer’s display screen
to continue moving in a pre-established direction even
though finger movement across the touch-pad’s active area
halts. This patent discloses that continued cursor motion
occurs if a finger moving across the touch-pad’s active area
enters a pre-established border area at the perimeter of the
active area. Alternatively, this patent discloses that contin-
ued cursor motion can occur upon activation of a mechanical
“drag switch,” disposed beneath the touch-pad, in combi-
nation a finger movement across the touch-pad’s active area.

A limitation of the techniques for simulating a large
touch-pad active area disclosed in the *161 patent are that
inadvertently entering the border area, or inadvertently
pressing too hard on the touch-pad, automatically triggers
continued cursor motion. Consequently, at times the touch-
pad disclosed in the *161 patent may exhibit difficulty in
positioning a cursor analogous to the difficulty sometimes
experienced with a joystick. Moreover, dedication of the
touch-pad’s border area for sensing only continued cursor
motion reduces the amount of touch-pad active area that
provides relative cursor positioning.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a touch-
pad that requires no border area or a mechanical drag switch
for effecting continuous cursor movement across a comput-
er’s display screen.

Another object of the present invention is to provide a
touch-pad that provides both continuous cursor movement
across a computer’s display screen, and relative cursor
positioning throughout the touch-pad’s entire active area.

Another object of the present invention is to provide a
touch-pad that does not require pressing a key to effect
drag-lock operation.

Another object of the present invention is to provide a
touch-pad that can accept and utilize simultaneous multi-
finger contacts with the touch-pad’s active area.

Another object of the present invention is to provide a
touch-pad that permits operator control over a laptop or
notebook computer’s power management capabilities.

Another object of the present invention is to provide a
touch-pad that provides direct touch-pad control of the
touch-pad’s operating characteristics.

Another object of the present invention is to provide a
touch-pad that adapts its operation to environmental condi-
tions such as temperature, humidity, and atmospheric pres-
sure.

TCL EXHIBIT 1024
Page 7 of 42

5,856,822

3

Another object of the present invention is to provide a
touch-pad for laptop or notebook computers that facilitates
adding an external mouse or trackball as an auxiliary input
device.

Another object of the present invention is to provide a
touch-pad for laptop or notebook computers that permits
adding an external mouse or trackball as an auxiliary input
device while maintaining operation of all active computer
programs.

Another object of the present invention is to provide a
touch-pad for attachment to a host computer that includes
the preceding advantages, and which does not require the
use of a driver computer program executed by the host
computer.

Briefly the present invention is a touch-pad digital com-
puter pointing-device that permits controlling a position of
a cursor appearing on a display screen of a digital computer.
The touch-pad includes an active area that responds to both
single and concurrent multi-finger contacts. Furthermore,
the touch-pad senses and resolves respective locations
within the active area at which concurrent multi-finger
contacts occur. A computer port interface, included in the
touch-pad, responds to finger contacts with the active area
by transmitting data to a digital computer that indicates a
finger contact in the active area.

Accordingly, if the touch-pad is not presently operating in
a drag-lock operating mode, the touch-pad activates a drag-
lock operating mode if the touch pad senses a first contact
with the active area while concurrently sensing a second
contact within a pre-established specific location in the
active area. Alternatively, if the touch-pad is presently
operating in a drag-lock operating mode, while one finger
contacts another area on the touch-pad a subsequent contact
with the pre-established specific location deactivates the
drag-lock operating mode.

The touch-pad also responds to concurrent multi-finger
contacts within pre-established specific locations in the
active area that persist throughout a pre-established time-
interval. In one instance, such touch-pad operation transmits
a control signal to a digital computer coupled to the touch-
pad. The computer, particularly a laptop or notebook
computer, may respond to this control signal by activating or
deactivating a low-power “suspend” operating mode. In
other instances, such touch-pad operation alters various
touch-pad operating characteristics such as the touch-pad’s
sensitivity to finger contact.

The touch-pad also senses a velocity and direction at
which a contact to the touch-pad moves across the active
area. If the contact velocity exceeds a pre-established
threshold, the touch-pad alters a characteristic of data sub-
sequently transmitted to the digital computer. In particular,
after sensing such a high velocity contact with the active
area, upon the contact’s subsequently slowing down or even
becoming stationary, the touch-pad alters the transmitted
data to effect continuous cursor movement across the display
screen in a direction fixed by the initial direction of contact
movement across the active area.

If the touch-pad is not sensing a contact with the active
area, the touch-pad also records a quantity indicative of the
response of the active area to finger contact. The touch-pad
then uses the recorded quantity in adjusting a threshold for
sensing a subsequent contact with the active area. In this
way the touch-pad compensates for changes in environment
surrounding the touch-pad such as temperature, humidity
and atmospheric pressure.

Atouch-pad in accordance with the present invention may
be implemented in two distinctly different embodiments. In

10

15

20

25

30

35

40

45

50

55

60

65

4

one embodiment, the touch-pad is external to the digital
computer and communicates with the digital computer
through the computer’s serial port. In another embodiment,
particularly useful for a laptop or notebook computer, the
touch-pad is physically incorporated into the computer’s
structure. In such an integrated embodiment, the touch-pad
also provides a second serial port for coupling a mouse or
trackball that is external to the laptop or notebook computer.
Moreover, such an external auxiliary input device may be
plugged into the computer’s second serial port while com-
puter programs are executing, i.e the auxiliary input device
may be “hot plugged” into the computer.

These and other features, objects and advantages will be
understood or apparent to those of ordinary skill in the art
from the following detailed description of the preferred
embodiment as illustrated in the various drawing figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view depicting a touch-pad digital
computer pointing-device in accordance with the present
invention that is adapted for coupling to a serial port of a
laptop or notebook computer also depicted in FIG. 1;

FIG. 2 is an exploded, perspective view of a preferred
embodiment of an active area of the touch-pad depicted in
FIG. 1 that employs capacitance for sensing finger contact
with the active area;

FIG. 3, consisting of FIGS. 3a and 3b, is a block diagram
depicting electronic circuits included in a preferred embodi-
ment of the touch-pad that employs capacitance sensing;

FIG. 4 is a timing diagram depicting waveforms that
occur within the electronic circuits depicted in FIG. 3 as
those circuits capacitively sense a contact to the touch-pad’s
active area as depicted in FIG. 2;

FIG. § is a block diagram depicting a computer having a
touch-pad in accordance with the present invention inte-
grated therein;

FIG. 6 is a elevational view of a computer display screen
taken along the line 6—6 in FIG. 1 that graphically depicts
a drag-lock operation; and

FIG. 7 is a plan view depicting the touch-pad’s active area
illustrating pre-established specific locations within the
active area which permit access to special touch-pad func-
tions.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1, depicted there is a touch-pad in
accordance with the present invention referred to by the
general reference character 20. The touch-pad 20 includes a
2.64 inch by 2.0 inch active area 22 that is surrounded by an
escutcheon 24. Disposed at opposite ends of a relatively
wide front edge 26 of the escutcheon 24 are respectively a
left button 32 and a right button 34. The left and right
buttons 32 and 34 operate the same as left and right buttons
on a conventional digital computer mouse or trackball. The
touch-pad 20 also includes a cable 36 one end of which
passes through a rear edge 37 of the escutcheon 24. Secured
to the other end of the cable 36 is a serial-port connector 38.
The serial-port connector 38 permits connecting the touch-
pad 20 to a serial port of a digital computer such as a laptop
or notebook computer 42 depicted in FIG. 1. The computer
42 includes a display screen 44 that is secured within an
upper half 46 of the computer 42. During execution of a
computer program that employs a GUI, a cursor appears on
the display screen 44.

TCL EXHIBIT 1024
Page 8 of 42

5,856,822

5

Referring now to FIG. 2, the active area 22 consists of a
double sided printed circuit board 52, depicted with dashed
lines, that is approximately seventy one-hundredths (0.070)
of an inch thick. The printed circuit board 52 has an upper
surface 54 on which are preferably formed twenty-four (24)
parallel, elongated, electrically-conductive X-axis sensing-
traces 56. The X-axis sensing-traces 56 are aligned parallel
to a Y-axis 58 of the active area 22. As more clearly depicted
in FIG. 3b, each X-axis sensing-trace 56 includes a repeating
pattern consisting of a rectangularly-shaped bar 62 at one
end of which is a solid, circularly-shaped disk 64. Immedi-
ately adjacent disks 64 are spaced approximately 0.11 inches
apart, which is also the spacing between immediately adja-
cent X-axis sensing-traces 56. An annularly-shaped terminal
eyelet 66 terminates both ends of each X-axis sensing-trace
56 to permit forming an electrical connection thereto. A
separate guard ring 68, which surrounds the X-axis sensing-
traces 56, may also be disposed on the upper surface 54 of
the printed circuit board 52. If the printed circuit board 52
includes the guard ring 68, the guard ring 68 is electrically
connected to circuit ground.

Referring again to FIG. 2, the printed circuit board 52 has
a lower surface 74 on which are preferably formed eighteen
(18) parallel, elongated, electrically-conductive Y-axis
sensing-traces 76. The Y-axis sensing-traces 76 are aligned
parallel to a X-axis 78 of the active area 22. As more clearly
depicted in FIG. 3b, each Y-axis sensing-trace 76 includes a
repeating pattern consisting of a rectangularly-shaped bar 82
at one end of which is an annularly-shaped eyelet 84. Similar
to the X-axis sensing-traces 56, immediately adjacent eye-
lets 84 are spaced approximately 0.11 inches apart, which is
also the spacing between immediately adjacent Y-axis
sensing-traces 76. An annularly-shaped terminal eyelet 86
terminates both ends of each Y-axis sensing-trace 76 to
permit forming an electrical connection thereto.

As depicted in FIG. 3b, one terminal eyelet 66 and one
terminal eyelet 86 respectively of each of the X-axis
sensing-traces 56 and Y-axis sensing-traces 76 connects to a
cathode 92 of a diode 94. Anodes 96 of each of the diodes
94 connect in parallel to circuit ground 98. The other
terminal eyelet 66 and other terminal eyelet 86 respectively
of each of the X-axis sensing-traces 56 and Y-axis sensing-
traces 76 connects to a collector 102 of a PNP transistor 104.
An emitter 106 of each of the PNP transistors 104 connects
in parallel respectively either to a X-axis capacitance-
charging line 108, or to a Y-axis capacitance-charging line
112. In the preferred embodiment of the touch-pad 20 there
are four (4) X-axis capacitance-charging lines 108 and three
(3) Y-axis capacitance-charging lines 112. Each of the
X-axis capacitance-charging lines 108 and Y-axis
capacitance-charging lines 112 connects in parallel to the
emitters 106 of six (6) PNP transistors 104. The collectors
102 of the six (6) PNP transistors 104 connect respectively
to six (6) immediately adjacent X-axis sensing-traces 56 or
Y-axis sensing-traces 76. In this way, the twenty-four (24)
X-axis sensing-traces 56 are subdivided by the X-axis
capacitance-charging lines 108 into four (4) independent
groups each one of which includes six (6) X-axis sensing-
traces 56, while the eighteen (18) Y-axis sensing-traces 76
are subdivided by the Y-axis capacitance-charging lines 112
into three (3) independent groups each one of which also
includes six (6) Y-axis sensing-traces 76.

As illustrated in FIG. 3b, the diodes 94 and the PNP
transistors 104 are all enclosed between a dashed line 114
and a dashed line 116. Enclosing the diodes 94 and the PNP
transistors 104 between the dashed lines 114 and 116 illus-
trates that the diodes 94 and PNP transistors 104, together

10

15

20

25

30

35

40

45

50

55

60

65

6
with all other components of the touch-pad 20 depicted in
FIG. 3 that are located between the dashed lines 114 and 116,
are preferably all included in a single application specific
integrated circuit (“ASIC”).

Each of the X-axis capacitance-charging lines 108 and
each of the Y-axis capacitance-charging lines 112 connects
to a first terminal of a 390 kilo-ohm (“kQ”) resistor 122, and
to an anode 124 of a diode 126. A cathode 128 of each of the
diodes 126 and a second terminal of each resistor 122
connect in parallel to an output 132 of an inverter 134. As
illustrated in FIG. 3b, the resistors 122 and the diodes 126
are outside the dashed lines 114 and 116, and are therefore
preferably excluded from the ASIC. Depending upon the
state of a logic signal supplied either via a charge-X-axis-
trace line 136 or via a charge-Y-axis-trace line 138 to an
input 142 of each inverter 134, the electrical potential
present at the output 132 of each inverter 134 is either near
ground potential or near VCC, which is a negative voltage.

