Operating System
Reference Manual
for the Lisa™

029-0414-A

TCL EXHIBIT 1044
Page 1 of 188

Licensing Requirements for Software Developers

Apple has a low-cost licensing program, which permits developers of software
for the Lisa to incorporate Apple-developed libraries and object code files
into their products. Both in-house and external distribution require a license.
Before distributing any products that incorporate Apple software, please
contact Software Licensing at the address below for both licensing and
technical information.

©1983 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

Apple, Lisa, and the Apple logo are trademarks of Apple Computer, Inc.
Simultaneously published in the USA and Canada.

TCL EXHIBIT 1044
Page 2 of 188

Customer Satisfaction

If you discover physical defects in the manuals distributed with a Lisa
product or in the media on which a software product is distributed, Apple
will replace the documentation or media at no charge to you during the
90-day period after you purchased the product.

Product Revisions

Unless you have purchased the product update service available through
your authorized Lisa dealer, Apple cannot guarantee that you will receive
notice of a revision to the software described in this manual, even if you

have returned a registration card received with the product. You should
check periodically with your authorized Lisa dealer.

Limitation on Warranties and Liability
All implied warranties concerning this manual and media, including implied
warranties of merchantability and fitness for a particular purpose, are

limited in duration to ninety (90) days from the date of original retail
purchase of this product.

Even though Apple has tested the software described in this manual and
reviewed its contents, neither Apple nor its software suppliers make any
warranty or representation, either express or implied, with respect to this
manual or to the software described in this manual, their quality,
performance, merchantability, or fitness for any particular purpose. As a
result, this software and manual are sold "as is,” and you the purchaser are
assuming the entire risk as to their quality and performance.

In no event will Apple or its software suppliers be liable for direct,
indirect, special, incidental, or consequential damages resulting from any
defect in the software or manual, even if they have been advised of the
possibility of such damages. In particular, they shall have no liability for
any programs or data stored in or used with Apple products, including the
costs of recovering or reproducing these programs or data.

The warranty and remedies set forth above are exclusive and in lieu of all
others, oral or written, express or implied. No Apple dealer, agent or
employee is authorized to make any modification, extension or addition to
this warranty.

Some states do not allow the exclusion or limitation of implied warranties
or liability for incidental or consequential damages, so the above limitation
or exclusion may not apply to you. This warranty gives you specific legal
rights, and you may also have other rights that vary from state to state.

iii

TCL EXHIBIT 1044
Page 3 of 188

License and Copyright

This manual and the software (computer programs) described in it are
copyrighted by Apple or by Apple's software suppliers, with all rights
reserved, and they are covered by the Lisa Software License Agreement
signed by each Lisa owner. Under the copyright laws and the License
Agreernent, this manual or the programs may not be copied, in whole or in
part, without the written consent of Appie, except in the normal use of
the software or to make a backup copy. This exception does not allow
copies to be made for others, whether or not sold, but all of the material
purchased (with all backup copies) may be sold, given, or loaned to other
persons if they agree to be bound by the provisions of the License
Agreement. Copying includes translating into another language or format.

You may use the software on any computer owned by you, but extra copies
cannot be made for this purpose. For some products, a multiuse license
may be purchased to allow the software to be used on more than one
computer owned by the purchaser, including a shared-disk system.
(Contaot) your authorized Lisa dealer for more information on multiuse
licenses.

Product Revisions

Unless you have purchased the product update service available through
your authorized Lisa dealer, Apple cannot guarantee that you will receive
notice of a revision to the software described in this manual, even if you
have returned a registration card received with the product. You should
check periodically with your authorized Lisa dealer.

iv
TCL EXHIBIT 1044

Page 4 of 188

Contents

Chapter 1
Introduction
1.1 The MaIn FUNCUONS.....ceecceiiriiiritciiisiiiesesierresasisessasaniessessanacaannes
1.2 Using the 0S FUNCHIONS......cccrmereiininnnniiinnneineisesssasessnsanenns
1.3 ThE FLIE SYSLBM. .. iiiiiieeeeccrsnereeemaesssscsnransisssisesensssssersssssasssssssanannss
1.4 Process ManagemMENTccceeersrerissnsssesiteassassesetsssasssssrsstassssesssssansanans
1.5 Memory MaNEGEMENTccceeeiiiirennsiertrmracsseiermraasisitsesnnsissssesaasannans
1.6 Exceptions and EVENLS....cccciiirmiiiiimniiiinsitieiiinsninnaenisenesseneeaasesens
1.7 Interprocess Communication....
1.8 Using the 0S Interface
1.9 Running Programs under the 0S
1.10 writing Programs That Use the OS ...t 1-6
Chapter 2
The File System
2.1 FIIE NBMES . iteireiiiititiiceressetaeirtattenstastiattsnssesastssseesnassanssstsssanssses 2-1
2.2 The WOIKing DITECLOTY ...ccoviiremiiiiitiiminnnnniintin i innrneecsnnineenaseens 2-2
2.3 DBVICES .ceuieieecirenrereeietnnrtresstssssessstasesensstasssassssnessanssssasssnssssaassnanasans 2-3
2.4 StOTage DBVICES ...iicciiiiiiiiiititiniiiiitiitatetannnesesnrsssssssssssensnssssssassses 2-3
25 The VOIUME CatAl0Q.....ccureeeereeeseneseesssessensssssessssssessssssnsssessaesssasans 2-4
2.6 LBDBIS . ittt tasrse et sa et ssesattatasnetastastesantastantastasaraantane 2-4
2.7 Logical and Physical End Of Flle.....ceeiieeeeiiiiniiiiniinin 2-4
2.8 FIIB AGCESS ..iiiiieeiicccetiirereesensisesassesstttnasssissseensanssssessesssatanssssanses 2-5
e T = o U PPPRN 2-6
2.10 File SYStem CallS....ccciiiiiieriitinnemmssmnastesssseieennsas 2-7
Chapter 3
Processes
3.1 PIOCESS SLIUCTUIE cccuuiiirieanceirrssssiessistansisstasssstassesstansssssasssesannssansens 3-2
3.2 PrOCESS HIETAICHY ..ccceueeeceiiriiinsneniiniiiisessssissiiesssnsssiernesansssasesseenans 3-2
3.3 Process CreatiOn.....ccccccieiiinssstnsiteeiitssienasiinstneesnssstessenssraessssassennses 3-3
34 PIOCESS CONLIOL ...cciiiiiernnneiissiiansessssssettsassesseennsassssissasessansansasassaannns 3-3
3.5 Process SCheaULINgcuvciiiisneennnniiinniianneiirinnniinessssee. 3-3
3.6 Process Terminationccccceeeiiennsssniiinnsiinitettassiieeesssasersassensaenes 3-4
37 A Process-Handling EXAMPIEecciiiiieiiiieeniitinniiieiiisaans 3-5
3.8 Process SYStemM Calls....ccccccciiiiiimmniiisiritinnsiiiiniiitneetinnss. 3-7
v

029-0415-A

TCL EXHIBIT 1044
Page 5 of 188

Qerating System Reference Marvial contents

Chapter 4
Memory Management
4.1 Data SEOMENLS...ccciiititiiiiitttansiettanietteeieteeiiirssssitaesrasitasasissae, 4-1
4.2 The Logical Data Segment NUMDET ...cceiiiiiiiimeenniiitmnesasssiieesssee, 4-1
4.3 Shared Data Segments........cccriiiiiiiiieiieciiis s, 4-2
4.4 Private Data Segments......cccccrsissiisetenanasssteimitannsiiasaeaassstisssssaees 4-2
84S CO0B SEOMENLS iieciiteiiiitteittnittentieitttetiretiteitsteitesttsttasen, 4-2
8.6 SWAPPING . ccccereeeiiiiiie ettt s s s 4-2
4.7 ™Memory Management System CallS......ueenninnininn. 4-3
Chapter 5
Exceptions and Events
L3 T (07" 1 (14 S PP PP PPPREI
5.2 System-Defined Exceptions
5.3 Exception Handlersc..cceeevenniennns
130 N V=" ¢ | R
5.5 EVENL Chamnels ..ciiiiiiiiiiiiiiereiiititetiitetatesastetatesaatasassssasessssasaseasasans
5.6 The SYSLEM CIOCK ciiviieiieieieiienissiiisineiettteantresassssessssssssssssssssssssssssnas
S.7 Exception Management System Callsccviiiiiiiininnenineicnie, 5-10
5.8 Event Management SYStem Callscieveviiiiiirinninisniinsenssssesennnanan S-17
5.9 CloCK SYStEM CallS c...ciiiiiiirennsnsiniiiiirensisiiirassssiiiterssssseesassaaes 5-27
Chapter 6
Configuration
6.1 Configuration System Calls.......ccciviivrnntntiiiiiiiinneesasassissnsnae. 6-1
Appendixes
A Operating System INLEIface LML ...ccceviceeieiineecssesesssneesssssssssaseessnssssnnns A-1
B System-Reserved EXCEePIoN NAMEScccecereceretrenseteestaasstsessismstssesanes B-1
C System-Reserved EVent TYPEScccciiitineiisnmessiiesiiiiniieiseetseen. Cc-1
DTN ¢ (5) G i =4 o N 01
[ST (I b 1= (o N E-1
Index

vi
TCL EXHIBIT 1044
Page 6 of 188

Tables

2-1 DEVICE_CONTROL Functions Required before Using a Device........... 2-25
2-2 DEVICE_CONTROL Output Functional Groups..... 2-26
2-3 DCCOOE MNEMONICS ...coveeeeecemeeecrereenasmeensannmmmnnsssssanssssssssssnssssns ..2-28
2-4 Device Information 2-30
2-5 DisK HAIA EXTOT COOEScceeeereeesmmcmmsancssmssensessessssesssssonsnsssssnsenssnsans 2-32
Figures
2-1 Disk HArd EXTOT COOEScccceemecmencentacnsensensenssansanssanssassssssassansanasanss 2-29
2-2 The Relationship of COMPACT and TRUNCATEcceemmeeenecreememanaannans 2-35
3-1 Process Address Space Layoutc..eceeeeeeeeeneeee. e 372
32 PTOCESS TTBL ..cceeeeerenenensnsseesasesnssasessenmennsssssssssssssssssssssssssnssanassanannnss 3-3
5-1 Stack at Exception Handler Invocation........ 5-4
vii

TCL EXHIBIT 1044
Page 7 of 188

TCL EXHIBIT 1044
Page 8 of 188

Preface

The Contents of This Manual

This manual describes the Operating System service calls that are available to
Pascal and assembler programs. It is written for experienced Pascal
programmers and does not explain elementary terms and programming
techniques. We assume that you have read the L/sa Owner’s Gulioe and
workshop Users Gulde for the LIsa and are famillar with your Lisa system.

Chapter 1 is a general introauction to the Operating System.

Chapter 2 describes the File System and the available File System calls. This
includes a description of the interprocess communication facility, pipes, and
the Operating System calls that allow processes to use pipes.

Chapter 3 describes the calls available to control processes, and also describes
the structure of processes.

Chapter 4 describes how processes can control their use of available memory.

Chapter 5 describes the use of events and exceptions that control process
synchronization. It also describes the use of the system clock.

Chapter 6 describes the calls you can use to find out about the configuration
of the system.

Appendlx A contalns the source text of Syscall, the unit that contains the
type, procedure, and function definitions discussed in this manual.

Appendix B contains a list of system-reserved exception names.
Appendix C contalns a list of system-reserved event names.

Appendix D contains a list of error messages that can be produced by the
calls documented in this manual.

Appendix E contains a description of the information you can obtain from the
Operating System about flles and devices.

Type and Syntax Conventions

029-0416-A

Bold-face type is used in this manual to distinguish programming keywords and
constructs from English text. For example, FLUSH is the name of a system
call. Systemn call names are capitalized in this manual, although Pascal does
not distinguish between lower and upper case characters. /tg//cs indicate a
new term whase explanation follows.

ix

TCL EXHIBIT 1044
Page 9 of 188

Future Releases
A few features of the Lisa Operating System will be changed in future
releases:

* Pipes will not be supported.
* Timed events will not be supported.
* Configuration System Calls will be changed.

If you want your software to be upward-compatible, please take these changes
into consideration. More information is provided In the appropriate sections
of the manual.

TCL EXHIBIT 1044
Page 10 of 188

029-0053-A

11
12
13
14
15
1.6
17
1.8
19

1.10 writing Programs That Use the 0S ..

Chapter 1
Introduction

The Main Functions

Using the 0S Functions
The File System

Process Management

Memory Management
Exceptions and Events...

Interprocess Communication

Using the OS Interface

Running Programs under the 0S

TCL EXHIBIT 1044
Page 11 of 188

1-1
11
1-2
1-3
1-a4

1-5
1-6

. 1-6

1-6

TCL EXHIBIT 1044
Page 12 of 188

Introduction

The Operating System (0S) provides an environment in which multiple processes
can coexist, communicate, and share data. It provides a file system for 1/0
and information storage, handles exceptions (software interrupts), and performs
memory management.

11 The Main Functions
Tnis chapter describes the four main functional areas of the 0S: the File
Systefl'n, process management, memory management, and event and exception
handling.

The File System provides input and output. The File System accesses devices,
volumes, and files. Each object, whether a printer, disk file, or any other type
of object, is referenced by a pathname. Every 1/0 operation is performed as
an uninterpreted byte stream. Using the File System, all 1/0 is device
ingependent. The File System also provides device-specific control operations.

A process consists of an executing program and its associated data. Several
processes can execute concurrently by multiplexing the processor between
them. These processes can be broken into segments which are automatically
swapped into memory as needed.

Memory management routines handle data segments. A data segment is a file
that can be placed in memory and accessed directly.

Exceptions and events are process-communication constructs provided by the
0S. An event Is a message sent from one process to another, or from a
process to itself, that Is delivered to the recelving process only when the
process asks for that event. An exception is a speclal type of event that
forces itself on the receiving process. There Is a set of system-defined
exceptions (errors), and programs can define their own. System errors such as
division by zero are examples of system-defined exceptions. You can use the
system calls provided to define any exceptions you want.

1.2 Using the 0S Functions
Both built-in language features and explicit OS system calls can access 0OS
routines to perform desired functions. For example, the Pascal writeln
procedure is a built-in feature of the language. The code to execute writeln
is supplied in IOSPASLIB, the Pascal run-time support routines library. This
code, which is added to the program when the program is linked, calls 0S
File System routines to perform the desired output.

You can also call 0S routines explicitly. This Is usually done when the
language does not provide the operation you want. 0S routines allow Pascal
programs, for example, Lo create new processes, which could not otherwise be
done, since Pascal does not have any buflt-in process-handling functions.

TCL EXHIBIT 1044
Page 13 of 188

(perating System Reference Manal Introawetion

All calls to the 0S are synchronous, which means they do not return until the
operation is complete. Each call retums an error code to indicate if anything
went wrong during the operation. Any non-zero value indicates an error or
warning. Negative error codes indicate warnings. For a list of error codes
and thelr meaning, see Appendix D.

13 The File System
The File System performs all 1/0 as uninterpreted byte streams. These byte
streams can go to files on disk or to other devices such as a printer or an
alternative console. In all cases, the device or file has a File System name.
Except for device-control functions, the File System treats devices and flles
in the same way.

The Flle System allows sharing of all types of objects.

The Flle System provides for naming objects (devices, flles, etc.. A name in
the Flle System is called a pat/mame A complete pathname consists of a
directory name and a file name. The flle name Is meaningful only for storage
devices (devices that store byte streams for later use, such as disks).

Each process has a working directory associated with it. This allows you to
reference objects with an incomplete pathname. To access an object in the
working directory, you specify its file name. To access an object In a
different directory, you specify its complete pathname.

Before a device can be accessed, it must be mounted. Devices can be
mounted using the Preferences tool or by using the MOUNT call. See Chapter
2 for an explanation of this call and other File System calls. If the device is
a storage device, the mount operation makes a wolume name avallable. A
volume name is a logical name for a disk, and is saved on the disk itself. The
mount operation logically connects the volume to the system, so that the files
on the volume may be accessed. The volume name can replace a device name
in a pathname used to access an object on the disk. The volume name allows
you to access a file with the same pathname no matter where the drive is
actually connected.

A device can be accessed if it is specified in the configuration list created by
the Preferences tool, is physically connected to the Lisa, and is mounted.
There are some operations that can be performed on unmounted devices. Two
examples are DEVICE_CONTROL calls and scavenging. Logically mounting a
volume on a device makes file access to the volume possible. For storage
devices, a volume is an actual magnetic medium that can contain recorded
flles. For non-storage devices, volumes and files are concepts used to
malntaln a uniform interface. Flles on non-storage devices such as printers
do not store data but act as ports for performing 1/0 to the devices.

TCL EXHIBIT 1044
Page 14 of 188

Querating Systerm Rererence Marnig! Introauction

The basic operations provided by the File System are as follows:

mount and unmount - make a volume accessible/inaccessible
open and close - make an object accessible/inaccessible

read and write - transfer information to and from an object
device control functions - control device-specific functions

Some operations apply only to storage devices:

allocate and deallocate - specify size of an object

manipulate catalog - control naming of objects and creation and
destruction of objects

manipulate attributes - look at or change the characteristics of
the object

In addition to the data in an object, the object itself has certain
characteristics called gttritustes such as the length and creation date of a
file. Calls are available to access the attributes of any File System object. In
addition to its system-defined attributes, an object on a storage device can
have a /abel The label is avallable for programs to store information that
they can Interpret.

Non-storage devices such as printers are accessed with a limited set of
operations. They must be mounted and opened before they can be accessed.
Sequential read and/or write operations are avallable as appropriate for the
device. Device-control functions are available to perform any device-
specific functions needed. The file-name portion of the complete pathname
for a non-storage device is not used by the Flle System, although you do have
to provide one when you open the device.

For storage devices, the same sequential read and write operations are valid
as for non-storage devices. Storage devices also must be mounted, and
particular flles opened, before the files can be used. They have appropriate
device-control functions available.

when writing to a disk file, space for the file is allocated as needed. Space
for a file does not need to be contiguous, and in some cases this automatic
allocation can result in a fragmented file, which may slow flle access. To
insure rapid access, you can pre-allocate space for the file. Pre-allocating
the file also ensures that the process will not run out of space on the disk.

Four types of objects can be stored on storage devices. These are flles, pipes,
data segments, and event channels. Flles, already discussed, are simply arrays
of stored data. Pipes are objects that provide interprocess communication.
Data segments are special cases of files that are loaded into memory along
with program code. Event channels are pipes with a specialized structure
imposed by the system.

1.4 Process Management
A process Is an executing program and the data associated with it. Several
processes can exist at one time, and they appear to run simultaneously
because the CPU s multiplexed among them. The Scheduler decides what

TCL EXHIBIT 1044
Page 15 of 188

(Qperating System Rerference Margl Introduetion

process should use the CPU at any one time. It uses a génerally non-
preemptive scheduling algorithm. This means that a process will not lose the
CPU unless It blocks. The blocked state Is explained later In this section.

A process can lose the CPU when one of the following happens:
* The process calls an Operating System procedure or function.

* The process references one of its code segments that is not currently in
memory.

If neither of these occur, the process will not lose the CPU.

Every process Is started by another process. The newly started process is
called the son process The process that started it is called its 7grer process
The resulting structure is a tree of processes. See Figure 3-2 for an
{llustration of a process tree.

when any process terminates, all its son processes and thelr descendants are
also terminated.

when the GS Is booted, it starts a sme// process The shell process starts any
other processes desired by the user.

Every newly created process has the same system-standard attributes and
capabllities. These can be changed by using system calls.

Any processes can suspend, activate, or kill any other process for which the
global ID is known, as long as the other process does not protect itself.

The memory accesses of an executing process are restricted to its own
memory address space. Processes can communicate with other processes by
using shared flles, pipes, event channels, or shared data segments.

A process can be In one of three states: ready, running, or blocked. A reaay
process is walting for the Scheduler to select it to run. A suming process is
currently using the CPU to execute its code. A blacked process is walting for
some event, such as the completion of an 1/0 operation. It will not be
scheduled until the event occurs, at which point it becomes ready. A
teminaten processhas finished executing.

Each process has a priority from 1 to 255. The higher the number, the higher
the priority of the process. Priorities 226 to 255 are reserved for system
processes. The Scheduler always runs the ready process with the highest
priority. A process can change its own priority, or the priority of any other
process, while it is executing.

15 ™Memory Management
Memory managment is concemed with what is in physical memory at any one
time. Each process can use up to 128 memory segments. Each segment can
contain up to 128 Kbytes. Memory segments are of two types: code segments
and data segments. The total amount of memory used by any one process can
exceed the avallable RAM of the Lisa. The Operating System will swap code
segments in and out of memory as they are needed. To aid the Operating

TCL EXHIBIT 1044
Page 16 of 188

Qperating System Reference Marial Introouction

System in swapping data segments, calls are provided to give programs the
abllity to define which data segments must be In memory while a particular
part of the program Is executing.

You have control of how your program is divided up. For executable code
segments, you use the segmentation commands of the Pascal compliler to break
the program in pleces.

In aadition to residing in memory, data segments can be stored permanently
on disk. They can be accessed with calls similar to File System calls. This
allows you to use a data segment as a direct-access file--a flle that is
accessed as part of your memory space.

Calls are provided for making, killing, opening, and closing data segments.
You can also change the size of a data segment and set its access mode to
read-only or read-write. In addition, you can make a permanent disk copy of
the contents of a data segment at any time. Other calls give you ability to
force the contents of the data segment to be swapped into main memory so
they can be accessed by your process.

16 Exceptions and Events
An exception is an unexpected condition in the execution of a process (an
interrupt). An event is a message from another process.

An exception can be generated either by the system or by an executing
program. System exceptions are generated by various sorts of errors such as
divide by zero, illegal instruction, and illegal address. System exception
handlers are supplied that terminate the process. You can write your own
exception handlers for any of these exceptions if you want to try to recover
from the error.

User exceptions can be declared and exception handlers can be written to
process them. Your program can then signal this new exception.

Events are messages sent from one process to another. They are sent through
event channels.

A process that expects a message from an event channel executes a call to
walt for an event on that channel. This will give it the next message, if one
exists, or block the process until a message arrives.

If a process wants to know when an event arrives, but does not want to wait
for it, it can use an event-call channel. This Is set up by associating a user
exception with the event channel when it is opened. The Operating System
will then invoke the corresponding user exception handler whenever a message
arrives in the event channel.

1.7 Interprocess Communication
There are four methods for interprocess communication: shared files, pipes,
event channels, and shared data segments.

1-5

TCL EXHIBIT 1044
Page 17 of 188

Qperating System Reference Marx/al Introguction

Shared files are used for high volume transfers of information. It Is necessary
to coordinate the processes somehow to prevent them from overwriting each
other's Information.

Pipes are used for communication between processes with an uninterpreted
byte stream. (Note that pipes will not be supported in future releases of the
Operating System.) The pipe mechanism provides for the needed
synchronization; a process will block if it is trying to read from an empty
pipe or write to a full one. A read from a pipe consumes the Information, so
it is no longer avallable. Only one process can read from a given pipe.

Event channels are similar 10 pipes, except that event channels transmit short,
structured messages instead of uninterpreted bytes.

A shared data segment can be used to transmit a large amount of data
rapldly. Having a shared data segment means that this data segment is In the
memory address space of all the processes that want to use it. All the
processes can then directly read and write information In the data segment.
It Is necessary to provide some sort of synchronization to keep one process
from overwriting another’s information.

1.8 Using the OS Interface
The Interface to all the system calls is provided in the Syscall unit, found In
Appendix A. This unit can be used to provide access to the calls. See the
workshop Lsers Guice for the Lisa for more information on using Syscall.

19 Running Programs Under the 0S
Programs can be written and run by using the workshop, which provides

program development tools such as editing and debugging facilitles.

110 Writing Programs That Use the 0S
You can write a program that calls 0S routines to perform needed functions.
This program uses the Syscall unit and then calls the routines needed.

1-6

TCL EXHIBIT 1044
Page 18 of 188

029-0417-A

2.1
22
23
24
25
26
2.7
28
29
2.10

Chapter 2
The File System

File Names..... .- 2-1
The Working DITECtoryccceeeeenrsnisnsnnanns R 2-2
LD 217 (o =S 2-3
StOrage DEVICEScaecreiceceemc ettt ee et s te s e s e e e 2-3
ThEe VOIUME CatAl0g........ceeeeeeeranmeeesaneenasssseessaneeasansessssnseassnseasansessnns 2-4
LADBIS ..ceeiereteireiteteettatnetsetetentetaensetensatestessetssssasansessnssassansnsansansens 2-4
Logical ang Physical End Of FIle.............covciireiimiicsresecsnnmeeeenesncanansee. 2-4
L {0207 2-5
g 1o = LRI PEPRY 2-6
Flle System Calls......ccoeciieecieicnnereecncisennsssencssesasnstsesssssresssanssansssesans 2-7
2.10.1 MAKE_FILE and MAKE_PIPEccoveeiereeerrssesssseensessssessseens 2-8
2.10.2 KILL_OBJIECT .. ciiiiiititniiresttitastesiaittastasstsstasssssssssassrssassssans 2-10
2,103 UNKILL_FILE .. iciieiiiriirnitiiistesrn st saensanssssnansanssans 2-11
2104 RENAME_ENTRY .iiiiiiiiiiiieirinteeensesseisissinensen 2-12
2105 LOOKKUP ..ciiiiiiiicceresiisesstiresesesisassaassssssssssesssssssisassessssssnasssans 2-13
P2 T (N o Nt 2-16
2.10.7 SET_FILE_INFOD ciiiiiiiiiiiiiienirrererisssi e ssssninsssssinnnnsenessesans 2-17
2.10.8 OPEN .iitcitiiiiiitirtestirteittiitaitasaattassasstesssanstasasstansrassensens 2-18
2.10.9 CLOSE_OBJIECT ...ccovvrinviserensnnnennnens ..2-19
2.10.10 READ | ‘DATA and WRITE_DATA 2-20
2.10.11 READ_LABEL 8n0 WRITE_LABEL ...cceeereereeserseenesnesssnnsnssenns 2-23
2.10.12 DEVICE _CONTROL ..ceiivtiraraiteiiataisesssatastessasastassaeneesssnncnane 2-24
2.10.12.1 Setting Device-Control INfOrmationc.eeeeveernees 2-24
2.10.12.2 Obtaining Device-Control Informationccccveeeneee 2-28
2.10.13 ALLOCATE ..iiiiiiiiiiniitiitiinereeeressiassssssssensnssssseseneee 2-33
2.10.14
2.10.15
2.10.16
2.10.17
2.10.18
2.10.19
2.10.20 MOUNT and UNMOUNTooiineeeienennessssssssssssssssssssssssssssssans 2-40

TCL EXHIBIT 1044
Page 19 of 188

TCL EXHIBIT 1044
Page 20 of 188

The File System

The File System provides device-independent 1/0, storage with access
protection, and uniform file-naming conventions.

Device independence means that all 1/0 Is performed in the same way,
whether the ultimate destination or source is disk storage, another program, a
printer, or anything else. In all cases, 1/0 is performed to or from s7/es
although those flles can also be devices, data segments, or programs.

Every file is an uninterpreted stream of eight-bit bytes.

A file that is stored on a block-structured device, such as a disk, is listed in
a cgtalog(also called a directory) and has a name. For each such file the
catalog contains an entry describing the file's attributes, including the length
of the file, its position on the disk, and the last backup copy date. Arbitrary
application-defined information can be stored in an area called the /e /abel
Each file has two associated measures of length, the Logical End of File
LEGF) and the Physical Enad of File (PEGF) The LEOF is a pointer tu the last
byte that has meaningful data. The PEOF is a count of the number of blocks
allocated to the file. The pointer to the next byte to be read or written is
called the FAle marker

Since 1/0 is device independent, application programs do not have to take
account of the physical characteristics of a device. However, on block-
structured devices, programs can make 1/0 requests in whole-block increments
in order to improve program performance.

