

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

MICROSOFT CORPORATION

Petitioner

v.

NONEND INVENTIONS, N.V.

Patent Owner

CASE: To Be Assigned

Patent No. 7,590,752 B2

DECLARATION OF BRANDON WILEY

IN SUPPORT OF PETITION FOR INTER PARTES REVIEW

OF U.S. PATENT NO. 7,590,752 B2

Microsoft Exhibit 1067

DECLARATION OF BRANDON WILEY
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,590,752 B2

- 1 -

 I, Brandon Wiley, declare:

1. I have been asked by Petitioners to provide this Declaration to be

used in the Petition for Inter Partes Review of U.S. Patent Nos. 7,590,752 B2 (“the

‘138 Patent”).

2. I have been compensated for my time to prepare, review, and sign this

Declaration. I have not been offered any compensation contingent upon the

outcome of any inter partes review, district court litigation, or any other

proceeding related to the Patents.

I. BACKGROUND AND EXPERIENCE

3. Over the last 17 years, I have been extensively involved in various

projects relating to computer networking with an emphasis on decentralization,

peer-to-peer networking, and defeating various forms of censorship and blocking

of information over computer networks.

4. I am currently a PhD student in Information Studies (with a minor in

Cognitive Science) at the University of Texas at Austin (UT-Austin). I received a

Master of Arts in Convergent Media (with a minor in Special Education) from UT-

Austin in 2005. I received a combined Bachelor of Science (Convergent Media)

and Bachelor of Arts (Liberal Arts, Honors with minors in Computer Science,

Japanese, and English) from UT-Austin in 2001.

Microsoft Exhibit 1067

DECLARATION OF BRANDON WILEY
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,590,752 B2

- 2 -

5. From 2000 to the present I have worked as a software engineer or

consultant for various technology companies. I have written numerous journal

articles, book chapters, and other publications relating to decentralized computing,

peer-to-peer networking, and censorship resistance. I have also given several

presentations on these subjects at various conferences and other events.

6. A complete summary of my professional history, education, and

publications and presentations is contained in Attachment A.

II. FREENET SOURCEFORGE WEB SITE AND PAPER

7. In 2000, I was involved in the Free Network Project, also known as

the Freenet Project or simply Freenet, as the co-founder, project manager, and core

developer of the project.

8. Freenet is a peer-to-peer network application that permits the

publication, replication, and retrieval of data while protecting the anonymity of

both authors and readers. Freenet operates as a network of identical nodes that

collectively pool their storage space to store data files and cooperate to route

requests to the most likely physical location of data. Each node is capable of

retrieving data and providing data requested by other nodes.

Microsoft Exhibit 1067

DECLARATION OF BRANDON WILEY
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,590,752 B2

- 3 -

9. In 2000, the Freenet project was hosted at the following URL:

http://freenet.sourceforge.net. An archived page is still available at the following

URL: https://web.archive.org/web/20001207105900/http://freenet.sourceforge.net/

10. Attachment B is a true and correct copy of the “People Involved in

Freenet” page on the on the http://freenet.sourceforge.net web site,

http://freenet.sourceforge.net/index.php?page=people, cached by the Internet

Archive on December 12, 2000. I recognize and recall the format and content of

the web page in Attachment B as a true and correct copy of the “People Involved

in Freenet” page of the Freenet project Sourceforge page

http://freenet.sourceforge.net web site as it appeared in 2000. This web page listed

the persons involved in Freenet in 2000, including me. Attachment B is still

available on the Internet at the following URL:

https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.

php?page=people

11. In 2000, I co-authored a paper on Freenet, titled “Freenet: A

Distributed Anonymous Information Storage and Retrieval System.” My co-

authors were Ian Clarke, Oskar Sandberg, and Theodore Hong, who were also

listed as “People Involved in Freenet” in Attachment B.

Microsoft Exhibit 1067

DECLARATION OF BRANDON WILEY
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,590,752 B2

- 4 -

12. Attachment C is a true and correct copy of the “Workshop Paper”

page on the on the http://freenet.sourceforge.net web site,

http://freenet.sourceforge.net/index.php?page=theoppr, cached by the Internet

Archive on December 12, 2000 (the pictures for the logo and clickable links, and

pictures in the paper are missing). I recognize and recall the format and content of

the web page in Attachment C as a true and correct copy of the “Workshop Paper”

page of the Freenet project Sourceforge page http://freenet.sourceforge.net web site

as it appeared in July 2000 (the pictures for the logo and clickable links, and

pictures in the paper are missing). For example, the page explains that it contained

the paper that “will appear” in the ICSI Workshop on Design Issues in Anonymity

and Unobservability, on July 25-26, 2000. This web page listed contained the

version of the Freenet paper marked July 1, 2000 (the pictures in the paper are

missing). The bottom of the page in 2000 indicated that Theodore Hong did the

translation of the paper into a postable format on July 4, 2000, and I posted the

paper in html, postscript, and gzip-compressed postscript formats no later than a

few days after it was converted. I specifically recall that a posted the paper on

Sourceforge prior to the ICSI Workshop in July 2000. Links on the page allowed

the user to download the paper in postscript format

(http://freenet.sourceforge.net/icsi.ps), and in a gzip-compressed file containing a

Microsoft Exhibit 1067

DECLARATION OF BRANDON WILEY
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,590,752 B2

- 5 -

postscript format version of the paper (http://freenet.sourceforge.net/icsi.ps.gz).

Postscript was a common publishing format for academic papers in 2000.

Postscript format files can be converted to Adobe Acrobat PDF or viewed using

programs such as Ghostscript. Attachment C is still available on the Internet at the

following URL:

https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.

php?page=theoppr. I also recall that I accessed the paper shown in Attachment C

via the sourceforge website and the URL

http://freenet.sourceforge.net/index.php?page=theoppr at least once in July 2000.

13. The html, postscript, and gzip-compressed postscript versions of the

July 1, 2000 version of the Freenet paper were public and available for download

within a few days afterward they were created, at the following public URL:

http://freenet.sourceforge.net/index.php?page=theoppr. Members of the public

read the html version of the paper or downloaded the postscript versions of the

paper.

14. In 2000, the Freenet sourceforge web site

http://freenet.sourceforge.net was well-known by the public, including researchers

and software developers. The web site and its contents were cited in academic

papers published in 2000. I regularly used sourceforge and the freenet sourceforge

Microsoft Exhibit 1067

DECLARATION OF BRANDON WILEY
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,590,752 B2

- 6 -

site around the time that I posted the Freenet paper. I used sourceforge regularly to

search and download materials.

15. Attachment D is a true and correct version of the gzip-compressed file

containing a postscript format version of the July 1, 2000 version of the Freenet

paper (http://freenet.sourceforge.net/icsi.ps.gz). Attachment D is still available on

the Internet at the following URL:

https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/icsi.ps.

gz

III. FREENET PAPER ICSI WORKSHOP PUBLICATION

16. The July 1, 2000 version of the Freenet paper in Attachments C and D

was the version provided to Professor Hannes Federrath for the ICSI Workshop on

Design Issues in Anonymity and Unobservability (“ICSI Workshop”), held on July

25-26, 2000 in Berkeley California.

17. Professor Hannes Federrath was the editor of the preproceedings for

the ICSI Workshop. The preproceedings was a copy of the papers to be presented

at the ICSI Workshop, and was made publicly available before the beginning of the

ICSI Workshop, so that attendees could review the papers prior to attending the

ICSI Workshop.

Microsoft Exhibit 1067

DECLARATION OF BRANDON WILEY
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,590,752 B2

- 7 -

18. Attachment E is a true and correct copy of the Preproceedings of the

ICSI Workshop on Design Issues in Anonymity and Unobservability, July 25-26,

2000. Pages 43-58 of Attachment E contain a true and correct copy of the July 1,

2000 version of the Freenet paper in Attachments D, reformatted for pagination.

19. The preproceedings were available before or at the conference to all

participants.

20. The ICSI Workshop was open to all persons willing to register and

pay the limited ($110) fee to attend.

21. The International Computer Science Institute (“ICSI”) promoted the

conference and encouraged broad attendance by interested academics and industry

members.

22. The ICSI Workshop was announced in advance and promoted in

technical literature and web sites pertaining to the general topic of the conference.

IV. FREENET PAPER ICSI WORKSHOP PUBLICATION

23. The ICSI Workshop proceedings were published by Springer in 2001.

The ICSI Workshop proceedings contained a reformatted version of the same Free

paper published in the preproceedings and presented at the ICSI Workshop.

24. Attachment F is a true and correct copy of the Springer web site

showing the Freenet Paper, available at the following URL:

Microsoft Exhibit 1067

DECLARATION OF BRANDON WILEY
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,590,752 B2

- 8 -

http://link.springer.com/chapter/10.1007%2F3-540-44702-4_4. The paper was

published on pages 46-66 of Designing Privacy Enhancing Technologies, Volume

2009 of the series Lecture Notes in Computer Science (Mar. 16, 2001) (“ICSI

Workshop Proceedings”). The paper and ICSI Workshop Proceedings were

available for purchase from Springer as of their publication date in March 2001.

25. Attachment G is a true and correct copy of the Freenet paper

published in the ICSI Workshop Proceedings.

26. I hereby declare that all statements made herein of my own

knowledge are true and that all statements made on information and belief are

believed to be true; and further that these statements were made with the

knowledge that willful false statements and the like so made are punishable by fine

or imprisonment, or both, under 18 U.S.C. § 1001.

27. I declare under penalty of perjury that the foregoing is true and

correct.

Microsoft Exhibit 1067

DECLARATION OF BRANDON WILEY
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,590,752 B2

- 9 -

Executed on _21__ day of _10__, 2015 in ____Austin, Texas_______.

/Brandon Wiley/

Brandon Wiley

Attachment A: Curriculum Vitae

Attachment B: Internet Archive Wayback Machine December 12, 2000 capture

of “The Free Network Project: People Involved in Freenet”

web page of the Freenet Sourceforge website,

http://freenet.sourceforge.net/index.php?page=people, available

at:

 https://web.archive.org/web/20001212162400/http://freenet.sou

rceforge.net/index.php?page=people (last accessed Sept. 20,

2015)

Attachment C: Internet Archive Wayback Machine December 12, 2000 capture

of “The Free Network Project Workshop Paper” page of the

Freenet Sourceforge website,

http://freenet.sourceforge.net/index.php?page=theoppr,

Microsoft Exhibit 1067

DECLARATION OF BRANDON WILEY
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW
OF U.S. PATENT NO. 7,590,752 B2

- 10 -

available at:

https://web.archive.org/web/20001212195200/http://freenet.sou

rceforge.net/index.php?page=theoppr (last accessed Sept. 20,

2015)

Attachment D: I. Clarke, O. Sandberg, B. Wiley, and T. Hong, Freenet: A

Distributed Anonymous Information Storage and Retrieval

System, (Jul. 2000), available at:

https://web.archive.org/web/20001212195200/http://freenet.sou

rceforge.net/icsi.ps.gz (last accessed Sept. 20, 2015)

Attachment E: Preproceedings of the Workshop on Design Issues in

Anonymity and Unobservability, International Computer

Science Institute, July 25-26, 2000, Berkeley, California (Jul.

2000), available at

http://www.icsi.berkeley.edu/ftp/pub/techreports/2000/tr-00-

011.pdf

Microsoft Exhibit 1067

Brandon Wiley
Phone (512) 750-8474 • E-mail jobs@blanu.net

Education

University of Texas at Austin
Ph.D. in Information Studies. Minor in Cognitive Science. 2010-Present

M.A. in Convergent Media. Minor in Special Education. 2003-2005

B.S. in Convergent Media 1997- 2001
B.A. in Plan II Liberal Arts Honors. Minors in Computer Science, Japanese, and English.

Experience

Circumvention Technology Intern​ - Google Ideas ​ ​ Summer 2015

• Developed Protean, a network protocol obfuscation system for UDP traffic
• Added cutting edge protocol obfuscation to uProxy, a Chrome extension for
 circumvention of Internet filtering
• Fostered a relationship between Google Ideas and the open source circumvention technology
 community

Circumvention Technology Developer​ - Internews ​ ​ 2013-2015

• Developed tools for network traffic collection and analysis to detect filtering
• Developed a polymorphic network traffic encoding library for Android
• Worked with Tor and the Guardian Project on Pluggable Transports

Scalability Consultant​ - Freelance ​ ​ 2008-2013

• Provided frontend and backend website scaling consulting
• Provided development process scaling such as implementing version control and cloud hosting

 • Provided functional testing, unit testing, and continuous integration consulting
 • Scaled a variety of frontend and backend systems: Rails, PHP, Java, Web, iOS, and Android

Founder ​- Ringlight ​2007-2008

• Developed peer-to-peer personal filesharing application
• Developed Windows, OS X, and Linux native clients
• Managed website design and web application UI and UX development

BitTorrent, Inc - ​Director of Product Management 2006-2007

• Managed swarm-based download and streaming library development
• Managed enterprise dashboard design
• Managed embedded licensing program

Senior Software Engineer - ​Onion Networks 2005-2006

• Implemented UPnP integration
• Developing mechanisms for swarm-enabled content from RSS feeds
• Adapted and packaged enterprise swarming download acceleration for the desktop

Software Engineer​ - Enspire Learning 2004-2005

• Redesigned network transport, object cache, and message routing layers for multiplayer
collaborative Executive Challenge simulation
 • Profiled and optimized Executive challenge simulation for speed, memory usage, and
bandwidth usage
• Administered RedHat and Debian Linux servers
• Created backend systems and database integration in Java, Visual Basic, and PHP

 ​Senior Software Engineer - ​iMoving.com 2003- 2004
• Designed and implemented a back-end system for online locator referrals

ATTACHMENT A

Microsoft Exhibit 1067

• Managed hosting for high-traffic mail servers and 80 websites

Software Engineer​ - University of Texas, Automated Body Project ​2001- 2003
• Oversaw hiring, allocation of funds, equipment acquisition, and project direction
• Designed and developed an architecture for distributed processing of data streams
• Implemented an embedded web server for serial and 1-wire to HTTP bridging
• Designed a wearable computer system for dance performance

Softare Engineering Intern​ - AgentGo.com 2000-2001

• Evaluated EJB application servers for purchase
• Designed and implemented a WAP-based Jabber client for multi-network instant messaging
via cell phone
• Installed and administered Red Hat Linux machines
• Configured and administered Linux firewall/router
• Configured and administered Solaris machines

Consulting

Internews, Lantern, Google Ideas 2015
Internews, MyOwnMed, Sauce Labs 2014
Minicore Studios, Internews, Golden Frog 2013
Minicore Studios 2012
FriendOrFollow, SauceLabs, Tippr 2011
MRI, PizzaQuest, The Daily Texan 2010
Consumer’s Union, FeaturedUsers, Qwizzy’s World, Thinkwell, Ticketbud 2009
BitTorrent, Inc. 2008

Open Source

Project Manager, Core Developer​ - Dust 2009-2015

• Developed a novel method of obfuscating network traffic using polymorphic encodings
• Performed analysis on the capabilities of commercial filtering hardware devices
• Performed analysis on network traffic through a field study in 5 countries
• Developed Bayesian models of network traffic features used for protocol classification

Software Developer
Google Summer of Code / The Tor Project and the Electronic Frontier Foundation ​2012

• Collaborated with Tor developers on refining the Pluggable Transport API for protocol
obfuscation methods
• Ported the Tor Pluggable Transport library from C to Python

Software Developer
Google Summer of Code / The Tor Project and the Electronic Frontier Foundation ​ 2011

• Developed a suite of tools for testing filtering circumvention tools
• Developed simulated adversaries using Bayesian statistical modeling
• Performed analysis of Tor pluggable transports using simulated adversaries

Mentor - ​Google Summer of Code / ACTLab TV ​2004

• Mentored a student with no programming experience in Python development
• Oversaw development of BitTorrent-based self-publication application
• In a Google Tech Talk, Van Jacobson referred to this work as “some wonderful things in
distributed networking”.
• My mentee received a call from Sequoia Capital seeking to provide venture capital for the
commercialization of this project but declined.

President and Member of the Board of Directors
Foundation for Decentralization Research ​ ​2003-2004

• Founded a 501(c)3 non-profit foundation for the research and promotion of decentralized
technologies for the public good
• Managed administration and fundraising

ATTACHMENT A

Microsoft Exhibit 1067

Project Manager, Core Developer​ - Alluvium 2002- 2003

• Developed an application for peer-to-peer streaming internet audio broadcasts using
swarmcast and RSS playlist files.

Project Manager, Core Developer ​ - Tristero 2000- 2002

• Designed and developed a framework for peer-to-peer web services.
• Wrote standards specifications for P2P core web services.Designed and implemented
metadata search engine web service using XML-RPC and RDF standard data formats.
• Designed and implemented a database for storage and retrieval of RDF metadata, with
multiple backends: BerkeleyDB, SQL, Lucene

Project Manager, Core Developer - ​Momoko 2000-2001
• Implemented Application Server, application deployment platform, methodology for writing
transparently persistent objects, tactics for writing transparent distributed applications.

Co-Founder, Project Manager, Core Developer ​ - The Freenet Project 1998-2001

• Oversaw allocation of funds and direction of implementation.
• Managed high-profile open source project with many developers, long development cycle.
• Designed a peer-to-peer anonymous, decentralized file distribution network.
• Developed methodologies for secure publication and retrieval of data in a hostile network and
tactics for scalable publication and retrieval of data in a large, volatile network.

Publications

Wiley, B (2011). “Blocking-resistant protocol classification using bayesian model selection.” Technical
report, School of Information, University of Texas at Austin.

Wiley, B (2011). “Dust: A blocking-resistant internet transport protocol.” Technical report, School of
Information, University of Texas at Austin.

Crow, J., Broussard, R., Dong, L., Finn, J., & Wiley, B. & Geisler, G. (2012). “A Synthesis of Research on ICT
Adoption and Use by Medical Professionals in Sub-Saharan Africa.” 3rd ACM International Health
Informatics Symposium.

Wiley, B. (2004). “Arcadia: A Blueprint for Censorship Resistance on the Internet.” Master’s Thesis,
University of Texas at Austin. http://blanu.net/Arcadia.pdf

Hazel, S., Wiley, B. (2002). "Achord: A Variant of the Chord Lookup Service for Use in Censorship Resistant
Peer-to-Peer Publishing Systems." ​Proceedings of the 1st International Peer To Peer Systems Workshop

Clarke, I., Miller, S., Hong, TW., Sandberg, O., Wiley, B. (2002). "Protecting Free Expression Online With
Freenet." ​IEEE Internet Computing​: 40-49.

Wiley, B. (2001). "Interoperability through Gateways." ​Peer-to-Peer : Harnessing the Power of Disruptive
Technologies​. Ed. Andy Oram. O'Reilly Media. 381-392.

Clarke, I., Sandberg, O., Wiley, B., Hong, TW. (2000). "Freenet: A distributed anonymous information
storage and retrieval system." ​In Workshop on Design Issues in Anonymity and Unobservability​: 45-46.

ATTACHMENT A

Microsoft Exhibit 1067

Conferences and Presentations

SXSW V2V Advisory Board 2013-2015
SXSW Advisory Board 2011-2014
University of the Incarnate Word Convergent Media Guest Lecture 2010-2015
University of Illinois Urbana-Champaigne Reflections | Projections Invited Speaker 2014
Austin Mini Maker Faire Invited Speaker 2014
Nerd Nite 54: Serious Fun, Invited Speaker 2014
Defcon 21 2013
Conference Chair of Culture, Art, and Technology in the 22nd Century 2012-2013
Privacy Enhancing Technologies 2011
SXSW Ignite 2011
SXSW 2010
SXSW Accelerator 2009
SD2020 2008
Startup Camp Austin 2008
SXSW 2007
GDC 2007
Codecon 2002-2006
Asilomar 2005
SXSW 2000-2004
FOO Camp 2003
Black Hat 2002
1st International Peer to Peer Systems Workshop 2002
Defcon 2000-2002
Emerging Technologies (ETech) 2000-2001
Workshop on Design Issues in Anonymity and Unobservability 2000

Technical Writing

Adisson-Wesley, ​Author ​2000-2001

• Authored 5 chapters in Decentralized Computing: Design and Implementation concerning
discovery, name resolution, searching, interoperability, and Tristero.

Hungry Minds, ​Author ​2000- 2001

• Authored two chapters in Red Hat Linux Networking and Administration concerning
connecting to Appletalk networks and backing up and restoring the filesystem

O'Reilly, ​Author ​2000- 2001

• Authored a chapter in Peer to Peer: Harnessing the Potential of a Disruptive Technology
concerning interoperability of peer-to-peer systems

Phone (512) 750-8474 • E-mail jobs@blanu.net

ATTACHMENT A

Microsoft Exhibit 1067

9/20/2015 Freenet ­ People Involved in Freenet

https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=people 1/1

The Free Network Project ­ People Involved in Freenet

Freenet
logo T h e F r e e n e t P r o j e c t

"Re­Wiring the Internet"

Sections
­Front Page
­SiteMap
­About
­Freenet News
­Download
­Documentation
­Development
­Translations

About

­Frequently Asked Questions
­Freenet Features
­Freenet Links
­Freenet Mailing Lists
­People Involved in Freenet
­Public Keys
­Publicity

Thanks To
Hosted by:

Domains donated by:
Edward Alfert

Mousetracker.com

People Involved in Freenet
Ian Clarke [key] [web]
Project founder and coordinator.

Brandon Wiley [key]

Ken Geis

Steven Hazel

Ragnar Hojland Espinosa

Adam Langley [key]
Slowly hacking a C++ server

Oskar Sandberg

Michael Scheuner

Lee Daniel Crocker [key] [web]
Current maintainer of the FAQ and the Protocol Specification.

Theodore Hong [key]

Scott Miller [key]
Cryptography and security.

Stephen Blackheath [key]
GUI client.

http://freenet.sourceforge.net/index.php?page=people Go OCT DEC AUG

12
1999 2000 2002

36 captures
11 May 00 ­ 12 Oct 12

ATTACHMENT B

Microsoft Exhibit 1067

https://web.archive.org/web/20001212162400/http://216.167.120.50/
https://web.archive.org/web/20001212162400/http://www.fipr.org/
https://web.archive.org/web/20001212162400/http://www.eff.org/
https://web.archive.org/web/20001212162400/http://www.ctd.org/
https://web.archive.org/web/20001212162400/http://www.maxfreedom.com/
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=front
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=sect_sitemap
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=sect_About
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=sect_Freenet_News
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=sect_Download
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=sect_Documentation
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=sect_Development
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=sect_Translations
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=faq
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=features
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=links
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=lists
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=people
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=pubkeys
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=publicity
https://web.archive.org/web/20001212162400/http://www.sourceforge.net/
https://web.archive.org/web/20001212162400/http://www.mousetracker.com/
mailto:I.Clarke@dynamicblue.com
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=pubkeys#ian
https://web.archive.org/web/20001212162400/http://www.octayne.com/
mailto:blanu@users.sourceforge.net
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=pubkeys
mailto:kgeis@users.sourceforge.net
mailto:cherub@users.sourceforge.net
mailto:rhojland@users.sourceforge.net
mailto:agl@users.sourceforge.net
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=pubkeys
mailto:hobbex@users.sourceforge.net
mailto:michaels@users.sourceforge.net
mailto:lcrocker@users.sourceforge.net
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=pubkeys
https://web.archive.org/web/20001212162400/http://www.piclab.com/lee/
https://web.archive.org/web/20001212162400/http://www.doc.ic.ac.uk/~twh1/
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=pubkeys
mailto:scgmille@indiana.edu
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=pubkeys
mailto:stephen@blacksapphire.com
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=pubkeys
https://web.archive.org/web/
https://web.archive.org/web/20001001075506/http://freenet.sourceforge.net/index.php?page=people
https://web.archive.org/web/20010814072242/http://freenet.sourceforge.net/index.php?page=people
https://web.archive.org/web/20001001075506/http://freenet.sourceforge.net/index.php?page=people
https://web.archive.org/web/20010814072242/http://freenet.sourceforge.net/index.php?page=people
https://web.archive.org/web/20020209042623/http://freenet.sourceforge.net/index.php?page=people
https://web.archive.org/web/20001212162400*/http://freenet.sourceforge.net/index.php?page=people
https://web.archive.org/web/20001212162400/http://freenet.sourceforge.net/index.php?page=people

9/20/2015 Freenet ­ Workshop Paper

https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=theoppr 1/11

The Free Network Project ­ Workshop Paper

Freenet
logo T h e F r e e n e t P r o j e c t

"Re­Wiring the Internet"

Sections
­Front Page
­SiteMap
­About
­Freenet News
­Download
­Documentation
­Development
­Translations

Documentation

­Creating websites in Freenet
­Client Writer's Documentation
­Crypto Layer
­How Freenet Works
­Original Paper [gzip]
­Proposed Ideas
­Installation
­Javadocs
­Guidelines for key construction
­Bestiary of Keys
­Metadata standards
­Censorship and Copyright
­Freenet Protocol
­0.3 Protocol
­Key Indexes
­Workshop Paper
­Proposed update mechanisms
­User­contributed documentation
­Freenet on Win2K
­Install on Windows

Thanks To
Hosted by:

Domains donated by:
Edward Alfert

Mousetracker.com

Workshop Paper
The following paper was written by Theodore Hong and will appear in the ICSI Workshop on Design Issues in
Anonymity and Unobservability, July 25­26, Berkeley, California. It is also available in postscript [gzip].

Freenet: A Distributed Anonymous Information
Storage and Retrieval System

Ian Clarke
School of Artificial Intelligence,
Division of Informatics,
University of Edinburgh,
Edinburgh,
Scotland.
i.clarke@dynamicblue.com

Oskar Sandberg
Department of Numerical Analysis and Computer
Science
Royal Institute of Technology
SE­100 44 Stockholm
Sweden
md98­osa@nada.kth.se

Brandon Wiley
College of Communication
University of Texas at Austin
Austin, TX 78712
USA
blanu@uts.cc.utexas.edu

Theodore W. Hong1
Department of Computing
Imperial College of Science, Technology and Medicine
180 Queen's Gate, London SW7 2BZ
United Kingdom
t.hong@doc.ic.ac.uk

July 1, 2000

Abstract:

We describe Freenet, a peer­to­peer network application that permits the publication, replication, and retrieval of
data while protecting the anonymity of both authors and readers. Freenet operates as a network of identical nodes
that collectively pool their storage space to store data files, and cooperate to route requests to the most likely
physical location of data. No broadcast search or centralized location index is employed. Files are referred to in a
location­independent manner, and are dynamically replicated in locations near requestors and deleted from locations
where there is no interest. It is infeasible to discover the true origin or destination of a file passing through the
network, and difficult for a node operator to determine or be held responsible for the actual physical contents of her
own node.

Introduction
Related work
Architecture

Retrieving data
Storing data
Managing data

Protocol details
Naming, searching, and updating
Performance simulation

Retrieval success rate
Retrieval time

Security
Conclusions
Acknowledgements
Bibliography
About this document ...

http://freenet.sourceforge.net/index.php?page=theoppr Go NOV DEC APR

12
1999 2000 2002

32 captures
12 Dec 00 ­ 15 Mar 14

Close

Help

ATTACHMENT C

Microsoft Exhibit 1067

https://web.archive.org/web/20001212195200/http://216.167.120.50/
https://web.archive.org/web/20001212195200/http://www.fipr.org/
https://web.archive.org/web/20001212195200/http://www.eff.org/
https://web.archive.org/web/20001212195200/http://www.ctd.org/
https://web.archive.org/web/20001212195200/http://www.maxfreedom.com/
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=front
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=sect_sitemap
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=sect_About
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=sect_Freenet_News
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=sect_Download
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=sect_Documentation
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=sect_Development
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=sect_Translations
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=authoring
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=clientdoc
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=fncrypto
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=how-freenet-works
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/freenet.pdf
https://web.archive.org/web/20001212195200/http://demon.co.uk/fn/freenet.pdf.gz
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=ideas
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=installation
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/jdoc/
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=key_const
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=keys
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=metadata-standards
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=philosophy
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=protocol
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=r3proto
https://web.archive.org/web/20001212195200/http://uts.cc.utexas.edu/~blanu/keyindex.html
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=theoppr
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=update-proposals
https://web.archive.org/web/20001212195200/http://freenet.netunify.com/
https://web.archive.org/web/20001212195200/http://freenet.netunify.com/15
https://web.archive.org/web/20001212195200/http://freenet.netunify.com/13
https://web.archive.org/web/20001212195200/http://www.sourceforge.net/
https://web.archive.org/web/20001212195200/http://www.mousetracker.com/
https://web.archive.org/web/20001212195200/http://www.doc.ic.ac.uk/~twh1/
https://web.archive.org/web/20001212195200/http://www.icsi.berkeley.edu/~hannes/ws.html
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/icsi.ps
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/icsi.ps.gz
mailto:i.clarke@dynamicblue.com
mailto:md98-osa@nada.kth.se
mailto:blanu@uts.cc.utexas.edu
mailto:t.hong@doc.ic.ac.uk
https://web.archive.org/web/
https://web.archive.org/web/20010409182315/http://freenet.sourceforge.net/index.php?page=theoppr
https://web.archive.org/web/20010409182315/http://freenet.sourceforge.net/index.php?page=theoppr
https://web.archive.org/web/20020405022032/http://freenet.sourceforge.net/index.php?page=theoppr
https://web.archive.org/web/20001212195200*/http://freenet.sourceforge.net/index.php?page=theoppr
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=theoppr
http://faq.web.archive.org/

9/20/2015 Freenet ­ Workshop Paper

https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=theoppr 2/11

Introduction
Computer networks are rapidly growing in importance as a medium for the storage and exchange of information.
However, current systems afford little privacy to their users, and typically store any given data item in only one or a
few fixed places, creating a central point of failure. Because of a continued desire among individuals to protect the
privacy of their authorship or readership of various types of sensitive information[24], and the undesirability of
central points of failure which can be attacked by opponents wishing to remove data from the system[10,23] or
simply overloaded by too much interest[1], systems offering greater security and reliability are needed.

We are developing Freenet, a distributed information storage and retrieval system designed to address these concerns
of privacy and availability. The system operates as a location­independent distributed file system across many
individual computers that allows files to be inserted, stored, and requested anonymously. There are five main design
goals:

Anonymity for both producers and consumers of information
Deniability for storers of information
Resistance to attempts by third parties to deny access to information
Efficient dynamic storage and routing of information
Decentralization of all network functions

The system is designed to respond adaptively to usage patterns, transparently moving, replicating, and deleting files
as necessary to provide efficient service without resorting to broadcast searches or centralized location indexes. It is
not intended to guarantee permanent file storage, although it is hoped that enough nodes will join with enough
storage capacity that most files will be able to remain indefinitely. In addition, the system operates at the application
layer and assumes the existence of a secure transport layer, although it is transport­independent. It does not seek to
provide anonymity for general network usage, only for Freenet file transactions.

Freenet is currently being developed as a free software project on Sourceforge, and a preliminary implementation
can be downloaded from http://freenet.sourceforge.net/. It grew out of work originally done by the first author
at the University of Edinburgh[11].

Related work
Several strands of related work in this area can be distinguished. Anonymous point­to­point channels based on
Chaum's mix­net scheme[7] have been implemented for email by the Mixmaster remailer[19] and for general
TCP/IP traffic by onion routing[17] and Freedom[27]. Such channels are not in themselves easily suited to one­to­
many publication, however, and are best viewed as a complement to Freenet since they do not provide file access
and storage.

Anonymity for consumers of information in the web context is provided by browser proxy services such as the
Anonymizer[5], although they provide no protection for producers of information and do not protect consumers
against logs kept by the services themselves. Private information retrieval schemes[9] provide much stronger
guarantees for information consumers, but only to the extent of hiding which piece of information was retrieved
from a particular server. In most cases, the fact of contacting a particular server in itself reveals much about the
information retrieved, which can only be counteracted by having each server hold all information (naturally this
scales poorly). The closest work to our own is Reiter and Rubin's Crowds system[21], which uses a similar method
of proxying requests for consumers, although Crowds does not itself store information and does not protect
information producers. Berthold et al. propose Web Mixes[6], a stronger system which uses message padding and
reordering and dummy messages to increase security, but again does not protect information producers.

The Rewebber[22] provides a measure of anonymity for producers of web information by means of an encrypted
URL service which is essentially the inverse of an anonymizing browser proxy, but has the same difficulty of
providing no protection against the operator of the service itself. TAZ[16] extends this idea by using chains of nested
encrypted URLs which successively point to different rewebber servers to be contacted, although this is vulnerable
to traffic analysis using replay. Both rely on a single server as the ultimate source of information. Publius[26]
enhances availability by distributing files as redundant shares among n webservers, only k of which are needed to
reconstruct a file; however, since the identity of the servers themselves is not anonymized, an attacker might remove
information by forcing the closure of n­k+1 servers. The Eternity proposal[4] seeks to archive information
permanently and anonymously, although it lacks specifics on how to efficiently locate stored files, making it more
akin to an anonymous backup service. Free Haven[12] is an interesting anonymous publication system which uses a
trust network and file trading mechanism to provide greater server accountability while maintaining anonymity.

distributed.net[13] demonstrated the concept of pooling computer resources among multiple users on a large scale
for CPU cycles; other systems which do the same for disk space are Napster[20] and Gnutella[15], although the
former relies on a central server to locate files and the latter employs an inefficient broadcast search. Neither one
replicates files. Intermemory[8] and India[14] are cooperative distributed fileserver systems intended for long­term
archival storage along the lines of Eternity, in which files are split into redundant shares and distributed among many
participants. Akamai[2] provides a service which replicates files at locations near information consumers, but is not
suitable for producers who are individuals (as opposed to corporations). None of these systems attempt to provide
anonymity.

ATTACHMENT C

Microsoft Exhibit 1067

https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/

9/20/2015 Freenet ­ Workshop Paper

https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=theoppr 3/11

Architecture
Freenet is implemented as a peer­to­peer network of nodes that query one another to store and retrieve data files,
which are named by location­independent keys. Each node maintains its own local datastore which it makes
available to the network for reading and writing, as well as a dynamic routing table containing addresses of other
nodes and the keys that they are thought to hold. It is intended that most users of the system will run nodes, both to
provide security guarantees against inadvertently using a hostile foreign node and to increase the storage capacity
available to the network as a whole.

The system can be regarded as a cooperative distributed filesystem incorporating location independence and
transparent lazy replication. Just as systems such as distributed.net[13] enable ordinary users to share unused CPU
cycles on their machines, Freenet enables users to share unused disk space. However, where distributed.net uses
those CPU cycles for its own purposes, Freenet is directly useful to users themselves, acting as an extension to their
own hard drives.

The basic model is that queries are passed along from node to node in a chain of proxy requests, with each node
making a local routing decision in the style of IP routing about where to send the query next (this varies from query
to query). Nodes know only their immediate upstream and downstream neighbors in the chain. Each query is given a
``hops­to­live'' count which is decremented at each node to prevent infinite chains (analogous to IP's time­to­live).
Each query is also assigned a pseudo­unique random identifier, so that nodes can prevent loops by rejecting queries
they have seen before. When this happens, the immediately preceding node simply chooses a different node to
forward to. This process continues until the query is either satisfied or exceeds its hops­to­live limit. Then, the
success or failure result is passed back up the chain to the sending node.

No node is privileged over any other node, so no hierarchy or central point of failure exists. Joining the network is
simply a matter of discovering the address of one or more existing nodes through out­of­band means, then starting to
send messages. Files are immutable at present, although file updatability is on the agenda for future releases. In
addition, the namespace is currently flat, consisting of the space of 160 bit SHA­1[3] hashes of descriptive text
strings, although support for a richer namespace is a priority for development. See section 5 for further discussion of
updating and naming.

