DOCKET FILE COPY ORIGINAL

FCC 94-237

Before the FEDERAL COMMUNICATIONS COMMISSION Washington, D. C. 20554

In the Matter of) Revision of the Commission's rules) to ensure compatibility with) RM-8143 enhanced 911 emergency calling systems)

NOTICE OF PROPOSED RULE MAKING

Adopted: September 19, 1994 Released: October 19, 1994

By the Commission:

Comment Date: January 9, 1995 Reply Comment Date: February 8, 1995

TABLE OF CONTENTS

TOPIC

PARAGRAPH

	T
II. BACKGROUND	3
Systems	8
Enhanced 911 and Wireless Systems	9
III. COMPATIBILITY OF PBX EQUIPMENT WITH 911 SYSTEMS	11
A. Adcomm and Industry Proposals	13
Adcomm Petition	13
Industry Efforts	14
Comments	15
B. Discussion	19
911 Availability	22
Attendant Notification	
ALI database maintenance	
Station Number Identification (SNI)	26
Information Protocol Standard	27
Network Interface Standards	28
Local Exchange Company Services	29
C. Implementation Schedule	30
IV. Compatibility of Wireless Services with	
Enhanced 911	32
Discussion	
911 availability	
Grade of service	42
911 call priority.	44

User location information	•	52 53 54
V. ADDITIONAL CONSIDERATIONS	•	56 58
VI. CONCLUSION	•	60
VII. ORDERING CLAUSE	•	62
VIII. ADMINISTRATIVE PROVISIONS	•	64
APPENDIX A INITIAL REGULATORY FLEXIBILITY ANALYSIS		
APPENDIX B 911 CALL FEATURES		
APPENDIX C PROPOSED RULES		
APPENDIX D EMERGENCY ACCESS POSITION PAPER	•••	

I. INTRODUCTION

1. In this proceeding, the Commission proposes to amend its regulations to address issues raised by the provision of 911 and enhanced 911 services through certain telecommunications technologies. The primary objective of this proceeding is to ensure broad availability of 911 and enhanced 911 services to users of the public switched telephone network (PSTN) whose health and safety may depend on 911 emergency services systems. Toward this end, we intend to ensure that the effective operation of 911 services is not compromised by new developments in telecommunications. First, we address a petition filed by the Adcomm Engineering Company ("Adcomm") to amend Part 68 of the rules by proposing technical performance requirements that ensure the compatibility of private branch exchanges (PBXs) with enhanced 911 emergency services.¹ In this Notice of Proposed

¹ Comments were filed by Associated Public-Safety Communications Officers, Inc. (APCO), Bell Atlantic, BellSouth, GTE, South Carolina Budget and Control Board, and the Telecommunications Industry Association (TIA), and reply comments were filed by Adcomm and the North American Telecommunications Association (NATA).

<u>Rulemaking</u>, we seek comment on proposals for ensuring the compatibility of private branch exchanges (PBXs) and other dispersed private telephone systems with enhanced 911 emergency services.

2. Second, we propose to adopt rules that would require wireless services, in particular commercial mobile radio services (CMRS)² that provide real time voice services, to include features that will make enhanced 911 services available to mobile These features include Station Number radio callers. Identification (SNI), Automatic Location Information (ALI), Selective Routing (SR), and other features for 911 calls provided over wireless mobile units. This action responds to a Petition for Reconsideration filed by the Texas Advisory Commission on State Emergency Communications (TX-ACSEC) under the Office of the Attorney General for the state of Texas.³ It also responds to the issues raised in the Emergency Access Position Paper filed recently by the Associated Public Safety Communications Officials-International, Inc. (APCO), the National Emergency Number Association (NENA), the National Association of State Nine One One Administrators (NASNA), and the Personal Communications Industry Association (PCIA).⁴

II. BACKGROUND

3. Since AT&T's announcement in 1965 that the digits 9-1-1 would be made available nationally as an emergency telephone number, the use of 911 for emergency purposes has become widespread. The Commission's Network Reliability Council, in performing a special study of the reliability of 911 services, found that "the American public depends on 911 services in its

³ The Petition for Reconsideration was filed in response to Amendment of the Commission's Rules to Establish New Personal Communications Services, GEN Docket No. 90-314, September 23, 1993, 8 FCC Rcd 7700 (1993) (<u>Second Report and Order</u>). Because this inquiry is broader than the proposals made in the TX-ACSEC petition, we are initiating this separate proceeding.

⁴ This paper was filed on July 5, 1994, as an <u>ex parte</u> comment to GEN Docket No. 90-314. It is attached at Appendix D.

² CMRS is defined as "any mobile service...that is provided for profit and makes interconnected service available (A) to the public or (B) to such classes of eligible users as to be effectively available to a substantial portion of the public...." The term "interconnected service" means "service that is interconnected with the public switched network...." Omnibus Budget Reconciliation Act of 1993, Pub.L.No. 103-66, Title VI, §§6002(b)(3)(B), 107 Stat 312, 392(1992).

emergencies."⁵ The Council found that 89 percent of the wireline access lines in the United States are served by some form of 911 service and that the service is increasingly engineered to provide a high level of reliability.⁶ Currently, about 260,000 calls nationwide are placed to 911 every day.

4. 911 emergency services enable telephone users to receive, and state and local governments to provide, fast response to emergency situations. The ability to dial 911 offers several advantages to users. First, it is a single, nationally used three-digit number that is easy to remember and dial in emergency situations. This provides callers, including children, with easy access to emergency services in areas where the telephone number for the various emergency service providers is not readily known. Second, because 911 calls are sent to Public Safety Answering Points (PSAPs) over dedicated telephone lines, these calls are recognized and answered as emergency calls by professionals trained to assist callers in need of emergency assistance. Third, the use of 911 shortens the response time to requests for assistance because PSAP professionals have ready access to police, fire, and health emergency response service providers.

5. There are different levels of 911 services available, depending on the location. Basic 911 service is a forwarding arrangement in which calls dialed to the 911 telephone number are translated at a telephone company switch and are transmitted to a public safety agency for response. Most emergency systems, however, have enhanced this service.

6. Enhanced 911 systems help emergency services personnel achieve the shortest possible emergency response time by using Automatic Number Identification (ANI)⁷ to route an emergency call

⁵ <u>Network Reliability: A Report to the Nation</u>, National Engineering Consortium, June, 1993 at Section F, page 1.

⁶ Wireline carriers and 911 service providers may employ diverse routing of interoffice facilities, multiple 911 tandem switch architectures, alternate public safety answering positions (PSAPs), special marking of 911 equipment, back-up power sources for PSAP facilities and diverse links for automatic line identification database access to ensure 911 service is reliable.

⁷ The use of the term "automatic number identification" or "ANI" in this NPRM is not intended as a reference to billing number presentation provided as part of Feature Group B or D local exchange services. Although the number presented to a PSAP on a wireline call is often derived from Feature Group B or D services, the number presented to a PSAP on a wireless call may be generated by several other means. Thus, the term ANI merely

to the PSAP nearest the caller's location. At a minimum, enhanced 911 service provides the PSAP with the ANI of the calling party, permitting the PSAP to call back in the event the call is disconnected. A fully enhanced 911 system not only displays the ANI, but also permits an attendant at the PSAP to identify the calling party's address through the use of an external Automatic Location Identification (ALI) database. The ALI feature also permits selective routing (SR) of the call to the appropriate PSAP for the identified location and displays the public safety agencies (fire, police and emergency medical services) covering that location on the PSAP terminal.⁸ A fully enhanced 911 system may also provide the PSAP with other information, including the name of the subscriber, city, zip code, telephone number, date, time of day, and the class of telephone service (business, residential, etc.). Proximately 85% of 911 services include some form of enhanced 911 service.

7. Congress created the Federal Communications Commission "for the purpose [among others] of promoting safety of life and property through the use of wire and radio communication"¹⁰ This Commission has jurisdiction to license the electromagnetic spectrum, and also to regulate "instrumentalities, facilities [and] apparatus" through which wire and radio services are provided.¹¹ It is difficult to identify a nationwide wire or radio communication service more immediately associated with promoting safety of life and property than 911. We believe that broad availability of 911 and enhanced 911 services will best promote "safety of life and property through the use of wire and radio communication."

8. <u>Private Branch Exchange and Dispersed Private Telephone</u> <u>Systems</u>. Private Branch Exchange (PBX) and other dispersed

identifies a number associated with the caller and used to reference the caller's location. The term does not reflect a specific service or technology.

⁸ Selective routing is not needed in all areas. This feature is useful when telephone exchange boundaries extend into two or more PSAP jurisdictions.

⁹ A list of the 911 call features currently available to many emergency call taking organizations, listed in order of importance as defined by NENA/APCO leadership, is shown in Appendix B.

¹⁰ 47 U.S.C. §151.

¹¹ 47 U.S.C. §151, §153(a), (b), Titles II and III.

private telephone systems may present location identification problems for emergency services personnel. PBX systems route calls between telephone stations in an organization and connect those stations to the public switched telephone network through trunk lines. A single PBX may serve a number of different buildings. When a caller dials 9-1-1 from a station served by a PBX, a PSAP attendant may be able to retrieve the street address of a main building (the billing address associated with the ANI). Determining the precise location of the caller within a large building or at a station within a PBX that serves more than one building, however, may be complicated and time-consuming in a situation where time is critical.¹² While it is technically feasible to include location identification information in transmitting calls from stations served by PBX or other dispersed private telephone systems, there currently is no uniform means for ensuring that this information reaches emergency services personnel. Moreover, telephone users may or may not be aware that their telephone service is provided through PBX systems, and, in any event, are unlikely to be aware of 911 capabilities or limitations of the PBX systems. Yet, the ability of 911 service providers to deliver life saving services to them may depend on PBX compatibility with enhanced 911 systems.

9. Enhanced 911 and Wireless Systems. While some wireless systems are capable of providing basic 911 service, few, if any, are currently capable of providing an enhanced 911 service. This raises public policy concerns because the number of calls to 911 from wireless users, such as cellular telephone customers, is increasing rapidly. More than 13,000 new cellular telephones are installed daily in the United States.¹³ In major metropolitan areas, it is estimated that as many as 10% of the 911 calls originate from mobile radio service subscribers.¹⁴ For example, in January 1993, one California Highway Patrol communication facility fielded 80,000 calls for emergency assistance, 25,076 of which were from cellular telephones.¹⁵ In 1987, the

¹² <u>See</u> Adcomm Petition at 3, citing a newspaper report of a fatality attributable partly to the misdirection of medical aid to a caller using a private phone system.

¹³ This figure is based on 1993 data, as published in <u>The</u> <u>Wireless Factbook</u>, Cellular Telecommunications Industry Association, Spring 1994, p. 6.

¹⁴ <u>Communications Daily</u>, "NARUC Notebook" (July 27, 1994) quoting Leah Senitte of the National Emergency Number Association.