All input and output is synchronous in that the 1/0 requested is performed
before the call returns. The actual 1/0, however, is asynchronous, in that
processes may block when performing 1/0. See Section 3.5, Process Scheduling,
for more information on blocking.

To reduce the impact of an error, the File System maintains distributed,
redundant information about the files on storage devices. Duplicate copies of
critical information are stored in different forms and in different places on
the media. All the files are able to identify and describe themselves, and
there are usually several ways to recover lost information. The Scavenger
utility is able to reconstruct damaged catalogs from the information stored
with each file.

2.1 File Names
All the files known to the Operating System at a particular time are organized
into catalogs. Each disk volume has a catalog that lists all the files on the
gisk.

Any object catalogued in the File System can be named by specifying the
volume on which the file resides and the file name. The names are separated

TCL EXHIBIT 1044
Page 21 of 188

Qperating System Reference Maval The Flle System

by the character "-". Because the top catalog In the system has no name, all
complete pathnames begin with “-",

For example,
-LISA-FORMAT. TEXT

refers to a file named FORMAT.TEXT on a volume named LISA. The file
name can contain up to 32 characters. If a longer name is specified, the
name Is truncated to 32 characters. Accesses to sequential devices use an
arbitrary dummy filename that is ignored but must be present in the
pathname. For example, the serial port pathname

-RS2328
is insufficient, but
-RS2328-XYZ

is accepted, even though the -XYZ portion is ignored. Certaln device names
are predefined;

RS232A Serial Port A

RS232B Serial Port B

PARAPORT Parallel Port

SLOTXCHANy Serial ports: x is 1, 2, or 3 andy is 1 or 2
MAINCONSOLE writeln and readln device

ALTCONSOLE writeln and readln device

UPPER Upper Diskette drive (Drive 1)
LOWER Lower Diskette drive (Drive 2)
BITBKT Bit bucket: data Is thrown away when directed here

See Chapter 6 for more Information on device names.

Upper and lower case are not significant in pathnames: ‘TESTVOL' is the same
object as ‘Testvol. Any ASCII character Is legal In a pathname, including
non-printing characters and blank spaces. However, use of ASCII 13,
RETURN, In a pathname Is strongly discouraged.

22 The Working Directory
It is sometimes inconvenient to specify a complete pathname, especially when
working with a group of files in the same volume. To alleviate this problem,
the Operating System maintains the name of a working directory for each
process. when a pathname is specified without a leading "-", the name refers
to an object in the working directory. For example, if the working directory
is -LISA the name FORMAT.TEXT refers to the same file as
-LISA-FORMAT.TEXT. The default working directory name is the name of the
boot volume directory.

You can find out what the working directory is with GET_WORKING_DIR.
You can change to a new working directory with SET_WORKING_DIR.

TCL EXHIBIT 1044
Page 22 of 188

Qperating System Rererence Marxigl The Flle System

2.3 Devices
Device names follow the same conventions as file names. Attributes like baud
rate are controlled by using the DEVICE_CONTROL call with the appropriate
pathname.

Each device has a permanently assigned priority. From highest to lowest, the
priorities are:

Power on/off button

Serial port A (RS232A)

Serial port B (RS232B, the leftmost port)
I/0 slot 1

I/0 slot 2

170 slot 3

Keyboard, mouse, battery-powered Clock
10 ms system timer

CRT vertical retrace interrupt
Parallel port

Diskette 1 (UPPER)

Diskette 2 (LOWER)

Video screen

The device driver associated with a device contains information about the
device's physical characteristics such as sector size and interleave factors for
disks.

2.4 Storage Devices
On storage devices such as disk drives, the File System reads or writes file
data In terms of pages. A pagels the same size as a block. Any access to
data in a flle ultimately translates into one or more page accesses. when a
program requests an amount of data that does not fit evenly into some
number of pages, the Flle System reads the next highest number of whole
pages. Similarly, data is actually written to a flle only in whole page
increments.

A flle does not need to occupy contiguous pages. The File System keeps
track of the locations of all the pages that make up a flle.

Each page on a storage device Is self-identifying; the page aescriptoris stored
with the page contents to reduce the destructive impact of an 1/0 error.

The elght components of the page descriptor are:

version number

volume identifier

File identifier

Amount of data on the page
Page name

Page position in the file
Forward link

Backward 1ink

TCL EXHIBIT 1044
Page 23 of 188

Querating System Reference Manual The Flle System

Each volume has a Meagiun Descriptor Data File (MDOF) which describes the
various attributes of the medium such as its size, page length, block layout,
and the size of the boot area. The MDDF is created when the volume Is
initialized.

The File System also maintains a record of which pages on the medium are
currently allocated, and a catalog of all the flles on the volume. Each flle
contains a set of file hints, which describe and point to the actual file data.

25 The Volume Catalog
On a storage device, the volume catalog provides access to the flles. The
catalog is itself a file that maps user names into the intemal flle ldentifiers
used by the Operating System. Each catalog entry contains a variety of
information about each file including:

Name

Type

Internal file number and address

Size

Date and time created, last modified, and last accessed
File identifier

Safety switch

The safety switch is used to avold accidental deletions. While the safety
switch is on, the file cannot be deleted. The other flelds are described under
the LOOKUP File System call.

The catalog can be located anywhere on the medium.

26 Labels
An application can store its own information about a file in an area called
the 7/e /abel The label allows an application to keep the flle data separate
from information maintained about the file. Labels can be used for any
object in the Flile System. The maximum label size is 128 bytes. 1/0 to labels
is handled separately from file data /0.

2.7 Logical and Physical End of File
A flle contains some number of bytes of data recorded in some number of
physical pages. Additional pages which do not contain any file data can be
allocated to the file. There are, therefore, two measures of the end of the
file. The Logical End of Flle (LEOF) is a pointer to the last stored byte that
has meaning to the application. The Physical End of File (PEOF) Is a count of
the number of pages allocated to the file.

In addition, each open flle has a polnter called the /e marker which polnts
to the next byte In the file to be read or written. when the file is opened,
the file marker points to the first byte (byte number 0L The flle marker can
be positioned automatically or explicitly using the read and write calls. For
example, when a program writes to a file opened with Append access, the flle
marker s automatically positioned to the end of the file before new data are
written. The flle marker cannot be positioned past LEOF except by a write

TCL EXHIBIT 1044
Page 24 of 188

Qperating System Reference Marsl The File System

operation that appends data to a file; in this case the file marker is
positioned one byte past LEOF.

when a flle is created, an entry for it is made in the catalog specified in its
pathname, but no space Is allocated for the flle itself. wnhen the file is
opened by a process, space can be allocated explicitly by the process, or
automatically by the Operating System. If a write operation causes the file
marker to be positioned past the LEOF marker, LEOF (and PEOF if necessary)
are automatically extended. The new space is contiguous if possible.

2.8 File Access
The Flle System provides a device-independent bytestream interface. As far
as an application program is concerned, a specified number of bytes is
transferred either relative to the flle marker or at a specified byte location
in the flle. The physical attributes of the device or file are not important to
the application, except that devices that do not support positioning can
perform only sequential operations. Programs can sometimes improve
performance, however, by taking advantage of a device's physical
characteristics.

Programs can reguest any amount of data from a file. The actual 1/0,
however, Is performed In whole-page increments when devices are block
structured. Therefore, programs can optimize 1/0 to such devices by setting
the file marker on a page boundary and making 1/0 requests in whole-page
increments.

A flle can be open for access by more than one process concurrently. All
requests to write to the file are completed before any other access to the file
is permitted. when one process writes to a file, the effect of the write
operation is immediately available to all other processes reading the file. The
other processes may, however, have accessed the flle in an earller state.

Data already obtained by a program are not changed. The programmer must
ensure that processes maintain a consistent view of a shared file.

when you open a flle, you specify the kind of access allowed on the flle.
when the file is opened, the Operating System allocates a file marker for the
calling process and a run-time identification number called the refmum The
process must use the refnum in subsequent calls to refer to the file. Each
operation using the refnum affects only the file marker assoclated with that
refnum.

Processes can share the same flle marker. In g/oba/ access mode each
process uses the same refnum for the file. When a process opens a file in
global access mode, the refnum it gets back can be passed to any other
process, and used by any process. Note that any number of processes can
open a file with Global_Refnum, but each time the OPEN call Is used a
different refnum is produced. Each of those refnums can be passed to other
processes, and each process using a particular refum shares the same flle
marker with other processes with the same refum. Processes using different

TCL EXHIBIT 1044
Page 25 of 188

Qperating System Rerference Mamial The Flie System

refnums, however, always have different flle markers, whether or not those
refnums were obtained with Global_Refnum.

A file can also be opened in private mode, which specifies that no other OPEN
calls are to be allowed for that flle. A file can be opened with
Global_Refrnum and private, which opens the file for global access, but allows
no other process to open that file. By using this call, processes can control
which other processes have access to a file. The opening process passes the
global refnum to any other process that Is to have access, and the system
prevents other processes from opening the file.

Processes using global access may not be able to make any assumptions about
the location of the file marker from one access to the next.

29 Pipes
Because the Operating System supports muitiple processes, a mechanism is
provided for interprocess communication. This mechanism is called a pjpe
Pipes are similar to the other objects in the File System -- they are named
according to the same rules, and they can have labels.

NOTE

Pipes will not be supported In future releases of the Operating System.
Do not use the pipe mechanism if you want your software to be

upward-compatible.

As with a flle, a pipe Is a byte stream. With a plpe, however, information is
queued In a flrst-In-first-out manner. Also, a pipe can have only one reader
at a time, and once data is read from a pipe it is removed from the pipe.

A plpe can be accessed only In sequential mode. Although only one process
can read data from a pipe, any number of processes can write data Into it.
Because the data read from the pipe is consumed, the file marker is always at
zero. If the plpe is empty and no processes have it open for writing, EOF (End
Of Flle) Is returned to the reading process. If any process has the pipe open
for writing, the reading process is suspended until enough data to satisfy the
call arrives in the pipe, or until all writers close the pipe.

when a pipe is created, its size is D bytes. Unlike with ordinary files, the
initializing program must allocate space to the pipe before trying to write
data into it. To avoid deadlocks between the reading process and the writers,
the Operating System does not allow a process to read or write an amount of
data greater than half the physical size of the pipe. For this reason, you
should allocate to the pipe twice as much space as the largest amount of data
in any planned read or write operation.

A pipe is actually a circular buffer with a read pointer and a write pointer.
All writers access the pipe through the same write pointer. Whenever elther
pointer reaches the end of the pipe, it wraps back around to the first byte. If
the read pointer catches up with the write pointer, the reading process blocks

TCL EXHIBIT 1044
Page 26 of 188

Qperating System Reference Manual The File System

untll data are written or until all the writers close the pipe. Simlarly, if the
write pointer catches up with the read pointer, a writing process blocks until
the plpe reader frees up some space or until the reader closes the pipe.
Because pipes have this structure, there are restrictions on some operations.
These restrictions are discussed with the relevant File System calls.

Processes can never make read or write requests bigger than half the size of
the pipe because the Operating System always fully satisfies each read or
write request before returning to the program. In other words, if a process
asks for 100 bytes of data from a pipe, the Operating System waits until there
are 100 bytes of data in the pipe and then completes the call. Similarly, if a
process tries to write 100 bytes of data into a pipe, the Operating System
walts untll there is room for the full 100 bytes before writing anything into
the pipe. If processes were allowed to make write or read requests for
greater than half of a particular pipe, it would be possible for a reader and a
writer to deadlock, with neither having room in the pipe to satisfy its
requests.

2.10 Flle System Calls
This section describes all the Operating System calls that pertain to the Flle
System. A summary of all the Operating System calls can be found In
Appendix A. The following special types are used In the Flle System calls:
Pathname = STRING[Max_Pathname]; (* Max_Pathname = 255 *)
E_Name = STRING[Hax_Ename); (* Hax_EName = 32 *)
Accesses = (Dread, Dwrite, Append, Private, Global_Refnum);
HSet = SET OF Accesses;
IoMode = (Absolute, Relative, Sequential);

The Fs_Info record and its assoclated types are described under the LOOKUP
call. The Dctype record is described under the DEVICE_CONTROL call.

TCL EXHIBIT 1044
Page 27 of 188

Qperating System Reference Maal The Flle System

2.10.1 MAKE_FILE and MAKE_PIPE File System Calls

HAKE FILE (Var Ecode:Integer;
var Path:Pathname;
Label_Size:Integer)

HAKE_PIPE (Var Ecode:Integer;
var Path:Pathname;
Label_Size:Integer)

Ecode: Error indication
Path: Name of new object
Label Size: Number of bytes for the object's label

MAKE_FILE and MAKE_PIPE create the specified type of object with the
given name. If the pathname does not specify a directory name (more
specifically, if the pathname does not begin with a dash), the working
directory is used. Label Size specifies the initial size in bytes of the label.
It must be less than or equal to 128 bytes. The label can grow to contain up
to 128 bytes no matter what its initial size. Any error indication is returned
in Ecode.

NOTE

Pipes will not be supported In future releases of the Operating System.
Do not use the pipe mechanism if you want your software to be
upward-compatible.

The MAKE_FILE example on the next page checks to see whether the
specified file exists before opening it.

2-8

TCL EXHIBIT 1044
Page 28 of 188

perating System Rererence Marsl The Flle System

CONST FileExists = 890;
VAR FileRefNum ErrorCode:INTEGER;
F1leName :PathiName;
Happy : BOOLEAN;
Response :CHAR;
BEGIN
Happy : =FALSE;
WHILE NOT Happy DO
BEGIN
REPEAT (* get a file name *)
WRITE('File name: ")
READLN(FileName);
UNTIL LENGTH(F1leName)>0;
MAKE_FILE(ErrorCode, FileName, 0); (*no label for this filex)

IF (ErrorCode<>0) THEN (= does file already exist? »)
IF (ErrorCode=FileExists) THEN (* yes =)
BEGIN
WITE(FileName, * already exists. Overwrite? °);
READLN(Response),

Engyw(Response IN ['y'.'Y']); (*go ahead and overwrite*)

ELSE WRITELN('Error ', ErrorCode, ' while creating file.')
ELSE Happy:=TRUE:

END;

OPEN(ExrorCode, FileName, FileRefNum, [Owrite]).

’

TCL EXHIBIT 1044
Page 29 of 188

Qoerating System Reference Marial e Flle System

2102 KILL_OBJECT File System Call

KILL_DBJECT (var Ecode:Integer;
var Path:Pathname)

Ecode: Error indicator
Path: Name of object to be deleted

KILL_OBJECT deletes the object given in Path from the File System. Objects
with the safety switch on cannot be deleted. If a flle or pipe Is open at the
time of the KILL_OBJECT call, its actual deletion is postponed until it has
been closed by all processes that have it open. During this perlod no new
processes are allowed to open it. The object to be deleted need not be open
at the time of the KILL_OBJECT call. A KILL_0BJECT call can be reversed
by UNKILL_FILE, as long as the object is a file and is still open.

The following program fragment deletes files untll RETURN Is pressec:

CONST FileNotFound=894;
VAR FileName:PathName;
ErrorCode : INTEGER;
BEGIN
REPEAT
WRITE('File to delete: °);
READLN(F 11eName);
IF (FileName<>'') THEN
BEGIN
KILL_0BJECT(ErTUrCode, FileName);
IF (ErrorCoge<>0) THEN
IF (ErrorCode=FileNotFound) THEN
WRITELN(FileName, ' not found.')
ELSE WRITELN('ErTor ', Errorcode, ' while deleting file.')
ELSE WRITELN(FileName, ® deleted.');
END
UNTIL (FileName='"'),
END;

2-10

TCL EXHIBIT 1044
Page 30 of 188

Qperating System Reference Marval The File System

210.3 UNKILL_FILE File System Call

UNKILL _FILE (var Ecode:Integer;
RefNum: Integer;
var Newname:e_riame)

Ecode: Error indicator
RefNum: Refnum of the killed and open file
Newname: New name for the file being restored

UNKILL_FILE reverses the effect of KILL_OBJECT as long as the killed
object is a flle that is still open. A new catalog entry is created for the file
with the name given in Newname. Newname is not a full pathname: the
resurrected file remains in the same directory.

2-11

TCL EXHIBIT 1044
Page 31 of 188

tperating System Reference Marnal The Flle System

2.10.8 RENAME_ENTRY Flle System Call

RENAME_ENTRY (var Ecode:Integer;
var Path:Pathname;
var Newname:E_Name)

Ecode: Error indicator
path: Object’s o0ld name
Newname: Object's new name

RENAME_ENTRY changes the name of an object in the File System.
Newname cannot be a full pathname. The name of the object is changed, but
the object remains In the same directory. The following program fragment
changes the file name of FORMATTER.LIST to NEWFORMAT.TEXT.

VAR OloName:PathName;

NewName :E_Name;

ErrorCode : INTEGER
BEGIN
OldName:="-LISA-FORMATTER.LIST .
NewName : ='NEWFORMAT . TEXT ' ;
RENAME_ENTRY (ErrorCode, O10Name, NewName)
END;

The file's full pathname after renaming Is
-LISA-NEWFORMAT.TEXT

Volume names can be renamed by specifying only the volume name in Path
Here Is a sample program fragment which changes a volume name. Note that
the leading dash (-), given In OldName, is not given in NewiName.

VAR OldName :PathName;
NewName :E_Name;
ErrorCode : INTEGER
BEGIN
OloName:="-thomas';
NewName:=‘stearns';
RENAME_ENTRY (Errorcode, 01dName, NewName)
END;

2-12

TCL EXHIBIT 1044
Page 32 of 188

Qoerating System Reference Marxial Tne Flle System

2.105 LOOKUP File System Call

LOOKUP (Var Ecode:Integer;
var Path:Pathname;
var Attributes:Fs_Info)

Ecode: Error indicator
Path: Object to 100Kup
Attributes: Information returned about path

LOOKUP returns information about an object In the file system. For devices
and mounted volumes, call LOOKUP with a pathname that names the device or
volume without a flle name component:

DevName:="-UPPER"; (» Diskette drive 1 =)
LOOKUP(ErrorCode, DevName, InfoRec);

If the device is currently mounted and Is block structured, all of the record
flelds of Attributes contaln meaningful values; otherwise, some values are
undefined.

The Fs_Info record Is defined as follows. The meanings of the information
flelds are given in Appendix E.

Fs_Info = RECORD
name: e_name;
devnum: INTEGER;
CASE OType:info_type OF
device_t, volume_t:
(lochannel: INTEGER
devt: devtype;
slot_no: INTEGER;
fs_size: LONGINT;
vol_size: LONGINT;

password: e_name;
fsversion,

volid,

volnum: INTEGER;

2-13

TCL EXHIBIT 1044
Page 33 of 188

Qperating System Reference Mantal The File System

END;

blocksize,

datasize,

clustersize,

filecount: INTEGER; (*Number of files on vol*)
freecount: LONGINT; (*Number of free blocks *)
DTVC, (= Date Volume Created »)
DTvVB, (* Date Volume last Backed up *)
DTVS:LONGINT; (* Date Volume last scavenged *)
Hachine_id,

overmount_stamp,

master_copy_id: LONGINT:

privileged,
write protected: BOOLEAN;
master,
copy,
 flag: BOOLEAN);
object_t: (

size: LONGINT; (=actual no of bytes written =)
psize: LONGINT; (»*physical size in bytes *)
1psize: INTEGER; (*Logical page size in bytes *)
ftype: filetype;
etype: entrytype;

DTC, (* Date Created *)
DTA, (= Date last Accessed *)
om, (* Date last Modified =)
DTB: LONGINT; (* Date last Backed up *)

refrum: INTEGER;

fmark : LONGINT; (* file marker *)

acmode: mset: (» access mode *)
nreaders, (* Number of readers *)

nwriters, (* Number of writers =)

nusers: INTEGER; (* Number of users *)
fuild: uld; (* unique identifier =)
eof, (* EOF encountered? *)
safety_on, (» safety switch setting *)
kswitch: BOOLEAN; (* has file been killed? *)
private, (* File opened for private access? *)
locked, (* Is file locked? *)
protected:BOOLEAN); (* File copy protected? =)

2-14

TCL EXHIBIT 1044
Page 34 of 188

Qperating System Rererence Marvial The Flie System

Uld = INTEGER;

Info_Type = (device_t, volume_t, object_t);

Devtype = (diskdev, pascalbd, seqdev, bitbkt, non_io);

Flletype = (undefined, MDDFFile, rootcat, freelist,
badblocks. sysdata, spool, exec, usercat, pipe,
bootfile, swapdata, swapcode, ramap, userfile,
killedobject).

Entrytype = (emptyentry, catentry, linkentry, fileentry,
pipeentry, ecentry, killedentry):

The eof fleld of the Fs_Info record Is set after an attempt to read more
bytes than are avallable from the flle marker to the logical end of the flle, or
after an attempt to write when no disk space Is avallable. If the flle marker
Is at the twentieth byte of a twenty-five byte flle, for example, you can
read up to 5 bytes without setting eof, but if you try to read 6 bytes, the
File System gives you only 5 bytes of data and eof Is set.

The following program reports how many bytes of data a gliven file has:

VAR InfoRec:Fs_Info; (*information returned by LOOKUP and INFO*)
FileName :PathName;
ErrorCode : INTEGER;
BEGIN
WITE(‘File: °);
READULN(FileName),;
LOOKUP(ErrorCode, FileName, InfoRec):
IF (ErrorCode<>0) THEN
WRITELN('Cannot 1ookup °, FilleName)
ELSE
WRITELN(FileName, * has ‘. InfoRec.Size, ° bytes of data.'):.
END;

2-15

TCL EXHIBIT 1044
Page 35 of 188

perating System Rererence Marnial The Flle System

2.10.6 INFO File System Call

INFO (var Ecode:Integer;
RefNum:Integer;
var RefInfo:Fs_Info)

Ecode: Error indicator

RefNum: Reference number of object in File System
Refinfo: Information returned about RefNum's object

INFO serves a function similar to that of LOOKUP but is applicable only to
objects In the File System that are open. The definition of the Fs_Info
record is given under LOOKUP and in Appendix A

2-16

TCL EXHIBIT 1044
Page 36 of 188

Qerating System Reference Maal The Flle System

2107 SET_FILE_INFO File System Call
SET_FILE_INFO (Var Ecode:Integer;

RefNum:Integer;

Fsi:Fs_Info)
Ecode: Error indicator
RefNum: Reference number of object in Flle System
Fsi: New information about the object

SET_FILE_INFO changes the status information associated with a given object.
This call works In exactly the opposite way that LOOKUP and INFO work, In
that the status information is given by your program to SET_FILE_INFO. The
Fsl argument is the same type of information record as that returned by
LOOKUP and INFO. The object must be open at the time this call Is made.

The following flelds of the Information report may be changed:

file_scavenged
file closed by 0S
file_left_open
user_type
user_subtype

TCL EXHIBIT 1044
Page 37 of 188

Qperating System Reference Markgl The Flle System

2.108 OPEN File System Call

OPEN (var Ecode:Integer;
var Path:Pathname;
var RefNum:Integer;

Manip:MSet)
Ecode: Exror indicator
Path: Name of object to be opened
RefNum: Reference number for object
Manip: Set of access types

The OPEN call opens an object so that it can be read or written to. wnhen
you call OPEN, you specify the set of accesses that will be allowed on that
file or sequential device. The avallable access types are:

* Dread -- Allows you to read the file

. Duri;:e -- Allows you to write in the file (to replace existing
data

* Append -- Allows you to add on to the end of the file

* Private -- Prevents other processes from opening the file

* Global_Refnum -- Creates a refnum that can be passed to other
processes

Note that you can give any number of these modes simultaneously. If you
specify Dwrite and Append in the same OPEN call, Dwrite access will be used.
See Section 2.8 for more information on Global_Refrum and Private access
modes.

If the object opened already exists and the process calls WRITE_DATA
without having specified Append access, the object can be overwritten. The
Operating System does not create a temporary flle and walt for the
CLOSE_OBJECT call before deciding what to do with the old file.

An object can be opened by two separate processes (or more than once by a
single process) simultaneously. If the processes write to the file without using
a global refnum, they must coordinate thelr flle accesses so as to avoid
overwriting each other's data.

Pipes cannot be opened for Dwrite access. You must use Append if you want
to write into the pipe. To set up a private pipe, the reader process opens the
pipe first, specifylng Dread mode; the writer process then opens the pipe with
Append, Private access mode.

2-18
TCL EXHIBIT 1044
Page 38 of 188

Qperating System Reference Maal The Flle System

2.109 CLOSE_OBJECT Flle System Call

CLOSE_DBJECT (var Ecode:Integer;
RefNum:Integer)

Ecode: Error indicator
RefNum: Reference number of object to be closed

If ReftNum is not global, CLOSE_OBJECT terminates any use of Refium for 1/0
operations. A FLUSH operation is performea automatically and the flle is
saved in its current state. If RefNum Is a global refnrum and other processes
have the file open, RefNum remains valid for these processes and other
processes can still access the flle using RefiNum.

The following program fragment opens a flle, reads 512 bytes from it, and
then closes the file.

TYPE Byte=-128..127;
VAR F1leName:PathName;
ErrorCode, FileRefNum:Integer;
ActualBytes:LongInt;
Buffer:ARRAY[0. .511] OF Byte;
BEGIN
OPEN(ErTorCode, FileName, F11eRefNum, [DRead]);
IF (ErrorCode>0) THEN
WRITELN(‘Cannot open °, FlleName)
ELSE
BEGIN
READ_DATA(ErrorCode,
FileRefNum,
ORDA(@Buffer),
512,
ActualBytes,
s:)aqlmtial.
0);
IF (ActualBytes<512) THEN
WRITE(‘Only read *, ActualBytes, ' bytes from °,FlleName);
CLOSE_O0BJECT(ErrorCode, FileRefNum);

'’

END;

2-19

TCL EXHIBIT 1044
Page 39 of 188

Qperating System Reference Marmal e Flle System

2.10.10 READ_DATA and WRITE_DATA Flle System Calls

READ DATA (var Ecode:Integer;
RefNum:Integer;
Data_Aadr:LongInt;
Count:LongInt;

var Actual:LongInt;
Hode : Iotode;
Offset:LongInt);

WRITE_DATA (Var Ecode:Integer;
RefNum:Integer;
Data_aadr:Longint;
Count :LongInt;

var Actual:LongInt;
Hode : Iotode;
Offset:LongInt);

Ecode: Error indicator
RefNum: Reference number of object for 1/0
Data_Addr: Address of data (source or destination)

Count: Number of bytes of data to be transferred
Actual: Actual number of bytes transferred
Hode: 170 mode

Offset: Offset (absolute or relative modes)

READ_DATA reads information from the device, pipe, or flle specified by
RefNum, and WRITE_DATA writes information to it. Data_Adodr is the
address for the destination or source of Count bytes of data. The actual
number of bytes transferred is returned in Actual.

Mode can be absolute, relative, or sequential. In absolute mode, Offset
specifies an absolute byte of the file. In relative mode, Offset specifies a
byte relative to the file marker. In sequential mode, Offset Is ignored
(assumed to be zero); transfers occur relative to the file marker. Sequentlal
mode (which Is a speclal case of relative mode) Is. the only access mode
allowed for reading or writing data in pipes or sequential (non-disk) devices.
Non-sequential modes are valid only on devices that support positioning. The
first byte is numbered 0.

If a process attempts to write data past the Physical End of Flle on a disk
file, the Operating System automatically allocates enough additional space to
contain the data. This new space, may not be contiguous with the previous
blocks. You can use the ALLOCATE call to ensure that any newly allocated
blocks are located next to each other, although they may not be located near
the rest of the file.