A base 146 of each of the PNP transistors 104 is coupled
through a resistor 152 to an anode 154 of a diode 156. A
cathode 158 of each of the diodes 156 is coupled either to
one (1) of twenty-four (24) X-axis select lines 1624 through
162x, or to one (1) of eighteen (18) Y-axis select lines 164a
through 164~

FIG. 4 depicts voltage waveforms that occur within the
electronic circuits depicted in FIG. 3. A line-charging-pulse
waveform 172 illustrates an electrical potential present at the
input 142 to any of the inverters 134. As described above,
while the input 142 is at a high electrical potential, the
electrical potential at the output 132 of the inverter 134 is
negative. The negative potential present at the output 132 is
coupled through the parallel connected resistor 122 and
diode 126 from the output 132 either to one of the X-axis
capacitance-charging lines 108, or to one of the Y-axis
capacitance-charging lines 112. The emitters 106 of the six
(6) PNP transistors 104 connected to the X-axis capacitance-
charging line 108 or to the Y-axis capacitance-charging line
112 receive the electrical potential present thereon. To
turn-on a particular PNP transistors 104, a negative potential
line-selection-pulse waveform 174 is applied to the cathode
158 of one of the diodes 156. Turning-on the PNP transistor
104 couples the negative potential present on the X-axis
capacitance-charging line 108 or on the Y-axis capacitance-
charging line 112 to the selected X-axis sensing-trace 56 or
Y-axis sensing-trace 76. A trace-voltage waveform 176 in
FIG. 4 illustrates the electrical potential thus imposed on the
selected X-axis sensing-trace 56 or Y-axis sensing-trace 76.

Upon the line-charging-pulse waveform 172 initially hav-
ing a high electrical potential and the line-selection-pulse
waveform 174 initially having a low electrical potential, the
trace-voltage waveform 176 present on the X-axis sensing-
trace 56 or on the Y-axis sensing-trace 76 immediately
begins charging toward a negative VCC potential. During
such charging of the X-axis sensing-trace 56 or Y-axis
sensing-trace 76, electrical current flows primarily through
the diode 126 of the parallel connected diode 126 and
resistor 122. Consequently, the X-axis sensing-trace 56 or
the Y-axis sensing-trace 76 charges comparatively swiftly
toward the VCC potential. Subsequently, when the line-
charging-pulse waveform 172 returns to a low electrical
potential while the line-selection-pulse waveform 174
remains at a low potential, the electrical potential present on
the X-axis sensing-trace 56 or on the Y-axis sensing-trace 76
immediately begins discharging back toward ground poten-
tial. However, during such discharging of the X-axis
sensing-trace 56 or Y-axis sensing-trace 76, the diode 126 is
“back-biased,” which prevents current flow through the

TCL EXHIBIT 1024
Page 9 of 42

5,856,822

7

diode 126. “Back-biasing” of the diode 126, consequently,
forces virtually all the electrical current to flow more slowly
through only the 390 kQ resistor 122.

If there exists no finger contact with the active area 22
immediately adjacent to the selected X-axis sensing-trace 56
or Y-axis sensing-trace 76, then the capacitance of the X-axis
sensing-trace 56 or Y-axis sensing-trace 76 is lower, and
therefore the electrical potential on the X-axis sensing-trace
56 or Y-axis sensing-trace 76 discharges more quickly
toward ground potential as indicated by a dashed-line seg-
ment 176a of the trace-voltage waveform 176. However, if
finger contact with the active area 22 exists immediately
adjacent to the X-axis sensing-trace 56 or to the Y-axis
sensing-trace 76, then the capacitance of the X-axis sensing-
trace 56 or Y-axis sensing-trace 76 increases, and therefore
the electrical potential on the X-axis sensing-trace 56 or
Y-axis sensing-trace 76 discharges more slowly as indicated
by a dashed-line segment 176b of the trace-voltage wave-
form 176.

Referring again to FIG. 3b, each of the X-axis
capacitance-charging lines 108 and Y-axis capacitance-
charging lines 112 connects respectively to an inverting
input 182 of a comparator 184. Consequently, the touch-pad
20 includes seven (7) comparators 184, four (4) comparators
184 for the four (4) groups of X-axis sensing-traces 56, and
three (3) comparators 184 for the three (3) groups of Y-axis
sensing-traces 76. A reference voltage VRef, having a poten-
tial approximately one-half that of VCC, is supplied to a
non-inverting input 186 of each of the comparators 184.
Each of the comparators 184 exhibits hysteresis so the
comparators 184 do not change state either until the elec-
trical potential present at its inverting input 182 is signifi-
cantly less than VRef, or is significantly greater than VRef.
The threshold voltages for changing state by the compara-
tors 184 are depicted in FIG. 4 by dashed, parallel com-
parator threshold-lines 1884 and 188b. Thus, as the X-axis
sensing-trace 56 or the Y-axis sensing-trace 76 initially
begins charging, as illustrated by the trace-voltage wave-
form 176, the electrical potential present at an output 192 of
the comparator 184 depicted in a comparator-output wave-
form 194 remains at a low potential until the trace-voltage
waveform 176 descends below the lower comparator
threshold-line 188a. After the trace-voltage waveform 176
crosses the comparator threshold-line 1884, the comparator-
output waveform 194 changes to a high electrical potential,
and remains at that high potential until the trace-voltage
waveform 176 subsequently rises above the comparator
threshold-line 188b. After the trace-voltage waveform 176
crosses the comparator threshold-line 1885, the comparator-
output waveform 194 returns to a low potential.

Referring now to FIG. 3a, the electrical potentials respec-
tively present at each output 192 of the comparators 184 are
respectively coupled either by an X-axis comparator-output
signal-line 202 or by a Y-axis comparator-output signal-line
204 to an input 206 respectively either of an X-axis clock-
gating circuit 212, or of an Y-axis clock-gating circuit 214.
Each X-axis clock-gating circuit 212, of which there are four
(4) (one X-axis clock-gating circuit 212 for each group of six
(6) X-axis sensing-traces 56), receives an eight (8) mega-
hertz (“MHz”) clock signal via a clock signal-line 216 from
a 80C51 microprocessor 218. Analogously, each Y-axis
clock-gating circuit 214, of which there are three (3) (one
Y-axis clock-gating circuit 214 for each group of six (6)
Y-axis sensing-traces 76), also receives the 8 MHz clock
signal from the microprocessor 218 via the clock signal-line
216.

While the electrical potential present at the output 192 of
the comparator 184 remains low as indicated by the

10

15

20

25

30

35

40

45

50

55

60

65

8

comparator-output waveform 194 in FIG. 4, the X-axis
clock-gating circuit 212 or the Y-axis clock-gating circuit
214 blocks the 8 MHz clock signal from reaching a clock
output 222. However, when the trace-voltage waveform 176
descends below the comparator threshold-line 1884 and the
comparator-output waveform 194 changes to a high
potential, the X-axis clock-gating circuit 212 or the Y-axis
clock-gating circuit 214 transmits the 8 MHz clock signal to
their respective clock outputs 222 as indicated by a clock-
output-signal waveform 224 in FIG. 4. The X-axis clock-
gating circuit 212 or the Y-axis clock-gating circuit 214
continues transmitting the 8 MHz clock signal to the clock
output 222 until the trace-voltage waveform 176 again rises
above the comparator threshold-line 1886 and the
comparator-output waveform 194 returns to a low electrical
potential. As is readily apparent from FIG. 4, if there does
not exist a finger contact to the active area 22 immediately
adjacent to the X-axis sensing-trace 56 or Y-axis sensing-
trace 76, the X-axis clock-gating circuit 212 or the Y-axis
clock-gating circuit 214 transmits fewer clock pulses from
the clock output 222 than are transmitted if a finger contacts
the active area 22 immediately adjacent to the X-axis
sensing-trace 56 or Y-axis sensing-trace 76.

Referring again to FIG. 3a, the clock outputs 222 of each
of the X-axis clock-gating circuits 212 and of the Y-axis
clock-gating circuits 214 are respectively connected either to
a X-axis clock-input 232 or to a Y-axis clock-input 234 of a
two-hundred and fifty-six (256) bit counter 236, of which
four (4) are included in the touch-pad 20. Each counter 236
receives a counter reset signal from the microprocessor 218
via a counter-reset signal-line 238. While the electrical
potential on the counter-reset signal-line 238 remains at a
high potential, as illustrated by the counter-reset-signal
waveform 242 in FIG. 4, the counters 236 do not respond to
clock signals present at the X-axis clock-input 232 or the
Y-axis clock-input 234. However, when the counter-reset-
signal waveform 242 changes to a low potential concurrent
with the line-charging-pulse waveform 172 also changing to
a low potential, the counters 236 begin counting 8 MHz
clock pulses present either at their X-axis clock-input 232 or
at their Y-axis clock-input 234. Moreover, the counters 236
then continue counting 8 MHz clock pulses until the trace-
voltage waveform 176 rises above the comparator threshold-
line 188b. Thus, when the line-selection-pulse waveform
174 returns to a high potential each of the counters 236 holds
a count that indicates the capacitance of the selected X-axis
sensing-trace 56 or Y-axis sensing-trace 76, i.e. that indi-
cates whether or not a finger contacted the active area 22
immediately adjacent to the X-axis sensing-trace 56 or
Y-axis sensing-trace 76.

As illustrated in FIG. 3a, the microprocessor 218, which
preferably is an 80C51 microprocessor manufactured by
Intel Corporation of Santa Clara, Calif., includes both a read
only memory (“ROM”) 252, and a random access memory
(“RAM”) 254. The ROM 252 stores a computer program
executed by the microprocessor 218 while the RAM 254
stores temporary data used by the computer program in
controlling the operation of the touch-pad 20, and in
exchanging communications with a digital computer via the
cable 36 and serial-port connector 38. As is well known to
those skilled in the art, the serial-port connector 38 and cable
36 also supply electrical power to the touch-pad 20 to
energize its operation.

The computer program executed by the microprocessor
218 senses the condition of the active area 22 by transmitting
control signals to the inverters 134 via the charge-X-axis-
trace line 136 or the charge-Y-axis-trace line 138, to the four

TCL EXHIBIT 1024
Page 10 of 42

5,856,822

9

(4) X-axis clock-gating circuits 212 and the three (3) Y-axis
clock-gating circuits 214 via the clock signal-line 216, and
to the four (4) counters 236 via the counter-reset signal-line
238; and by exchanging data with the counters 236, a X-axis
decoder 262, and a Y-axis decoder 264 via an address-and-
data bus 266. Data stored into the X-axis decoder 262 and
the Y-axis decoder 264 by the computer program executed
by the microprocessor 218 are decoded to provide signals
for selecting individual PNP transistors 104. The signals
generated by the X-axis decoder 262 and the Y-axis decoder
264 for selecting individual PNP transistors 104 are trans-
mitted from the X-axis decoder 262 to the X-axis PNP
transistors 104 via the X-axis select lines 1624 through 162x,
and are transmitted from the Y-axis decoder 264 to the
Y-axis PNP transistors 104 via the Y-axis select lines 164a
through 164~

To initiate sensing the condition of the active area 22, the
computer program executed by the microprocessor 218
transmits control signals via either the charge-X-axis-trace
line 136 or the charge-Y-axis-trace line 138 either to all four
(4) of the X-axis inverters 134 or to all three (3) Y-axis
inverters 134 to activate either all four (4) X-axis
capacitance-charging lines 108 or all three (3) Y-axis
capacitance-charging lines 112. Concurrently, the computer
program executed by the microprocessor 218 stores data via
the address-and-data bus 266 into either the X-axis decoder
262 or into the Y-axis decoder 264. The X-axis decoder 262
or the Y-axis decoder 264 respectively decodes such data to
select for charging one X-axis sensing-trace 56 or Y-axis
sensing-trace 76 out of each group of six (6) X-axis sensing-
traces 56 or Y-axis sensing-traces 76. Subsequently, the
computer program executed by the microprocessor 218
terminates charging of the four (4) selected X-axis sensing-
traces 56 or the three (3) selected Y-axis sensing-traces 76 by
changing the line-charging-pulse waveform 172 present
either on the charge-X-axis-trace line 136 or on the charge-
Y-axis-trace line 138 from a high to a low potential, while
concurrently releasing the counters 236 by changing the
counter-reset-signal waveform 242 present on the counter-
reset signal-line 238 from a high to a low potential. At the
end of the discharge interval, the computer program
executed by the microprocessor 218 stores data via the
address-and-data bus 266 either into the X-axis decoder 262
or into the Y-axis decoder 264 which de-selects the X-axis
sensing-traces 56 or the Y-axis sensing-traces 76, while
concurrently retrieving via the address-and-data bus 266 the
counts then present in each of the four (4) counters 236.

In this way the computer program executed by the micro-
processor 218 repetitively scans all the X-axis sensing-traces
56 and then all the Y-axis sensing-traces 76 to determine X
and Y coordinates at which one or more fingers contact the
active area 22. If in sensing the condition of the active area
22 the computer program executed by the microprocessor
218 senses finger contact at two or more immediately
adjacent X-axis sensing-traces 56 or immediately adjacent
Y-axis sensing-traces 76, it filters such data to assign a
unique X-axis and/or Y-axis coordinate to each finger con-
tact. Moreover, the computer program executed by the
microprocessor 218 may also analyze sensing finger contact
at two or more immediately adjacent X-axis sensing-traces
56 or Y-axis sensing-traces 76 to evaluate how much finger
pressure is applied to the active area 22.