Retrieving data

To retrieve data, a user hashes a short descriptive string (for example, text/philosophy/sun‐tzu/art‐of‐war) to
obtain a file key. (See section 5 for details on how descriptive strings corresponding to files can be discovered.) She
then sends a request message to her own node specifying that key and a hops­to­live value. When a node receives a
request, it first checks its own store for the data and returns it if found, together with a note saying it was the source
of the data. If not found, it looks up the nearest key in its routing table to the key requested and forwards the request
to the corresponding node. If that request is ultimately successful and returns with the data, the node will pass the
data back to the upstream requestor, cache the file in its own datastore, and create a new entry in its routing table
associating the actual data source with the requested key. A subsequent request for the same key will be immediately
satisfied from the local cache; a request for a ``similar'' key (determined by lexicographic distance) will be
forwarded to the previously successful data source. Because maintaining a table of data sources is a potential
security concern, any node along the way can unilaterally decide to change the reply message to claim itself or
another arbitrarily­chosen node as the data source.

If a node cannot forward a request to its preferred downstream node because the target is down or a loop would be
created, the node having the second­nearest key will be tried, then the third­nearest, and so on. If a node runs out of
candidates to try, it reports failure back to its upstream neighbor, which will then try its second choice, etc. In this
way, a request operates as a steepest­ascent hill­climbing search with backtracking. If the hops­to­live count is
exceeded, a failure result is propagated back to the original requestor without any further nodes being tried. Nodes
may unilaterally curtail excessive hops­to­live values to reduce network load. They may also forget about pending
requests after a period of time to keep message memory free.

Figure 1 depicts a typical sequence of request messages.

\begin{figure}\centering \psfig{figure=icsi­
fig1.eps,bbllx=145bp,bblly=535bp,bburx=440bp,bbury=675bp,clip=}\ \end{figure}

ATTACHMENT C

Microsoft Exhibit 1067

9/20/2015 Freenet ­ Workshop Paper

https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=theoppr 4/11

Figure 1: A typical request sequence.

The user initiates a request at node a. Node a forwards the request to node b, which forwards it to node c. Node c is
unable to contact any other nodes and returns a backtracking ``request failed'' message to b. Node b then tries its
second choice, e, which forwards the request to f. Node f forwards the request to b, which detects the loop and
returns a backtracking failure message. Node f is unable to contact any other nodes and backtracks one step further
back to e. Node e forwards the request to its second choice, d, which has the data. The data is returned from d via e
and b back to a, which sends it back to the user. The data is also cached on e, b, and a.

This mechanism has a number of effects. Most importantly, we hypothesize that the quality of the routing should
improve over time, for two reasons. First, nodes should come to specialize in locating sets of similar keys. If a node
is listed in routing tables under a particular key, it will tend to receive mostly requests for keys similar to that key. It
is therefore likely to gain more ``experience'' in answering those queries and become better informed in its routing
tables about which other nodes carry those keys. Second, nodes should become similarly specialized in storing
clusters of files having similar keys. Because forwarding a request successfully will result in the node itself gaining a
copy of the requested file, and most requests will be for similar keys, the node will mostly acquire files with similar
keys. Taken together, these two effects should improve the efficiency of future requests in a self­reinforcing cycle,
as nodes build up routing tables and datastores focusing on particular sets of keys, which will be precisely those keys
that they are asked about.

In addition, the request mechanism will cause popular data to be transparently replicated by the system and mirrored
closer to requestors. For example, if a file that is originally located in London is requested in Berkeley, it will
become cached locally and provide faster response to subsequent Berkeley requests. It also becomes copied onto
each computer along the way, providing redundancy if the London node fails or is shut down. (Note that ``along the
way'' is determined by key closeness and does not necessarily have geographical relevance.)

Finally, as nodes process requests, they create new routing table entries for previously­unknown nodes that supply
files, increasing connectivity. This helps new nodes to discover more of the network (although it does not help the
rest of the network to discover them; for that, performing inserts is necessary). Note that direct links are created,
bypassing the intermediate nodes used. Thus, nodes that successfully supply data will gain routing table entries and
be contacted more often than nodes that do not.

Because hashes are used as keys, lexicographic closeness of keys does not imply any closeness of the original
descriptive strings and presumably, no closeness of subject matter of the files. This lack of semantic closeness is not
important, however, as the routing algorithm is based on knowing where keys are located, not where subjects are
located. That is, supposing text/philosophy/sun‐tzu/art‐of‐war hashes to AH5JK2, requests for this file can be
routed more effectively by creating clusters containing AH5JK1, AH5JK2, and AH5JK3, not by creating clusters for works
of philosophy. Indeed, the use of a hash is desirable precisely because philosophical works will be scattered across
the network, lessening the chances that failure of a single node will make all philosophy unavailable.

Storing data

Inserts follow a parallel strategy to requests. To insert data, a user picks an appropriate descriptive text string and
hashes it to create a file key. She then sends an insert message to her own node specifying the proposed key and a
hops­to­live value (this will determine the number of nodes to store it on). When a node receives an insert proposal,
it first checks its own store to see if the key is already taken. If the key is found, the node returns the pre­existing file
as if a request had been made for it. The user will thus know that a collision was encountered and can try again using
a different key, i.e. different descriptive text. (Although potentially the use of a hash might cause extra collisions, in
practice a high­quality hash of sufficient length should only cause collisions if the same initial descriptive text was
chosen.) If the key is not found, the node looks up the nearest key in its routing table to the key proposed and
forwards the insert to the corresponding node. If that insert causes a collision and returns with the data, the node will
pass the data back to the upstream inserter and again behave as if a request had been made (i.e. cache the file locally
and create a routing table entry for the data source).

If the hops­to­live limit is reached without a key collision being detected, an ``all clear'' result will be propagated
back to the original inserter. Note that for inserts, this is a successful result, in contrast to the request case. The user
then sends the data to insert, which will be propagated along the path established by the initial query and stored in
each node along the way. Each node will also create an entry in its routing table associating the inserter (as the data
source) with the new key. To avoid the obvious security problem, any node along the way can unilaterally decide to
change the insert message to claim itself or another arbitrarily­chosen node as the data source.

If a node cannot forward an insert to its preferred downstream node because the target is down or a loop would be
created, the insert backtracks to the second­nearest key, then the third­nearest, and so on in the same way as for
requests. If the backtracking returns all the way back to the original inserter, it indicates that fewer nodes than asked
for could be contacted. As with requests, nodes may curtail excessive hops­to­live values and/or forget about
pending inserts after a period of time.

This mechanism has three effects. First, newly inserted files are selectively placed on nodes already possessing files
with similar keys. This reinforces the clustering of keys set up by the request mechanism. Second, new nodes can
tell the rest of the network of their existence by inserting data. Third, an attempt by an attacker to supplant an
existing file by deliberate insert collision (e.g., by inserting a corrupted or empty file under the same key) is likely to
simply spread the real file further, since the original file is propagated back on collision. (The use of a content­hash
key, described in section 5, makes such an attack infeasible altogether.)

ATTACHMENT C

Microsoft Exhibit 1067

9/20/2015 Freenet ­ Workshop Paper

https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=theoppr 5/11

Managing data

All information storage systems must deal with the problem of finite storage capacity. Individual Freenet node
operators can configure the amount of storage to dedicate to their datastores. Node storage is managed as an LRU
(Least Recently Used) cache[25], with data items kept sorted in decreasing order by time of most recent request (or
time of insert, if an item has never been requested). When a new file arrives (from either a new insert or a successful
request) which would cause the datastore to exceed the designated size, the least recently used files are evicted in
order until there is room. The impact on availability is mitigated somewhat by the fact that the routing table entries
created when the evicted files first arrived will remain for a time, potentially allowing the node to later get new
copies from the original data sources. (Routing table entries are also eventually deleted in a similar fashion as the
table fills up, although they will be retained longer since they are smaller.)

Strictly speaking, the datastore is not a cache, since the set of datastores is all the storage that there is, i.e. there is no
``permanent'' copy which is being duplicated. Once all the nodes have decided, collectively speaking, to drop a
particular file, it will no longer be available to the network. In this respect, Freenet differs from the Eternity service,
which seeks to provide guarantees of file lifetime.

This mechanism has an advantageous side, however, since it allows outdated documents to fade away after being
superseded by newer documents, thus alleviating some of the problem of immutable files. If an outdated document is
still used and considered valuable for historical reasons, it will stay alive precisely as long as it continues to be
requested.

For political or legal reasons, it may be desirable for node operators not to explicitly know the contents of their
datastores. Therefore, it is recommended that all inserted files be encrypted by their original unhashed descriptive
text strings in order to obscure their contents. Of course, this does not secure the file­­that would be impossible since
a requestor (potentially anyone) must be capable of decrypting the file once retrieved. Rather, the objective is that
the node operator can plausibly deny any knowledge of the contents of her datastore, since all she knows a priori is
the hashed key and its associated encrypted file. The hash cannot feasibly be reversed to reveal the unhashed
description and decrypt the file. With effort, of course, a dictionary attack will reveal which keys are present­­as it
must in order for requests to work at all.

Protocol details
The Freenet protocol is packet­oriented and uses self­contained messages. Each message includes a transaction ID so
that nodes can track the state of inserts and requests. This design is intended to permit flexibility in the choice of
transport mechanisms for messages, whether they be TCP, UDP, or other technologies such as packet radio. For
efficiency, nodes are also able to send multiple messages over a persistent channel such as a TCP connection, if
available. Node addresses consist of a transport method plus a transport­specific identifier (such as an IP address and
port number), e.g. tcp/192.168.1.1:19114.

A Freenet transaction begins with a Request.Handshake message from one node to another, specifying the desired
return address of the sending2 node. (The return address may be impossible to determine from the transport layer
alone, or may use a different transport from that used to send the message.) If the remote node is active and
responding to requests, it will reply with a Reply.Handshake specifying the protocol version number that it
understands. Handshakes are remembered for a few hours, and subsequent transactions between the same nodes
during this time may omit this step.

All messages contain a randomly­generated 64­bit transaction ID, a hops­to­live counter, and a depth counter.
Although the ID cannot be guaranteed to be unique, the likelihood of a collision occurring during the transaction
lifetime among the limited set of nodes that it sees is extremely low. Hops­to­live is set by the originator of a
message and is decremented at each hop to prevent messages being forwarded indefinitely. To reduce the
information that an attacker can obtain from the hops­to­live value, messages do not automatically terminate after
hops­to­live reaches 1 but are forwarded on with finite probability (with hops­to­live again 1). Depth is incremented
at each hop and is used by a replying node to set hops­to­live high enough to reach a requestor. Requestors should
initialize it to a small random value to obscure their location. As with hops­to­live, a depth of 1 is not automatically
incremented but is passed unchanged with finite probability.

To request data, the sending node sends a Request.Data message specifying a transaction ID, initial hops­to­live and
depth, and a search key. The remote node will check its datastore for the key and if not found, will forward the
request to another node as described in section 3.1. Using the chosen hops­to­live count, the sending node starts a
timer for the expected amount of time it should take to contact that many nodes, after which it will assume failure.
While the request is being processed, the remote node may periodically send back Reply.Restart messages indicating
that messages were stalled waiting on network timeouts, so that the sending node knows to extend its timer.

If the request is ultimately successful, the remote node will reply with a Send.Data message containing the data
requested and the address of the node which supplied it (possibly faked). If the request is ultimately unsuccessful
and its hops­to­live are completely used up trying to satisfy it, the remote node will reply with a Reply.NotFound.
The sending node will then decrement the hops­to­live of the Send.Data (or Reply.NotFound) and pass it along
upstream, unless it is the actual originator of the request. Both of these messages terminate the transaction and
release any resources held. However, if there are still hops­to­live remaining, usually because the request ran into a

ATTACHMENT C

Microsoft Exhibit 1067

9/20/2015 Freenet ­ Workshop Paper

https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=theoppr 6/11

dead end where no viable non­looping paths could be found, the remote node will reply with a Request.Continue
giving the number of hops­to­live left. The sending node will then try to contact the next­most likely node from its
routing table. It will also send a Reply.Restart upstream.

To insert data, the sending node sends a Request.Insert message specifying a randomly­generated transaction ID, an
initial hops­to­live and depth, and a proposed key. The remote node will check its datastore for the key and if not
found, forward the insert to another node as described in section 3.2. Timers and Reply.Restart messages are also
used in the same way as for requests.

If the insert ultimately results in a key collision, the remote node will reply with either a Send.Data message
containing the existing data or a Reply.NotFound (if existing data was not actually found, but routing table
references to it were). If the insert does not encounter a collision, yet runs out of nodes with nonzero hops­to­live
remaining, the remote node will reply with a Request.Continue. In this case, Request.Continue is a failure result
meaning that not as many nodes could be contacted as asked for. These messages will be passed along upstream as
in the request case. Both messages terminate the transaction and release any resources held. However, if the insert
expires without encountering a collision, the remote node will reply with a Reply.Insert, indicating that the insert can
go ahead. The sending node will pass along the Reply.Insert upstream and wait for its predecessor to send a
Send.Insert containing the data. When it receives the data, it will store it locally and forward the Send.Insert
downstream, concluding the transaction.

Naming, searching, and updating
Freenet's basic flat namespace has obvious disadvantages in terms of discovering documents, name collisions, etc.
Several mechanisms of providing more structure within the current scheme are possible. For example, directory­like
documents containing hypertext pointers to other files could be created. A directory file under the key
text/philosophy could contain a list of keys such as text/philosophy/sun‐tzu/art‐of‐war,
text/philosophy/confucius/analects, and text/philosophy/nozick/anarchy‐state‐utopia, using appropriate
syntax interpretable by a client. The difficulty, however, is in deciding how to permit changes to the directory to
update entries, while preventing the directory from being corrupted or spammed. An alternative mechanism is to
encourage individuals to maintain and share their own compilations of keys­­subjective bookmark lists, rather than
authoritative directories. This is the approach in common use on the world­wide web.

Name collisions are still a problem with both bookmark lists and directories. One way of addressing collisions is to
introduce a two­level structure similar to that used by most traditional file systems. Real files could be stored under a
pseudo­unique binary key, such as a hash of the files' contents (a content­hash key). Users would access these files
by first retrieving an indirect file stored under a semantically meaningful name. The indirect file would consist solely
of a list of binary keys corresponding to that name (possibly only one), along with other information useful for
differentiating among the possible choices, such as author, creation time, and endorsements by other users. Content­
hash keys would also protect against files being maliciously tampered with or replaced. However, indirect files are
essentially like low­level directories, and share the same problem of managing updates. Another approach is to skip
the indirect files altogether and have bookmark lists pointing to content­hash keys, rather than names.

Introducing a search capability in conjunction with binary keys offers a way to side­step the need to maintain
directories. The most straightforward way to add search is to run a hypertext spider such as those used to search the
web. While an attractive solution in many ways, this conflicts with the design goal of avoiding centralization. A
possible alternative is to create a special class of lightweight indirect files. When a real file is inserted, the author
could also insert a number of indirect files containing a single pointer to the real file, named according to search
keywords chosen by her. These indirect files would differ from normal files in that collisions would be permitted on
insert, and requests for an indirect file key (i.e. a keyword) would keep going until a specified number of indirect
files (i.e. search results) were accumulated. Managing the likely large volume of these indirect files is an open
problem.

Updates by a single user can be handled in a reasonably straightforward manner by using a variation on indirection.
When an author inserts a file which she later intends to update, she first generates a public­private key pair and signs
the file with the private key. The file is inserted under a binary key, but instead of using the hash of the file's
contents, the literal public key itself is used (a signature­verifying key). As with inserting under a content­hash key,
inserting under a signature­verifying key provides a pseudo­unique binary key for a file, which can also be used to
verify that the file's contents have not been tampered with. To update the file, the new version is signed by the
private key and inserted under the public signature­verifying key. When the insert reaches a node which possesses
the old version, a key collision will occur. The node will check the signature on the new version, verify that it is both
valid and more recent, and replace the old version.

In order to allow old versions of files to remain in existence for historical reasons and to prevent the possibility of
authors being compelled to ``update'' their own files out of existence, an additional level of indirection can be used.
In this scheme, the real file is inserted under its content­hash key. Then, an indirect file containing a pointer to that
content­hash key is created, but inserted under a signature­verifying key. This signature­verifying key is given out as
the binary key for the file and entered, for example, in directories and bookmark lists (making them double indirect
files). When the author creates a new version, it is inserted under its own content­hash key, distinct from the old
version's key. The signature­verified indirect file is then updated to point to the new version (or possibly to keep
pointers to all versions). Thus the signature­verifying key will always lead to the most recent version of the file,
while old versions can continue to be accessed by content­hash key if desired. (If not requested, however, these old

ATTACHMENT C

Microsoft Exhibit 1067

9/20/2015 Freenet ­ Workshop Paper

https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=theoppr 7/11

versions will eventually disappear like any other unused file.)

For large files, splitting files into multiple parts is desirable because of storage and bandwidth limitations. Splitting
even medium files into standard­sized parts (e.g. 16 kilobytes) also has advantages in combating traffic analysis.
This is easily accomplished by inserting each part separately under a content­hash key, and including pointers to the
other parts.

Combining all these ideas together, a user might look through a bookmark list or perform a search on a keyword to
get a list of signature­verifying binary keys for files dealing with a particular topic. Retrieving one of these keys
gives an indirect file containing a set of content­hash keys corresponding to different versions, ordered by date.
Retrieving the most recent content­hash key gives the first part of a multipart file, together with pointers to two other
content­hash keys. Finally, retrieving those last two content­hash keys and concatenating the three parts together
yields the desired file.

Performance simulation
Simulations were carried out on an early version of this system to give some indications about its performance. Here
we summarize the most important results; for full details, see [11].

The scenario for these simulations was a network with between 500 and 900 nodes. Each node had a datastore size
of 40 items and a routing table size of 50 addresses (relatively low, because of limitations on available hardware),
and was given 10 unique items to store locally. The network was initially connected in a linear fashion, where each
node started with routing references to one node on either side.

Retrieval success rate

Queries for random keys were sent to random nodes in the network, in batches of 50 parallel queries at a time, and
the percentage of successful requests recorded over time. Figure 2 shows the percentage of successful requests
versus the total number of queries since initialization, for several network sizes.

Figure 2: Percentage of successful requests over time.

\begin{figure}\centerline{ \psfig{figure=icsi­
fig2.eps,bbllx=120bp,bblly=400bp,bburx=495bp,bbury=680bp,clip=} \ } \end{figure}

We can see that the initially low success rate rises rapidly until over 95% of requests are successful. The number of
queries until network convergence is approximately half the total size of the network.

Retrieval time

Queries for random keys were sent to random nodes in the network, in batches of 50 parallel queries at a time, and
the average number of hops needed for a successful request recorded over time. Figure 3 shows the number of
request hops versus the total number of queries since initialization, for several network sizes.

ATTACHMENT C

Microsoft Exhibit 1067

9/20/2015 Freenet ­ Workshop Paper

https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=theoppr 8/11

Figure 3: Number of hops per request over time.

\begin{figure}\centerline{ \psfig{figure=icsi­
fig3.eps,bbllx=120bp,bblly=370bp,bburx=495bp,bbury=650bp,clip=} \ } \end{figure}

We can see that the initially high number of hops required drops until it stabilizes at approximately 10 hops. This
value changes remarkably little with network size, suggesting that the time required for requests should scale quite
well. The number of queries until network convergence is approximately equal to the total size of the network.

Security
The primary goal for Freenet security is protecting the anonymity of requestors and inserters of files. It is also
important to protect the identity of storers of files. Although trivially anyone can turn a node into a storer by
requesting a file through it, thus ``identifying'' it as a storer, what is important is that there remain other,
unidentified, holders of the file so that an adversary cannot remove a file by attacking all of the nodes that hold it.
Files must be protected against malicious modification, and finally, the system must be resistant to denial­of­service
attacks.

Reiter and Rubin[21] present a useful taxonomy of anonymous communication properties on three axes. The first
axis is the type of anonymity: sender anonymity or receiver anonymity, which mean respectively that an adversary
cannot determine either who originated a message, or to whom it was sent. The second axis is the adversary in
question: a local eavesdropper, a malicious node or collaboration of malicious nodes, or a web server (not applicable
to Freenet). The third axis is the degree of anonymity, which ranges from absolute privacy (the presence of
communication cannot be perceived) to beyond suspicion (the sender appears no more likely to have originated the
message than any other potential sender), probable innocence (the sender is no more likely to be the originator than
not), possible innocence, exposed, and provably exposed (the adversary can prove to others who the sender was).

As Freenet communication is not directed towards specific receivers, receiver anonymity is more accurately viewed
as key anonymity, that is, hiding the key which is being requested or inserted. Unfortunately, since routing depends
on knowledge of the key, key anonymity is not possible in the basic Freenet scheme (but see the discussion of ``pre­
routing'' below). The use of hashes as keys provides a measure of obscurity against casual eavesdropping, but is of
course vulnerable to a dictionary attack since unhashed keys must be widely known in order to be useful.

Freenet's anonymity properties under this taxonomy are shown in Table 1.

Table 1: Anonymity properties of Freenet.

System Attacker Sender anonymity Key anonymity

Basic Freenet local eavesdropper exposed exposed

 collaborating nodes beyond suspicion exposed

Freenet + pre­routing local eavesdropper exposed beyond suspicion

 collaborating nodes beyond suspicion exposed

Against a collaboration of malicious nodes, sender anonymity is preserved beyond suspicion since a node in a

ATTACHMENT C

Microsoft Exhibit 1067

9/20/2015 Freenet ­ Workshop Paper

https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=theoppr 9/11

request path cannot tell whether its predecessor in the path initiated the request or is merely forwarding it. [21]
describes a probabilistic attack which might compromise sender anonymity, using a statistical analysis of the
probability that a request arriving at a node a is forwarded on or handled directly, and the probability that a chooses
a particular node b to forward to. This analysis is not immediately applicable to Freenet, however, since request
paths are not constructed probabilistically. Forwarding depends on whether or not a has the requested data in its
datastore, rather than chance. If a request is forwarded, the routing tables determine where it is sent to, and could be
such that a forwards every request to b, or never forwards any requests to b, or anywhere in between. Nevertheless,
the depth value may provide some indication as to how many hops away the originator was, although this is
obscured by the random selection of an initial depth and the probabilistic means of incrementing it (see section 4).
Similar considerations apply to hops­to­live. Further investigation is required to clarify these issues.

Against a local eavesdropper there is no protection on messages between the user and the first node contacted. Since
the first node contacted can act as a local eavesdropper, it is recommended that the user only use a node on her own
machine as the first point of entry into the Freenet network. Messages between nodes are encrypted against local
eavesdropping, although traffic analysis may still be performed (e.g. an eavesdropper may observe a message going
out without a previous message coming in and conclude that the target originated it).

Key anonymity and stronger sender anonymity can be achieved by adding mix­style ``pre­routing'' of messages. In
this scheme, basic Freenet messages are encrypted by a succession of public keys which determine the route that the
encrypted message will follow (overriding the normal routing mechanism). Nodes along this portion of the route are
unable to determine either the originator of the message or its contents (including the request key), as per the mix­net
anonymity properties. When the message reaches the endpoint of the pre­routing phase, it will be injected into the
normal Freenet network and behave as though the endpoint were the originator of the message.

Protection for data sources is provided by the occasional resetting of the data source field in replies. The fact that a
node is listed as the data source for a particular key does not necessarily imply that it actually supplied that data, or
was even contacted in the course of the request. It is not possible to tell whether the downstream node provided the
file or was merely forwarding a reply sent by someone else. In fact, the very act of successfully requesting a file
places it on the downstream node if it was not already there, so a subsequent examination of that node on suspicion
reveals nothing about the prior state of affairs, and provides a plausible legal ground that the data was not there until
the act of investigation placed it there. Requesting a particular file with a hops­to­live of 1 does not directly reveal
whether or not the node was previously storing the file in question, since nodes continue to forward messages having
hops­to­live of 1 with finite probability. The success of a large number of requests for related files, however, may
provide grounds for suspicion that those files were being stored there previously.

Modification or outright replacement of files by a hostile node is an important threat, and not only because of the
corruption of the file itself. Since routing tables are based on replies to requests, a node might attempt to steer traffic
towards itself by pretending to have files when it does not and simply returning fictitious data. For data stored under
content­hash keys or signature­verifying keys, this is not feasible since inauthentic data can be detected unless a
node finds a hash collision or successfully forges a cryptographic signature. Data stored under ordinary descriptive
text keys, however, is vulnerable. Some protection is afforded by the expectation that files will be encrypted by the
descriptive text, since the node must respond to a hashed key request with data encrypted by the original text key,
but a dictionary attack is possible using a table of text keys and their hashes. Even partial dictionaries cause
problems since the node can behave normally when an unknown key is requested and forge data when the key is
known.

Finally, a number of denial­of­service attacks can be envisioned. The most significant threat is that an attacker will
attempt to fill all of the network's storage capacity by inserting a large number of garbage files. An interesting
possibility for countering this attack is the Hash Cash scheme[18]. Essentially, the scheme requires the inserter to
perform a lengthy computation as ``payment'' before an insert is accepted, thus slowing down an attack. Another
alternative is to divide the datastore into two sections, one for new inserts and one for ``established'' files (defined as
files having received at least a certain number of requests). New inserts can only displace other new inserts, not
established files. In this way a flood of garbage inserts might temporarily paralyze insert operations but would not
displace existing files. It is difficult for an attacker to artificially legitimize her own (garbage) files by requesting
them many times since her requests will be satisfied by the first node to hold the data and not proceed any further.
She cannot send requests directly to the other downstream nodes holding her files since their identities are hidden
from her. However, adopting this scheme may make it difficult for genuine new inserts to survive long enough to be
requested by others and become established.

Attackers may attempt to replace existing files by inserting alternate versions under the same keys. Such an attack is
not possible against a content­hash key or signature­verifying key, since it requires finding a hash collision or
successfully forging a cryptographic signature. An attack against a descriptive text key, on the other hand, may result
in both versions coexisting in the network. The way in which nodes react to insert collisions (detailed in section 3.2)
is intended to make such attacks more difficult. The success of a replacement attack can be measured by the ratio of
corrupt versus genuine versions resulting in the system. However, the more corrupt copies the attacker attempts to
circulate (by setting a higher hops­to­live on insert), the greater the chance that an insert collision will be
encountered, which would cause an increase in the number of genuine copies.

Conclusions
The Freenet network provides an effective means of anonymous information storage and retrieval. By using

ATTACHMENT C

Microsoft Exhibit 1067

9/20/2015 Freenet ­ Workshop Paper

https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=theoppr 10/11

cooperating nodes spread over many computers in conjunction with an efficient routing algorithm, it keeps
information anonymous and available while remaining highly scalable. Initial deployment of a test version is
underway, and is so far proving successful, with over 15,000 copies downloaded and many interesting files in
circulation. Because of the nature of the system, it is impossible to tell exactly how many users there are or how well
the insert and request mechanisms are working, but anecdotal evidence is so far positive. We are working on
implementing a simulation and visualization suite which will enable more rigorous tests of the protocol and routing
algorithm. More realistic simulation is necessary which models the effects of inserts taking place alongside requests,
nodes joining and leaving, variation in node capacity, and larger network sizes.

Acknowledgements
Portions of this material are based upon work supported under a National Science Foundation Graduate Research
Fellowship.

Bibliography

1.
S. Adler, ``The Slashdot effect: an analysis of three Internet publications,''
http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html (2000).

2.
Akamai, http://www.akamai.com/ (2000).

3.
American National Standards Institute, Draft: American National Standard X9.30­199X: Public­Key
Cryptography Using Irreversible Algorithms for the Financial Services Industry: Part 1: The Digital
Signature Algorithm (DSA). American Bankers Association (1993).

4.
R.J. Anderson, ``The Eternity service,'' in Proceedings of the 1st International Conference on the Theory and
Applications of Cryptology (PRAGOCRYPT '96), Prague, Czech Republic (1996).

5.
Anonymizer, http://www.anonymizer.com/ (2000).

6.
O. Berthold, H. Federrath, and M. Köhntopp, ``Project `Anonymity and unobservability in the Internet','' in
Computers Freedom and Privacy Conference 2000 (CFP 2000) Workshop on Freedom and Privacy by Design
(to appear).

7.
D.L. Chaum, ``Untraceable electronic mail, return addresses, and digital pseudonyms,'' Communications of the
ACM 24(2), 84­88 (1981).

8.
Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, and P. Yianilos, ``A prototype implementation of
archival intermemory,'' in Proceedings of the Fourth ACM Conference on Digital Libraries (DL '99),
Berkeley, CA, USA. ACM Press: New York (1999).

9.
B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, ``Private information retrieval,'' Journal of the ACM
45(6), 965­982 (1998).

10.
Church of Spiritual Technology (Scientology) v. Dataweb et al., Cause No. 96/1048, District Court of the
Hague, The Netherlands (1999).

11.
I. Clarke, ``A distributed decentralised information storage and retrieval system,'' unpublished report, Division
of Informatics, University of Edinburgh (1999). Available at http://freenet.sourceforge.net/ (2000).

12.
R.R. Dingledine, ``The Free Haven Project: Design and Deployment of an Anonymous Secure Data Haven,''
M.Eng. thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology (2000). Available at http://www.freehaven.net/ (2000).

13.
Distributed.net, http://www.distributed.net/ (2000).

ATTACHMENT C

Microsoft Exhibit 1067

https://web.archive.org/web/20001212195200/http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html
https://web.archive.org/web/20001212195200/http://www.akamai.com/
https://web.archive.org/web/20001212195200/http://www.anonymizer.com/
https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/
https://web.archive.org/web/20001212195200/http://www.freehaven.net/
https://web.archive.org/web/20001212195200/http://www.distributed.net/

9/20/2015 Freenet ­ Workshop Paper

https://web.archive.org/web/20001212195200/http://freenet.sourceforge.net/index.php?page=theoppr 11/11

14.
D.J. Ellard, J.M. Megquier, and L. Park, ``The INDIA protocol,''
http://www.eecs.harvard.edu/~ellard/India‐WWW/ (2000).

15.
Gnutella, http://gnutella.wego.com/ (2000).

16.
I. Goldberg and D. Wagner, ``TAZ servers and the rewebber network: enabling anonymous publishing on the
world wide web,'' http://www.cs.berkeley.edu/~daw/classes/cs268/taz‐www/rewebber.html (2000).

17.
D. Goldschlag, M. Reed, and P. Syverson, ``Onion routing for anonymous and private Internet connections,''
Communications of the ACM 42(2), 39­41 (1999).

18.
Hash Cash, http://www.cypherspace.org/~adam/hashcash/ (2000).

19.
Mixmaster, http://www.obscura.com/~loki/remailer/mixmaster‐faq.html (2000).

20.
Napster, http://www.napster.com/ (2000).

21.
M.K. Reiter and A.D. Rubin, ``Anonymous web transactions with Crowds,'' Communications of the ACM
42(2), 32­38 (1999).

22.
The Rewebber, http://www.rewebber.de/ (2000).

23.
M. Richtel and S. Robinson, ``Several web sites are attacked on day after assault shut Yahoo,'' The New York
Times, February 9, 2000.

24.
J. Rosen, ``The eroded self,'' The New York Times, April 30, 2000.

25.
A.S. Tanenbaum, Modern Operating Systems. Prentice­Hall: Upper Saddle River, NJ, USA (1992).

26.
M. Waldman, A.D. Rubin, and L.F. Cranor, ``Publius: A robust, tamper­evident, censorship­resistant and
source­anonymous web publishing system,'' in Ninth USENIX Security Symposium, Denver, CO, USA (to
appear).

27.
Zero­Knowledge Systems, http://www.zks.net/ (2000).

Footnotes

... Hong1
Supported by grants from the Marshall Aid Commemoration Commission and the National Science
Foundation.

... sending2
Note that the sending node may not be the original requestor.

About this document ...

Freenet: A Distributed Anonymous Information Storage and Retrieval System

This document was generated using the LaTeX2HTML translator Version 99.2beta6 (1.42)

Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
Copyright © 1997, 1998, 1999, Ross Moore, Mathematics Department, Macquarie University, Sydney.