READ_DATA from a pipe that does not contain enough data to satisfy Count
suspends the calling process until the data arrives in the plpe. If there are no

2-20

TCL EXHIBIT 1044
Page 40 of 188

Qperating System Reference Markial The Flle System

writers, the end-of-file indication (error 848) is returned in Ecode. Because
pipes are circular, WRITE_DATA to a pipe with insufficient room suspends the
calling process (the writer) until enough space is available (until the reader
has consumed enough data). If no process has the pipe open for reading and
there 1s not enough space in the pipe, the end-of-flle indication (848) is
returned in Ecode.

NOTE

READ_DATA from the MAINCONSOLE or ALTCONSOLE devices must
specify Count - 1.

The following program copies a file. Note that you must supply the correct
location for Syscall in the second line of the program.

PROGRAM CopyFile;

USES (*Syscall.Obj*) SysCall;

TYPE By te=-128..127;

VAR 0ldFile, NewFile:PathName;
01dRefNum, NewRefNum: INTEGER;
BytesRead, BytesWritten:LONGINT;
ErrorCode:INTEGER;

Response :CHAR;
Buffer :ARRAY [0..511] OF Byte;
BEGIN
WRITE('File to copy: ');
READLN(O10F11le);

OPEN(ErrorCode, 01dFile, 01dRefNum, [DRead]);
IF (ErrorCode>Q) THEN
BEGIN
WRITELN('Error °,ErrorCode, ' while opening ‘,60ldFile);

EXIT(CopyFile);
m-

END;

WRITE('New file name: ‘).

READLN(NewF1ile);

HAKE_FILE(ErrorCode, NewFile, 0);
OPEN(Errorcode, NewF 11e, NewRefNum, [D¥rite]);

REPEAT
READ_DATA(ErrorCode,
OldRefNum,
ORDA(@Buffer),

512, BytesRead, Sequential, 0);
IF (ErrorCode=0) AND (BytesRead>0) THEN
WRITE_DATA (ErTorcoce,
NewRefNum,
ORD4(a@Buf fer),
BytesRead, Bytes¥ritten, Sequential, 0);
UNTIL (BytesRead=0) OR (Byteswritten=0) OR (ErrorCode>0);

2-21

TCL EXHIBIT 1044
Page 41 of 188

Qperating System Reference Markial The Flle System

IF (ErrorCode>0) THEN
WRITELN('File copy encountered error °,ErrorCode);
CLOSE_0BJECT(ErrorCode, NewRefNum),
CLOSE_0BJECT(ErrorCode, O1dRefNum);
END.

2-22

TCL EXHIBIT 1044
Page 42 of 188

perating System Reference Maal e Flle System

21011 READ_LABEL and WRITE_LABEL Flle System Calls

READ LABEL (var Ecode:Integer;
var Path:Pathname;
Data_Addr:Longint;
Count :LongInt;
var Actual:LongInt)

WRITE_LABEL (var Ecode:Integer;
var Path:Pathname;
Data_Aadr:Longint;
Count :LongInt;
var Actual:LongInt)

Ecode: Error ingicator

Path: Name of object containing the label
Data_Addr: Source or destination of 1/0

Count: Number of bytes to transfer

Actual: Actual number of bytes transferred

These calls read or write the label of an object in the File System. 1/0
always starts at the beginning of the label. Count is the number of bytes the
process wants transferred to or from Data_Addr, and Actual is the actual
number of bytes transferred. An error is returned if you attempt to read
more than the maximum label size, 128 bytes.

2-23

TCL EXHIBIT 1044
Page 43 of 188

Qoerating System Reference Manual The Flle System

2.10.12 DEVICE_CONTROL Flle System Call

DEVICE_CONTROL (Var Ecode:Integer;
var Path:Pathname;
var CParm:Dctype)

Ecode: Error indicator
Path: Device to be controlled
CParm: A record of information for the device driver

DEVICE_CONTROL is used to send device-specific information to a device
driver or to obtain device-specific information from a device driver.

Regardless of whether you are setting device-control parameters or requesting
information, you always use a record of type Dctype. The structure of Dctype
Is:
Dctype = RECORD
dcversion: INTEGER;
dcCode: INTEGER;
dcData: ARRAY[0..9] OF LONGINT

END;
deversion: currently 2
dcCode: control code for device driver
dcData: specific control or data parameters

2.10.12.1 Setting Device—Control Information
Before you use a device, you call DEVICE_CONTROL to set the device driver.
Once you begin using the device, you call DEVICE_CONTROL as necessary.

Table 2-1 shows which groups of device-control functions must be set before
using each type of device. Table 2-2 shows which characteristics are
contained in each group. For example, you must set Group A for RS-232
input. As you see in Table 2-2, Group A Indicates the type of parity used
with the device. Each group requires a separate call to DEVICE_CONTROL,
and you can set only one characteristic from each group. If you set more
than one from the same group for a particular device, the last one set will
apply.

2-2
TCL EXHIBIT 1044
Page 44 of 188

perating System Rerference Marnial The File Systen

Table 2-1
DEVICE_CONTROL Functions Required
before Using a Device

Dev@ce Type Device Name Reguired Groups
Serial RS-232 for RS232A or RS232B A,C,D,E,F,G
input

Serial RS-232 for RS232A or RS232B A,B,C,GH I
output or printer

ProFile SLOTXCHANY (where J

X and y are numbers)
or PARAPORT

Parallel printer SLOTXCHANY (where I
X and y are numbers)
or PARAPORT

Console screen and MAINCONSOLE or I
keyboard ALTCONSOLE
Diskette drive UPPER or LOWER J

Here is a sample program that shows how a device-control parameter is set.
This program sets the parity attribute for the RS232B port to "no parity.”
Note that the parity attribute requires only that you set cparm.dccode and
cparm.dcdatag[0] Other parameters require that you also set cparm.dcdata(1]
and cparm.dcdatd2]l They are set in a similar manner.

VAR
cparm: dctype;
errnum: integer;
path: pathname;

BEGIN
path:="-RS2328';
oparm.dcversion:=2; (* always set this value *)
cparm.dccode: = 1;
cparm.dedata[0]:= 0;
DEVICE_CONTROL (errnum, path, cparm);
END;

2-25

TCL EXHIBIT 1044
Page 45 of 188

(perating System Reference Marial The Flle System

Table 2-2 shows how to set cparm.dccode, cparm.dcdatg0] cparm.dcdata(1]
and cparm.dcdatg[2] for the varlous avallable attributes. Note that any values
in cparm.dcdata past cparm.dedataf2] are ignored when you are setting
attributes documented here.

Table 2-2
DEVICE_CONTROL Output Functional Groups
FUNCTION dccode .dcdatal0] .dcdata[1] .dedaty2]
Group A--Parity:
No parity 1 0 -- --
0dd parity, no 1 1 -- --
input parity
checking
0dd parity, 1 2 -- --
input parity
errors = 00
Even parity, no 1 3 -- --
input parity
checking
Even parity, 1 4 -- ==
input parity
errors = $80
Group B--Output Handshake:
None 11 -- -- -
DTR handshake 2 -- --= --
XON/XOFF handshake 3 -- -- --
delay after Cr, LF 4 ms delay -- --
Group C--Baud rate:
5 baud -- --
Group D--Input walting during Read_Data:
wait for Count bytes 6 0 -- --
return whatever rec'd 6 1 - -

Group E--Input handshake:

no handshake 7 - -- --
9 -1 -1 32767
DTR handshake 7 - -- -

XON/XOFF handshake 8 - - -

2-26
TCL EXHIBIT 1044
Page 46 of 188

perating System Rererence Manual Tne Flie System

Table 2-2 (continued)

FUNCTION .Occode .dcdatal0] .dedatal] .dcdatd2]
Group F--Input typeahead buffer:
flush only 9 -1 -2 -2
flush and re-size 9 bytes -2 -2
flush, re-size, 9 bytes low ni

and set threshold

Group G--Disconnect Detection:
none 10 0 0 --
BREAK detected 10 0 non-zero --
means disconnect
Group H--Timeout on output (handshake interval):
no timeout 12] -- --
timeout enabled 12 seconds -- --
Group I--Automatic linefeed insertion:

disabled 17 0 == ==
enabled 17 1

Group J--Disk errors (set to 1 to enable, to O to disable):
enable sparing 21 sparing rewrite reread

Group K--Break commend (never required -- available only on serial
RS-232 devices):

send break 13 millisecond 0 --
duration

send break 13 millisecond 1 --

while lowering DTR duration

Using Group C, you can set baud to any standard rate. However, 3600, 7200,
and 19200 baud are avallable only on the RS2328 port.

"Low" and “HI" under Group F set the low and high threshold in the typeahead
input buffer. when "Hi" or more bytes are in the input buffer, XOFF is sent
or DTR is dropped. when “Low" or fewer bytes are in the typeanhead buffer,
XON Is sent or DTR {s reasserted. The size of the typeanead buffer (pytes) can
be any value between 0 and 1024 bytes inclusive.

In Group J, enabling disk sparing permits the device driver to relocate blocks
of data from areas of the disk that are found to be bad. Enabling disk rewrite

2-27

TCL EXHIBIT 1044
Page 47 of 188

Qoerating System Rererence Marnal The Flie System

permits the Operating System to rewrite data that it had trouble reading, but
finally managed to read. This condition iIs referred to as a soft eror
Enabling disk reread tells the Operating System to read data after they are
written to make certain that they were written correctly.

when sending a break command, as shown In Group K, any device control from
Group A removes the break condition even if the allotted time has not yet
elapsed. Also, sending a break will disrupt transmission of any other character
still being sent. If you want to make certain that enough time has elapsed for
the last character to be transmitted, call WRITE_DATA with a single null
character (equal to 0) just prior to calling DEVICE_CONTROL to send the break.

Table 2-3 gives a list of mnemonic constants that you can use in place of
explicit numbers when setting Dccode. These mnemonics are provided for

convenience.
Table 2-3
Dccode Mnemonics
Dccode Mnemonic
1 dgvParity
2 dvOutDTR
3 dvOutXON
4 dvOutbDelay
S avBaud
6 gvinwait
7 ovInDIR
8 avInXON
9 avTypeahd
10 dvDiscon
11 AdvOUtNoHS
12 no mnemonic
13 no mnemonic
15 dvErrStat
16 dvGetEvent
17 dvAutoLF
20 dvDiskStat
21 dvDiskSpare

2.10.12.2 Obtaining Device-Control Information
To use DEVICE_CONTROL to find out about the current state of a particular
device, simply give the pathname for the particular device along with a
function code for the type of information you need. The record of type Dctype
that you supply is returned filled with information.

2-28

TCL EXHIBIT 1044
Page 48 of 188

Qperating System Reference Manual The Flle System

There are three types of information requests you can make. Note that each
type applies only to some of the avallable devices. The request types and the
returned information are described in Table 2-4.

Table 2-5 shows the error code provided in response to a Dccode=15
information request. This code is given in cparmdedata{0] The code, a long
integer, Is shown in Table 2-5; the bits and bytes are numbered from the right,
coumin% from 0, as shown in Figure 2-1. The meaning assigned to the bit
applies If the bit is set (equals 1).

Here is a program fragment that uses DEVICE_CONTROL to get information
about the upper diskette drive.
VAR
cparm: dotype;
errnum: INTEGER;
path: pathname;

cparm.doversion:=2; (*» always set this value *)
cparm.dccode := 20;
DEVICE_CONTROL (errnum, path, cparm);
¥ITH cparm DO
WRITELN (dcdata[0], dcdata[1], dcdata[2], dcgata[3),
dcdatal4], acdata[S], dcdata(6])
END;

TCL EXHIBIT 1044
Page 49 of 188

Qoerating System Reference Manual

The Flle System

Table 2-4

Device Information

Dccode Devices

Returned in Dcdata

15

16

ProFiles

Console Screen
and Keyboard

[0] contains disk error status on
last hardware error (see Table
2-5)

[1] contalns error retry count
since last system boot

[0] contains numbers 0-10,
which indicate events:
no event
upper diskette inserted
upper diskette button
lower diskette inserted
lower diskette button
mouse button down
mouse plugged in
power button
mouse button up

10 = mouse unplugged
[1] contains the current state of
certain keys, indicated by set
bits (if the bit is 1, the key is
pressed) (bits are numbered from

WOONDHFNN-O
L I T T I TR TR TR 1}

the right)
0 = caps lock key
1 = shift key
2 = option key
3 = command key
4 = mouse button
S = auto repeat

[2] contains X and Y coordinates
of mouse, X in left 2 bytes,Y in
rignt 2 bytes

[3] contains timer value in
milliseconds

2-30
TCL EXHIBIT 1044
Page 50 of 188

Qperating System Reference Manal The Flle System

Table 2-4 (continued)

Dccode Devices Returned in Dcdata
20 ProFile or [0] contains:
Diskette Drive 0 = no disk present

1 = disk present (but not
accessed yet)
The following indicate that a
disk is present and has been
accessed at least once.
2 = bad block track appears
unformatted
3 = disk formatted by some
program other than the
Operating System
4 = 0S-formatted disk
[1] contains:
0 = no button press pending
1 = button press pending,
disk not yet ejected
[2] contains number of avallable
spare blocks, 0-16,
meaningful only when
Dedata[0] = 4 and for a
diskette
[3] contains:
0 = both copies of the
bad-block directory OK
1 = one copy 1is corrupt
(meaningful only when
Dcdata[0] = 4)
[4] contains:
0 = sparing disabled
1 = sparing enabled
(5] contains:
0 = rewrite disabled
1 = rewrite enabled
[6] contains:
0 = reread disabled
reread enabled

1

2-31

TCL EXHIBIT 1044
Page 51 of 188

Qperating System Reference Manal he Flle System

Table 2-5
Disk Hard Error Codes

Byte 3

N W & NN

Byte

OFFNWAEVIAN K OENWSUION NN O

Byte 0

Honwuwononn

ProFile received <> S5 to its last response

write or write/verify aborted because more than 532 bytes of
data were sent or because ProFile could not read its spare
table

Host's data is no longer in RAM because ProFile updated 1ts
spare table

SEEK ERROR -- unable in 3 tries to read 3 consecutive headers
on a track

CRC error (only set during actual read or verify of
writesverify, not while trying to read headers after seeking)
TIMEOUT ERROR (could not find header in 9 revolutions)-- not
set while trying to read headers after seeking

Not used

Operation unsuccessful

SEEK ERROR -- unable in 1 try to read 3 consecutive headers
on a track

Spared sector table overflow (more than 32 sectors spared)
Not used

Bad block table overflow (more than 100 bad blocks in table)
ProFile unable to read its status sector

Sparing occurred

Seek to wrong track occurred

Not used

Profile nas been reset
Invalid block number
Not used

Not used

Not used

Not used

3
C C
i

This byte contains the number of errors encountered when rereading a
block after any read error.

2-32
TCL EXHIBIT 1044
Page 52 of 188

Querating System Reference Marnal The Flle System

2.10.13 ALLOCATE Flle System Call

ALLOCATE (var Ecode:Integer;
RefNum: Integer;
Contiguous :Booleary;
Count:Longint;
var Actual:Integer)

Ecode: Error indicator

Refhum: Reference number of object to be allocated space
Contiguous: True = allocate contiguously

Count: Number of blocks to be allocated

Actual: Number of blocks actually allocated

Use ALLOCATE to Increase the space allocated to an object. If possible,
ALLOCATE adds the requested number of blocks to the space avallable to the
object referenced by ReffNum. The actual number of blocks allocated is
returmned in Actual. If Contiguous is true, the new space is allocated in a
single, unfragmented space on the disk. This space is not necessarily adjacent
to any existing flle blocks.

ALLOCATE applies only to objects on block-structured devices. An attempt to
allocate more space to a pipe is successful only if the pipe’s read pointer is
less than or equal to its write pointer. If the write pointer has wrapped
around but the read pointer has not. an allocation would cause the reader to
relad invalid and uninitialized data, so the Flle System returns error 1186 in
this case.

2-33

TCL EXHIBIT 1044
Page 53 of 188

Qperating System Reference Maral The Flie System

2.10.18 COMPACT Flle System Call

COHPACT (Var Ecode:Integer;
RefNum:Integer)

Ecode: Error indicator
RefNum: Reference number of object to be compacted

COMPACT changes the Physical End of File to deallocate any blocks after the
block that contains the Logical End of Flle for the flle referenced by ReffNum.
(See Figure 2-1.) COMPACLT applies only to objects on block-structured
devices. As in the case of ALLOCATE, compaction of a pipe is legal only if
the read pointer is less than or equal to the write pointer. If the write pointer
has wrapped around, but the read pointer has not, compaction could destroy
data in the pipe. The File System returns error 1188 in this case.

2-34

TCL EXHIBIT 1044
Page 54 of 188

Qperating System Rererence Manual Tre Flle System

21015 TRUNCATE Flle System Call

TRUNCATE (Var Ecode:Integer;
RefNum:Integer)

Ecode: Error indicator
RefNum: Reference number of object to be truncated

TRUNCATE sets the Logical End of Flle indicator to the current position of
the flle marker. Any data beyond the file marker are lost. TRUNCATE
applles only to block-structured devices. Truncation of a pipe can destroy
data that have been written but not yet read. As the diagram shows,
TRUNCATE changes only LEOF. COMPACT, on the other hand, changes only

PECOF.
I-— TRUNCATE r COMPACT -
new new
LEOF Pli(]:
+—— BATHA-AREA ALLOGATED
Ll g
t !
File Marker old old

LEOF PEOF

Figure 2-2
The Relationship of COMPACT and TRUNCATE
In this figure the boxes represent blocks of data. Note that LEOF can point to

any byte in the flle but PEOF always points to a block boundary. Therefore,
TRUNCATE can reset LEOF to any byte In the flle, but COMPACT can reset

PEOF only to a block boundary.

2-35

TCL EXHIBIT 1044
Page 55 of 188

Qperating System Reference Maval ™e Flle System

2.10.16 FLUSH Flle System Call
FLUSH (Var Ecode:Integer;
RefNum:Integer)

Ecode: Error indicator
RefNum: Reference number of destination of I/0

FLUSH forces all buffered information destined for the object identified by
RefNum to be written out to that object.

A side effect of FLUSH iIs that all FS buffers and data structures are flushed
(as well as the control information for the referenced file). If RefNum is -1,
only the global File System Is flushed. This Is a method by which an
application can ensure that the File System is consistent.

TCL EXHIBIT 1044
Page 56 of 188

Qerating System Reference Manual The Flle System

2.10.17 SET_SAFETY Flle System Call
SET_SAFETY (var Ecwe Integer;

Ecode: Error indicator
Path: Name of object containing safety switch
On_Off: Set safety switch:

Oon = true

Off = false

Each object in the File System has a “safety switch” to help prevent accidental
deletion. If the safety switch is on, the object cannot be deleted.
SET_SAFETY tumns the switch on or off for the object identified by path.
Processes that are sharing an object should cooperate with each other when
setting or clearing the safety switch.

2-37

TCL EXHIBIT 1044
Page 57 of 188

Querating System Reference Marxial Tre Flle System

21018 SET_WORKING DIR and GET_WORKING_DIR File System Calis

SET_WORKING DIR (Var Ecode:Integer;
var Path:Pathname)

GET_WORKING_DIR (var Ecode:Integer;
var Path:Pathname)

Ecode: Error indicator
Path: working directory name

The Operating System uses the working directory name to resolve partially
specified pathnames into complete pathnames. GET_WORKING_DIR returns the
current working directory name in Path. SET_WORKING_DIR sets the working
directory name.

The following program fragment reports the current name of the working
directory and allows you to set it to something else:

VAR WorkingDir :PathName;
ErrorCode:INTEGER;
BEGIN
GET_WORKING_DIR(ErrorCode, WorkingDir);
IF (ErrorCode<>0) THEN
WRITELN("Cannot get the current working directory!®)
ELSE WRITELN('The current working directory is: °, WorkingDir):
WRITE("New working directory name: °);
READLN(WorkingDir);
SET_WORKING_DIR(ErrorCode, WorkingDir);
END;

TCL EXHIBIT 1044
Page 58 of 188

Qoerating System Reference Marvial The Flle System

2.10.19 RESET_CATALOG and GET_NEXT_ENTRY Flle System Calls

RESET_CATALOG (var Ecode:INTEGER;
var Path:Pathname)

GET_NEXT_ENTRY (Var Ecode:INTEGER;
var Preflx,
Entry:E_Name)

Ecode: Error indicator

Path: working directory name

Prefix: Beginning of file names returned
Entry: Names from catalog

RESET_CATALOG and GET_NEXT_ENTRY give a process access to catalogs.
RESET_CATALOG sets the catalog file marker to the beginning of the catalog
specified by Path. Path should be a root volume name. GET_NEXT_ENTRY
then performs sequentlal reads through the catalog file specified in the
RESET_CATALOG call and returns File System object names. An end-of-flle
error code (848) Is returned when GET_NEXT_ENTRY reaches the end of the
catalog. If Prefix is non-null, only those entries in the catalog that begin with
that prefix are returned. If Prefix Is "AB", for example, only file names that
begin with "AB" are returned. The prefix and catalog marker are local to the
calling process, so several processes can simultaneously read a catalog without
affecting each other.

2-39

TCL EXHIBIT 1044
Page 59 of 188

Qoerating System Reference Marnial The Flle System

21020 MOUNT and UNMOUNT Flle System Calls

HOUNT (var Ecode:Integer;
var VName:E_Name;
var Password:E_Name
var Devname:E_Name)

UNMOUNT (Var Ecode:Integer;
var Vname:E_name)

Ecode: Error indicator

Vname: volume name

Password: Password for device (currently ignored)
Devname: Device name

MOUNT and UNMOUNT handle access to sequential devices or block-structured
devices. For block-structured devices, MOUNT logically attaches the volume's
catalog to the File System. The name of the volume mounted is returmed in
the vname parameter.

UNMOUNT detaches the specified volume from the File System. No object on
that volume can be opened after UNMOUNT has been called. The volume
cannot be unmounted untll all the objects on the volume have been closed by
all processes using them,

Devname is the name of the device on which a volume is being mounted.
Devname should be given without a leading dash (-)

vname s the name of the volume that was successfully mounted, and Is
returned.

2-40
TCL EXHIBIT 1044
Page 60 of 188

31

33
34
3.5
3.6
3.7
3.8

029-0418-A

Chapter 3
Processes

A Process-Handling Example
Process System Calls

3.8.1 MAKE_PROCESS ...ouuvessvessesssssesssssssessssssessesssssssssssnsssassassesanens
3.8.2 TERMINATE _PROCESS ...eocueesrssssssssssssssssesssessssssssssssasssssansans
3.8.3 INFO_PROCESS ..c.ititteinrnitaiiattatetmotaiiestattetacssteststsssestassasascasas
388 KILL_PROCESS «..v.veessssssssssssssssssssssssassessassasssssasssssssssscses
3,85 SUSPEND_PROCESS cuuvuuvussseesssessssesssssssassessessessssssssssnssssssssenes
3.8.6 ACTIVATE_PROCESS......ce0ernsnsnsneees

3.8.7 SETPRIORITY_PROCESS

3.8.8 YIELD _CPUccccrrrimnininissssnnnnnnanuntiiiinieesiinsesssamsaasasssss

3.8.9 MY _ID eueuereenreeneeeencneseresessssssssssssssssssssassenssssassessssssnssssessanss

TCL EXHIBIT 1044
Page 61 of 188

TCL EXHIBIT 1044
Page 62 of 188

Processes

A process is an entity in the Lisa system that performs work. When you ask
the Operating System to run a program, the OS creates a specific instance of
the program and its associated data. That instance is a process.

The Lisa can have a number of processes at any one time; they appear to be
running simultaneously. Although processes can share code and data, each
process has its own stack.

Only one process at a time can use the CPU. The Screaw/er determines
which process is active at a particular time. The Scheduler allows each
process to run until some condition that would slow execution occurs (an 1/0
request, for example). At that time, the running process is saved in its
current state. The Scheduler then checks the pool of ready-to-run processes.
when the original process later resumes execution, it picks up where it left
off.

The process schedullng state has three possibllities. A ruming process is
actually executing Instructions. A szagy process s ready to execute but is
being held back by the Scheduler. A blocked process 1s ignored by the
Scheduler. It cannot continue its execution until something causes it to
become ready. Processes commonly become blocked while awaiting
completion of 1/0, although there are a number of other likely causes.

TCL EXHIBIT 1044
Page 63 of 188

Qperating System Reference Margl Processes

3.1 Process Structure
A process can use up to 16 data segments and 106 code segments.

The layout of the process address space for user processes is shown in Figure

3-1.

Seg#

0 | Unavailable
-

1 User Code Segments
106

107 LDSN 1

' (data segments)

122 LDSN 16

123 | Stack

Figure 3-1
Process Address Space Layout

Each process has an associated priority, an integer between 1 and 255. The
Scheduler usually executes the highest-priority ready process. The higher
priorities (226 to 255) are reserved for the Operating System.

3.2 Process Hierarchy
when the system is first started, several system processes exist. At the base
of the process hierarchy, shown in Figure 3-2, is the root process, which
handles various internal Operating System functions. It has at least two sons:
the Memory Manager process and the shell process.

The Memary Manager process handles code and data segment swapping.

3-2

TCL EXHIBIT 1044
Page 64 of 188

Qperating System Reference Manual Progcesses

The sell process 1s a user process that is automatically started when the 0S
is Initialized. It Is typically a command interpreter, but it can be any
program. lThe 0S simply looks for the program called SYSTEM.SHELL and
executes it.

Root Process

Shell
Process
Memory Manager Other
Process
User
Process

Other User Processes

Figure 3-2
Process Tree

Any other system process (the network control process, for example) is a son
of the root process.

3.3 Process Creation
when a process is created, it is placed in the ready state with a priority equal
to that of the process that created it. All the processes created by a given
process can be thought of as existing in a subtree. Many of the process
li'nanagement calls affect the entire subtree of a process as well as the process
tself.

3.4 Process Control
Three system calls are provided for explicit control of a process. These calls
allow a process to kill, suspend (block), or activate any other user process in
the system, as long as the process identifier is known. Process-handling calls
are not allowed to control Operating System processes.

3.5 Process Scheduling
Process scheduling is based on the priority established for the process and on
requests for Operating System services.
The Scheduler generally executes the highest-priority ready process. Once a
process is executing, it loses the CPU only under certain circumstances. The
CPU 1s lost when there Is some specific request for the process to walt (for
an event, for example), when there Is an 1/0 request, or when there Is a
reference to a code segment that is not in memory. A process that makes

TCL EXHIBIT 1044
Page 65 of 188

(perating System Reference Mamal Processes

any Operating System call may lose the CPU. The process gets the CPU back
when the Operating System is finished, except under the following conditions:

* The running process requests input or output. The Scheduler starts the
next highest-priority process running while the first process waits for the
1/0 to complete.

* The running process lowers its priority below that of another ready process
or sets another process's priority higher than its own.

* The running process explicitly ylelds the CPU to another process.
* The running process activates a higher-priority process.

* The running process suspends itself.

* A higher-priority process becomes ready.

* The running process needs code to be swapped into memory.

* The running process executes an event-wait call.

* The running process calls DELAY_TIME.

Because the Operating System cannot sefze the CPU from an executing
process except In the cases noted above, background processes should be
liberally sprinkled with YIELD_CPU calls.

when the Scheduler is invoked, it saves the state of the current process and
selects the next process to run by examining the pool of ready processes. If
the new process requires that code or data be loaded into memory, the
Memory Manager process Is launched. If the Memory Manager is already
working on a process, the Scheduler selects the highest priority process in the
ready queue that does not need anything swapped.

3.6 Process Termination
A process terminates under one of the following conditions:

¢ It calls TERMINATE_PROCESS.

* It reaches an 'END.’ statement.

* It is referred to in a KILL_PROCESS call.
* Its father process terminates.

* It runs Into an abnormal condition.

when a process begins to terminate, a SYS_TERMINATE exception condition is
signaled to the terminating process and all of the processes it has created.