¹⁵ This number for cellular telephone calls does not include calls from fixed cellular "Freeway Call Boxes." <u>See</u>, W. Clay Paxton, "Future Vision II: The 9-1-1 Imperative", NENA Massachusetts state police received only about 300 cellular calls per month. By December 1992, that number had grown to more than 15,700.¹⁶ We expect growth in the use of mobile radio services to continue. It has been estimated that by 1998 there will be 32 million cellular customers and 2.6 million Personal Communications Networks customers.¹⁷

10. The continuing growth of mobile radio service customers will increase the number of 911 calls that are placed from mobile telephones. As currently configured, however, wireless 911 services are inferior to the wireline 911 services that telephone users have come to expect. Specifically, 911 calls originated by mobile radio users generally do not provide PSAP attendants with the caller's precise location. Because the callers may not know their location,¹⁸ the ability of emergency service personnel to respond is hindered.¹⁹

News, Vol. 12, No. 2, May 1994, at pp. 20-28. <u>See also</u>, George Raine, "Cellular Phone Owners Dialing 911 Frivolously", The San Francisco Examiner, February 25, 1993.

¹⁶ <u>See</u> W. Clay Paxton, <u>op</u>. <u>cit</u>. <u>See also</u>, Tony Rogers, "Cellular Samaritans Becoming the Eyes of the Highway Patrol", Associated Press, January 5, 1993.

¹⁷ <u>The Wireless Factbook</u>, Cellular Telecommunications Industry Association, Spring 1994 p. 36.

¹⁸ In Los Angeles County, 600,000 cellular/mobile 911 calls were placed in 1992. More than 25 % of the callers could not identify their location. This information was related by William E. Stanton, Executive Director of NENA, during a presentation at the FCC on March 23, 1994.

The following example illustrates the difficulties posed by the use of mobile radio services to reach 911 emergency services. At 2:50 AM on September 22, 1993, the Amtrak Sunset Limited derailed from the Bayou Canot Bridge in a remote area of the Mobile Delta. The mayday call from the train was received by the CSX Railroad office in Mobile which placed a call to 911, but incorrectly identified the location of the derailment as Bayou Sara, several miles south of the actual location. Consequently, dispatched rescue units were unable to find the derailed train. Subsequent to this action, a second call to 911 came in from an Amtrak employee on the derailed train using a cellular phone. The Amtrak employee was able to tell the 911 operator only that the derailment was somewhere on the Mobile River. While Mobile County has a modern enhanced 911 system, it was of no value with these calls. The first call displayed the address of the CSX station in downtown Mobile, and the second call from the derailed train displayed "mobile phone." See <u>NENA News</u>, "Mayday in the

III. COMPATIBILITY OF PBX EQUIPMENT WITH 911 SYSTEMS

11. Several states and localities have passed regulations or ordinances for the purpose of requiring PBX equipment to be compatible with 911 systems.²⁰ The specific requirements, however, vary significantly from one state to another. While several types of equipment and services may be available to ensure accurate routing of 911 calls from PBX or other dispersed private telephone systems, a lack of uniformity in this equipment may impair public emergency services by delivering inaccurate, incomplete, or misleading call origination information to the public switched telephone network. Moreover, mutually incompatible systems for resolving this problem are likely to cause user confusion or higher costs in equipment or services.

12. We propose to amend Part 68 our rules to ensure the compatibility of PBX equipment with enhanced 911 services. The record in this proceeding, discussed below, indicates that market forces to date have not been effective in implementing a solution to this problem. States and localities are considering separate and possibly conflicting regulations on PBX owners and equipment. Failure to address the problem quickly could result in increased costs as equipment that is not compatible with enhanced 911 systems becomes more widely distributed. Accordingly, we find that it is in the public interest to propose rules to require that PBX and other dispersed private telephone systems (hereinafter referred to collectively as "PBX equipment") operate effectively with enhanced 911 systems.

A. Adcomm and Industry Proposals

13. Adcomm Petition. The Adcomm petition seeks to prevent situations in which the provision of emergency services to a caller is delayed because the caller's location cannot be precisely determined when the caller dials 9-1-1 from a telephone served by PBX equipment.²¹ Adcomm proposes specific rules to ensure that telephone stations served by PBX equipment are compatible with public emergency access networks. Adcomm points out that the resolution of this problem will require accurate

Mobile Delta," Dennis Stapleton, Vol. 12, No. 2, May 1994, at pp. 16-18.

²⁰ <u>See</u>, <u>e.g.</u>, Mississippi Code 1972 Annotated, tit. 29, Chapter 5, §§ 19-5-303.

²¹ The problem may also exist for key telephone systems connected to Centrex. <u>See</u> TIA Technical Systems Bulletin (TSB-103), "PBX and KTS Support of *Enhanced* 911 Calling Service," (October, 1993) at 3.

management of telephone number databases and may have implications for the North American Numbering Plan by creating additional demand for numbers.²² Adcomm states, however, that its proposed amendments address only that aspect of Part 68 concerned with preserving the integrity of emergency services provided on the public switched telephone networks. Specifically, Adcomm's proposed rules are "...simply intended to align interface approaches without proposing to control user implementations or local exchange carrier (LEC) services."²³ Adcomm's proposal would: (1) require PBX equipment to provide specific location information of the calling station to enhanced 911 systems; (2) require premises owners to provide local telephone companies with information on their PBX systems; (3) require certain training, verification, supervision and testing procedures for PBX operation; (4) specify signal power limitations; and (5) set technical standards for compatibility with enhanced 911 systems, including trunk interface and signaling requirements.

14. <u>Industry Efforts</u>. The Telecommunications Industry Association (TIA), through a subcommittee of its Multi-line Telecommunications Committee, has been working to develop technical standards for PBXs to resolve the Enhanced 911 problem.²⁴ In October, 1993, TIA issued a Technical Systems Bulletin (TSB-103) entitled "PBX and KTS Support of *Enhanced* 911 Calling Service", which addresses dialing, call routing, and caller location database issues associated with PBX and KTS support of enhanced 911 service providers. TIA anticipates final voting by the membership on these proposals in late 1994.

15. <u>Comments</u>. Commenters responding to Adcomm's petition generally acknowledge the need to ensure compatibility between PBXs and Enhanced 911 services, but take different positions on how compatibility may best be achieved. Bell Atlantic, BellSouth, GTE, and TIA urge the Commission to delay action

²² The Commission is currently examining various issues regarding administration of the North American Numbering Plan. <u>See Administration of the North American Numbering Plan, Notice</u> <u>of Proposed Rulemaking</u>, CC Docket No. 92-237, 9 FCC Rcd 2068 (1994).

²³ Adcomm Reply at 2.

²⁴ TIA is a membership organization of domestic and international providers of telecommunications products and services. Through various committees, TIA develops engineering standards and publications that facilitate interchangeability and improvement of products. Standards developed by TIA committees and adopted by TIA ballots are voluntary industry standards that represent an industry consensus. pending industry consensus on standards. The North American Telecommunications Association (NATA) and the South Carolina Budget and Control Board (SCBCB) contend that the Commission should lead any such industry effort. SCBCB states it cannot endorse the Adcomm proposal due to potential technical and financial hardships.²⁵ NATA objects to Adcomm's proposed verification requirements and opposes new training requirements on customer premises equipment (CPE) installation personnel.²⁶ NATA argues that LECs do not offer the kind of interconnection of switched services that would permit PBXs to transmit station identification in a format that could be accepted or processed by the telephone network.

16. APCO, which supports the petition, expresses concern about PBXs that block 911 calls in favor of an internal safety service. APCO is also concerned about the confusion caused when an extra digit must be dialed to get an outside line before dialing 911 from a PBX station in an emergency. BellSouth, GTE, and NATA express concern about the cost of dedicated 911 trunks and the impact of the proposal on the North American Numbering Plan (NANP).²⁷ Adcomm notes that the enhanced 911 trunking mentioned in its petition was not intended to require PBXs to have dedicated trunks to PSAPs. Adcomm states that, under its proposed rules, end users and LECs may choose different ways of handling trunking.²⁸ GTE suggests there are particular difficulties identifying the location of calls placed from college campuses, hospitals, military installations and wireless PBXs.²⁹

17. Commenters identified several specific elements that should be included in any resolution of the PBX/enhanced 911 compatibility issue. GTE states that compatibility will require the creation of a standard LEC/private switching system interface with identifying information for private switching system calling stations, private switching system compliance with NENA standards for the transmission of ALI data to the telephone company or caller location database, and the creation of either alternative number identification or Direct Inward Dial (DID) numbers for private switching system stations.³⁰ Bell Atlantic concurs with

²⁵ SCBCB at 2.
²⁶ NATA 7-9.
²⁷ Bell South at 2; GTE at 5; NATA 2-23.
²⁸ Adcomm reply comments at 3.
²⁹ GTE at 5-6.
³⁰ GTE at 2-4.

GTE that any technical standards should specifically include the signaling and protocol specifications that have been published by NENA, to ensure that calls sent from PBXs to 911 systems carry proper identifying information.³¹ NATA states that any rules the Commission adopts should ensure that telephone companies develop and market the least costly form of Enhanced 911 interconnection, and that such costs be fairly distributed.³² GTE asserts that a solution may also require added functionality in end office switches and additional telephone number assignments.³³

18. TIA contends that Part 68 should specify as few technical details as possible to avoid stifling technological advancement of enhanced 911 services and equipment. In order to assure that enhanced 911 services will work properly, TIA states that the regulations should: (1) clearly define the responsibilities of all entities involved; (2) reference the appropriate standards to be used, preferably national; (3) set reasonable deadlines for compliance; and (4) involve regulatory agencies in educating the public regarding the deployment and use of enhanced 911 calling service.

B. Discussion

19. We believe that federal rules for achieving uniformity are appropriate in these circumstances to avoid confusion among telephone users connected to PBXs and to ensure that PBX equipment operates on the public switched telephone network (PSTN) at an optimal level for emergency purposes. The Adcomm petition, the comments received, and published reports of difficulties in delivering emergency services to the proper location indicate that the incompatibility of PBXs with enhanced 911 systems is hampering public safety access through the public switched telephone network.

20. We propose to amend Part 68 of the rules to require compatibility of PBX equipment with enhanced 911 systems. We agree with Adcomm and several commenters that any Part 68 requirements must take into account industry standards, protocols and technical references. Moreover, the comments persuade us that any proposal for amending our rules must consider not only the delivery of ANI, but also issues such as ALI database administration and the delivery of other information, <u>e.g.</u>, calling party number, to the PSAP that may facilitate a more timely emergency response. We, therefore, initiate a Notice of

³¹ Bell Atlantic at 1-2. A copy of the NENA protocol is attached as a appendix to Bell Atlantic's comments.

- ³² NATA at 4-5, 6-7.
- ³³ GTE at 2-3, 4-6.