The command line arguments were:
latex2html ‐split 0 ‐nofootnode ‐nonavigation ‐local_icons icsi.tex

The translation was initiated by Theodore Hong on 2000­07­04

Theodore Hong

ATTACHMENT C

Microsoft Exhibit 1067

https://web.archive.org/web/20001212195200/http://www.eecs.harvard.edu/~ellard/India-WWW/
https://web.archive.org/web/20001212195200/http://gnutella.wego.com/
https://web.archive.org/web/20001212195200/http://www.cs.berkeley.edu/~daw/classes/cs268/taz-www/rewebber.html
https://web.archive.org/web/20001212195200/http://www.cypherspace.org/~adam/hashcash/
https://web.archive.org/web/20001212195200/http://www.obscura.com/~loki/remailer/mixmaster-faq.html
https://web.archive.org/web/20001212195200/http://www.napster.com/
https://web.archive.org/web/20001212195200/http://www.rewebber.de/
https://web.archive.org/web/20001212195200/http://www.zks.net/
https://web.archive.org/web/20001212195200/http://www-dsed.llnl.gov/files/programs/unix/latex2html/manual/
https://web.archive.org/web/20001212195200/http://cbl.leeds.ac.uk/nikos/personal.html
https://web.archive.org/web/20001212195200/http://www.maths.mq.edu.au/~ross/
https://web.archive.org/web/20001212195200/http://www.doc.ic.ac.uk/~twh1/

Freenet� A Distributed Anonymous Information Storage and

Retrieval System

Ian Clarke

���C Lyham Road� Clapham Park

London SW� �QA

United Kingdom

i�clarke�dynamicblue�com

Oskar Sandberg

M	orbydalen ��

�
��� Stockholm

Sweden

md�
�osa�nada�kth�se

Brandon Wiley

�
�� Rio Grande St�

Austin� TX �
���

USA

blanu�uts�cc�utexas�edu

Theodore W� Hong �

Department of Computing

Imperial College of Science� Technology and Medicine

�
� Queen�s Gate� London SW� �BZ

United Kingdom

t�hong�doc�ic�ac�uk

July �� ����

Abstract

We describe Freenet� a peer�to�peer network application that permits the publication�

replication� and retrieval of data while protecting the anonymity of both authors and readers�

Freenet operates as a network of identical nodes that collectively pool their storage space

to store data �les� and cooperate to route requests to the most likely physical location of

data� No broadcast search or centralized location index is employed� Files are referred to in

a location�independent manner� and are dynamically replicated in locations near requestors

and deleted from locations where there is no interest� It is infeasible to discover the true

origin or destination of a �le passing through the network� and di�cult for a node operator

to determine or be held responsible for the actual physical contents of her own node�

� Introduction

Computer networks are rapidly growing in importance as a medium for the storage and exchange
of information� However� current systems a�ord little privacy to their users� and typically store
any given data item in only one or a few �xed places� creating a central point of failure� Because
of a continued desire among individuals to protect the privacy of their authorship or readership
of various types of sensitive information���	� and the undesirability of central points of failure

�Supported by grants from the Marshall Aid Commemoration Commission and the National Science Founda�

tion�

ATTACHMENT D

Microsoft Exhibit 1067

which can be attacked by opponents wishing to remove data from the system�
�� ��	 or simply
overloaded by too much interest�
	� systems o�ering greater security and reliability are needed�
We are developing Freenet� a distributed information storage and retrieval system designed to

address these concerns of privacy and availability� The system operates as a location
independent
distributed �le system across many individual computers that allows �les to be inserted� stored�
and requested anonymously� There are �ve main design goals�

� Anonymity for both producers and consumers of information

� Deniability for storers of information

� Resistance to attempts by third parties to deny access to information

� E�cient dynamic storage and routing of information

� Decentralization of all network functions

The system is designed to respond adaptively to usage patterns� transparently moving� repli

cating� and deleting �les as necessary to provide e�cient service without resorting to broadcast
searches or centralized location indexes� It is not intended to guarantee permanent �le storage�
although it is hoped that enough nodes will join with enough storage capacity that most �les
will be able to remain inde�nitely� In addition� the system operates at the application layer and
assumes the existence of a secure transport layer� although it is transport
independent� It does
not seek to provide anonymity for general network usage� only for Freenet �le transactions�
Freenet is currently being developed as a free software project on Sourceforge� and a prelim

inary implementation can be downloaded from http���freenet�sourceforge�net�� It grew
out of work originally done by the �rst author at the University of Edinburgh�

	�

� Related work

Several strands of related work in this area can be distinguished� Anonymous point
to
point
channels based on Chaum�s mix
net scheme��	 have been implemented for email by the Mix

master remailer�
�	 and for general TCP�IP tra�c by onion routing�
�	 and Freedom���	� Such
channels are not in themselves easily suited to one
to
many publication� however� and are best
viewed as a complement to Freenet since they do not provide �le access and storage�
Anonymity for consumers of information in the web context is provided by browser proxy

services such as the Anonymizer��	� although they provide no protection for producers of in

formation and do not protect consumers against logs kept by the services themselves� Private
information retrieval schemes��	 provide much stronger guarantees for information consumers�
but only to the extent of hiding which piece of information was retrieved from a particular
server� In most cases� the fact of contacting a particular server in itself reveals much about
the information retrieved� which can only be counteracted by having each server hold all in

formation �naturally this scales poorly�� The closest work to our own is Reiter and Rubin�s
Crowds system��
	� which uses a similar method of proxying requests for consumers� although
Crowds does not itself store information and does not protect information producers� Berthold

�

ATTACHMENT D

Microsoft Exhibit 1067

et al� propose Web Mixes��	� a stronger system which uses message padding and reordering and
dummy messages to increase security� but again does not protect information producers�
The Rewebber���	 provides a measure of anonymity for producers of web information by

means of an encrypted URL service which is essentially the inverse of an anonymizing browser
proxy� but has the same di�culty of providing no protection against the operator of the service
itself� TAZ�
�	 extends this idea by using chains of nested encrypted URLs which successively
point to di�erent rewebber servers to be contacted� although this is vulnerable to tra�c analysis
using replay� Both rely on a single server as the ultimate source of information� Publius���	
enhances availability by distributing �les as redundant shares among n webservers� only k of
which are needed to reconstruct a �le� however� since the identity of the servers themselves is
not anonymized� an attacker might remove information by forcing the closure of n�k�
 servers�
The Eternity proposal��	 seeks to archive information permanently and anonymously� although
it lacks speci�cs on how to e�ciently locate stored �les� making it more akin to an anonymous
backup service� Free Haven�
�	 is an interesting anonymous publication system which uses a trust
network and �le trading mechanism to provide greater server accountability while maintaining
anonymity�

distributed�net�
�	 demonstrated the concept of pooling computer resources among mul

tiple users on a large scale for CPU cycles� other systems which do the same for disk space are
Napster���	 and Gnutella�
�	� although the former relies on a central server to locate �les and
the latter employs an ine�cient broadcast search� Neither one replicates �les� Intermemory��	
and India�
�	 are cooperative distributed �leserver systems intended for long
term archival stor

age along the lines of Eternity� in which �les are split into redundant shares and distributed
among many participants� Akamai��	 provides a service which replicates �les at locations near
information consumers� but is not suitable for producers who are individuals �as opposed to
corporations�� None of these systems attempt to provide anonymity�

� Architecture

Freenet is implemented as a peer
to
peer network of nodes that query one another to store and
retrieve data �les� which are named by location
independent keys� Each node maintains its own
local datastore which it makes available to the network for reading and writing� as well as a
dynamic routing table containing addresses of other nodes and the keys that they are thought
to hold� It is intended that most users of the system will run nodes� both to provide security
guarantees against inadvertently using a hostile foreign node and to increase the storage capacity
available to the network as a whole�
The system can be regarded as a cooperative distributed �lesystem incorporating location

independence and transparent lazy replication� Just as systems such as distributed�net�
�	
enable ordinary users to share unused CPU cycles on their machines� Freenet enables users to
share unused disk space� However� where distributed�net uses those CPU cycles for its own
purposes� Freenet is directly useful to users themselves� acting as an extension to their own hard
drives�
The basic model is that queries are passed along from node to node in a chain of proxy

requests� with each node making a local routing decision in the style of IP routing about where

�

ATTACHMENT D

Microsoft Exhibit 1067

to send the query next �this varies from query to query�� Nodes know only their immediate
upstream and downstream neighbors in the chain� Each query is given a �hops
to
live� count
which is decremented at each node to prevent in�nite chains �analogous to IP�s time
to
live��
Each query is also assigned a pseudo
unique random identi�er� so that nodes can prevent loops
by rejecting queries they have seen before� When this happens� the immediately preceding node
simply chooses a di�erent node to forward to� This process continues until the query is either
satis�ed or exceeds its hops
to
live limit� Then� the success or failure result is passed back up
the chain to the sending node�
No node is privileged over any other node� so no hierarchy or central point of failure exists�

Joining the network is simply a matter of discovering the address of one or more existing nodes
through out
of
band means� then starting to send messages� Files are immutable at present�
although �le updatability is on the agenda for future releases� In addition� the namespace is
currently �at� consisting of the space of
�� bit SHA

��	 hashes of descriptive text strings�
although support for a richer namespace is a priority for development� See section � for further
discussion of updating and naming�

��� Retrieving data

To retrieve data� a user hashes a short descriptive string �for example� text�philosophy�
sun�tzu�art�of�war� to obtain a �le key� �See section � for details on how descriptive strings
corresponding to �les can be discovered�� She then sends a request message to her own node
specifying that key and a hops
to
live value� When a node receives a request� it �rst checks its
own store for the data and returns it if found� together with a note saying it was the source
of the data� If not found� it looks up the nearest key in its routing table to the key requested
and forwards the request to the corresponding node� If that request is ultimately successful and
returns with the data� the node will pass the data back to the upstream requestor� cache the �le
in its own datastore� and create a new entry in its routing table associating the actual data source
with the requested key� A subsequent request for the same key will be immediately satis�ed
from the local cache� a request for a �similar� key �determined by lexicographic distance� will be
forwarded to the previously successful data source� Because maintaining a table of data sources
is a potential security concern� any node along the way can unilaterally decide to change the
reply message to claim itself or another arbitrarily
chosen node as the data source�
If a node cannot forward a request to its preferred downstream node because the target is

down or a loop would be created� the node having the second
nearest key will be tried� then the
third
nearest� and so on� If a node runs out of candidates to try� it reports failure back to its
upstream neighbor� which will then try its second choice� etc� In this way� a request operates as
a steepest
ascent hill
climbing search with backtracking� If the hops
to
live count is exceeded� a
failure result is propagated back to the original requestor without any further nodes being tried�
Nodes may unilaterally curtail excessive hops
to
live values to reduce network load� They may
also forget about pending requests after a period of time to keep message memory free�
Figure
 depicts a typical sequence of request messages� The user initiates a request at node

a� Node a forwards the request to node b� which forwards it to node c� Node c is unable to
contact any other nodes and returns a backtracking �request failed� message to b� Node b then
tries its second choice� e� which forwards the request to f� Node f forwards the request to b�

�

ATTACHMENT D

Microsoft Exhibit 1067

= Data Request

= Data Reply

= Request Failed

start

data

2
3

5

8

9

10

4

1

11

12

6 7

This request failed

because a node will

refuse a Data Request

that it has already

seen

a b

c

d

e

f

Figure
� A typical request sequence�

which detects the loop and returns a backtracking failure message� Node f is unable to contact
any other nodes and backtracks one step further back to e� Node e forwards the request to its
second choice� d� which has the data� The data is returned from d via e and b back to a� which
sends it back to the user� The data is also cached on e� b� and a�
This mechanism has a number of e�ects� Most importantly� we hypothesize that the quality

of the routing should improve over time� for two reasons� First� nodes should come to specialize
in locating sets of similar keys� If a node is listed in routing tables under a particular key� it
will tend to receive mostly requests for keys similar to that key� It is therefore likely to gain
more �experience� in answering those queries and become better informed in its routing tables
about which other nodes carry those keys� Second� nodes should become similarly specialized in
storing clusters of �les having similar keys� Because forwarding a request successfully will result
in the node itself gaining a copy of the requested �le� and most requests will be for similar keys�
the node will mostly acquire �les with similar keys� Taken together� these two e�ects should
improve the e�ciency of future requests in a self
reinforcing cycle� as nodes build up routing
tables and datastores focusing on particular sets of keys� which will be precisely those keys that
they are asked about�
In addition� the request mechanism will cause popular data to be transparently replicated

by the system and mirrored closer to requestors� For example� if a �le that is originally located
in London is requested in Berkeley� it will become cached locally and provide faster response
to subsequent Berkeley requests� It also becomes copied onto each computer along the way�
providing redundancy if the London node fails or is shut down� �Note that �along the way� is
determined by key closeness and does not necessarily have geographical relevance��
Finally� as nodes process requests� they create new routing table entries for previously

unknown nodes that supply �les� increasing connectivity� This helps new nodes to discover more
of the network �although it does not help the rest of the network to discover them� for that�
performing inserts is necessary�� Note that direct links are created� bypassing the intermediate
nodes used� Thus� nodes that successfully supply data will gain routing table entries and be
contacted more often than nodes that do not�
Because hashes are used as keys� lexicographic closeness of keys does not imply any closeness

of the original descriptive strings and presumably� no closeness of subject matter of the �les�

�

ATTACHMENT D

Microsoft Exhibit 1067

This lack of semantic closeness is not important� however� as the routing algorithm is based
on knowing where keys are located� not where subjects are located� That is� supposing text�
philosophy�sun�tzu�art�of�war hashes to AH�JK�� requests for this �le can be routed more
e�ectively by creating clusters containing AH�JK�� AH�JK�� and AH�JK	� not by creating clusters
for works of philosophy� Indeed� the use of a hash is desirable precisely because philosophical
works will be scattered across the network� lessening the chances that failure of a single node
will make all philosophy unavailable�

��� Storing data

Inserts follow a parallel strategy to requests� To insert data� a user picks an appropriate de

scriptive text string and hashes it to create a �le key� She then sends an insert message to her
own node specifying the proposed key and a hops
to
live value �this will determine the number
of nodes to store it on�� When a node receives an insert proposal� it �rst checks its own store
to see if the key is already taken� If the key is found� the node returns the pre
existing �le as if
a request had been made for it� The user will thus know that a collision was encountered and
can try again using a di�erent key� i�e� di�erent descriptive text� �Although potentially the use
of a hash might cause extra collisions� in practice a high
quality hash of su�cient length should
only cause collisions if the same initial descriptive text was chosen�� If the key is not found� the
node looks up the nearest key in its routing table to the key proposed and forwards the insert
to the corresponding node� If that insert causes a collision and returns with the data� the node
will pass the data back to the upstream inserter and again behave as if a request had been made
�i�e� cache the �le locally and create a routing table entry for the data source��
If the hops
to
live limit is reached without a key collision being detected� an �all clear� result

will be propagated back to the original inserter� Note that for inserts� this is a successful result�
in contrast to the request case� The user then sends the data to insert� which will be propagated
along the path established by the initial query and stored in each node along the way� Each node
will also create an entry in its routing table associating the inserter �as the data source� with
the new key� To avoid the obvious security problem� any node along the way can unilaterally
decide to change the insert message to claim itself or another arbitrarily
chosen node as the data
source�
If a node cannot forward an insert to its preferred downstream node because the target is

down or a loop would be created� the insert backtracks to the second
nearest key� then the
third
nearest� and so on in the same way as for requests� If the backtracking returns all the way
back to the original inserter� it indicates that fewer nodes than asked for could be contacted�
As with requests� nodes may curtail excessive hops
to
live values and�or forget about pending
inserts after a period of time�
This mechanism has three e�ects� First� newly inserted �les are selectively placed on nodes

already possessing �les with similar keys� This reinforces the clustering of keys set up by the
request mechanism� Second� new nodes can tell the rest of the network of their existence by
inserting data� Third� an attempt by an attacker to supplant an existing �le by deliberate insert
collision �e�g�� by inserting a corrupted or empty �le under the same key� is likely to simply
spread the real �le further� since the original �le is propagated back on collision� �The use of a
content
hash key� described in section �� makes such an attack infeasible altogether��

�

ATTACHMENT D

Microsoft Exhibit 1067

��� Managing data

All information storage systems must deal with the problem of �nite storage capacity� Individual
Freenet node operators can con�gure the amount of storage to dedicate to their datastores� Node
storage is managed as an LRU �Least Recently Used� cache���	� with data items kept sorted in
decreasing order by time of most recent request �or time of insert� if an item has never been
requested�� When a new �le arrives �from either a new insert or a successful request� which
would cause the datastore to exceed the designated size� the least recently used �les are evicted
in order until there is room� The impact on availability is mitigated somewhat by the fact
that the routing table entries created when the evicted �les �rst arrived will remain for a time�
potentially allowing the node to later get new copies from the original data sources� �Routing
table entries are also eventually deleted in a similar fashion as the table �lls up� although they
will be retained longer since they are smaller��
Strictly speaking� the datastore is not a cache� since the set of datastores is all the storage

that there is� i�e� there is no �permanent� copy which is being duplicated� Once all the nodes
have decided� collectively speaking� to drop a particular �le� it will no longer be available to
the network� In this respect� Freenet di�ers from the Eternity service� which seeks to provide
guarantees of �le lifetime�
This mechanism has an advantageous side� however� since it allows outdated documents to

fade away after being superseded by newer documents� thus alleviating some of the problem
of immutable �les� If an outdated document is still used and considered valuable for historical
reasons� it will stay alive precisely as long as it continues to be requested�
For political or legal reasons� it may be desirable for node operators not to explicitly know

the contents of their datastores� Therefore� it is recommended that all inserted �les be encrypted
by their original unhashed descriptive text strings in order to obscure their contents� Of course�
this does not secure the �le�that would be impossible since a requestor �potentially anyone�
must be capable of decrypting the �le once retrieved� Rather� the objective is that the node
operator can plausibly deny any knowledge of the contents of her datastore� since all she knows a
priori is the hashed key and its associated encrypted �le� The hash cannot feasibly be reversed
to reveal the unhashed description and decrypt the �le� With e�ort� of course� a dictionary
attack will reveal which keys are present�as it must in order for requests to work at all�

� Protocol details

The Freenet protocol is packet
oriented and uses self
contained messages� Each message includes
a transaction ID so that nodes can track the state of inserts and requests� This design is
intended to permit �exibility in the choice of transport mechanisms for messages� whether they
be TCP� UDP� or other technologies such as packet radio� For e�ciency� nodes are also able to
send multiple messages over a persistent channel such as a TCP connection� if available� Node
addresses consist of a transport method plus a transport
speci�c identi�er �such as an IP address
and port number�� e�g� tcp��
�����������
��
�
A Freenet transaction begins with a Request�Handshake message from one node to another�

�

ATTACHMENT D

Microsoft Exhibit 1067

specifying the desired return address of the sending� node� �The return address may be impossi

ble to determine from the transport layer alone� or may use a di�erent transport from that used
to send the message�� If the remote node is active and responding to requests� it will reply with
a Reply�Handshake specifying the protocol version number that it understands� Handshakes are
remembered for a few hours� and subsequent transactions between the same nodes during this
time may omit this step�
All messages contain a randomly
generated ��
bit transaction ID� a hops
to
live counter�

and a depth counter� Although the ID cannot be guaranteed to be unique� the likelihood of a
collision occurring during the transaction lifetime among the limited set of nodes that it sees is
extremely low� Hops
to
live is set by the originator of a message and is decremented at each hop
to prevent messages being forwarded inde�nitely� To reduce the information that an attacker
can obtain from the hops
to
live value� messages do not automatically terminate after hops
to

live reaches
 but are forwarded on with �nite probability �with hops
to
live again
�� Depth is
incremented at each hop and is used by a replying node to set hops
to
live high enough to reach
a requestor� Requestors should initialize it to a small random value to obscure their location�
As with hops
to
live� a depth of
 is not automatically incremented but is passed unchanged
with �nite probability�
To request data� the sending node sends a Request�Data message specifying a transaction

ID� initial hops
to
live and depth� and a search key� The remote node will check its datastore for
the key and if not found� will forward the request to another node as described in section ��
�
Using the chosen hops
to
live count� the sending node starts a timer for the expected amount
of time it should take to contact that many nodes� after which it will assume failure� While the
request is being processed� the remote node may periodically send back Reply�Restart messages
indicating that messages were stalled waiting on network timeouts� so that the sending node
knows to extend its timer�
If the request is ultimately successful� the remote node will reply with a Send�Data message

containing the data requested and the address of the node which supplied it �possibly faked�� If
the request is ultimately unsuccessful and its hops
to
live are completely used up trying to satisfy
it� the remote node will reply with a Reply�NotFound� The sending node will then decrement
the hops
to
live of the Send�Data �or Reply�NotFound� and pass it along upstream� unless it
is the actual originator of the request� Both of these messages terminate the transaction and
release any resources held� However� if there are still hops
to
live remaining� usually because
the request ran into a dead end where no viable non
looping paths could be found� the remote
node will reply with a Request�Continue giving the number of hops
to
live left� The sending
node will then try to contact the next
most likely node from its routing table� It will also send
a Reply�Restart upstream�
To insert data� the sending node sends a Request�Insert message specifying a randomly

generated transaction ID� an initial hops
to
live and depth� and a proposed key� The remote
node will check its datastore for the key and if not found� forward the insert to another node as
described in section ���� Timers and Reply�Restart messages are also used in the same way as
for requests�
If the insert ultimately results in a key collision� the remote node will reply with either

�Note that the sending node may not be the original requestor�

�

ATTACHMENT D

Microsoft Exhibit 1067

a Send�Data message containing the existing data or a Reply�NotFound �if existing data was
not actually found� but routing table references to it were�� If the insert does not encounter a
collision� yet runs out of nodes with nonzero hops
to
live remaining� the remote node will reply
with a Request�Continue� In this case� Request�Continue is a failure result meaning that not as
many nodes could be contacted as asked for� These messages will be passed along upstream as
in the request case� Both messages terminate the transaction and release any resources held�
However� if the insert expires without encountering a collision� the remote node will reply with
a Reply�Insert� indicating that the insert can go ahead� The sending node will pass along the
Reply�Insert upstream and wait for its predecessor to send a Send�Insert containing the data�
When it receives the data� it will store it locally and forward the Send�Insert downstream�
concluding the transaction�

� Naming� searching� and updating

Freenet�s basic �at namespace has obvious disadvantages in terms of discovering documents�
name collisions� etc� Several mechanisms of providing more structure within the current scheme
are possible� For example� directory
like documents containing hypertext pointers to other �les
could be created� A directory �le under the key text�philosophy could contain a list of keys
such as text�philosophy�sun�tzu�art�of�war� text�philosophy�confucius�analects� and
text�philosophy�nozick�anarchy�state�utopia� using appropriate syntax interpretable by
a client� The di�culty� however� is in deciding how to permit changes to the directory to up

date entries� while preventing the directory from being corrupted or spammed� An alternative
mechanism is to encourage individuals to maintain and share their own compilations of keys�
subjective bookmark lists� rather than authoritative directories� This is the approach in common
use on the world
wide web�
Name collisions are still a problem with both bookmark lists and directories� One way of

addressing collisions is to introduce a two
level structure similar to that used by most traditional
�le systems� Real �les could be stored under a pseudo
unique binary key� such as a hash of the
�les� contents �a content�hash key�� Users would access these �les by �rst retrieving an indirect
�le stored under a semantically meaningful name� The indirect �le would consist solely of a list of
binary keys corresponding to that name �possibly only one�� along with other information useful
for di�erentiating among the possible choices� such as author� creation time� and endorsements
by other users� Content
hash keys would also protect against �les being maliciously tampered
with or replaced� However� indirect �les are essentially like low
level directories� and share the
same problem of managing updates� Another approach is to skip the indirect �les altogether
and have bookmark lists pointing to content
hash keys� rather than names�
Introducing a search capability in conjunction with binary keys o�ers a way to side
step the

need to maintain directories� The most straightforward way to add search is to run a hypertext
spider such as those used to search the web� While an attractive solution in many ways� this
con�icts with the design goal of avoiding centralization� A possible alternative is to create a
special class of lightweight indirect �les� When a real �le is inserted� the author could also insert
a number of indirect �les containing a single pointer to the real �le� named according to search
keywords chosen by her� These indirect �les would di�er from normal �les in that collisions

�

ATTACHMENT D

Microsoft Exhibit 1067

would be permitted on insert� and requests for an indirect �le key �i�e� a keyword� would keep
going until a speci�ed number of indirect �les �i�e� search results� were accumulated� Managing
the likely large volume of these indirect �les is an open problem�
Updates by a single user can be handled in a reasonably straightforward manner by using a

variation on indirection� When an author inserts a �le which she later intends to update� she
�rst generates a public
private key pair and signs the �le with the private key� The �le is inserted
under a binary key� but instead of using the hash of the �le�s contents� the literal public key
itself is used �a signature�verifying key�� As with inserting under a content
hash key� inserting
under a signature
verifying key provides a pseudo
unique binary key for a �le� which can also
be used to verify that the �le�s contents have not been tampered with� To update the �le� the
new version is signed by the private key and inserted under the public signature
verifying key�
When the insert reaches a node which possesses the old version� a key collision will occur� The
node will check the signature on the new version� verify that it is both valid and more recent�
and replace the old version�
In order to allow old versions of �les to remain in existence for historical reasons and to

prevent the possibility of authors being compelled to �update� their own �les out of existence�
an additional level of indirection can be used� In this scheme� the real �le is inserted under
its content
hash key� Then� an indirect �le containing a pointer to that content
hash key is
created� but inserted under a signature
verifying key� This signature
verifying key is given out
as the binary key for the �le and entered� for example� in directories and bookmark lists �making
them double indirect �les�� When the author creates a new version� it is inserted under its own
content
hash key� distinct from the old version�s key� The signature
veri�ed indirect �le is then
updated to point to the new version �or possibly to keep pointers to all versions�� Thus the
signature
verifying key will always lead to the most recent version of the �le� while old versions
can continue to be accessed by content
hash key if desired� �If not requested� however� these old
versions will eventually disappear like any other unused �le��
For large �les� splitting �les into multiple parts is desirable because of storage and bandwidth

limitations� Splitting even medium �les into standard
sized parts �e�g�
� kilobytes� also has
advantages in combating tra�c analysis� This is easily accomplished by inserting each part
separately under a content
hash key� and including pointers to the other parts�
Combining all these ideas together� a user might look through a bookmark list or perform

a search on a keyword to get a list of signature
verifying binary keys for �les dealing with a
particular topic� Retrieving one of these keys gives an indirect �le containing a set of content

hash keys corresponding to di�erent versions� ordered by date� Retrieving the most recent
content
hash key gives the �rst part of a multipart �le� together with pointers to two other
content
hash keys� Finally� retrieving those last two content
hash keys and concatenating the
three parts together yields the desired �le�

� Performance simulation

Simulations were carried out on an early version of this system to give some indications about
its performance� Here we summarize the most important results� for full details� see �

	�
The scenario for these simulations was a network with between ��� and ��� nodes� Each

�

ATTACHMENT D

Microsoft Exhibit 1067

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400

R
eq

ue
st

s

Queries

500
600
700
800
900

Figure �� Percentage of successful requests over time�

node had a datastore size of �� items and a routing table size of �� addresses �relatively low�
because of limitations on available hardware�� and was given
� unique items to store locally�
The network was initially connected in a linear fashion� where each node started with routing
references to one node on either side�

��� Retrieval success rate

Queries for random keys were sent to random nodes in the network� in batches of �� parallel
queries at a time� and the percentage of successful requests recorded over time� Figure � shows
the percentage of successful requests versus the total number of queries since initialization� for
several network sizes� We can see that the initially low success rate rises rapidly until over ��
of requests are successful� The number of queries until network convergence is approximately
half the total size of the network�

��� Retrieval time

Queries for random keys were sent to random nodes in the network� in batches of �� parallel
queries at a time� and the average number of hops needed for a successful request recorded
over time� Figure � shows the number of request hops versus the total number of queries since
initialization� for several network sizes� We can see that the initially high number of hops

ATTACHMENT D

Microsoft Exhibit 1067

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 1400

R
eq

ue
st

s

Queries

500
600
700
800
900

Figure �� Number of hops per request over time�

required drops until it stabilizes at approximately
� hops� This value changes remarkably little
with network size� suggesting that the time required for requests should scale quite well� The
number of queries until network convergence is approximately equal to the total size of the
network�

� Security

The primary goal for Freenet security is protecting the anonymity of requestors and inserters of
�les� It is also important to protect the identity of storers of �les� Although trivially anyone can
turn a node into a storer by requesting a �le through it� thus �identifying� it as a storer� what
is important is that there remain other� unidenti�ed� holders of the �le so that an adversary
cannot remove a �le by attacking all of the nodes that hold it� Files must be protected against
malicious modi�cation� and �nally� the system must be resistant to denial
of
service attacks�
Reiter and Rubin��
	 present a useful taxonomy of anonymous communication properties on

three axes� The �rst axis is the type of anonymity� sender anonymity or receiver anonymity�
which mean respectively that an adversary cannot determine either who originated a message�
or to whom it was sent� The second axis is the adversary in question� a local eavesdropper� a
malicious node or collaboration of malicious nodes� or a web server �not applicable to Freenet��
The third axis is the degree of anonymity� which ranges from absolute privacy �the presence of

�

ATTACHMENT D

Microsoft Exhibit 1067

System Attacker Sender anonymity Key anonymity

Basic Freenet local eavesdropper exposed exposed
collaborating nodes beyond suspicion exposed

Freenet � pre
routing local eavesdropper exposed beyond suspicion
collaborating nodes beyond suspicion exposed

Table
� Anonymity properties of Freenet�

communication cannot be perceived� to beyond suspicion �the sender appears no more likely to
have originated the message than any other potential sender�� probable innocence �the sender is
no more likely to be the originator than not�� possible innocence� exposed� and provably exposed
�the adversary can prove to others who the sender was��
As Freenet communication is not directed towards speci�c receivers� receiver anonymity is

more accurately viewed as key anonymity� that is� hiding the key which is being requested or
inserted� Unfortunately� since routing depends on knowledge of the key� key anonymity is not
possible in the basic Freenet scheme �but see the discussion of �pre
routing� below�� The use
of hashes as keys provides a measure of obscurity against casual eavesdropping� but is of course
vulnerable to a dictionary attack since unhashed keys must be widely known in order to be
useful�
Freenet�s anonymity properties under this taxonomy are shown in Table
� Against a col

laboration of malicious nodes� sender anonymity is preserved beyond suspicion since a node in
a request path cannot tell whether its predecessor in the path initiated the request or is merely
forwarding it� ��
	 describes a probabilistic attack which might compromise sender anonymity�
using a statistical analysis of the probability that a request arriving at a node a is forwarded
on or handled directly� and the probability that a chooses a particular node b to forward to�
This analysis is not immediately applicable to Freenet� however� since request paths are not
constructed probabilistically� Forwarding depends on whether or not a has the requested data
in its datastore� rather than chance� If a request is forwarded� the routing tables determine
where it is sent to� and could be such that a forwards every request to b� or never forwards
any requests to b� or anywhere in between� Nevertheless� the depth value may provide some
indication as to how many hops away the originator was� although this is obscured by the ran

dom selection of an initial depth and the probabilistic means of incrementing it �see section ���
Similar considerations apply to hops
to
live� Further investigation is required to clarify these
issues�
Against a local eavesdropper there is no protection on messages between the user and the �rst

node contacted� Since the �rst node contacted can act as a local eavesdropper� it is recommended
that the user only use a node on her own machine as the �rst point of entry into the Freenet
network� Messages between nodes are encrypted against local eavesdropping� although tra�c
analysis may still be performed �e�g� an eavesdropper may observe a message going out without
a previous message coming in and conclude that the target originated it��
Key anonymity and stronger sender anonymity can be achieved by adding mix
style �pre

routing� of messages� In this scheme� basic Freenet messages are encrypted by a succession of
public keys which determine the route that the encrypted message will follow �overriding the

�

ATTACHMENT D

Microsoft Exhibit 1067

normal routing mechanism�� Nodes along this portion of the route are unable to determine
either the originator of the message or its contents �including the request key�� as per the mix

net anonymity properties� When the message reaches the endpoint of the pre
routing phase� it
will be injected into the normal Freenet network and behave as though the endpoint were the
originator of the message�
Protection for data sources is provided by the occasional resetting of the data source �eld in

replies� The fact that a node is listed as the data source for a particular key does not necessarily
imply that it actually supplied that data� or was even contacted in the course of the request� It
is not possible to tell whether the downstream node provided the �le or was merely forwarding
a reply sent by someone else� In fact� the very act of successfully requesting a �le places it on
the downstream node if it was not already there� so a subsequent examination of that node on
suspicion reveals nothing about the prior state of a�airs� and provides a plausible legal ground
that the data was not there until the act of investigation placed it there� Requesting a particular
�le with a hops
to
live of
 does not directly reveal whether or not the node was previously storing
the �le in question� since nodes continue to forward messages having hops
to
live of
 with �nite
probability� The success of a large number of requests for related �les� however� may provide
grounds for suspicion that those �les were being stored there previously�
Modi�cation or outright replacement of �les by a hostile node is an important threat� and

not only because of the corruption of the �le itself� Since routing tables are based on replies to
requests� a node might attempt to steer tra�c towards itself by pretending to have �les when
it does not and simply returning �ctitious data� For data stored under content
hash keys or
signature
verifying keys� this is not feasible since inauthentic data can be detected unless a node
�nds a hash collision or successfully forges a cryptographic signature� Data stored under ordinary
descriptive text keys� however� is vulnerable� Some protection is a�orded by the expectation
that �les will be encrypted by the descriptive text� since the node must respond to a hashed key
request with data encrypted by the original text key� but a dictionary attack is possible using a
table of text keys and their hashes� Even partial dictionaries cause problems since the node can
behave normally when an unknown key is requested and forge data when the key is known�
Finally� a number of denial
of
service attacks can be envisioned� The most signi�cant threat

is that an attacker will attempt to �ll all of the network�s storage capacity by inserting a large
number of garbage �les� An interesting possibility for countering this attack is the Hash Cash
scheme�
�	� Essentially� the scheme requires the inserter to perform a lengthy computation as
�payment� before an insert is accepted� thus slowing down an attack� Another alternative is to
divide the datastore into two sections� one for new inserts and one for �established� �les �de�ned
as �les having received at least a certain number of requests�� New inserts can only displace
other new inserts� not established �les� In this way a �ood of garbage inserts might temporarily
paralyze insert operations but would not displace existing �les� It is di�cult for an attacker to
arti�cially legitimize her own �garbage� �les by requesting them many times since her requests
will be satis�ed by the �rst node to hold the data and not proceed any further� She cannot
send requests directly to the other downstream nodes holding her �les since their identities are
hidden from her� However� adopting this scheme may make it di�cult for genuine new inserts
to survive long enough to be requested by others and become established�
Attackers may attempt to replace existing �les by inserting alternate versions under the same

keys� Such an attack is not possible against a content
hash key or signature
verifying key� since

�

ATTACHMENT D

Microsoft Exhibit 1067

it requires �nding a hash collision or successfully forging a cryptographic signature� An attack
against a descriptive text key� on the other hand� may result in both versions coexisting in the
network� The way in which nodes react to insert collisions �detailed in section ���� is intended
to make such attacks more di�cult� The success of a replacement attack can be measured by
the ratio of corrupt versus genuine versions resulting in the system� However� the more corrupt
copies the attacker attempts to circulate �by setting a higher hops
to
live on insert�� the greater
the chance that an insert collision will be encountered� which would cause an increase in the
number of genuine copies�

	 Conclusions

The Freenet network provides an e�ective means of anonymous information storage and retrieval�
By using cooperating nodes spread over many computers in conjunction with an e�cient routing
algorithm� it keeps information anonymous and available while remaining highly scalable� Initial
deployment of a test version is underway� and is so far proving successful� with over
����� copies
downloaded and many interesting �les in circulation� Because of the nature of the system� it is
impossible to tell exactly how many users there are or how well the insert and request mechanisms
are working� but anecdotal evidence is so far positive� We are working on implementing a
simulation and visualization suite which will enable more rigorous tests of the protocol and
routing algorithm� More realistic simulation is necessary which models the e�ects of inserts
taking place alongside requests� nodes joining and leaving� variation in node capacity� and larger
network sizes�

 Acknowledgements

Portions of this material are based upon work supported under a National Science Foundation
Graduate Research Fellowship�

References

�
	 S� Adler� �The Slashdot e�ect� an analysis of three Internet publications��
http���ssadler�phy�bnl�gov�adler�SDE�SlashDotEffect�html �������

��	 Akamai� http���www�akamai�com� �������

��	 American National Standards Institute� Draft� American National Standard X����

��X�
Public�Key Cryptography Using Irreversible Algorithms for the Financial Services Industry�

Part �� The Digital Signature Algorithm �DSA�� American Bankers Association �
�����

��	 R�J� Anderson� �The Eternity service�� in Proceedings of the �st International Conference on
the Theory and Applications of Cryptology �PRAGOCRYPT �	
�� Prague� Czech Republic
�
�����

��	 Anonymizer� http���www�anonymizer�com� �������

�

ATTACHMENT D

Microsoft Exhibit 1067

��	 O� Berthold� H� Federrath� and M� K!ohntopp� �Project "Anonymity and unobservability in
the Internet��� in Computers Freedom and Privacy Conference ���� �CFP ����� Workshop

on Freedom and Privacy by Design �to appear��

��	 D�L� Chaum� �Untraceable electronic mail� return addresses� and digital pseudonyms��
Communications of the ACM ������ ��
�� �
��
��

��	 Y� Chen� J� Edler� A� Goldberg� A� Gottlieb� S� Sobti� and P� Yianilos� �A prototype
implementation of archival intermemory�� in Proceedings of the Fourth ACM Conference

on Digital Libraries �DL �		�� Berkeley� CA� USA� ACM Press� New York �
�����

��	 B� Chor� O� Goldreich� E� Kushilevitz� and M� Sudan� �Private information retrieval��
Journal of the ACM ������ ���
��� �
�����

�
�	 Church of Spiritual Technology �Scientology� v� Dataweb et al�� Cause No� ���
���� District
Court of the Hague� The Netherlands �
�����

�

	 I� Clarke� �A distributed decentralised information storage and retrieval system�� un

published report� Division of Informatics� University of Edinburgh �
����� Available at
http���freenet�sourceforge�net� �������

�
�	 R�R� Dingledine� �The Free Haven Project� Design and Deployment of an Anony

mous Secure Data Haven�� M�Eng� thesis� Department of Electrical Engineering
and Computer Science� Massachusetts Institute of Technology ������� Available at
http���www�freehaven�net� �������

�
�	 Distributed�net� http���www�distributed�net� �������

�
�	 D�J� Ellard� J�M� Megquier� and L� Park� �The INDIA protocol��
http���www�eecs�harvard�edu��ellard�India�WWW� �������

�
�	 Gnutella� http���gnutella�wego�com� �������

�
�	 I� Goldberg and D� Wagner� �TAZ servers and the rewebber network� enabling anonymous
publishing on the world wide web�� http���www�cs�berkeley�edu��daw�classes�cs����
taz�www�rewebber�html �������

�
�	 D� Goldschlag� M� Reed� and P� Syverson� �Onion routing for anonymous and private
Internet connections�� Communications of the ACM ������ ��
�
 �
�����

�
�	 Hash Cash� http���www�cypherspace�org��adam�hashcash� �������

�
�	 Mixmaster� http���www�obscura�com��loki�remailer�mixmaster�faq�html �������

���	 Napster� http���www�napster�com� �������

��
	 M�K� Reiter and A�D� Rubin� �Anonymous web transactions with Crowds�� Communica�
tions of the ACM ������ ��
�� �
�����

���	 The Rewebber� http���www�rewebber�de� �������

�

ATTACHMENT D

Microsoft Exhibit 1067

���	 M� Richtel and S� Robinson� �Several web sites are attacked on day after assault shut
Yahoo�� The New York Times� February �� �����

���	 J� Rosen� �The eroded self�� The New York Times� April ��� �����

���	 A�S� Tanenbaum� Modern Operating Systems� Prentice
Hall� Upper Saddle River� NJ� USA
�
�����

���	 M� Waldman� A�D� Rubin� and L�F� Cranor� �Publius� A robust� tamper
evident�
censorship
resistant and source
anonymous web publishing system�� in Ninth USENIX Se�

curity Symposium� Denver� CO� USA �to appear��

���	 Zero
Knowledge Systems� http���www�zks�net� �������

�

ATTACHMENT D

Microsoft Exhibit 1067

Design Issues in
Anonymity and
Unobservability

Workshop on

Hannes Federrath (Ed.)