By means of the DECLARE_EXCEP_HDL call (described in Chapter 5), any
process can create an exception handler to catch the terminate exception and
clean up before terminating. The SYS_TERMINATE exception handler will be
executed only once. If an error occurs while the handler is executing, the
process terminates immediately.

TCL EXHIBIT 1044
Page 66 of 188

perating System Rererence Maral Processes

A process can call KILL_PROCESS on any user process whose Proc_Id is
known. TERMINATE_PROCESS, on the other hand, terminates the process that
called it (and its descendants). TERMINATE_PROCESS also allows an event o
be sent to the father of the terminating process if a local event channel was
specified in the MAKE_PROCESS call.

Termination involves the following steps:

1. Signal the SYS_TERMINATE exception on the terminating process.
Execute the user’s exception handler, if any.
3. Instruct all sons of the current process to terminate.

4. Close all open flles, data segmentspipes, and event channels left open by
the user process.

5. Send the SYS_SON_TERM event 1o the father of the terminating process
if a local event channel exists.

6. wait for all the sons to finish termination.

3.7 A Process-Handling Example
The following programs illustrate the use of many of the process-management
calls described in this chapter. The program Father, below, creates a son
process and lets it run for a while. It then gives the user a chance to
activate, suspend, kill, or get information about the son.

PROGRAM Father;
USES (*$U Source:SysCall.Obj*) SysCall;
VAR ErrorCode:INTEGER; (*error returns from system calls *)

N

proc_1id:LONGINT; (* process global identifier =)
progname :Pathname; (* program file to execute *)
null:NameString; (* program entry point =)
Info_Rec:ProcInfoRec; (* information about process *)
i:INTEGER;
Answer :CHAR;

3-5

TCL EXHIBIT 1044
Page 67 of 188

Qperating System Reference Maal Processes

:="SON.0BJ’; (* this program is defined below*)
Null:="";
MAKE_PROCESS(ErrorCode, Proc_Id, ProgName, Null, 0);
IF (ErrorCode<>0) THEN
WRITELN('Error ’,ErrorCode, ' during process management.');
FOR 1:=1 T0 15 DO (* idle for awhile %)
BEGIN
WRITELN('Father executes for a moment.');
YIELD_CPU(ErrorCode, FALSE); (* let son run *)
END;
WRITE('K(111 S(uspend A(ctivate I(nfo’);
READLN(Answer);
CASE Answer OF
*K', 'K’ : KILL_PROCESS(ErrorCode, Proc_Id):
'S’, 's': SUSPEND_PROCESS(ErrorCode, Proc_Id, TRUE (* suspend
family *));
‘A',"a': ACTIVATE_PROCESS(ErrorCode, Proc_Id, TRUE (* activate

family *));
‘I*,"1": BEGIN

INFO_PROCESS(ErrorCode, Proc_Id, Info_Rec);
WRITELN('Son''s name is °,Info_Rec.ProgPathName);
END;

END;

IF (ErrorCode<>0) THEN

WRITELN('Error ',ErrorCode,' during process management.’)
END.

The program Son is:

PROGRAM Son;
USES (*$U Source:SysCall.Obj*) SysCall;
VAR ErrorCode:INTEGER;
null:NameString;
BEGIN
WHILE TRUE DO
BEGIN
WRITELN('Son executes for a moment.');
YIELD_CPU(ErTOTrCode, FALSE); (*let father process run®)
END;
END.

TCL EXHIBIT 1044
Page 68 of 188

Querating System Reference Manual Processes

3.8 Process System Calls
This section describes the Operating System calls that pertain to process
control. A summary of all the Operating System calls can be found In
Appendix A. The following special types are used in process-control calls:

Pathname = STRING[255];

Namestring = STRING[20];

P_s_eventblock = “s_eventblock;

= T_event_text;

T_event_text = array [0..size etext] of longint;
ProcInfoRec = record

progpathname : pathname;
global_id : longint;
father_id : longint;
priority : 1..255;

state : (pactive, psuspended, pwaiting);
data in : boolean

end;

3-7

TCL EXHIBIT 1044
Page 69 of 188

Qoerating System Reference Marial Processes

3.8.1 MAKE_PROCESS Process System Call

HAKE_PROCESS (Var ErrNum:Integer;
var Proc_Id:tongInt;
var ProgFile:Pathname;
var EntryName:NameString; (* NameString = STRING[20] =)
Evnt_Chn_RefNum:Integer)

ErrNum: Error indicator

Proc_Id: Process identifier (globally unigue)
ProgFile: Process file name

EntryName: Program entry point

Evnt_Chn_RefNum: Communication channel between calling
process and created process

A son process is created when another process, the father process, calls
MAKE_PROCESS. The son process executes the program identified by the
pathname in ProgFile. If ProgFile is a null character string, the program name
of the father process is used. A globally unique identifier for the son process
is returned in Proc_Id.

Evnt_Chn_RefNum s a local event channel supplied by the father process.
Event channels are discussed in Chapter 5. The Operating System uses the
event channel identified by Evnt_Chn_RefNum to send the father process
events regarding the son process (for example, SYS_SON_TERM). If
Evnt_Chn_RefNum is zero, the father process is not informed when such
events are produced.

EntryName, if non-null, specifies the program entry point where execution is
to begin. Because alternate entry points have not yet been defined for
Pascal, this parameter is currently ignored.

Any error encountered during process creation is reported in Errum.

3-8

TCL EXHIBIT 1044
Page 70 of 188

perating System Reference Maial Frovesses

3.8.2 TERMINATE_PROCESS Process System Call

TERMINATE_PROCESS(Var ErrNum:Integer;
Event_Ptr:P_s_eventblk)

ErrNum: Error indicator
Event_Ptr: Information sent to process's creator

A process can be ended by TERMINATE_PROCESS. This call causes a
SYS_TERMINATE exception to be signaled for the calling process and for all
of the processes It has created. The process can declare its own
SYS_TERMINATE exception handler 1o handle whatever cleanup it needs to do
before it Is actually terminated by the system. When the terminate exception
handler is entered, the exception information block contains a longint that
describes the cause of the process termination:

Excep Datd0] - 0 Process called TERMINATE_PROCESS.
1 Process executed the 'END.' statement.
2 Process called KILL_PROCESS on itself.

3 Some other process called KILL_PROCESS on the
terminating process.

4 Father process Is terminating.

5 Process made an invalid system call (that s, an
unknown call).

6 Process made a system call with an invalid ErmNum
parameter address.

7 Process aborted due to an error while trying to swap
fn a code or data segment.

8 Process exceeded its maximum specified stack size.

9 Process aported due to possible lockup of the system
by a data space exceeding physical memory size.

10 Process aborted due to a parity error.

There are an additional twenty-six errors that can be signaled. The entire list
is shown at the beginning of Appendix A.

If the terminating process was created with a communication channel, a
SYS_SON_TERM event is sent to the terminating process's father. The
terminating process can specify the text of the SYS_SON_TERM with the
Event_Ptr parameter. Note that the first (0'th) longint of the event text is
reserved by the system. Wnen the event is sent to the father, the OS places
the termination cause of the son process In the first longint. This is the same
termination cause that was supplied to the terminating process itself in the

3-9

TCL EXHIBIT 1044
Page 71 of 188

perating System Reference Maal Processes

SYS_TERMINATE exception information block. Any user-supplied data in the
first longint of the event text is overwritten.

If a process specifies an event to be sent in the TERMINATE_PROCESS call
but the process was created without a local event channel, no event is sent to
the father.

If the process was created with a local event channel, an event Is sent to the
father if the process calls TERMINATE_PROCESS with a nil Event_Ptr or if
the process terminates by a means other than calling TERMINATE_PROCESS.
The event contalns the termination cause in the first longint and zeroes in the
remaining event text.

P_s_eventblk is a pointer to s_eventblk, defined as:

CONST size etext = 9; (= event text size - 40 bytes *)
TYPE t_event_text = ARRAY [0..size etext] OF LongInt;
s eventblk = t_event_text;

If a process calls TERMINATE_PROCESS twice, the Operating System forces it
to terminate even if it has disabled the terminate exception.

3-10

TCL EXHIBIT 1044
Page 72 of 188

Qperating System Reference Marnual Processes

3.8.3 INFO_PROCESS Process System Call

INFO_PROCESS (Var ErrNum:Integer;
Proc_Id:LongInt;
var Proc_Info:ProcInfoRec);

ErrNum: Error indicator

Proc_Id: Global identifier of process

Proc_Info: Information about the process identified by
Proc_Id

A process can call INFO_PROCESS to get a variety of information about any
process known to the Operating System. Use the function MY_ID to get the
Proc_Id of the calling process.

ProcinfoRec is defined as:

TYPE ProcInfoRec = RECORD
ProgPathname : Pathname;
Global id :Longint;
Priority :1..255;

State : (PActive, PSuspended, P¥aiting).
Data_in :Boolean
END;
Data_in indicates whether the data space of the process is currently in
memory.
The procedure on the next page gets information about a process and displays
some of it.

3-11

TCL EXHIBIT 1044
Page 73 of 188

Qoerating System Reference Marnual Processes

PROCEDURE Display_Info(Proc_Id:LONGINT);
VAR ErrorCode:INTEGER;
Info_Rec:ProcInfoRec;
BEGIN
INFO_PROCESS(ErrorCode, Proc_Id, Info_Rec);
IF (ErrorCode=100) THEN
WRITELN("Attempt to display info about nonexistent

process. ')
ELSE
BEGIN
WITH Info_Rec DO
BEGIN
WRITELN(® program name: ‘,ProgPathiName);
WRITELN(' global id: ',Global_id);
WRITELN(® priority: ', priority);
WRITE(' state: ‘)
CASE State OF
PActive: WRITELN('active');
PSuspended: WRITELN('suspended");
Pwaiting: WRITELN('waiting')
END
END
END
END;

3-12

TCL EXHIBIT 1044
Page 74 of 188

Qerating System Reference Manual Processes

3.8.4 KILL_PROCESS Process System Call
KILL_PROCESS (var ErrhNum:Integer;
Proc_Id:LongInt)

ErrNum: Error indicator
Proc_Id: Process to be killed

KILL_PROCESS kills the process referred to by Proc_Id and all of the
processes in its subtree. The actual termination of the process does not ocour
until the process is in one of the following states:

* Executing in user mode.
* Stopped due to a SUSPEND_PROCESS call.
* Stopped due to a DELAY_TIME call.

* Stopped due to a WAIT_EVENT_CHN or SEND_EVENT_CHN call, or
READ _DATA or WRITE_DATA to a pipe.

3-13

TCL EXHIBIT 1044
Page 75 of 188

Qoerating System Reference Manual Processes

3.85 SUSPEND_PROCESS Process System Call

SUSPEND_PROCESS (var ErrNum:Integer;
Proc_Id:LongInt;
Susp_Family:Boolean)

ErrNum: Error indicators
Proc_Id: Process to be suspended
Susp_Family: If true, suspend the entire process subtree

SUSPEND_PROCESS allows a process to suspend (block) any process in the
system. The actual suspension does not occur until the process referred to by
Proc_Id is in one of the following states:

* Executing in user mode
* Stopped due to a DELAY_TIME call
* Stopped due to @ WAIT_EVENT_CHN call

Nelther expiration of the delay time nor recelpt of the awalted event causes
a suspended process to resume execution. SUSPEND_PROCESS is the only
direct way to block a process. Processes, however, can become blocked during
1/0, by the timer (see DELAY_TIME), or for many other reasons.

If Susp_Family is true, the Operating System suspends both the process
referred to by Proc_Id and all of its descendents. If Susp_Family is false,
only the process identified by Proc_Id is suspended.

3-14

TCL EXHIBIT 1044
Page 76 of 188

Qoerating System Reference Manual Processes

3.86 ACTIVATE_PROCESS Process System Call

ACTIVATE_PROCESS(Var ErrNum:Integer;
Proc_Id:LongInt;
Act_Family:Boolean)

ErrNum: Error indicator
Proc_ld: Process to be activated
Act_Family: If true, activate the entire process subtree

To awaken a suspended process, call ACTIVATE_PROCESS. A process can
activate any other process in the system. Note that ACTIVATE_PROCESS can
awaken only a suspended process. If the process is blocked for some other
reason, ACTIVATE_PROCESS cannot unblock it. If Act_Family is true,
ACTIVATE_PROCESS also activates all the descendents of the process referred
to by Proc_Id.

3-15

TCL EXHIBIT 1044
Page 77 of 188

Qperating System Reference Manual Processes

3.8.7 SETPRIORITY_PROCESS Process System Call

SETPRIORITY_ PROCESS(Var ErrNum:Integer;
Proc_Id:LongInt;
New_Priority:Integer)

ErrNum: Error indicator
Proc_Id: Global id of process
New Priority: Process's new priority number

SETPRIORITY_PROCESS changes the scheduling priority of the process
referred to by Proc_Id to New_Priority. The priority value must be between 1
and 225. (Operating System processes execute with priorities between 226
and 255.) The higher the priority, the more likely the process is to be allowed
to execute.

3-16

TCL EXHIBIT 1044
Page 78 of 188

perating System Reference Marnual Processes

3.8.8 YIELD_CPU Process System Call

YIELD CPU(Var ErrNum:Integer;
To_Any:Boolean)

ErrNum: Error indication
To_Any: Yield to any process, or only higher or equal
priority

Background processes should use YIELD _CPU often to allow other processes to
execute when they need to. Successive ylelds by processes of the same
priority result in a "round robin“ scheduling of the processes. If To_Any is
true, YIELD_CPU causes the calling process to yield the CPU to any other
ready process. If To_Any is false, YIELD CPU causes the calling process to
give the CPU to any other ready-to-execute process with an equal or higher
priority. If no process meets the To_Any criterion, the calling process simply
continues execution.

3-17

TCL EXHIBIT 1044
Page 79 of 188

Qoerating System Reference Manual Processes

3.89 MY_ID Process System Call
Hy_ID:Longint

MY_ID is a function that returns the unique global identifier (a longint) of the
calling process. A process can use MY_ID to perform process handling calls
on itself.

For example:
SetPriority Process(ErrNum Hy_ Id, 100)
sets the priority of the calling process to 100.

3-18

TCL EXHIBIT 1044
Page 80 of 188

029-0419-A

4.1

43

45

47

Chapter 4
Memory Management

DataSegmentscceeeeeeeeneees SR 4-1
The Logical Data Segment NUmber SE— 81
Shared Data Segments ... teteeeseerereessseestennetnsasnnnnnannannne a-2
Private Data Segments ceesetsessereressastaeseantantareransenassaneansas a-2
Code Segmentsceecceeenrnensenseenens 4-2
SWAPPING coceeeeeniiiiettsiniitetetteseenentsatsannanastssssennasentssasannansesaasananananne 4-2
Memory Management System Calls................ eerseeesasasanennnnasanreraatsanananns 4-3
8.7.1 MAKE_DATASEGcotnirurnrattatentatntetaimeninteetnicninstisststsetsasass 4-4
8.7.2 KILL_DATASEG ..ccccittiiiereeneeiereetmisssmssssssisssssisissssssnisasenasasssans 4-6
8.7.3 OPEN_DATASEGcceoiimerenrentmantactsestetetenirmeccssieatsssssssassaees a-7
8.7.4 CLOSE_DATASEG.....ccirtetenienuctnctanttectnteniteciaisitetsessteestses 4-8
875 FLUSH DATASEG ...cccovvremmreiniiiiiienissssssssnssasssssssssiessssssssssnanans 4-9
84.7.6 SIZE_DATASEG......ccteterrmmmrnnnnnanmnnnninasinnmeeaesi. 4-10
U8.7.7 INFO _DATASEG ...cccitvtenrninninentinanietatettatttniessssnsesassestassaes 4-11
8.7.8 INFO LDSN..iiiiiiiiiiesminssiinieeieettasessssssssssssssssessesansassssssanns 4-12
879 INFO_ADDRESS......ccotteuremmmenmnnssnsssissssisssseesiessssessasssssassans 4-13

4.7.10 MEM_INFO...iieeiiiieiiiiniiiiiieniiiecine et teessnans e stsssssassssassseess 4-14
4.7.11 SETACCESS DATASEGciiiireniinnirenntteniineiresiiiaiserae, 4-15
4.7.12 BIND_DATASEG and UNBIND_DATASEG......cccccitiiiiinianninianna 4-16

TCL EXHIBIT 1044
Page 81 of 188

TCL EXHIBIT 1044
Page 82 of 188

Memory Management

Every process has a set of code segments and data segments which are in
physical memory when they are used. The logical address used by the process
must be translated into the physical address used by the memory controller.
This function is handled by the memory management unit (MMU).

4.1 Data Segments
Each process has a data segment that the Operating System automatically
allocates to it for use as a stack. The stack segment's internal structures are
managed by the hardware and the Operating System.

A process can acquire additional data segments for uses such as heaps and
interprocess communication. These additional data segments can be private
{or local) data segments or shared data segments. Frivate data segments
can be accessed only by the creating process. when the process terminates,
any private data segments still in existence are destroyed. Shared aata
segments can be accessed by any process that gpens those segments.

The Operating System requires that data segments be in physical memory
before the data are referenced. The Scheduler autormatically loads all of the
data segments that the program says it needs. It is the responsibility of the
programmer to ensure that the program declares all its needs by associating
itself with the needed data segments before they are needed.

This process of association is called s/7aing. A program can bind a data
segment to itself in several ways. Wwhen a program creates a data segment by
using the MAKE_DATASEG call, the segment is automatically opened and
bound to the program. If a program needs to open a segment that was
created by another program, the OPEN_DATASEG call is used. That call binds
the segment to the calling process, as well as opening the segment for the
process. Since there may be times when a process needs to use more data
segments than can be bound at one time, the UNBIND_DATASEG call is
provided to unbind the data segment without closing it. The program can then
use BIND_DATASEG to bind another data segment to the program.

The Operating System views all data segments except the stack as linear
arrays of bytes. Therefore, allocation, access, and interpretation of structures
within a data segment are the responsibility of the program.

42 The Logical Data Segment Number
The address space of a process allows up to 16 data segments bound to a
process at the same time, in addition to the stack. Each bound data segment
is assoclated with a specific region of the address space by means of a
Logical Data Segment Number (LDSN). See Figure 3-1 for an illustration of
the address space of a process. While a data segment is bound to the process,
it is said to be a member of the wuorking set of the process.

4-1

TCL EXHIBIT 1044
Page 83 of 188

Qperating System Reference Marual Memory Managerment

The process assoclates a data segment with a specific LDSN In the
MAKE_DATASEG or OPEN_DATASEG call.

The LDSN, which has a valid range of 1 to 16, is local to the calling process.
The process uses the LDSN to keep track of where a glven data segment can
be found. More than one data segment can be associated with the same LDSN,
but only one such segment can be bound to a given LDSN at any Instant and
thus be a member of the working set of the process.

4.3 Shared Data Segments
Cooperating processes can share data segments. Shared segments cannot be
larger than 128 Kbytes in length. As with local data segments, the segment
creator assigns the segment a File System pathname. All processes that share
that data segment then use the same pathname. If the shared data segment
contains address pointers to data within the segment, the cooperating
processes must also use the same LOSN with the segment. This ensures that
all logical data addresses referencing locations within the data segment are
consistent for the processes sharing the segment. A shared data segment is
permanent until explicitly killed by a process.

4.4 Private Data
Data segments can also be private to a process. In this case, the maximum
cize of the segment can be greater than 128 Kbytes. The actual maximum
slze depends on the amount of physical memory in the machine and the
number of adjacent LDSNs available to map the segment. The process gives
the desired segment size and the base LOSN to map the segment. The
Memory Manager then uses ascending adjacent LDSNs to map successive 128
Kbyte chunks of the segment. The process must ensure that enough
consecutive LDSNs are available to map the entire segment.

Suppose a process has a data segment already bound to LOSN 2. If the
program tries to bind a 256 Kbyte data segment to LDSN 1, the Operating
System retums an error because the 256 Kbyte segment needs two consecutive
free LOSNs. Instead, the program should bind the segment to LDSN 3 and the
system automatically also uses LDSN 4.

45 Code Segments
Division of a program into multiple code segments (swapping units) is dictated
by the programmer through commands to the Compiler and Linker. The MMU
registers can map up to 106 code segments.

4.6 Swapping

when a process executes, the following segments must be in physical memory:
* The current code segment

* All the data segments in the process working set (the stack and all bound
data segments)

The Operating System ensures that this minimum set of segments is in physical
memory before the process is allowed to execute. If the program calls a
procedure in a segment not in memory, a segment swap-in request is initiated.

TCL EXHIBIT 1044
Page 84 of 188

Querating System Reference Merél! Memory Managemernt

In the simplest case, this request only requires the system to allocate a block
of physical memory and to read in the segment from the disk. In a worse
case, the request may require that other segments be swapped out first to
free up sufficient memory. A clock algorithm is used to determine which
segments to swap out or replace. This process Is Invisible to the program.

4.7 Memory Management System Calls
This section describes all the Operating System calls that pertain to memory
management. A summary of all the Operating System calls can be found in
Appendix A. The following special types are used in memory management
calls:

Pathname = STRING[255];

Tdstype = (ds_shared, ds_private);

DsInfoRec = Record
mem_size:longint;
disc_size:longint;
numb_open: integer:
LDSN:1integer;
boundF :boolean;
presentf :boolean;
creatorf :boolean;
Trwaccess:boolean;
segptr:longint;
volname:e_name;

end;
E_name = string [32];

TCL EXHIBIT 1044
Page 85 of 188

Qperating System Rererence Marnual Memory Managemernt

8.7.1 MAKE_DATASEG Memory Management System Call

MAKE_DATASEG (var ErrNum:Integer;
var Segname:Pathname;
Hem_Size, Disk_Size:LongInt;
var Refhum:Integer;
var SegPtr:LongInt;

Ldsn:Integer
Dstype:Tdstype)

Errum: Error indicator

Segname: Pathname of data segment

Mem Size: Bytes of memory to be allocated to data segment
Disk_Size: Bytes on disk to be allocated for swapping segment

RefNum: Identifier for data segment

SegPtr Address of data segment

Ldsn: Logical data segment number

Dstype: Type of dataseg (shared or private)

MAKE_DATASEG creates the data segment identified by the pathname,
Segname, and opens it for immediate read-write access. Segname is a File
System pathname.

The parameter Mem_Size determines how many bytes of main memory are
allocated to the segment. The actual allocation takes place in terms of
512-byte pages. If the data segment Is private (Dstype Is ds_private),
Mem_Size can be greater than 128 Kbytes, but you must ensure that enough
consecutive LDSNs are free to map the entire segment.

Disk_Size determines the number of bytes of swapping space to be allocated
to the segment on disk. If Disk_Size is less than Mem_Size, the segment
cannot be swapped out of main memory. In this case the segment is memory
resident until it is killed or until its size in memory becomes less than or
equal to its Disk_Size (see SIZE_DATASEG). The application programmer
should be aware of the serious performance implications of forcing a segment
to be memory resident. Because the segment cannot be swapped out, a new
process may not be able to get all of its working set into memory. To avoid
thrashing, each application should ensure that all of its data segments are
swappable before it relinquishes the attention of the processor.

The calling process associates a Logical Data Segment Number (LDSN) with
the data segment. If this LDSN is bound to another data segment at the time
of the call, the call returns an error.

RefNum is returned by the system to be used in any further references to the
data segment. The Operating System also returns SegPtr, an address pointer to
be used to reference the contents of the segment. SegPtr points to the base
of the data segment.

Any error conditions are returned in ErmNum.

TCL EXHIBIT 1044
Page 86 of 188

Qoerating System Reference Manual Memory Management

when a data segment is created, it Immediately becomes a member of the
working set of the calling process. You can use UNBIND_DATASEG to free
the LDSN.

4-5

TCL EXHIBIT 1044
Page 87 of 188

Operating System Rererence Manual Mermory Management

4.7.2 KILL_DATASEG Memory Management System Call

KILL_DATASEG (Var Errium:Integer;
var Segname:Pathname)

ErrNum: Error indicator
Segname: Name of data segment to be deleted

when a process Is finished with a shared data segment, it can issue a
KILL_DATASEG call for that segment. (KILL_DATASEG cannot be used on a
private data segment.) If any process, including the calling process, still has
the data segment open, the actual deallocation of the segment is delayed until
all processes have closed it (see CL.OSE_DATASEG). During the interim period,
however, after a KILL_DATASEG call has been issued but before the segment
is actually deallocated, no other process can open that segment.

KILL_DATASEG does not affect the membership of the data segment in the
working set of the process. The RefNum and SegPtr values are valid until a
CLOSE_DATASEG call is issued.

One important note: normally, when a data segment is closed, the contents
are written to disk as a file with the pathname associated with the data
segment. If, however, the program calls KILL_DATASEG on the data segment
before closing it, the contents of the data segment are not written to disk and
are lost when the segment is closed.

TCL EXHIBIT 1044
Page 88 of 188

Qperating System Reference Manual Memory Management

4.7.3 OPEN_DATASEG Memory Management System Call

OPEN_DATASEG (Var ErrNum:Integer;
var Segname:Pathname;
var RefNum:Integer;
var SegPtr:LongInt;

Ldsn:Integer)

ErrNum: Error indicator

Segname: Name of data segment to be opened
RefNum: Identifier for data segment

SegPtr Pointer to contents of data segment
Lasn: Logical data segment number

A process can open an existing shared data segment with OPEN_DATASEG.
The calling process must supply the name of the data segment (Segname) and
the Logical Data Segment Number to be associated with it. The LOSN given
must not have a data segment currently bound to it. The segment's name is
determined by the process that creates the data segment; it cannot be null.

The Operating System returns both RefNum, an identifier for the calling
process to use in future references to the data segment, and SegPtr, an
address pointer used to reference the contents of the segment.

when a data segment is opened, it immediately becomes a member of the
working set of the calling process. The access mode of the newly opened
segment is Readonly. You can use SETACCESS_DATASEG to change the
access rights to Readwrite. You can use UNBIND DATASEG to free the
LDSN.

You cannot use OPEN on a private data segment, since calling CLOSE on a
private data segment deletes it.

TCL EXHIBIT 1044
Page 89 of 188

(perating System Rererence Marwal Nemoty Management

4.7.4 CLOSE_DATASEG Memory Management System Call

CLOSE_DATASEG (Var ErrNum:Integer;
RefNum:Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

CLOSE_DATASEG terminates any use of RefNum for data segment operations.
If the data segment is bound to a Logical Data Segment Number,
CLOSE_DATASEG frees that LDSN. The data segment is removed from the
working set of the calling process. RefNum is made invalid. Any references
to the data segment using the orliginal SegPtr will have unpredictable results.

If RefNum refers to a private data segment, CLOSE_DATASEG also kills the
data segment, deallocating the memory and disk space used for the data
segment. If RefNum refers to a shared data segment, the contents of the
data segment are written to disk as if FLUSH_DATASEG had been called. (If
KILL_DATASEG Is called before CLOSE_DATASEG, the contents of the data
segment are thrown away when the last process closes the data segment.)

The followlng procedure sets up a heap for LisaGraf using the memory
management calls:

PROCEDURE InitDataSegForlisaGraf (var ErrorCode:integer):

CONST HeapSize=16384; (* 16 KBytes for graphics heap *)
DiskSize=16384;

VAR HeapBuf :LONGINT; (* pointer to heap for LisaGraf *)
GrafHeap :PathName; (* cata segment path name *)
Heap_Refnum:INTEGER; (* refnum for heap data seg *)

BEGIN
GrafHeap:="grafheap”:
OPEN_DATASEG(ErrorCode, GrafHeap, Heap_Refnum, HeapBuf, 1);
IF (ErrorCode<>0) THEN
BEGIN
M)l!ITELN(‘lnawle to open’,Grafheap, "Error is °, ErrorCode)

ELSE
InitHeap(POINTER(HeapBuf), POINTER(HeapBuf +HeapSize),

aHeapError);
END;

4-8

TCL EXHIBIT 1044
Page 90 of 188

Qperating System Reference Manual Memory Management

475 FLUSH DATASEG Memory Manhagement System Call
FLUSH_DATASEG (Var ErrNum:Integer;
RefNum:Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

FLUSH_DATASEG writes the contents of the data segment identified by
RefNum to the disk. (Note that CLOSE_DATASEG automatically flushes the
data segment before closing it, unless KILL_DATASEG was called first) This
call has no effect upon the memory residence or binding of the data segment.