Proposed Rulemaking to require compatibility of PBX equipment with enhanced 911 systems. The proposed rules are patterned closely after those proposed by Adcomm, with modifications to reflect some of the commenters' concerns. We seek comment on these proposed rules.

21. In considering the proposed rules, our paramount concern is to ensure that PBX equipment does not hinder delivery of emergency services by impeding the transmission of adequate location information over the PSTN. We believe that any rules adopted must provide sufficient flexibility to foster the development of alternative methods and technological innovation in resolving compatibility problems between PBX and other dispersed private telephone systems and enhanced 911 systems. Moreover, we believe that the proposed rules should carefully balance the need to achieve compatibility and the need to ensure that equipment owners and manufacturers are not unduly burdened in implementing such upgrades. We seek comment on whether the proposed rules permit sufficient flexibility in conforming PBX systems to the needs of their owners while ensuring that the location of callers to 9-1-1 is properly identified to PSAP We seek comment on whether and how equipment operators. manufacturers, multi-line telephone system (MLTS) service providers, local exchange carriers, public safety agencies, and others such as local building inspectors should be identified as responsible parties, as suggested in TSB-103. Commenters supporting this suggestion should discuss specific amendments to Part 68 that would achieve this objective. Further, we ask that commenters provide detailed analysis of the technical and cost considerations of implementing the proposed rules for equipment owners, equipment manufacturers, network service providers, and other affected parties. In addition, we seek comment on whether there are particular difficulties in applying the proposal to college campuses, hospitals, military installations or wireless PBXs, and on whether the proposed rules must be applied where the equipment serves a physically small location, such as a single story building, or a small number of closely situated telephone stations. Commenters should propose specific alternative language where they do not believe the proposed language is appropriate.

22. <u>911 Availability</u>. Both the Adcomm proposal and TSB-103 would require that PBX equipment properly route emergency calls dialed using the digits 911 or 9-911 (where 9 must be dialed to reach outside lines). TSB-103 notes that special dialing or routing features in PBX equipment, such as dial 9 blocking to prevent toll fraud and Automatic Route Selection for least cost routing, should not be implemented in ways that prevent 911 dialing. We tentatively conclude that a caller at a PBX station having the capability to reach the public switched network should have the ability to reach emergency services by dialing 911 without having to dial any additional digits. TSB-103 suggests that some form of user education or notification may be appropriate to ensure proper dialing by the casual user of terminal equipment within a PBX or dispersed private telephone system. We further propose to require that PBX equipment domestically manufactured or imported prior to the proposed implementation date of the rules be labelled with a warning describing its limitations for those attempting to use it to call enhanced 911. We seek comment on these proposed rules.

TSB-103 recommends that new Attendant Notification. 23. PBX equipment be capable of alerting an attendant or other onpremises personnel and providing calling station information to such personnel when a 911 call is dialed. On-premises personnel may assist emergency services personnel in locating or assisting the caller, particularly on large premises like schools, hotels, or military installations. TSB-103 points out that some state laws prohibit attendant "bridge-on" to a 911 call (e.g., a three way emergency call that includes the 911 caller, an attendant, and the PSAP operator) because it may create confusion. We propose to require PBX equipment to be capable of notifying an attendant, if one is present, and seek comment on our proposal. See Appendix C, proposed §68.320(e). We ask that commenters discuss any potential conflict with existing state or local regulations.

24. <u>ALI database maintenance</u>. Several commenters, as well as TSB-103, note that timely and accurate database maintenance is an essential element of enhanced 911 service. TSB-103 contends that any regulations should clearly define the responsibilities of all parties involved in implementing an enhanced 911 system. As noted above, accurate caller location information is vital to ensuring the timely delivery of emergency services through the public switched telephone network. TSB-103 demonstrates that a variety of customer premises equipment configurations or network services may perform this function. Both Adcomm and TSB-103 envision database maintenance as a separate issue from that of PBX equipment compatibility with enhanced 911.

25. We propose to require coordination procedures to ensure accurate and timely transmission of database information by PBX owners to local exchange carriers. We expect that the proposed rules will permit accurate and timely database maintenance, irrespective of the services or technologies employed to update and transmit information to enhanced 911 systems. We seek comment on whether the verification and training procedures in the proposed rules are sufficient to ensure the delivery of accurate caller location information from PBX equipment to emergency services personnel. <u>See</u> Appendix C, proposed §§68.228 and 68.320. Commenters should state with specificity whether additional equipment or service requirements should be imposed to achieve compatibility.

26. Station Number Identification (SNI). Several states

that have established 911 as the primary emergency telephone number require certain minimum information to be delivered to Typically, such states require the caller's station PSAPs. number, caller location identification, and a call-back number.³⁴ We tentatively conclude that our rules should establish that, at a minimum, a caller's telephone number, caller location identification, and a call-back number must be transmitted from the PBX or other dispersed private telephone system for use at the PSAP. We seek comment on these requirements and ask whether additional information requirements should be adopted. TSB-103 and GTE advocate the creation of alternative number identification (an "artificial" SNI) for each calling station on PBX equipment to facilitate delivery of caller location identification and to permit call-back by emergency services personnel. We seek comment on this approach, particularly with respect to commenters' concerns about its impact on the North American Numbering Plan (NANP). We ask that commenters describe in detail how the proposed rules would affect the NANP, and that proponents of any alternatives to these proposals include an assessment of the potential impact of such alternatives on the NANP, as well as specific proposed language for inclusion in the rules.

Information Protocol Standard. Bell Atlantic and GTE 27. suggest that NENA standards for information protocol (the format in which information is transmitted for display on a PSAP attendant's screen) should be explicitly referenced in any rules governing enhanced 911 services that we adopt. We seek comment on this proposal, and a detailed analysis of the relevant cost and technical considerations. Specifically, we seek comment on whether this is the most appropriate format for transmitting information about 911 calls, and whether, or how, this format should be incorporated in our rules. Whether or not the NENA standard is appropriate for purposes of PBX compatibility with enhanced 911 systems, we believe that a standard protocol for transmission of information associated with 911 calls is Costs for PBX equipment are unnecessarily increased essential. by a multiplicity of formats, and we tentatively conclude that the potential for user confusion absent a uniform format warrants the adoption of a nationwide standard in our rules.

28. <u>Network Interface Standards</u>. TSB-103 notes that some PBX equipment may directly access the Automatic Location Identification Database Management System (ALI DMS) to input and

³⁴ Depending on the technology developed for compatibility with 911, a PBX station call-back number may, in some circumstances, be different from the calling number.

update changes in station location records.³⁵ TSB-103 states that these data link interfaces should be standardized, and that such standards should address security and data integrity verification issues. We seek comment on this recommendation. Commenters should specifically address the technical feasibility, cost, and current availability of systems for ensuring security and data integrity verification. Commenters also should propose specific language for inclusion in the rules.

Local Exchange Company Services. We seek comment on 29. the kind of LEC services that are essential to the compatibility of enhanced 911 systems with PBX equipment. Adcomm, TSB-103 and NATA acknowledge that telephone company services play an essential role in the identification of caller location to a PSAP. Local telephone companies provide facilities interface codes and tariffed network services that enable equipment registered at the Commission to be supported in the network. Their involvement is essential to enable PBXs to transmit proper identification and location information to a 911 tandem or PSAP. Specifically, we seek detailed information on the availability, cost, and any other factors affecting the implementation of LEC services to support the requirements set forth in our proposed rules or to support any alternative solution to the instant compatibility problem.

C. Implementation Schedule

30. We tentatively conclude that we should require rapid implementation of features capable of implementation with minimal difficulties for PBX equipment. Both the record in the Adcomm proceeding and TSB-103 indicate that coordination and standardization, rather than technical difficulties, are the chief obstacles to achieving compatibility between 911 systems and PBX equipment. In any event, minor technical obstacles should not unreasonably delay equipment modifications affecting public safety access. We believe that a proposal to require compliance as a condition of registration of new equipment would impose a minimal burden on manufacturers and suppliers, and would not impose significant burdens on users or customers served by 911 emergency systems. We ask for comment on this analysis.

31. We propose that the manufacture and importation of PBX equipment that does not comply with these provisions must cease as of one year from the effective date of the order adopting rules in this proceeding. In addition, the proposed rule would impose these requirements on equipment that is newly installed more than 18 months after the effective date of the order adopting rules in this proceeding, thus prohibiting the installation of non-complying equipment beyond that date. We do

³⁵ TSB-103 at 13.

not propose to require manufacturers and suppliers to reregister grandfathered equipment or to reconfigure equipment that has been installed as of the effective date of the order. We tentatively conclude that the restrictions on importation, manufacture and installation of non-complying equipment are sufficient to promote rapid deployment of equipment that is compatible with enhanced 911 systems, and we seek comment on this analysis. In the interim period, we propose that any PBX equipment subject to these requirements that is manufactured or imported on or after 30 days from the effective date of order adopting rules in this proceeding that does not comply with the PBX rule provisions be labelled with emergency dialing instructions on the device and on the outside of the packaging in which it is marketed. We seek comment on these proposed dates and requirements. We invite alternative recommendations with an analysis of the costs and benefits of those alternatives.

IV. Compatibility of Wireless Services with Enhanced 911

32. The Texas Advisory Commission on State Emergency Communications (TX-ACSEC) filed a petition for reconsideration in the PCS proceeding asking that we require PCS licensees to provide accurate location information about 911 callers from the outset.³⁶ It also requested that we mandate a single enhanced 911 standard for all wireless technologies so that local governments are not required to expend scarce resources configuring their systems to handle a multitude of signalling protocols and interfaces. TX-ACSEC argued that we must act on these fronts.

33. Several parties, such as the Association of Public-Safety Communications Officials International, Inc. (APCO) and the National Emergency Number Association, filed comments in support of TX-ACSEC's position. KSI, Inc.("KSI"), agreed that we should require PCS licensees to provide enhanced 911 services, but argued against a Commission-mandated enhanced 911 standard. KSI stated that a single enhanced 911 standard could stifle the development of possible alternative solutions by lessening the availability of capital to companies, like KSI, with nascent enhanced 911 technologies. APCO-International and others also believe that we should establish performance requirements while allowing industry to develop the necessary standards. American Personal Communications, American Telephone and Telegraph, MCI

³⁶ TX-ACSEC indicated that the 911 program authorities in eleven states concur with its petition. These states included California, Maryland, Massachusetts, Minnesota, New Hampshire, New Jersey, New Mexico, Oregon, South Dakota, Vermont and Washington.

Telecommunications Corporation and Telocator (PCIA)³⁷ all acknowledged the need for enhanced 911 capabilities in mobile telephone networks, but argued that enhanced 911 standards should be developed separately from the PCS proceeding so as not to delay the implementation of PCS.