Preproceedings of the

International Computer Science Institute (ICSI)
Berkeley, California
July 25-26, 2000

Attacks on Systems

Anonymous Publishing

Mix Systems

Identity Management

Pseudonyms & Remailers

ATTACHMENT E

Microsoft Exhibit 1067

ATTACHMENT E

Microsoft Exhibit 1067

Hannes Federrath (Ed.)

Proceedings of the
Workshop on Design Issues in Anonymity and Unobservability

International Computer Science Institute (ICSI)
Berkeley, California

July 25-26, 2000

ATTACHMENT E

Microsoft Exhibit 1067

This document is also Technical Report TR-00-011 of ICSI.

International Computer Science Institute
1947 Center St., Suite 600
Berkeley, CA 94704-1198

Phone: (510) 666-2900
Fax: (510) 666-2956

http://www.icsi.berkeley.edu

ATTACHMENT E

Microsoft Exhibit 1067

Contents

Traffic Analysis: Protocols, Attacks, Design Issues and Open Problems . 7
Jean-François Raymond

The disadvantages of free MIX routes and how to overcome them . 27
Oliver Berthold, Ronny Standtke, Andreas Pfitzmann

Freenet: A Distributed Anonymous Information Storage and Retrieval System 43
Ian Clarke, Oskar Sandberg, Brandon Wiley, Theodore W. Hong

The Free Haven Project: Distributed Anonymous Storage Service .59
Roger Dingledine, Michael Freedman, David Molnar

Towards an Analysis of Onion Routing Security . 83
Paul Syverson, Gene Tsudik, Michael Reed, Carl Landwehr

Web MIXes: A system for anonymous and unobservable Internet access .101
Oliver Berthold, Hannes Federrath, Stefan Köpsell

Privacy Incorporated Software Agent (PISA): Proposal for building a
privacy guardian for the electronic age . 117
John Borking

Identity Management Based On P3P .127
Oliver Berthold, Marit Köhntopp

On Pseudonymization of Audit Data for Intrusion Detection . 147
Joachim Biskup, Ulrich Flegel

Protection Profiles for Remailer Mixes . 165
Kai Rannenberg, Giovanni Iachello

ATTACHMENT E

Microsoft Exhibit 1067

ATTACHMENT E

Microsoft Exhibit 1067

Preface

This workshop addresses the design and realization of anonymity services for the Internet and other commu-
nication networks. The main topics of the workshop are

� Attacks on Systems,

� Anonymous Publishing,

� Mix Systems,

� Identity Management, and

� Pseudonyms & Remailers.

Anonymity and unobservability have become a “hot topic” on the Internet. Services that provide anonymous
and unobservable access to the Internet are useful for electronic commerce applications (obviously with the
need for strong authenticity and integrity of data) as well as for services where the user wants to remain
anonymous (e.g. web-based advisory services or consultancy).

I would like to thank the other members of program committe John Borking, Marit Köhntopp, Andreas
Pfitzmann, Avi Rubin, Adam Shostack, Michael Waidner, and Sonja Zwissler for their helpful hints, for
doing the reviews and for their patience. A special thank is dedicated to Lila Finhill of ICSI for her help in
all administrative and financial concerns, and Christian Schindelhauer for his support on LaTeX.

Berkeley, July 2000 Hannes Federrath

ATTACHMENT E

Microsoft Exhibit 1067

ATTACHMENT E

Microsoft Exhibit 1067

Traffic Analysis: Protocols, Attacks, Design Issues and Open
Problems

Jean-François Raymond
Zero-Knowledge Systems, Inc.

jfr@zeroknowledge.com

Abstract

We present the traffic analysis problem and expose the most important protocols, attacks and design
issues. Afterwards, we propose directions for further research.
As we are mostly interested in efficient and practical Internet based protocols, most of the emphasis is
placed on mix based constructions. The presentation is informal in that no complex definitions and
proofs are presented, the aim being more to give a thorough introduction than to present deep new
insights.

1 Introduction

Privacy is becoming a critical issue on the Internet. Polls constantly remind us that users feel that one of
the most important barriers to using the Internet is the fear of having their privacy violated. Unfortunately,
this isn’t unjustified as marketers and national security agencies have been very aggressive in monitoring user
activity 1.

Two things can happen as a result of this lack of privacy: either the Internet’s popularity diminishes or, as
seems more likely, the Internet becomes the most pervasive surveillance system ever. The problem studied in
this text isn’t a purely theoretic one, in fact some would argue that it is a crucial one to solve if the online
world is to continue expanding and improving. In any case, from both theoretical and practical perspectives,
it certainly deserves to receive much more attention than it has gotten so far.

1.1 Desirable Properties

Our goal is to protect users against traffic analysis. That is, we don’t want an adversary that can monitor
and/or compromise certain parts of the systems to be able to match a message sender with the recipient
(sender-recipient matchings).

A related problem is that of network unobservability which attempts to hide all communication patterns.
(how many, at what time and to whom/from whom messages are sent and received). Notice that network
unobservability implies the ineffectiveness of traffic analysis.

1See http://www.freedom.net and http://www.inf.tu-dresden.de/˜hf2/anon for examples.

7

ATTACHMENT E

Microsoft Exhibit 1067

Whereas message privacy can be obtained using encryption, it’s much harder to protect sender and/or recip-
ient privacy; especially in large open networks. The number of different assumptions and settings is huge
which makes it difficult to define and reason about the problem in a rigorous manner.

As with many constructions in cryptography, there are efficiency, practicality/security tradeoffs to be made.
For example, if efficiency and practicality weren’t issues, we could broadcast messages in order to protect
recipient privacy.

Notice that the problem definition isn’t entirely trivial. We can’t provide ”perfect” privacy since the number
of possible senders and recipients is bounded. So, for example, if there are only two parties on the network,
an attacker having access to this information can trivially determine who is communicating with whom : : :

The best we can hope for is to make all possible sender-recipient matchings look equally likely. That is, the
attacker’s view2’s statistical distribution should be independent from the actual sender-recipient matchings.
The protocol of subsection 2.2 has this strong property whereas those of subsection 2.3 usually don’t. Un-
fortunately, there are no satisfactory definitions/methods providing a solid framework in which to analyze
protocols that fall short of the optimal performance3 and we usually need to rely on more or less ad-hoc
arguments.

1.2 Overview

A concise literature review can be found in section 2. A comprehensive listing of attacks against mix-networks
is presented in section 3. Design issues related to large mix based networks are given in section 4. We propose
directions for further research in section 5 and conclude in section 6.

2 Literature Review

Before delving more deeply into the problem, we briefly review some privacy protecting mechanisms. Al-
though the link between these and sender-recipient privacy can be tenuous in certain instances, we believe
that some of the ideas used in these techniques might be useful.

2.1 Related Problems

� Secure Multi Party Computations (SMPC)[14] : A group of users, each having a private input, want to
securely compute a function of their private inputs. At the end of the protocol, all users should know
only the value of the function. That is, each user will not have gained any information about the other
users’ private inputs apart from what can be deduced from the function’s value.

� Oblivious RAM [22]: Code privacy can be protected by using a tamper resistant cryptographic pro-
cessor. The protocol is such than an outside party looking at the memory accesses (reads and writes)
can’t gain any information about what is being computed and how it is being computed. The code’s
privacy is protected which could be useful to prevent reverse engineering and software piracy.

2By view, we mean all the information available to the attacker.
3i.e. protocols in which traffic analysis can help in obtaining some non-trivial information about sender-recipient matchings.

8

ATTACHMENT E

Microsoft Exhibit 1067

� Private Information Retrieval(PIR) [10, 11, 12] : A user privately queries one or many disjoint
databases. By privately, we mean that the database(s) will not have any information about what ele-
ment the user has queried.

� Oblivious Transfers [36]: This problem has many versions which are equivalent in that one implies
the other. We mention a flavor which is related to PIRs and is referred to as 1 out of n oblivious
transfer. These protocols have very similar properties as PIRs, the major difference being that the
database privacy is also protected: the user doesn’t gain any information about the other entries in the
database.

� Steganography [27] : Steganography is the branch of information privacy that attempts to hide in-
formation within publicly observable data (e.g. using digital watermarking [40], subliminal channels
[39], etc.).

2.2 Dining-Cryptographer Networks (dc-nets)[7, 41]

The goal here is to have one participant anonymously broadcast a message. If the message is aimed at one
user, the sender can encrypt the message by, for example, using an asymmetric crypto-system. Since the
message is received by all parties, recipient anonymity is trivially maintained.

Let P = fP1; P2; : : : ; Png be the set of participants and let (F;�) be a finite Abelian (commutative) group
(for example (Zm;+)) in which all computations will be carried out. The protocol goes as follows:

1. Initialization: Each participant securely shares secret keys (chosen at random from F) with some other
participants. We denote the secret key shared by Py and Pz by Ky;z(= Kz;y) and define the set G
composed of all pairs (Py; Pz) such that Py and Pz share a secret key. Notice that if (Py; Pz) 2 G

then (Pz; Py) 2 G.

2. Message Transmission: In order to send a message M , Pi broadcasts:

M �
X

8j s.t. fPi;Pjg2G

sign(i� j) �Ki;j

Where sign(x) = 1 if x > 1 and �1 otherwise.

3. “Noise” Transmission: All other participants, Pj , broadcast:

X

8k s.t. fPj ;Pkg2G

sign(j � k) �Kj;k

4. Computing the Message: All interested participants can obtain M by adding (�) all broadcasted
messages. The fact that the sum of all broadcasted message equals M can be seen by noting that all
terms except M cancel out because of sign(). (i.e. for each term of the form sign(j � l) �Kj;l we
have sign(l � j) �Kl;j = sign(l � j) �Kj;l = �sign(j � l) �Kj;l.)

9

ATTACHMENT E

Microsoft Exhibit 1067

In order to quantify the scheme’s security, we define a graph having n vertices, labelled by 1; 2; : : : ; n (each
representing a participant), with edges between nodes i and j if and only if Pi and Pj share a secret key. For
example, if all participants share a secret key, the graph will be fully connected.

Fact 2.1 If the graph obtained by removing the vertices corresponding to the participants controlled by an adversary
is connected then the protocol protects sender anonymity. (Note that we assume that the broadcasted values are
known to the attacker.)

This analysis is tight in that if the graph isn’t connected, an attacker can determine from which of the
disconnected parts of the graph the sender is from.

2.2.1 Drawbacks

Unfortunately, the protocol has serious drawbacks:

1. Secure and reliable broadcast channel: To protect against active adversaries4, we need to rely on physical
devices because secure and reliable broadcast mechanisms can’t be constructed by algorithmic means.
This problem can be partially fixed by the technique of Waidner [41] that uses a fail-stop broadcast.

2. Channel jamming: If many participants try to send a message at the same time, all is lost as the sum
of all broadcasted values will equal the sum of the messages (e.g. M1 �M2 � : : : �Mj). An even
bigger problem is if a participant acts maliciously and deliberately sends channel jamming messages;
this allows him to compute the legitimate message while the other users can’t gain any information.

3. Number of messages: Every user needs to participate every time a message is broadcasted which is a
problem both in terms of efficiency and robustness. This is an unrealistic constraint in large networks.

4. Shared secret keys: The number of keys to share could be too large for practical purposes (need a new
key for each transmission). Note that pseudo-random numbers can be used as keys to alleviate this
problem. The fact that many users need to share secret keys with (possibly many) participants is also
a serious problem in terms of practicality.

Despite these problems, dc-nets are useful in many situations (e.g [19]), and, as far as efficiency is concerned,
for certain underlying network topologies (e.g. rings), the complexity is acceptable. Also note that dc-nets
can be used in conjunction with other sender-recipient privacy protecting mechanisms such as mix networks.
For example, a certain number of users can transmit information to a mix network using a dc-net. In this
setting, even if the mix network security is violated, the attacker can only ascertain that the sender of a given
message is one of the parties using the dc-net5.

4adversaries capable of adding and removing messages from the communication channels.
5Assuming that the dc-net’s security hasn’t been compromised.

10

ATTACHMENT E

Microsoft Exhibit 1067

2.3 Mixes

A mix node is a processor that takes as input a certain number of messages which it modifies and outputs
in a random order. The messages are modified and reordered in such a way that it is nearly impossible to
correlate a message that ”comes in” with a message that ”goes out”. The mix nodes can be used to prevent
traffic analysis in roughly the following manner:

1. The message will be sent through a series of mix nodes (a route), say i1; i2; : : : ; id. The user encrypts
the message with node id’s key, encrypts the result with node id�1’s key and so on with the remaining
keys.

2. The mix nodes receive a certain number of these messages which they decrypt6, randomly reorder and
send to the next nodes in the routes.

Note that each mix node knows only the previous and next node in a received message’s route. (The entry and
exit node know the source (sender) and destination (recipient) of the message respectively.) Hence, unless
the route only goes through a single node, compromising a mix node doesn’t trivially enable an attacker to
violate sender-recipient privacy.

2.3.1 Different Approaches to Route Selection

The route that a message will follow can be determined in a few ways:

� Cascade [24, 23]: The route can be constant, that is, it doesn’t change. In this setting, the attacker
knows the entry, exit and intermediate nodes. This kind of mix network is usually referred to as “mix-
cascade”. Although they are easier to implement and manage, mix-cascades are much easier to traffic
analyze.

� Random Order: The routes can also be chosen at random, that is, the user chooses i1; i2; : : : ; id
uniformly at random. This type of mix network is usually referred to as “mix-net”.

� Other Methods: One can think of many other ways of choosing routes, for example, A) part of the
route could be fixed B) the route could be chosen at random from a set of pre-determined choices
C) the route could be chosen at random subject to some restriction (e.g. mixes not all in the same
jurisdiction).

In the following, we consider only mix-nets although some comments/attacks will apply to other route
selection mechanisms.

6They remove a layer of encryption.

11

ATTACHMENT E

Microsoft Exhibit 1067

2.3.2 Different Approaches to Flushing Mix Nodes

Many approaches to “flushing” messages can be used:

� Message threshold: The mix nodes wait until they receive a certain number of messages before ”releas-
ing” all of them at the same time.

� Message Pool [13]: The flushing algorithm for mixmaster [13] has two parameters: the pool size n and
the probability of sending p. The nodes wait until they have n messages in their pool at which time,
they shuffle the messages and send each one with probability p (e.g. if p = 1 the scheme is identical
to the message threshold approach). Note that unsent and newly received messages are placed in the
pool.

� Stop and Go [29]: Kesdogan et al. give an interesting scheme in which messages wait random times at a
nodes before being released (note that the waiting period is determined by the sender). In this setting,
the attacker has a probability of success: If an empty node (i.e. one not currently processing any
message) receives a message and does not receive another one before sending the decrypted message,
the attacker can easily “follow” the message – routing the message through this node doesn’t “help”.
Perhaps the most interesting contribution of this paper is that a statistical analysis is used to determine
the probability of this happening.

� Other : There are many other reasonable algorithms for doing this, for example mix nodes could
receive a random number of messages and output a constant number of them (using dummy messages
to fill the gaps).

2.3.3 Mix Networks in Other Settings

Many researchers have studied how mixes can be used within existing networks such as ISDN, Internet and
GSM (see for example [32, 33, 34, 31]). Although these are very interesting papers, they don’t provide any
deep insights about traffic analysis.

2.3.4 Robust Mixes

Very recently, researchers [1, 2, 17, 25, 30] have invented robust mixes, in which messages are properly deliv-
ered to the recipient even if a certain number of mix nodes are misbehaving. Unfortunately, the constructions
don’t seem practical for most real-world situations since a large number of the mix nodes, a bulletin board
and a public key crypto-system are required.

We note that a mix network that works even if a certain number of nodes are not forwarding the messages
was proposed in [33, 31]. This construction, although it doesn’t have many of the nice properties of robust
mixes, can be very attractive as it works with classical mix networks (don’t need bulletin board, public key
crypto-system).

12

ATTACHMENT E

Microsoft Exhibit 1067

2.4 Rackoff and Simon’s analysis

In [37], Rackoff and Simon provide a solid theoretic framework in which we can reason about sender-
recipient privacy. Using complex arguments about rapidly converging Markov processes, they are able to
prove that an attacker can’t successfully traffic analyze a specific type of mix network (with constrained
user behavior). Unfortunately, the setting is of limited practical interest: it’s synchronous, all participants
need to send a message, mix-nodes process at most two messages at a time and the routes are constrained.
Furthermore, although the constructions are efficient (from a complexity theorist’s point of view), they do
not seem amenable to real-world implementation. In spite of these shortcomings, their work provides the
only known solid theoretic foundation for reasoning about traffic analysis.

3 Attacks

The attacks mentioned in this section aren’t based on any specific implementation7, instead, we give attacks
that can be mounted on the high level descriptions of the schemes. We assume there are no implementation
weaknesses, for example, we assume that messages coming in a mix node can’t be correlated with a message
going out (by a passive external adversary). Note that securely implementing cryptographic protocols is an
extremely difficult task even for protocols that seem very simple like the Diffie-Hellman key exchange [18]
and so will not be discussed as it is beyond the scope of this work.

In order to give a list of attacks, it is important to solidly define what assumption are made about the attacker’s
power. We consider the following attacker properties:

� Internal-External: An adversary can compromise communication mediums (external) and mix nodes,
recipients and senders (internal).

� Passive-Active: An active adversary can arbitrarily modify the computations and messages (adding and
deleting) whereas a passive adversary can only listen. For example, an external active adversary can
remove and add messages from the wire(s) he controls and a passive internal adversary can easily
correlate messages coming in a compromised node with messages going out (but can’t modify them).

� Static-Adaptive: Static adversaries choose the resources they compromise before the protocol starts and
can’t change them once the protocol has started. Adaptive adversaries on the other hand are allowed
to change the resources they control while the protocol is being executed. They can, for example,
”follow” messages.

An adversary can, of course, have any combination of these properties. For example, he could control a
mix node in a passive manner and actively control wires. Note that there might be other relevant attacker
properties (these are the ones usually considered in theoretical cryptography).

We warn the reader that the immunization mechanisms presented in the following subsections are by no
means comprehensive and many details are omitted.

7for an attack on an RSA based implementation of a mix see [35].

13

ATTACHMENT E

Microsoft Exhibit 1067

3.1 Brute Force Attack

The brute force attack is very instructive because it can help in determining how much, where and when to
use dummy traffic. Dummy messages are messages that are sent through the network in order to complicate
the attacker’s task. On the Internet, mix network operators sometimes need to pay for each message and so
we want to be sure the dummy messages have a good security to cost ratio.

The idea behind this attack is very simple: follow every possible path the message could have taken (passive
external adversary). If the mix isn’t well designed and the attacker is extremely lucky, he can link sender and
recipient. In most cases however, the attacker will be able to construct a list of possible recipients.

We present the attack in a setting in which each mix node waits until it receives t messages before flushing
them (i.e. sending all t messages). In addition, we assume that each message goes through exactly d mix
nodes. The attack can be carried out in any setting however the analysis then becomes a bit more involved.

1. The attacker first follows a message from a sender to a first mix node.

2. The attacker then follows every (t) message that the first node releases. The adversary needs to follow
messages going to anywhere between t and 1 different nodes. If all messages are sent to either the
same mix node or recipients, the attacker only needs to monitor one node. On the other hand, if all t
messages are sent to different nodes, the attacker needs to observe t different mix nodes.

3. The process continues like this until messages reach the dth level nodes. The attacker then need only
”follow” messages leaving the mix network (i.e. going to recipients).

What can the attacker learn from such an attack ? In the worst case, the attacker only needs to follow one
path and can match a sender with a recipient. In the best case, the attacker needs to follow td�1 paths
through the mix network and td messages to the outside world and so can match one sender with td possible
recipients. Although the worst case is unacceptable, by adding dummy traffic intelligently, we can make the
worst case scenario as good as needed. We propose adding dummy messages in the following manner:

� We make sure that each mix node “sprays” its message around adequately. That is, the nodes should
ensure that at least t0 different mix nodes receive one of its messages (dummy or real).

� We make sure that each mix node sends at least t00 messages outside the mix network every time it
sends messages. These should be sent to participating users (or content providers).

The attacker now follows, at the very least, t0 different paths through the mix network, and, at the last node,
follows messages going to t0 � t00 distinct recipients (assuming that the final destinations are all different).
Hence, the attacker can only match one sender with t0 � t00 recipients. Note that the probability that an
attacker only needs to follow t0 � t00 is extremely small (if t � t0; t00), and will generally be much larger.
Furthermore, if the mix nodes collaborate when choosing who receives dummy messages this bound can
easily be increased.

In addition (or in replacement of) to dummy traffic, the users can create routes of random length to fool
adversaries. If the routes are arbitrarily large, in order to accurately match one sender with a set of possible
recipients, the attacker needs to follow an arbitrarily large number of paths.

14

ATTACHMENT E

Microsoft Exhibit 1067

The attack can be carried out by passive, static, external adversaries, capable of taping the required wires. (If
the attacker can’t tap a significant number of wires, the probability of him being able to follow all paths is
very low.) Note that if the attacker can’t tap a relevant wire, he won’t be able to produce a complete potential
recipient list since the paths going through the missing wires are lost. A passive, external, adaptive adversary
is better suited to this problem as he can ”follow” the messages, compromising only the relevant channels
(wires).

Since the previous scheme is very simple, it’s easy to calculate security/practicality tradeoffs and compare mix-
networks with respect to their resistance to brute force attacks. For example it allows us to answer questions
like:

� Are busy networks with few nodes more resistant to brute force attacks than quiet networks with many
nodes ?

� How helpful is dummy traffic if it’s used in a particular manner ?

(Note that if the brute force attack is carried out many times, the techniques of subsection 3.4.3 can be used.)

3.2 The Node Flushing Attack (a.k.a. Spam attack, Flooding attack, n-1 attack)

First mentioned in [8], the flush attack is very effective and can be mounted by an active external adversary.
If the nodes wait till they have t messages before ”flushing”, an attacker can send t � 1 messages and easily
associate messages leaving the node with those having entered. This can be seen by noting that the adversary
will be able to match his inputs with the messages leaving the node.

Dummy traffic can make things a bit more difficult for the attacker since he can’t distinguish them from legit-
imate messages. Unfortunately, if dummy traffic is only used in specific instances, as proposed in subsection
3.1, an attacker can choose his messages so that dummy traffic isn’t used.

Another potential solution is to authenticate each message which allows nodes to detect flushing attempts.
Unfortunately, this entails authenticating each message and detecting flushing attempts which could be com-
putationally infeasible. We remark that simple-minded implementations of this solution can be broken by
message playback attacks. Authentication and privacy protection are two seemingly contradictory require-
ments however using Chaumian blinding [9] or Brands credentials [5] we can satisfy both requirements.

Stop-and-Go mix nodes (in which a message waits a random amount of time) can partially solve this problem.
Unfortunately, they only have ”probabilistic” security.

There are some similarities with denial of service attacks [6, 15]. Hence, if t is very large, using hashcach [3]
or pricing functions [20] might be effective solutions.

Yet another option is to “re-mix” the messages, that is, the mix nodes use the same mechanism as the user to
send the messages to the next nodes – “recursive mixing”. This feature is implemented in mixmaster[13].

Notice that by encrypting the traffic between mix nodes, the attacker looses the ability to easily recognize his
messages (the partial (< t� 1 spams) node flushing attack isn’t as effective).

15

ATTACHMENT E

Microsoft Exhibit 1067

3.3 Timing Attacks

If the different routes that can be taken require different amounts of time, the system could be vulnerable to
timing attacks. Precisely, given the set of messages coming in the network and the set of message going out
of the network (as well as the arrival, departure times respectively), route timing information might be useful
in correlating the messages in the two sets.

For example, suppose there are two routes, one taking 2 second and the other 4 seconds and assume that the
two messages coming in the network arrive at 0:00 and 0:01 and that the two messages leave the network
at 0:03 and 0:04. The attacker doesn’t need to carry out expensive computations in order to correlate the
messages coming in with the messages going out : : :

Remark also that an attacker having access to just one of the communicating parties might be able to infer
which route is taken by simply computing the round trip time. That is, calculating the time it takes to receive
a reply. This attack is interesting in that even if one of the parties uses “constant link padding8” the attack is
still effective.

The attack motivates the use of mix nodes that wait variable amounts of time before flushing messages. We
remark that randomly increasing the latency doesn’t completely solve the problem since an attacker might be
able to rule out some routes (e.g. if a message exits the mix network faster than the minimum time needed
to go through some routes then these routes can be ruled out). Hence, the minimum time needed to go
through each route should be the same. (It’s not clear if this can be directly used in real-world situations since
some routes could be very slow – because of mix node processing speed, speed of the communication wires,
number of mix nodes in the route, etc.). This kind of attack is mentioned in [28, 38].

3.4 Contextual Attacks

These are the most dangerous attacks and, unfortunately, they are very difficult to model in a rigorous
manner. The problem is that real-world users don’t behave like those in the idealized model. We remark that
this class of attack is particularly effective for real-time interactive communications.

3.4.1 Communication Pattern Attacks

By simply looking at the communication patterns (when users send and receive), one can find out a lot of
useful information. Communicating participants normally don’t “talk” at the same time, that is, when one
party is sending, the other is usually silent. The longer an attacker can observe this type of communication
synchronization, the less likely it’s just an uncorrelated random pattern.

This attack can be mounted by a passive adversary that can monitor entry and exit mix nodes. Law enforce-
ment officials might be quite successful mounting this kind of attack as they often have a-priori information:
they usually have a hunch that two parties are communicating and just want to confirm their suspicion.

8The flow of messages between the participant and the first node is constant.

16

ATTACHMENT E

Microsoft Exhibit 1067

3.4.2 Packet Counting Attacks

These types of attacks are similar to the other contextual attacks in that they exploit the fact that some
communications are easy to distinguish from others. If a participant sends a non-standard (i.e. unusual)
number of messages, a passive external attacker can spot these messages coming out of the mix-network.
In fact, unless all users send the same number of messages, this type of attack allows the adversary to gain
non-trivial information.

A partial solution is to have parties only send standard numbers of messages but this isn’t a viable option in
many settings.

The packet counting and communication pattern attacks can be combined to get a “message frequency”
attack (this might require more precise timing information).

Communication pattern, packet counting and message frequency attacks are sometimes referred to as traffic
shaping attacks and are usually dealt with by imposing rigid structure9 on user communications[4]. Notice
that protocols achieving “network unobservability” are immune to these attacks.

3.4.3 Intersection Attack

An attacker having information about what users are active at any given time can, through repeated observa-
tions, determine what users communicate with each other. This attack is based on the observation that users
typically communicate with a relatively small number of parties. For example, the typical user usually queries
the same web sites in different sessions (his queries aren’t random). By performing an operation similar to an
intersection on the sets of active users at different times it is probable that the attacker can gain interesting
information. The intersection attack is a well known open problem and seems extremely difficult to solve in
an efficient manner.

3.5 Denial of Service Attacks

By rendering some mix nodes in-operational, an active adversary might obtain some information about the
routes used by certain users. It seems highly probable that users that have their routes “destroyed” will behave
differently than parties that haven’t. Network unobservability or “client challenges10” (e.g. [3, 20, 26]) might
be required to properly solve this problem for real-time interactive communications.

3.6 Active Attacks Exploiting User Reactions

Active adversaries might be able to gain non-trivial sender-recipient matching information by exploiting the
fact that user behavior depends on the message received. A variation on the following attack can even be used
against dc-nets that don’t use a secure broadcast channel (see [41]).

1. The adversary first intercepts a message M just before it enters the mix net.
9It’s not clear whether this is a viable option for large Internet based systems.

10Prevention mechanisms for denial of service attacks.

17

ATTACHMENT E

Microsoft Exhibit 1067

2. M is then sent to a set of possible recipients. The parties not expecting to receive this message message
will probably react in a different manner than a party expecting it.

The attacker can use this to get some sender-recipient matching information. Note that if the nodes in the
route authenticate the messages the attack is prevented.

3.7 The “Sting” Attack

If one of the party involved in a dialog is corrupt, he might be able to, in a sense, “encode” information in
his messages (see [28]). For example, government agencies might set up a fake “bomb making instruction
web sites” and try to find out who accesses it. Many methods for identifying a user querying the web page
come to mind: varying the reply latency, sending messages of a specific length, etc.

In some situations, it might be even easier to compromise user privacy. For example, if the sting web site gives
fake information pertaining to financial fraud, the user might (non-anonymously) act upon this information
at which point he can be arrested.

3.8 The “Send n’ Seek” Attack

This attack is, in a sense, the opposite of the “sting” attack of subsection 3.7. Instead of having the recipient
try to find the sender’s identity, it’s the sender that attempts to uncover the recipient’s identity. This attack is
particularly dangerous against non-interactive processes. For example, privacy protecting e-mail systems (see
for example [21]) can be attacked by sending an easily identifiable number of messages and trying to identify
these messages at suspect destinations (e.g. POP boxes). Notice that the terms sender and recipient are used
very loosely here; the sender refers to the party initiating the connection.

3.9 Attacks Based on the Message’s Distinguishing Features

If the user’s (unencrypted) messages have distinguishing characteristics, the recipient (and maybe the last
node, depending on whether the message is encrypted) might be able to link the message with one or many
individuals. For example, analyzing writing styles probably reveals non-trivial information about the sender.

3.10 Message Delaying

The attacker can withhold messages until he can obtain enough resources (i.e. wires, nodes, etc.) or until the
network becomes easier to monitor or to see if the possible recipients receive other messages, etc. In view of
this attack, it makes sense to have the mix nodes verify authenticated timing information (the authenticated
timing information could be inserted in the message by the sender or the nodes).

18

ATTACHMENT E

Microsoft Exhibit 1067

3.11 Message Tagging [16]

An active internal adversary that has control of the first and last node in a message route, can tag (i.e. slightly
modify) messages at the first node in such a way that the exit node can spot them. Since the entry node
knows the sender and the exit node the recipient, the system is broken.

A solution to this problem is to make it difficult to tag messages. The techniques that can be used to do this
depend on the implementation and so are not discussed here.

A slight variant of this attack can be mounted by an active external adversary if the messages don’t have a
rigid structure. Remark that this attack has many similarities with subliminal channels [39]; this observation
forms the basis of some of the following variations:

� Shadow Messages: If an adversary sends messages that follow the same path as the message being
followed, it can easily transmit some information to the output. For example, the attacker can just
replay the message in such a way that it can spot them leaving the mix network (e.g. varying the
message frequency).

� Message Delaying: The attacker can delay messages to obtain some information. These delays can
presumably detected.

� Broadcast: An attacker can broadcast messages notifying his accomplices that a particular message has
entered the network. This isn’t a particularly powerful attack but it could be virtually impossible to
detect.

The message tagging based attacks motivate using extremely rigid message structure and authenticating tim-
ing information (in order to prevent message delays and message playbacks).

3.12 Partial or Probabilistic Attacks

Most of the preceding attacks can be carried out partially, that is, the attacker can obtain partial or prob-
abilistic information. For example, he could deduce information of the form: with probability p, A is
communicating with B or A is communicating with one of the users in a group. These attacks haven’t been
addressed so far and seem very promising, especially when carried out a large number of times.

3.13 Approaches to Modeling Attacks

The previous attacks have assumed that the adversary controlled all the required resources (wires, nodes).
When only considering static adversaries, it might make sense to calculate the probability that the required
resources are controlled. This approach is especially relevant when the adversary just wants to obtain a
sender-recipient matching.

Unfortunately, assuming static adversaries doesn’t seem helpful for making design decisions (i.e. how much
dummy traffic); it might however help us in determining if there is a reasonable threat that the system can
be broken.

19

ATTACHMENT E

Microsoft Exhibit 1067

4 Mix Network Design Issues

In this section, we present issues related to mix-network design.

4.1 Anonymity versus Pseudonymity

Probably the most important design issue is that of anonymity versus pseudonymity. Note that by pseudony-
mous, we mean that some node(s) knows the user’s pseudonym (it can’t link a pseudonym with a real-world
identity). Another option is to have the user be anonymous in the mix network but be pseudonymous in
its dealings with other users (half-pseudonymity). Half-pseudonymity won’t be discussed in any detail be-
cause its properties are similar to the pseudonymity ones. Here are the most important advantages of both
anonymity and pseudonymity:

� Anonymity

1. Provides better security since if a pseudonym (nym) is linked with a user, all future uses of the
nym can be linked to the user.

� Pseudonymity

1. We get the best of both worlds: privacy protection and accountability (and openness). Since
pseudonyms (nyms) have a persistent nature, long term relationships and trust can be cultivated.
(half pseudonymity also)

2. Pseudonym based business models (for mix node operators) are more attractive than anonymity
based ones.

3. Abuse control is easier to deal with when nyms are used.

4. Authentication (verifying that someone has the right to use the network) is easier: either Brands
credentials [5] or Chaumian blinding [9] needs to be used 11 when using anonymity.

5. Allows non-interactive processes (e.g. e-mail).

4.2 Packet Sizes

In many situations, using different message sizes yield substantial performance improvements. For example
TCP/IP connections require on average one small control packet for every two (large) data packet. It might
be inefficient for small messages to be padded or large packets split up in order to get a message of the correct
size. As usual in cryptography, we have a security/performance tradeoff: Using more than one message size
gives better performance but worse security. We strongly suspect however that there are techniques which
improve the security properties of the multiple packet size option (e.g. randomly expanding small messages.).

11both of these techniques are patented.

20

ATTACHMENT E

Microsoft Exhibit 1067

4.3 Dummy Messages

Dummy traffic is often used in an unstructured manner and so might not be as effective as it could be, we
note the following observations:

1. If a node sends its message to less than t0 nodes we suggest sending dummy messages in such a way
that t0 nodes receive messages. The larger t0, the harder it is to mount the brute search attacks.

2. Each node should send messages to at least t00 destinations outside the mix network (dummy messages
should be used to fill the gaps). The larger t00, the harder it is to mount the brute search attack.
Furthermore, this technique also seems to complicate attacks in which the adversary monitors the exit
nodes.

3. In order to randomize the user’s communication patterns, we should seriously consider having the user
send dummy traffic to the entry node. The challenge here is to have good security and minimize the
amount of dummy messages used (see [4]).

4. Dummy messages could also be used to reduce the amount of time messages stay at a given node. It
seems that waiting for c messages to enter a mix node before sending b (b > c) has similar security
properties as waiting to receive b messages before releasing them. This trick could be used to reduce
the time messages wait at nodes.

4.4 Routing

For large Internet based systems especially, having the user choose the nodes in his route randomly doesn’t
seem like a viable option because:

1. The nodes and users must “know12” each other node which might be impractical.

2. Some servers are far from each other and it doesn’t make sense from a performance view point to have,
for example, a route consisting of nodes in Australia, Canada, South Africa and China.