TCL EXHIBIT 1044
Page 91 of 188

Qperating System Reference Manual Memory Management

1.76 SIZE_DATASEG Memory Management System Call

SIZE_DATASEG (Var ErrNum:Integer;
Refnum:Integer;
DeltaemSize:LongInt;

var NewhtemSize:lLongInt;
DeltaDiskSize:LongInt;
var NewDiskSize:LongInt)

ETTNUm: Error indicator

RefNum: Data segment identifier

DeltaMemSize: Amount in bytes of change in memory
allocation

NewMemSize: New actual size of segment in memory

DeltaDiskSize: Amount in bytes of change in disk allocation
NewDiskSize: New actual disk (swapping) allocation

SIZE_DATASEG changes the memory and/or disk space allocations of the data
segment referred to by RefNum. Both DeltaMemSize and DeltaDiskSize can
be either positive, negative, or zero. The changes to the data segment take
place at the high end of the segment and do not destroy the contents of the
segment, unless data are lost in shrinking the segment. Because the actual
allocation is done in terms of pages (512-byte blocks), the NewMemSize and
NewDiskSize returned by SIZE_DATASEG may be larger than the old size plus
delta size of the respective areas.

If the NewDiskSize is less than the NewMemSize, the segment cannot be
swapped out of memory. The application programmer should be aware of the
serious performance implications of forcing a segment to be memory resident.
Because the segment cannot be swapped out, a new process may not be able
to get all of its working set into memory. To avoid thrashing, each
application should ensure that all of its data segments are swappable before it
relinquishes the attention of the processor.

If the necessary adjacent LDSNs are available, SIZE_DATASEG can increase
the size of a private data segment beyond 128 Kbytes.

4-10

TCL EXHIBIT 1044
Page 92 of 188

Qperating System Reference Manual Memory Menagement

4.7.7 INFO_DATASEG Memory Management System Call

INFO_DATASEG (var ErrNum:Integer;

RefNum:Integer;
var OsInfo:DsInfoRec)

ErrNum: Error indicator
RefNum: Identifier of data segment
DsInfo: Attributes of data segment

INFO_DATASEG retumns information about a data segment to the calling
process. The structure of the DsInfoRec record is:

RECORD
Mem _Size:LongInt (* Bytes of memory allocated to data segment -);
Disc_Size:LongInt (* Bytes of disk space allocated to segment »);
NumbOpen:Integer (* Current number of processes with segment open *);
Ldsn:Integer (* LDOSN for segment binding)
BoundF :Boolean (* True if segment is bound to LDSN of calling proc *),
PresentF:Boolean (* True if segment 1s present in memory
Creatorf :Booleanm (* True if the calling process is the creator *)

(* of the segment ");
RwAccess:Boolean (* True if the calling process has ¥rite access *)
(* to segment ")
END;
4-11

TCL EXHIBIT 1044
Page 93 of 188

Qerating System Reference Manual Memory Management

4.7.8 INFO_LDSN Memory Management System Call

INFO_LDSN (var ErrNum:Integer;

Ldsn:Integer;
var RefNum:Integer)

ErrNum: Error indicator
Ldsn: Logical data segment number
RefNum: Data segment identifier

INFO_LDSN returns the refrum of the data segment currently bound to Ldsn.
You can then use INFO_DATASEG to get information about that data segment.
If the LOSN specified is not currently bound to a data segment, the refnum
returned is -1.

4-12

TCL EXHIBIT 1044
Page 94 of 188

Qperating System Rererence Marnial Memory Managerment

4.7.9 INFO_ADDRESS Memory Management System Call

INFO_ADDRESS (var ErriNum:Integer;
Address:Longint;
var RefNum:Integer)

ErrNum: Error indicator
Address: The address about which the program needs information

RefNum: Data segment identifier

This call retumns the refnum of the currently bound data segment that
contains the address given.

If no data segment that contalns the address given Is currently bound to the
calling process, an error indication is returned in ErrNum.

4-13

TCL EXHIBIT 1044
Page 95 of 188

(perating System Reference Maral Memoly Management

4.7.10 MEM_INFO Memory Management System Call

MEM_INFO (var ErrNum:Integer;
var Swapspace;
Dataspace;
Cur_codesize;
Max_codesize:Longint)

ExrrNum:
Swapspace:

Dataspace:

Cur_codesize:
Max_codesize:

Error indicator

Amount, in bytes, of swappable system memory
available to the calling process

Amount, in bytes, of system memory that the
calling process needs for its bound data areas,
including the process stack and the shared
intrinsic data segment

Size, in bytes, of the calling segment

Size, in bytes, of the largest code segment
within the address space of the calling process

This call retrieves information about the memory resources used by the calling

process.

4-14

TCL EXHIBIT 1044
Page 96 of 188

Qperating System Reference Manual Memory Management

4.7.11 SETACCESS DATASEG Memory Management System Call

SETACCESS_DATASEG (Var ErrNum:Integer;
RefNum: Integer;
Readonly :Boolean)

ErrNum: Error indicator
RefNum: Data segment identifier
Readonly: Access mode

A process can control the kinds of access it is allowed to exercise on a data
segment with the SETACCESS DATASEG call. Refnum is the identifier for
the data segment. If Readonly is true, an attempt by the process to write to
the data segment results in an address error exception condition. To get
readwrite access, set Readonly to false.

4-15

TCL EXHIBIT 1044
Page 97 of 188

Qoerating System Reference Manual Memory Management

4.7.12 BIND_DATASEG and UNBIND_DATASEG Memory Management System Calls

BIND_DATASEG(Var ErrNum:Integer;
RefNum:Integer)

UNBIND_DATASEG(Var Errhum:Integer;
RefNum: Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

BIND_DATASEG binds the data segment referred to by RefNum to its
assoclated Logical Data Segment Number(s). UNBIND_DATASEG unbinds the
data segment from its LDSNs. BIND_DATASEG causes the data segment to
become a member of the current working set. At the time of the
BIND_DATASEG call, the necessary LDSNs must not be bound to a different
data segment. UNBIND_DATASEG frees the associated LDSNs. A reference to
the contents of an unbound segment gives unpredictable results.
OPEN_DATASEG and MAKE_DATASEG define which LDSNs are associated
with a given data segment.

4-16

TCL EXHIBIT 1044
Page 98 of 188

029-0420-A

5.1

5.3
5.4
55
5.6
5.7

59

Chapter 5
Exceptions and Events

EXCEPUONS ... eeeecececcenenenennasnenesasseeeesessasssnsassassnannnnannnses 5-1
System-Defined EXCepions.........eee e 5-2
Exception HaNdIerso trceeri e een s e e e e s e e e s an e ees 5-2
EVENLScccericiicccaeeceerennasssssssesanssssssenstsssssssesesssnsssssssssssassssansans 5-5
Event Channels................ etteseestesssestessasstestantentsentnnntennransannranns 5-5
The System Clock - eesreressseesessssssesstesensasansannaannnn 5-10
Exception Management System L0251 | 1 O 5-10
5.7.1 DECLARE_EXCEP_HDL ..icitiiuiiiniieiietaiininsissnseseease. 5-11
5.7.2 DISABLE_EXCEP ..cciviisirermmnnnsiiienmmtasiiiiiennsntissssnssssamsssaas 5-12
5.7.3 ENABLE_EXCEP

5.7.4 INFO_EXCEP

5.7.5 SIGNAL_EXCEP...
5.7.6 FLUSH EXCEP ..cciiirirnnsiinnecsiinnnistiesisstsneitmesimsasssssssssass,
Event Management System Calls.........ceaeeaneennnannas 5-17
5.8.1 MAKE_EVENT_CHN

5.8.2 KILL_EVENT_CHN............
5.8.3 OPEN_EVENT_CHIN ..cviiiiriceeeneeiseesssesssssssessesssssessessssssseseessnesns
5.8.8 CLOSE_EVENT CHNuioteeveereeseessseessessessssasssssssassesssesssssansssenss 5-21
5.8.5 INFO_EVENT_CHN ..cccvvrrurereeesnensanesseessesssssnsnssssssssssssssssssassnssne 5-22
5.8.6 WAIT EVENT_CHN ..eovverriereceeeeessesesssesssesssssassassssssessesssssnaseass 5-23
5.8.7 FLUSH_EVENT_CHN ...ciiiiiiinniisnienneiissiieiesssssissssssssasesssssasaes 5-25
5.8.8 SEND_EVENT_CHN ..ooiiiiiititiiiniiitnniissiitesasssssssssssisssasases 5-26
ClocK SYStem Calls.......ccccceereeeeeeniamsenenessitnisetessnssesssssnsssssssessasanaas 5-27
5.9.1 DELAY_TIME ...cciiiitncsiiinitiinassssittsssmsssitntanssssesssasssssssssasases 5-28
5.9.2 GET_TIME ..iiiiiiineeiittnnsiniresstinesittsssistensiitsasssasassssstssssssssssases 5-29
5.9.3 SET_LOCAL_TIME_DIFF ...cititimmnmmmmnnniiiisisiisininnnneiiassse: 5-3D
5.9.4 CONVERT_TIME ..ccuceiceieriiienenisertranssssssisttanssesssassassssssssieesananss 5-31

TCL EXHIBIT 1044
Page 99 of 188

TCL EXHIBIT 1044
Page 100 of 188

Exceptions and Events

Processes have several ways to keep informed about the state of the system.
Normal process-to-process communication and synchronization employ pipes,
shared data segments, or events. Abnormal conditions, including those your
program may define, employ exceptions (interrupts). Exceptions are signals to
which the process can respond in a variety of ways under your control.

5.1 Exceptions
Normal execution of a process can be interrupted by an exceptional condition
(such as division by zero or reference to an invalid address). Some error
conditions are trapped by the hardware and some by the system software. The
process ftself can define and signal exceptions of your choice.

when an exception occurs, the system first checks the state of the exception.
The three exception states are:

* Enabled
* Queued
¢ Ignored

If a system-defined exception is enat/eq the system looks for an associated
user-defined handler. If none is found, the system invokes the default
exception handler, which usually aborts the process that generated the
exception. If a user-defined exception is enabled, the system invokes the
associated user-defined exception handler. You create a new exception by
declaring and enabling a handler for it.

If the state of the exception Is quewe the exception is placed on a queue.
when the exception Is subsequently enabled, the queue is examined and the
appropriate exception handler is invoked. Processes can flush the exception
queue.

If the state of the exception is /groreq the system detects the occurrence of
the exception, but the exception is neither honored nor queued. Note that
ignoring a system-defined exception has uncertain effects. Although you can
cause the system to ignore even the SYS_TERMINATE exception, that
capabllity is provided so that your program can clean up before terminating.
You cannot set your program to ignore fatal errors.

Invocation of the exception handler causes the Scheduler to run, so it is
possible for another process to run between the signaling of the exception and
the execution of the exception handler.

5-1

TCL EXHIBIT 1044
Page 101 of 188

Querating System Reference Marnual Exceptions and Events

5.2 System-Defined Exceptions)
Certain exceptions are predefined by the Operating System. These include:

* Division by zero (SYS_ZERO_DIV). The default handler aborts the process.

* Value out of bounds (that is, range check error) or illegal string index
{SYS_VALUE_00B). The default handler aborts the process.

* Arithmetic overflow (SYS_OVERFLOW). The default handler aborts the
process.

» Process termination (SYS_TERMINATE). This exception is signaled when a
process terminates, or when there is a bus error, address error, illegal
instruction, privilege violation, or 1111 emulator error. The default handler
does nothing. This exception is different from the other system-defined
exceptions in that the program always terminates as soon as the exception
occurs. In the case of other (non-fatal) errors, the program is allowed to
continue until the exception is enabled.

Except where otherwise noted, these exceptions are fatal if they occur within
Operating System code. The hardware exceptions for parity error, spurious
interrupt, and power failure are also fatal.

5.3 Exception Handlers
A user-defined exception handler can be declared for a specific exception.
This exception handler is coded as a procedure but must follow certain
conventions. Each handler must have two input parameters: Environment_Ptr
and Data_Ptr. The Operating System ensures that these pointers are valid
when the handler is entered. Environment_Ptr points to an area in the stack
contalning the interrupted environment: register contents, condition flags. and
program state. The handler can access this environment and can modify
everything except the program counter, register A7, and the supervisor state
bit in the status register. Data_Ptr points to an area in the stack containing
information about the specific exception.

Each exception handler must be defined at the global level of the process,
must return, and cannot have any EXIT or global GOTO statements. Because
the Operating System disables the exception befare calling the exception
handler, the handler should re-enable the exception before it returns.

If an exception handler for a glven exception already exists when another
handler is declared for that exception, the old handler becomes dissociated
from the exception.

An exception can occur during the execution of an exception handler. The
state of the exception determines whether it is honoredplaced on a gueue, or
ignored. If the second exception has the same name as the exception that is
currently being handled and its state is enabled, a nested call to the exception
handler occurs. (The system always disables the exception before calling the
exception handler, however. Therefore, nested handler calling occurs only if
you explicitly enable the exception.)

TCL EXHIBIT 1044
Page 102 of 188

Qperating System Reference Manual Exceptions and Events

There is an exception-occurred flag, Ex_occurred_f, for every declared
exception; it is set whenever the corresponding exception occurs. This flag
can be examined and reset using the INFO_EXCEP system call. Once the flag
is set, it remains set until FLUSH_EXCEP is called.

The following program fragment gives an example of exception handling.

PROCEDURE Handler (Environment_Ptr:p_env_blk;
Data_Ptrp_ex_data);

VAR EIMNUmM:INTEGER;

BEGIN

(=Environment_Ptr points to a record containing the program *)

(*counter and all registers. Data_Ptr points to an array of 12 %)

(*longints that contain the event header and text if this handler *)

(~is associated with an event-call channel (See below) »)

ENABLE_EXCEP(emm;excep_nane);

EI:D;
BEGIN (*Main program®)

E)Ecep_nane:-‘En(nfDoc';
DECLARE_EXCEP_HDL(ermum.excep_name . @Handler);

SIGNAL_EXCEP(erfimum.excep_name.excep_data);

At the time the exception handler is invoked for a SYS_TERMINATE
exception, the stack is as shown in Figure 5-1.

5-3

TCL EXHIBIT 1044
Page 103 of 188

Qperating System Reference Maral

low address

nigh adaress

Exceptions and Events

Link

Program Counter

Data_Ptr

Environment_Ptr

Terminate Flag

Exception Kind
Function Code (fc)
Access Address (aa)
Instruction Register

Status Register

Program Counter

—

Exception Data Block
(SYS_TERMINATE Exception)

Program Counter
Status Register
D0-D7 and AD-A7

Exception Environment Block

Link

Program Counter

Figure 5-1

Stack at Exception Handler Invocation

The Exception Data Block given here reflects the state of the stack upon a
SYS_TERMINATE exception. The Term_Ex_Data record (described in Appendix
A) glves the various forms the data block can take. The Excep_Kind field (the
first, or Oth, longint) gives the cause of the exception. The status register and
program counter values in the data block reflect the true (current) state of
these values. The same data in the Environment block reflects the state of

S-4

TCL EXHIBIT 1044
Page 104 of 188

Qperating System Rererence Manual Exceptions anad Events

these values at the time the exception was signaled, not the values at the
time the exception actually occurs.

For SYS_ZERO_DIV, SYS_VALUE_00B, and SYS_OVERFLOW exceptions, the
Hard_Ex Data record described in Appendix A gives the various forms that
the data block can take.

In the case of a bus or address error, the PC (program counter) can be 2 to 10
bytes beyond the current instruction. The PC and A7 cannot be modified by
the exception handler.

when a disabled exception is re-enabled, a queued exception may be signaled.
In this case, the exception environment reflects the state of the system at the
time the exception was re-enabled, not the time at which the exception
occurred.

S.4 Events
An event is a piece of information sent by one process to another, generally
to help cooperating processes synchronize their activities. An event is sent
through a kind of pipe called an event channel. The event is a fixed-size
data block consisting of a header and some text. The header contains control
information, the identifier of the sending process, and the type of the event.
The header is written by the system, not the sender, and is readable by the
receiving process. The event text is written by the sender; its meaning is
defined by the sending and receiving processes.

There are several predefined system event types. The predefined type “user” is
assigned to all events not sent by the Operating System.

5.5 Event Channels
Event channels can be viewed as higher-level pipes. One important difference
is that event channels require fixed-size data blocks, whereas pipes can
handle an arbitrary byte stream.

An event channel can be defined globally or locally. A global event channel
has a globally defined pathname catalogued in the File System and can be
used by any process. A local event channel, however, has no name and fis
known only by the Operating System and the process that opened it. Local
event channels can be opened by user processes only as receivers. A local
channel can be opened by the father process to receive system-generated
events pertaining to its son.

There are two types of global and local event channels: event-walt and
event-call. If the recelving process Is not ready to receive the event, an
event-walt type of event channel queues an event sent to it . An event-call
type of event channel, however, forces its event on the process, in effect
treating the event as an exception. In that case, an exception name must be
given when the event-call event channel is opened, and an exception handler
for that exception must be declared. If the process reading the event-call
channel Is suspended at the time the event is sent, the event is dellvered
when the process becomes active.

TCL EXHIBIT 1044
Page 105 of 188

Qoerating System Reference Marval Exceptions and Events

when an event channel Is created, the Operating System preallocates enough
space to the channel for typical interprocess communication. If
SEND_EVENT_CHN s called when the channel does not have enough space for
the event, the calling process is blocked until enough space is freed up.

If WAIT_EVENT_CHN |s called when the channel is empty, the calling process
is blocked until an event arrives.

The following code fragments use event-wait channels to handle process
synchronization. Operating System calls used in these program fragments are
documented later in this chapter.

Process A:
chn_name := ‘event_channel 1°;
exception:= *;
receiver := TRUE;

OPEN_EVENT_CHN (errlnt chn_name, refnuml, exception, receiver);
chn_name := ‘event_channel_2°;

receiver := FALSE;

OPEN_EVENT_CHN (errint, chn_name, refnum2, exception, receiver);
waitlist.length := 1;

waitlist. refruu[O] := refnuml;

III

REPEAT
eventl ptr-.[0] := _value;
interval.sec 0; (* send event immediately «)
0.

interval .msec :
SEND_EVENT_CHN (errint refnum2, eventl ptr, interval,clktime);
WAIT EVENT CHN (errint, vaitlist, refrum_signaling, event2 ptr);

(* processing performed here *)

UNTIL AllDone;

5-6
TCL EXHIBIT 1044
Page 106 of 188

Qperating System Reference Mamual Exceptions and Events

Process B:
ém_mm := 'event_channel_2°;
exception:= *;
receiver := TRUE;

OPEN_EVENT_CHN (errint, chn_name, refnum2, exception, receiver);
chn_name := ‘event_channel 1°;
rweiver := FALSE;
OPEN_EVENT_CHN (errint, chn_name, refnumi, exception, receiver);
waitlist.length :- 1,
waitlist. refru!l[O] = refnuml;
REPEAT
event2 ptr~.[0] := agreed upon value;
interval.sec 0 {* send event immediately =)
interval.msec := 0;
WAIT_EVENT CHN (errint, waitlist, refnum_signaling, eventi_ptr);

0] ul

(* processing performed here *)

SEM) EVENT_CHN (errint, refnumz, event2_ptr, interval,clktime);
UNTIL AllDone;

The order of execution of the two processes is the same regardiess of the
process prioritles. Process switch always occurs at the WAIT_EVENT_CHN
call.

In the following example using event-call channels, process switch may occur
at different places in the programs. Process A calls YIELD_CPU, which gives
the CPU to Process B only if Process B is ready to run.

5~7

TCL EXHIBIT 1044
Page 107 of 188

Qoerating System Reference Manual Exveptions and Events

Process A

PROCEDURE Handler(Env_ptr:p_emw_blk;
Data ptr:p_ex data);

BEGIN
event2_ptr~.[0] := agreed_upon_value;

(; processing performed here *)

interval.sec := 0; (* send event immediately *)
interval.msec := 0;
SEND_EVENT_CHN (errint, refrum, event2_ptr, interval, clktime);
to_any := true;
YIELD_CPU (errint, to_any);

END;

BEGIN (* Main program+)

DECLARE_EXCEP_HDL (errint, excep_name_1, aHandler);

chn_name := ‘event_channel 17

exception:= excep_name_1;

receiver := TRUE:

OPEN_EVENT_CHN (errint, chn_name, refnuml, exception, receiver);

chn_name := ‘event_channel_2°;
receiver := FALSE;
exception:= *°;

OPEN_EVENT_CHN (errint, chn_name, refrum, exception, receiver);
SEND_EVENT CHN (errint, refrum2, event2_ptr, interval, clktime);
to_any := true;

YIELD CPU (errint, to_any):

TCL EXHIBIT 1044
Page 108 of 188

(Qperating System Reference Manal Exceptions and Events

Process B:

PROCEDURE Handler(Env_ptr:p_env_blk:
Data_ptr:p_ex data);

BEGIN
event2_ptr~.[0] := agreed_upon_value;

(; processing performed here *)

interval.sec 0; (* send event immegiately =)
interval.msec := 0;

SEND_EVENT_CHN (errint, refnuml, event2_ptr, interval, clktime);
to any := true;

YIELD CPU (errint, to_any):

END;

BEGIN (=ttain program *)
DECLARE_EXCEP_HDL (errint, excep_name]_1, 3Handler)

chn_name := "event_channel_1°;
exception:= excep name_1;
recelver "= FALSE:
exception:= **;

OPEN_EVENT-CHN (errint, chn_name, refnuml, exception, receiver);
chn_name := 'event_channel 2°;

receiver := TRUE;

OPEN_EVENT CHN (errint, chn_name, refnum2, exception, receiver);

END.

TCL EXHIBIT 1044
Page 109 of 188

Qperating System Reference Maial Exceptions and Events

5.6 The System Clock
A process can read the system clock time, convert it to local time, or delay
its own continuation until a given time. The year, month, day, hour, minute,
second, and millisecond are avallable from the clock. The system clock is set
up through the workshop shell. For more information, see the wuorkshop Users
Guiae for the Lisa.

5.7 Exception Management System Calls
This section describes all the Operating System calls that pertain to exception
management. A summary of all the Operating System calls can be found in
Appendix A. The following special types are used in exception management
calls:

T_ex_name = STRING[16];
Longadr = “longint;
T_ex_data = Array [0..11] of longint:
T_ex_sts = Record
ex_occurred_f :boolean;
ex_state:t_ex state;
num_excep: integer;
hdl_adr:longadr;

end;
T_ex_state = (enabled, queued, ignored);

5-10
TCL EXHIBIT 1044

Page 110 of 188

Querating System Reference Manual Exceptions and Events

5.7.1 DECLARE_EXCEP_HDL Exception Management System Call

DECLARE_EXCEP_HDL (Var ErrNum:Integer;
var Excep_Name:t_ex_name;

Entry_Point:LongAdr)

ErrNum: Error indicator
Excep_Name: Name of exception
Entry _Point: Address of exception handler

DECLARE_EXCEP_HODL sets the Operating System so that the occurrence of
the exception referred to by Excep_Name causes the execution of the
exception handler at Entry_Polint.

Excep_Name is a character string name with up to 16 characters that {s
locally defined in the process and known only to the process and the Operating
System. If Entry_Polnt Is nil and Excep_Name specifies a system exception,
the system default exception handler is used. Any previously declared
exception handler is dissociated by this call. The exception itself is
automatically enabled.

If any Excep_Name exceptions are queued at the time of the
DECLARE_EXCEP_HOL call, the exception is automatically enabled and the
queued exceptions are handled by the newly declared handler.

You can call DECLARE_EXCEP_HDL with an exception handler address ofnil
to dissociate your handler from the exception. If there is no system handler
defined, the program that signals the exception receives an error 201.

5-11

TCL EXHIBIT 1044
Page 111 of 188

Qperating System Reference Manual Exceptions and Events

5.7.2 DISABLE_EXCEP Exception Management System Call

DISABLE_EXCEP (Var ErrNum:Integer;
var Excep_Name:t_ex_name;

Queue:Boolean)
ErrNum: Error indicator
Excep_Name: Name of exception to be disabled
Queue: Exception queuing flag

A process can explicitly disable the trapping of an exception by calling
DISABLE_EXCEP. Excep_Name is the name of the exception to be disabled.
If Queue s true and an exception occurs, the exception is queued and is
handled when it Is enabled again. If Queue is false, the exception is ignored.
when an exception handler is entered, the state of the exception in question

{s automatically set to queued.

If an exception handler is associated through OPEN_EVENT_CHN with an
event channel and DISABLE_EXCEP is called for that exception, then:

* If Queue is false, and if an event is sent to the event channel by
SEND_EVENT_CHN, the SEND_EVENT_CHN call succeeds, but it is
equivalent to not calling SEND_EVENT_CHN at all.

* If Queue Is true, and If an event Is sent to the event channel by
SEND_EVENT_CHN, the SEND_EVENT_CHN call succeeds and a call to
WAIT_EVENT_CHN receives the event, thus dequeuing the exception.

5-12
TCL EXHIBIT 1044
Page 112 of 188

(perating System Reference Manal Exceplions and Events

5.7.3 ENABLE_EXCEP Exception Management System Call

ENABLE_EXCEP (Var ErrNum:Integer:
var Excep-name:t_ex_name)

ErrNum: Error indicator
Excep_Name: Name of exception to be enabled

ENABLE_EXCEP causes an exception to be handled again. Since the

Operating System automatically disables an exception when its exception
handler s entered (see DISABLE_EXCEP), the exception handler should
explicitly re-enable the exception before it returns to the process.

5-13

TCL EXHIBIT 1044
Page 113 of 188

Qperating System Reference Marial Exceptions ano Events

5.7.8 INFO_EXCEP Exception Management System Call

INFO_EXCEP (Var ErrNum:Integer;
var Excep_Name:t_ex_name;
var Excep_Status:t_ex sts)

ErrNum: Error indicator
Excep_Name: Name of exception
Excep_Status: Status of exception

INFO_EXCEP returns Information about the exception specified by
Excep_Name. The parameter Excep_Status is a record containing information
about the exception. This record contains:

t_ex_sts = RECORD (» exception status *)
Ex_occurred_f :Boolean; (*exception occurred flag *)
Ex_state:t_ex_state; (= exception status »)

Num_excep:integer: (*no. of exceptions queued *)
Hdl_adr:Longadr; (*exception handler's address *)
END;

Once Ex_occutted_f has been set to true, only a call to FLUSH_EXCEP can
set it to false.

S-14

TCL EXHIBIT 1044
Page 114 of 188

Qperating System Reference Marnal Exceptions and Events

5.7.5 SIGNAL_EXCEP Exception Management System Call

SIGNAL_EXCEP (Var Errium:Integer:
var Excep_Name:t_ex_name;
var Excep_Data: t_ex_data)

ErrNum: Error indicator
Excep_name: Name of exception to be signaled
Excep_Data: Information for exception handler

A process can signal the occurrence of an exception by calling
SIGNAL_EXCEP. The exception handler associated with Excep_Name is
entered. It Is passed Excep_Data, a data area containing information about
}ne nature and cause of the exception. The structure of this information area
s:

array[0..size exdata] of Longint

SIGNAL_EXCEP can be used for user-defined exceptions and for testing
exception handlers defined to handle system-defined exceptions.