34. We have become increasingly concerned about the inability of mobile radio systems to interface with the enhanced 911 systems that have been deployed in wireline networks.³⁰ Τn the Second Report and Order, we stated that industry and standards-setting bodies should direct particular attention to offering an emergency 911 capability for services that would work with enhanced 911 systems and, to the extent feasible, permit locating a caller when the caller does not know his location.³⁹ We expressed particular concern that unless such capability is designed into personal communications system (PCS) equipment, dialing 911 from a PCS telephone would not be equivalent to dialing 911 from a wireline telephone. We added that the health and safety of citizens, as well as the fullest commercial success of PCS, would be affected by whether PCS is capable of providing enhanced 911 services. Accordingly, we stated that we intended to initiate a future proceeding to address enhanced 911 and related issues with regard to PCS, cellular, and any other relevant mobile service.⁴⁰ In the <u>Memorandum Opinion and Order</u>, GEN Docket No. 90-314 (adopted June 9, 1994) at para. 202, we dismissed TX-ACSEC's petition for reconsideration, stating that the issues raised therein would be addressed in a separate proceeding.

³⁷ After it filed comments in this proceeding, Telocator changed its name to the Personal Communications Industry Association.

³⁸ Based on our experience with cellular and other mobile radio services, it appears doubtful that enhanced 911 interface capability will be implemented voluntarily.

³⁹ <u>Second Report and Order</u>, note 4, <u>supra</u>, paragraphs 139-140.

⁴⁰ <u>Id</u>. We have already proposed to require position determination capability in mobile satellite systems above 1 GHz, although current applicants do not intend to use their systems for extensive distress and safety communications. <u>See</u>, Amendment of the Commission's Rules to Establish Rules and Policies Pertaining to a Mobile Satellite Service in the 1610-1626.5/2483.5-2500 MHz Frequency Bands, <u>Notice of Proposed Rule</u> <u>Making</u>, CC Docket No. 92-166, 9 FCC Rcd 1094 (1992). As discussed in para. 38, we seek comment on whether mobile satellite services, among others, should be subject to requirements for enhanced 911 compatibility. 35. On June 30, 1994, APCO, NENA, NASNA, and PCIA issued an "Emergency Access Position Paper" ("Joint Paper"), which they filed as an <u>ex parte</u> comment in the PCS proceeding. <u>See</u> Appendix D. The Joint Paper presents the consensus recommendations of these organizations to assist standards bodies in developing appropriate standards for emergency access from wireless service systems to "9-1-1 type systems."⁴¹

36. The record before us indicates support for incorporating enhanced 911 technology in mobile telephone networks. The record also suggests that parties are skeptical of our ability to mandate an enhanced 911 standard in the PCS rulemaking proceeding without significantly delaying the implementation of PCS. Accordingly, we are initiating this separate rulemaking proceeding to address the enhanced 911 capabilities of PCS, cellular, and other relevant radio services. We are basing most of our proposals on the Joint Paper.

B. Discussion

37. We believe that Commission action is necessary to ensure that, over time, mobile radio service users on the public switched telephone network have the same level of access to 911 emergency services as wireline callers. Wireless customers clearly expect access to 911 services, and may be unaware that their mobile radio services do not provide the kind of location information that emergency services personnel receive from stations on the wireline network. Thus, as the use of wireless services expands, those who access the public switched telephone network through mobile radio units may suffer a degradation in access to 911 emergency services absent a requirement that mobile radio systems must be compatible with enhanced 911 services. Accordingly, we propose to require that mobile radio transmitters supplied to wireless customers provide the same level of access to 911 emergency services as is available to wireline customers.

38. As an initial matter, we need to define the categories of mobile radio services that might be subject to compatibility requirements with enhanced 911 services. Our initial view is that mobile radio services offering access to real-time voice services provided on the public switched network may be an appropriate definition. 911 service today primarily depends on

⁴¹ NENA has since withdrawn its support of the Joint Paper, citing failure to suggest a specific time frame within which mobile radio services would have to provide more precise locations for 911 callers. <u>See</u> July 26, 1994 letter of Executive Director of NENA, to Chief Engineer, FCC.

voice, or voice equivalent (text telephone or TTY)⁴² communication. We believe that users of voice mobile radio services today reasonably expect to have access to emergency services through 911. These customers would seem to be the population of mobile radio users PSAP facilities are primarily organized to serve. For example, cellular radio systems already represent a significant, and increasing, community of 911 service users.43 We seek comment on this analysis. Should any compatibility requirements that might be imposed on mobile radio services be limited to those features most closely resembling traditional 911 services? Would commercial mobile radio services (CMRS)⁴⁴ providing real-time voice be an appropriate category, or should other, more limited services, such as one-way paging or the Non-Voice, Non-Geostationary Mobile Satellite Service, be required to meet compatibility requirements for some or all 911 features? What are the social, economic and other costs of including or excluding various categories of mobile radio services from any 911 compatibility requirements that might be developed? What are the costs and benefits of requiring any or all of the various 911 features? What time frames would be appropriate for requiring such features? Commenters should discuss how these considerations might vary with respect to specific types of services, e.g. cellular, PCS, or mobile satellite services. While we do not initially propose to apply rules for 911 compatibility to private mobile radio services, which may not be available to the public or interconnected with the public switched network, we ask for comment on this decision. We request comments on whether and how the proposed performance requirements, particularly phase-in periods, should be applied to existing systems (e.g., cellular) vis-a-vis new systems such as PCS. We also ask for comment on our proposal to limit this requirement to services capable of providing real-time voice.

i

39. With respect to appropriate features, we note that currently, mobile radio services, such as cellular, are able to provide access to 911 service, but they are unable to provide the information necessary for enhanced 911, such as the location of the caller (ALI), the number of the caller, call back capability, or an indication of the type of service required. By contrast, approximately 76% of wireline customers who have 911 services

⁴² The term "text telephone" or "TTY" replaces the term "TDD" or "telecommunications device for the deaf."

⁴³ In urban areas, 911 calls from mobile radio units currently account for 10% of all 911 calls. <u>Communications</u> <u>Daily</u>, "NARUC Notebook" (July 27, 1994) quoting Leah Senitte of the National Emergency Number Association.

⁴⁴ <u>See</u> note 2, <u>supra</u>, for definition of "commercial mobile radio service." have access to these features. Availability of enhanced 911 service for wireless customers may require modifications to mobile radio handsets, mobile radio service provider networks, the public switched telephone network, or public safety access systems. In order to render functionally equivalent service, it appears that the mobile station must be able to communicate the information, <u>e.g.</u>, ANI and ALI, to the base station, and the base station must be able to interpret all information transmitted from the mobile unit, provide the proper priority handling of 911 calls, and forward sufficient information to the public safety answering point to provide call back capability, location information (enabling selective routing), and determination of the type of emergency service needed.

40. We propose to adopt rules to improve the access of users of mobile radio services to 911, particularly enhanced 911 services. While we do not anticipate adopting extensive technical standards for enhanced 911 operation -- industry standards-setting committees are better equipped to address precise technical requirements for enhanced 911 compatibility⁴⁵ -- we propose that general performance criteria be adopted. We will discuss the essential capabilities proposed in the Joint Paper for access to 911 and enhanced 911 through wireless services.

41. <u>911 availability</u>. The Joint Paper recommends, and we propose, that a user have the ability to reach emergency services from any service initialized⁴⁶ mobile radio handset⁴⁷ in a home service area or a subscribed-to roamed service area by dialing only 911. This means that any mobile radio transmitter that is service initialized on a radio network must be allowed to make a 911 call without a requirement for user validation. We ask commenters to describe the extent to which mobile radio services and equipment provide these capabilities today, and whether or to

⁴⁵ We expect the industry committees to develop these standards working in conjunction with PCIA, APCO, NENA, and NASNA, among others. There are several standards bodies that are capable of assuming this work, such as Committee T1, sponsored by the Alliance of Telecommunications Industry Solutions (ATIS), and its various subgroups T1P1, T1S1, etc.; the Telecommunications Industry Association under TR 46 and TR 45.2; and research organizations, such as Bell Communications Research (Bellcore).

⁴⁶ Service initialized means that the user has purchased services from a wireless service provider.

⁴⁷ The Joint Paper uses the term "handset or wireless terminal." We ask whether the term "mobile radio unit" would represent an appropriate broadening of the scope of the availability requirement. what extent implementation of these features would require hardware changes to the mobile equipment or the associated base stations. What considerations are raised for new or developing services? Commenters should specifically address the application of this feature to mobile radio handsets used on a "roaming basis" or outside a mobile radio service provider's roaming area. Commenters should provide specific data on the economic and technical feasibility of such a requirement. We propose that this dialing feature be made available one year after the effective date of the order adopting rules in this proceeding, and we seek comment on the ability of licensees and equipment manufacturers to implement the feature in this time frame.

42. <u>Grade of service</u>. The term "grade of service" refers to the percentage of calls between the mobile transmitter and the PSAP that are blocked either within the radio or the wireline network. The interconnection of a mobile radio transmitter call with a PSAP attendant may involve several interconnecting networks, including mobile radio links and the wireline PSTN. The Joint Paper expresses concern that competitive forces, expected to drive service quality levels in a wireless environment, may result in higher blocking rates than wireline networks experience.

43. The Joint Paper recommends, and we agree, that standards bodies should investigate technical solutions or other strategies to ensure minimal blocking of 911 calls from mobile radio transmitters. Any overall grade of service objective will require a cooperative effort between the initiating, interconnecting, and terminating systems. Our initial view is that federal standards are not warranted at this time. We seek comment on this assessment. Commenters advocating federal standards should describe how grades of service would be defined, and discuss any jurisdictional implications of imposing such standards.

<u>911 call priority</u>. We seek comment on our proposal to 44. require that, one year after the effective date of the order adopting rules in this proceeding, originating 911 calls must be assigned priority over non-emergency service calls. This priority would be assigned at the handset and would extend to placing the 911 call at the beginning of any queue for calls waiting to be placed in the mobile radio network. Because of the unknown nature and importance of calls in progress, this priority would not require the interruption of calls in progress. We seek comment on whether this capability would require any major equipment modifications. Do existing systems have this capability? If not, what obstacles exist for developing this feature? We seek comment on the technical feasibility and cost for licensees and equipment manufacturers of establishing priority for 911 calls in new and existing mobile radio networks.