3. Nodes should be “socially” independent. Ideally, the nodes in a route should belong to different
organizations and be located in different legal jurisdiction. The whole idea behind using more than
one node is that none of them have enough information to determine sender-recipient matchings.
Hence, if all nodes in a route belong to the same organization we might as well just use a single node.
The motivation for having nodes in different legal jurisdiction is that more than one subpoena needs
to be obtained to legally compromise nodes.

Creating good network topologies and route finding algorithms with respect to security and efficiency doesn’t
seem entirely trivial.

Note also that in order to limit the number of public key operations executed, some systems (e.g. [21]) use
static routes that allows mix nodes to associate each message with a connection identifier which makes some
of the attacks mentioned previously a lot easier to carry out.

12e.g. know the IP address, Port number and status.

21

ATTACHMENT E

Microsoft Exhibit 1067

4.5 Node Flushing Algorithm

As seen in subsection 2.3.2, there are many different approaches to flushing nodes. Again, there is a secu-
rity/practicality tradeoff: the longer messages can stay in mix-nodes the better the security (in most settings).

4.6 Query Servers and Privacy Protection

In many situations, the user needs to retrieve some information from a query server, for example network
configuration information, pseudonym public keys, etc. These queries shouldn’t erode privacy: the query
servers shouldn’t obtain non-trivial information about sender-recipient matchings. The obvious approach
to this problem is to have the user download the entire databases (the answer to every possible query) but
unfortunately, the amount of data to transfer might be too large. We suspect that private information retrieval
protocols [10, 11] might be very useful in these situations. This design issue illustrates a fundamental security
principle:

A system is only as secure as its weakest link.

5 Directions for Further Research

Probably the most important direction for further research in this field is that of attacks. As it seems unlikely
that we can obtain Rackoff-Simon [37] type bounds for real-world implementations, it’s a good idea to find
and rigorously analyze as many attacks as possible and either :

� Try to immunize our protocols against these attacks.

� Detect when the attack is mountable and take the appropriate measures.

The new and clever attacks that will be effective against mix networks will probably be empirical in nature.
Mathematical analysis of mix network traffic seems like the most promising avenue for mounting attacks.
Perhaps ideas from the field of pattern recognition and measure theory could be used : : :

We now give a listing of some other relevant problems (in no particular order):

1. Most of the attacks mentioned are aimed; what about a more general class of attack in which an
attacker doesn’t require a particular sender-recipient matching but would settle for an arbitrary one ?

2. The best we can hope for is that the attacker’s view be independent from the sender-recipient match-
ings. Is it possible to obtain weaker results in which the view is slightly biased? Such a result would
allow us to determine how much information the attacker needs to gather in order to get a “convinc-
ing” sender recipient linking (instead of relying on ad-hoc arguments).

3. Another possible avenue of research is formalizing the effectiveness of a given adversary in breaking the
protocol. That is working with a more precise adversary descriptions; Instead of active, static and in-
ternal adversaries, we could have adversaries taping two specific communication channels, having total
control of a particular mix node, etc. It’s not clear how this would help us in designing good protocols,
however it might be useful when certain parts of the network are thought to be compromised.

22

ATTACHMENT E

Microsoft Exhibit 1067

4. It’s not clear at all what real-world adversary can do. Can they tap wires and compromise nodes at will
? It would be very instructive to know what can be done, the level of sophistication required and the
computational resources needed (memory, CPU cycles, network access, etc.).

5. It would be extremely useful to determine when the mix-network is vulnerable or, more generally,
what security mix-networks provide in different situations.

6. All issues mentioned in section 4 need to be thoroughly analyzed.

7. Caching popular content would improve security and it’s not clear what the best way to go about
doing this is.

8. Perhaps the exit nodes can perform some computations for the users. For example, the TCP control
messages could be handled by the exit mix node (i.e. the control messages would not be handled by
the user).

9. Heaps of security and efficiency problems arise when incorporating privacy protecting mechanisms
within existing protocols (e.g. http, telnet, etc.).

10. A detailed specification (e.g. within IETF) could be devised to help mix-network designers. This
would protect mix-network operators from known attacks and give attackers a precise model to “study”
(thus helping us improve the specification : : :)

6 Conclusion

We have given an introduction to the traffic-analysis problem by presenting the most important construc-
tions, attacks, design issues and direction for further research. It is hoped that research addressing some of
the problems exposed in this work will allow us to stop using terms such as : “seems”, “probably”, “I suspect”
in our discussions about traffic analysis.

Acknowledgements

We would like to thank Adam Back, Adam Shostack, Anton Stiglic, Frédéric Légaré, Michael Freedman
and Ulf Moller for excellent feedback, interesting discussions and for having mentioned many of the attacks
presented in this paper. We also wish to thank the anonymous referees for their very helpful comments.

References

[1] M Abe. Universally verifiable mix-net with verification work independent of the number of mix-servers.
In Advances in Cryptology – Eurocrypt ’98, volume 1403 of Lecture Notes in Computer Science, pages
437–447, Helsinki, Finland, 31 May– 4 June 1998. Springer-Verlag.

[2] M Abe. Mix-network on permutation networks. In Advances in cryptology — ASIACRYPT’99,
volume 1716, pages 258–273. Springer-Verlag, 1999.

23

ATTACHMENT E

Microsoft Exhibit 1067

[3] Adam Back. Hashcash. http://www.cypherspace.org/˜adam/hashcash/, march 1997.

[4] Oliver Berthold, Hannes Federrath, and Marit Kohntopp. Project anonymity and unobservability in
the internet. Presented at CFP 2000.

[5] Stefan A. Brands. Restrictive blinding of secret-key certificates. Technical Report CS-R9509, CWI -
Centrum voor Wiskunde en Informatica, February 28, 1995.

[6] CERT. Advisory ca-96.21: Tcp syn flooding and ip spoofing attacks, 24 September 1996.

[7] D Chaum. The dining cryptographers problem: Unconditional sender and recipient untraceability.
Journal of Cryptology, 1:65–75, 1988.

[8] David Chaum. Untraceable electronic mail, return addresses and digital pseudonyms. Communications
of the A.C.M., 24(2):84–88, February 1981.

[9] David Chaum. Blind signatures for untraceable payments. In R. L. Rivest, A. Sherman, and D. Chaum,
editors, Proc. CRYPTO 82, pages 199–203, New York, 1983. Plenum Press.

[10] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information retrieval.
In 36th IEEE Conference on the Foundations of Computer Science, pages 41–50. IEEE Computer
Society Press, 1995.

[11] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information retrieval.
Journal of the ACM, 45(6):965–981, 1998.

[12] David A. Cooper and Kenneth P. Birman. Preserving privacy in a network of mobile computers. In
1995 IEEE Symposium on Research in Security and Privacy, pages 26–38. IEEE Computer Society
Press, 1995. http://cs-tr.cs.cornell.edu:80/Dienst/UI/1.0/Display/ncstrl.cornell/TR85-1490.

[13] Lance Cottrell. Mixmaster. http://www.obscura.com/˜loki/.

[14] Ronald Cramer. Introduction to secure computation. In Lectures on data security : modern cryptology
in theory and practice, volume 1561 of Lecture Notes in Computer Science, pages 16–62. Springer,
1999.

[15] Daemon9. Project neptune. Phrack Magazine, 48(7): File 13 of 18, 8 November 1996. Available at
www.fc.net/phrack/files/p48/p48-13.html.

[16] Wei Dai. private communication, 1999.

[17] Yvo Desmedt and Kaoru Kurosawa. How to break a practical mix and design a new one. To be
presented at Eurocrypt 2000.

[18] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22:644–654, 1976.

[19] Shlomi Dolev and Rafail Ostrovsky. Efficient anonymous multicast and reception. In Walter Fumy,
editor, Advances in Cryptology – EUROCRYPT ’ 97, Lecture Notes in Computer Science, pages 395–
409. Springer-Verlag, Berlin Germany, 1997.

24

ATTACHMENT E

Microsoft Exhibit 1067

[20] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Ernest F. Brickell,
editor, Advances in Cryptology—CRYPTO ’92, volume 740 of Lecture Notes in Computer Science,
pages 139–147. Springer-Verlag, 1993, 16–20 August 1992.

[21] Ian Goldberg and Adam Shostack. Freedom network whitepapers.

[22] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs. Journal
of the ACM, 43(3):431–473, 1996.

[23] C. Gulcu and G. Tsudik. Mixing E-mail with BABEL. In Symposium on Network and Dis-
tributed Systems Security (NDSS ’96), San Diego, California, February 1996. Internet Society.
http://www.zurich.ibm.com/ cgu/publications/gt95.ps.gz.

[24] Ceki Gulcu. The anonymous E-mail conversation. Master’s thesis, Eurecom Institute, 229 route des
Cretes, F-06904 Sophia-Antipolis, France, June 1995.

[25] Jakobsson. A practical mix. In Kaisa Nyberg, editor, Advances in Cryptology – EUROCRYPT ’98,
volume 1403 of Lecture Notes in Computer Science, pages 448–. Springer-Verlag, 1998.

[26] A. Juels and J. Brainard. Client puzzles: A cryptographic defense against connection depletion attacks.
In S. Kent, editor, NDSS ’99 (Networks and Distributed Security Systems), pages 151–165, 2000.

[27] D. Kahn. The Codebreakers. Macmillan Publishing Company, 1967.

[28] John Kelsey. private communication, 1999.

[29] Dogan Kesdogan, Jan Egner, and Roland Büschkes. Stop-and-go mixes providing probabilistic security
in an open system. In David Aucsmith, editor, Information Hiding: Second International Workshop,
volume 1525 of Lecture Notes in Computer Science, pages 83–98. Springer-Verlag, Berlin, Germany,
1998.

[30] W Ogata, K Kurosawa, K Sako, and K Takatani. Fault tolerant anonymous channel. In Information
and Communications Security — First International Conference, volume 1334 of Lecture Notes in
Computer Science, pages 440–444, Beijing, China, 11–14 November 1997. Springer-Verlag.

[31] A Pfitzmann and M Waidner. Networks without user observability – design options. In Advances in
Cryptology – Eurocrypt ’85, volume 219 of Lecture Notes in Computer Science. Spinger-Verlag, 1985.

[32] Andreas Pfitzmann. A switched/broadcast ISDN to decrease user observability. 1984 International
Zurich Seminar on Digital Communications, Applications of Source Coding, Channel Coding and
Secrecy Coding, March 6-8, 1984, Zurich, Switzerland, Swiss Federal Institute of Technology, Pro-
ceedings IEEE Catalog no. 84CH1998-4, 183-190, 6–8 March 1984.

[33] Andreas Pfitzmann. How to implement ISDNs without user observability–some remarks. Technical
report, Institut für Informatik, University of Karlsruhe, Institut für Informatik, University of Karlsruhe,
1985.

[34] Andreas Pfitzmann, Birgit Pfitzmann, and Michael Waidner. ISDN-mixes: Untraceable communica-
tion with very small bandwidth overhead. In GI/ITG Conference: Communication in Distributed
Systems, pages 451–463. Springer-Verlag, Heildelberg 1991, February 1991.

25

ATTACHMENT E

Microsoft Exhibit 1067

[35] B Pfitzmann and A Pfitzmann. How to break the direct rsa-implementation of mixes. In Advances
in Cryptology – Eurocrypt ’89, volume 434 of Lecture Notes in Computer Science. Springer-Verlag,
1989.

[36] M. Rabin. How to exchange secrets by oblivious transfer. Technical Report Technical Memo TR-81,
Aiken Computation Laboratory, Harvard University, 1981.

[37] Charles Rackoff and Daniel R. Simon. Cryptographic defense against traffic analysis. In Proceedings of
the Twenty-Fifth Annual ACM Symposium on the Theory of Computing, pages 672–681, San Diego,
California, 16–18 May 1993.

[38] M G Reed, P F Syverson, and D M Goldschlag. Anonymous connections and onion routing. IEEE
Journal on Special Areas in Communications, 16(4):482–494, May 1998.

[39] G. J. Simmons. The history of subliminal channels. IEEE Journal on Selected Areas in Communica-
tions, 16(4):452–462, May 1998.

[40] L. F. Turner. Digital data security system, 1989. Patent IPN WO 89/08915.

[41] M Waidner. Unconditional sender and recipient untraceability in spite of active attacks. In Advances
in Cryptology – Eurocrypt ’89, volume 434 of Lecture Notes in Computer Science. Springer-Verlag,
1989.

26

ATTACHMENT E

Microsoft Exhibit 1067

The disadvantages of free MIX routes and how to overcome them

Oliver Berthold � Andreas Pfitzmann � Ronny Standtke y

Abstract

There are different methods to build an anonymity service using MIXes. A substantial decision for
doing so is the method of choosing the MIX route. In this paper we compare two special configurations:
a fixed MIX route used by all participants and a network of freely usable MIXes where each partici-
pant chooses his own route. The advantages and disadvantages in respect to the freedom of choice are
presented and examined. We’ll show that some additional attacks are possible in networks with freely
chosen MIX routes. After describing these attacks, we estimate its impact on the achievable degree of
anonymity. Finally, we evaluate the relevance of the described attacks with respect to existing systems like
e.g. Mixmaster, Crowds, and Freedom.

1 Introduction

The concept of MIXes was developed in 1981 by David Chaum [3], in order to enable unobservable commu-
nication between users of the internet. A single MIX does nothing else than hiding the correlation between
incoming and outgoing messages within a large group of messages.

If participants exclusively use such a MIX for sending messages to each other, their communication rela-
tions will be unobservable - even though if the attacker does control all the network connections. Without
additional information not even the receiver gets to know the identity of the message’s sender.

When using only one MIX, one has to rely upon its security completely. Therefore usually several MIXes
are used in a chain. Now, any single MIX does not have all the information which is needed to reveal
communication relations. At worst, a MIX may only know either sender or receiver.

According to the attacker model for MIXes, the communication relations have to be kept secret even in case
that all but one MIX cooperate with an attacker who taps all lines (called global attacker). But a sufficient
number of reliable participants is necessary: A single participant can not be anonymous if all or most of the
other participants are controlled by the attacker. All possible attacks on a MIX network are to be examined
with regard to that attacker model.

There are different possibilities to organise the co-operation of several MIXes. Generally, all MIXes exist
independently from each other in the internet. When anybody wants to use a certain MIX, he simply sends

�Dresden University of Technology, Germany, fob2,pfitzag@inf.tu-dresden.de
ySecunet, Dresden, Ronny.Standtke@gmx.de

27

ATTACHMENT E

Microsoft Exhibit 1067

his message to it, respectively, he has another MIX send his message to it. This kind of co-operation is further
called a MIX network.

A special variation is to define a single valid chain of MIXes for a group of participants. This we will call a
MIX cascade (compare [6]).

Apart of those two concepts there is a high variety of hybrid combinations of MIX network and MIX cascade.
For example, possible configurations are:

� A network of cascades: The sender chooses a number of defined cascades through which his message
is sent sequentially.

� A network with restricted choice of patches: Every MIX defines its possible successors to send
messages to.

� Multiple-duplicated cascades: For every position within the cascade several physical MIXes are de-
fined, such that a user can choose stepwise.

� Tree structures: Here a MIX cascade is used which has on some positions duplicated MIXes. A
possible scenario may consist of many first-step MIXes and a single last-step MIX. Now, a distribution
and acceleration can be reached when the anonymity group is to be quite large and not all the dummy
traffic is to be forwarded to the last MIX.

Up to now these combinations were examined only partially. But in contrast to the MIX network some kinds
of attacks which we will describe later in this paper, are not possible or may be prevented more easily. We
will discuss the advantages of different configurations when describing types of attacks.

As the headline says, compare the MIX cascade with the MIX network with regard to:

� Attacks being possible under one configuration but not under the other.

� Attacks that can only be prevented under one of both configurations (- nowadays).

� Evaluation about the qualification of MIX network and MIX cascade to guarantee anonymity and
unobservability with a global attacker as he was described above.

First of all we will check how unobservability and anonymity can be reached by the use of MIXes and how
it is possible to evaluate anonymity. In the following section will be examined what kinds of attacks exist in
general and how they can be prevented. The final section then deals with the question how these attacks may
endanger existing anonymity services.

2 Unobservability and Anonymity by MIXes

As already said in the introduction, a MIX hides the relation between the incoming and outgoing messages.
This is done by collecting a number of messages and reorder them before sending them on their way.

28

ATTACHMENT E

Microsoft Exhibit 1067

Because a particular outgoing message could have been sent by any of the senders of the incoming messages,
the sender of this message is unobservable within that group. But on the other hand, it is a fact that the
message was certainly sent from within that group. The degree of anonymity can be defined by the size of
the group, i.e. the number of possible senders. For example, the anonymity may be measured as

A = ld(n) [bit] where n is the number of senders. It’s meaning the logarithm with base 2 of n.

An attacker who wants to find out the sender of a particular message does reach his aim with the same
probability as he may guess the value of a random string of A bits.

When using a MIX cascade, the degree of anonymity stays the same if all messages received by the first
MIX are forwarded correctly to the last MIX. This is true even if only one MIX in the cascade doesn’t work
together with the global attacker. However, the degree of anonymity decreases when messages are lost on
their way through the cascade (e.g. because of active attacks on the link between sender and first MIX of the
cascade). It decreases in the same amount as the number of those senders decreases whose messages are still
existing.

The situation is different in a MIX network. When a MIX is directly receiving messages from a set of MIXes
the anonymity group of senders is the union of the anonymity groups of all these MIXes.

Figure 1: Anonymity group in a MIX network

Of course, that is only true if all the MIXes are trustworthy. If an attacker is getting to know the way of
reordering in a MIX, this particular MIX doesn’t contribute any longer to the degree of anonymity. That

29

ATTACHMENT E

Microsoft Exhibit 1067

means, outgoing messages from this MIX have an anonymity group of n=1, if this MIX is the first or last
one or if the attacker controls all MIXes before or behind it.

Another problem is arising for all combinations of MIXes, when the attacker is able to recognise, that several
messages sent at several times can be linked to one and the same sender.

If the participants join and leave the group from time to time, the anonymity of a group of linkable messages
is only among those senders who were part of the group for the whole time.

An attacker may easily be able to link messages when the senders do not communicate with each other but
rather want to use public services like internet anonymously. The connection to the internet server is usually
not encrypted and hold up for a certain time, during which several packets of data are exchanged.

In order to make intersections of anonymity groups more difficult often dummy traffic is used which can
not be distinguished from real messages. That proceeding ensures that every active user always is part of the
anonymity group.

3 Attacks on a single MIX

3.1 Message size

The attacker could distinguish the messages sent by a MIX, if they would be different in size. Because the
size of the sent message is the same as the size of the received message, an attacker could correlate them. A
solution is, that every message should have exactly the same size. If the data is less than this defined message
size, padding is used. In a MIX network each message contains information special for a certain MIX. So
this information is extracted from the message and the MIX has to fill the free space using padding, so that
the message size remains the same.

This is not necessary at all in a MIX cascade, because all messages take the same way and are shortened to
the same size each time.

3.2 Replay

The decryption of a message done by each MIX is deterministic. So if the same message would pass a MIX,
the result of the decryption sent by the MIX would also be the same. An attacker who observes the incoming
and outgoing messages, could send the same message to the MIX again, and would see which message is sent
twice from the MIX. So this MIX is bridged and the conclusion is, that a MIX must not process messages he
has already processed.

Usually, this is achieved by using a database in which a MIX stores every processed message. If a new message
arrives, he first checks if this message isn’t already stored in this database.

3.3 Manipulating of messages

If an attackers changes only some bits of a message, then if inappropriate cryptography is used he can detect
this broken message also after it has passed a trustworthy MIX. This is possible especially if:

30

ATTACHMENT E

Microsoft Exhibit 1067

� he is the receiver of the message, or

� he controls the server, which would send the decrypted message to the real receiver, or

� a MIX transforms the message in such a way, that the manipulated bit(s) would remain on the same
position (i.e. if the MIX uses the stream cipher modus OFB). Assuming that there are a trustworthy
MIX followed by an attacking MIX. The attacker changes a bit of that part of the message, which
belongs to the message header for the attacking MIX. Now he sends this message to the trustworthy
MIX, which will forwards the message to the attacking MIX. If this MIX decrypts the message, he
would detect the error in the message header, but restores it (changes the bit again). The attacker now
knows the relation between the manipulated incoming message and a correct outgoing message and
can trace it to the receiver.

The attacker detects the broken message, because the final decrypted message (which goes to the receiver)
usually contains a lot of redundancy or the message header for a MIX has to satisfy a well known format.

To prevent these attacks, each MIX has to verify the integrity of every received message by checking included
redundancies. This could be a message hash generated by the sender and included in the message header for
each MIX.

3.4 Blocking of messages

If an attacker blocks some messages, the senders of these messages are excluded from the anonymity group.
The same result is achieved, if some messages are manipulated (as described above).

The extreme case is known as “n-1 attack”. In this case all messages but one, will be blocked, manipulated or
generated by the attacker. So the only message the attacker doesn’t know is the message he wants to trace. So
the attacker has bridged the trustworthy MIX or has limited the anonymity group of the remaining messages
(if there are more than one).

There exists no general applicable method, in order to prevent this attacks. A possible solution is that the
MIX must be able to identify each user (sender of messages). The MIX has ensure that the messages he
receives are sent by enough different users and so the attacker doesn’t control a majority of them.

The next section discusses how this could be done by the MIXes, considering the different possibilities of
configuration (network or cascade).

Under certain circumstances it is possible that an attacker could uncover the route of a message, if he only
blocks a single message:

If the attacker can find out the plaintext of messages and the user sends many messages, which definitely are
related (i.e. the blocked message is part of a bigger data stream) then the attacker could detect in which data
stream the message he blocked is missing.

31

ATTACHMENT E

Microsoft Exhibit 1067

4 Comparison MIX network - MIX cascade

4.1 Motivation

There still exists a controversial discussion, which kind of a MIX configuration is the better one. The
advocates of the MIX-network are always pointing out that there are the following advantages:

Each user can decide on his own, which MIXes he wants to trust. Because an attacker has the best chance to
observe an user, if he controls as many MIXes as possible (or even all MIXes), it seems that a MIX cascade is
extremely unsuitable.

1. In this case an attacker knows exactly which MIXes he has to control in order to observe an user suc-
cessfully. But if the user can choose his own route, he can exclude MIXes, which seem untrustworthy
to him and an attacker has to control much more MIXes in order to achieve the same probability to
attack successfully. The community of users could publish which MIXes are not trustworthy and so
would prevent attacks.

2. Because a MIX network could theoretically grow up to an infinite number of MIXes, the anonymity
group could also raise to an infinite size. Every user can choose an arbitrary route of MIXes and so an
observer could not detect, messages of which users a MIX currently processes.

3. There exists no structure, so a MIX network is very flexible, scalable and extendable. It could be
realised as an fault-tolerant network. The only thing, that must be done, is to publish, when a MIX
is inserted into or removed from the network. Such a system would be predestined for usage in the
internet.

The advocates of the MIX cascade oppose, that the security of the MIX network can’t really be proven up to
now. For instance the facts of the 2nd point - as explained above - are only true, if all MIXes are trustworthy.
When assuming an attacker model, where only one MIX of a route is trustworthy, the anonymity group
wouldn’t become bigger than the batch size of this MIX.

In the next section we will describe additional attacks and show, that the level of anonymity is much smaller
in reality. Nevertheless, a MIX network is much more flexible compared to a MIX cascade. But it’s possible
to construct a fault-tolerant MIX cascade, too [5]. And there would be more than one cascade world-wide,
so the advantage described in point 1 could be applied to cascades as well: an user chooses the cascade, he
trusts. Adding new cascades extends the system as far as needed (Point 3). Compared to the MIX network,
an unbalanced load sharing wouldn’t have negative impacts on the performance. Only users of a cascade,
which is insufficiently used compared to its capacity, would achieve a lower level of anonymity. If the load
of a MIX network is non-uniform, then on one hand some MIX could be temporarily overloaded. On the
other hand a MIX with little load would have to wait for a long time to gather enough incoming message or
would send many dummies, which would produce additional traffic.

The most important reason, why you shouldn’t use a MIX network is the low level of security. This is the
conclusion of the authors of this paper, after they found a number of attacks against a MIX network. The
following sections describes these attacks and show why they occur especially in a MIX network and why it’s
hard to prevent them.

32

ATTACHMENT E

Microsoft Exhibit 1067

4.2 Achievable level of anonymity

If we assume that there exists a single trustworthy MIX only, then the achievable level of anonymity could
not be higher than the size of the batch of this MIX.

In the following sections we describe attacks, which parts this input batch and so decreases the size of the
anonymity group.

4.2.1 Position in MIX route

Based on our attacker model, each user should be anonymous, even if his messages only pass one trustworthy
MIX. In a MIX network a certain MIX may be on different positions on the individual routes of the messages
he receives. In comparison a MIX of a cascade will always have the same position because the route is static
as long as the cascade exists.

The question is: is a MIX of a MIX network able to detect his position in a route of a certain message and if
so, can he use this knowledge to partition the input batch?

If the attacker controls all other MIXes, which this message passes through, then it’s easy to detect the position
of the trustworthy MIX. He simply counts the number of passed MIXes for every message.

Now the attacker knows the composition of the incoming batch: He knows the routing position for each
user’s message.

If we assume, that every user sends his messages using the same number of MIXes, then the attacker also
knows, how many MIXes each user’s message yet already passed.

Because he controls all following MIXes of each route, he can determine, how many MIXes each sent message
has yet to pass. Because all routes have the same length, incoming messages can only have been transformed
into outgoing messages if the route lengths would match.

Eventually, a message is only unobservable in that group of messages which have this MIX on the same
routing position. So the attacker successfully partitioned the input batch and decreased the level of anonymity
of each user. Figure 2 illustrates this attack.

Figure 2: Routing position of a trusted MIX

33

ATTACHMENT E

Microsoft Exhibit 1067

In order to prevent this attack, each user has to choose a different route length or they only use each MIX
for a particular position within routes. But this particular position within routes would be in contrast to the
flexibility of the MIX network and in fact results in a MIX cascade with possibly duplicated MIXes.

The first method, that the user should choose the length of the route, would only partly be a solution: There
still exists a constant maximum of the length of a route, and so it’s possible to calculate intersections, using
the procedure explained above.

The only advantage is, that a bigger number of neighbouring route positions are building a common
anonymity group. Nevertheless, the probability that there are different anonymity groups in one batch is
still very high. Building only one anonymity group is only achievable, if the route could have an infinite
length, because in this case every message could still pass any number of MIXes. But because a message
header is needed for each MIX and all messages should have the same size, there always exists a maximum
length of routes.

Additionally, it may be possible, that the attacker knows the plaintext of the message. In this case the
attacker could calculate how many MIXes a message could have passed at most, even if the quota of the
message header is different in order to allow different route lengths. To prevent this, each message header
should have the same size. But this implies another restriction on maximal of the length of a route, because
a message should be able to transport as many data as possible and so a short message header, allowing only
short routes, would be chosen.

If an attacker can assume, that a user would normally send more than one message to a certain receiver, then
the probability of calculating small intersections raises.

If the user chooses a different MIX route for each of these messages, different anonymity groups arise each
time. So the attacker could calculate the intersection of all these anonymity groups. Even if all users would
always choose the same route, the anonymity groups wouldn’t be identical, because the MIX network doesn’t
work synchronously.

Conclusion: If only one MIX of a route is trustworthy, then the achievable anonymity is distinctly lower in
a MIX network compared to a synchronously working MIX cascade.

Using a configuration of MIXes which allows only a fixed routing position for each MIX for all messages he
processes prevents the partitioning of the batches and so prevents this attack.

MIX cascades, duplicated MIX cascades and tree structures as explained in the introduction are working in
that way.

4.2.2 Determining the next MIX

The previous section describes an attack which is especially successful, if the users select different routes for
each message. Now we want to explain an attack, which could be done, if the users send all messages using
the same individual route.

A trustworthy MIX of a MIX network receives messages sent by users and other MIXes. The MIX forwards
these messages either to users or to other MIXes.

An attacker knows the senders of all messages, which came directly from users. Additionally, he knows all
senders of messages which passed only attacking MIXes.

34

ATTACHMENT E

Microsoft Exhibit 1067

Because a MIX forwards the messages only to some other MIXes or users, only they could be possible receivers
of an incoming message.

If there are only a few trustworthy MIXes, only those users which are connected by the described graph, are
members of the anonymity group of a received message. This is illustrated in Figure 3.

Figure 3: Intersection set of anonymity group

If the users send their messages, using always the same route, an attacker only needs to observe a trustworthy
MIX at those times, when this MIX forwards a message of a sender the attacker is interested in.

A MIX network doesn’t work synchronously, so the batches always generate different anonymity groups. So
if the attacker would calculate the intersection of these anonymity groups, then after a finite time he knows
which MIX has received the message, he is interested in.

The attacker repeats this procedure sequentially attacking the following MIX on the route and so on until he
attacks the last MIX.

So the anonymity group of the sent message would become the group of receivers addressed from the last
trustworthy MIX on the route. It is assumed, that exits for all messages an maximal route length known by
the attacker.

If a user sends more than one message to the same receiver, then the attacker has a good chance to detect this
receiver.

If the attacker is able to observe the whole network and could store all communication relations of all MIXes
for a long period of time, he could attack all users and all trustworthy MIXes simultaneously.

In conjunction with the attack described in Section 4.2.1 this results in a relevant chance of success, even if
the routes would change permanently and more than one MIX is trustworthy.

A possible solution would be, that each MIX has to send at least one message to each other MIX. These
messages could be dummies.

35

ATTACHMENT E

Microsoft Exhibit 1067

If the number of MIXes raises, a lot of dummies have to be sent. All these dummies have to pass more than
one MIX, because if they would be sent only to the next MIX, this MIX could be an attacking one and
detects that this message was only a dummy. The problem is, that all these dummies would dramatically
increase the network traffic.

On the other hand, the achievable security is uncertain: Based on the attacker model only one MIX of a
route is trustworthy, so that the following variations are possible:

� The generator of dummies is a trustworthy MIX: All other MIXes of the route are controlled by the
attacker, so he knows which messages are dummies.

� The trustworthy MIX is somewhere else on the route: The attacker controls the generator of dummies,
so he knows which MIX gets dummies and which one gets real messages.

So the attacker would detect to which MIX or participant the observed MIX forwards the received messages,
although dummies were sent.

We think, that sending dummies in this way isn’t practicable.

Another solution for this problem could be, that the user has to choose his MIX route with regard to some
rules.

For each MIX, some neighbouring MIXes are defined. So the MIX has to send dummies only to these
MIXes, what reduces the expenditure. In this case the explained attack wouldn’t be possible.

We described this configuration in the introduction as an alternative to the completely freely chosen MIX
network. Other configurations are possible, too - like tree structured networks, with the last MIX as root or
a MIX cascade. They would prevent the attack, because each MIX has only one successor.

4.3 Probability of unobservability

If we use a MIX cascade, then we optimize for the case, that only one MIX is trustworthy. Based on the
functionality of each MIX, also in this case the transported messages are unobservable, at least if no active
attacks occur.

In the following section, we calculate the probability, that at least one MIX of a randomly selected route of a
MIX network is trustworthy.

Because each user chooses only some MIXes for his route, the probability that he chooses at least one trust-
worthy MIX is:

p = 1� al

(a is the quota of attacking MIXes and l is the length of the route)

This formula is only true, if each MIX could be selected more then once for each route. But this isn’t very
clever, because if a MIX is selected repeatedly, then the probability decreases, that at least one trustworthy

36

ATTACHMENT E

Microsoft Exhibit 1067

MIX is passed by the message. The conclusion is, that each message should pass each MIX not more than
once. For this case the formula for calculating the probability p is as follows:

p =
MA! � (MA +MG � l)!

(MA � l)! � (MA +MG)!

(MA is the number of attacking MIXes, MG is the number of trustworthy MIXes and l is the length of the
route.)

If a user during the time sends many messages, which belong together (that means, that an attacker knows,
that these message are sent from the same user), then we have to raise the probability p to the power of the
number of messages k. So the probability to observe a user is:

(1� p)k

Example (comparison MIX cascade - MIX network):

length of cascade (route): 4 MIXes

Based on our attacking model 3 MIXes of this cascade could be attackers. That are 75% attacking MIXes.

If we assume that 20 MIXes are building a MIX network and that 75% of these MIXes are attacking ones,
too, then a randomly chosen route contains at least one trustworthy MIX with a probability of 71,8%.

4.4 Active attacks

In Sections 3.3 and 3.4 we described active attacks on a single MIX. We showed, that an attacker who ma-
nipulates messages (Section 3.3) wouldn’t be successfully, if each MIX verifies the integrity of each message.

But this solution nevertheless doesn’t prevent all effects of this attack. It only changes this attack in an attack,
which blocks messages (Section 3.4) because broken messages would be deleted.

It’s not easy to prevent these message blocking attacks and especially these attacks are very dangerous:

If the attacker knows the plaintext of the message, then he can use active attacks, in order to achieve the
following:

� If he blocks the messages of some users, he can decrease the anonymity group of a certain user. If he
can also link some messages of this user, then blocking only few messages could be enough to detect
the sender.

� The attacker may detect, that he doesn’t receive a message, he is waiting for. This is possible if this
message is part of a larger data stream, that would be broken without this message. So in an extreme
case blocking one message could be enough to uncover the communication relation.

37

ATTACHMENT E

Microsoft Exhibit 1067

A possible solution to prevent these active attacks, results in deleting all messages of the whole MIX network
if one is blocked.

A fundamental problem in detecting these attacks is the following:

If an attacker only blocks some messages, a MIX would wait until he gets enough messages. So an attacker
will generate some own messages and will send them to the MIX.

How should a MIX decide, if an incoming message comes either from the attacker or from a real user? He
has to know this, in order to recognise the attack.

There exist several different basic approaches for the MIX cascade, in order to solve this problem.

Users verifying the MIXes

In this case all messages a MIX receives are sent to all users. So each user can check, that his message has
arrived at the MIX. If that’s true, he sends an acknowledgement to the MIX. The MIX forwards the batch
only to the following MIX, if he receives these acknowledgements from all users.

The problem is, that the MIX must know, which users have sent messages and the MIX has to ensure, that
an certain acknowledgement was really sent by one of these participants.

So each user has to own a digital certificate and authenticates himself (and the acknowledgement he has sent)
to the MIX.

In the case of a MIX network, this could be a problem, because:

� The attacker shouldn’t know, who has sent a message to which MIX, because this would extremely
reduce the achievable anonymity and the attacks explained in section 4.2 could be done much easier.
In order to prevent this, each user has to send acknowledgements to all MIXes of the network, even
if he hasn’t used them. And he also has to receive all messages published by each MIX. Of course this
would dramatically decrease the efficiency.

� But now an acknowledgement sent by a user doesn’t mean in every case, that one of his messages is
currently processed and so the acknowledgements tell nothing about the number of real messages in a
batch. When using big MIX networks there always exists the risk, that the anonymity group could be
very small.

� A MIX network doesn’t work synchronically, so the user has to decide, if his message has been blocked
or if it only arrived late for being processed in the current batch. A successful attack could be, to delay
n-1 messages for one batch.

Ticket-method

A new idea developed by our group is, that the MIX only accepts messages which come verifiable from the
group of registered participants. Each registered participant gets exactly one ticket from every MIX, which
is only valid for a certain batch. If a MIX processes a batch, he verifies, that every message contains such a
valid ticket. Because each participant gets only one ticket for a batch, he can only send one message. So the

38

ATTACHMENT E

Microsoft Exhibit 1067

attacker could only generate as many messages as the number of users he controls. A MIX couldn’t link a
ticket to the belonging user, because we use blind signatures. The whole procedure is explained in detail in
[1] (contained in this book).