5-15

TCL EXHIBIT 1044
Page 115 of 188

Qoerating System Reference Manal Exceptions and Events

5.7.6 FLUSH_EXCEP Exception Management System Call

FLUSH_EXCEP (var ErrNum:Integer;
var Excep_Name:t_ex_name)

ErrNum: Error indicator
Excep_Name: Name of exception whose queue is flushed

FLUSH_EXCEP clears out the queue assoclated with the exception
Excep_Name and resets its “exception occurred” flag.

5-16

TCL EXHIBIT 1044
Page 116 of 188

tperating Systerm Reference Manual

5.8 Event Management System Calls

Exveptions and Events

This section describes all the Operating System calls that pertain to event
management. A summary of all the Operating System calls can be found In
Appendix A. The following speclal types are used in event management calls:

Patm STRING[255);

T e

T

_sts

i on

STRING[16];
Record

chn_type:chn_king;
num_events: integer;
open_recv: integer;
open_send: integer;
ec_name :pathname;

end;
chn_kind =
T _waitlist =

(wait_ec,
Record

call_ec);

length:integer;
refrum:array [0..10] of integer;

end;
P_r_eventblk =
R_eventblk =

“I_eventblk;
Record

event_header :t_eheader;
event_text:t_event_text;

end;
T_eheader =

Record

send_pid:longint;
event_type:longint;

end;
T_event_text
P_s_eventblk
S eventblk
Timestmp_interval =

“s |

Time_rec = Record

array {0..9] of longint;

eventblk;

T_ event text;

Record
sec:longint;
msec:0..999;

end;

year:integer;
day:1..366;
hour:-23..23;
minute:-59..59;
second:0..59;
msec:0..999;

end;

5-17

TCL EXHIBIT 1044
Page 117 of 188

Qoerating System Reference Marial Exceptions ana Events

5.8.1 MAKE_EVENT_CHN Event Management System Call

HAKE_EVENT_CHN (var Errtum:Integer;
var Event_Chn_Name:Pathname)

ErrNum: Error indicator
Event_Chn_Name: Pathname of event channel

MAKE_EVENT_CHN creates an event channel with the name given in

Event_Chn | Name. The name must be a File System pathname; it cannot be
null.

5-18

TCL EXHIBIT 1044
Page 118 of 188

Qerating System Rererence Manual Exceptions and Events

5.8.2 KILL_EVENT_CHN Event Management System Call
KILL_EVENT CHN (var ErrNum:Integer;
var Event_Chn_Name:Pathname)

ETrNum: Error indicator
Event_Chn_Name: Pathname of event channel

To delete an event channel, call KILL_EVENT_CHN. The actual deletion is
delayed until all processes using the event channel have closed it. In the
period between the KILL_EVENT_CHN call and the channel's actual deletion,
no processes can open it. A channel can be deleted by any process that
knows the channel's name.

5-19

TCL EXHIBIT 1044
Page 119 of 188

(perating System Referernce Marial Exceptions ano Events

5.8.3 OPEN_EVENT_CHN Event Management System Call

OPEN_EVENT_CHN (Var ErrNum:Integer;
var Event Chn_Name:Pathname;
var Refnum:Integer;
Excep Name:t_ex_name;
Recelver :Boolean)

ErrNum: Error indicator
Event_Chn_Name: Pathname of event channel
RefNum: Identifier of event channel
Excep_Name: Exception name, if any
Receiver: Access mode of calling process

OPEN_EVENT_CHN opens an event channel and defines its attributes from the
process point of view. RefNum is returned by the Operating System to be
used in any further references to the channel.

Event_Chn_Name determines whether the event channel is locally or globally
defined. If it is a null string, the event channel is locally defined. If
Event_Chn_Name is not null, it is the File System pathname of the channel.

Excep Name determines whether the channel is an event-wait or event-call
channel. If it is a null string, the channel is of event-wait type. Otherwise,
the channel is an event-call channel and Excep_Name is the name of the
exception that is signaled when an event arrives in the channel. Excep_Name
must be declared before its use in the OPEN_EVENT_CHN call.

Recelver s a Boolean value indicating whether the process Is opening the
channel as a sender (Receiver s false) or a receiver (Receiver is true). A
local channel (one with a null pathname) can be opened only to receive
events. Also, a call-type channel can only be opened as a receiver.

TCL EXHIBIT 1044
Page 120 of 188

mperating System Rererence Maial Exveptions and Events

5.8.4 CLOSE_EVENT_CHN Event Management System Call
CLOSE_EVENT CHN (var ErrNum:Integer;
RefNum:Integer)

ErrNum: Error indicator
RefNum: Identifier of event channel to be closed

CLOSE_EVENT_CHN closes the event channel associated with RefNum. Any

events queued In the channel remain there. The channel cannot be accessed
until it is opened agatn.

If the channel has previously been killed with KILL_EVENT_CHN, you cannot
open it after it has been closed.

If the channel has not been killed, it can be opened by OPEN_EVENT_CHN.

5-21

TCL EXHIBIT 1044
Page 121 of 188

oerating System Reference Marial Exceptions and Events

5.8.5 INFO_EVENT_CHN Event Management System Call

INFO_EVENT_CHN (Var ErrNum:Integer;
RefNum: Integer;
var Chn_Info:t_chn_sts)

ErrNum: Error indicator
RefNum: Identifier of event channel
Chn_Info: Status of event channel

INFO_EVENT_CHN gives a process information about an event channel. The
Operating System returns a record, Chn_Info, with information pertaining to
the channel associated with RefiNum.

The definition of the type of the Chn_Info record is:

t_chn_sts =
RECORD (* event channel status *)
Chn_type:Chn kind; (* wait_ec or call_ec *)

Num_events:Integer; (= number of queued events *)

Open_recv:Integer; (™ number of processes reading channel *)

Open_send:integer; (* no. of processes sending to this
channel *

Ec_name :pathname; (* event channel name *)
END;

5-22

TCL EXHIBIT 1044
Page 122 of 188

Operating System Reference Maral Exceptions and Events

5.8.6 WAIT_EVENT_CHN Event Management System Call

WAIT_EVENT_CHN (var ErrNum:Integer;
var wait List:t_ vaitlist
var RefNum:Integer;
Event_Ptr:p_r_eventblk)

ErrNum: Error indicator
Wait_List: Record with array of event channel refnums
RefNum: Identifier of channel that had an event

Event_Ptr: Polnter to event data

WAIT_EVENT_CHN puts the calling process in a waiting state pending the
arrival of an event in one of the specified channels. Wait List is a pointer to
a list of event channel identifiers. when an event arrives in any of these
channels, the process is made ready to execute. RefNum identifies which
channel got the event, and Event_Ptr points to the event itself.

A process can wait for any Boolean combination of events. If it must wait
for any event from a set of channels (an OR condition), it should call
WAIT_EVENT_CHN with wait_List containing the list of event channel
identifiers. If, on the other hand, it must wait for all the events from a set
of channels (an AND condition), then for each channel in the set,
WAIT_EVENT_CHN should be called with walt_List containing just that
channel identifier.

The structure of t_waitlist is:

RECORD
Length:Integer;
Refrum:Array[0..size_waitlist] of Integer;
END;
Event_Ptr is a pointer to a record containing the event header and the event
text. Its definition is:
P_r_eventblk = “r_eventblk:
R_eventblk = Record
event_header :t_eheader;
event_text:t_event_text;
end;
T_eheader = Record
send_pid:longint;
event_type:1longint;

end;
T_event_text = array [0..9] of longint;
Send_pid is the process id of the sender.

5-23

TCL EXHIBIT 1044
Page 123 of 188

Operating System Reference Marnual Exceptions ana Events

Currently, the possible event type values are:

1 = Event sent by user process
2 = Event sent by system

when you recelve the SYS_SON_TERM event, the first longint of the event
text contains the termination cause of the son process. The cause is same as
that given in the SYS_TERMINATE exception given to the son process. The
rest of the event text can be filled by the son process.

If you call WAIT_EVENT_CHN on an event-call channel that has queued
events, the event Is treated just like an event in an event-wait channel. If
WAIT_EVENT_CHN fs called on an event-call channel that does not have any
queued events, an error Is returned.

5-24

TCL EXHIBIT 1044
Page 124 of 188

Qperating System Rererence Marxia! Exceptions and Events

5.8.7 FLUSH_EVENT_CHN Event Management System Call

FLUSH_EVENT _CHN (Var ErrNum:Integer;
RefNum:Integer)

ErrNum: Error indicator
RefNum: Identifier of event channel to be flushed

FLUSH_EVENT_CHN clears out the specified event channel. All events

queued in the channel are removed. If FLUSH_EVENT_CHN s called by a
sender, it has no effect.

5-25

TCL EXHIBIT 1044
Page 125 of 188

Qperating System Reference Maral Exceptions and Events

5.8.8 SEND_EVENT_CHN Event Management System Call

SEND_EVENT_CHN (Var ErrNum:Integer;
RefNum: Integer;
Event_Ptr:p_s eventblk;
Interval:Timestmp_interval;
Clktime:Time_rec)

ErrNum: Error indicator
RefNum: Channel for event
Event_Ptr: Pointer to event data
Interval: Timer for event
Clktime: Time data for event

SEND_EVENT_CHN sends an event to the channel specified by RefiNum.
Event_Ptr points to the event that is to be sent. The event data area
contains only the event text; the header is added by the system.

If the event is of the event-wait type, the event Is queued. Otherwise the
Operating System signals the corresponding exception for the process receiving
the event.

If the channel is opened by several senders, the receiver can sort the events
by the process identifier, which the Operating System places in the event
header. Alternatively, the senders can place predefined identifiers, which
identify the sender, in the event text.

The Interval parameter indicates whether the event is a timed event.
NOTE

Timed events will not be supported in future releases of the Operating
System. The Interval and Clktime parameters will be ignored in future
releases. If you want your software to be upward-compatible, always
set both flelds of the Interval parameter to zero.

Timestmp_interval is a record containing a second and a millisecond field. If
both fields are 0, the event is sent immediately. If the second given is less
than 0, the millisecond field is ignored and the Time_rec record is used. If
the time in the Time_rec has already passed, the event is sent immediately.
If the millisecond field is greater than 0, and the second field is greater than
or equal to 0, the event is sent that number of seconds and milliseconds from
the present.

A process can time out a request to another process by sending itself a timed
event and then walting for the arrival of either the timed event or an event
indicating the request has been served. If the timed event Is recelved first,
the request has timed out. A process can also time its own progress by
perlodically sending itself a timed event through an event-call event channel.

5-26

TCL EXHIBIT 1044
Page 126 of 188

perating System Reference Marual Exceptions and Events

59 Clock System Calls
This section describes all the Operating System calls that pertain to the clock.
A summary of all the Operating System calls can be found in Appendix A

The following special types are used in clock calls:

Timestmp_interval = Record
sec:longint;
msec:0..999;

end;

Time_rec = Record

year :integer;

day:1..366;

hour:-23..23;

minute:-59..59;

second:0..59;

msec:0..999;
end;

Hour_range = -23..23

Hinute_range = -59..59;

5-27

TCL EXHIBIT 1044
Page 127 of 188

Qperating System Reference Manual Exceptions ano Events

5.9.1 DELAY_TIME Clock System Call

DELAY_TIME (Var ErrNum:Integer;
Interval:Timestmp_interval;
Clktime:Time_rec)

ErrNum: Error indicator
Interval: Delay timer
Clktime: Time information

DELAY_TIME stops execution of the calling process for the number of seconds
and milliseconds specified in the Interval record. If this time period is zero,
DELAY_TIME has no effect. If the perlod is less than zero, execution of the
process is delayed until the time specified by Clktime.

5-28

TCL EXHIBIT 1044
Page 128 of 188

Qperating System Reference Marmal Exceptions ana Events

592 GET_TIME Clock System Call

GET_TIME (Var ErrNum:Integer;
var Sys_Time:Time_rec)

ErrNum: Error indicator
Sys_Time: Time information

GET_TIME returns the current system clock time in the record Sys_Time. The
msec field of Sys_Time always contains a zero on return.

TCL EXHIBIT 1044
Page 129 of 188

Qperating System Rererence Manual Exceptions ana Events

59.3 SET_LOCAL_TIME_DIFF Clock System Call

SET_LOCAL_TIME DIFF (var ErrNum:Integer;
Hour :Hour_range;
Minute:Minute_range)

ErrNum: Error indicator

Hour: Number of hours difference from the system clock
Minute: Number of minutes difference from the system clock

SET_LOCAL_TIME_DIFF informs the Operating System of the difference in

hours and minutes between the local time and the system clock. Hour and
Minute can be negative.

5-30

TCL EXHIBIT 1044
Page 130 of 188

Qperating System Rererence Manueél Exceptions and Events

5.9.4 CONVERT_TIME Clock System Call

CONVERT_TIME (Var ErrNum:Integer;
var Sys Time:Time_rec;
var Local_Time:Time_rec;
To_Sys:Boolean)

ErrNum: Error indicator

Sys_Time: System clock time
Local_Time: Local time

To_Sys: Direction of time conversion

CONVERT_TIME converts between local time and system clock time.

To_Sys iIs a Boolean value indicating in which direction the conversion is to
go. If To_Sys is true, the system takes the time data in Local_Time and puts
the corresponding system time in Sys_Time. If To_Sys is false, the system
takes the time data in Sys_Time and puts the corresponding local time in
Local_Time. Both time data areas contain the year, month, day, hour, minute,
second, and millisecond.

5-31

TCL EXHIBIT 1044
Page 131 of 188

TCL EXHIBIT 1044
Page 132 of 188

Chapter 6

Configuration
6.1 Conflguration System CallS......ccccccccciiiriineanensiitninnesssssresessessssssieesssens 6-1
6.1.1 CARDS_EQUIPPEDcoovueerereeneseseseesesessesscssantassssssnsssssasensssasas 6-2
6.1.2 GET_CONFIG_INAME ...cccieereneeieresssrterseesasnserssssasasaesssssssnsssssnnnes 6-3
6.1.3 OSBODTVIL ...meceeererenncaesresssesssesesssessssasssssssessesessssnsncsssesssssssacnes 6-4

029-0421-R

TCL EXHIBIT 1044
Page 133 of 188

TCL EXHIBIT 1044
Page 134 of 188

Configuration

Every Lisa system is configured using the Preferences tool. Preferences
places the configuration state of the system in a special part of the system's
memory called parameter memoryk Although parameter memory is not
contained on a disk, it is supplied with battery power so that the contents are
kept even when the system is tumed off. The batteries are charged as long
as the Lisa is plugged in, even if the unit is powered off. If line power is
lost, the batteries will keep parameter memory secured for several hours. In
addition, every time parameter memory is changed, a copy of the new data is
made on the boot disk. If the contents of parameter memory are lost, this
disk copy is automatically restored to parameter memory.

Since the devices actually connected may differ from the configuration stored
in parameter memory, three calls are provided that allow programs to request
information about the configuration of the system.

NOTE

Configuration System Calls will be changed in future releases of the
Operating System. Do not use these calls If you want your software to
be upward-compatible.

6.1 Configuration System Calls
This sectlon describes all the Operating System calls that pertain to
configuration. A summary of all the Operating System calls can be found in
ix A. Special data types used by configuration calls are defined along
with the calls.

TCL EXHIBIT 1044
Page 135 of 188

Qoerating System Reference Mamual Conflguration

6.1.1 CARDS_EQUIPPED Conflguration System Call
CARDS_EQUIPPED (Var ErrNum:Integer;
var In_Slot:Slot_array)

ErrNum: Error code
In_Slot: Identifies the types of cards configured

This call returns an array showing the types of cards which are In the varlous
card siots.

The definition of Slot_array is:
slot_array = array [1..3] of card _types;
where:

card_types = (no_card,
apple_card,
n_port_card,
net_card,
laser_card);

TCL EXHIBIT 1044
Page 136 of 188

Qperating System Reference Manual Configuration

6.1.2 GET_CONFIG_NAME Configuration System Call

GET_CONFIG_NAME (Var Errnum:Integer;
Devpostn: Tports;
var Devname:E_Name)

Errnum: Error code
Devpostn: A port identifier
Devname: The name of the device attached to the port

This call returns the name of the device configured at the port given in
Devpostn. See 0SBOOTVOL for the definition of Tports. Type E_Name is

defined as:
E_Name = STRING [32]);

TCL EXHIBIT 1044
Page 137 of 188

Qoerating System Reference Manval Conflguration

6.1.3 0SBOOTVOL Conflguration System Call
0SBOOTVOL (var Errtum:Integer) : Tports

ErrNum: Error code
Tports: Identifies the port to which the boot volume is attached

0SBOOTVOL is a function that returns the identifier for the port attached to
the boot volume. This port might not be the port configured for the boot
volume, since it is possible for the user to override the default boot. Note
that the port identifier Is not the same as the device name. You can use
GET_CONFIG_NAME to find out the name of the device attached to the port.

Tports Is a set that has this deflnition:

Tports = (uppertwig lowertwig parallel,
slotll, slot12, slotl3, slotis,
slot21, slot22, slot23, slot2a,
slot31, slot32, slot33, slot3s,
seriala, serialb, main_console, alt_console,
t_mouse, t_speaker, t_extral, t extraz, t_extra3);

TCL EXHIBIT 1044

Page 138 of 188

029-0422-A

m O Q © >

Appendixes

Operating System Interface Unit......... R |
System-Reserved Exception Names .B-1
SYSEM-RESEIVED EVEN TYPES ...vveeveeeeceessrsessesssesassrssssssssnsesssssaseasasenss c-1
ETTOT MESSA0ESeeeeenneeeesssssesssssssssssesssssssesssessssasasasssessssecsseneasensass D-1
FS_INFO FIBIOS «.n.nvenveeeeneecueassesasssessessssesessssssesssessrssssessssasassssasescncns E-1

TCL EXHIBIT 1044
Page 139 of 188

TCL EXHIBIT 1044
Page 140 of 188

Appendix A

Operating System Interface Unit

UNIT syscall; (» system call definitions unit =)
INTRINSIC;

INTERFACE

CONST

max_ename = 32; (* maximum length of a file system object name

max_pathname = 255; (* maximum length of a file system pathname

max_label size = 128; (* maximum size of a file label, in bytes
len_exname = 16; (* length of exception name
size exdata = 11; (= 48 bytes, exception data block should have the

same size as r_eventblk, received event block

size etext = 9; (= event text size - 40 bytes

size_waltlist = 10; (* size of wait list - should be same as regptr_list

(* exception kind definitions for 'SYS_TERHINATE' exception

call_term = 0; (» process called terminate_process

ended =1; (» process executed ‘end’ statement
self_killed =2; (* process called kill_process on self

killed =3; (= process was killed by another process
fthr_term = 4; (* process's father is terminating

bad_syscall = 5; (= process made invalid sys call - subcode bad
bad_errnum = 6; (* process passed bad address for errnum parm
swap _error = 7; (* process aborted due to code swap-in error
stk_overflow = 8; (* process exceeded max size (+T nnn) of stack
data_overflow = 9; (» process tried to exceed max data space size
parity err = 10; (* process got a parity error while executing
def_div_zero = 11;(* default handler for div zero exception was called
def_value oob = 12; (» " for value oob exception

def_ovfw = 13; (* " for overflow exception

def_nmi_key = 14; (= " for NHI key exception

def_range = 15;(* " for "SYS_VALUE_00B' excep due to value range err
def_str_index = 16;(* " for 'SYS_VALUE_00B' excep due to string index err *)

A-1

TCL EXHIBIT 1044
Page 141 of 188

Qperating System Reference Manual (perating System Interface Unit

bus_error = 21; (* bus error occurred ")
addr_error = 22; (= address error occurred *)
illg inst = 23; (* illegal instruction trap occurred *)
priv_violation = 24; (» privilege violation trap occurred *)
1line_1010 = 26; (* 1ine 1010 emulator occurred »)
line_ 1111 = 27; (* line 1111 emulator occurred »)
unexpected ex = 29; (* an unexpected exception occurred »)
div_zero = 31; (= exception kind definitions for hardware exception =)
value_ oob = 32;

ovfw = 33;

nmi_key = 34;

value_range = 35; (= excep kind for value range and string index error *)
str_index = 36; (* Note that these two cause 'SYS_VALUE 00B® excep *)
(*DEVICE_CONTROL functions*)

dwParity = 1; (*RS-232*)

OVOUtDTR = 2; (*RS-232%)

avOUtXoN = 3; (*RS-232%)

avoutDelay = 4; (*RS-232%)

avBaud = 5; ("RS-232%)

avinwait = 6; ("RS-232, CONSOLE*)

VINDTR = 7; (*RS-232%)

avINXON = 8; (*RS-232%)

avTypeahd = 9; ("RS-232%)

avbiscon = 10; (*RS-232%)

OVOUtNOHS = 11; ("RS-232%)

ovErrStat = 15; (“PROFILE*)

dvGetEvent = 16; (*CONSOLE*)

avAutolLF = 17; (*RS-232, CONSOLE, PARALLEL PRINTER*) (*not yet®)
avDiskStat = 20; (*DISKETTE, PROFILE*)

avDiskSpare = 21; (*DISKETTE, PROFILE*)

TYPE

pathname = string [max pathname];
e_name = string [max_ename];
namestring = string [20];
procinfoRec = record
progpathname : pathname;

global id : longint;
father_id : longint;
priority : 1..255;
state : (pactive, psuspended, pwaiting);
data_in : boolean

end;

TCL EXHIBIT 1044
Page 142 of 188

Querating System Reference Manual

Qoerating System Interrace Lnit

Tdstype = (ds_shared, ds_private); (* types of data segments %)

dsinfoRec = record
mem_size : longint;
disc_size: longint;
numb_open : integer;
ldsn : integer;
boundF : boolean;
presentfF : boolean;
creatorF : boolean;
rwaccess : boolean;

segptr : longint;

volname: e_name;
end;
t_ex_name = string [len_exname]; (* exception name *)
longadr = “longint;
t_ex_state = (enabled, queued, ignored); (* exception state)
p_ex_data = “t_ex data;
t_ex _data = array [0..size_exdata] of longint; (* exception data blk *)
t_ex_sts = record (* exception status *)
ex_occurred_f : boolean; (* exception occurred flag *)
ex_state : t_ex_state; (* exception state *)
num_excep : integer; (* number of exceptions q'ed *)
hdl_adr : longadr; (* handler address *)
end.

p_env_blk = “env_blk;
env_blk = record

pc : longint;
sr : integer;
do : longint;
dil : longint;
d2 : longint;
d3 : longint;
da : longint;
d5 : longint;
g6 : longint;
d7 : longint;
a0 : longint:
al : longint;
a2 : longint;
a3 : longint;
ad : longint;
a5 : longint;
a6 : longint;
a7’ : longint;
end;

(= environment block to pass to handler *)

(* program counter *)

(* status register *)

(* data registers 0 - 7 *)

(* address registers 0 - 7 *)
A-3

TCL EXHIBIT 1044
Page 143 of 188

Querating System Reference Manual

p_term ex data = “term ex data;

term_ex_data = record
case excep_kind : longint of

end;

call_term
ended,
self_killeq,
killed,
fthr_term,
bad_syscall,
bad_errnum,
swap_error,
stk_overflow,
data_overflow,
parity err : ().

111g inst,
priv_violation,

line_1010,
line_1111,
def_div_zero,
def_value_oob,
def_ovfw,
def_nmi_key

: (sr : integer;

pc : longint);
def_range,
def_str_index

Querating System Interface Lnit

(» terminate exception data block *)

(* due to process termination *)

(= cdue to illegal instruction, privilege
violation *)

(* due to 1line 1010, 1111 emulator *)

(» terminate due to default handler for hardware
exception *)

(* at the time of occurrence *)

(* terminate due to default handler for
'SYS_VALUE_00B® excep for value range or string
index error *)

: (value_check : integer;
upper_bound : integer;
lower_bound : integer;

return_pc

caller_a6
bus_error,
addr_error

: (fun_field : packed record
1 0..97ff;

filier

: longint;
: longint);
(* due to bus error or address error *)
(* one integer *)
(= 11 bits *)

r_w _flag : boolean;
i n_flag : boolean;
fun_code : 0..7; (= 3 bits =)

A-4
TCL EXHIBIT 1044
Page 144 of 188

Qperating System Reference Manual Qerating System Interface Unit

access_adr : longint;

inst_register : integer;

sr_error : integer;

pc_error : longint);
end;

p_hard_ex_data = “hard_ex_data;
hard_ex_data = record (= hardware exception data block *)
case excep_kind : longint of
div_zero, value_oob, ovfw
: (sr : integer:
pc : longint);
value_range, str_index
: (value_check : integer;
upper_bound : integer;
Jower_bound : integer;
return_pc : longint;
caller a6 : longint);
end;

accesses = (dread, derite, append, private, global_refrum);
mset = set of accesses;
iomode = (absolute, relative, sequential);

UID = record (*unique id=)

a,b: longint

timestmp_interval = record (* time interval *)
sec : longint; (* number of seconds *)
msec : 0..999; (= number of milliseconds within a second *)

end;

info_type = (device_t, volume_t, object_t):
devtype = (diskdev, pascalbd, seqdev, bitbkt, non_io);
filetype = (undefined, MDDFfile, rootcat, freelist, badblocks, sysdata,

spool, exec, usercat, pipe, bootfile, swapdata, swapcode, Tramap,
userfile, killedobject).

entrytype= (emptyentry, catentry, linkentry, fileentry, pipeentry, ecentry,
killedentry);

A-5

TCL EXHIBIT 1044
Page 145 of 188

Qoerating System Reference Manual Qperating System Interface Lnit

fs_info = record
name : e_name;
dir_path : pathname;
machine_ id : longint;
fs_overhead : integer:
result_scavenge : Integer;
case otype : info_type of
device t, volune t: (
iochannel : integer;
devt : devtype;
slot_no : integer:
fs_size : longint;
vol_slize : longint:
blockstructured, mounted : boolean;
opencount : longint;
privatedev, remote, lockeddev : boolean;
mount_pending, unmount_pending : boolean;
volname, password : e_name;
fsversion, volnum : integer;
volid : UID;
backup_volid : UID;
blocksize, datasize, clustersize, filecount : integer;
label_size : integer;
freecount : longint;
DTVC, DTCC, DTvB, DTVS : longint;
master_copy_id, copy : longint;
overmount_stamp :
boot_code : mteger
ooot_envlron : 1nteger:
privileged, write protected : boolean;
master, copy, copy flag, scavenge flag : boolean;
vol_left_mounted : boolean);

object_t : (

size : longint;

psize : longint; (= physical file size in bytes ")
1psize : integer: (* logical page size in bytes for this file =)

ftype : filetype;

etype : entrytype;

DTC, DTA, DT, DTB, DTS : longint;
refoum : integer;

fmark : longint;

acmode : mset;

nreaders, nwriters, nusers : integer;
fuld : UID;

user_type : integer;

user_subtype : integer;

A-6
TCL EXHIBIT 1044
Page 146 of 188

Qoerating System Reference Manual Qoerating System Interface Unit

system_type : integer:

eof, safety_on, kswitch : boolean;

private, locked, protected, master file : boolean;

file_scavenged, file closed by 0S, file left_open:boolean)
end;

dctype = record

deversion : integer;

dccode : integer;

dcdata : array [0..9] of longint; (* user/driver defined data =)
end;

t_waitlist = record (* walt list *)

length : integer;
refnum : array [0..size_waitlist] of integer;

end;

t_eheader = record (* event header *)
send_pid : longint: (= sender's process id *)
event_type : longint; (* type of event *)

t_event_text = array [0..size etext] of longint:

p_r_eventblk = “r_eventblk;

r_eventblk = record

event_header : t_eheader;
event_text : t_event_text;
end;

p_s_eventblk = “s_eventblk:
s_eventblk = t_event_text;

time_rec = record
year : integer;
day : 1..366; (= Jjulian date *)
hour : -23..23;
minute : -59..59;
second : 0..59;
msec : 0..999;
end;

A-7

TCL EXHIBIT 1044
Page 147 of 188

Qperating System Reference Maral Qperating System Interface Unit

chn_kind = (wait_ec, call_ec):

t_chn_sts = record (» channel status *)
chn_type : chn_king; (» channel type »)
num_events : integer; (= number of events queued)
open_recv : integer: (* number of opens for receiving *)
open_send : integer; §' number of opens for sending *)
ec_name : pathname; = event channel name *)

end;
hour_range = -23..23;
minute_range = -59..59;

{configuration stuff: }

tports = (uppertwiq, lowertwig, parallel,

slotll, slotl2, slotl3, slotla,

slot21, slot22, slot23, slot2a,

slot31, slot32, slot33, slot34,

seriala, serialb, main_console, alt_console,
t_mouse, t_speaker, t_extral, t_extra2, t_extra3);

card_types = (no_card, apple_card, n_port_card, net_card, laser card):
slot_array = array [1..3] of card_types;

{ Lisa Office System parameter memory type }

pmByteUnique = -128..127;
ptenRec = array[1..62] of pmByteUnique;

(» File System calls =)

procedure MAKE FILE (var ecode:integer; var path:pathname;
label_size:integer);

procedure MAKE_PIPE (var ecode:integer: var path:pathname;
label_size:integer);

procedure MAKE_CATALOG (var ecode:integer; var path:pathname;
label_size:integer):

procedure MAKE_LINK (var ecode:integer: var path, ref:pathname;
label_size:integer);

A-8
TCL EXHIBIT 1044
Page 148 of 188

perating System Rererence Manal (perating System interrace Lnit

procedure KILL_OBJECT (var ecode:integer; var path:pathname):

procedure UNKILL_FILE (var ecode:integer; refnum:integer; var
new_name:e_name);

procedure OPEN (var ecode:integer; var path:pathname; var refnum:integer;
manip:mset);

procedure CLOSE_OBJECT (var ecode:integer; refnum:integer);

procedure READ_DATA (var ecode:integer; refnum:integer; data_addr:longint;
count:longint; var actual:longint; mode:iomode;
offset:longint);

procedure WRITE_DATA (var ecode:integer; refnuminteger; data_addr:1ongint:
count:1longint; var actual:longint; mode:iomode;
of fset:longint):

procegure FLUSH (var ecode:integer; refnum:integer):.

procedure L.OOKUP (var ecode:integer; var path:pathname; var
attributes:fs_info);

procedgure INFO (var ecode:integer; refnum:integer; var refinfo:fs_info);

procedure ALLOCATE (var ecode:integer; refnuminteger; contiguous:boolean;
count:longint; var actual:longint).

procedure TRUNCATE (var ecode:integer; refnuminteger);
procedure COMPACT (var ecode:integer; refnuminteger):

procedure RENAME_ENTRY (var ecode:integer:; var path:pathname; var
newname:e_name);

procedure READ_LABEL (var ecode:integer; var path:pathname;
data_addr:1longint; count:longint; var actual:longint).

procedure WRITE_LABEL (var ecode:integer; var path:pathname;
data_addr:longint; count:longint; var actual:longint):

procedure MOUNT (var ecode:integer; var vname : e_name; var password :
e_name ;var devname : e_name).

procegure UNMOUNT (var ecode:lnteger; var vname : e_name).