If the computer program executed by the microprocessor
218 does not sense a finger contact with the touch-pad 20 it
begins recording data that indicates the capacitance of the
X-axis sensing-trace 56 and the Y-axis sensing-trace 76 in
the absence of a finger contact. If there is no finger contact

10

15

20

25

30

35

40

45

50

55

60

65

10

throughout a time interval that exceeds 2 milliseconds,
preferably 5 milliseconds, the computer program then
adjusts data values stored in the RAM 254 which specify a
threshold for sensing a finger contact with the active area 22.
In this way, the touch-pad 20 compensates for changes in
environment surrounding the touch-pad such as temperature,
humidity, and atmospheric pressure.

In addition to sensing individual and multiple finger
contacts to the active area 22 of the touch-pad 20, the
computer program executed by the microprocessor 218 also
exchanges data with the computer 42 via the cable 36 and
the serial-port connector 38. In effecting such exchanges of
data with the computer 42, the computer program executed
by the microprocessor 218 emulates operation of a conven-
tional mouse or trackball. Accordingly, the touch-pad 20
may be used with any computer 42 with which a conven-
tional mouse or trackball may be used.

While the touch-pad 20 has been described thus far as a
unit separate and distinct from the computer 42, it is readily
apparent that the touch-pad 20 may be physically incorpo-
rated into a laptop or notebook computer 42. Incorporation
of the touch-pad 20 into a computer 42 permits directly
coupling both an external keyboard 268 to a host computer
main printed circuit board (“PCB”) 274, and the touch-pad
20 to a primary serial port 272 of the main PCB 274, as
depicted in FIGS. 5. However, the touch-pad 20 thus incor-
porated into the computer 42 may also provide a secondary
serial port 276 for coupling to the computer 42 an external
auxiliary input device 278 such as a mouse or trackball. If
the active area 22 provides a secondary serial port 276 for a
computer 42, the computer program executed by the micro-
processor 218 in addition to communicating with the com-
puter 42 via the cable 36 and the serial-port connector 38,
also exchanges data with the auxiliary input device 278 For
a computer 42 having the configuration depicted in FIG. §,
both the touch-pad 20 and the auxiliary input device 278 are
active, and either may be used as an input device to the
computer 42. However, if both the touch-pad 20 and the
auxiliary input device 278 attempt to provide input data to
the computer 42 simultaneously, input data from the touch-
pad 20 takes precedence over that from the auxiliary input
device 278. Moreover, the auxiliary input device 278 may be
“hot plugged” into the secondary serial port 276 during
execution of computer programs by a microprocessor
included in the main PCB 274 without adversely impacting
the operation of such computer programs, and to immedi-
ately commence operation as an input device for controlling
cursor position.

The touch-pad 20 of the present invention is capable of
sensing and resolving concurrent contacts of multiple fingers
to the active area 22. That is, as the computer program
executed by the microprocessor 218 repetitively scans the
X-axis sensing-traces 56 and the Y-axis sensing-traces 76, if
two or more fingers concurrently contact the active area 22,
the computer program senses contacts either at two different
X-axis locations on the active area 22, or at two different
Y-axis locations, or at two different X-axis and two different
Y-axis locations. The ability of the computer program
executed by the microprocessor 218 to sense concurrent
multi-finger contacts with the active area 22 permits the
touch-pad 20 to perform a variety of useful functions in
response to such multi-finger contacts at different specific
locations within the active area 22.

Referring now to FIG. 6, depicted there is an elevational
view of the display screen 44 of the computer 42 depicted in
FIG. 1 on which appears a window-outline 282 generated by
a GUI. Window operations commonly permitted by a GUI

TCL EXHIBIT 1024
Page 11 of 42

5,856,822

11

include either moving the window-outline 282 to another
location on the display screen 44, or changing the size of the
window-outline 282. FIG. 6 graphically illustrates changing
the size of the window-outline 282 by positioning a double-
headed arrow 284 at a lower right-hand corner 286 of the
window-outline 282. Once the double-headed arrow 284
appears on the display screen 44, performing a “drag-lock”
operation by concurrently pressing both one button of a
conventional mouse or trackball while moving either the
mouse or the trackball permits enlarging or reducing the size
of the window-outline 282, as indicated by the dashed-line
window-outlines 2824 and 282b. Due to the small physical
size of the active area provided by touch-pads, it is awkward
to perform a drag-lock operation by pressing one button of
a conventional touch-pad while concurrently moving a fin-
ger across the conventional touch-pad’s active area.

Referring now to FIG. 7, the touch-pad 20 of the present
invention permits performing a drag-lock operation easily
by contacting one finger to the active area 22 while concur-
rently contacting a second finger within a pre-established
specific location in the active area 22. Specifically, a con-
current second finger contact 292a or 292b, respectively
illustrated by dashed-line circles in FIG. 7, in either a lower
left-hand corner 294 or a lower right-hand corner 296 of the
active area 22, respectively demarcated in FIG. 7 by dashed-
lines, initially activates a drag-lock operating mode of the
touch-pad 20. After the touch-pad 20 enters its drag-lock
operating mode, it remains in that operating mode even if
finger contact with the active area 22 ceases. However, a
subsequent finger contact within either the lower left-hand
corner 294 or the lower right-hand corner 296 of the active
area 22 while another finger contacts some other area on the
active area 22 deactivates the drag-lock operating mode.

Moreover, in response to concurrent finger contacts both
within the lower left-hand corner 294 and within the lower
right-hand corner 296 which persist for a pre-established
time-interval longer than one-half second, preferably one
second, the touch-pad 20 transmits a control signal to the
computer 42 via a normally unused pin in the serial-port
connector 38. A power management computer program
executing within the computer 42 that senses transmission of
this control signal by the touch-pad 20 can respond to the
signal by activating a low-power suspend operating mode of
the computer 42, if the computer 42 is not already operating
in the suspend operating mode. Conversely, if the computer
42 is already operating in the suspend operating mode, then,
in response to the control signal, the computer program
executed by the computer 42 deactivates the low-power
suspend operating mode.

In addition to the pre-established specific locations in the
lower left-hand corner 294 and the lower right-hand corner
296, the touch-pad 20 also includes five (5) additional
pre-established specific locations arranged in a horizontal
row along an upper edge 302 of the active area 22. Con-
current finger contacts with particular pairs of these specific
locations which persist for a pre-established time-interval
longer than one-half second, preferably one second, alter
particular operating characteristics of the touch-pad 20.
Thus, a first finger contact 304 and a second finger contact
306, respectively illustrated by dashed-line circles in FIG. 7,
in an upper right-hand corner 308 and in an upper left-hand
corner 312 of the active area 22, respectively demarcated in
FIG. 7 by dashed-lines, which persist for the pre-established
time-interval select either a greater or a lesser increase in
cursor translation for the same finger contact movement
speed. That is, if the active area 22 is operating with the
lesser increase in cursor translation when the finger contacts

10

15

20

25

30

35

40

45

50

55

60

65

12

304 and 306 occur, then the touch-pad 20 establishes the
greater increase in cursor translation for the same contact
movement speed. Conversely, if the active area 22 is oper-
ating with the greater increase in cursor translation when the
finger contacts 304 and 306 occur, then the touch-pad 20
establishes the lesser increase in cursor translation.

A first finger contact 304 in the upper right-hand corner
308 concurrent with a second finger contact 314 in a
pre-established specific location 316 of the active area 22
which persist for the pre-established time-interval inter-
changes X and Y coordinate axes of the touch-pad 20.

A first finger contact 304 in the upper right-hand corner
308 concurrent with a second finger contact 318 in a
pre-established specific location 322 of the active area 22
which persist for the pre-established time-interval alters a
pre-established threshold for sensing finger contact with the
active area 22. Specifically, the touch-pad 20 operates either
with a lower pre-established threshold for sensing finger
contact with the active area 22 or with a higher pre-
established threshold for sensing finger contact. If the touch-
pad 20 is operating with the lower pre-established threshold
for sensing finger contact when the concurrent contacts
occur which persist throughout the pre-established time-
interval, then the touch-pad 20 establishes the higher pre-
established threshold for sensing finger contact. Conversely,
if the touch-pad 20 is operating with the higher pre-
established threshold for sensing finger contact when the
concurrent contacts occur which persist throughout the
pre-established time-interval, then the touch-pad 20 estab-
lishes the lower pre-established threshold for sensing finger
contact in response to the concurrent first finger contact 304
and second finger contact 318.

A first finger contact 304 in the upper right-hand corner
308 concurrent with a second finger contact 324 in a
pre-established specific location 326 of the active area 22
which persist for the pre-established time-interval activates
or deactivates all the special operating modes of the touch-
pad 20. Specifically, if the touch-pad 20 is operating in a
mode in which it does not respond to concurrent contacts
within another pair of pre-established specific locations for
a pre-established time-interval, then the touch-pad 20 acti-
vates an operating mode in which it responds to contacts
with other pairs of pre-established specific locations for the
pre-established time-interval, in addition to concurrent fin-
ger contacts with the upper right-hand corner 308 and with
the immediately adjacent pre-established specific location
326. Conversely, if the touch-pad 20 is operating in a mode
in which it responds to concurrent contacts within another
pair of pre-established specific locations for a pre-
established time-interval, then the touch-pad 20 deactivates
that operating mode after sensing concurrent contacts with
the upper right-hand corner 308 and with the immediately
adjacent pre-established specific location 326.

In addition to sensing and responding to multi-finger
contacts to the active area 22, the touch-pad 20 also senses
both a direction and a velocity at which a finger contact
moves across the active area 22. If the velocity at which a
contact moves across the active area 22 exceeds a pre-
established threshold of at least 1 inch per second, and
preferably 5 inches per second, then the touch-pad 20
transmits data to the computer 42 which causes a cursor to
continue moving across the display screen 44 in a direction
fixed by an initial direction of contact movement across the
active area 22. Moreover, as long as finger contact with the
active area 22 persists, the touch-pad 20 continues transmit-
ting data which causes the cursor to continue moving even
if such contact with the active area 22 subsequently slows
down or becomes stationary.

TCL EXHIBIT 1024
Page 12 of 42

5,856,822

13

Similarly, if the computer program executed by the micro-
processor 218 senses that finger contact pressure with the
active area 22 exceeds a pre-established threshold while
moving across the active area 22, then, similar to sensing a
finger contact motion in excess of a pre-established thresh-
old velocity, the touch-pad 20 also transmits data to the
computer 42 which causes a cursor to continue moving
across the display screen 44 in a direction fixed by an initial
direction of contact movement across the active area 22.
Moreover, as long as finger contact with the active area 22
persists, the touch-pad 20 continues transmitting data which

10

14

causes the cursor to continue moving even if such contact
with the active area 22 subsequently slows down or becomes
stationary.
Computer Program

Set forth below is a listing of a copyrighted computer
program executed by the microprocessor 218 in controlling
the operation of the touch-pad 20. The copyright owner
hereby grant others a right to reproduce copies of the patent
document including the computer program or of the patent
disclosure exactly as it appears in the files of the United
States Patent and Trademark Office, but otherwise reserve all
copyright rights whatsoever.

TCL EXHIBIT 1024
Page 13 of 42

5,856,822
15 16

DOCKET NO. 2067

$TITLE (02 Micro Touch Pad 8051 Program)
$Date (10/26/1995)

R L L R L e T 2

* Copyrignt 1995 02 Micro, Inc *

* All world rights reserved *
hokkkhhhkhkhdhhhb kbbb hbbhbhbbhk bbbtk hhkhhhddbbhhhbhbhbhb kbbb bk dd bk hhddhkhhk

B e e)

* Touch Pad Data declarations *
de o g e e e e e e e ke ke vk ok e e gk ok e o e e ke e e e e sk ok e e e e ok o o e e ok ok e e e ok o ok ke e e ok o o ok ok ok ok e ok e e ok ke ok ke e o e ok ok ok ke e

j============ X SCAN LINE ORIGINAL VALUE (WITHOUT TOUCHING) ==============

X0 DATA 10H ; X Line Globol Buffer
X1 DATA 11H

X2 DATA 12H

X3 DATA 13H

X4 DATA 14H

X5 DATA 15H

X6 DATA 16H

X7 DATA 17H

X8 DATA 18H

X9 DATA 19H

XA DATA 1AaH

XB DATA 1BH

XC DATA 1CH

XD DATA 1DH

j============ Y SCAN LINE ORIGINAL VALUE (WITHOUT TOUCHING) =====s=s=s=======
YO0 DATA 30H ; Y Line Golbol Buffer
Yl DATA 31H

Y2 DATA 32H

Y3 DATA 33H

Y4 DATA 34H

Y5 DATA 35H

Y6 DATA 36H

Y7 DATA 37H

Y8 DATA 38H

Y9 DATA 3%H

; BIT ADDRESSIBLE DATA AREA

BUFFER DATA 20H ; TEMP BUFFER

TEMP DATA 21H ; TEMP BUFFER

VALUE DATA 22H ; VALUE FOR CHECH POINT COMPARASION

7 GENERAL PURPOSE DATA BUFFER AREA

) ================= COMBYTES

comBytel DATA 23H

comByte2 DATA 24H

comByte3 DATA 25H

;j===== Process counters =====

cScan DATA 26H ; ScanLoop counter
cMousesStill DATA 27H ; MouseStill counter
cMouseTrail DATA 28H ; MouseTrail counter
cMouseDown DATA 29H ; MouseDown counter
cTapDown DATA 2RH ; TapDown counter

hhkkhkkkkhkkhhdkhhhhhhdhhhhdhkhhdkhhddhhhkbkkhhdohhhhdhhhkdkhhdkkhbbkhkhkhkhkhdht