This procedure is only badly applicable in a MIX network, because:

� The user doesn’t know exactly, which batch will contain his message

� So the user has to request tickets from every MIX for each batch

� And finally only a part of these ticket would be used so that a MIX could only ensure, that no addi-
tional messages sent by an attacker would be processed. But the attacker could decrease the anonymity
group by blocking some messages.

Summarising, the described methods to prevent active attacks are very expensive. A user of a MIX network
couldn’t use every MIX at every time, so:

� the expenditure grows up excessively, because nevertheless, the user has to execute these methods with
every MIX.

� These procedures wouldn’t achieve an acceptable level of security

As a result, we think, that it isn’t possible to protect a MIX network against such attacks with justifiable
expenses. So an active attacker could easily observe at least a certain user.

5 Classification of existing architectures

In this section we discuss, how the described attacks are related to existing and used services.

But we have to say, that these services are developed assuming that there are only substantial weaker attackers
in comparison to our assumption about strong attackers.

5.1 Remailer

Anonymous remailers, like for instance Mixmaster have the advantage that they need not to work real-time.

Because of that Remailer-MIXes could use a different method for building an anonymity group. They collect
incoming messages in a pool. Outgoing messages are selected casually out of this pool. Because a message
theoretically can remain for an unlimited amount of time in the pool, none of the already received messages
can be excluded of the anonymity group. Because of that the described attacks (section 4.2) that limit the
size of the anonymity group can rarely be used successfully.

It can be assumed that the messages are atomic and unlinkable because the recipients are many different users,
who can be trusted in most cases according to the attacker model. But the attacks as described in section 4.2
and 4.4 are especially successful if messages can be linked. Attacks by using the length of messages (section

39

ATTACHMENT E

Microsoft Exhibit 1067

3.1) and the replay of messages (3.2) are at least prevented by the Mixmaster. The attack by manipulating
messages (3.3) is not possible because it is assumed that the attacker gets the plaintext of messages.

It is possible to block messages and a MIX can be flooded with messages by the attacker because the remailer
can not check the origin of a message (4.4). The attacker doesn’t know the number of messages stored in the
pool, because the delay of a message in the MIX is unknown for it.

This attack for remailers is only possible with a certain probability in contrast to MIXes that work in a
deterministic way. It increases with expenditure. The attack by choice of MIX routes (4.3) can’t be prevented,
because it is a net of remailers similar to the MIX network.

Result: Some of the described attacks are theoretically possible. Because the remailers don’t work in a deter-
ministic way the attacks are complicated. Because of that pool mixes cannot be used for real-time services.
The Mixmaster remailer in comparison to other anonymity services as described in section 5 offers the best
protection against observation.

5.2 Onion-Routing/Freedom

Zero Knowledge offers the commercial system “Freedom” [4]. This is a MIX network that provides unob-
servable and anonymous real-time connections between net knots. So it provides access to different internet
services. The way how it works is very similar with the service Onion-Routing [7].

To achieve little delay for every user an anonymous route across the MIX network is provided. The advantage
of this routes is, that the data must only be encrypted or decrypted via a symmetrical cryptographic system.
Of course all data transmitted over one route are linkable. Because these routes can be generated every time
and the users send different amounts of data at different times via the route an attack by using the length of
messages (3.1) is possible.

Also a replay attack (3.2) is possible. There is no checking of message replay in the MIXes. Instead of that
Freedom uses link encryption between neighboured MIXes.

Because of that an external attacker that controls none of the MIXes cant achieve much:

� Via the use of streaming cipher even identical messages result in a different representation of bits.

� The external attacker can’t add messages because he does not know the needed key.

� Because of dummy traffic there exists a permanent traffic load between the mixes. That prevents
successful attacks by traffic analysis.

But if the attacker controls part of the MIXes specific attacks via message blockading (3.4, 4.4) or traffic
analysis (4.2) are possible. That because an attacking MIX knows its own used key of link encryption and
can divide dummy traffic from real messages.

The Freedom network only accepts registered users, that identify themselves via tokens. This check is only
done by the last MIX of the chosen route. Because of this the attacker can generate messages on its own,
which are accepted by MIXes.

40

ATTACHMENT E

Microsoft Exhibit 1067

Even if only authenticated messages would be accepted by mixes this attack could not be prevented because
ever user theoretically can own an unlimited amount of tokens.

The attack explained in section 4.2.2 which would determine the route of a message is only partly realisable.
To each MIX per definition belong some neighbouring MIXes. This decreases the number of possible routes
and this in fact increases the size of the anonymity group.

Each MIX reorders the messages only in a very limited amount. So if an attacker controls neighbouring
MIXes, the anonymity groups would become very small.

Conclusion: The Freedom network only prevents attacks from extern observers and isolated attacking MIXes.
If some MIXes of a route cooperate with the attacker, the attacker has a very good chance to observe a user.

5.3 Crowds

The Crowds system is based on a very different principle. A participant sends a message only with a certain
probability directly into the internet. Otherwise he forwards the message to an other randomly selected user.
This user does the same and so on.

A message passes several users and all these users get knowledge of the plaintext. An extern attacker wouldn’t
get the plaintext, because the connections between the users are encrypted.

Based on the attacking model explained above, this isn’t a problem, because the most of participants are
trustworthy ones. Eventually no user knows if a request he receives from another user really comes from this
user.

An assumption is, that the attacker isn’t able to observe the whole network. Otherwise he could detect, if a
user receives a message from an other one. If a user sends a message and hadn’t received one, this message
must come from himself.

Conclusion: Crowds protect only against observations done by the communications partner (i.e. the WEB-
server) or done by an other, isolated participant.

The described attacks are not applicable, because Crowds are based on a different principle. On the other
hand all attacks assume a much stronger attacker than the designer of Crowds expected.

6 Summary

The Conclusion is, based on the described attacks and their high probability of success is that a MIX network
couldn’t be realised securely, especially when we think of the well known attacking model defined by David
Chaum. The theoretical anonymity group of a very big MIX network, that contains all users, is practically
not achievable, even if all MIXes are trustworthy ones.

In section 4.4 we described attacks, which block messages. These attacks in principle apply to MIX cascades,
too. But for this case promising basic approaches have been developed in order to prevent these attacks [1]
[2].

If a service is to be constructed, which is secure against global attackers, a MIX cascade or any other of the
described configurations should be chosen instead of a MIX network. This would prevent at least some of

41

ATTACHMENT E

Microsoft Exhibit 1067

the illustrated attacks. A tree structure, which has the last MIX of the “chain” as root would achieve the same
level of anonymity as a MIX cascade.

A disadvantage of the MIX cascade is, that the cascade consists of default MIXes which have to be used. A
user cannot express his trust in certain MIXes by using them or not. But a user may choose that cascade he
wants to use and trusts in.

References

[1] Oliver Berthold, Hannes Federrath, Marit Köhntopp: Project “Anonymity and Unobservabil-
ity in the Internet”; Workshop on Freedom and Privacy by Design; in: Proceedings of the
Tenth Conference on Computers, Freedom & Privacy; CFP 2000: Challenging the Assump-
tions; Toronto/Canada, April 4-7, 2000; ACM, New York 2000; 57-65; http://www.inf.tu-
dresden.de/ hf2/publ/2000/BeFK2000cfp2000/.

[2] Oliver Berthold, Hannes Federrath, Stefan Köpsell: Web MIXes: A system for anonymous and unob-
servable Internet access. Proceedings of Workshop on Design Issues in Anonymity and Unobservability,
July 25-26, 2000 in Berkeley.

[3] David Chaum: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Communica-
tions of the ACM 24/2 (1981) 84-88.

[4] The Freedom Network Architecture. Zero-Knowledge-Systems, Inc., 1998. http://www.freedom.net/

[5] Andreas Pfitzmann: Diensteintegrierende Kommunikationsnetze mit teilnehmerüberprüfbarem Daten-
schutz; University Karlsruhe, Department of computer science, Dissertation, Feb. 1989, IFB 234,
Springer-Verlag, Heidelberg 1990.

[6] Andreas Pfitzmann, Birgit Pfitzmann, Michael Waidner: ISDN-MIXes - Untraceable Communication
with Very Small Bandwidth Overhead. Proc. Kommunikation in verteilten Systemen, IFB 267, Springer-
Verlag, Berlin 1991, 451-463.

[7] M. G. Reed, P. F. Syverson, D. Goldschlag: Anonymous Connections and Onion Routing. IEEE Jour-
nal on Selected Areas in Communication. Spezial Issue on Copyright and Privacy Protection, 1998.
http://www.onion-router.net/Publications/JSAC-1998.ps

42

ATTACHMENT E

Microsoft Exhibit 1067

Freenet: A Distributed Anonymous Information Storage and
Retrieval System

Ian Clarke
124C Lyham Road, Clapham Park

London SW2 5QA
United Kingdom

i.clarke@dynamicblue.com

Oskar Sandberg
Mörbydalen 12

18252 Stockholm
Sweden

md98-osa@nada.kth.se

Brandon Wiley
2305 Rio Grande St.
Austin, TX 78705

USA
blanu@uts.cc.utexas.edu

Theodore W. Hong�

Department of Computing
Imperial College of Science, Technology and Medicine

180 Queen’s Gate, London SW7 2BZ
United Kingdom

t.hong@doc.ic.ac.uk

Abstract

We describe Freenet, a peer-to-peer network application that permits the publication, replication,
and retrieval of data while protecting the anonymity of both authors and readers. Freenet operates as a
network of identical nodes that collectively pool their storage space to store data files, and cooperate to
route requests to the most likely physical location of data. No broadcast search or centralized location
index is employed. Files are referred to in a location-independent manner, and are dynamically replicated
in locations near requestors and deleted from locations where there is no interest. It is infeasible to
discover the true origin or destination of a file passing through the network, and difficult for a node
operator to determine or be held responsible for the actual physical contents of her own node.

1 Introduction

Computer networks are rapidly growing in importance as a medium for the storage and exchange of informa-
tion. However, current systems afford little privacy to their users, and typically store any given data item in
only one or a few fixed places, creating a central point of failure. Because of a continued desire among indi-
viduals to protect the privacy of their authorship or readership of various types of sensitive information[24],
and the undesirability of central points of failure which can be attacked by opponents wishing to remove
data from the system[10, 23] or simply overloaded by too much interest[1], systems offering greater security
and reliability are needed.

�Supported by grants from the Marshall Aid Commemoration Commission and the National Science Foundation.

43

ATTACHMENT E

Microsoft Exhibit 1067

We are developing Freenet, a distributed information storage and retrieval system designed to address these
concerns of privacy and availability. The system operates as a location-independent distributed file system
across many individual computers that allows files to be inserted, stored, and requested anonymously. There
are five main design goals:

� Anonymity for both producers and consumers of information

� Deniability for storers of information

� Resistance to attempts by third parties to deny access to information

� Efficient dynamic storage and routing of information

� Decentralization of all network functions

The system is designed to respond adaptively to usage patterns, transparently moving, replicating, and delet-
ing files as necessary to provide efficient service without resorting to broadcast searches or centralized location
indexes. It is not intended to guarantee permanent file storage, although it is hoped that enough nodes will
join with enough storage capacity that most files will be able to remain indefinitely. In addition, the sys-
tem operates at the application layer and assumes the existence of a secure transport layer, although it is
transport-independent. It does not seek to provide anonymity for general network usage, only for Freenet
file transactions.

Freenet is currently being developed as a free software project on Sourceforge, and a preliminary implemen-
tation can be downloaded from http://freenet.sourceforge.net/. It grew out of work originally done
by the first author at the University of Edinburgh[11].

2 Related work

Several strands of related work in this area can be distinguished. Anonymous point-to-point channels based
on Chaum’s mix-net scheme[7] have been implemented for email by the Mixmaster remailer[19] and for
general TCP/IP traffic by onion routing[17] and Freedom[27]. Such channels are not in themselves easily
suited to one-to-many publication, however, and are best viewed as a complement to Freenet since they do
not provide file access and storage.

Anonymity for consumers of information in the web context is provided by browser proxy services such as
the Anonymizer[5], although they provide no protection for producers of information and do not protect
consumers against logs kept by the services themselves. Private information retrieval schemes[9] provide
much stronger guarantees for information consumers, but only to the extent of hiding which piece of in-
formation was retrieved from a particular server. In most cases, the fact of contacting a particular server in
itself reveals much about the information retrieved, which can only be counteracted by having each server
hold all information (naturally this scales poorly). The closest work to our own is Reiter and Rubin’s Crowds
system[21], which uses a similar method of proxying requests for consumers, although Crowds does not
itself store information and does not protect information producers. Berthold et al. propose Web Mixes[6],

44

ATTACHMENT E

Microsoft Exhibit 1067

a stronger system which uses message padding and reordering and dummy messages to increase security, but
again does not protect information producers.

The Rewebber[22] provides a measure of anonymity for producers of web information by means of an
encrypted URL service which is essentially the inverse of an anonymizing browser proxy, but has the same
difficulty of providing no protection against the operator of the service itself. TAZ[16] extends this idea by
using chains of nested encrypted URLs which successively point to different rewebber servers to be contacted,
although this is vulnerable to traffic analysis using replay. Both rely on a single server as the ultimate source of
information. Publius[26] enhances availability by distributing files as redundant shares among n webservers,
only k of which are needed to reconstruct a file; however, since the identity of the servers themselves is not
anonymized, an attacker might remove information by forcing the closure of n–k+1 servers. The Eternity
proposal[4] seeks to archive information permanently and anonymously, although it lacks specifics on how
to efficiently locate stored files, making it more akin to an anonymous backup service. Free Haven[12] is an
interesting anonymous publication system which uses a trust network and file trading mechanism to provide
greater server accountability while maintaining anonymity.

distributed.net[13] demonstrated the concept of pooling computer resources among multiple users on a
large scale for CPU cycles; other systems which do the same for disk space are Napster[20] and Gnutella[15],
although the former relies on a central server to locate files and the latter employs an inefficient broadcast
search. Neither one replicates files. Intermemory[8] and India[14] are cooperative distributed fileserver sys-
tems intended for long-term archival storage along the lines of Eternity, in which files are split into redundant
shares and distributed among many participants. Akamai[2] provides a service which replicates files at lo-
cations near information consumers, but is not suitable for producers who are individuals (as opposed to
corporations). None of these systems attempt to provide anonymity.

3 Architecture

Freenet is implemented as a peer-to-peer network of nodes that query one another to store and retrieve data
files, which are named by location-independent keys. Each node maintains its own local datastore which
it makes available to the network for reading and writing, as well as a dynamic routing table containing
addresses of other nodes and the keys that they are thought to hold. It is intended that most users of the
system will run nodes, both to provide security guarantees against inadvertently using a hostile foreign node
and to increase the storage capacity available to the network as a whole.

The system can be regarded as a cooperative distributed filesystem incorporating location independence and
transparent lazy replication. Just as systems such as distributed.net[13] enable ordinary users to share
unused CPU cycles on their machines, Freenet enables users to share unused disk space. However, where
distributed.net uses those CPU cycles for its own purposes, Freenet is directly useful to users themselves,
acting as an extension to their own hard drives.

The basic model is that queries are passed along from node to node in a chain of proxy requests, with each
node making a local routing decision in the style of IP routing about where to send the query next (this varies
from query to query). Nodes know only their immediate upstream and downstream neighbors in the chain.
Each query is given a “hops-to-live” count which is decremented at each node to prevent infinite chains
(analogous to IP’s time-to-live). Each query is also assigned a pseudo-unique random identifier, so that nodes

45

ATTACHMENT E

Microsoft Exhibit 1067

can prevent loops by rejecting queries they have seen before. When this happens, the immediately preceding
node simply chooses a different node to forward to. This process continues until the query is either satisfied
or exceeds its hops-to-live limit. Then, the success or failure result is passed back up the chain to the sending
node.

No node is privileged over any other node, so no hierarchy or central point of failure exists. Joining the
network is simply a matter of discovering the address of one or more existing nodes through out-of-band
means, then starting to send messages. Files are immutable at present, although file updatability is on the
agenda for future releases. In addition, the namespace is currently flat, consisting of the space of 160 bit SHA-
1[3] hashes of descriptive text strings, although support for a richer namespace is a priority for development.
See section 5 for further discussion of updating and naming.

3.1 Retrieving data

To retrieve data, a user hashes a short descriptive string (for example, text/philosophy/sun-tzu/

art-of-war) to obtain a file key. (See section 5 for details on how descriptive strings corresponding to
files can be discovered.) She then sends a request message to her own node specifying that key and a hops-
to-live value. When a node receives a request, it first checks its own store for the data and returns it if found,
together with a note saying it was the source of the data. If not found, it looks up the nearest key in its
routing table to the key requested and forwards the request to the corresponding node. If that request is
ultimately successful and returns with the data, the node will pass the data back to the upstream requestor,
cache the file in its own datastore, and create a new entry in its routing table associating the actual data source
with the requested key. A subsequent request for the same key will be immediately satisfied from the local
cache; a request for a “similar” key (determined by lexicographic distance) will be forwarded to the previously
successful data source. Because maintaining a table of data sources is a potential security concern, any node
along the way can unilaterally decide to change the reply message to claim itself or another arbitrarily-chosen
node as the data source.

If a node cannot forward a request to its preferred downstream node because the target is down or a loop
would be created, the node having the second-nearest key will be tried, then the third-nearest, and so on. If
a node runs out of candidates to try, it reports failure back to its upstream neighbor, which will then try its
second choice, etc. In this way, a request operates as a steepest-ascent hill-climbing search with backtracking.
If the hops-to-live count is exceeded, a failure result is propagated back to the original requestor without
any further nodes being tried. Nodes may unilaterally curtail excessive hops-to-live values to reduce network
load. They may also forget about pending requests after a period of time to keep message memory free.

Figure 1 depicts a typical sequence of request messages. The user initiates a request at node a. Node a
forwards the request to node b, which forwards it to node c. Node c is unable to contact any other nodes and
returns a backtracking “request failed” message to b. Node b then tries its second choice, e, which forwards
the request to f. Node f forwards the request to b, which detects the loop and returns a backtracking failure
message. Node f is unable to contact any other nodes and backtracks one step further back to e. Node e
forwards the request to its second choice, d, which has the data. The data is returned from d via e and b back
to a, which sends it back to the user. The data is also cached on e, b, and a.

This mechanism has a number of effects. Most importantly, we hypothesize that the quality of the routing
should improve over time, for two reasons. First, nodes should come to specialize in locating sets of similar

46

ATTACHMENT E

Microsoft Exhibit 1067

= Data Request

= Data Reply

= Request Failed

start

data

2
3

5

8

9

10

4

1

11

12

6 7

This request failed

because a node will

refuse a Data Request

that it has already

seen

a b

c

d

e

f

Figure 1: A typical request sequence.

keys. If a node is listed in routing tables under a particular key, it will tend to receive mostly requests for keys
similar to that key. It is therefore likely to gain more “experience” in answering those queries and become
better informed in its routing tables about which other nodes carry those keys. Second, nodes should become
similarly specialized in storing clusters of files having similar keys. Because forwarding a request successfully
will result in the node itself gaining a copy of the requested file, and most requests will be for similar keys,
the node will mostly acquire files with similar keys. Taken together, these two effects should improve the
efficiency of future requests in a self-reinforcing cycle, as nodes build up routing tables and datastores focusing
on particular sets of keys, which will be precisely those keys that they are asked about.

In addition, the request mechanism will cause popular data to be transparently replicated by the system
and mirrored closer to requestors. For example, if a file that is originally located in London is requested in
Berkeley, it will become cached locally and provide faster response to subsequent Berkeley requests. It also
becomes copied onto each computer along the way, providing redundancy if the London node fails or is shut
down. (Note that “along the way” is determined by key closeness and does not necessarily have geographical
relevance.)

Finally, as nodes process requests, they create new routing table entries for previously-unknown nodes that
supply files, increasing connectivity. This helps new nodes to discover more of the network (although it does
not help the rest of the network to discover them; for that, performing inserts is necessary). Note that direct
links are created, bypassing the intermediate nodes used. Thus, nodes that successfully supply data will gain
routing table entries and be contacted more often than nodes that do not.

Because hashes are used as keys, lexicographic closeness of keys does not imply any closeness of the original
descriptive strings and presumably, no closeness of subject matter of the files. This lack of semantic closeness
is not important, however, as the routing algorithm is based on knowing where keys are located, not where

47

ATTACHMENT E

Microsoft Exhibit 1067

subjects are located. That is, supposing text/philosophy/sun-tzu/art-of-warhashes to AH5JK2, requests
for this file can be routed more effectively by creating clusters containing AH5JK1, AH5JK2, and AH5JK3, not by
creating clusters for works of philosophy. Indeed, the use of a hash is desirable precisely because philosophical
works will be scattered across the network, lessening the chances that failure of a single node will make all
philosophy unavailable.

3.2 Storing data

Inserts follow a parallel strategy to requests. To insert data, a user picks an appropriate descriptive text string
and hashes it to create a file key. She then sends an insert message to her own node specifying the proposed
key and a hops-to-live value (this will determine the number of nodes to store it on). When a node receives
an insert proposal, it first checks its own store to see if the key is already taken. If the key is found, the node
returns the pre-existing file as if a request had been made for it. The user will thus know that a collision
was encountered and can try again using a different key, i.e. different descriptive text. (Although potentially
the use of a hash might cause extra collisions, in practice a high-quality hash of sufficient length should only
cause collisions if the same initial descriptive text was chosen.) If the key is not found, the node looks up the
nearest key in its routing table to the key proposed and forwards the insert to the corresponding node. If that
insert causes a collision and returns with the data, the node will pass the data back to the upstream inserter
and again behave as if a request had been made (i.e. cache the file locally and create a routing table entry for
the data source).

If the hops-to-live limit is reached without a key collision being detected, an “all clear” result will be propa-
gated back to the original inserter. Note that for inserts, this is a successful result, in contrast to the request
case. The user then sends the data to insert, which will be propagated along the path established by the initial
query and stored in each node along the way. Each node will also create an entry in its routing table associat-
ing the inserter (as the data source) with the new key. To avoid the obvious security problem, any node along
the way can unilaterally decide to change the insert message to claim itself or another arbitrarily-chosen node
as the data source.

If a node cannot forward an insert to its preferred downstream node because the target is down or a loop
would be created, the insert backtracks to the second-nearest key, then the third-nearest, and so on in the
same way as for requests. If the backtracking returns all the way back to the original inserter, it indicates that
fewer nodes than asked for could be contacted. As with requests, nodes may curtail excessive hops-to-live
values and/or forget about pending inserts after a period of time.

This mechanism has three effects. First, newly inserted files are selectively placed on nodes already possessing
files with similar keys. This reinforces the clustering of keys set up by the request mechanism. Second, new
nodes can tell the rest of the network of their existence by inserting data. Third, an attempt by an attacker to
supplant an existing file by deliberate insert collision (e.g., by inserting a corrupted or empty file under the
same key) is likely to simply spread the real file further, since the original file is propagated back on collision.
(The use of a content-hash key, described in section 5, makes such an attack infeasible altogether.)

3.3 Managing data

All information storage systems must deal with the problem of finite storage capacity. Individual Freenet
node operators can configure the amount of storage to dedicate to their datastores. Node storage is managed

48

ATTACHMENT E

Microsoft Exhibit 1067

as an LRU (Least Recently Used) cache[25], with data items kept sorted in decreasing order by time of most
recent request (or time of insert, if an item has never been requested). When a new file arrives (from either
a new insert or a successful request) which would cause the datastore to exceed the designated size, the least
recently used files are evicted in order until there is room. The impact on availability is mitigated somewhat
by the fact that the routing table entries created when the evicted files first arrived will remain for a time,
potentially allowing the node to later get new copies from the original data sources. (Routing table entries
are also eventually deleted in a similar fashion as the table fills up, although they will be retained longer since
they are smaller.)

Strictly speaking, the datastore is not a cache, since the set of datastores is all the storage that there is, i.e. there
is no “permanent” copy which is being duplicated. Once all the nodes have decided, collectively speaking,
to drop a particular file, it will no longer be available to the network. In this respect, Freenet differs from the
Eternity service, which seeks to provide guarantees of file lifetime.

This mechanism has an advantageous side, however, since it allows outdated documents to fade away after
being superseded by newer documents, thus alleviating some of the problem of immutable files. If an out-
dated document is still used and considered valuable for historical reasons, it will stay alive precisely as long
as it continues to be requested.

For political or legal reasons, it may be desirable for node operators not to explicitly know the contents of
their datastores. Therefore, it is recommended that all inserted files be encrypted by their original unhashed
descriptive text strings in order to obscure their contents. Of course, this does not secure the file—that
would be impossible since a requestor (potentially anyone) must be capable of decrypting the file once
retrieved. Rather, the objective is that the node operator can plausibly deny any knowledge of the contents
of her datastore, since all she knows a priori is the hashed key and its associated encrypted file. The hash
cannot feasibly be reversed to reveal the unhashed description and decrypt the file. With effort, of course, a
dictionary attack will reveal which keys are present—as it must in order for requests to work at all.

4 Protocol details

The Freenet protocol is packet-oriented and uses self-contained messages. Each message includes a transac-
tion ID so that nodes can track the state of inserts and requests. This design is intended to permit flexibility
in the choice of transport mechanisms for messages, whether they be TCP, UDP, or other technologies such
as packet radio. For efficiency, nodes are also able to send multiple messages over a persistent channel such
as a TCP connection, if available. Node addresses consist of a transport method plus a transport-specific
identifier (such as an IP address and port number), e.g. tcp/192.168.1.1:19114.

A Freenet transaction begins with a Request.Handshake message from one node to another, specifying the
desired return address of the sending1 node. (The return address may be impossible to determine from the
transport layer alone, or may use a different transport from that used to send the message.) If the remote node
is active and responding to requests, it will reply with a Reply.Handshake specifying the protocol version
number that it understands. Handshakes are remembered for a few hours, and subsequent transactions
between the same nodes during this time may omit this step.

1Note that the sending node may not be the original requestor.

49

ATTACHMENT E

Microsoft Exhibit 1067

All messages contain a randomly-generated 64-bit transaction ID, a hops-to-live counter, and a depth
counter. Although the ID cannot be guaranteed to be unique, the likelihood of a collision occurring during
the transaction lifetime among the limited set of nodes that it sees is extremely low. Hops-to-live is set by the
originator of a message and is decremented at each hop to prevent messages being forwarded indefinitely. To
reduce the information that an attacker can obtain from the hops-to-live value, messages do not automat-
ically terminate after hops-to-live reaches 1 but are forwarded on with finite probability (with hops-to-live
again 1). Depth is incremented at each hop and is used by a replying node to set hops-to-live high enough to
reach a requestor. Requestors should initialize it to a small random value to obscure their location. As with
hops-to-live, a depth of 1 is not automatically incremented but is passed unchanged with finite probability.

To request data, the sending node sends a Request.Data message specifying a transaction ID, initial hops-to-
live and depth, and a search key. The remote node will check its datastore for the key and if not found, will
forward the request to another node as described in section 3.1. Using the chosen hops-to-live count, the
sending node starts a timer for the expected amount of time it should take to contact that many nodes, after
which it will assume failure. While the request is being processed, the remote node may periodically send
back Reply.Restart messages indicating that messages were stalled waiting on network timeouts, so that the
sending node knows to extend its timer.

If the request is ultimately successful, the remote node will reply with a Send.Data message containing the
data requested and the address of the node which supplied it (possibly faked). If the request is ultimately
unsuccessful and its hops-to-live are completely used up trying to satisfy it, the remote node will reply
with a Reply.NotFound. The sending node will then decrement the hops-to-live of the Send.Data (or Re-
ply.NotFound) and pass it along upstream, unless it is the actual originator of the request. Both of these
messages terminate the transaction and release any resources held. However, if there are still hops-to-live
remaining, usually because the request ran into a dead end where no viable non-looping paths could be
found, the remote node will reply with a Request.Continue giving the number of hops-to-live left. The
sending node will then try to contact the next-most likely node from its routing table. It will also send a
Reply.Restart upstream.

To insert data, the sending node sends a Request.Insert message specifying a randomly-generated transaction
ID, an initial hops-to-live and depth, and a proposed key. The remote node will check its datastore for the
key and if not found, forward the insert to another node as described in section 3.2. Timers and Reply.Restart
messages are also used in the same way as for requests.

If the insert ultimately results in a key collision, the remote node will reply with either a Send.Data message
containing the existing data or a Reply.NotFound (if existing data was not actually found, but routing table
references to it were). If the insert does not encounter a collision, yet runs out of nodes with nonzero hops-
to-live remaining, the remote node will reply with a Request.Continue. In this case, Request.Continue is a
failure result meaning that not as many nodes could be contacted as asked for. These messages will be passed
along upstream as in the request case. Both messages terminate the transaction and release any resources held.
However, if the insert expires without encountering a collision, the remote node will reply with a Reply.Insert,
indicating that the insert can go ahead. The sending node will pass along the Reply.Insert upstream and wait
for its predecessor to send a Send.Insert containing the data. When it receives the data, it will store it locally
and forward the Send.Insert downstream, concluding the transaction.

50

ATTACHMENT E

Microsoft Exhibit 1067

5 Naming, searching, and updating

Freenet’s basic flat namespace has obvious disadvantages in terms of discovering documents, name collisions,
etc. Several mechanisms of providing more structure within the current scheme are possible. For example,
directory-like documents containing hypertext pointers to other files could be created. A directory file under
the key text/philosophy could contain a list of keys such as text/philosophy/sun-tzu/art-of-war,
text/philosophy/confucius/analects, and text/philosophy/nozick/anarchy-state-utopia, using
appropriate syntax interpretable by a client. The difficulty, however, is in deciding how to permit changes
to the directory to update entries, while preventing the directory from being corrupted or spammed. An
alternative mechanism is to encourage individuals to maintain and share their own compilations of keys—
subjective bookmark lists, rather than authoritative directories. This is the approach in common use on the
world-wide web.

Name collisions are still a problem with both bookmark lists and directories. One way of addressing collisions
is to introduce a two-level structure similar to that used by most traditional file systems. Real files could be
stored under a pseudo-unique binary key, such as a hash of the files’ contents (a content-hash key). Users
would access these files by first retrieving an indirect file stored under a semantically meaningful name. The
indirect file would consist solely of a list of binary keys corresponding to that name (possibly only one),
along with other information useful for differentiating among the possible choices, such as author, creation
time, and endorsements by other users. Content-hash keys would also protect against files being maliciously
tampered with or replaced. However, indirect files are essentially like low-level directories, and share the same
problem of managing updates. Another approach is to skip the indirect files altogether and have bookmark
lists pointing to content-hash keys, rather than names.

Introducing a search capability in conjunction with binary keys offers a way to side-step the need to maintain
directories. The most straightforward way to add search is to run a hypertext spider such as those used to
search the web. While an attractive solution in many ways, this conflicts with the design goal of avoiding
centralization. A possible alternative is to create a special class of lightweight indirect files. When a real file
is inserted, the author could also insert a number of indirect files containing a single pointer to the real file,
named according to search keywords chosen by her. These indirect files would differ from normal files in
that collisions would be permitted on insert, and requests for an indirect file key (i.e. a keyword) would keep
going until a specified number of indirect files (i.e. search results) were accumulated. Managing the likely
large volume of these indirect files is an open problem.

Updates by a single user can be handled in a reasonably straightforward manner by using a variation on
indirection. When an author inserts a file which she later intends to update, she first generates a public-
private key pair and signs the file with the private key. The file is inserted under a binary key, but instead
of using the hash of the file’s contents, the literal public key itself is used (a signature-verifying key). As
with inserting under a content-hash key, inserting under a signature-verifying key provides a pseudo-unique
binary key for a file, which can also be used to verify that the file’s contents have not been tampered with. To
update the file, the new version is signed by the private key and inserted under the public signature-verifying
key. When the insert reaches a node which possesses the old version, a key collision will occur. The node
will check the signature on the new version, verify that it is both valid and more recent, and replace the old
version.

In order to allow old versions of files to remain in existence for historical reasons and to prevent the possibility
of authors being compelled to “update” their own files out of existence, an additional level of indirection can

51

ATTACHMENT E

Microsoft Exhibit 1067

be used. In this scheme, the real file is inserted under its content-hash key. Then, an indirect file containing
a pointer to that content-hash key is created, but inserted under a signature-verifying key. This signature-
verifying key is given out as the binary key for the file and entered, for example, in directories and bookmark
lists (making them double indirect files). When the author creates a new version, it is inserted under its own
content-hash key, distinct from the old version’s key. The signature-verified indirect file is then updated to
point to the new version (or possibly to keep pointers to all versions). Thus the signature-verifying key will
always lead to the most recent version of the file, while old versions can continue to be accessed by content-
hash key if desired. (If not requested, however, these old versions will eventually disappear like any other
unused file.)

For large files, splitting files into multiple parts is desirable because of storage and bandwidth limitations.
Splitting even medium files into standard-sized parts (e.g. 16 kilobytes) also has advantages in combating
traffic analysis. This is easily accomplished by inserting each part separately under a content-hash key, and
including pointers to the other parts.

Combining all these ideas together, a user might look through a bookmark list or perform a search on a
keyword to get a list of signature-verifying binary keys for files dealing with a particular topic. Retrieving
one of these keys gives an indirect file containing a set of content-hash keys corresponding to different
versions, ordered by date. Retrieving the most recent content-hash key gives the first part of a multipart file,
together with pointers to two other content-hash keys. Finally, retrieving those last two content-hash keys
and concatenating the three parts together yields the desired file.

6 Performance simulation

Simulations were carried out on an early version of this system to give some indications about its performance.
Here we summarize the most important results; for full details, see [11].

The scenario for these simulations was a network with between 500 and 900 nodes. Each node had a
datastore size of 40 items and a routing table size of 50 addresses (relatively low, because of limitations on
available hardware), and was given 10 unique items to store locally. The network was initially connected in
a linear fashion, where each node started with routing references to one node on either side.

6.1 Retrieval success rate

Queries for random keys were sent to random nodes in the network, in batches of 50 parallel queries at a
time, and the percentage of successful requests recorded over time. Figure 2 shows the percentage of successful
requests versus the total number of queries since initialization, for several network sizes. We can see that the
initially low success rate rises rapidly until over 95% of requests are successful. The number of queries until
network convergence is approximately half the total size of the network.

6.2 Retrieval time

Queries for random keys were sent to random nodes in the network, in batches of 50 parallel queries at a
time, and the average number of hops needed for a successful request recorded over time. Figure 3 shows

52

ATTACHMENT E

Microsoft Exhibit 1067

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400

R
eq

ue
st

s

Queries

500
600
700
800
900

Figure 2: Percentage of successful requests over time.

the number of request hops versus the total number of queries since initialization, for several network sizes.
We can see that the initially high number of hops required drops until it stabilizes at approximately 10 hops.
This value changes remarkably little with network size, suggesting that the time required for requests should
scale quite well. The number of queries until network convergence is approximately equal to the total size of
the network.

7 Security

The primary goal for Freenet security is protecting the anonymity of requestors and inserters of files. It is also
important to protect the identity of storers of files. Although trivially anyone can turn a node into a storer
by requesting a file through it, thus “identifying” it as a storer, what is important is that there remain other,
unidentified, holders of the file so that an adversary cannot remove a file by attacking all of the nodes that
hold it. Files must be protected against malicious modification, and finally, the system must be resistant to
denial-of-service attacks.

Reiter and Rubin[21] present a useful taxonomy of anonymous communication properties on three axes.
The first axis is the type of anonymity: sender anonymity or receiver anonymity, which mean respectively
that an adversary cannot determine either who originated a message, or to whom it was sent. The second axis
is the adversary in question: a local eavesdropper, a malicious node or collaboration of malicious nodes, or a
web server (not applicable to Freenet). The third axis is the degree of anonymity, which ranges from absolute

53

ATTACHMENT E

Microsoft Exhibit 1067

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 1400

R
eq

ue
st

s

Queries

500
600
700
800
900

Figure 3: Number of hops per request over time.

privacy (the presence of communication cannot be perceived) to beyond suspicion (the sender appears no
more likely to have originated the message than any other potential sender), probable innocence (the sender
is no more likely to be the originator than not), possible innocence, exposed, and provably exposed (the
adversary can prove to others who the sender was).