A-9

TCL EXHIBIT 1044
Page 149 of 188

(Qperating System Reference Manual (perating System interrace Lnit

procedure SET_WORKING DIR (var ecode:integer; var path:pathname).
procedure GET_WORKING_DIR (var ecode:integer; var path:pathname);
procedure SET_SAFETY (var ecode:integer;var path:pathname;on_off:boolean);

procedure DEVICE_CONTROL (var ecode:integer; var path:pathname;
var cparm : dctype):

procedure RESET_CATALOG (var ecode:integer; var pathipathname);
procedure GET_NEXT_ENTRY (var ecode:integer; var prefix, entry:e_name);
procedure SET_FILE_INFO (var ecode :integer; refnuminteger; fsi:fs_info);

(* Process Management system calls *)
function My ID:longint;

procedure Info_Process (var errnuminteger; proc_id:longint; var
proc_info:procinfoRec);

procedure Yield CPU (var errnuminteger; to_any:boolean);

procedure SetPriority Process (var errnuminteger; proc_id:longint;
new priority:integer):

procedure Suspend_Process (var errnuminteger; proc_ic:longint;
susp_family:boolean);

procedure Activate Process (var errnuminteger; proc_id:longint;
act_family:boolean);

procedure Kill_Process (var errnuminteger; proc_id:longint);
procedure Terminate Process (var errnuminteger; event_ptr:p_s_eventblk).
procegure Make_Process (var errnuminteger; var proc_id:longint; var

progfile:pathname; var entryname:namestring;
evnt_chn_refnuminteger);

A-10
TCL EXHIBIT 1044
Page 150 of 188

perating System Rererence Mamal perating System Interrace (it

(* Memory

procedure

procedure

procedure

procedure

procedure

procedure

procegure

procedure
procegure
procedure
procedure

procegure

procedure

Management system calls *)

make_dataseg(var errnum: integer; var segname: pathname; mem_size,
disc_size: longint; var refnum: integer; var segptr:
longint; 1ldsn: integer; dstype: Tdstype):

kill_dataseg (var errnuminteger; var segname:pathname);

open_datasegq (var errnuminteger; var segname:pathname; var
refnuminteger; var segptr:longint; ldsminteger).

close_dataseq (var errnuminteger; refnuminteger);

size_dataseg (var errnuminteger; refnuminteger;
deltamemsize:1ongint; var newmemsize:longint;
deltadiscsize: longint; var newdiscsize: longint):

info_dataseg (var errnuminteger; refnuminteger: var
dsinfo:dsinfoRec);

setaccess_dataseg (var errnuminteger; refnuminteger;
readonly:poolean);

unbind dataseg (var errnuminteger; refnuminteger);
bind_dataseg(var errnuminteger; refnuminteger);

info_ldsn (var errnuminteger; 1dsn: integer; var refnum: integer);
flush_dataseg(var errnum: integer; refrnum: integer);

mem_info(var errnum: integer: var swapspace, dataspace,
cur_codesize, max_codesize: longint);

info_address(var errnum: integer; address: longint; var refnum:
integer);

(* Exception Management system calls *)

procedure

procedure

declare_excep_hdl (var errnuminteger; var excep_name:t_ex_name;
entry_point:longadr).;

disable_excep (var errnuminteger; var excep_name:t_ex_name;
queue:boolean);

A-11

TCL EXHIBIT 1044
Page 151 of 188

(perating System Rererence Manual (perating System Interface (il

procedure enable_excep (var errnuminteger; var excep_name:t_ex_name);

procegure signal_excep (var errnuminteger; var excep_name:t_ex_name;
excep_data:t_ex_data);

procedure info_excep (var errnuminteger; var excep_name:t_ex_name; var
excep_status:t_ex_sts).

procedure flush_excep (var errnuminteger; var excep_name:t_ex_name):

(* Event Channel management system calls *)

procedure make_event_chn (var errnuminteger; var event_chn_name:pathname);

procedure kill _event_chn (var errnuminteger; var event_chn_name:pathname);

procedure open_event_chn (var errnuminteger; var event_chn_name:pathname; var
refnuminteger; var excep_name:t_ex_name;
receiver:boolean);

procedure close_event_chn (var errnuminteger; refnuminteger);

procedure info_event_chn (var errnuminteger; refrnuminteger; var
chn_info:t_chn_sts).

procedure wait_event_chn (var errnuminteger; var wait_list:t_waitlist; var
refnuminteger; event ptr:p r_eventblk);

procedure flush_event_chn (var errnuminteger; refnuminteger);
procedure send_event_chn (var errnuminteger; refnuminteger;

event_ptr:p_s_eventblk; 1interval:timestmp_interval:
clktime:time_rec);

(* Timer functions system calls =)

procedure delay time (var errnuminteger; interval:timestmp_interval;
clktime:time_rec).

procedure get_time (var errnuminteger; var gmt_time:time_rec):

procedure set_local_time_diff (var errmsrinteger; hour:hour_range;
minute:minute_range);

TCL EXHIBIT 1044
Page 152 of 188

(perating System Rererence Manual (perating System interrace (nit

procedure convert_time (var errnuminteger; var gmt_time:time_rec: var
local_time:time_rec; to_gmt:boolean);

{configuration stuff}

function OSBOOTVOL(var error : integer) : tports;

procedure GET_CONFIG_NAME(var error:integer; devpostn:tports; var
devname:e_name);

procegure CARDS_EQUIPPED(var error:integer; var in_slot:slot_array);
TMPLEMENTATION

procedure MAKE FILE; external;
procedure MAKE_PIPE; external;
procedure MAKE_CATALOG; external:
procedure MAKE_|LINK; external;
procedure KILL OBJECT: external:
procedure OPEN; external;
procedure CLOSE_OBJECT; external;
procedure READ_DATA; external;
procedure WRITE_DATA: external:
procedure FLUSH; external;
procedure LOOKUP; external:
procedure INFO; external;
procedure ALLOCATE; external;
procedure TRUNCATE; external:
procedure COMPACT: external;

TCL EXHIBIT 1044
Page 153 of 188

Qoerating System Reference Manual

procedure RENAME_ENTRY; external;
procedure READ_LABEL; external;
procedure WRITE_LABEL; external;
procedure HOUNT; external;
procedure UNMOUNT; external;
procedure SET_WORKING_DIR; external;
procedure GET_WORKING DIR; external;
procedure SET_SAFETY; external;
procedure DEVICE_CONTROL; external;
procedure RESET_CATALOG; external;
procedure GET_NEXT ENTRY; external;
procedure GET_DEV_NAME; external;

function Hy ID; external;
procedqure Info Process; external;
procedure Yield CPU; external;

procedure SetPriority Process; external;

procedure Suspend_Process; external;
procedure Activate Process; external;
procedure Kill Process; external;
procedure Terminate Process; external;
procedure Make Process; external;
procedure Sched Class; external;

A-14

Qoerating System Interface Unit

TCL EXHIBIT 1044
Page 154 of 188

Qperating System Reference Marual

procedure make dataseg; external;
procedure kill dataseg: external;
procedure open dataseg; external;
procedure close_dataseg; external;
procedure size dataseg; external;
procedure info_dataseqg; external;
procedure setaccess_datasegq; external;
procedure unbind dataseq:; external;
procedure bind dataseg; external;
procedure info_ldsn; external;
procedure flush_dataseg; external;
procedure mem_info; external;

procedure declare excep_hdl; external;
procedure disable_excep; external;
procedure enable_excep; external;
procedure signal_excep; external;
procegure info_excep; external:
procedure flush_excep; external;

procedure make_event_chn; external;
procedure kill event_chn; external;
procedure open_event_chn; external;
procedure close_event_chn; external;

A-15

Qoerating System Interface Unit

TCL EXHIBIT 1044
Page 155 of 188

Qperating System Reference Manual

proceaure info_event_chn; external:
procegure wait_event_chn; external;
procedqure flush_event_chn; external;
procegure send_event_chn; external;

procedure delay time; external;
procedure get_time; external;
procedure set_local_time diff; external:
procedure convert_time; external;
procedure set_file info; external;
function ENABLEDBG; external;
function OSBOOTVOL; external;
procedure GET_CONFIG_NAME; external;
function DISK_LIKELY; external;
procedure CARDS EQUIPPED; external,
procedure Read PHem; external:
procedure Write Ptem: external;
end.

A-16

(perating System Interface Unit

TCL EXHIBIT 1044
Page 156 of 188

SYS_OVERFLOW

SYS_VALUE_00B

SYS_ZERO DIV

SYS_TERMINATE

Appendix B
System-Reserved
Exception Names

Overflow exception. Signaled when the TRAPV instruction is
executed and the overflow condition is on.

Value-out-of-bound exception. Signaled when the CHK
instruction is executed and the value is less than O or greater
than upper bound.

Division by zero exception. Signaled when the DIVS or DIVU
instruction is executed and the divisor is zero.

Termination exception. Signaled when a process is to be
terminated.

TCL EXHIBIT 1044
Page 157 of 188

TCL EXHIBIT 1044
Page 158 of 188

Appendix C
System-Reserved
Event Types

SYS_SON_TERM "Son terminate” event type. If a father process has created a son
process with a local event channel, this event Is sent to the
father process when the son process terminates.

TCL EXHIBIT 1044
Page 159 of 188

TCL EXHIBIT 1044
Page 160 of 188

-6081
-6004
-6003
-1885
-1882
-1176
-1175
-1174
~1173
-1146
-1063

-1060
-1059
-696
-660
-626
-622
-621
-620
-413
-412
-321
-320
-150

~-149

=125
-120
-115
100
101
110
130
131
132
133
134
135
136

Appendix D
Error Messages

End of exec file input

Attempt to reset text file with typed-file type

Atternpt to reset nontext file with text type

ProFile not present during driver initialization

ProFile not present during driver initialization

Data in the object have been altered by Scavenger

File or volume was scavenged

File was left open or volume was left mounted, and system crashed
File was last closed by the 0S

Only aportion of the space requested was allocated

Attempt to mount boot volume from another Lisa or not most recent boot
volume

Attemnpt to mount a foreign boot disk following a temporary unmount.
The bad block directory of the diskette is almost full or difficult to read
Printer out of paper during initialization

Cable disconnected during ProfFile initialization

Scavenger indicated data are questionable, but may be 0K
Parameter memory and the disk copy were both invalid

Parameter memory was invalid but the disk copy was valid
Parameter memory was valid but the disk copy was invalid

Event channel was scavenged

Event channel was left open and system crashed

Data segment open when the system crashed. Data possibly invalid.
Could not determine size of data segment

Process was created, but a library used by program has been scavenged and
altered

Process was created, but the specified program file has been scavenged and
altered

Sepcified process is already terminating

Specified process is already active

Specified process is already suspended

Specified process does not exist

Specified process is a system process

Invalid priority specified (must be 1..225)

Could not open program file

File System error while trying to read program file

Invalid program file (incorrect format)

Could not get a stack segment for new process

Could not get a syslocal segment for new process

Could not get sysglobal space for new process

Could not set up communication channel for new process

TCL EXHIBIT 1044
Page 161 of 188

Qperating System Rerference Marnual Error Messages

138
141
142
143
144

145
146

147
148
190

191
192
193
194

Error accessing program file while loading

Error accessing a library flle while loading program

Cannot run protected file on this machine

Program uses an intrinsic unit not found in the Intrinsic Library

Program uses an intrinsic unit whose name/type does not agree with the
Intrinsic Library

Program uses a shared segment not found in the Intrinsic Library

Program uses a shared segment whose name does not agree with the Intrinsic
Library

No space in syslocal for program file descriptor during process creation

No space in the shared IU data segment for the program’s shared IU globals
No space in syslocal for program file description during List_LibFiles
operation

Could not open program file

Error trying to read program file

Cannot read protected program file

Invalid program file (incorrect format)

Program uses a shared segment not found in the Intrinsic Library

Program uses a shared segment whose name does not agree with the Intrinsic
Library

Disk 1/0 error trying to read the intrinsic unit directory

Specified library file number does not exist in the Intrinsic Library

No such exception name declared

No space left in the system data area for Declare_Excep Hdl or
Signal_Excep

Null name specified as exception name

Invalid LDSN

No data segment bound to the LDSN

Data segment already bound to the LDSN

Data segment too large

Input data segment path name is invalid

Data segment already exists

Insufficient disk space for data segment

An invalld size has been specified

Insufficient system resources

Unexpected File System error

Data segment not found

Invalid address passed to Info_Address

Insufficient memory for operation

Disk error while trying to swap in data segment

Invalid event channel name passed to Make_Event_Chn

No space left in system global data area for Open_Event_Chn

No space left in system local data area for Open_Event_Chn
Non-block-structured device specified in pathname

Catalog Is full iInMake_Event_Chn or Open_Event_Chn

No such event channel exists in Kill_Event_Chn

Attempt to open a local event channel to send

TCL EXHIBIT 1044
Page 162 of 188

Qoerating Systerm Rererence Marnal Error Messages

411
413
416
417
420
421
422
423
424

uzs
426
427
428
429
430
431

432
4323
440
441
445
450

531
532
600
602
605

608
609
610
613

614
615
616
617

619
623
625
630

631

Attempt to open event channel to receive when event channel has a receiver
Unexpected File System error in Open_Event_Chn

Cannot get enough disk space for event channel in Open_Event_Chn
Unexpected File System exror in Close_Event_Chn

Attempt to wait on a channel that the calling process did not open
wait_Event_Chn returns empty because sender process could not complete
Attempt to call Walt_Event_Chnon an empty event-call channel

Cannot find corresponding event channel after being blocked

Amount of data returned while reading from event channel not of expected
size

Event channel empty after being unblocked, Wait_Event_Chn

Bad request pointer error returned in wait_Event_Chn

walt_L ist has illegal length specified

Recelver unblocked because 1ast sender closed

Unexpected File System error in Wait_Event_Chn

Attempt to send to a channel which the calling process does not have open
Amount of data transferred while writing to event channel not of expected
size

Sender unblocked because receiver closed in Send_Event_Chn

Unexpected File System error in Send_Event_Chn

Unexpected File System error inMake_Event_Chn

Event channel already exists inMake_Event_Chn

Unexpected File System error inKill_Event_Chn

Unexpected File System error in Flush_Event_Chn

Size of stack expansion request exceeds 1imit specified for program

Cannot perform explicit stack expansion due to lack of memory

Insufficient disk space for explicit stack expansion

Attempt to perform I/0 operation on non 1/0 request

No more alarrns available during driver initialization

Call to nonconfigured device driver

Cannot find sector on floppy diskette (disk unformatted)

I1legal length or disk address for transfer

Call to nonconfigured device driver

No more room in sysglobal for 1/0 request

Urlwpermltted direct access to spare track with sparing enabled on floppy
drive

No disk present indrive

wrong call version to floppy drive

Unpermitted floppy drive function

Checksum errox on floppy diskette

Cannot format, or write protected, or error unclamping floppy diskette

No more room in sysglobal for 1/0 request

Illegal device control parameters to floppy drive

Scavenger indicated data are bad

The time passed to Delay_Time, Convert_Time, or Send_Event_Chn has
invalid year

Illegal timeout request parameter

TCL EXHIBIT 1044
Page 163 of 188

persting System Rererence Manual E170r Messages

632
634
635
636
638

639

640
641
642
646
647
648
649
652
653
654
655
656
657
658
659
660
662
663
666
670
671
672
673
674
675
680
682
683
685
686
687
688
690
691
692
693
694
635
696

No memory available to Initialize clock

Illegal timed event id of -1

Process got unblocked prematurely due to process termination
Timer request did not complete successfully

Time passed to Delay_Time or Send_Event_Chn more than 23 days from
current time

lllegal date passed to Set_Time, or illegal date from system clock in
Get_Time

RS-232 driver called with wrong version number

RS-232 read or write initiated with illegal parameter
unimplemented or unsupported RS-232 driver function

No memory available to initialize RS-232

Unexpected RS-232 timer interrupt

Unpermitted RS-232 inftialization, or disconnect detected
11legal device control parameters to RS-232

N-port driver not initialized prior to ProFile

No room in sysglobal to initialize ProFile

Hard error status returned from drive

wrong call version to ProFile

Unpermitted ProFile function

11legal device control parameter to ProFile

Premature end of file when reading from driver

Corrupt File System header chain found in driver

Cable disconnected

Parity error while sending command or writing data to ProfFile
Checksum error or CRC error or parity error in data read
Timeout

Bad command response from drive

Illegal length specified (must = 1 on input)

Unimplemented console driver function

No memory available to initialize console

Console driver called with wrong version number

[1legal device control

wrong call version to serial driver

Unpermitted serial driver function

No room in sysglobal to initialize serial driver

Eject not allowed this device

No room in sysglobal to initialize n-port card driver
Unpermitted n-port card driver function

wrong call version to n-port card driver

wrong call version to parallel printer

Illegal parallel printer parameters

N-port card not initialized prior to parallel printer

No room in sysglobal to initialize parallel printer
Unimplemented parallel printer function

Illegal device control parameters (parallel printer)

Printer out of paper

TCL EXHIBIT 1044
Page 164 of 188

(perating System Reference Marial Error Messages

698 Printer offline

699 No response from printer

700 Mismatch between loader version number and Operating System version
number

701 OSexhausted its internal space during startup

702 Cannot make system process

703 Cannot kill pseudo-outer process

704 Cannot create driver

706 Cannot initialize floppy disk driver

707 Cannot initialize the File System volume

708 Hard disk mount table unreadable

709 Cannot map screen data

710 Toomany slot-based devices

724 The boot tracks do not know the right File System version

725 Either damaged Flle System or damaged contents

726 Boot device read failed

727 The 0S will not fit into the available memory

728 SYSTEM.OS is missing

729 SYSTEM.CONFIG is corrupt

730 SYSTEM.OS is corrupt

731 SYSTEM.DEBUG or SYSTEM.DEBUG? is corrupt

732 SYSTEM.LLD is corrupt

733 Loader range error

734 Wrongdriver is found. For instance, storing a diskette loader on a ProFile

735 SYSTEM.LLD is missing

736 SYSTEM.UNPACK is missing

737 Unpack of SYSTEM.OS with SYSTEM.UNPACK failed

801 IOResult <> 0on1/0using the Monitor

802 Asynchronous 1/0 request not completed successfully

803 Bad combination of mode parameters

806 Page specified isout of range

809 Invalid arguments (page, address, offset, or count)

810 The requested page could not be read in

816 Not enough sysglobal space for File System buffers

819 Bad device number

820 MNo space in sysglobal for asynchronous request list

821 Already initialized I/0 for this device

822 Bad device number

825 Error inparameter values (Allocate)

826 No more room to allocate pages on device

828 Error in parameter values (Deallocate)

829 Partial deallocation only (ran into unallocated region)

835 Invalid s-file number

837 Unallocated s-file or [/ error

838 Map overflow: s-file too large

8329 Attempt to compact file past PECF

841 Unallocated s-file or [/0error

D-5

TCL EXHIBIT 1044
Page 165 of 188

perating System Rererence Maral Error Messages

843
847
848
849
852
854
855
856
857
861
864
866
867
868
869
870
871
872
873
874
875
879
881
882
883
884
885
886
887
888
890
891
892
894
895
896
897
899
900
901
921
922
926
927
941
a4y
9us

Requested exact fit, but one could not be provided
Requested transfer count [s <=0

End of file encountered

Invalid page or offset value in parameter list
Bad unit number

No free slots in s-1ist directory (too many s-files)
No available disk space for file hints

Device not mounted

Empty, locked, or invalid s-file

Relative page is beyond PECF (bad parameter value)
No sysglobal space for volume bitmap

wrong FS version or not avalid LisaFS volume
Bad unit number

Bad unit number

unit already mounted (mount)/no unit mounted
No sysglobal space for DCB or MDDF
Parameter not avalld s-file ID

No sysglobal space for s-file control block
Specified file is already open for private access
Device not mounted

Invalid s-file ID or s-file control block
Attempt to postion past LEOF

Attempt to read empty file

No space on volume for new data page of file
Attempt to read past LEOF

Not first auto-allocation, but file was empty
Could not update filesize hints after a write

No syslocal space for I/0 request list

Catalog polinter does not indicate a catalog (bad parameter)
Entry not found in catalog

Entry by that name already exists

Catalog is full or is damaged

I1legal name for an entry

Entry not found, or catalog is damaged

Invalld entry name

Safety switch Is on--cannot kill entry

Invalld bootdev value

Attempt to allocate a pipe

Invalid page count or FCB pointer argument
Could not satisfy allocation request

Pathname invalid or no such device

Invalid label size

Pathname invalid or no such device

Invalid 1abel size

Pathname invalld or no such device

Object isnot a file

Fileis notin the killed state

TCL EXHIBIT 1044
Page 166 of 188

perating System Rererence Manal £rror Messages

946 Pathname invalid or no such device
947 Not enough space in syslocal for File System refdb
948 Entry not found in specified catalog
949 Private access not allowed if file already open shared
950 Pipe already inuse, requested access not possible or dwrite not allowed
951 Fileisalready opened in private mode
952 Bad refnum
954 Bad refnum
955 Read access not allowed to specified object
056 Attempt to position FMARK past LECF not allowed
957 Negative request count is illegal
958 Nonsequential access is not allowed
959 System resources exhausted
960 Error writing to pipe while an unsatisfied read was pending
961 Badrefrium
962 No WRITE or APPEND access allowed
963 Attempt to position FMARK too far past LEOF
964 Append access not allowed in absolute mode
965 Append access not allowed in relative mode
966 Internal inconsistency of FMARK and LEOF (warning)
967 Nonseguential access is not allowed
968 Badrefnum
971 Pathname invalid or no such device
872 Entrynot found in specified catalog
974 Badrefnum
977 Badrefnum
978 Page count is nonpositive
979 Not ablock-structured device
981 Badrefnum
982 No space has been allocated for specified file
983 Nt ablock-structured device
985 Badrefnum
986 No space has been allocated for specified file
987 Not ablock-structured device
988 Badrefnum
989 Caller is not a reader of the pipe
990 Not ablock-structured device
994 Invalid refnum
995 Not ablock-structured device
999 Asynchronous read was unblocked before it was satisfied
1021 Pathname invalid or no such entry
1022 No such entry found
1023 Invalid newname, check for - in string
1024 New name already exists in catalog
1031 Pathname invalid or no such entry
1032 Invalid transfer count
1033 No such entry found

TCL EXHIBIT 1044
Page 167 of 188

(perating System Rerference Manual Error Messages

1041
1042
1043
1051
1052
1053

1054
1061
1062
1071
1091
1092
1101
1121
1128
1130
1131
1132
1133
1134
1135
1136
1137
1138
1141
1142
1143
1144

1145
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169

1170
1171
1172

Pathname Invalid or no such entry

Invalid transfer count

No such entry found

No device or volume by that name

A volume is already mounted on device

Attempt to mount temporarily unmounted boot volume just unmounted from
thisLisa

The bad block directory of the diskette is invalid

No device or volume by that name

No volume is mounted on device

Not a valid or mounted volume for working directory

Pathname invalid or no such entry

No such entry found

Invalid device name

Invalid device, not mounted, or catalog is damaged

Invalid pathname, device, or volume not mounted

Flle is protected; cannot open due to protection violation

No device or volume by that name

No volume is mounted on that device

No more open files in the file list of that device

Cannot find space in sysglobal for open file list

Cannot find the open file entry to modify

Boot volume not mounted

Boot volume already unmounted

Caller cannot have higher priority than system processes when calling ubd
Boot volume was not unmounted when calling rbd

Some other volume still mounted on the boot device when calling rbd
No sysglobal space for MDDF to do rbd

Attempt to remount volume which is not the temporarily unmounted boot
volume

No sysglobal space for bit map to do rbd

Track-by-track copy buffer is too small

Shutdown requested while boot volume was unmounted

Destination device too small for track-by-track copy

Invalid final shutdown mode

Power is already off

I1legal command

Device is not a diskette device

No volume 1s mounted on the device

A valid volume is already mounted on the device

Not a block-structured device

Device name is invalid

Could not access device before initialization using default device
parameters

Could not mount volume after initiallzation

‘~'is not allowed in a volume name

No space available to initialize a bitmap for the volume

TCL EXHIBIT 1044
Page 168 of 188

(perating System Rererence Manual Error Messages

1176
1177
1178

1180
1181
1182
1183

1184

1186
1188
1190
1191
1193
1196
1197
1198
1199
1200
1201
1202
1203
1204
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1225

1226
1227
1228
1229
1230
1231
1232
1233

Cannot read from a pipe more than half of its allocated physical size
Cannot cancel a read request for a pipe

Process walting for pipe data got unblocked because last pipe writer closed
it

Cannot write to a pipe more than half of its allocated physical size
No system space left for request block for pipe

writer process to a pipe got unblocked before the request was satisfied
Cannot cancel a write request for a pipe

Process waiting for pipe space got unblocked because the reader closed the
pipe

Cannot allocate space to a pipe while it has data wrapped around
Cannot compact a pipe while it has data wrapped around

Attempt to access a page that is not allocated to the pipe

Bad parameter

Premature end of flle encountered

Something is still open on device--cannot unmount

volume s not formatted or cannot be read

Negative request count is illegal

Function or procedure is not yet implemented

Illegal volume parameter

Blank file parameter

Error writing destination file

Invalid UCSD directory

File not found

Boot track program not executable

Boot track program too big

Error reading boot track program

Error writing boot track program

Boot track program file not found

Cannot write boot tracks on that device

Could not create/close internal buffer

Boot track program has too many code segments

Could not find configuration information entry

Could not get enough working space

Premature EOF in boot track program

Position out of range

No device at that position

Scavenger has detected an internal inconsistency symptomatic of a software
bug

Invalid device name

Device is not block structured

Illegal attempt to scavenge the boot volume

Cannot read consistently from the volume

Cannot write consistently to the volume

Cannot allocate space (Heap segment)

Cannot allocate space (Map segment)

Cannot allocate space (SFDB segment)

D-9

TCL EXHIBIT 1044
Page 169 of 188

perating System Reference Manual Error Messages

1237 Error rebuilding the volume root directory

1240 Illegal attempt to scavenge a non-0S-formatted volume

1296 Bad string argument has been passed

1297 Entry name for the object is invalid (on the volume)

1298 S-list entry for the object is invalid (on the volume)

1807 Nodisk in floppy drive

1820 write-protect error on floppy drive

1822 Unable to clamp floppy drive

1824 Floppy drive write error

1882 Bad response from ProFile

1885 ProFile timeout error

1998 Invalid parameter agdress

1999 Bad refnum

6001 Attempt to access unopened file

6002 Attemnpt toreopen a file which is not closed using an open FIB (file info block)
6003 Operation incompatible with access mode with which file was opened
6004 Printer offline

6005 File record type incompatible with character device (must be byte sized)
6006 Bad integer (read)

6010 Operationincompatible with file type or access mode

6081 Premature end of exec flle

6082 Invalid exec (temporary) file name

6083 Attempt to set prefix with null name

6090 Attempt to move console with exec or output file open

6101 Badreal(read)

6151 Attempt toreinitalize heap already inuse

6152 Badargument 1o NEW (negative size)

6153 Insufficient memory for NEW request

6154 Attempt to RELEASE outside of heap

Operating System Exror Codes
The error codes listed below are generated only when a nonrecoverable error
occurs while in Operating System code.