45. User location information. The Joint Paper finds that the wireless system should have the ability to identify the location of a wireless terminal used to make a 911 call. We Automatic location identification (ALI) is more easily agree. accomplished within a wired telephone network because the location of each telephone is known. ALI is not as easy in a mobile radio network because the caller can be located anywhere in the network's service area. In a wireless network, a caller's approximate location can be determined by identifying the specific transmitter that is communicating with the caller. Such approximations, however, may only narrow the location of the caller to an area of a few square miles and may be of minimal use to emergency service personnel, particularly in urban settings. Moreover, to obtain precise geographic location information, a PSAP would need to know not only the latitude and longitude of the mobile unit, but also its elevation in the event the caller is located in a high-rise building.48

46. We seek comment on the specific technical and cost considerations affecting the implementation of an ALI requirement for enhanced 911 service to wireless customers that would include detailed location information.⁴⁹ While there are several possible methods available to provide location data with varying levels of precision, all of these raise issues regarding performance, cost or technical feasibility. These methods include: Global Positioning Satellites (GPS), including differential GPS;⁵⁰ time delay measurements; received signal strength; ranging and triangulation; received signal angle of arrival, <u>e.g.</u>, reception employing "smart" antenna technology or KSI's Direction Finding Localization System; CDMA time

^{'48} The equipment used at the PSAPs would have to be modified to permit the use of geographic data instead of a street address. Precise location information, especially for a mobile radio transmitter, would have to be based on latitude, longitude and elevation. The transmitter would be unable to determine automatically a nearby street address, and, in fact, no street address may exist at the mobile unit's location, particularly in rural areas.

⁴⁹ In order to locate a caller within a 100 foot radius, 12 to 15 digits of latitude and longitude information must be relayed. Relaying this amount of information to the PSAP may require modifications in ALI services or in PSAP equipment. However, the representations by wireless interests that this capability currently is technically and financially infeasible are not documented in this record.

⁵⁰ We understand that the Federal Aviation Administration is participating in the development of an aircraft navigation system in which GPS corrections would be broadcast by satellites. synchronization; commercial FM multilateration; LORAN reception; automatic vehicle monitoring (AVM), time-of-arrival measures; and, cell site/radio port sectorization. All of these methods offer varying degrees of accuracy, affordability, and implementation problems. As an example, GPS does not work well if a caller is inside a building or amid obstructions that attenuate or block the satellite radio signals. Terrestrial radio triangulation methods are also hampered by interference and by signal reflection (multipath), though they are not as affected as satellite communications by attenuation inside buildings. Commenters should also address whether adding ALI components would increase the size of mobile radio transmitters or threaten the market-driven evolution toward smaller devices.

47. We recently received a copy of a "Survey of Location technologies to Support Mobile 9-1-1," conducted by C.J. Driscoll & Associates for APCO and the State of California, department of General Services Telecommunications Division. A copy of the report is being placed in the record of this proceeding. This report surveys eighteen different location systems that either exist or are under development and may be suitable for automatic location identification for enhanced 911 service. We invite comment on the APCO report, specifically with regard to the feasibility and accuracy of the various systems for ALI for enhanced 911 and the cost estimates. We also solicit information as to any systems or technologies that are not discussed in the report.

48. We are aware that the industry is working with the public safety community to address many of the same issues that we are addressing in this proceeding, particularly with regard to ALI. A Joint Experts Meeting was held in early August under the auspices of the Telecommunications Industry Association TR45 Committee. We are inserting a copy of the report of this meeting in the record for comment. A second Joint Experts Meeting was held in mid October under the auspices of the Personal Communications Industry Association, focusing on PCS in particular.

49. Due to the concerns about technical and financial feasibility expressed by manufacturers and communications service providers, we tentatively conclude that compliance with any ALI requirement should be implemented in three steps. Under this approach, as a first step, wireless service providers would be required to design their systems so that the location of the base station or cell site receiving a 911 call from a mobile unit is relayed to the PSAP. If the base station or cell site employs a sectored antenna, the information relayed to the PSAP would have to indicate the sector that received the call. We seek comment on our proposal that wireless base stations be capable, within one year after the effective date of the order adopting rules in this proceeding, to route 911 calls with sufficient location information to permit connection of the mobile station to the PSAP closest to the mobile caller.⁵¹ It appears that this limited ALI information, at a minimum, should indicate the location of the base station receiving the 911 call and, if sectored antennas are employed, the direction (sector) of the mobile unit from the base station or cell site. We seek comment on this analysis, and on the means of transmitting this information to the PSAP, <u>i.e.</u>, network elements, information protocol standards, location information updates, and speed of transmission. Compatibility seems to require that these features be passed through the PSTN to the PSAP in a manner and format capable of being used by those facilities. We seek comment on whether the proposed rule allows licensees and equipment manufactures sufficient time to develop these features, and on the technical and cost considerations involved in implementation.

In the second stage, the associated base station or 50. cell site should be capable of relaying more precise information. Specifically, we propose to require that, three years after the effective date of the order adopting rules in this proceeding, the ALI information provided to the PSAP must include an estimate of the approximate location and the distance of the mobile unit from the receiving base station or cell site, calculated on the basis of the received signal strength or by some other method. If a signal is received by more than one cell site, we assume the site at which the signal is strongest becomes the controlling site for the call. We seek comment on whether this assumption is correct. We ask that commenters address whether more precise location identification requires identification of the cell site only or identification of a specific base station. We seek specific and detailed analysis of the technical and cost considerations involved in such implementation, and of the time provided to licensees and equipment manufactures to develop these features.

51. In the third phase, we propose to require that, five years after the effective date of the order adopting rules in this proceeding, the mobile station be located in a 3dimensional environment within a radius of no more than 125 meters. This information should enable the PSAP to assist emergency services personnel by providing a relatively precise location for a 911 caller using a wireless service. Even greater accuracy could be necessary in urban environments to determine the precise location of a caller within a multi-story structure. On the other hand, location information consisting only of latitude and longitude may be sufficient for radio transmitters operating outside of an urban environment. We request comments

⁵¹ We do not propose to change the implementation date that is adopted in CC Docket No. 92-166 for mobile satellite services position determination information. <u>See</u> note 41, <u>supra</u>.

on the feasibility of this approach both technically and economically, and on whether the rules propose an appropriate time frame for implementation of these features. Commenters should provide detailed and specific analysis of and support for their conclusions. We ask whether more precise location requirements should be specified in the rules. Commenters should provide analysis demonstrating the feasibility of any proposed requirements. Commenters should also provide specific time periods for various industry segments and feasibility analysis if they recommend more rapid phase-in than the three stage approach proposed in this Notice.

<u>Re-ring/call back</u>. We request comment on the technical 52. and economic feasibility of wireless services to provide the capability to return calls placed from mobile radio transmitters to a 911 emergency number immediately. We propose to require that, within three years of the effective date of the order adopting rules in this proceeding, wireless systems must provide PSAP attendants with the capability to call back the 911 caller if the call is disconnected.⁵² We seek detailed analysis of existing and potential capabilities of wireless services to provide information that permits immediate call back to the mobile user. For example, commenters should indicate whether at present when emergency calls are dialed to 911, the PSAP sees the call as originating from a mobile radio subscriber. It appears that many types of mobile radio units, such as cellular, transmit ANI for subscriber billing purposes, and that this information does not pass to the PSAP.53 We seek comment on whether the directory number of the mobile unit, the subscriber's billing number, or some other number must be transmitted to the PSAP to provide call back capability, or whether call back to the mobile unit may be accomplished by other means. Ideally, this feature would represent a seamless process whereby any return call from the PSAP is connected directly to the mobile unit that originated the call. We seek comment on the technical feasibility and cost to licensees and equipment manufacturers of implementing immediate call back, and request comment on whether the proposed rule provides sufficient time to develop such a feature.

⁵² This assumes that the mobile radio can receive the return call, <u>e.g.</u>, the mobile user has not turned off the mobile unit.

⁵³ One reason for this blockage for cellular systems has to do with the "roaming" feature of cellular: when outside the home area, a cellular subscriber's seven digit ANI, billing number in this case, is of no use unless it is accompanied by a roaming code, typically requiring 10 digits instead of seven. PSTN switching facilities that process mobile radio calls and PSAP premises equipment would have to be modified in order to receive and use 10 digit numbers.

53. <u>Common Channel Signaling</u>. The Joint Paper concludes that radio transmissions of 911 calls eventually should be capable of providing the same or similar information and features currently available from wireline calls over enhanced 911 systems. In addition to the ALI and call back information discussed above, the adoption of this performance criterion would require providers to ensure that some or all of the following information is furnished to the PSAP:

- Call back number and the mobile transmitter subscriber's name
- Location of call origination (ALI), as discussed above
- Class of service, <u>e.q.</u>, residence, business, etc.
- Base station provider's name and telephone number
- Priority of the caller, <u>e.g.</u>, hospital, school, etc.
- Routing information to direct the call to the proper PSAP (primary and secondary PSAP identifiers)
- Transfer numbers, <u>i.e.</u>, separate numbers to allow transfer of calls to police, fire and ambulance services

We request comment on the feasibility of these features, which would permit radio transmission systems to interface fully with enhanced 911 systems. We also propose to require that common channel signalling capabilities be implemented within three years after the effective date of the order adopting rules in this proceeding, and we request comment on this proposal and timetable. In addition, we seek comment on whether the reliability of 911 technology will be hampered if 911 services are transferred to common channel signaling, and on how these features would affect the survivability of 911 SS7 based calls during a common channel signaling outage. We note that the Network Reliability Council has recommended that, before 9-1-1 calls are handled by SS7, standards bodies must determine whether additional standards are needed for SS7 protocol.⁵⁴

54. Access to text telephone devices (TTY). We propose that, within one year of the effective date of the order adopting rules in this proceeding, radio services must be capable of permitting access by individuals with speech or hearing disabilities through means other than mobile radio handsets, <u>e.g.</u>, through the use of a TTY device. To the extent radio services are accessible to TTY devices today, those services will be able to provide access to 911 service.⁵⁵ It is not clear from

⁵⁴ <u>Network Reliability: A Report to the Nation</u>, Federal Communications Commission's Network Reliability Council, June 1993, Section F, page 16.

⁵⁵ Title II of the Americans with Disabilities Act (ADA) requires direct access between TTY users and PSAPs. <u>See</u> 42 U.S.C. Section 12131 <u>et. seq</u>. Under the ADA, all public utilities that provide telephone emergency services -- 911 access -- were the Joint Paper or the record what Commission rules or policies would be necessary or appropriate to ensure access to 911 services for TTY-like devices beyond the general requirement that services be compatible with such devices. We seek comment on how to ensure access to 911 service by TTY-type devices that use wireless services, and request comment on the specific additional features, costs and feasibility issues that may be relevant to achieving compatibility.

55. Equipment Manufacture, Importation, and Labeling. We seek comment on an approach that would permit wireless providers to employ whatever technologies achieve the required objectives. Features such as ANI and ALI might be implemented in a variety of ways. For example, while we anticipate that mobile equipment would generally need to include equipment to determine and transmit location information, it is feasible that other methods may be used, such as the type of technology described by KSI, that do not require such features to be included in the mobile transmitter. Nevertheless, we solicit comments as to whether it may be necessary to establish specific requirements for base and mobile transmitters to ensure compliance with the objectives of this proceeding, particularly with regard to ANI and ALI. Further, we request information as to what those standards should be. If specific requirements for transmitters are necessary, we contemplate requiring the submittal of information demonstrating compliance as part of the equipment authorization process. We also invite comment as to whether it may be appropriate to establish cut-off dates for manufacture, importation and marketing of equipment that may not meet the standards and how much time should be allowed for transitions to equipment that meets the new requirements. Comments are requested as to whether it may be appropriate, within 30 days after the effective date of the order adopting rules in this proceeding, to require equipment that does not meet the proposed requirements to be labelled with the following statement on the device and on the outside of the packaging in which it is marketed:

You may use this transmitter to dial for help through 911. The person answering may not know where you are, or how to call you back, unless you accurately provide your location and your full telephone number, including area and/or roaming codes.