COM_CHECK DATA 2BH ;FLAG FOR COMMAND TOUCK

COM_SPEED BIT COM_CHECK.O0 ;FLAG FOR FINGER SPEED MODE

COM_ORTIENTATION BIT COM _CHECK.1 ;FLAG FOR ORIENTATION MODE

COM_SENSITIVITY BIT COM_CHECK. 2 ;FLAG FOR SENSITIVITY MODE
- 34 -

TCL EXHIBIT 1024
Page 14 of 42

17

COM_MASTER
CHECK_FLAG_SPEED
CHECK_FLAG_ORIENTATION
CHECK_FLAG_SENSITIVITY
CHECK_FLAG MASTER
COM_TIME

BIT
BIT
BIT
BIT
BIT
DATA

;===== Mouse status flags =====

5,856,822

COM _CHECK. 3 ;FLAG FOR
COM CHECK. 4 ;FLAG FOR
COM_CHECK.S ;FLAG FOR
COM_CHECK. 6 ;FLAG FOR
COM_CHECK.7 ;FLAG FOR
4EH

18

DOCKET NO. 2067

MASTER TAPPING CONTROL MODE
CHECK SPEED

CHECK ORIENTATION

CHECK SENSENTIVITY

CHECK MASTER

for Tapping
for DynamicEdge

fMouseStatus DATA 2CH ; MouseStatus
bMouseDown BIT fMouseStatus.0 ; MouseDown flag
bMouseMove BIT fMouseStatus.l ; MouseMove flag,
bMouseEdge BIT fMouseStatus.2 ; MouseEdge flag,
;===== Button status flags =====

fBtnStatus DATA 2DH ; ButtonStatus
bTapDown BIT fBtnStatus.0 ; TapDown
bLBtnDown BIT fBtnStatus. 1l ; LBtnDown
bRBtnDown BIT fBtnStatus.2 ; RBtnDown
;j===== Command status flags =====

fCmdStatus DATA 2EH ; CommandStatus
DRAG_FLAG BIT fCmdStatus.0 ; Flag for drag
SUSPEND_FLAG BIT fCmdStatus.1l ; Flag for suspend
CHECK_SUSPEND_FLAG BIT fCmdStatus.3 ; Flag for suspend check
HAND CLEAR BIT fCmdStatus. 4

TIME_FLAG BIT fCmdStatus.5

;===== ¥ and Y position variables =====

XX DATA 60H ; Current X

PX DATA 61H ; Previous X

DX DATA 62H ; XX-PX

MX DATA 63H ; Movement X

YY DATA 64H ; Current Y

PY DATA 65H ; Previous ¥

DY DATA 66H ; YY-PY

MY DATA 67TH ; Movement Y
j================= BUFFER FOR 24 BITS * 16 BITS SCAN LINES
XBYTEO DATA SAH

XBYTE1 DATA 5BH

XBYTE2 DATA SCH

YBYTEO DATA 5DH

YBYTE1l DATA 5EH

YBYTE2 DATA SFH

v X SCAN LINE BUFFER

X 0 DATA 40H

X1 DATA 41H

X2 DATA 42H

X 3 DATA 43H

X4 DATA 44H

X5 DATA 45H

X_6 DATA 46H

X 7 DATA 47H

X8 DATA 48H

X9 DATA 49H

XA DATA 4AH

X B DATA 4BH

X¢C DATA 4CH

XD DATA 4DH

i Y SCAN LINE BUFFER

Y O DATA 50H

TCL EXHIBIT 1024
Page 15 of 42

5,856,822
19 20

DOCKET NO. 2067

Y 1 DATA 51H
Y2 DATA 52H
Y3 DATA 53H
Y 4 DATA 54H
Y5 DATA 55H
Y6 DATA S6H
Y 7 DATA S7H
Y 8 DATA 58H
Y9 DATA 59H

Fhkkrkk kAT kkkhhkdhdhdkhhdkdkhkhdkhhhdkkkdrhhhkkkhhkkhhhkhhhbkdhkhtrhhkdohhhkrhkdkhk

* The Touch Pad area start here *
dekkhkhkdhhhkhkhhhkhkhkhhhhdhhdhkhkdhdkdhhhhhhkhkbdhhkdkhhhhdkhhkhhhhhdkhhkkhkrrhkkhkhkdkkkrk
SCAN_CSX EQU 02000H ; SCAN X LINE Chip Select
SCAN_CSY EQU 04000H ; SCAN Y LINE Chip Select
COUNTER_CS EQU 06000H ; COUNTER REGISTER Chip Select
PIO CS EQU 08000H ; POI REGISTER CHIP SELECT

TEST CS EQU 0A0Q0H ; DISPLAY Chip Select

RESET_CS EQU 0C0Q0H ; RESET COUNTER Chip Select
BUTTOﬁ_CS EQU OEOO0OH ; BUTTON RESET CHIP SELECT

START RS232 EQU 23H ; START ADDRESS FOR RS232 PACKET
END_RS5232 EQU 26H ; END ADDRESS FOR RS232 PACKET
THO:DATA EQU OFSH ; HIGH BYTE VALUE FOR TIMER 0
TLO_DATA EQU OFOH ; LOW BYTE VALUE FOR TIMER 0
CLK_DELAY EQU OFH ; DELAY VALUE FOR SCAN LINE X & Y
LAST_SCAN X EQU 0EH ; LAST X SCAN LINE

LAST SCAN Y EQU 1AH ; LAST Y SCAN LINE

END_SCAN_X EQU ODH ; END X SCAN LINE

END_SCAN_Y EQU 19H ; END Y SCAN LINE

K e e e e e e e — —— —— — — — —— — —————————————— e — ——— *

. 0 - Scan X Driver

B 1l - Scan Y Driver

, 2 - Left Button Input Port

, 3 - Right Button Input Port

, bit 4 - PS/2 Clock Input From PS/2 Host
, 5 - PS/2 Data Input From PS/2 Host
. 6 - PS/2 Clock Output to PS/2 Host
, 7 - PS/2 Data Output to PS/2 Host

* Ok E R X F %k
g
[
a1
o
R R R % b F

Fhkkdddhkkdhhkkhdhdkkdhdhhhhhhhhkhhhhkdkhkhdkhhdkdkkhhdhkhdkh kb hkhkhkdkhhhddokddkhhdkkdk

* START OF CODE *
khdkk ok k kR kR kA khkkhkkkkkhh ko kA kkkhdhdhok ok ke ded e deok ok do e e de e e ok ok e sk ok ek e e e e ok

ORG OH ; RESET vector

AJMP START ; now over here

ORG 03H ; Interrupt 0 vector

AJMP MS_MOUSE_FQUND ; RETURN 'M' FOR MS-MOUSE

ORG OBH ; Timer 0 interrupt for pad timer
AJMP TIMERO_INTR

ORG 13H ; Interrupt 1 For Button Press
AJMP BtnIntr

ORG 1BH ; Timer 1 interrupt vector
RETI

ORG 23H ; RS232 interrupt vector

- 36 -

TCL EXHIBIT 1024
Page 16 of 42

5,856,822
21 22

DOCKET NO. 2067

RETI

ORG 100H
dedededededdhhhdehdbkdd kb khhhhkdhdrdkhdkhdhhkkdhdkhhhhdhhhrhhkrhrhdhhhkhhkhkhrhhhhhhk
START:

Mov SP, #68H Set stack start address

MOV P1, #3CH Set Pl as output register

SETB Pl.0
SETB Pl.1
SETB Pl.2

For X Scan Line
For Y Scan Line
For right push button detect line

SETB P1.3 For left push button detect line
Hai = SET RS-232 BAUD RATE BY SETTING TIMER 1 AS BAUD RATE GENERATOR =====
MoV 1E, #85H ;ENABLE TIMER 0 INTERRUPT
MOV 1P, #04H ;SET INTR 1 AS HIGH PRIORITY INTR.
ORL TCON, #55H ;ENABLE TIMER O & INTR O
MOV TMOD, ¥25H ;SET TIMER 1 AS MODE 2 TIMER 0 MODE 1
ANL PCON, #7FH ;SET SMOD=1 AS DOUBLE BAUD RATE
ORL SCON, #40H +SET SERIAL PORT AS MODE 1
MOV TH1, #0E8H ;SET TIMER1 AS 1200 BAUD RATE
; == SETUP VALUE FOR TIMER 0 INTERRUPT SUBROUTINE ==
MOV THO, #THO_DATA ; Timer0 initial bytel
MOV TLO, #TLO_DATA ; TimerO initial byte2
MOV X0,#00000001B
MoV X1, #00000010B
MoV X2,#%00000100B
MoV X3, #00001000B
MOV X4, #00010000B
MOV XS, #00100000B
MOV X6,#01000000B
MoV X7,#10000000B
MoV X8, #00000001B
MOV X9,#00000010B
MoV XA, #00000100B
MoV XB, #00001000B
MoV XC, #00010000B
MOV XD, #00100000B
MoV YO, #00000001B
MoV Y1, #00000010B
MOV Y2, #00000100B
MoV Y3, #00001000B
MoV Y4, #00010000B
MOV Y5, #00100000B
MoV Y6, #01000000B
MoV Y7,#10000000B
MOV Y8, #00000001B
MOV Y9, #00000010B

; Reset GreenPad

MOV COM_CHECK, #00H ; SET UP FINGER SPEED HIGH, REGULAR X-Y
MOV COM_TIME, #00H ; COMMAND TIMER
ACALL ResetGreenPad

e e e e e e g e e g g de e ke sk o ok ke o ok e e ok ek gk ok ok ek kb ok e ok ke ke sk ok ok ok e ok ke e e e ke o e o o e sk ok ke e ok ok ke ke ke e ke R ke

* MAIN PROGRAM LOOP *
R R L L L Y e R g S e e R et I

~ 37 -

TCL EXHIBIT 1024
Page 17 of 42

5,856,822

DOCKET NO.

24

2067

L_SCANLOOP:
INC cScan
MOV A,cScan
MoV RS, #060H ; Delay256
ACALL DelayX
MOV XBYTEO, #0FFH
MoV XBYTE1, #03FH
MOV YBYTEO, #0FFH
MOV YBYTE1, #03H
ACALL ChkBtnState ; Check Button State
ACALL SCAN_X ; X SCAN LINE
ACALL SCAN_Y ; Y SCAN LINE
hhhkkhdhhhrhkkhrhhhhkhhhhkhkhkhhkhdhkkk
ACALL COMMAND
Ve e e ok e e de ke ok & ko e ok gk g gk ok ke e e e e ke ok ok e ok e
ACALL GetX
JZ L_MOUSEUP
ACALL GetY
Jz 1_MOUSEUP
JNB bMouseDown,L_MOUSEDOWN ; Process MouseDown
ACALL GetDXY
CLR A
CJNE A,DX,I,_MOUSEMOVED
CJNE A,DY,L_MOUSEMOVED
L_MOUSESTILL:
ACALL MouseStill ; Mouse is stationary
JMP L_SCANLOOP
L_MOUSEMOVED:
ACALL MouseMove ; Mouse moved
JMP L_SCANLOOP
L_MOUSEDOWN:
ACALL MouseDown ; MouseDown the first time
JMP L_SCANLOOP
L_MOUSEUP:
ACALL MouseUp ; MouseUp
JMP L_SCANLOOP
;**i****i*l—**
; Module COMMAND
; Description Command decoder that decode input bit pattern
; (24 bits) into command.
; Input Xbyte2, Xbytel, Xbyte0,
H Ybyte2, Ybytel, Ybyte0
; Output A, Command code
:-***i*l—****************i*}*i*************************************
COMMAND :
MoV BUFFER,A
MOV TEMP,R1 ;SAVE A,R1
JB TIME_FLAG,CHE_HAN OF
- 38 -

TCL EXHIBIT 1024

Page 18 of 42

5,856,822
25 26

DOCKET NO. 2067

ACALL ONPAD COMMAND

JNB TIME_FLAG, NECK
CHE HAN OF:
T TACALL HAND_TAKE_OFF
Jc END HA OF
CLR TIME_FLAG
NECK:
ACALL DRAG_LOCK COMMAND ;CHECK DRAG LOCK COMMAND
END_HA OF: - -
- T Mov A, BUFFER ;SAVE A
Mov R1, TEMP

e g dddehhdeddrd kg kod Aok kdedeokkdedok ok ok deode ok hok ko ke ko e ke ek b ke ok ok ke ke ek ke ok e ke ok e e ke ke e e ok