As Freenet communication is not directed towards specific receivers, receiver anonymity is more accurately
viewed as key anonymity, that is, hiding the key which is being requested or inserted. Unfortunately, since
routing depends on knowledge of the key, key anonymity is not possible in the basic Freenet scheme (but
see the discussion of “pre-routing” below). The use of hashes as keys provides a measure of obscurity against
casual eavesdropping, but is of course vulnerable to a dictionary attack since unhashed keys must be widely
known in order to be useful.

Freenet’s anonymity properties under this taxonomy are shown in Table 1. Against a collaboration of ma-
licious nodes, sender anonymity is preserved beyond suspicion since a node in a request path cannot tell
whether its predecessor in the path initiated the request or is merely forwarding it. [21] describes a proba-
bilistic attack which might compromise sender anonymity, using a statistical analysis of the probability that a
request arriving at a node a is forwarded on or handled directly, and the probability that a chooses a particular
node b to forward to. This analysis is not immediately applicable to Freenet, however, since request paths
are not constructed probabilistically. Forwarding depends on whether or not a has the requested data in its
datastore, rather than chance. If a request is forwarded, the routing tables determine where it is sent to, and
could be such that a forwards every request to b, or never forwards any requests to b, or anywhere in between.

54

ATTACHMENT E

Microsoft Exhibit 1067

System Attacker Sender anonymity Key anonymity

Basic Freenet local eavesdropper exposed exposed
collaborating nodes beyond suspicion exposed

Freenet + pre-routing local eavesdropper exposed beyond suspicion
collaborating nodes beyond suspicion exposed

Table 1: Anonymity properties of Freenet.

Nevertheless, the depth value may provide some indication as to how many hops away the originator was,
although this is obscured by the random selection of an initial depth and the probabilistic means of incre-
menting it (see section 4). Similar considerations apply to hops-to-live. Further investigation is required to
clarify these issues.

Against a local eavesdropper there is no protection on messages between the user and the first node con-
tacted. Since the first node contacted can act as a local eavesdropper, it is recommended that the user only
use a node on her own machine as the first point of entry into the Freenet network. Messages between nodes
are encrypted against local eavesdropping, although traffic analysis may still be performed (e.g. an eavesdrop-
per may observe a message going out without a previous message coming in and conclude that the target
originated it).

Key anonymity and stronger sender anonymity can be achieved by adding mix-style “pre-routing” of mes-
sages. In this scheme, basic Freenet messages are encrypted by a succession of public keys which determine
the route that the encrypted message will follow (overriding the normal routing mechanism). Nodes along
this portion of the route are unable to determine either the originator of the message or its contents (includ-
ing the request key), as per the mix-net anonymity properties. When the message reaches the endpoint of the
pre-routing phase, it will be injected into the normal Freenet network and behave as though the endpoint
were the originator of the message.

Protection for data sources is provided by the occasional resetting of the data source field in replies. The
fact that a node is listed as the data source for a particular key does not necessarily imply that it actually
supplied that data, or was even contacted in the course of the request. It is not possible to tell whether the
downstream node provided the file or was merely forwarding a reply sent by someone else. In fact, the very act
of successfully requesting a file places it on the downstream node if it was not already there, so a subsequent
examination of that node on suspicion reveals nothing about the prior state of affairs, and provides a plausible
legal ground that the data was not there until the act of investigation placed it there. Requesting a particular
file with a hops-to-live of 1 does not directly reveal whether or not the node was previously storing the file
in question, since nodes continue to forward messages having hops-to-live of 1 with finite probability. The
success of a large number of requests for related files, however, may provide grounds for suspicion that those
files were being stored there previously.

Modification or outright replacement of files by a hostile node is an important threat, and not only because
of the corruption of the file itself. Since routing tables are based on replies to requests, a node might attempt
to steer traffic towards itself by pretending to have files when it does not and simply returning fictitious data.
For data stored under content-hash keys or signature-verifying keys, this is not feasible since inauthentic
data can be detected unless a node finds a hash collision or successfully forges a cryptographic signature.
Data stored under ordinary descriptive text keys, however, is vulnerable. Some protection is afforded by the

55

ATTACHMENT E

Microsoft Exhibit 1067

expectation that files will be encrypted by the descriptive text, since the node must respond to a hashed key
request with data encrypted by the original text key, but a dictionary attack is possible using a table of text
keys and their hashes. Even partial dictionaries cause problems since the node can behave normally when an
unknown key is requested and forge data when the key is known.

Finally, a number of denial-of-service attacks can be envisioned. The most significant threat is that an
attacker will attempt to fill all of the network’s storage capacity by inserting a large number of garbage files.
An interesting possibility for countering this attack is the Hash Cash scheme[18]. Essentially, the scheme
requires the inserter to perform a lengthy computation as “payment” before an insert is accepted, thus slowing
down an attack. Another alternative is to divide the datastore into two sections, one for new inserts and one
for “established” files (defined as files having received at least a certain number of requests). New inserts can
only displace other new inserts, not established files. In this way a flood of garbage inserts might temporarily
paralyze insert operations but would not displace existing files. It is difficult for an attacker to artificially
legitimize her own (garbage) files by requesting them many times since her requests will be satisfied by
the first node to hold the data and not proceed any further. She cannot send requests directly to the other
downstream nodes holding her files since their identities are hidden from her. However, adopting this scheme
may make it difficult for genuine new inserts to survive long enough to be requested by others and become
established.

Attackers may attempt to replace existing files by inserting alternate versions under the same keys. Such
an attack is not possible against a content-hash key or signature-verifying key, since it requires finding a
hash collision or successfully forging a cryptographic signature. An attack against a descriptive text key, on
the other hand, may result in both versions coexisting in the network. The way in which nodes react to
insert collisions (detailed in section 3.2) is intended to make such attacks more difficult. The success of a
replacement attack can be measured by the ratio of corrupt versus genuine versions resulting in the system.
However, the more corrupt copies the attacker attempts to circulate (by setting a higher hops-to-live on
insert), the greater the chance that an insert collision will be encountered, which would cause an increase in
the number of genuine copies.

8 Conclusions

The Freenet network provides an effective means of anonymous information storage and retrieval. By using
cooperating nodes spread over many computers in conjunction with an efficient routing algorithm, it keeps
information anonymous and available while remaining highly scalable. Initial deployment of a test version
is underway, and is so far proving successful, with over 15,000 copies downloaded and many interesting files
in circulation. Because of the nature of the system, it is impossible to tell exactly how many users there are
or how well the insert and request mechanisms are working, but anecdotal evidence is so far positive. We
are working on implementing a simulation and visualization suite which will enable more rigorous tests of
the protocol and routing algorithm. More realistic simulation is necessary which models the effects of inserts
taking place alongside requests, nodes joining and leaving, variation in node capacity, and larger network
sizes.

56

ATTACHMENT E

Microsoft Exhibit 1067

9 Acknowledgements

Portions of this material are based upon work supported under a National Science Foundation Graduate
Research Fellowship.

References

[1] S. Adler, “The Slashdot effect: an analysis of three Internet publications,”
http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html (2000).

[2] Akamai, http://www.akamai.com/ (2000).

[3] American National Standards Institute, Draft: American National Standard X9.30-199X: Public-Key
Cryptography Using Irreversible Algorithms for the Financial Services Industry: Part 1: The Digital Signa-
ture Algorithm (DSA). American Bankers Association (1993).

[4] R.J. Anderson, “The Eternity service,” in Proceedings of the 1st International Conference on the Theory
and Applications of Cryptology (PRAGOCRYPT ’96), Prague, Czech Republic (1996).

[5] Anonymizer, http://www.anonymizer.com/ (2000).

[6] O. Berthold, H. Federrath, and M. Köhntopp, “Project ‘Anonymity and unobservability in the Inter-
net’,” in Computers Freedom and Privacy Conference 2000 (CFP 2000) Workshop on Freedom and Privacy
by Design (to appear).

[7] D.L. Chaum, “Untraceable electronic mail, return addresses, and digital pseudonyms,” Communications
of the ACM 24(2), 84-88 (1981).

[8] Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, and P. Yianilos, “A prototype implementation
of archival intermemory,” in Proceedings of the Fourth ACM Conference on Digital Libraries (DL ’99),
Berkeley, CA, USA. ACM Press: New York (1999).

[9] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information retrieval,” Journal of the
ACM 45(6), 965-982 (1998).

[10] Church of Spiritual Technology (Scientology) v. Dataweb et al., Cause No. 96/1048, District Court of
the Hague, The Netherlands (1999).

[11] I. Clarke, “A distributed decentralised information storage and retrieval system,” un-
published report, Division of Informatics, University of Edinburgh (1999). Available at
http://freenet.sourceforge.net/ (2000).

[12] R.R. Dingledine, “The Free Haven Project: Design and Deployment of an Anonymous Secure Data
Haven,” M.Eng. thesis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology (2000). Available at http://www.freehaven.net/ (2000).

[13] Distributed.net, http://www.distributed.net/ (2000).

57

ATTACHMENT E

Microsoft Exhibit 1067

[14] D.J. Ellard, J.M. Megquier, and L. Park, “The INDIA protocol,” http://www.eecs.harvard.edu/

~ellard/India-WWW/ (2000).

[15] Gnutella, http://gnutella.wego.com/ (2000).

[16] I. Goldberg and D. Wagner, “TAZ servers and the rewebber network: enabling anonymous pub-
lishing on the world wide web,” http://www.cs.berkeley.edu/~daw/classes/cs268/taz-www/

rewebber.html (2000).

[17] D. Goldschlag, M. Reed, and P. Syverson, “Onion routing for anonymous and private Internet con-
nections,” Communications of the ACM 42(2), 39-41 (1999).

[18] Hash Cash, http://www.cypherspace.org/~adam/hashcash/ (2000).

[19] Mixmaster, http://www.obscura.com/~loki/remailer/mixmaster-faq.html (2000).

[20] Napster, http://www.napster.com/ (2000).

[21] M.K. Reiter and A.D. Rubin, “Anonymous web transactions with Crowds,” Communications of the
ACM 42(2), 32-38 (1999).

[22] The Rewebber, http://www.rewebber.de/ (2000).

[23] M. Richtel and S. Robinson, “Several web sites are attacked on day after assault shut Yahoo,” The New
York Times, February 9, 2000.

[24] J. Rosen, “The eroded self,” The New York Times, April 30, 2000.

[25] A.S. Tanenbaum, Modern Operating Systems. Prentice-Hall: Upper Saddle River, NJ, USA (1992).

[26] M. Waldman, A.D. Rubin, and L.F. Cranor, “Publius: A robust, tamper-evident, censorship-resistant
and source-anonymous web publishing system,” in Ninth USENIX Security Symposium, Denver, CO,
USA (to appear).

[27] Zero-Knowledge Systems, http://www.zks.net/ (2000).

58

ATTACHMENT E

Microsoft Exhibit 1067

The Free Haven Project:
Distributed Anonymous Storage Service

Roger Dingledine
MIT

arma@mit.edu

Michael J. Freedman
MIT

mfreed@mit.edu

David Molnar
Harvard University

dmolnar@fas.harvard.edu

Abstract

The Free Haven Project is a design for a system of anonymous storage which resists the attempts
of powerful adversaries to find or destroy stored data. We explicitly specify requirements for such a
storage system and enumerate distinct notions of anonymity. We suggest a way to classify anonymous
systems based on the kinds of anonymity provided. Accountability of servers is explicitly addressed
through the use of a “trust network,” which attempts to limit the damage done by misbehaving servers.
Design choices common to several anonymous storage and publication systems are identified. We end
by identifying possible attacks, defenses, and future questions.

1 Introduction

Anonymous publication and storage services allow individuals to speak freely without fear of persecution, yet
such systems remain poorly understood. Political dissidents must publish in order to reach enough people
for their criticisms of a regime to be effective, yet they and their readers require anonymity at the same
time. Less extreme examples involve cases in which a large and powerful private organization, such as the
Church of Scientology, attempts to silence its critics by attacking either the critics themselves or those who
make the criticism publically available. Additionally, the recent controversy over Napster and Gnutella has
highlighted both a widespread demand for anonymous publication services for non-political purposes, and
the consequences of such services failing to provide the anonymity expected.

Systems meeting these needs are just starting to be deployed, and the exact requirements and design choices
are not yet clear. Recent events have highlighted some shortcomings of already deployed systems; the identi-
fication and removal of Napster users who downloaded Metallica songs [25] and the Gnutella Wall of Shame
[11] are two examples. These shortcomings are driving the development of a new generation of anonymous
publication services, such as Freenet [10], which focus specifically on providing anonymity.

It is in this spirit that the Free Haven Project aims to design, implement, and deploy a functioning distributed
anonymous storage service. We distinguish storage from publication in that storage services focus less on
availability and more on persistence of data.

In the process, we hope to clarify some of the requirements for such systems and highlight design choices.
We recognize that such services raise significant moral and legal issues which are outside the scope of this
paper; for our consideration of these issues, we refer to the first author’s thesis [12].

59

ATTACHMENT E

Microsoft Exhibit 1067

Here we present a design for a system of anonymous storage and begin investigating the requirements for
such a system. In particular, we recognize that a system must meet some standard of reliability and utility
before it can be useful. Our design operates on a basic unit of data called a document. Our requirements for
reliably processing these documents are covered in section 2.

We also show that it is not enough simply to talk about “anonymous” storage and publication. In section
3, we enumerate the many different kinds of anonymity which cover different aspects of the system, all
important for the realization of a truly anonymous system.

Free Haven meets these requirements with a design based on a community of servers called the servnet. Each
server, or servnet node, holds pieces of some documents; these pieces are called shares. In addition, each servnet
node has a persistent identification or pseudonym which allows it to be identified by other servnet nodes or
potential Free Haven users. Section 4 describes the design of the Free Haven system and the operations that
it supports, including inserting and retrieving documents.

We chose to use a network of pseudonymous servers in order to give each server a reputation. This reputation
allows servers to be “paid” without needing the robust digital cash scheme required for systems such as
Anderson’s Eternity Service [2]. Servers form “contracts” to store given shares for a certain period of time;
successfully fulfilling the contract gains the server trust and the ability to store some of its own data on other
servnet nodes. This gives an incentive for each server to behave well, as long as cheating servers can be
identified, which we illustrate in section 4.9. The idea is similar to the “give up space now, get space forever”
scheme used in Intermemory [9], but allows servers to lose trust if they start behaving badly. In section 4.11
we discuss the “trust network,” which is the system that keeps track of trust in each servnet node.

Some of these “contracts” are formed when a user inserts data into the servnet. Most of them, however, will
be formed when two servers swap shares by trading. Trading allows the servnet to be dynamic in the sense that
servnet nodes can join and leave easily and without special treatment. To join, a servnet node starts building
up trust by storing shares for others. To leave, a node trades away all of its shares and then disappears. The
benefits and mechanisms of trading are described in section 4.7.

Naturally, such a system has powerful adversaries which can launch a range of attacks. We describe some
attacks on the Free Haven design in section 5 and show how well the design does (or does not) resist each
attack. We then compare our design with other systems aimed at anonymous storage and publication using
the kinds of anonymity described in section 7, allowing us to distinguish systems which at first glance look
very similar. We conclude with a list of “challenges” for anonymous publication and storage systems, each of
which reflects a limitation in the current Free Haven design.

2 Requirements For Anonymous Storage

2.1 Parties

We begin our discussion of requirements for anonymous storage by enumerating the parties in an anonymous
storage system. Information is stored in units called documents.

The author of a document is the entity which initially created the document. The publisher of a document
is the entity which places the document into the system. Documents may have readers, which are entities
who retrieve the document from the system. An anonymous storage system may have servers, which are

60

ATTACHMENT E

Microsoft Exhibit 1067

participants who provide special services required to keep the system running, such as dedicated disk space
or bandwidth.

2.2 Storage Requirements

These requirements are independent of the system’s anonymity, but must be fulfilled if the system is to be
useful.

Integrity: An authorized reader must receive the same document as originally placed into the system by the
publisher, or recognize that the document has been altered.

Controlled Retrieval: The system must specify some policy for retrieving the document.

Efficient Retrieval: An authorized reader must be able to efficiently retrieve the document.

Persistence: It must be clear how long the document can remain stored, and the system must fill all com-
mitments to store a document for a given amount of time.

3 Anonymity for Anonymous Storage

The word “anonymous” can mean many different things. Some systems claim “anonymity” without specify-
ing a precise definition. While the anonymity requirements of communication channels have been considered
previously in depth [5, 18], we are not aware of a similar investigation into the requirements for publication
and storage systems.

We do not give formal definitions here. Instead, we attempt to lay the groundwork for future definitions by
enumerating different aspects of anonymity relevant to anonymous storage. This enumeration will allow us
to compare Free Haven with related work.

In all of these notions of anonymity, there are at least three distinct subnotions based on what the adversary
is assumed to already know. A document may be picked first, and then the adversary wishes to learn who
authored, read, published, and so on. A user may be picked first, and the adversary wishes to know which
documents the user authored, read, published, and so on. Finally, an adversary may know a document and a
user, and then attempt to confirm its suspicion that the two are linked.

Author-Anonymity: A system is author-anonymous if an adversary cannot link an author to a document.

Publisher-Anonymity: A system is publisher-anonymous if it prevents an adversary from linking a publisher
to a document.

Reader-Anonymity: To say that a system has reader-anonymity means that a document cannot be linked
with its readers. Reader-anonymity protects the privacy of a system’s users.

Server-Anonymity: Server-anonymity means no server can be linked to a document. Here, the adversary
always picks the document first. That is, given a document’s name or other identifier, an adversary is
no closer to knowing which server or servers on the network currently possess this document.

61

ATTACHMENT E

Microsoft Exhibit 1067

Document Anonymity: Document-anonymity means that a server does not know which documents it is
storing. Server-anonymity and document-anonymity are crucial if mere possession of some file is cause
for action against the server, because they provide protection to a server operator even after his or her
machine has been seized by an adversary.

Isolated-server document-anonymity means that if the server is allowed to look only at the data that it
is storing, it is unable to figure out the contents of the document. This is achieved via some sort of
secret sharing mechanism, either sharing the document or sharing the key for recreating the document
(or both) across servers.

Connected-server document-anonymity refers to the situation in which the server is allowed to com-
municate and compare data with all other servers. Since a connected server may act as a reader and
do document requests itself, connected-server document-anonymity seems difficult to achieve without
some trusted party which can distinguish server requests from “ordinary” reader requests.

Query-Anonymity: Query-anonymity refers to the notion that over the course of a given document query
or request, the “identity” of the document itself is not revealed to the server. In short, this means that
although a server may have many different documents stored, which document was served for a given
request is not knowable by the server. For an overview of private information retrieval (PIR), see [27].

A weaker form of query-anonymity may be realized through server deniability. The server knows the
identity of the requested document, but no third party can be convinced of its identity. This concept
is related to deniable encryption [13].

It seems that some of these notions of anonymity may imply each other. We leave this investigation as future
work.

3.1 Anonymity and Pseudonymity

So far, we have restricted ourselves to describing anonymity. We could extend these notions to allow for the
use of pseudonyms. If two transactions in the system can be linked, then the attributes which allow them to
be linked make up a pseudonym. For example, in an author-pseudonymous system, the documents digitally
signed by “Publius” could all be verified as “belonging to Publius” without anyone coming to know who
“Publius” is in ’real life.’

Both anonymity and pseudonymity protect the privacy of the user’s location and true name. Location refers
to the actual physical connection to the system. The term “true name” was introduced by Vinge [43] and
popularized by May[29] to refer to the legal identity of an individual. Knowing someone’s true name or
location allows you to hurt him or her.

Many different actions can be linked to the same pseudonym, while an anonymous system allows no linking
at all. This allows the pseudonym to acquire a reputation. Free Haven uses pseudonyms to give each servnet
node a reputation; the reputation influences how much data a node can store and provides an incentive to
act correctly.

62

ATTACHMENT E

Microsoft Exhibit 1067

3.2 Partial Anonymity

Often an adversary can gain some partial information about the users of a system, such as the fact that they
have high-bandwidth connections or all live in California. Preventing an adversary from obtaining any such
information may be impossible. Instead of asking “is the system anonymous,” the question shifts to “is it
anonymous enough?”

We might say that a system is partially anonymous if an adversary can only narrow down a search for a user
to one of a “set of suspects.” If the set is large enough, then it is impractical for an adversary to act as if any
single suspect were guilty. On the other hand, when the set of suspects is small, mere suspicion may cause an
adversary to take action against all of them.

Independently, Syverson has developed a logic for talking about the adversary’s view of a set of suspects [41].

3.3 Uses of An Ideal World

Suppose an author signs his true name to a document before placing it into an anonymous publication sys-
tem. Is the system still “anonymous”? This situation raises a crucial question: where does the “responsibility”
of an anonymous publication system begin, and where does it end? What can such a system reasonably be
expected to protect?

We approach this question by introducing an “ideal world” for anonymous publication, influenced by work
on secure multiparty computation [6, 26]. The ideal anonymous system in this world consists of a trusted
third party (TTP) Ted with secure channels to each party in the system. This TTP receives confidential
messages, strips off the source information, and confidentially forwards the messages to their destinations
in an unlinkable fashion. Our goal is to come up with a decentralized system that is able to simulate this
TTP for each operation. Equivalently, if Alice is communicating through Ted to Bob, a set of protocols
which allows Alice to communicate directly to Bob without Ted is said to be anonymous if the transcripts
of communication are indistinguishable from those which include Ted. If they are distinguishable, then that
difference is exactly the “break” that causes the system to fail to be anonymous.

This informal description requires significant work before it can become a formal model. For one thing, we
have not precisely specified the meaning of a “transcript,” nor have we investigated the notion of “security”
necessary for the channels between Ted, Alice, and Bob. Such work is outside the scope of this paper. Our
point is that if an attack succeeds even in the ideal world, then it is “outside” the scope of an anonymous
publication service.

4 The Free Haven Design

4.1 Overview

The overall system consists of the publication system, which is responsible for storing and serving docu-
ments; and the communications channel, which is responsible for providing confidential and anonymous
communications between parties. This paper focuses on the design of the publication system as a back-end
for the communications channel.

63

ATTACHMENT E

Microsoft Exhibit 1067

The agents in our publication system are the author, the server, and the reader. These agents are layered
over the communications channel; currently they communicate with one another via addresses which are
implemented as remailer reply blocks [30]. Authors are agents that produce documents and wish to store
them in the service, servers are computers which store data for authors, and readers are people who retrieve
documents from the service.

Free Haven is based on a community of servers (which as a whole is termed the “servnet”) where each server
hosts data from the other servers in exchange for the opportunity to store its own data in the servnet. The
servnet is dynamic: data moves from one server to another every so often, based on each server’s trust of the
others. Servers transfer data by trading. This means that the only way to introduce a new file into the system
is for a server to use (and thus provide) more space on its local system. This new file will migrate to other
servers by the process of trading.

Each server has a public key and one (or perhaps more) remailer reply blocks, which together can be used to
provide secure, authenticated, pseudonymous communication with that server. Every machine in the servnet
has a database which contains the public keys and reply blocks of other nodes in the servnet.

Authors assign an expiration date to documents when they are published; servers make a promise to maintain
the availability of a given document until its expiration date is reached. Honest behavior is enforced by other
servers losing trust in a server that “drops” data. This trust is monitored and updated by use of a trust network.
Each server maintains a database containing its trust of the other servers.

4.2 Storage

When an author (call her Alice) wishes to store a new document in Free Haven, she must first identify a Free
Haven servnet node which is willing to store the document for her. This might be accomplished by having
Alice run a node herself. Alternatively, some nodes might have public interfaces or have publically available
reply blocks and be willing to publish data for others.

4.3 Publication

To introduce a file F into the servnet, the publishing server first uses Rabin’s information dispersal algorithm
(IDA) [35] to break the file into shares f1; : : : ; fn where any k shares are sufficient to recreate the file. The
server then generates a key pair (PKdoc; SKdoc), constructs and signs a data segment for each share fi,
and inserts those segments as new documents into its local server space. Attributes in each share include
a timestamp, expiration information, the public key which was used to sign it (for integrity verification),
information about share numbering, and the signature itself.

The robustness parameter k should be chosen based on some compromise between the importance of the file
and the size and available space. A large value of k relative to n makes the file more brittle, because it will be
unrecoverable after a few shares are lost. On the other hand, a smaller value of k implies a larger share size,
since more data is stored in each share.

4.4 Retrieval

Documents in Free Haven are indexed by the public key PKdoc used to sign the shares of the document.
Readers must locate (or be running) a server which performs the document request. The reader comes up

64

ATTACHMENT E

Microsoft Exhibit 1067

with a key pair (PKclient; SKclient) for this transaction, as well as a one-time remailer reply block. The
servnet server does a broadcast of “f‘request’, PKdoc, PKclient, reply blockg” to all servnet nodes that it
knows about. These broadcasts can be queued and then sent out in bulk to conserve bandwidth.

Each server that receives the query will check to see if it has any shares with the requested PKdoc, and if
it does it will encrypt each share in the enclosed public key PKclient, and then send the encrypted share
through the remailer to the enclosed address. These shares will magically arrive out of the ether at their
destination; once enough shares arrive (� k), the client recreates the file and is done.

4.5 Share Expiration

Each share includes an expiration date chosen at share creation time. This is an absolute (as opposed to
relative) timestamp which indicates the time after which the hosting server may delete the share with no ill
consequences.

Expiration dates should be chosen based on how long the introducing server wants the data to last, consid-
ering the file size and likelihood of finding a server willing to make the trade.

By allowing the publisher of the document to set its expiration time, Free Haven distinguishes itself from
many of the related works such as Freenet. We maintain an entirely content-neutral approach to the data
stored in the system. That is, in the implicit contract between servers, each server agrees to store data for the
other servers without regard for the legal or moral issues for that data in any given jurisdiction.

Designing a protocol which encourages content-neutrality may well mean that server administrators are less
liable for the content on the network. Examples include common carrier law, wherein phone companies are
not responsible for the content they carry over their systems. However, our strongest argument for main-
taining a content-neutral system is that we think this is the most useful approach to a persistent anonymous
data storage service. The Free Haven system is designed to provide privacy for its users; rather than being a
persistent publication system aimed at convenience, is it designed to be a private low-profile storage system.

4.6 Document Revocation

Some publishing systems allow for documents to be “unpublished” or revoked. Revocation has some bene-
fits. Revocation would allow the implementation of a read-write filesystem. Published documents could be
updated as newer versions became available. It also allows political dissidents who publish under their real
name to realize their mistake and unpublish incriminating documents.

Revocation could be implemented by allowing the author to come up with a random private value x, and
then publishing some hash H(x) inside each share. To revoke, the author could broadcast his original value
x to all servnet nodes as a signal to delete the document.

On the other hand, revocation allows new attacks on the system. Firstly, it complicates accountability.
Revocation requests may not reach all shares of a file, due either to a poor communication channel or to a
malicious adversary who sends unpublishing requests only to some members of the servnet. Secondly, authors
might use the same hash for new shares, and thus “link” documents. Adversaries might do the same to make
it appear that the same author published two unrelated documents. Thirdly, the presence of an unpublishing

65

ATTACHMENT E

Microsoft Exhibit 1067

tag H(x) in a share assigns “ownership” to a share that is not present otherwise. An author who remembers
his x has evidence that he was associated with that share, thus breaking forward author-anonymity.

One of the most serious arguments against revocation was raised by Ross Anderson [2]. If the capability to
revoke exists, then an adversary can find who controls this capability, and threaten or torture him until he
revokes the document. We could address this problem by making revocation optional: the share itself could
make it clear whether that share can be unpublished. If no unpublishing tag is present, there would be no
reason to track down the author. If an adversary wishes to create a pretext to hunt down the publisher of
a document, he can still republish the document with a revocation tag, and use that as “reasonable cause”.
Furthermore, node operators or networks may be required by law to refuse unrevocable shares.

Because the ability to revoke shares may put the original publisher in increased physical danger, as well as
allowing new attacks on the system, we chose to leave revocation out of the current design.

4.7 Trading

In the Free Haven design, servers periodically trade shares with each other. There are a number of reasons
why servers trade:

Cover for Publishing: If trades are common, then there is no reason to assume that somebody offering a
trade is the publisher of a share.

Servers Join and Leave: Trading allows servers to gracefully exit the servnet by giving away all their shares.
This support for a dynamic network is crucial, since many of the participants in Free Haven will be
well-behaved but transient relative to the duration of the longer-lived shares.

Longer expiration dates: Long-lasting shares would be rare if trading them involved finding a server that
promised to be up and available for the next several years.

Accomodates ethical concerns of server operators: Frequent trading makes it easy and unsuspicious for
server operators to trade away a particular piece of data with which they do not wish to be associated.
Server operators can use the public key in each share to check to what document a share belongs, then
trade away the share without compromising their reputation as a servnet node or the availability of the
document.

Provides a moving target: Encouraging shares to move from node to node through the servnet means that
there is never any specific, static target to attack.

When a server A wants to make a trade (frequency of trade should be a parameter set by the server operator),
it chooses another server B from its list of known servers (based on trust and history), and offers a share �i

and a request for size or duration of a return share. If B is interested, it responds with a share �k of its own.
(The notation Xy indicates share y of document X .)

Trades are considered “fair” based on the two-dimensional currency of size � duration, plus a function of
the preferences of the servers involved in the trade.

66

ATTACHMENT E

Microsoft Exhibit 1067

The negotiation is finalized by each server sending an acknowledgement of the trade (including receipt, as
described in section 4.8) to the other. In addition, each server sends a receipt to both the buddy of the
share it is sending and the buddy of the share it is receiving; buddies and the accountability they provide are
described in section 4.9. Thus, the entire trading handshake takes four rounds: the first two to exchange the
shares themselves, and the next two to exchange receipts and at the same time send receipts to the buddies.

By providing the receipt on the third round of the trading handshake, A makes a commitment to store the
share �k. Similarly, the receipt that B generates on the fourth round represents a commitment to store
the share �i. B could attack A by failing to continue the protocol after the third line: in this case, A has
committed to keeping the share from B, but B has not committed to anything. At this point, A’s only
recourse is to broadcast a complaint against B and hope that the Trust system causes others to recognize that
B has misbehaved.

We suggest that when a server A trades a share to a server B, server A should keep a copy of the share around
for a while, just in case B proves untrustworthy. This will increase the amount of overhead in the system by
a factor of two or so (depending on duration), but provide greatly increased robustness. In this case, when a
query is done for a share, the system responding should include a flag for whether it believes itself to be the
“primary provider” of the data, or just happens to have a copy still lying around. The amount of time is a
parameter which requires further study.

4.8 Receipts

A receipt contains a hash of the public keys for the source server and the destination server, information about
the share traded away, information about the share received, and a timestamp. For each share, it includes a
hash of that document’s key, which share number it was, its expiration date, and its size.

This entire set of five elements is signed by server A. If a broadcast is performed by B (or any other node)
complaining about the behavior of A, then furnishing this receipt along with the complaint will provide
some rudimentary level of “proof” that B is not fabricating its complaint. Note that the expiration date of
both shares is included within the receipt, and the signature makes this value immutable. Thus, other servers
observing a receipt can easily tell whether the receipt is still “valid”. The size of each share is also included, so
other servers can make an informed decision about how influential this transaction should be on their trust
of the two servers involved in the trade.

We really are not treating the receipt as proof of a transaction, but rather as an indication of a commitment to
keep safe a given share. This is because the most a given server can do when it detects a misbehaving server
is broadcast a complaint and hope the Trust system handles it correctly.

4.9 Accountability

Malicious servers can accept document shares and then fail to store them. If enough shares are lost, the doc-
ument is unrecoverable. Further, malicious servers can continue to be malicious if there are no mechanisms
in place for identifying and excising ill-behaved nodes.

We propose a “buddy system” which associate pairs of shares in a given document with each other. Each
share is responsible for maintaining information about the location of the other share, or buddy. When a

67

ATTACHMENT E

Microsoft Exhibit 1067

share moves, it notifies its buddy. These notifications are signed by the public key of the document, which
is inside each share; it is for this reason that we include PKdoc in each share and not simply a hash of the
public key.

Periodically, a server holding a given share should query for its buddy, to make sure its buddy is still alive.
Should its buddy stop responding, then the remaining share (or more correctly, the host currently hold-
ing that share) is responsible for announcing which node had responsibility for it when it disappeared, as
described below under section 4.11.

We considered allowing abandoned shares to optionally spawn a new share if their buddy disappears, but
discarded this notion. Buddy spawning would make the service much more robust, since shares that are
destroyed can be regenerated. Such spawning could cause an exponential population explosion of shares: if a
share is out of touch for a little while but is not dead, then both shares will end up spawning new copies of
themselves. This is a strong argument for not letting shares replicate.

Since the communications channel we have chosen currently has significant latency, each server is responsible
for forwarding buddy notifications (based on information stored in the receipts it keeps). These forwarding
addresses are therefore available until the share’s expiration date has passed.

When a buddy notification comes in, the forwarder is checked and the notification is forwarded if appropri-
ate. This forwarding is not done in the case of a document request (which includes a buddy check operation),
since this document request has presumably been broadcast to all nodes in the servnet.

We have attempted to distinguish between the design goals of robustness and accountability. The fact that a
document cannot be lost until a certain threshold of its shares have been lost provides a simple robustness.
Accountability, in turn, is provided by the buddy checking and notification system among shares, which pro-
tects against malicious or otherwise ill-behaving nodes. Designers can choose the desired levels of robustness
and accountability independently.

4.10 Communications Channel

The Free Haven design requires a means of anonymously passing information between agents. One such
means is the remailer network, including the Mixmaster remailers first designed by Lance Cottrell [16]. Other
examples of anonymous communication channels are Onion Routing [42] and Zero Knowledge Systems’
Freedom [17]. We refer to David Martin’s thesis for a comprehensive overview of anonymous channels in
theory and practice [28].

The design and implementation of an anonymous communication channel is an ongoing research topic [1,
5, 7, 8, 20, 21, 22, 24, 33, 36]. The first implementation of the Free Haven design will use the Cypherpunk
and Mixmaster remailers as its anonymous channel. For design details, see [15].

4.11 Trust Network

The Trust Network in Free Haven is responsible for creating accountability. Accountability in the face of
such strong anonymity is a difficult task; there are many opportunities to try to take advantage of other
servers, ranging from merely neglecting to send a receipt after a trade to wrongly accusing a different node of
losing a share to more insidious and complex attacks.

68

ATTACHMENT E

Microsoft Exhibit 1067

Other systems exist which use reputations to ensure correct or “better” operation. The most directly relevant
is the PGP Web of Trust model for public keys [34]. Other systems include the Advogato and Slashdot
message moderation systems, AOL’s Instant Messenger [3], and much of real world commerce and law.

Careful trust management should enable each node to keep track of which nodes it trusts. With the cush-
ioning provided by the information dispersal algorithm, only a large number of the nodes turning evil will
result in actual loss of documents.

Each node needs to keep two values describing each other node it knows about: trust and metatrust. Trust
signifies a belief that the node in question will obey the Free Haven Protocol. Metatrust represents a belief
that the utterances of that node are valuable information. For each of these two values, each node also needs
to maintain a confidence and metaconfidence rating. This serves to represent the “stiffness” of the trust value.

Nodes should broadcast referrals in several circumstances, such as when they log the honest completion of a
trade, when they suspect that a buddy of a share they hold has been lost, and when the trust or metatrust in
a node changes substantially.