V. ADDITIONAL CONSIDERATIONS

required to be accessible to people with hearing and speech disabilities by January 26, 1992. Section 35.162 of the Department of Justice regulations implementing Title II of the ADA requires "direct access" to telephone emergency services.

56. <u>Privacy</u>. We seek comment on the necessity for, and implications of, imposing privacy requirements on information transmitted to local exchange carriers and PSAPs in the delivery of 911 emergency services. In adopting federal rules for carriers that provide calling number identification services, the Commission declined to apply privacy protection requirements in circumstances which did not appear to raise serious privacy implications, including calls within private systems and calls to emergency service providers.⁵⁶

The states, however, have adopted varying approaches to 57. the privacy afforded a subscriber's name, address, and telephone number when that information is used in the delivery of emergency services. For example, Florida, Georgia and Iowa prohibit the release of information, other than the name, address, and telephone number of the caller, obtained in the delivery of emergency services. Iowa, South Dakota, and Wyoming waive state privacy requirements for nonpublished numbers for the purpose of delivering emergency services. We note that while the provision of emergency services is essentially local in nature, the use of mobile radio transmitters to place 911 calls may involve emergency service providers located in more than one jurisdiction. Moreover, there is an important national interest in preserving uniform accessibility to 911 services. We ask commenters to address whether there are privacy interests in information transmitted by wireless service providers pursuant to the delivery of emergency services, and if so, what specific measures are appropriate to protect those interest.

58. <u>Compatibility with Network Services</u>. We ask whether other steps need to be taken to ensure the American public continues to have access to effective 911 services. For example, private network services offered by telephone companies are not accessible simply by dialing 911. Instead, as with PBXs, an initial "9" first must be dialed. We ask parties to comment on whether rules should be adopted to require such services to permit access simply by dialing 911. In addition, it appears that not all telephone companies provide priority for 911 calls in accessing the central office switch, prior to being sent to the 911 tandem. We seek comments on whether we should impose uniform requirements. Commenters should discuss any jurisdictional issues that might be raised by imposition of such standards.

59. <u>Preemption</u>. We believe that our proposed rules imposing uniform requirements for compatibility of enhanced 911 systems with wireline equipment and wireless services are

⁵⁶ <u>See Report and Order and Further Notice of Proposed</u> <u>Rulemaking</u>, CC Dkt. No. 91-281, 9 FCC Rcd 1764 (1994).

consistent with our responsibilities under Section 1 of the Communications Act to promote safety of life and property. The Commission has the authority to preempt state regulation that affects interstate service when it is not possible to separate the interstate and intrastate components of the service, or when state regulation thwarts or impedes a federal policy.⁵⁷ We seek comment on any potential conflicts between our proposed rules and existing state regulation affecting PBX equipment or wireless services.⁵⁸ Commenters opposing preemption should suggest specific alternatives for ensuring that inconsistent federal, state, and local requirements do not thwart the nationwide goal of achieving compatibility with enhanced 911 systems.

VI. CONCLUSION

60. For the reasons set forth above, we seek comment on all aspects of this Notice of Proposed Rulemaking and the specific proposed rules set forth in Appendix C. Our objective is to ensure that the American public continues to have access to effective 911 services. In the Notice of Proposed Rulemaking, we propose rules to ensure compatibility of PBX equipment with Enhanced 911 systems, including procedures for verifying that the location of callers using PBX equipment is received at the appropriate public safety answering point. We seek comment on whether these proposals permit sufficient flexibility in conforming PBX equipment to the needs of their owners while ensuring that the locations of callers to 9-1-1 are properly identified to PSAP operators. In addition, we seek comment on proposals that wireless service providers ensure that mobile radio units supplied to their customers provide the same level of access to 911 emergency services as is generally available to wireline customers. We request comment on the technical and economic feasibility of making wireless services compatible with enhanced 911 services, and on whether wireless service providers should implement the following features: 911 access

⁵⁷ Louisiana Public Service Commission v. FCC, 476 U.S. 355, 375 n.4 (1986); Illinois Bell Tel. Co. v. FCC, 833 F.2d 104 (D.C. Cir. 1989); California v. FCC, 905 F.2d 1217 (9th Cir. 1990); Texas Public Utility Comm'n v. FCC, 886 F.2d 1325 (D.C. Cir. 1989); North Carolina Utilities Comm'n v. FCC, 552 F.2d 1036 (4th Cir.), cert. denied, 434 U.S. 874 (1977); North Carolina Utilities Comm'n v. FCC, 537 F.2d 787 (4th Cir.), cert. denied, 429 U.S. 1027 (1976). See also CMRS Order, 9 FCC Rcd at 1506 & n.515.

⁵⁸ For example, the State of Washington adopted legislation in March, 1994 requiring cellular (or wireless) companies to provide ANI data for PSAP use. "Cellular Taxation for 9-1-1 in Washington State, House Bill 2601," <u>NENA News</u>, May 1994, pp. 32-34. communicating call origination information; providing priority handling of 911 calls; and forwarding sufficient information to the 911 exchange to provide call back capability, location information, and determination of the type of emergency service needed. We seek comment on whether or what privacy considerations should apply to the provision of enhanced 911 services. Finally, we seek comment on whether additional steps are necessary to ensure that the benefits of 911 services are not diminished by new developments, including comments on what additional rules should be proposed to ensure universal 911 access policies, and for an analysis of jurisdictional issues that might be raised.

VII. ORDERING CLAUSE

61. Accordingly, pursuant to Sections 1, 3, 4, 5, 201-205, 208, 215, 218, 226, 227, 302, 303, 313, 314, 332, 403, 404, 410, 602 of the Communications Act of 1934, as amended, 47 U.S.C. 151, 153, 154, 155, 201-5, 208, 215, 218, 226, 227, 302, 303, 313, 314, 332, 403, 404, 410, 602, IT IS ORDERED that NOTICE OF PROPOSED RULEMAKING is hereby provided to amend Sections 68.1, 68.3, 68.106, 68.228, 68.308, and 68.320 of the Commission's rules, 47 C.F.R. §§ 68.1, 68.3, 68.106, 68.228, 68.308, 68.320, as indicated above and in Appendix C hereof.

VIII. ADMINISTRATIVE PROVISIONS

62. This is a non-restricted notice and comment rule making proceeding. <u>Ex parte</u> presentations are permitted, except during the Sunshine Agenda period, provided they are disclosed as provided in the Commission's Rules. <u>See generally</u> 47 C.F.R. Sections 1.1202, 1.1203, and 1.1206(a).

Initial Regulatory Flexibility Analysis. As required 63. by Section 603 of the Regulatory Flexibility Act, the Commission has prepared an Initial Regulatory Flexibility Analysis (IRFA) of the expected impact on small entities of the proposals suggested in this document. The IRFA is set forth in Appendix A. Written public comments are requested in the IRFA. These comments must be filed in accordance with the same filing deadlines as comments on the rest of the Notice, but they must have a separate and distinct heading designating them as responses to the Initial Regulatory Flexibility Analysis. The Secretary shall send a copy of this Notice of Proposed Rule Making, including the Initial Regulatory Flexibility Analysis, to the Chief Counsel for Advocacy of the Small Business Administration in accordance with paragraph 603(a) of the Regulatory Flexibility Act. Pub. L. No. 96-354, 94 Stat. 1164, 5 U.S.C. Section 601 et seg (1981).

64. <u>Comment dates</u>. Pursuant to applicable procedures set

forth in Sections 1.415 and 1.419 of the Commission's Rules, 47 C.F.R. Sections 1.415 and 1.419, interested parties may file comments on or before January 9, 1995 and reply comments on or before February 8, 1995. To file formally in this proceeding, you must file an original and four copies of all comments, reply comments, and supporting comments. If you want each Commissioner to receive a personal copy of your comments, you must file an original plus nine copies. You should send comments and reply comments to Office of the Secretary, Federal Communications Commission, Washington, D.C. 20554. Comments and reply comments will be available for public inspection during regular business hours in the FCC Reference Center (Room 239) of the Federal Communications Commission, 1919 M Street, N.W., Washington, D.C. 20554.

65. The proposed action is authorized under Sections 1, 4, 5, 201-205, 208, 215, 218, 226, 227, 302, 303, 313, 314, 332, 403, 404, 410, 602 of the Communications Act of 1934, as amended, 47 U.S.C. 151, 154, 155, 201-5, 208, 215, 218, 226, 227, 302, 303, 313, 314, 332, 403, 404, 410, 602. 66. For further information regarding this <u>Notice of</u> <u>Proposed Rule Making</u>, contact Suzanne Hutchings, Domestic Facilities Division, (202) 634-1802, or John Reed, Office of Engineering and Technology, (202) 653-7313.

FEDERAL COMMUNICATIONS COMMISSION

m 7. Ca William F. Caton Acting Secretary

APPENDIX A

INITIAL REGULATORY FLEXIBILITY ANALYSIS

Reason for Action: This Notice of Proposed Rule Making responds to the petitions submitted by Texas Advisory Commission on State Emergency Communications (TX-ACSEC) and Adcomm Engineering Company to address issues raised by the provision of enhanced 911 services through commercial mobile radio systems, private branch exchanges, and similar equipment. Telephone stations for wireless services and wireline stations served by PBX equipment are not adequately identifying caller location to permit a timely response by emergency services personnel.

Objectives: The objective of this proposal is ensure access to enhanced 911 emergency systems on the public switched telephone network for callers served by private branch exchanges other dispersed private telephone systems, and for callers served by certain mobile services.

Legal Basis: The proposed action is authorized under Sections 1, 4, 5, 201-205, 208, 215, 218, 226, 227, 302, 303, 313, 314, 332, 403, 404, 410, 602 of the Communications Act of 1934, as amended, 47 U.S.C. 151, 154, 155, 201-5, 208, 215, 218, 226, 227, 302, 303, 313, 314, 332, 403, 404, 410, 602.

Reporting, Record Keeping and Other Compliance Requirements: Private branch exchanges and other dispersed private telephone systems will be required to maintain records for calling number identification, caller location identification, and a call-back numbers for each of their calling stations. Commercial mobile radio services will be required to identify the location of mobile transmitters and provide call back numbers for them. Equipment used for private branch exchanges and other dispersed private systems and commercial mobile radio services will have to be capable of providing this information to the local telephone exchanges to which they are connected. Local telephone exchanges will incur costs storing and relaying this information to enhanced 911 public service answering points.