* CHECK AFTER COMMAND HAND SHOULD TAKE OFF,THEN FINISH COMMAND *

dedekhkkdhhkkkddk ko kk ek ke h ko k ks kh ko ko kA kA ko kkr kR ko rkr kR hrhhrr

HAND TAKE_OFF:

CcIR c

MOV A, XBYTEO

ANL A, #66H

Jz END_HAND_TOF1
SETB c -

AJMP END_HAND_TOF
END_HAND_TOF1:

Hov A, XBYTE1
ANL A, $66H

JZ END_HAND_TOF
SETB c

END_HAND_TOF:

LR L s s s LA T Y
* CHECK COMMAND MODE, SET FLAG FOR WHICH MODE *
L L R R T S T T R R ey

ONPAD_COMMAND:

MOV A, XBYTE2 ;CHECK XBYTE2 IS TOUCH

ANL A, #60H ;CHECK X-CONTROL IS TOUCH

Jz END_COMMAND ;X _CONTROL IS TOUCH

MOV A, YBYTEO ;CHECK YBYTEO IS TOUCH

ANL A, #06H

Jz END_COMMAND ;CHECK Y-CONTROL IS TOUCH

MOV A, COM_CHECK

ANL, A, #0FH ;CLEAR FLAG COMMAND

MoV COM_CHECK, A ;SAVE COM CHECK STATUS

ACALL CHECK_COMMAND ;CHECK ANY COMMAND GIVEN

JINC END_COMMAND ;IF NO TOUCH GO END, IF TOUCH CONTINUOU
ACALL CHECK_OTHER_TOUCH ;CHECK OTHER LINE HAVE TOUCH

Jc END_COMMAND ;IF OTHER LINE TOUCH SO NO COMMAND
INC COM_TIME ;TOUCH S0 CHECK TIME

MOV A,COM_TIME

CJINE A, #080H, END_COMMAND ;TOUCH IS ONE SECOND

SETB TIME_FLAG

CHECK FLAG SPEED, CHECK1 ;CHECK IS SPEED MODE
dkkhkdkhhkhkhhkkkhkhkhk kT hdkr Tk ks hkdkrhhkdhhkhhkkkdkkkhhhkhhkhdkhdhk ik

* TOGGLE FLAG FOR FINGER SPEED MODE *
Fokkkkhkkhkhkhkkhkdkhkhhkhkkkdkkhkhkhkkhkkhkkdhdkdkhdhdhkhhkrkkhkhkkhkhkkhkkdhd
CPL COM_SPEED ;TOGGLE SPEED MODE

;CALL COMMAND SPEED MODE
AJMP CHECK4
CHECK1:
Fehokdekdkkdkhkk ke kdkhkdkk ko khkhkhkkk ke h bk khkhkkkkh ke kk kA hhh kA A r sk
* TOGGLE FLAG FOR ORIENTATION MODE *
Fededededek ok ke ok ke ke ek dedkdedkk bk ke kde ke kdekdk Ak ko k ke ko kR kAR khk Rk ok k
JNB CHECK_FLAG_ORIENTATION,CHECK2 ;CHECK ORIENTATION MODE
CPL COM_ORIENTATION ;TOGGLE ORIENTATION MODE
;CALL COMMAND ORIENTATION_ MODE

- 39 -

TCL EXHIBIT 1024
Page 19 of 42

27

AJMP
CHECK2:

5,856,822

CHECK4

28

DOCKET NO.

L L O e L S P e T e ey
* TOGGLE FLAG FOR SENSITIVITY MODE *

L g e

JNB
CPL

AJMP
CHECK3:

CHECK FLAG SENSITIVITY,CHECK3

COM_SENSITIVITY
CHECK4

;CHECK IS SENSITIVITY MODE
;TOGGLE SENSITIVITY MODE
;CALL COMMAND_SENSITIVITY MODE

ddkkddkkddekkddkk ko khdekhkhkdkhhddkkhdkekhhkdkkhhdk bk hkhkkkhkhkkhhdkhbkhhhdkhhhhkkkk

* TOGGLE FLAG FOR MASTER MODE
dekkhkhkhhkhhhhkhkhhhhkhhhhhkhdhhhhhhhhhkhhhhhhhhhkhhkhhrkhhdhhkkhhohhkhhkhhkdi

CHECK_FLAG_MASTER,CHECK4 ;CHECK IS MASTER MODE

JNB
CPL

CHECK4:
MOV
END COMMAND:

COM_MASTER

COM_TIME, #00H

*

;TOGGLE MASTER MODE
;CALL COMMAND_ MASTER

;RESET TIME

B R R R R R T T 2 T T TR R o gy
* CHECK FOUR MODE OF COMMAND, SET FLAG FOR THE FOUR *

Fkkkhhdhhhkkhrdkkhd ko kkkakkrkhkrrrrhrhkkhhrhkhrhdkhhhdhkhdokkhkdrhdhkhhdkkd

CHECK COMMAND:

CLR c

MOV A, XBYTEQ

ANL A, $66H

Jz CHECK_SENSITIVITY

MoV A, XBYTEO

ANL A, #06H

Jz CHECK_ORIENTATION ;

MoV A,XBYTE1

ANL A, #66H

INZ END_COMMAND CHECK

SETB CHECK_FLAG_SPEED

AJMP END_CHECK ~
CHECK ORIENTATION:

MOV A, XBYTE1l

ANL A, #66H

JNZ END_COMMAND_CHECK

SETB CHECK_FLAG_ORIENTATION

AJMP END_CHECK ~
CHECK_SENSITIVITY:

- Mov A, XBYTE1

ANL A, #66H

J2 END_COMMAND_CHECK

MOV A,XBYTE1

ANL A, #06H

Jz CHECK_MASTER

MOV A, XBYTE1

ANL A, #60H

INZ END_COMMAND_CHECK

SETB CHETK_FLAG_SENSITIVITY

AJMP END_CHECK —
CHECK_MASTER:

~ SETB CHECK_FLAG_MASTER

END_CHECK: - -

SETB

END_COMMAND_CHEC

C
K:

;CHECK XBYTEO ORDER ANY TOUCH

;XBYTEO NO TOUCH,CHECK XBYTEl1
;CHECK XBYTEO LOW ORDER ANY TOUCH
;CHECK SPEED MODE

;CHECK XBYTE1l ANY TOUCH

;FLAG FOR ORIENTATION

;CHECK FOR SENTIVITY

;FLAG POR SENSITIVITY

;FLAG FOR MASTER

Fedededekdedde e dedddk ke k ke k ko deok ke ko dek ke h ko kA k ko ke khkdhhhhhh Rk hdd

40 -

2067

TCL EXHIBIT 1024
Page 20 of 42

29

5,856,822

30

DOCKET NO.

* CHECK OTHER THAN COMMAND,HAVE ANY OTHER TOUCH *

LR R L L e L R T

CHECK_OTHER_TOUCH:

CLR
MoV
ANL
Jz
AJMP
CHECK_YBYTEL:
MOV
ANL
Jz
AJMP
CHECK_YBYTEZ2:
MOV
ANL
Iz
AJMP
CHECK_XBYTE2:
MoV
ANL
Jz
END_TOUCH:
SETB

END_OTHER_TOUCH:
RET

c

A, YBYTEO

A, #60H
CHECK_YBYTEL
END_TOUCH

A, YBYTE1
A, #66H
CHECK_YBYTE2
END_TOUCH

A, YBYTE2

A, $03H
CHECK_XBYTE2
END_TOUCH

A, XBYTE2
A, $06H

END_OTHER_TOUCH

C

;CHECK YBYTEO HIGH-ORDER ANY TOUCH

;CHECK YBYTE1 ANY TOUCH

;CHECK YBYTE2 ANY TOUCH

;CHECK XBYTE2 HAVE ANY TOUCH

;IF TOUCH,C=1

R 2 R L T T R R L R R S R P S P R R e S g g g
* ONE-PAD NOTEBOCOK COMPUTER SUSPEND MCDE BUTTON AND TOUCH-ON-WAKEUP *
R L R R R T Iz
DRAG_LOCK_COMMAND:

ACALL

CEl:

END_DET_DRAG:

DRAG_LOCK_DETECTION
DRAG_FLAG, END_DET_DRAG
HAND_ CLEAR, CEI

HAND_STILL_ON
END_DET_DRAG

DRAG_LOCK_MOVE
END_DET_DRAG
RETOUCH_DRAG
END_DET_DRAG
HAND_CLEAR
DRAG_FLAG

;CHECK DRAG OR SUSPEND MODE

;CHECK HAND MOVE OR DRAG HAND STILL
; IF HAND STILL ON, END

;RETOUCH DRAG MODE AGAIN

Kkhkkhkkhdkkhhdhhhkdkhhdhhhdkdhhhkhhrdkhkhrhhdhhhhkkhkbkhbhhkdhhkbkhhhkkhkhkkkkkhkhkkddd

* CHECK DARG COMMAND HAVE ANY TOUCH IF TOUCH COMMAND FLAG C=1 *
Fok otk ok kA k ke ko ki ko kh ko kkkkkkkkhkhhhhkkdkhk kb khbhk ok kA khkkkhkhhhkhhhhdkk®

RETOUCH DRAG:
TACALL

JINC

CLR

AJMP

CHECK_OTHER_X2:

MOV’
ANL
72
SETB

END_RETOUCH:

DETECT Y2
END_RETOUCH

c

A, XBYTEO

A, $06H
CHECK_OTHER_X2
c

END_RETOUCH

A, XBYTE2

A, #60H
END_RETOUCH
c

2067

;CHECK YBYTEl HIGH &YBYTE2 LOW ANY TOUCH

;NO TOUCH, GO END
;CHECK XBYTE

;CHECK XBYTEO HAVE TOUCH

;CHECK XBYTE2 HAVE TOUCH

Kokkkdkkhkdkhkkhkdkkdkdkhdkdhhkhdkkdhdhkhddhhhkhkkhdkhkhdedhhdkkdkhdkhhddkhddkkhkdkhhdhhhkkkhk

41 -

TCL EXHIBIT 1024
Page 21 of 42

31

5,856,822
32

DOCKET NO. 2067

* CHECK HAND STILL TOUCH COMMAND DRAG IF NO TOUCH C=1 & HAND CLEAR=1 *
ek sk ek vk ek de ket ke kdkdek bk ko ko hkkkkkkkk ko kkkkkkkkhkhkhkkk kA Tk kkhhhhkkhhrh

HAND STILL ON:

ACALL DETECT_Y2 ;DETECT Y2 ANY TOUCH
Jc CHECK X STILL ;Y2 IF TOUCH C=1,GOTO CHECK X
SETB HAND CLEAR ;NO TOUCH, SET CLEAR FLAG
SETB Cc - ;SET COMMON FLAG FOR FLAG
AJMP END_HAND_ STILL
CHECK X STILL:

~ "CLR cC ;CHECK XBYTEQ HAVE TOOQUCH
MOV A, XBYTEO
ANL A, #06H
JNZ END HAND STILL ;XBYTEO NO TOUCH CONTINUOUS CHECK
MOV A,XBYTE2 ;XBYTE2 ANY TOUCH
ANL A, #60H
JN2Z END_HAND STILL
SETB HAND_CLEAR ;NO TOUCH SET FLAG FOR HAND CLEAR
SETB c ;SET COMMON FLAG FOR FLAG

END_HAND_STILL:
RET

L T R s LR R T T TR A P T S L L S R S
* CHECK DRAG OR DRAG FLAG,IF SUSPEND & TIME IS ONE SECOND, SUSPEND *

e e e e Je e e A de e e I ke e ke e e e de e ok ek e e e e e ke ok ok ke e ke e e e e ke e e ek ok ek e ek ek ek ke ke ok e b

DRAG_LOCK_DETECTION:

ACALL DETECT Y2
JINC END_DRAG_LOCK
ACALL CHECK STATUS X ;CHECK ANY SET FLAG
INC END_DRAG_LOCK ;NO SET FLAG
JNB DRAG_FLAG, CHECK_SUSPEND ;SET, CHECK WHICH ONE
SETB c
AJIMP END DRAG LOCK
CHECK_SUSPEND: - - ;CHECK SUSPEND MODE
ACALL DRAG LOCK MOVE ;CHECK OTHER TOUCH
Jc END_DRAG TOCK
INC COM_TIME ;CHECK TIME I3 ONE SECOND
MoV A,COM TIME
CJINE A, #080H,END_DRAG_LOCK ;CHECK TIME IS ONE MINTUE
CPL SUSPEND_FLAG ;TOGGLE SUSPEND MODE
MOV COM_TIME, #00 ;CLEAR TIME
SETB c -
CLR CHECK_SUSPEND_FLAG

END_DRAG_LOCK:

ke dedkokoddeokdedehkdkkhhkdekwhdkkhhkhkkkhkkkkhkhkkhhhkkhhkkhkkhhhhkhkhkhkhkhhkhhkhrhkdkhkk

* CHECK YBYTE2 & YBYTE1l HIGH BYTE HAVE ANY TOUCH IF TOUCH C=1 *

khkkhhkhkhkkhhhhhhbhhhdhhhdbhhbhhhhhkhhkh kb hhhhkhkhhkdrkhhkh b hkkrkkhhhkhkhhkhrhhk