10050 Request block is not chained to a PCB (Unblk_Req)

10051 Bld_Reaiscalled with interrupts off

10100 An error was returned from SetUp_Directory or a Data Segment routine
{(Setup_IUInfo)

10102 Error > 0 trying to create shell (Root)

10103 Sem_Count > 1 (Init_Sem)

10104 Could not open event. channel for shell (Root)

10197 Automatic stack expansion fault occurred in system code (Check _Stack)

10198 Need_Mem set for current process while scheduling is disabled
(SimpleScheduler)

10199 Attempt to block for reason other than 1/0 while scheduling is disabled
(SimpleScheduler)

10201 Hardware exception occurred while in system code

10202 No space left from Sigl_Excep call in Hard_Excep

D-10
TCL EXHIBIT 1044
Page 170 of 188

Qperating System Rererence Manual Error Messages

10203
10205
10207
10208
10212
10213
10401
10582
10590
10592
10594
10595
10596
10597
10598
106060
10601
10602
10603
10604
10605

10609
10610
10611
10612

10613
10614

10615
10616
10617
10619
10624
10637
10675
10699
10700

10701
10702
10703
10704
10706
10707
10708

No space left from Sigl_Excep call in Nmi_Excep

Error from wWait_Event_Chn called in Excep_Prolog

No system data space in Excep_Setup

No space left from Sigl_Excep call in range error

Error in Term_Def_Hdl from Enable_Excep

Error inForce_Term_Excep, no space in Eng_Ex_Data

Error from Close_Event_Chn in Ec_Cleanup

Unable to get space inFreeze_Seg

Fatal memory parity error

Unable to move memory manager segment during startup

Unable to swap in a segment during startup

Unable to get space in Extend_MMlist

Trying to alter size of segment that is not data or stack (Alt_DS_Size)
Trying to allocate space to an allocated segment (Alloc_Mem)
Attempting to allocate a nonfree memory region(Take_Free)

Error attempting to make timer pipe

Error from Kill_Object of an existing timer pipe

Error from second Make_Pipe to make timer pipe

Error from Open to open timer pipe

No syslocal space for head of timer list

Error during allocate space for timer pipe, or interrupt from nonconfigured
device

Interrupt from nonconfigured device

Error from info about timer pipe

Spurious interrupt from floppy drive #2

Spurious interrupt from floppy drive #1, or no syslocal space for timer list
element

Error from Read_Data of timer pipe

Actual returned from Read_Data is not the same as requested from timer
pipe

Error from open of the receiver's event channel

Error from Write_Event to the recelver's event channel

Error from Close_Event_Chnon the receiver's pipe

No sysglobal space for timer request block

Attempt to shut down floppy disk controller while drive is still busy
Not enough memory to initialize system timeout drives

Spurious timeout on console driver

Spurious timeout on parallel printer driver

Mismatch between loader version number and Operating System version
number

0S exhausted its internal space during startup

Cannot make system process

Cannot kill pseudo-outer process

Cannot create driver

Cannot initialize floppy disk driver

Cannot initialize the File System volume

Hard disk mount table unreadable

D-11

TCL EXHIBIT 1044
Page 171 of 188

(perating System Rererence Manial E110r Messages

10709
10710
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
11176

11177

11178
11180
118xx
11901

Cannot map screen data

Too many slot-based devices

The boot tracks do not know the right File System version

Either damaged File System or damaged contents

Boot device read fatled

The 0S will not fit into the avallable memory

SYSTEM.OS is missing

SYSTEM.CONFIG is corrupt

SYSTEM.OS 1s corrupt

SYSTEM.DEBUG or SYSTEM.DEBUGZ is corrupt

SYSTEM.LLD is corrupt

Loader range error

wrong driver Is found. For instance, storing a diskette loader on a ProFile
SYSTEM.LLD is missing

SYSTEM.UNPACK is missing

Unpack of SYSTEM.0S with SYSTEM.UNPACK failed

Found a pending write request for a pipe while in Close_Object when it is
called by the last writer of the pipe

Found a pending read request for a pipe while in Close_Object when it is
called by the (only possible) reader of the pipe

Found a pending read request for a pipe while in Read_Data from the pipe
Found a pending write request for a pipe while in Write_Data to the pipe
Error xx from diskette ROM (See 0S errors 18xx)

Call to Getspace or Relspace with a bad parameter, or free pool is bad

D-12
TCL EXHIBIT 1044
Page 172 of 188

Appendix E
FS__INFO Fields

* gefined for mounted or unmounted oevices
$ aerinea ror rmountead aevices only
All other fielos are aefined for mounted block -structured oevices only.

DEVICE_T, VOLUME_T:

backup_volid

ID of the volume of which this volume is a copy.

blocksize Number of bytes in a block on this device.
* blockstructured Flag set if this device is block-structured.
boot_code Reserved.
boot_environ Reserved.
clustersize Reserved.
copy Reserved.
copy_flag Flag set if this volume is a copy.
copy_thread Count of copy operations involving this volume.
datasize Number of data bytes in a page on this volume.
* devt Device type.
* dir_path Pathname of the volume/device.
DTCC Date/time volume was created if it is a copy.
DTVvB Date/time volume was last backed-up.
DTVC Date/time volume was created.
DTVS Date/time volume was last scavenged.
filecount Count of files on this volume.
freecount Count of free pages on this volume.

fs_overnead

fs_size
fsversion

* jochannel

Number of pages on this volume required to store
File System data structures.

Number of pages on this volume.

Version number of the File System under which
this volume was initialized.

Nurnber of the expansion card channel through
which this device is accessed.

label_size Size in bytes of the user-defined labels associated
with objects on this volume.
$ lockeddev Reserved.
machine_ID Machine on which this volume was initialized.
master Reserved.
master_copy_ID Reserved.
* mounted Flag set if a volume is mounted.
$ mount_pending Reserved.

* name

$ opencount
overmount_stamp
password

Name of this volurne/device.

Count of objects open on this volume/device.
Reserved.

Password of this volume.

E-1

TCL EXHIBIT 1044
Page 173 of 188

perating System Reference Manual

$ privatedev
privileged

$ remote
result_scavenge
scavenge_flag

* slot_no

$ unmount_pending
volid
vol_left_mounted

volname
volnum
vol_size

write_protected

OBJECT_T:

acmode
dir_path
DTA
D78
DTC
DT™
DTS

eof

etype
file_closed_by 0S

file_left_open
file_scavenged

frmark
fs_overnead

ftype
fuid
kswitch
locked
Ipsize

FS_INFO Flelds

Reserved.

Reserved.

Reserved.

Reserved.

Flag set by the Scavenger if it has altered this
volume in some way.

Number of the expansion slot holding the card
through which this device is accessed.
Reserved.

Unique identifier for this volume.

Flag set if this volume was mounted during a
system crash.

Volume name.

Volume number.

Total number of blocks in the File System volume
and boot area on this device.

Reserved.

Set of access modes associated with this refnum.
Pathname of the directory containing this object.
Date/time object was last accessed.

Date/time object was last backed-up.

Date/time object was created.

Date/time object was last modified.

Date/time object was last scavenged.

Flag set if end of file has been encountered on
this object (through the given refnum).

Directory entry type.

Flag set if this object was closed by the Operating
System.

Flag set if this object was open during a system
crash.

Flag set by the Scavenger if this object has been
altered in some way.

Absolute byte to which the file mark points.
Number of pages used by the File System to store
control information about this object.

Object type.

Unigue identifier for this object.

Flag set when the object is killed.

Reserved.

Number of data bytes on a page.

E-2
TCL EXHIBIT 1044
Page 174 of 188

perating System Reference Manal

machine_ID
master _file
name
nreaders

nwriters

nuUsers
private
protected
psize
refnum

result_scavenge
safety_on

size
system_type
user_type
user_suptype

FS INFO Flelds

Machine on which this object may be opened.
Flag set if this object is a master.

Entry name of this object.

Number of processes with this object open for
reading.

Number of processes with this object open for
writing.

Number of processes with this object open.
Flag set if this object is open for private access.
Flag set if this object is protected.

Pnhysical size of this object in bytes.
Reference number for this object (argument to
INFO).

Reserved.

value of the safety switch for this object.
Number of data bytes in this object (LEOF).
Reserved.

User-defined type field for this object.
User-defined subtype field for this object.

E-3

TCL EXHIBIT 1044
Page 175 of 188

TCL EXHIBIT 1044
Page 176 of 188

Index

Please note that the topic references in this Index are by section number.

__________ A_-~-______
accessing devices 1.3, 2.8
ACTIVATE_PROCESS 3.8.6
ALLOCATE 2.10.13

Append access 2.10.8
attribute 1.3, 2.10.5

CONVERT_TIME 5.9.4
creating
a data segment 4.7.1
an event channel 5.8.1
an object 2.10.1
a process 3.3, 3.8.1

____________ Br-=re————- BT L
baud rate 2.10.12.1 data segment
binding 4.1 creating 4.7.1

BIND DATASEG 4.7.12
blocked process 1.4,
3 (introduction), 3.8.5
buffer 2.9, 2.10.12.1, 2.10.16,
5.5, 5.8

__________ C____-_____
CARDS EQUIPPED 6.1.1
catalog 2.1, 2.5, 2.10.19
changing file size 2.10.13-2.10.15
clock 5.6
clock system calls 5.9
CLOSE_DATASEG 4.7.4
CLOSE_EVENT CHN 5.8.4
CLOSE_OBJECT 2.10.9
code segment 4.5
communication between processes 1.7
COMPACT 2.10.14, 2.10.15
configuration 6 (introduction)
configuration system calls 6.1
controlling

a device 2.10.12

a process 3.4

Index-1

private 4.1, 4.4
shared 1.7, 4.1, 4.3
swapping 4.6
Dccode mnemonics 2.10.12
Dcdata 2.10.12
Dctype 2.10.12
Dcversion 2.10.12
DECLARE_EXCEP HOL 5.7.1
DELAY_TIME 5.9.1
deleting
a process 3.8.2, 3.8.4
an object 2.10.2
device 2.3-2.7, 2.10.12
accessing 1.3, 2.8

control information 2.10.12

mounting 1.3, 2.10.20

names 2.1, 2.3, 2.10.12.1

priority 2.3

storage 2.4
DEVICE_CONTROL 2.10.12
directory 2 (introduction)
DISABLE_EXCEP S5.7.2

disk hard error codes 2.10.12.2

029-0427-A

TCL EXHIBIT 1044
Page 177 of 188

Qperating System Reference Mamnal

division by zero 5.2, B
Dread, Dwrite access 2.10.8

__________ E-______-__
ENABLE_EXCEP 5.7.3
end of file 2.7, 2.10.14, 2.10.15
eof 2.10.5; see also end of file.
error
disk hard error codes 2.10.12.2
error messages O
soft error 2.10.12.1
See also exception.
event 1.6, 5.4, C
event channel 1.7, 5.5, S.8.1
event management system calls 5.8
event types C
exception 1.6, 5.1-5.3, B
exception handler 5.1, 5.3
exception management system calls
5.7
exception names B

__________ Foemmmmmmmm

father process 1.4, 3.6, 3.7,
3.8.1, 3.8.2

file 2 (introduction)
access 2.8
attributes 2.10.5-2.10.7
changing size 2.10.13-2.10.15
label 2.6, 2.10.11
marker 2.7, 2.10.15
name 2.1, 2.10.1
private 2.8
shared 1.7, 2.8

File System 1.3, 2

File System calls 2.10

FLUSH 2.10.16

Index-2

Inaex

FLUSH DATASEG 4.7.5
FLUSH EVENT CHN 5.8.7
FLUSH_EXCEP 5.7.6
FS_INFO fields €

__________ G__________
GET_CONFIG NAME 6.1.2
GET_NEXT_ENTRY 2.10.19
GET _TIME 5.9.2
GET_WORKING_DIR 2.10.18
global access to files 2.8
global event channel 5.5
Global Refnum 2.8, 2.10.8

____________ H-_-_____~_
handshake 2.10.12.1

hierarchy of processes 3.2

.......... | T T p———
INFO 2.10.6
INFO_ADDRESS 4.
INFO_DATASEG 4.
INFO_EVENT_CHN
INFO_EXCEP 5.7.
INFO_LDSN 4.7.8
INFO_PROCESS 3.8.3

interface unit A

interprocess communication 1.7, 2.9
I/0 2 (introduction)

7.
7.
5.8.5
4

__________ K__~_______
KILL_DATASEG 4.7.2
KILL_EVENT CHN 5.8.2
KILL_OBJECT 2.10.2
KILL_PROCESS 3.8.4

TCL EXHIBIT 1044
Page 178 of 188

Querating System Reference Mamal Inaex

—————————— L-=--m=- OPEN 2.10.8

label, file 2.6, 2.10.11 OPEN_DATASEG 4.7.3
LOSN 4.2, 4.4, 4.7.8 OPEN _EVENT CHN 5.8.3
LEGOF. See end of file. 0S interface A

local data segment 4.1 0SBOOTVOL 6.1.3

local event channel 5.5
logical data segment number 4.2,

4.4, 478 =memmmeees P
logical end of file. See end of page 2.4

file. parameter memory 6 (introduction)
LOOKUP 2.10.5 parity 2.10.12.1

pathname 1.3, 2.1, 2.2
PEOF. See end of file.

---------- L physical end of file. See end of
MAKE_DATASEG 4.7.1 file.

MAKE EVENT CHN 5.8.1 pipe 1.7, 2.9. 2.10.1, 2.10.8
MAKE_FILE 2.10.1 priority of devices 2.3
HAKE_PIPE 2.10.1 priority of processes 3.5, 3.8.7,
MAKE_PROCESS 3.8.1 3.8.8

memory management 1.5, 4.1-4.6 private access to files 2.8, 2.10.8
memory management system calls 4.7 private data segment 4.1, 4.4
memory, parameter 6 (introduction) process 1.4, 3

MEM_INFO 4.7.10 blocked 1.4, 3 (introduction),
mnemonics for Dccode 2.10.12.1 3.8.5

MOUNT 2.10.20 creating 3.3, 3.8.1

mounting a device 1.3, 2.10.20 father 1.4, 3.6, 3.7, 3.8.1,
My_ID 3.8.9 3.8.2

hierarchy 3.2
priority 3.5, 3.8.7, 3.8.8

—————————— [it queuing 3.5, 3.8.5-3.8.8
naming an object 2.1, 2.10.1, scheauling 3.5, 3.8.5-3.8.8
2.10.4 shell 1.4, 3.2

son 1.4, 3.7, C
starting 3.8.1, 3.8.6
3.8.4

—————————— 0--mmmmmmme stopping 3.8.2,
object 1.3 structure 3.1
creating 2.10.1 termination 1.4, 3.6, 5.2, B, C
deleting 2.10.2 process system calls 3.8
naming 2.1, 2.10.1
renaming 2.10.4

Index-3

TCL EXHIBIT 1044
Page 179 of 188

Qperating System Reference Manual

__________ Q_-______-_
queuing a process 3.5, 3.8.5-3.8.8

__________ R_____~-___
range check error 5.2, B
READ DATA 2.10.10

READ LABEL 2.10.11

refnum 2.8; see also Global Refnum.

RENAME_ENTRY 2.10.4

renaming an object 2.10.4

RESET_CATALOG 2.10.19

running a program 1.4, 1.9, 3.8.1,
3.8.6

__________ R

safety switch 2.5, 2.10.17

Scheduler 3

scheduling processes 3.5,
3.8.5-3.8.8

SEND_EVENT CHN 5.8.8

SETACCESS_DATASEG 4.7.11

SETPRIORITY_PROCESS 3.8.7

SET_FILE_INFO 2.10.7

SET_LOCAL_TIME_DIFF S5.9.3

SET_SAFETY 2.10.17

SET_WORKING DIR 2.10.18

shared data segment 1.7, 4.1, 4.3

shared file 1.7, 2.8

shell process 1.4, 3.2

SIGNAL_EXCEP 5.7.5

SIZE _DATASEG 4.7.6

soft error 2.10.12.1

son process 1.4, 3.7, C

sparing 2.10.12

starting a process 3.8.1,

stopping a process 3.8.2,

storage device 2.4

SUSPEND_PROCESS 3.8.5

3.8.6
3.8.4

Index-4

naex

swapping 4.6
Syscall unit A
system calls
clock 5.9
configuration 6.1
event management 5.8
exception management 5.7
file 2.10
memory management 4.7
process 3.8
system clock 5.6, 5.9
system-defined exceptions 5.2, B
SYS_OVERFLOW 5.2, B
SYS_SON_TERM C
SYS_TERMINATE 5.2, B
SYS_VALUE 00B 5.2, B
SYS_ZERO DIV 5.2, B

__________ T-______,__

terminated process 1.4, 3.6, 5.2,
B, C

TERMINATE_PROCESS 3.8.2

timed events 5.8.8

tree, process 3.2

TRUNCATE 2.10.15

__________ U__________

UNBIND DATASEG 4.7.12

UNKILL FILE 2.10.3

UNMOUNT 2.10.20

user-defined exception handler 5.3

__________ V___-______
value out of bounds 5.2, B
volume catalog 2.1, 2.5, 2.10.19

volume name 1.3

TCL EXHIBIT 1044
Page 180 of 188

perating System Reference Mamal

__________ u__________
WAIT_EVENT CHN 5.8.6

working directory 2.2

working set 4.2

WRITE_DATA 2.10.10
WRITE_LABEL 2.10.11

writing buffered data 2.10.16

__________ Y-_________
YIELD CPU 3.8.8

Index-5

Inagex

TCL EXHIBIT 1044
Page 181 of 188

TCL EXHIBIT 1044
Page 182 of 188

| HIS MANUAL was produced using

LisaWrite, LisaDraw, and
Lisal.ist.

/\ LL PRINTING Was done with an
~ Apple Dot Matrix Printer.

the Lisa™

.. we use it ourselves.

TCL EXHIBIT 1044
Page 183 of 188

TCL EXHIBIT 1044
Page 184 of 188

(perating System Reference Mansal Mail-Back Form

Apple publications would like to learn about readers and what you think about this
manual in order to make better manuals in the future. Please fill out this form, or
write all over it, and send it to us. We promise to read it.

How are you using this manual?
{] learning to use the product [] reference [] both reference and learning

[] other

Is it quick and easy to find the Information you need In this manual?
[1always []often [] sometimes []seldom [] never

Comments
what makes this manual easy to use?

what makes this manual hard to use?

what do you like most about the manual?

what do you like least about the manual?

Please cornment on, for example, accuracy, level of detail, number and usefulness of
examples, length or brevity of explanation, style, use of graphics, usefulness of the index,
organization, suitability to your particular needs, readability.

what languages do you use on your Lisa? (check each)
[]Pascal []BASIC []COBOL []other
How long have you been programming?

[10-1years []1-3 [14-7 []over 7 []not a programmer
what is your job title?
Have you completed:

[} nigh school [] some college [] BA/BS [] MA/MS [] more
what magazines do you read?

Other comments (please attach more sheets if necessary)

029-0408-4

TCL EXHIBIT 1044
Page 185 of 188

rauo

@§oprpic computer
' POS Publications Department
20525 Mariani Avenue
Cupertino, California 95014

TAPE OR STAPLE

TCL EXHIBIT 1044
Page 186 of 188

PLACE
STAP
HERE

TCL EXHIBIT 1044
Page 187 of 188

TCL EXHIBIT 1044
Page 188 of 188

	Preface
	Chapter 1: Introduction
	1.1 The Main Functions
	1.2 Ustag the OS Functions
	1.3 The File System
	1.4 Process Management
	1.5 Memory Management
	1.6 Exceptions and Events
	1.7 Interprocess Communication
	1.8 Using the OS Merface
	1.9 Running Programs Under the OS
	1.10 Writing Programs That Use the OS

	Chapter 2: The File System
	2.1 File Names
	2.2 The Working Directory
	2.3 Devices
	2.4 Storage Devices
	2.5 The Volume Catalog
	2.6 Labels
	2.7 Logical and Physical End of File
	2.8 File Access
	2.9 Pipes
	2.10 Flle System Calls
	2.10.1 MAKE_FILE and MAKE_PIPE File System Calls
	2.10.2 KILL_OBJECT File System Call
	2.10.3 UNKILL_FILE File System Call
	2.10.4 RENAME_ENTRY Flle System Call
	2.10.5 LOOKUP File System Call
	2.10.6 INFO Flle System Call
	2.10.7 SET_FILE_NFO File System Call
	2.10.8 OPEN File System Call
	2.10.9 CLOSE_OBJECT Flle System Call
	2.10.10 READ_DATA and WRITE_DATA Flle System Calls
	2.10.11 READ_LABEL and WRITE_LABEL Flle System Calls
	2.10.12 DEVICE_CONTROL File System Call
	2.10.12.1 Setting Device-Control Information
	2.10.12.2 Obtaining Device-Control Information

	2.10.13 ALLOCATE File System Call
	2.10.14 COMPACT File System Call
	2.10.15 TRUNCATE File System Call
	2.10.16 FLUSH File System Call
	2.10.17 SET_SAFETY Flle System Call
	2.10.18 SET_WORKING_DIR and GET_WORKING_DIR File System Calls
	2.10.19 RESET_CATALOG and GET_NEXT_ENTRY Flle System Calls
	2.10.20 MOUNT and UNMOUNT File System calls

	Chapter 3: Processes
	3.1 Process Structure
	3.2 Process Hierarchy
	3.3 Process Creation
	3.4 Process Control
	3.5 Process Scheduling
	3.6 Process Termination
	3.7 A Process-Handling Example
	3.8 Process System Calls
	3.8.1 MAKE_PROCESS Process System Call
	3.8.2 TERMlNATE_PROCESS Process System Call
	3.8.3 lNFO_PROCESS Process System Call
	3.8.4 KiLL_PROCESS Process System Call
	3.8.5 SUSPEND_PROCESS Process System Call
	3.8.6 ACTlVATE_PROCESS Process System Call
	3.8.7 SETPRIORITY_PROCESS Process System Call
	3.8.8 YIELD_CPU Process System Call
	3.8.9 MY_ID Process System Call

	Chapter 4: Memory Management
	4.1 Data segments
	4.2 The Logical Data Segment Number
	4.3 Shared Data Segments
	4.4 Private Data Segments
	4.5 Code Segments
	4.6 Swapping
	4.7 Memory Management System Calls
	4.7.1 MAKE_DATASEG Memory Management System Call
	4.7.2 KILL_DATASEG Memory Management System Call
	4.7.3 OPEN_DATASEG Memory Management System Call
	4.7.4 CLOSE_DATASEG Memory Management System Call
	4.7.5 FLUSH_DATASEG Memory Management System Call
	4.7.6 SIZE_DATASEG Memory Management System Call
	4.7.7 INFO_DATASEG Memory Management System Call
	4.7.8 lNFO_LDSN Memory Management System Call
	4.7.9 INFO_ADDRESS Memory Management System Call
	4.7.10 MEM_NFO Memory Management System Call
	4.7.11 SETACCESS_DATASEG Memory Management System Call
	4.7.12 BIND_DATASEG and UNBIND_DATASEG Memory Management System Calls

	Chapter 5: Exceptions and Events
	5.1 Exceptions
	5.2 System-Deflned Exceptions
	5.3 Exception Handlers
	5.4 Events
	5.5 Event Channels
	5.6 The System Clock
	5.7 Exception Management System Calls
	5.7.1 DECLARE_EXCEP_HDL Exception Management System Call
	5.7.2 DISABLE_EXCEP Exception Management System Call
	5.7.3 ENABLE_EXCEP Exception Management System Call
	5.7.4 INFO_EXCEP Exception Management System Call
	5.7.5 SIGNAL_EXCEP Exception Management System Cal!
	5.7.6 FLUSH_EXCEP Exception Management System Call

	5.8 Event Management System Calls
	5.8.1 MAKE_EVENT_CHN Event Management System Call
	5.8.2 KILL_EVENT_CHN Event Management System Call
	5.8.3 OPEN_EVENT__CHN Event Management System Call
	5.8.4 CLOSE_EVENT_CHN Event Management System Call
	5.8.5 INFO_EVENT_CHN Event Management System Call
	5.8.6 WAIT_EVENT_CHN Event Management System Call
	5.8.7 FLUSH_EVENT_CHN Event Management System Call
	5.8.8 SEND_EVENT_CHN Event Management System Call

	5.9 Clock System Calls
	5.9.1 DELAY_TIME Clock System Call
	5.9.2 GET_TIME Clock System Call
	5.9.3 SET__LOCAL_TIME_DIFF Clock System Call
	5.9.4 CONVERT_TIME Clock System Call

	Chapter 6: Configuration
	6.1 Configuration System Calls
	6.1.1 CARDS_EQUIPPED Configuration System Call
	6.1.2 GET_CONFIG_NAME Configuration System Call
	6.1.3 OSBOOTVOL Configuration System Call

	Appendix A: Operating System Interface Unit
	Appendix B: System-Reserved Exception Names
	Appendix C: System-Reserved Event Types
	Appendix D: Error Messages
	Appendix E: FS_INFO Fields
	Index