Federal Rules Which Overlap, Duplicate or Conflict With These Rules: None.

Description, Potential Impact and Number of Small Entities Involved: The proposed changes in the regulations would affect a number of entities both large and small. An estimate of such parties affected is approximately 65 million new wireless services users and approximately 4 million PBX equipment manufacturers and owners. Any Significant Alternatives Minimizing the Impact on Small Entities Consistent with Stated Objectives: With respect to PBX equipment, the NPRM asks whether the proposed rules must be applied where the equipment serves a physically small location, such as a single story building, or a small number of closely situated telephone stations.

APPENDIX B

911 CALL FEATURES

This appendix identifies 911 call features currently available to many emergency call taking organizations, listed in order of importance as defined in NENA/APCO leadership.

- Ability to reach emergency services by dialing 911

- Ability to permit call precedence for 911 over other call types

- Ability to identify caller's geographic location

- Ability to hear and determine the type of emergency services needed

- Ability to receive 911 calls within their jurisdiction (Selective Routing)

- Ability to detect and communicate with TTY and data callers

- Ability to hold the line for trace, after the caller has disconnected (Called Party Hold), or the ability to call back

- Ability to call the caller back after disconnection and/or perform re-ring with the called party held

- Ability to transfer the caller to the appropriate PSAP - Ability to transfer the information screen to the appropriate PSAP

- Ability to force disconnect, regardless of the caller switch hook status

35

APPENDIX C

PROPOSED RULES

Part 68 of the Commission's Rules and Regulations (Chapter 1 of Title 47 of the Code of Federal Regulations, Part 68) is proposed to be amended as follows:

1. The authority citation for Part 68 remains as follows:

AUTHORITY: Sections 1, 4, 5, 201-205, 208, 215, 218, 226, 227, 303, 313, 314, 403, 404, 410, 602 of the Communications Act of 1934, as amended, 47 U.S.C. 151, 154, 155, 201-5, 208, 215, 218, 226, 227, 303, 313, 314, 403, 404, 410, 552.

2. Section 68.1 is proposed to be amended by deleting the present Section 68.1 in its entirety and substituting the following:

§ 68.1 Purpose

The purpose of the rules and regulations in this part is to provide for uniform standards for the protection of the telephone network from harm caused by the connection of terminal equipment and associated wiring thereto, for the correct operation of terminal equipment with public emergency access networks, and for the compatibility of hearing aids and telephones.

3. Section 68.3 is proposed to be amended by inserting, according to the alphabetical order of the term defined, each of the following definitions among the definitions already present:

Enhanced 9-1-1: A telephone network feature that automatically provides emergency response agencies with telephone directory number and location information on calls placed to the national emergency number, 9-1-1.

Enhanced 9-1-1 compatibility: The ability to relay a number associated with each served emergency response location.

Enhanced 9-1-1 emergency services trunk: Any 2-wire or 4-wire telephone connection that provides access to Enhanced 9-1-1 service.

Dispersed private telephone system: A PBX or similar multi-line telephone system whose connection to the telephone network carries emergency calls from more than one emergency response location.

Emergency response location: A specific site, corresponding to a calling station in a dispersed private telephone system.

Restriction: The blocking of specific dial codes and sequences during call initiation.

3. Section 68.106 is proposed to be amended to read as follows:

§ 68.106 [Amended]

(f) Dispersed private telephone system trunk and station number verification for Enhanced 911 purposes. Customers who install dispersed private telephone systems after [insert date 18 months after effective date of order adopting rules in this proceeding] shall provide the telephone company with:

(1) The number of trunk connections desired

(2) The number of stations that may originate emergency calls

(3) The number of, and identification of emergency response locations that will require number identification.

(4) The FCC Registration Number of the equipment being used. The telephone company will provide 10-digit numbers for the identified emergency response locations.

Section 68.228 is proposed to be added as follows:

§ 68.228 Enhanced 911 trunk and station number verification.

a) Verification requirements.

(1) General. The proper transmission of station number
identification (SNI) for the station dialing the emergency number
911 shall be verified as part of initial installation and
subsequent changes in emergency response location data.

(2) Station Number Identification. The 10-digit station number identification transmitted for 911 calls shall be verified to:
(i) be in the group of station numbers assigned to the trunk by the telephone company and, (ii) be assigned to the specific emergency response location of the corresponding calling station.
(b) Verification personnel. Work associated with the

verification of Enhanced 911 emergency services trunk operation shall be performed under the supervision and control of a supervisor as defined in paragraph (c) of this section. The supervisor and installer may be the same person. (c) Supervision. Work by installation personnel shall be performed under the responsible supervision and control of a person who:

(i) Has at least 6 months of on-the-job experience in the installation of telephone terminal equipment;

(ii) Has been trained in the operation of Enhanced 911 emergency services trunks and in the performance of operations need to verify proper identification procedures and results.

(iii) Or, regardless of compliance with paragraphs (c)(1) and
(c)(2) of this section, is a licensed professional engineer in the jurisdiction in which the installation is performed.
(d) Verification procedure. The installation supervisor shall provide written notification to the telephone company that the required verification tests have been performed, including the following information:

(1) The responsible supervisor's full name address and business telephone number; and

(2) The date when Enhanced 911 trunks will go into service, the date when the verification tests were completed, and a list of trunk identification numbers and station numbers verified.
(e) Verification of changes. Addition or deletion of Enhanced 911 data base entries will be cause for verification of operation.

3. Section 68.308 is proposed to be amended to read as follows:

§ 68.308 Signal power limitations.

(b) ***

(5) ***

[In the table "MAXIMUM ALLOWABLE NET AMPLIFICATION BETWEEN PORTS (A) (B) (E) (F) " should show that enhanced 911 trunks operate with the same requirements as Public Switched Network Ports (2-Wire) by adding the words "Enhanced 911 trunks" after "Public Switched Network Ports (2-Wire)" in the first box at the top of the second column from the right.]

Section 68.320 is proposed to be added as follows:

§ 68.320 Enhanced 911 compatibility: technical standards.

(a) Trunk interface. Enhanced 911 trunks are analog twowire or four wire channels supporting either E&M type 1 or E&M type 3 signaling.

(b) Station Number Identification signaling. The station

number identification (SNI) code assigned to the emergency response location of a 911 caller will be sent from the registered equipment to the telephone company 911 system using multifrequency (MF) tone pulses, prompted by a solid off-hook indication from the telephone network.

(c) Operability. It shall be possible to access the Enhanced 911 trunk in emergencies whether or not system features are used that block access to normal dial trunks (<u>i.e.</u>, restriction of all calls beginning with "9"). Access shall be provided whether users dial 911 or additional digits preceding 911.

(d) Equipment levels. The minimum number of Enhanced 911 emergency services trunks connecting a private switch to the telephone network shall be one (1). Additional trunks may be used at the user's option. Additional trunks shall be added to maintain an availability of P = 0.01 based on the number of users served.

(e) Attendant Notification. Equipment manufactured or imported after [one year after the effective date of the order adopting rules in this proceeding], or installed after [18 months after the effective date of the order adopting rules in this proceeding], must be capable of notifying an attendant or onpremises personnel, if present, and of providing station number identification and emergency response location to the attendant when a 911 call is dialed.

(f) Information Requirements. Equipment manufactured or imported after [one year after the effective date of the order adopting rules in this proceeding], or installed after [18 months after the effective date of the order adopting rules in this proceeding], must have the capability to provide the caller's station number identification, caller location identification, and call back number to PSAP personnel.

(g) Labeling Requirements. PBX and dispersed telephone systems manufactured or imported one year from the effective date of §68.320 shall comply with this section. Equipment of earlier manufacture shall comply with the subsection if installed [eighteen months from the effective date of the section] or any time thereafter. Such equipment must be reregistered by the manufacturer or other person responsible for equipment compliance with Part 68, if already registered but not compliant with §68.320. Dispersed private telephone systems and associated station equipment that are domestically manufactured or imported on or after [30 days, but not later than one year, from the effective date of the order adopting rules in this proceeding] that does not comply with §68.320 must be labelled by the manufacturer with a warning describing its limitations for those attempting to use it to call enhanced 911. The warning must appear on the devices and on the outside of the packaging in which it is marketed. The domestic manufacture or importation of dispersed private telephone system equipment that does not comply with §68.320 must cease as of one year from the effective date of §68.320.

PCIA, APCO, NENA and NASNA Emergency Access Position Paper

This paper presents a jointly developed position of PCIA, APCO, NENA and NASNA organizations to assist standards bodies in their development of appropriate standards for the implementation of access to emergency services from wireless communications systems via 9-1-1 type systems. It is the result of a joint analysis and an effort to resolve challenges to both the public safety as well as the wireless manufacturers and service provider communities. All participants in this effort have a desire to maximize the ability of using wireless access to facilitate rapid and effective contact with emergency services, when and where needed.

However, each group has a unique set of challenges to consider. The public safety organizations and their membership have an imbedded infrastructure base that they wish to guard against obsolescence. Wireless access implementations need to consider the ability to locate 9-1-1 callers and interwork with existing emergency service bureau systems, to guard against this obsolescence. The wireless manufacturers and service providers have economic and technological targets that must be met or new services such as Personal Communications Services (PCS) will, at best, be stymied or may never be launched.

The positions and requirements expounded here represent an effort to address the concerns of all participants. These recommendations (requirements) will be submitted as contributions to the appropriate standards organizations for definition and adoption.

Introduction

This joint document has been prepared and is presented by the Personal Communications Industry Association (PCIA), the Association of Public Safety Communications Officials-International, Inc. (APCO), the National Emergency Number Association (NENA) and the National Association of State Nine One One Administrators (NASNA). A description of each organization is contained in Appendix A.

Discussion

The basic 9-1-1 (9-1-1) and Enhanced 9-1-1 (E9-1-1) systems in existence today have been designed to provide rapid response to calls for emergency services from landline subscribers. Existing basic 9-1-1 emergency services systems establish routing of calls to a Public Safety Answering Point (PSAP). E9-1-1 provides added capabilities including selective routing of a call to the appropriate PSAP for quick response to emergency calls, display of calling number, address and, in most cases, the name of the subscriber at the calling number. However, these systems may not address the particular and unique requirements of wireless communications environments. Appendix B defines emergency service call taker information and feature priorities for both wireline and wireless systems.

The mobile nature of wireless services and the unique qualities of Radio Frequency (RF) propagation may require adaptation of

existing emergency services systems and development of special location capabilities in wireless systems.

Emergency services access (9-1-1/E9-1-1) in a wireless environment needs the capability to identify the location of the radio port or cell site (or sector if sectored) serving the calling party. This level of location identification will provide information to assist in routing the call to the proper PSAP and serve as a beginning point from which more precise user location capabilities can be developed, as technology and economics allow.