DETECT ¥2:
~ CLR ¢
MOV A, YBYTEZ2
ANL A, #03H
MoV B,A ;IF TOUCH SAVE VALUE
MOV A, YBYTEL ;TAKE TWO BIT OF YBYTEl TO CHECK
SWAP A ;EXCHANG YBYTE1
ANL A, #0CH
ORL A,B
ANL A, #06H
JZ END DETECT Y2
SETB c - -

END_DETECT Y2:

;high y1 & low y2 has touch,c=1

drde sk de ek ddedek ok kdk ok kdek ok ko dek ok ko ko kk ke kkhhkhhkkhkhhkkhhdhkkkhrhhhhd

* CHECK X BYTE SUSPEND OR DRAG MODE SET FLAG FOR THEM IF MODE C=1 *

Fkkkkkkkh ke kdhhrdkhh bk hkhhhhdhhkkkkhhkhhhhhkhhhhkhkhhdkhhhhrhkhkhhkhhhddr

CHECK_STATUS_X:

;CHECK SUSPEND OR DRAG MODE

42

TCL EXHIBIT 1024
Page 22 of 42

5,856,822
33 34

DOCKET NO. 2067

CLR [o4

MOV A, XBYTEO

ANL A, #06H

Jz CHECK_OTHER ;CHECK XBYTEO HAVE TOUCH
ACALL DELAYZ

MOV A, XBYTE2

ANL A, #60H

3z SET_FLAG DRAG_ MODE ;CHECK XBYTE2 HAVE TOUCH
SETB c ;SET COMMON FLAG C=1
SETB CHECK_SUSPEND_FLAG ;SET CHECK SUSPEND

AJMP END_CHECK_DRAG

MOV A,XBYTE2

ANL A, #60H

Iz END_CHECK_DRAG 7CHECK XBYTE2 HAVE TOUCH

ACALL DELAY2

MOV A, XBYTEO

ANL A, #06H

Iz SET_FLAG_DRAG MODE ;CHECK XBYTEOQ HAVE TOUCH

SETB CHECK_SUSPEND_FLAG

SETB c

AJMP END_CHECK_DRAG
SET_FLAG DRAG_MODE: B ;TO CHECK IT IS DRAG MODE

- ACALL™ DRAG_LOCK_MOVE 7CHECK ANOTHER HAND TOUCH

INC END_CHECK_DRAG ;IF TWO HAND TOUCH,DRAG MODE

SETB DRAG_FLAG™ ;SET DRAG_FLAG

SETB c 7SET COMMOM FLAG C=1
END_CHECK_DRAG:

RET
Fkdkkkok ok hkok ko k ok kdd ok dddkdkdehkkkdhkhhdk ok kdehkkhrdehhbkhhkkhhkhkhdddhkhhhkdhkk
* CHECK ANOTHER HAND TOUCH PAD IF TOUCH C=1 *
Je e e s ek ok e e e e e e ke ke ke e e dke sk s ok dk e e o g g e ke ok ok ok ok ke ok e e ke ok b e ok ok b g o ok e e ke e e o ok ok e e ok ok ke e e
DRAG_LOCK_MOVE: ;CHECK ANY TOUCH

CIR [

MOV A, YBYTEO ;CHECK YBYTEQ ANY TOUCH

Jz NEXT_Y1_CHECK

SETB [;YBYTEO HAS TOUCH

AJMP END_DRAG_MODE
NEXT_Y1_CHECK:

MOV A, YBYTE1 ;CHECK YBYTE1l ANY TOUCH
ANL A, #¥1FH

Jz NEXT_X0 CHECK

SETB c - - ;YBYTEL HAS TOUCH

AJMP END_DRAG_MODE
NEXT_XO_CHECK:

MoV A, XBYTEO ;CHECK XBYTEO HIGH BYTE HAVE TOUCH
ANL A, #0EOH

Jz NEXT_X1_CHECK

SETB C 7SET FOR XBYTEO HIGH TOUCH

AJMP END_DRAG_MODE
NEXT_X1_ CHECK:

MOV A, XBYTEL ;CHECK XBYTELl HAVE TOUCH
Iz NEXT_X2_CHECK
SETB C ;SET XBYTE1l HAVE TOUCH
AJMP END_DRAG_MODE
NEXT_X2_CHECK: ;CHECK XBYTE2 LOW BYTE HAVE TOUCH
MOV A, XBYTE2
ANL A, $07H
Jz END_DRAG_MODE
SETB € 7SET FLAG FOR XBYTE2 HAVE TOUCH

END_DRAG_MODE:
RET

TCL EXHIBIT 1024
Page 23 of 42

35

5,856,822

36

DOCKET NO. 2067

de ke de e de e e e Je e e g ek ok Tk e e e e e ek e e ek de e e ok b ke ek ok sk ke ke e ke ke ke e e ke e e ke e e ok ko e e ke e ke e ke

B S LR L 2 RS P T P P R
SCAN X LINE ROUTINE (FORM X0 TO X7)

dede ek dekdek ke ddkokdek ko k ok hdkhkdhk ok k ko hkkodedkdde e de etk ke et e e e ke ok e ke e e ke de e ok e ke e ok

*

SCAN_X:
oV

XLOOP:
MOV
MOVX

MoV
MOVX

ACALL
ACALL

CLR
MoV
Cl:
INC
CJNE
SETB
NOP
NOP

MOV
MOV
MOV
MOVX
MoV

ACALL
INC
CJINE
RET

kkkk END OF SCAN X *hkkix

A, #00H

DETR, #SCAN_CSX
@DPTR, A

DPTR, #RESET_CS
@DPTR,A

TEN_US
TEN_US

P1.0
R3, #00H

R3
R3, #01AH,C1
Pl1l.0

BUFFER, A
A, OFFH

DPTR, #SCAN_CSX
@DPTR, A

A, BUFFER

X_COUNTER
A

A, #LAST_SCAN_X, XLOOP

+*

;DELAY TIME FOR SCAN X

;#CLK_DELAY,Cl

FhR kI kAR KRk Rk khk ok kR ok ki ke kkkhddkkhokhd ko ke koo ek ko de sk ke ok e e ok ek ke e ek e e ok
SCAN Y LINE ROUTINE (FORM X0 TO X7)

ok e e de e de vk e de e e de ek sk et gk ke e ok dhe e e ok ok ke ke ok ke e ok ek ke b ke o ok ok ok ek ok ke e ok ok ok ke e e ke e e ke e e ok e ke e e ke ke e ok

*

SCAN_Y:
HMov

YLOOP:
MOV
MOVX
MOV
MOVX

ACALL
ACALL

CLR
MOV
c2:
INC
CJINE
SETB
NOP
Nop
MOV

A, #010H

DPTR, #SCAN CSY
GDPTR,A
DPTR, #RESET_CS
@DPTR, A

TEN_US
TEN_US

P1l.1
R3, #00H

R3

R3, #01RnH, C2
Pl.1

BUFFER, A

; #CLK DELAY, C2

*

TCL EXHIBIT 1024
Page 24 of 42

37

MOV A, OFFH

MoV DPTR, #SCAN_CSY

MOVX @DPTR, A

MoV A, BUFFER

ACALL Y _COUNTER

INC A

CJINE A, #LAST SCAN Y, YLOOP
RET - =

*kx%k%x END OF ¥ SCAN LINE **#**++

5,856,822

38

DOCKET NO.

D R AR A R

i
; Module ResetGreenPad
; Description

H

Reset control variables
= gk g g e e e e e e gk ok e e o etk ke ok e o ke 3k e e o ke ke ke ok e ok ok gk e e e sk ke e e ke e e ok o sk ke e e e e ok ke ok ok e e o ke ok ok

XBYTES

YBYTES

MouseStatus
ButtonStatus
ComBytel
ComByte2
ComByte3

ScanLoop counter

MouseStill counter
MouseTrail counter
MouseDown counter

Load address of comBytes

Send comBytel

Increment address
Send comByte2

ResetGreenPad:
MOV XBYTE2, #00H ; Reset
MOV XBYTE1, #03FH
MOV XBYTEO, #0FFH
MOV YBYTE2, #00H ; Reset
MOV YBYTEL, #03H
MoV YBYTEG, #0FFH
MoV fMouseStatus, #00H ; Reset
MoV fBtnStatus, $#00H ; Reset
MoV comBytel, #11000000B ; Reset
MoV comByte2, #10000000B ; Reset
MOV comByte3, #10000000B ; Reset
MoV MX, #00H
MOV MY, #00H
MoV cScan, #00H ; Reset
MOV cMouseStill, #00H ; Reset
MoV cMouseTrail, #00H ; Reset
MOV cMouseDown, #00H ; Reset
RET
,-**********t*****t********************************kk*****’r*******
; Module SendComBytes
; Description Send com bytes to port
; Input comBytel, comByte2, comByte3
’-*************************************t**************************
SendComBytes:
MOV RO, #comBytel ;
CLR SCON.1 ;
MoV SBUF, @RO
SETB P3.1
JNB SCON.1,$
INC RO H
CLR SCON.1 ;
MOV SBUF, @RO
SETB P3.1
INB SCON.1,$
INC RO ;

Increment address

- 45

2067

TCL EXHIBIT 1024
Page 25 of 42

5,856,822
39

CLR SCON.1 ; Send comByte3
MOV SBUF, @GRO

SETB P3.1

JINB SCON.1,$

CLR SCON.1 ; Cleanup

RET

B L e e T

Module GetComBytes
Description Get comBytes from mouse movement
with no Btn information
Input (MX, MY)
Output comBytel, comByte2, comByte3
;**k********k************

GetComBytes:

ANL comBytel, #11110000B ; Clear X,Y
ANL comByte2, #10000000B H

ANL comByte3, #10000000B ;

MoV A,MX ; Store X5-X0
ANL A,#00111111B ;

ORL comByte2,A ;

MOV A,MX ; Store X7-X6
RL A ;

RL A H

ANL A, #00000011B ;

ORL comBytel, A

MOV A, MY ; Store ¥Y5-Y0
ANL A,#00111111B ;

ORL comByte3,A H

MOV A, MY ; Store Y7-Y6
RL A ;

RL A ;

RL A ;

RL A ;

ANL A, #00001100B ;

ORL comBytel, A

RET

;**'***************t***tﬁ***********t*k********t*****************
; Module SendMouseMove

; Description Send mouse movement

; Input (MX, MY)

;

shkkkddekhhkhkhdhhkddkhddhhhkdhhhhkkhdrdhkhdhkhhhddkhhhkdhhhkiokhhdedkkhddkkddkd bk

SendMouseMove:
ACALL GetComBytes ; Get comBytes from (MX,MY)
ACALL SendComBytes ; Send comBytes
RET
;************t**********************************t***********k****
; Module MouseMove
; Description Process MouseMove message
; Input (DX, DY)

;*****************i****t***********************t*****ii**********
MouseMove:

MoV A, DX
ACALL GetMove ; Determine MX

40

DOCKET NO. 2067

TCL EXHIBIT 1024

Page 26 of 42

5,856,822
11 42

DOCKET NO. 2067

MOV MX,A
MOV A,DY
ACALL GetMove ; Determine MY
MOV MY,A

ACALL SendMouseMove Send MouseMove to port

MOV PX, XX Store XX as PX

MOV PY,YY ; Store YY as PY

MoV A, cMousesStill

ANL A, #00FH ; Add at most 15 trailers
MOV cMouseTrail,A

MOV cMouseStill, #00H ; Reset MouseStill counter
INC cMouseDown ; Increment MouseDown counter
RET

hkkkhkddhhhkhhhhkhdh kb kkhkk ko dh ok ke kkhhhkhkkhhdkkhhk kb hkkhkkhhhd

Module MouseStill

Description Process when Mocuse is stationary
;******t**tt*****t**t******************t*k***t*************tt****

MouseStill:
ACALL MouseTrail
INC cMousesStill ; Increment MouseStill counter
INC cMouseDown ; Increment MouseDown counter
RET

;**kk*t********************
; Module MouseTrail

; Description Output MouseTrails
;***k********

MouseTrail:
MOV A, cMouseTrail ; Ouptut mouse trailer
JZ L_MOUSETRAILC
DEC A
MOV cMouseTrail ,A

ACALL SendMouseMove

L_MOUSETRAILO:

RET
;*****************************k**********************************
; Module MouseDown
; Description Process MouseDown message
; Input (XX, YY)

; Output (PX, PY)
;******t*********************************t*********************k*
MouseDown:

SETB bMouseDown Set MouseDown flag

H
MOV cMouseDown, #00H ; Reset MouseDown counter
MoV PX, XX ; Store XX as PX
MOV PY,YY ; Store YY as PY
RET

dhkdekdkkhkkhddhhdkdkhhkdkhhddkkhkdkkkhkhhhhhdhhhdkdkhddkdhkhkhkdhhkdkhhdkdhhdd

Module MouseUp

Description Process MouseUp message
;**k**t**********

MouseUp:

TCL EXHIBIT 1024
Page 27 of 42

5,856,822
43 44

DOCKET NO.
JB bMouseDown, ._MOUSEUFP2 ; If not MouseDown
JB bTapDown, L _MOUSEUPQ ; If not TapDown
RET ; Return
L_MOUSEUPO:
INC cTapDown ; If TapDown
MoV A, cTapDown H Increment TapDown count
ANL A, ¥0EOH ; If TapDown count <= 32
J2 L_MOUSEUP1 H Return
CLR bTapDown ; else
ACALL LRBtnUp ; Reset TapDown
H Send BtnUp
L_MOUSEUP1:
; Return
L_MOUSEUP2:
JNB bTapDown, L_MOUSEUP3 ; If TapDown
CLR bTapDown ; Reset TapDown
ACALL LRBtnUp ; Send BtnUp
IMP 1_MOUSEUP4
L_MOUSEUP3:
JB bMouseMove, L_MOUSEUP4 ; If not bMouseMoved
ACALL TapDown ; TapDown
L_MOUSEUP4:
MoV fMouseStatus, #00H ; Reset MouseStatus flags
MOV cMouseTrail, #00H ; Reset MouseTrail counter
MOV cMouseStill, #00H ; Reset MouseStill counter
MOV cMouseDown, #00H ; Reset MouseDown counter
RET

dhkkkddkk ok dhdekkhdkkhdhkhkkhhhk ko dekhh bk kb khhhhdkkrkhrhkkhhhds

;

; Module TapDown

; Description Process TapDown message
;***********i******ii*******ﬁ***********************t**t*********

TapDown:

JB bLBtnDown, L TAPDOWNO

JB bRBtnDown, L _TAPDOWNO

ACALL LBtnDown ; LBtnDown

MOV cTapDown, #00H ; Reset TapDown counter

SETB bTapDown
L_TAPDOWNO:

RET
;**********************t************************************i*t**
; Module GetX
; Description Get X coordinate
; Input XxByte2, xBytel, xByte0
; Output XX
;**
GetX:

MOV R2, XxByte2

MoV R1, xBytel

MoV RO, xBytel

ACALL PosDecoder

MOV XX, A

2067

TCL EXHIBIT 1024
Page 28 of 42

RET

45

5,856,822

46

DOCKET NO. 2067

sd ke hd kA ke kA kR kR ARk kR Xk Ak kA Rk k kA kA k kA ko kkkdkkhd

Module

GetY

;
;

; Description Get Y coordinate
; yByte2, yBytel, yBytel
YY

Input
; Qutput

pRE Kk kkkkdkkkkhkkkkkhkkkkkkkkkkhhhkkkkkkkkhkhhkkhkkkhkhhhhdkdkkrkkdor

GetY:

MoV
MoV
MOV
ACALL
MOV

RET

R2, yByte2

R1l, yBytel

RO, yByteO

PosDecoder
YY,A

dokdede e de e ke ke kde ek ko ke ok k h ok ko ko ks k ko ko kkkkkhdek bk bk kkkkhkhh ok

Module

Input
Output

H
H
; Description
H
H

GetDXY

(XX, YY) (PX,PY)
(DX, DY)

Get mouse movement (DX,DY)

e d ke dedrdrdedede ok ke ko ke dek hdkedek ek de ko kk ok ok ok ok k ok ko kkkkkk ok khkdekkhkhhhkkhhd

« e de d e e dede e e e e e ke e e e ke ok ke ok ke e ok ok o ke ok ok ok e o e ok ok o e ok e e ok ke e e e sk e e b

Load XX

Clear Carry

DX=XX-PX

If Orientation
A = -A

Store DX

Load YY

Clear Carry

DY=YY-PY

If Orientation
A = -A

Store DY

Get mouse movement based on displacement

e e o e e e gk

PRk KRk kdkkkk ko kdokkk ok ko k ek k ok kkhdkhdkh ok khdkkhkkh kA Ak kA k ke kR Ak Kk x

GetDXY:
MoV A, XX
CLR Cc
SUBB A, PX
JNB COM_ORIENTATION,I_DX
CPL A
INC A
L_DX:
MOV DX,A
MoV A, YY
CLR [
SUBB A,PY
JNB COM_ORIENTATION,L_DY
CPL A
INC A
L_DY:
MoV DY, A
RET
; Module GetMove
; Description
; Input A (DX or DY)
; Output A (MX or MY)
GetMove:
IB ACC.7,L MOVEO
ACALL GetMoveX
RET
L_MOVEO:
CPL A
INC A
ACALL GetMoveX
CPL A

if (A < 0)
A=-A
A=-A

TCL EXHIBIT 1024
Page 29 of 42

47

INC A
RET

5,856,822

48

DOCKET NO. 2067

kR KRR R KT hRkR Tk r kT h Ak Rk ak ke kkk ek kkrkkrrkhhkkhrr

Get mouse movement based on displacement

o 7 % J e 3k 3 e e Sk e e e g e e g e v ek e e ok e e e e e ek e e e ok e ek e e o e ok e e e sk e e e ke ek ke ke

Load movement lookup table

Load movement
If Speed
A = A/2

Check MouseMove

ke kkhhd ok k ko kA kA kR Ak ke h kA ke hk ke hhkhkkkhhhhkrR Rk hhdhhhdhhhk

Set MouseMove status based on MouseMovement

= e de e s e ke e e e ke e ke e e e e ke e e ke e e ke ke e e o ke ke e ok ok ke e e e ke e e e ke sk o ok b ke e ok e ke e ok ke e ke ke e ok ke e e

;
; Module GetMoveX
; Description
; Input A (DX or DY) A >= 0
; Output A (MX or MY)
;
GetMoveX:
MoV DPTR, #MoveLookup
MOVC A, GA+DPTR
JNB COM_SPEED, L GETMX
CLR C
RRC A
L_GETMX:
ACALL ChkMouseMove
RET
;
; Module ChkMouseMove
; Description
; Input
ChkMouseMove :

L_CHKMOUSEMOVEOQ:

L_CHKMOUSEMOVEL:

CINE A, #07FH, L_CHKMOUSEMOVEQ ; If A=0x7F
SETB bMouseEdge

MOV B,A
ANL A, #0FCH
J2 L CHKMOUSEMOVE1

SETB bMouseMove

7

Set MouseEdge flag

Save A
If A>3
Set MouseMove flag

If cMouseDown > 7
Set MouseMove flag

Restore A

F A e g g g de K ek de ke e de ok

PRI K ARSI R HI I IR IR I AR kbR kR Rk kR khehhkkhdkhdehhddhdekdhhhrhhdrhhkh

MOV A, cMouseDown

ANL A, #0F8H

JZ L, CHKMOUSEMOVE2

SETB bMouseMove
L_CHKMOUSEMOVEZ2:

XCH A,B

RET
,-**************k***************************t***
; Module LBtnDown
; Description Process left button down
LBtnDown:

MOV comBytel, #11100000B

MoV comByte2, #10000000B

MoV comByte3, #10000000B

ACALL SendComBytes

RET

TCL EXHIBIT 1024
Page 30 of 42

49

5,856,822

50

DOCKET NO. 2067

hhdkkhkkhhhdkhhhkkh kb dhhhhkkhhhhhkhhhhhdohhkhhdhhhhdhhbrhhhhhhhdhhkhd

; Module RBtnDown

FRA ARk Rk Rk ke kA kR k kR ok k kA ko dk ok kdoh kb kkk ko hkhhhhhhk

ek dedddeddekhdddkdedrk Ak dkhddkohhk ko ddkkokokokd ok dodeokdkd ok ok odkok ok d ke kA ke ek ok ek ke

Description Process right button down

RBtnDown:
MoV comBytel, #11010000B
MoV comByte2, #10000000B
MoV comByte3, #10000000B
ACALL SendComBytes
RET

;

; Module LRBtnUp

; Description Process button up

;

LRBtnUp:
Mov comBytel, #11000000B
MoV comByteZ2, #100000008B
MOV comByte3, #10000000B
ACALL SendComBytes
RET

PR g R R e T

R L L S e

; Module
; Description

ChkBtnState

Process button state changes

dhkkkkkhhhhhhhhhhhhhhhkhhkhhhhhhhhhhkkhhhbkhhhkhkhrhhkhkhkhkhkhkhhhrhkh ok hhkkkkdhrr

ChkBtnState:
JNB P1.2,L_BTNSTATEO
JNB P1.3,L_BTNSTATELl
JMP L_BTNSTATEZ2
L BTNSTATEO:
- JB bLBtnDown,L BTNSTATE4
ACALL LBtnDown
SETB bLBtnDown
CLR bTapDown
JMP L_BTNSTATE4
L_BTNSTATELl:
JB bRBtnDown, I,_BTNSTATE4
ACALL RBtnDown
SETB bRBtnDown
CLR bTapDown
JMP L_BTNSTATE4
L_BTNSTATE2:
JB bLBtnDown, L_BTNSTATE3
JB bRBtnDown,L BTNSTATE3
JMP L_BTNSTATE4
L_BTNSTATE3:
ACALL LRBtnUp
CLR bLBtnDown
CLR bRBtnDown

L_BTNSTATE4:

RET

Left Button Down
Right Button Down
ButtonUp

LBtnDown

RBtnDown

BtnUp

kk%% END OF EXTERNAL INTERRUPT 1 SUBROUTINE **xx

TCL EXHIBIT 1024
Page 31 of 42

5,856,822
51 52

DOCKET NO. 2067

B s T 22 2 T T L o
* TIMER 0 INTERRUPT SUBROUTINE *

dede ok dedekded ok hddkhdk ko kdedk ok kkkkkhkkkkkkh ek rk ko rk kR rkhhdkhrhhhhhrhhhhhkink

TIMERO_INTR:

CLR IE.7 ; Disable Interrupt

PUSH PSW ; Store Status

MoV R7,A ; Save A

MOV THO, #THO DATA ; Timer0 Initial value bytel
MOV TLO, #TLO_DATA ; Timer0 Initial value byte0
MoV A,R7 ; Restore A

POP PSW

SETB IE.7
RETI

*#%*** END OF INTERRUPT SUBROUTINE *****%

ke e T e Je e e e e e e ok ok e ok ok e ke e e ok ok ke e e ok sk o e ok e e e e ke o e ke e e b e e e ok ke e e e e e e ok e e ok ke e ke ok ok ek o

* CLEAR INTRRUPT 1 SUBROUTINE PROGRAM *
Fekdkhkdkdokk ok ok ok ke k ke khk bk kkkkkhhkdkdkkdh ek hdehdkhok ek ke ks khkdkkhhrhhkdkdddddr

CLEAR_INTRL1:

MOV A, OFFH
MOV DPTR, #BUTTON_CS
MOVX @DPTR,A

RET
*%%%*x% END OF CLEAR EXTERNAL INTERRUPT 1 ***xx*

e A e e de e sk ke e ke e ok e e ke b e e ek de e ek e e ke ek de e e ok ek b e ok e ok e o e de e e ok e o o e e o o e ke b e ok e o e e e ek e e g
* EXTERN INTRRUPT 1 SUBROUTINE PROGRAM *
Kk dhhkdkkk kb kdkkdkdkhhhhdkhhhhdddbhhhddkddrh bbbk bhkhkhkdhhhhhdhhhhdhhhkhdhkkhhhhkk
BtnIntr:

CLR IE.7 ; Disable Interrupt

PUSH PSW Store Status

MOV R7,A ; Save A

ACALL CLEAR TINTR1

MoV A,R7 ; Restore A
POP PSW

SETB I1E.7

RETI

***kk* END OF EXTERNAL INTERRUPT 1 SUBROUTINE **#%##*
EE R L T R R 222 Rt eI

* RETURN 'M' FOR MICROSOFT MOUSE INITIALIZATION *

B de ke ok A de e ok ok o ook e o ok ek ok e e o ok ok e e o e e ok e ok ke e ke e ke ok ke e e ok ek ke e ok o ok e e o e ke o o e o ok ke e ke e ok

MS_MOUSE_FOUND:

PUSH ACC

PUSH PSW
MOV R7,A
MOV A, $4DH
MOV SBUF, A
SETB P3.1

JNB SCON.1,$
CLR SCON. 1

TCL EXHIBIT 1024
Page 32 of 42

5,856,822
53 54

DOCKET NO. 2067

MOV A,R7
POP PSW
POP ACC
RETI

kk*x END OF MS MOUSE FOUND ROUTINE *%*

Kk de Ak e A e e A e e e ek A ke e e e e ok ok ok ke ke ek e ok ke e e ok ke e o ok ke e o ok e e ok ke ek ok e e o ok e ok e ok

* SEND DATA TO SERIAL PORT FOR X SCAN LINE *
dek ke dkkddkhokdekokdok ke ko kdkkkhk ke kkkkkkkhkd ke k Rk h ko k kAR koA Rk dok sk kkk

X_COUNTER:

MOV TEMP,A
MOV R4, A
MOV DETR, #COUNTER_CS

MOVX A, @DPTR

CJINE A, $00H, AND ZERO

JMP END_CHECK X
AND_ZERO:

MOV A, TEMP

ADD A, #10H

MOV R1,A

MOV A,@R1

MOV R5,A

CLR c

MoV A, #07H

SUBB A, TEMP

JB ACC.7,B2

MOV A,R5

XRL XBYTEO, A

JMP END_CHECK_X
B2:

MOV A,R5

XRL XBYTEL,A
END_CHECK_X:

™MoV T A, TEMP
RET

khkkkkkk* END OF X COUNTER ***kkkkx

Krkkkkkdkkhkhkhhkhkkk kA khkhkk Ak kkhhhkhhhkhhkkhhhkhhhhkkhkhhhhhkhhkhkkhkhkkkkk
* SEND DATA TO SERIAL PORT FOR Y SCAN LINE *
oot e e e A e ek sk e sk e e e ke sk ok ok ok ok ok e e ok ok e sk ok sk ok ok ek R e ok ek ke ok o ok ek ek ok

Y_COUNTER:

MOV TEMP, A
MOV R4,A
MOV DETR, #COUNTER CS

MOVX A, @DPTR

CINE A, #00H,AND ZERO_Y

JIMP END_CHECK Y
AND_ZERO_Y:

MOV A, TEMP

ADD A, #20H

MoV R1,A

MoV A, @Rl

TCL EXHIBIT 1024
Page 33 of 42

5,856,822
55 56

DOCKET NO. 2067

MOV R5,A
CLR [
MoV A, ¥17H
SUBB A, TEMP
JB ACC.7,B2_Y
MOV A,R5 -
XRL YBYTEO, A
JMP END_CHECK_Y
B2 Y:
~ Mov A, RS
XRL YBYTEL,A
END CHECK Y:
MoV T A, TEMP
RET

kkkkkkk* END OF Y COUNTER ***kkkkik

Fddekkdhkdedkkhhhhkhhhhhkhkhkh kb hhkkkkkkkkhkkkhkhhhkhkkkhhhhhhkhkhhhhkhkhhhhhkhkkk
* SEND A TO TEST _CS I/O PORT *
B R R N £ 2 R 2 A A g T T T T R
DISPLAY:

MOV DPTR, #TEST_CS

MOVX @DPTR, A

kkkkkkdx END OF DISPLAY ***kkkk

e ke e o de e e vk ok ke e e e e e e ke e o ek o ok ke e e ok ok e ko ok e e e ke e o b ek e e ke ke ok ok e e e ek ke sk o ke e ok e ke e e e e ke ek e e

* interval time for sending data to decoder *
dekhddddkhhkdkdkhkdkdhhddrhhddhhbhrhdkhrhhhhhrddhrhbrhkddrhkbrbhrhhdrhhhhkhbhbbrrrrhrhkdhrhhbhk
Pt Rttt DELAY 10 uS ~--——====-—=--
TEN_US:
MOV RS, #00H
TEN:
INC RS
CJINE R5, #02H, TEN
RET
DELAY1:
MOV R5, $00H
COUNT1:
INC RS
CJINE RS, #0FFH, COUNT1
RET
DELAYZ2:
MOV RS, #00H
MOV R6, $00H
L2:
COUNT2:
INC RS
CJINE R5, #0FFH, COUNT2
INC R6
MOV RS, #00H
CJNE R6, #0FFH, L2
RET

****** END OF DELAY ROUTINE **k***

Khkhkhdhdhhhkhhkhhhhbhhhhhhk kb bk hhkhh Ak hhkbrhbhkrhhhbrrrhkhrhdhhhhddrirk
Module DelayX

;
i

TCL EXHIBIT 1024
Page 34 of 42

57

Description Delay some time

5,856,822
58

DOCKET NO. 2067

; Input R5, delay counter
'-**********************************i—*t****ﬁti********************
DelayX:
DEC RS
CJINE R5, #00H, DelayX
RET
;*********************k*******************i***********k**********
; Module CmdDecoder
; Description Command decoder that decode input bit pattern
; (24 bits) into command.
; Input Xbyte2, Xbytel, XbyteO,
H Ybyte2, Ybytel, YbyteO
; Output A, Command code
:-***k**k*t*t*****************************ti**********************
CmdDecoder:
; if ((y2 & 0x60) && (y2 & OxOF) == 0) && (yl == 0) && (y0 == 0))
; OnPad Programming mode
; if ((x0 & O0x06) && ((x0 & OXEO) == 0)
; if (x1 == 0)
H if (%2 & 0x60) && (X2 & OxOF == 0)
; Finger Speed
; if {x2 & 0x06) && (x2 & OXFO == Q)
; Orientation
; if (x2 == 0)
; if (x1 & 0x60) && (x2 & OxXOF == 0)
H Sensitivity
; if (x1 & Ox086) && (x1 & OxFO == Q)
: MaterControl
H if (y2 == 0) && (yl == 0) && (yO)
; Drag lock
; if (x1 == 0) && (%2 & OxOF) == 0 && (X0 & OXxFQO) == 0
; if (x2 & 0x60) && (x0 & 0x06)
H Suspend
; if (x2 & 0x60) && (x0 == 0)
; DragLock
; if (x0 & 0x06) && (x2 == 0)
H DragLock
RET
'-***********i*i—**k*********‘r**********************t**************
; Module PosDecoder
; Description Position decoder that decode input bit pattern
; (24 bits) into position.
; Input R2, R1, RO ==> 24 bits
; Output A , position decoded
; 0 - not defined
;***********************************l'*************k**************
PosDecoder:
MoV B, #00h ; Clear divider
MoV DPTR, #PosLookup ; Load position lookup table
MOV A,R2 ; Load high byte
MOVC A, GA+DPTR ; Load position
JZ LR2
ADD A, $#40H ; Position from high byte
INC B ; Increment divider
LR2: MOV R2,A ; Store into R2

TCL EXHIBIT 1024
Page 35 of 42

59

LR1: MoV

LRO: XCH

LO: RET

;
; Motion Lookup

;
MoveLookup:

A,R1

A, GA+DPTR
LR1

A, #20H

B

Rl,A
A, RO

A, QA+DPTR
LRO

Table 16 entries

000h
001lh
004h
00%h
010h
01%h
024h
031h
040h
051h
064h
07%h
07Fh
07Fh
07Fh
07Fh

07Fh
07Fh
07Fh
07Fh
07Fh
07Fh
07Fh
07Fh
07Fh
07Fh
07Fh
07Fh
07Fh
07Fh
07Fh
07Fh
07Fh

N Ne Ne Ne Ne NpovaNe Ne N oNe N e S ove N

(0

WCONHRUBWNHEO

5,856,822
60

DOCKET NO. 2067

; Load middle byte

; Load position

; Position from middle byte
; Increment devider

; Store into R1

; Load low byte
; Load position

; Increment devider

; Xchange A,B
; No touch (divider=0)

A=A/2

- 47)

TCL EXHIBIT 1024
Page 36 of 42

H

; Position Lookup Table 256 entries

;
PosLookup:

DB
DB
DB

61

End Movelookup

07Fh
07Fh
07Fh
07Fh
07Fh
G7Fh
07Fh
07Fh
07Fh
07Fh
07Fh
07Fh
07Fh
07Fh
07Fh

0G60h
004h
008h
006h
00ch
008h
00ah
008h
010h
00ah
00ch
00%h
00eh
00bh
00ch
00ah
014h
00ch
00eh
00bh
010h
00ch
00dh
00bh
012h
00dh
00fth
00ch
010h
00dh
00eh
00ch
018h
00eh
010h
00ch
012h
00dh
00fh

B T T PR N 1)

P T Y

5,856,822

WOTARODWNEREO

(8 bits)

57

(4 - 32)

62

DOCKET NO. 2067

TCL EXHIBIT 1024
Page 37 of 42

63

00ch
0l4h
00fh
010h
00dh
011h
00eh
00fh
00dh
016h
010h
011h
00eh
013h
00fh
010h
00eh
014h
010h
011lh
00eh
012h
00fh
010h
00eh
Olch
010h
012h
00dh
014h
00fh
010h
00dh
016h
010h
01l1h
00eh
013h
00fh
010h
00eh
018h
0lih
013h
00fh
014h
010h
011h
00eh
015h
01l1lh
012h
00fh
013h
010h
0l1l1lh
00fh
O0lah
013h
0l4h
010h
015h
0llh
01i2h

L

5,856,822

58

64

DOCKET NO. 2067

TCL EXHIBIT 1024
Page 38 of 42

65

00fh
017h
012h
013h
010h
014h
01llh
012h
00fh
018h
013h
014h
01lih
015h
012h
012h
010h
01l6h
012h
013h
011lh
014h
01llh
012h
010h
020h
012h
014h
00£fh
01l6h
010h
011lh
00eh
018h
011lh
013h
00fh
014h
010h
01l1lh
00eh
Olah
013h
014h
010h
015h
01lih
012h
00fh
017h
012h
013h
010h
0l4h
0llh
012h
00fh
0lch
0l4h
015h
0llh
017h
012h
013h

5,856,822

103

59

66

DOCKET NO. 2067

TCL EXHIBIT 1024
Page 39 of 42

67

010h
018h
013h
014h
011h
015h
012h
012h
010h
01%h
014h
015h
012h
0lé6h
012h
013h
01llh
017h
013h
014h
0llh
015h
012h
013h
011h
Oleh
015h
017h
012h
018h
013h
014h
011lh
019h
014h
015h
012h
016h
012h
013h
011h
01lbh
015h
0lé6h
012h
017h
013h
014h
011h
018h
0l4h
015h
012h
0léh
013h
013h
0llh
0lch
0léh
017h
013h
018h
014h
015h

e Ne Me ne e N Ne Mo Na he Ne NG Se N6 N6 W e we Na N v e Np v e me

e veven

5,856,822

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

228
229
230

60

68

DOCKET NO. 2067

TCL EXHIBIT 1024
Page 40 of 42

5,856,822
69 70

DOCKET NO. 2067

DB 012h ; 231
DB 019h ; 232
DB 015h ; 233
DB 0l6h ; 234
DB 013h ; 235
DB 0l6h ; 236
DB 013h ; 237
DB 014h ; 238
DB 012h ; 239
DB 0lah ; 240
DB 0l16h ; 241
DB 0l6h ; 242
DB 013h ; 243
DB 017h ; 244
DB 014h ; 245
DB 015h ; 2486
DB 012h ; 247
DB 018h ; 248
DB 015h ; 249
DB 015h ; 250
DB 013h ; 251
DB 016h ; 252
DB 013h ; 253
DB 0l14h ; 254
DB 0l2h ; 255
; End PosLookup
END ;END OF 8051 PROGRAM

- 61 -

TCL EXHIBIT 1024
Page 41 of 42

5,856,822

71

Although the present invention has been described in
terms of the presently preferred embodiment, it is to be
understood that such disclosure is purely illustrative and is
not to be interpreted as limiting. For example, while a 80C51
has been disclosed as the preferred microprocessor 218,
which in conjunction with the computer program executed
by the microprocessor 218 provides means for sensing finger
contacts with the active area 22 while also providing a
computer port interface means to the computer 42 and the
secondary serial port 276 for coupling the auxiliary input
device 278 to the computer 42, there exist various other
equivalent devices which may be employed for effecting the
same operations as those performed by the microprocessor
218. Accordingly, those skilled in the art will recognize that
the microprocessor 218 may alternatively be implemented
with various different models of microprocessors other than
the 80C51, or might also be replaced with a custom designed
ASIC or with an appropriately programmed field program-
mable gate array (“FPGA”). Consequently, without depart-
ing from the spirit and scope of the invention, various
alterations, modifications, and/or alternative applications of
the invention will, no doubt, be suggested to those skilled in
the art after having read the preceding disclosure. Accord-
ingly, it is intended that the following claims be interpreted
as encompassing all alterations, modifications, or alternative
applications as fall within the true spirit and scope of the
invention.

What is claimed is:

1. A touch-pad for controlling a position of a cursor
appearing on a display screen of a digital computer, the
touch-pad comprising:

10

15

20

25

30

72
an active area that responds to finger contact thereto;

finger contact sensing device that is coupled to said active

area for sensing a response of said active area to a

finger contact, wherein said finger contact sensing

device:

senses a velocity at which a finger contacting the
touch-pad moves across said active area, the touch-
pad responding to a finger contact velocity which
exceeds a pre-established threshold by altering a
characteristic of data subsequently transmitted from
the touch-pad to the digital computer in response to
finger contact with said active area; and

also senses a direction at which a finger contact to the
touch-pad moves across said active area, the touch-
pad after sensing a finger contact velocity which
exceeds the pre-established threshold altering the
characteristic of transmitted data so the cursor con-
tinues moving across the display screen of the digital
computer in a direction fixed by an initial direction
of finger contact movement across the active area
even if such contact subsequently becomes station-
ary; and

computer port interface means that is coupled to said

finger contact sensing device and that is responsive to

finger contact with said active area for transmitting data

to a digital computer that indicates finger contact in

said active area.

TCL EXHIBIT 1024
Page 42 of 42