The wireless user may be reporting an emergency while mobile and may be some distance away from the emergency when the call is completed. The call-taker will still need to verify the caller's location. This situation exists today for the wireline 9-1-1 callers because they may be reporting from a location remote from the incident. Modifications to many of the existing emergency services systems will be necessary to provide both location and call back number.

New and developing wireless services, particularly PCS, will have new signaling platforms and protocols which might not be compatible with the existing information retrieval capabilities of the current emergency services systems. An additional challenge for interconnection of wireless telephone systems and emergency services systems will be to not substantially modify PSAP call taker procedures. The end user (PSAP call taker) processes should be similar to existing processes even though some infrastructure changes (such as signaling and data interfaces) may be necessary.

Requirements

Currently wireless systems communicate with a number of emergency service entities. These include basic 9-1-1 systems, enhanced 9-1-1 systems, police dispatchers, etc. The following requirements deal with wireless access to 9-1-1 - type systems. These requirements do not necessarily apply to wireless access to non-9-1-1 type systems.

1. 9-1-1 Availability

A user should have the ability to reach emergency services from any service initialized¹ wireless handset in a home service area or subscribed-to roamed service area by dialing the three digit number 9-1-1. No additional dialing digit sequence should be required to reach emergency services². In addition, dialing 9-1-1 must override any lockout requirement for the handset or wireless terminal. Any handset that is service initialized on a wireless network must be allowed to make a 9-1-1 call, without a requirement for user validation.

2. Grade of Service

End to end grade of service objectives for wireless emergency access may involve several systems. Initiation of a wireless emergency access call will involve a wireless access system. Interconnection of the caller with a public safety call taker may involve interconnecting networks (e. g. PSTN) and termination of

¹ Service Initialized means that the owner has purchased services from a wireless service provider.

² This requirement does not preclude the implementation of an "emergency button" on the handset or the use of voice recognition to invoke the request for emergency access.

the call will involve the PSAP systems. Hence an overall grade of service objective, between a person in distress and a call taker, will require a cooperative effort between these initiation, interconnection, and termination systems. Proportioning grades of service within each system to reach overall objectives will need to be agreed upon locally and comply with appropriate local regulations.

Grades of service within each system will be established utilizing appropriate engineering and economic guidelines and are not areas subject for standardization.

Portions of the network used for emergency access may be the same for both wireline and wireless implementations. In some wireless implementations, a completely separate network may be used. In this instance, there could be a direct path from the wireless network to the Selective Router (S/R) or the PSAP. In other implementations, some portion of a LEC-based wireline network might be used to access the S/R or PSAP.

<u>.</u>

The following figure is an example of one network implementation and does not imply any particular ownership of the various network elements.

EO - end office (e.g., Class 5) S/R - selective router
HS - handset BS - base station
BSC - base station controller WEO - wireless end office
PSAP - public safety answering point

Link 1, between a wired telephone and an end office, is currently designed for a specified quality of service. This design is for minimum quality of service standard, and is typically specified by a State Public Utility Commission (PUC) and is not specifically designed for the requirements of emergency access. Links 7, 6 and 5 in a wireless system are analogous to link 1 in a wireline application, in that they are both the access path to an end office switch. Link 7 is the radio path between the wireless terminal to the base station. Links 6 and 5 are generally designed to carry as much traffic as is generated over the radio links, in order to minimize call blocking. The driving force for the grade of service design for these links is the competitive environment in which wireless access services will exist. This necessity to compete in an area serviced by as many as 6 PCS, 2 cellular, 1 Enhanced Specialized Mobile Radio (ESMR) licensees and perhaps multiple local exchange carriers will prompt each service provider to maintain a grade of service high enough to keep customers (i.e., minimize blocking).

Links 2 and 3 however, may be interswitch trunks, whether dedicated or virtual, to emergency access and may be designed to a P.01 grade of service or to a grade of service negotiated and agreed upon by the 9-1-1 Delivery Provider³ and the 9-1-1 Service Provider⁴. Implementations of links 4a/b should be designed to support the overall end to end grade of service objectives. These interswitch facilities could be used by either a wired or wireless access implementation.

A concern of this group is that the vagaries of marketing forces driving technical solutions may not, however, satisfy the emergency access and public use expectations.

Therefore, this group recommends that, for further consideration, the standards bodies developing radio standards investigate the feasibility of specifying technical solutions or strategies to minimize blocking of wireless 9-1-1 calls, from the radio

³ Owner or provisioner of the S/R and the delivery facilities

⁴ Owner or provisioner of the PSAP

system side of the network. Examples of issues to consider on the radio side might include load shedding, forced handoffs where existing calls can be maintained, etc. Issues for the public safety community to consider might include to use of advanced features such as Automatic Call Distribution (ACD) and Voice Response Units (VRU) to minimize blocking during overload conditions.

3. 9-1-1 Call Priority

An originating 9-1-1 call should have priority over other nonemergency services calls. This priority should extend to placing the 9-1-1 call at the beginning of a queue for calls waiting to be placed, if no radio or network resources are available. Because of the unknown nature or importance of calls in progress (i.e., a call to a suicide hotline or a poison control center), this priority requirement should not be interpreted to mean preempting or "bumping" a call in progress.

4. User Location Information

The wireless system should have the ability to identify the location of a wireless terminal used to make a 9-1-1 call. This location information shall be used to: (1) route a 9-1-1 call to the proper PSAP, based on the location of the base station to which that wireless handset is communicating and (2) provide the location of a terminal to the public safety call taker. Due to the concerns, both technical and financial, expressed by manufacturers and potential wireless service providers, a migration path for caller location is proposed. This migration path would start with a requirement for the location of the base station to which that wireless handset was

communicating and progress towards the ability to locate an individual wireless handset in a three-dimensional environment, as location technology and the cost of implementing such a technology become attainable. Technological advancements have indicated that the future may provide public safety with the ability to receive a high level of location accuracy from a wireless device.

It is the recommendation of this group that the standards bodies developing radio standards investigate the feasibility of specifying technical solutions or strategies to implement economically feasible detailed location capabilities at the call origination position and to make those capabilities available as soon as possible. Consideration should be given to both rural and urban environmental locational challenges and determine if a minimum geographic location accuracy within 400 feet could be achieved both technically and economically. A much higher level of location accuracy should be considered in urban environments where it will be necessary to determine the precise location of a caller within a multistory structure.

در ۲۲،

5. Re-ring/Call back

The wireless system should have the ability of the emergency services call taker to reconnect, or call back the wireless handset if the call is disconnected or terminated prior to the finalization of the event. It should be noted that the group agreed that this requirement assumes the handset can receive the call back.

6. Information Elements Required in SS7 or ISDN-like Signaling

Future implementations of wireless systems and 9-1-1 type systems should be capable of providing a minimum number of information elements to the PSAP. The elements may include:

- Call back number and the handset subscriber's name
- Location of call origination, as discussed in section 4
- Class of service (e.g., residence, business, etc.)
- Wireless provider's name and telephone number
- Priority of the caller (e.g., hospital, school, etc.)
- Routing information to direct the call to the proper PSAP (Primary and Secondary PSAP identifiers)
- Transfer numbers separate numbers to allow hot-key transfer of calls to police, fire and ambulance

7. Telephone Devices for the Deaf (TDD) Access

The wireless system should allow disabled individuals to access emergency services through means other than traditional wireless voice 'handsets (i.e., a TDD-like data device for the hearing impaired, etc.). To facilitate this requirement, there should be TDDcapable wireless devices but this does not impose a requirement that all wireless devices be TDD-capable.

It should be noted that new wireless systems will have a digital data capability. This capability will allow wireless users to communicate via data, without the use of traditional voiceband facilities. This capability must be accommodated in the PSAP, in order to serve the widest universe of the public.

8. Future Requirements

This document raises the need for additional work on a number of details concerning requirements and needs for future emergency access. The FCC and standards bodies, among others, should develop or request the development of detailed requirements, cost analyses and possible solutions.

-

Appendix A

The Personal Communications Industry Association (PCIA), formerly Telocator, is a trade association representing more than 450 companies including PCS experimental licensees and entrepreneurs, paging, cellular, cable, manufacturing, computer, mobile data, SMR, local exchange and interexchange sectors of the industry.

Established in 1949, PCIA has been instrumental in advancing regulatory policies, legislation and technological standards that have helped make the communications revolution possible. One of PCIA's greatest strengths is its ability to foster and represent consensus in order to advance the interests of the wireless industry.

The Association of Public Safety Communications Officials-International, Inc. (APCO) is the world's oldest and largest not-forprofit professional organization dedicated to the enhancement of public safety communications. Members come from every type of public safety organization imaginable, from 9-1-1 centers and public safety departments which include police, fire, highway maintenance, corrections, forestry, emergency medical services and local government.

With more than 10,000 members worldwide, APCO International exists to serve the people who manage, operate, maintain and supply the communications systems used to safeguard the lives and property of citizens everywhere.

The National Emergency Number Association (NENA) was established in 1982 as a not-for-profit in order to further the goal of "One Nation...One Number." NENA's mission is to foster the technological advancement, availability and implementation of a universal emergency telephone number system. In carrying out its mission, NENA promotes research, planning, training and education. The protection of human life, the preservation of property, and the maintenance of general community security are among NENA's objectives.

The National Association of State Nine One One Administrators (NASNA) is an organization of state officials whose purpose includes:

- Promoting information sharing amongst those states with programs dedicated to implementing 9-1-1 emergency telephone systems;
- Assisting other states with resolving issues necessary to accomplish statewide implementation and maintenance;
- Encouraging the establishment of a coordination person within each state or province;
- Identifying and recommending minimum standards for 9-<u>1</u>-1 emergency telephone systems;
- Identifying and recommending appropriate legislation or rules concerning the administration of statewide 9-1-1 emergency telephone system programs and;
- Serving as a knowledge resource for fulfilling the purposes described herein.

Appendix B

9-1-1 Call Taker Feature Priority

This appendix identifies 9-1-1 call features currently available to many emergency call taking organizations, listed in order of importance as defined by NENA/APCO leadership. The availability of these features enables more timely arrival of public safety personnel, minimizing loss of life and property. The list is provided to promote a better understanding of call feature value as related to emergency response capability.

- 1. Ability to reach emergency services by dialing 9-1-1
- 2. Ability to permit call precedence for 9-1-1 over other call types
- 3. Ability to identify caller's geographic location
- 4. Ability to hear and determine the type of emergency services needed
- Ability to receive 9-1-1 calls within their jurisdiction (Selective Routing)
- 6. Ability to detect and communicate with TDD and data callers
- Ability to hold the line for trace, after the caller has disconnected (Called Party Hold), or the ability to call back:
- 8. Ability to call the caller back after disconnection and/or perform re-ring with the called party held
- 9. Ability to transfer the caller to the appropriate PSAP
- 10. Ability to transfer the information screen to the appropriate PSAP
- 11. Ability to force disconnect, regardless of the caller switch hook status