The Trust Network provides an easy method of adding new nodes and removing inactive ones. New nodes
can contact “introducers” via the anonymous communication channel; these introducers will then broadcast
referrals of this new node. Likewise, a node may mark another as “dormant” given some threshold of unan-
swered requests, such that dormant nodes are not included in broadcasts or trade requests. If a dormant node
starts initiating requests again, we conclude it is not actually dormant and resume sending broadcasts and
offering trades to this node.

The design of a decentralized “web of trust” network is a complicated research problem itself, beyond the
scope of discussion in this paper. The trust network should be able to interpret referrals of other nodes,
referrals which are accompanied by receipts, and disagreements between referrals. A node should be able
to gain and lose trust independently, and it should recognize when to broadcast its own trust referral. We
reference [38] for deeper consideration.

4.12 Implementation Status

The Free Haven project is still in its design stages. Although we have a basic proof-of-concept implementa-
tion, we still wish to firm up our design, primarily in the areas of accountability and bandwidth overhead.
Before any deployable implementation, we want to ensure that the Free Haven system offers better anonymity
than current systems. Still, the design is sufficiently simple and modular, allowing both a straightforward ba-
sic implementation and easy extensibility.

5 Attacks on Free Haven

Anonymous publishing and storage systems will have adversaries. The attacks and pressures that these adver-
saries may employ might be technical, legal, political, or social in nature. Obviously, the success of technical
attacks is contingent upon the system’s security and robustness to attack. The system’s design and the nature
of anonymity it provides also affects the success of non-technical attacks.

We now consider possible attacks on the Free Haven system based on their respective targets: on the avail-
ability of documents and servnet operation; on the accountability offered by the trust network; and on the

69

ATTACHMENT E

Microsoft Exhibit 1067

various aspects of anonymity relevant to anonymous storage and publication, as described in section 3. For
a more in-depth consideration of attacks, we refer to [12].

5.1 Attacks on Documents or the Servnet

Physical attack: Destroy a servnet node.

Prevention: Because we are breaking documents into shares and only k of n shares are required to
reconstruct the document, an adversary must find and destroy many nodes before availability is com-
promised.

Legal action: Find a physical servnet node, and prosecute the owner based on its contents.

Prevention: Because of the isolated-server document-anonymity property that the Free Haven design
provides, the servnet operator may be able to plausibly deny knowledge of the data stored on his
computer. This depends on the laws of the country in question.

Social pressure: Bring various forms of social pressure against servnet node administrators. Claim that the
design is patented or otherwise illegal. Sue the Free Haven Project and any known node administrators.
Conspire to make a cause “unpopular”, convincing administrators that they should manually prune
their data. Allege that they “aid child pornographers” and other socially-unacceptable activities.

Prevention: We rely on the notion of jurisdictional arbitrage. Information illegal in one place is fre-
quently legal in others. Free Haven’s content-neutral policies mean that there is no reason to expect that
the server operator has looked at the data he holds, which might make it more difficult to prosecute.
We further rely on having enough servnet nodes in enough different jurisdictions that organizations
cannot conspire to bully a sufficient fraction of servers to make Free Haven unusable.

Denial of service: Attack the servnet by continued flooding of queries for data or requests to join the
servnet. These queries may use up all available bandwidth and processing power for a node.

Prevention: We must assume that our communications channel has adequate protection and buffering
against this attack, such as the use of client puzzles [23]. Most communications channels we are likely
to choose will not protect against this attack. This is a real problem.

Data flooding: Attempt to flood the servnet with shares, to use up available resources.

Prevention: The trading protocol implicitly protects against this type of denial of service attack against
storage resources. The ability to insert shares, whether “false” or valid, is restricted to trading: that
server must find another which trusts its ability to provide space for the share it would receive in
return.

Similarly, the design provides protection against the corrupting of shares. Altering (or “spoofing”) a
share cannot be done, because the share contains a particular public key, and is signed by that key.
Without knowledge of the original key which was used to create a set of shares, an adversary cannot
forge new shares for a given document.

Share hoarding: Trade until a sufficient fraction of an objectionable document is controlled by a group
of collaborating servers, and then destroy this document. Likewise, a sufficiently wealthy adversary

70

ATTACHMENT E

Microsoft Exhibit 1067

could purchase a series of servers with very large drives and join the servnet, trading away garbage for
“valuable data.” He can trade away enough garbage to have a significant portion of all the data in the
servnet on his drives, subject to deletion.

Prevention: We rely on the overall size of the servnet to make it unlikely or prohibitively expensive or
for any given server or group of collaborating servers to obtain a sufficient fraction of the shares of any
given document. The failure of this assumption would leave us with no real defense.

5.2 Attacks on the Trust Network

While attacks against the Trust Network1 are related to attacks directly against nodes, their goal is not to
directly affect document availability or servnet operation. Rather, these attacks seek to compromise the
means by which we provide accountability for malicious or otherwise misbehaving nodes.

Some of these attacks, such as temporary denials of service, have negative repercussions on the trust of a
node. These repercussions might be qualified as “unfair”, but are best considered in the following light: if
a node is vulnerable to these attacks, it may not be capable of meeting the specifications of the Free Haven
protocol. Such a node is not worthy of trust to meet those specifications. The trust system does not judge
intent, merely actions.

Simple Betrayal: An adversary may become part of the servnet, act correctly long enough to gain trust, then
betray this trust by deleting files before their expiration dates.

Prevention: The trust economy is designed to make this unprofitable. The size-time currency means
that a corrupt node has to initially store data at least equivalent to that it later deletes. A node which
engages in this behavior should be caught by the buddy system when it deletes each share.

Buddy Coopting: If a corrupt node (or group of colluding nodes) can gain control of both a share and its
buddy, it can delete both of them without repercussions.

Prevention: We assume a large quantity of shares in the servnet, making buddy capture more difficult.
Nodes also can modify trust ratings if precise trading parameters, or constant trading, suggests an
attempt to capture buddies. More concretely, a possible work-around involves separating the reply-
block addresses for trading and for buddy checking, preventing corrupt nodes from acquiring the
buddies of the shares they already have. Such an approach adds complexity, and possibly opens other
avenues for attack.

False Referrals: An adversary can broadcast false referrals, or direct these to specific hosts.

Prevention: The metaconfidence trust rating can provide a guard against false referrals, combined with
a single-reporting policy (i.e., at most one referral per target per source is used for trust calculations).

Trading Receipt Games: While we believe that the signed timestamps attest to who did what and when,
receipt-based accountability may be vulnerable to some attacks. Most likely, these will involve multi-
node adversaries engaging in coordinated bait-and-switch games with target nodes.

1Parts of this section were originally written by Brian Sniffen in [38].

71

ATTACHMENT E

Microsoft Exhibit 1067

Entrapment: There are several ways in which an adversary can appear to violate the protocols. When
another node points them out, the adversary can present receipts which show her wrong and can
accuse her of sending false referrals. A more thorough system of attestations and protests is necessary
to defend against and account for this type of attack.

5.3 Attacks on Anonymity

There are a number of attacks which might be used to determine more information about the identity of
some entity in the system.

Attacks on reader anonymity: An adversary might develop and publish on Free Haven a customized virus
which automatically contacts a given host upon execution. A special case of this attack would be
to include mime-encoded URLs in a document to exploit reader software which automatically loads
URLs. Another approach might be to become a node on both the servnet and the mixnet, and attempt
an end-to-end attack, such as correlating message timing with document requests. Indeed, servers
could claim to have a document and see who requests it, or simply monitor queries and record the
source of each query. Sophisticated servers might attempt to correlate readers based on the material
they download, and then try to build statistical profiles and match them to people (outside Free
Haven) based on activity and preferences; we prevent this attack by using each reply block for only
one transaction.

Attacks on server anonymity: Adversaries might create unusually large shares, and try to reduce the set of
known servers who might have the capacity to store such shares. This attacks the partial anonymity
of these servers. An adversary could become a servnet node, and then collect routine status and
participation information (such as server lists) from other nodes. This information might be extended
with extensive knowledge of the bandwidth characteristics and limitations of the Internet to map
servnet topology. By joining the mixnet, an adversary might correlate message timing with trade
requests or trust broadcasts. An alternate approach is simply to spread a Trojan Horse or worm which
looks for Free Haven servers and reports which shares they are currently storing.

Attacks on publisher anonymity: An adversary could become a server and log publishing acts, and then
attempt to correlate source or timing. Alternatively, he might look at servers who might recently have
published a document, and try to determine who has been communicating with them recently.

There are entirely social attacks which can be very successful, such as offering a large sum of money for
information leading to the current location of a given document, server, reader, etc.

We avoid or reduce the threat of many of these attacks by using an anonymous channel which supports
pseudonyms for our communications. This prevents most or all adversaries from being able to determine the
source or destination of a given message, or establish linkability between each endpoint of a set of messages.
Even if node administrators are subpoenaed or otherwise pressured to release information about these entities,
they can openly disclaim any knowledge. Obviously, the level of anonymity provided by the is based on its
robustness to traffic analysis and similar attacks.

72

ATTACHMENT E

Microsoft Exhibit 1067

6 Related Work

There are a number of projects and papers which discuss anonymous publication services. We start this
section by providing an overview of some of the related projects and papers. After this section, we continue
by examining the amount of anonymity that each project offers.

6.1 The Eternity Service

This work was inspired by Anderson’s seminal paper on The Eternity Service [2]. As Anderson wrote, “[t]he
basic idea is to use redundancy and scattering techniques to replicate data across a large set of machines (such
as the Internet), and add anonymity mechanisms to drive up the cost of selective service denial attacks.”

A publisher uploads a document and some digital cash, along with a requested file duration (cost would be
based on document size and desired duration). In the simple design, a publisher would upload the document
to 100 servers, and remember ten of these servers for the purposes of auditing their performance. Because he
does not record most of the servers to whom he submitted the file, there is no way to identify which of the
participating eternity servers are storing his file. Document queries are done via broadcast, and document
delivery is achieved through one-way anonymous remailers.

There are issues which are not addressed in his brief paper: for instance, if documents are submitted anony-
mously but publishers are expected to remember a random sample of servers so they can audit them, what do
they do when they find that some server is cheating? Anderson passes this responsibility on to the digital cash
itself, so servers do not receive payment if they stop providing the associated service. He does not elaborate
on the possible implications of this increased accountability to the anonymity of the publishers.

Eternity has several problems that hinder real-world deployment. Most importantly, Eternity relies on a
stable digital cash scheme, which is not available today. There is no consideration to maintaining a dynamic
list of available servers and allowing servers to smoothly join and leave. Anderson further proposes that a
directory of files in the system should itself be a file in the system. However, without a mechanism for
updating or revising files, this would appear very difficult to achieve.

6.2 Napster

The Napster service [31] is a company based around connecting people who are offering MP3 files to people
who want to download them. While they provide no real anonymity and disclaim all legal liability, an
important thing to note about the Napster service is that it is highly successful. Thousands of people use
Napster daily to exchange music; if there were greater security (and comparable ease of use), we suspect that
many thousands more would participate. The existence of Napster shows that demand exists for a distributed
storage and retrieval service.

6.3 Gnutella

Gnutella [14] is a peer-to-peer Napster clone. Developed originally by Nullsoft, it is currently maintained as
an open source project. The Gnutella developers claim that querying the network is “anonymous.” Analysis
of the Gnutella protocol reveals features which make this statement problematic.

73

ATTACHMENT E

Microsoft Exhibit 1067

The header of a Gnutella packet includes two fields: TTL (time to live: the number of additional hops after
which the packet should be dropped) and Hops taken (the number of hops this packet has made since its
creation). The TTL is started at some default value based on the expected size of the network, and the Hops
value is effectively an inverse of the TTL during the travel of the packet. Because the Hops value is 1 when
the packet is initially sent, it is clear when a server is generating a query.

In addition, while the protocol is designed for a user to set up connections with his “friends”, there is no
infrastructure in place for finding new friends. Instead, the Gnutella site offers a “default” set of friends with
which users can start. Most users will never change this file if the service is functional. This means that the
actual network is a hierarchical system, as shown in pictures of the Gnutella network topology [40]. There
are a small number of central nodes which would be ideal targets for collecting information about users.

In addition, only queries are protected. The actual downloads are done by point-to-point connections,
meaning that the IP addresses of server and reader are both revealed to each other. This is done for reasons
of efficiency, but it is far from anonymous.

Sites such as the Gnutella Wall of Shame [11], which attempts to entrap child pornographers using the
Gnutella service, demonstrate that the direct file-transfer portion of the Gnutella service does not adequately
protect the anonymity of servers or readers.

6.4 Eternity USENET

Adam Back proposed [4] a simpler implementation of the Eternity Service, using the existing Usenet infras-
tructure to distribute the posted files all around the world.

To achieve anonymity in publishing, Eternity Usenet employs cypherpunks type I and type II (mixmaster)
remailers as gateways from email to newsgroups. Publishers PGP-sign documents which they wish to publish
into the system: these documents are formatted in html, and readers make http search or query requests
to ‘Eternity Servers’ which map these requests into NNTP commands either to a remote news server or a
local news spool. With the initial implementation, the default list of newsgroups to read consists only of
alt.anonymous.messages. The Eternity Server effectively provides an interface to a virtual web filesystem
which posters populate via Usenet posts. Eternity Usenet uses normal Usenet mechanisms for retrieval,
posting, and expiring, so publishers may not have control over the expiration time or propagation rate of
their document.

Reader anonymity for Eternity USENET is provided when the system is used in ”local proxy” mode, in
which the user downloads the entire eternity newsgroup from a remote server. The server can still link the
reader to that day’s contents of an eternity newsgroup, so the reader anonymity is not as strong as we might
like.

Back treats Usenet as an append-only file system. His system provides support for replacing files (virtual
addresses) because newer posts signed with the same PGP key are assumed to be from the same publisher.
Addresses are claimed on a first-come first-served basis, and PGP signatures provide linkability between an
initial file at a given address and a revision of that file. It is not clear what happens when two addresses are
claimed at once – since Usenet posts may arrive out of order, it would seem that there might be some subtle
attacks against file coherency if two different Eternity Servers have a different notion of who owns a file.

74

ATTACHMENT E

Microsoft Exhibit 1067

While the system is not directly ‘censorable’ as we usually consider it, the term ‘eternity’ is misleading. Usenet
posts expire based on age and size. Back does not provide an analysis of how long a given document will
survive in the network. The task of making a feasible distributed store of Eternity documents is left as a
future work.

6.5 Freenet

Like Gnutella, Freenet [10] is a peer to peer network of servers. When a user wishes to request a document,
she hashes the name of that document (where she gets this name is outside the scope of Freenet) and then
queries her own server about the location. If her server does not have it, it passes the query on to a nearby
server which is “more likely” to have it. Freenet clusters documents with similar hashes nearby each other,
and uses a routing protocol to route queries “downhill” until they arrive at the desired document.

Freenet bases document lifetime on the popularity of the document: frequently requested files get duplicated
around the system, whereas infrequently requested files live in only a few places or die out completely. While
this is a valid choice for a system that emphasizes availability and efficiency, it precludes certain uses of
the system. For example, Yugoslav phone books are currently being collected “to document residency for the
close to one million people forced to evacuate Kosovo”[32]; these phone books might not survive a popularity
contest.

Freenet explicitly sets out to provide anonymity. Their goals include both sender and reader anonymity, as
well as plausible deniability for servers – the notion that a server does not know the contents of documents it
is storing. They provide this last, which we called isolated-server document-anonymity, by referencing files
by H(name) and having users encrypt the documents themselves with name before inserting them. This
means that anybody who knows the original name string can decrypt the document, but the server storing
the document is unable to invert H(name) to determine name.

Freenet has a similar potential flaw with publisher- and reader-anonymity to Gnutella, due to the presence
of the TTL and Depth (comparable to Hops) fields in the Freenet message headers. Freenet takes steps to
avoid the problems of Gnutella’s Depth and TTL headers by randomly assigning values to both fields, so that
a depth of 1 does not necessarily mean that a request originated with a given node. Packets with TTL 1 are
randomly expired or forwarded onwards.

Document requests are also sent through the caching-enabled network (rather than peer-to-peer as they are
in Gnutella). Because of these measures, Freenet has “more” anonymity than Gnutella provides.

Further, statistical attacks similar to those described in the Crowds [36] paper might work to pinpoint the
location of a given reader or publisher; caching provides protection against this since the network topology
for a given document changes after each request. These attacks need to be analyzed further.

Another attack to consider is that simply doing a request from a strict political environment will cause a
copy of the data to migrate into that jurisdiction, giving law enforcement more reason to shut those servers
down. On the other hand, it may well be that such environments will close down servers without requiring
“sufficient cause”, so the political and legal arguments are meaningless.

75

ATTACHMENT E

Microsoft Exhibit 1067

6.6 Publius

Publius [44] attacks the problem of anonymous publishing from a different angle, employing a one-way
anonymous channel to transfer documents from publishers to servers. The Publius protocol is designed to
maintain availability of documents on these servers.

In this system, a publisher generates a key K for her document, and encrypts the document with this key.
She performs Shamir’s secret-sharing algorithm to build a set of n key shares, any k of which is sufficient
to reconstruct K . From there, she chooses some n of the Publius servers and anonymously delivers the
encrypted message plus one share to each of these n servers.

In this way, the document is replicated over each server, but the key is split over the n servers. Document
reading is implemented by running a local web proxy on the reader’s machine; the n addresses chosen as
servers are concatenated into a URL which is presumably published or otherwise remembered. The local
proxy fetches each share independently, reconstructs the original key K , and then decrypts the document.

The Publius system provides publisher-anonymity by means of a one-way anonymous channel between au-
thors and servers. In addition, because Shamir’s secret-sharing protocol is used and each server only re-
ceives one share, Publius provides both computational and information-theoretic isolated-server document-
anonymity: a single server is not able to determine anything about a document it stores.

A minor flaw is that readers cannot determine if a share is corrupt simply by examining it: the reader must
request all of the shares and attempt to reconstruct in order to determine the integrity of a share. A verifiable
secret sharing scheme [39] might make the system more efficient.

The entire scheme is based on a static, system-wide list of available servers. Since these servers are permanent,
there is no support for adding new servers or purging dead ones. More importantly, there is no support for
recognizing misbehaving servers and removing them.

7 An Analysis of Anonymity

We describe the protections offered for each of the broad categories of anonymity. In Table 1, we provide an
overview view of Free Haven and the different publishing systems which we examined. We consider the level
of privacy provided – computational (C), information-theoretic (I-T), and perfect-forward (P-F) anonymity
– by the various systems.

Computational anonymity means that an adversary modelled as a polynomial-time Turing Machine has no
better than a 1

2
+ neg(k) chance of breaking anonymity, for some reasonable security parameter k and

negliglible function neg(k). Information-theoretic is the same, except with no computational restrictions
on the adversary. Perfect forward anonymity is analogous to perfect forward secrecy : a system is perfect
forward anonymous if no information remains after a transaction is complete which could later identify the
participants if one side or the other is compromised.

For the purposes of this discussion, we will assume that the anonymous channel used by Free Haven is
only computationally secure. An “ideal mix”, in contrast, would be a perfectly anonymous channel which
resists any attack we of which we could think, including those by a computationally unbound adversary. All
anonymous channels are assumed to keep no records of communication.

76

ATTACHMENT E

Microsoft Exhibit 1067

Project Publisher Reader Server Document Query
C I-T P-F C I-T P-F C I-T P-F C I-T C I-T

Gnutella
Eternity Usenet

p p
? ?

FreeNet ? ? ? ?
p

Publius
p p p p

Free Haven
p p p p p p

FH + ideal mix
p p p p p p p p p p

Table 1: Anonymity Properties of Publishing Systems

Free Haven provides computational and perfect forward author anonymity, because authors communicate
to publishers via an anonymous channel. Servers trade to other servers via pseudonyms, providing com-
putational but not perfect forward anonymity, as the pseudonyms can be broken later. Because trading is
constant, however, Free Haven acheives publisher anonymity for publishers trying to trade away all shares of
the same document. The use of IDA to split documents provides isolated-server document anonymity, but
the public key embedded in each share (which we require for authenticating buddy messages) makes it trivial
for connected servers to discover what they are storing. Because requests are broadcast via an anonymous
channel, Free Haven provides computational reader anonymity, and different reply blocks used and then
destroyed after each request provide perfect forward anonymity.

Gnutella fails to provide publisher-anonymity, reader-anonymity, or server-anonymity because of the peer-
to-peer connections for actual file transfer. Because Gnutella servers start out knowing the intended contents
of the document they are offering, they also fail to provide document-anonymity.

Eternity Usenet provides publisher anonymity via the use of one-way anonymous remailers. Server
anonymity is not provided, because every Usenet server which carries the eternity newsgroup is a server.
Back has pointed out that isolated-server document anonymity can be provided by encrypting files with a
key derived from the URL; connected servers might find the key and attempt to decrypt stored documents.
Reader anonymity is not provided by open public proxies unless the reader uses an anonymous channel be-
cause the proxy can see what a user queries, downloads, and at what time. For local proxies, which connect
to a separate news server, however, the situation is better because the news server knows only what the user
downloads. Even so, this is not quite satisfactory, because the user can be tied by the server to the contents
of the eternity newsgroup at a certain time.

Freenet achieves isolated-server document-anonymity because servers are unable to reverse the hash of the
document name to determine the key with which to decrypt the document. For connected-server document
anonymity, the servers can check whether they are carrying a particular key, but cannot easily match a stored
document to a key due to the hash function. Server-anonymity is not provided because given a document
key, it is very easy to locate a server that is carrying that document – querying any server at all will result in
that server carrying the document! Because of the TTL and Hops fields for both reading and publishing, it
is also not clear that Freenet achieves publisher- or reader-anonymity, although they are much better in these
regards than Gnutella.

Publius achieves document-anonymity because the key is split between the n servers, and without sufficient
shares of the key a server is unable to decrypt the document that is stores. The secret sharing algorithm

77

ATTACHMENT E

Microsoft Exhibit 1067

provides a stronger form of this anonymity (albeit in a storage-intensive manner), since an isolated server
really can learn nothing at all about the contents of a document that it is helping to store. Because documents
are published to Publius through a one-way anonymous remailer, it provides publisher-anonymity. Publius
provides no support for protecting readers by itself, however, and the servers containing a given file are clearly
marked in the URL used for retrieving that file. Readers can use a system such as ZKS Freedom or Onion
Routing, to protect themselves, but servers may still be liable for storing “bad” data.

We see that systems can often provide publisher anonymity via one-way communication channels, effectively
removing any linkability; removing the need for a reply pseudonym on the anonymous channel means that
there is “nothing to crack”. The last line in this table is important to note. While it implies that Free Haven
achieves anonymity in many areas, this is misleading: the ideal anonymous channel is actually providing the
first nine aspects of anonymity. Assuming a robust ideal anonymous channel, there would be no linkability
between transactions, and mere computational ability on the part of the adversary would be insufficient to
identify the parties in a transaction.

This would mean that we could leave most of the anonymity to the communication channel itself, and
provide a simple back-end file system or equivalent service to transfer documents between agents. Thus the
design of the back-end system could be based primarily on addressing other issues such as availability of
documents, protections against flooding and denial of service attacks, and accountability in the face of this
anonymity.

8 Future Work

Our experience designing Free Haven revealed several problems which proved to be too hard to solve at this
time. We state some of these problems here and refer to the first author’s thesis for in-depth consideration
[12].

Deployed Free Low-Latency Pseudonymous Channel: Free Haven requires pseudonyms in order to create
server reputations. The only current widely deployed channels which supports pseudonyms seem to be
the Cypherpunk remailer network [30] and ZKS Freedom mail. These networks run over SMTP and
consequently have high latency. This high latency complicates protocol design. In addition, Freedom
mail requires payment and is not yet open source. Payment may be complicated for international users
or may allow participation to be traced, and open source facilitates peer review of the implementation.

Accountability and Trust: We found it extremely difficult to reason about the accountability in Free Haven,
especially when considering the “buddy system.” At the same time, accountability is critical to ensuring
that documents remain available in the system. Future work in this area might develop an “anony-
mous system trust algebra” for formally reasoning about a servnet node’s reliability based on various
circumstances which would allow us to verify trust protocols.

Modelling and Metrics: When desiging Free Haven, we made some choices, such as the choice to include
trading, based only on our intuition of what would make a robust, anonymous system. A mathematical
model of anonymous storage would allow us to test this intuition and run simulations. We also need
metrics: specific quantities which can be measured and compared to determine which designs are
“better.” For example, we might ask “how many servers must be compromised by an adversary for

78

ATTACHMENT E

Microsoft Exhibit 1067

how long before any document’s availability is compromised? before a specific targeted document’s
availability is compromised?” or “how many servers must be compromised by an adversary for how
long before the adversary can link a document and a publisher?” This modelling might follow from
the work of Gulcu and Tsudik [20], Kesdogan, Egner, and Buschkes [24], and Berthold, Federrath,
and Kohntopp [5] which apply statistical modelling to mix-nets.

Formal Definition of Anonymity: Closely related to the last point is the need to formalise the “kinds of
anonymity” presented in section 3. By formally defining anonymity, we can move closer to provid-
ing meaningful proofs that a particular system provides the anonymity we desire. We might leverage
our experience with cryptographic definitions of semantic security and non-malleability to produce
similar definitions and proofs[19]. A first step in this direction might be to carefully explore the
connection remarked by Rackoff and Simon between secure multiparty computation and anonymous
protocols[37].

Usability Requirements and Interface: We stated in the introduction that we began the Free Haven Project
out of concern for the rights of political dissidents. Unfortunately, at this stage of the project, we have
contacted few political dissidents, and as a consequence do not have a clear idea of the usability and
interface requirements for an anonymous storage system. Our concern is heightened by a recent paper
which points out serious deficiencies in PGP’s user interface [45].

We consider the above to be “challenge problems” for anonymous publication and storage systems.

9 Conclusion

We have presented a design for a content-neutral decentralized anonymous storage service and investigated
the kinds of anonymity required for such a service. The design protects anonymity at least as much, and in
some cases more, than related work. Unfortunately, we have also shown that this does not say that much,
because large problems remain with evaluating the level of protection provided by any of these systems, much
less providing “good” protection. Until the risks involved in using such systems can be better evaluated, they
cannot be used in good conscience for situations where failure is not an option. Much more work remains.

Acknowledgements

Professor Ronald Rivest provided invaluable assistance as Roger’s Masters and Michael’s Bachelors thesis ad-
visor and caused us to think long and hard about our design decisions. Professor Michael Mitzenmacher
made possible David’s involvement in this project and provided insightful comments on information disper-
sal and trading. Beyond many suggestions for overall design details, Brian Sniffen provided the design and
background for the trust system, and Joseph Sokol-Margolis was useful for considering attacks on the system.
Adam Back and Theodore Hong commented on our assessment of their systems and made our related work
section much better. Furthermore, we thank Susan Born, Nathan Mahn, Jean-François Raymond, Anna
Lysyanskaya, Adam Smith, Brett Woolsridge, and our anonymous referees for further insight and feedback.

79

ATTACHMENT E

Microsoft Exhibit 1067

References

[1] Masayuki Abe. Universally verifiable mix-net with verification work independent of the number of
servers. In Advances in Cryptology – EUROCRYPT ’98, pages 437–447.

[2] Ross Anderson. The Eternity Service. http://www.cl.cam.ac.uk/users/rja14/eternity/eternity.html.

[3] Aol instant messenger. http://www.aol.com/aim.

[4] Adam Back. The Eternity Service. http://phrack.infonexus.com/search.phtml?view&article=p51-12.

[5] Oliver Berthold, Hannes Federrath, and Marit Kohntopp. Anonymity and unobservability on the
Internet. In Workshop on Freedom and Privacy by Design : CFP 2000, 2000.

[6] Ran Canetti. PhD thesis, MIT.

[7] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communica-
tions of the ACM, 4(2), February 1982.

[8] David Chaum. The dining cryptographers problem: Unconditional sender and recipient untraceability.
Journal of Cryptology, 1:65–75, 1988.

[9] Yuan Chen, Jan Edler, Andrew Goldberg, Allan Gottlieb, Sumeet Sobti, and Peter Yianilos. A prototype
implementation of archival intermemory. In Proceedings of the fourth ACM Conference on Digital
libraries (DL ’99), 1999.

[10] Ian Clarke. The Free Network Project. http://freenet.sourceforge.net/.

[11] The Cleaner. Gnutella wall of shame. http://www.zeropaid.com/busted/.

[12] Roger Dingledine. The Free Haven Project. Master’s thesis, MIT, 2000.

[13] Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryption. In Advances in Cryptology
– CRYPTO ’97.

[14] Ian Hall-Beyer et al. Gnutella. http://gnutella.wego.com/.

[15] Michael J. Freedman. Design and Analysis of an Anonymous Communication Channel for the Free
Haven Project. http://theory.lcs.mit.edu/˜cis/cis-theses.html, May 2000.

[16] Electronic Frontiers Georgia (EFGA). Anonymous remailer information.
http://anon.efga.org/Remailers/.

[17] Ian Goldberg and Adam Shostack. Freedom network 1.0 architecture, November 1999.

[18] Ian Goldberg, David Wagner, and Eric Brewer. Privacy-enhancing technologies for the internet. In
Proceedings of IEEE COMPCON ’97.

[19] Oded Goldreich. Modern Cryptography, Probabilistic Proofs, and Pseudo-Randomness. Springer-
Verlag, 1999.

80

ATTACHMENT E

Microsoft Exhibit 1067

[20] C. Gulcu and G. Tsudik. Mixing e-mail with Babel. In Proceedings of the ISOC Symposium on
Network and Distributed System Security, pages 2–16, 1996.

[21] M. Jakobsson. Flash mixing. In Principles of Distributed Computing PODC ’99.

[22] M. Jakobsson. A practical mix. In Advances in Cryptology – EUROCRYPT ’98.

[23] Ari Juels and John Brainard. Client puzzles: A cryptographic defense against connection depletion
attacks. In Proceedings of the 1999 Network and Distributed System Security Symposium, February
1999.

[24] Kesdogan, Egner, and Bschkes. Stop and go mixes : Providing probabilistic anonymity in an open
system. In 1998 Information Hiding Workshop.

[25] Mark Lewis. Metallica sues Napster, universities, citing copyright infringement and RICO violations.
http://www.livedaily.com/archive/2000/2k04/wk2/MetallicaSuesNapster,Univ.html.

[26] Anna Lysyanskaya. Personal communication.

[27] Tal Malkin. Private Information Retrieval. PhD thesis, MIT. see http://theory.lcs.mit.edu/ cis/cis-
theses.html.

[28] David Michael Martin. PhD thesis, Boston University, 2000. http://www.cs.du.edu/˜dm/anon.html.

[29] Tim May. Cyphernomicon. http://www2.pro-ns.net/ crypto/cyphernomicon.html.

[30] David Mazieres and M. Frans Kaashoek. The design and operation of an e-mail pseudonym server. In
5th ACM Conference on Computer and Communications Security, 1998.

[31] Napster. http://www.napster.com/.

[32] University of Michigan News and Information Services. Yugoslav phone books: perhaps the last record
of a people. http://www.umich.edu/˜newsinfo/Releases/2000/Jan00/r012000e.html.

[33] A. Pfitzmann, B. Pfitzmann, and M. Waidner. ISDN-Mixes : Untraceable communication with small
bandwidth overhead. In GI/ITG Conference: Communication in Distributed Systems, pages 451–
463. Springer-Verlag, 1991.

[34] PGP FAQ. http://www.faqs.org/faqs/pgp-faq/.

[35] Michael O. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance,
April 1989.

[36] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web transactions. DIMACS Technical
Report, 97(15), April 1997.

[37] Simon and Rackoff. Cryptographic defense against traffic analysis. In STOC 1993, pages 672–681,
1993.

[38] Brian T. Sniffen. Trust Economies in the Free Haven Project. http://theory.lcs.mit.edu/˜cis/cis-
theses.html, May 2000.

81

ATTACHMENT E

Microsoft Exhibit 1067

[39] Markus Stadler. Publicly verifiable secret sharing. In EUROCRYPT ’96, 1996.
http://citeseer.nj.nec.com/stadler96publicly.html.

[40] Steve Steinberg. Gnutellanet maps. http://gnutella.wego.com/file depot/0-10000000/110000-
120000/116705/folder/151713/network3.jpg.

[41] Paul Syverson. Group principals and the formalization of anonymity. In World Congress on Formal
Methods 1999, 1999.

[42] P.F. Syverson, D.M. Goldschlag, and M.G. Reed. Anonymous connections and onion routing. In
Proceedings of the 1997 IEEE Symposium on Security and Privacy, May 1997.

[43] Vernor Vinge. True Names. Short story.

[44] Marc Waldman, Aviel Rubin, and Lorrie Cranor. Publius: A robust, tamper-evident, censorship-
resistant and source-anonymous web publishing system.

[45] Alma Whitten and J.D. Tygar. Why johnny can’t encrypt. In USENIX Security 1999, 1999.
http://www.usenix.org/publications/library/proceedings/sec99/whitten.html.

82

ATTACHMENT E

Microsoft Exhibit 1067

Towards an Analysis of Onion Routing Security

Paul Syverson � Gene Tsudik y Michael Reed � Carl Landwehr z

Abstract

This paper presents a security analysis of Onion Routing, an application independent infrastructure
for traffic-analysis-resistant and anonymous Internet connections. It also includes an overview of the
current system design, definitions of security goals and new adversary models.
Keywords: Security, privacy, anonymity, traffic analysis.

1 Introduction

This paper presents a security analysis of Onion Routing, an application independent infrastructure for
traffic-analysis-resistant and anonymous Internet connections. It also includes an overview of the new system,
definitions of security goals and new adversary models. Although the conceptual development and informal
arguments about the security of Onion Routing have been presented elsewhere [9, 15, 16, 10], we have not
previously attempted to analyze or quantify the security provided against specific attacks in detail. That is
the primary contribution of this paper.

The primary goal of Onion Routing is to provide strongly private communications in real time over a public
network at reasonable cost and efficiency. Communications are intended to be private in the sense that an
eavesdropper on the public network cannot determine either the contents of messages flowing from Alice
and Bob or even whether Alice and Bob are communicating with each other. A secondary goal is to provide
anonymity to the sender and receiver, so that Alice may receive messages but be unable to identify the sender,
even though she may be able to reply to those messages.

An initial design has been implemented and fielded to demonstrate the feasibility of the approach. This pro-
totype, which uses computers operating at the Naval Research Laboratory in Washington, D.C., to simulate
a network of five Onion Routing nodes, attracted increasing use over the two years it was available. While
in operation, users in more than sixty countries and all seven major US top level domains initiated up to 1.5
million connections per month through the prototype system; cf. also Figure 1, which shows connections
per day averaged over the preceding 30 days. This demand demonstrates both an interest in the service
and the feasibility of the approach. However, the initial prototype lacked a number of features needed to

�Center for High Assurance Computer Systems, Code 5540, Naval Research Laboratory, Washington DC 20375, USA.
flastnameg@itd.nrl.navy.mil

yInformation and Computer Science Dept., University of California, Irvine CA 92697-3425, USA. gts@ics.uci.edu
zMitretek Systems, Inc., 7525 Colshire Drive, McLean VA 22102, USA. Carl.Landwehr@mitretek.org (Work by this author

was primarily performed while employed at the Naval Research Laboratory.)

83

ATTACHMENT E

Microsoft Exhibit 1067

Overall Onion Routing Usage

0

10000

20000

30000

40000

50000

60000

D
a

te

0
2

/1
3

/9
8

0
2

/2
6

/9
8

0
3

/1
1

/9
8

0
3

/2
4

/9
8

0
4

/0
6

/9
8

0
4

/1
9

/9
8

0
5

/0
2

/9
8

0
5

/1
5

/9
8

0
5

/2
8

/9
8

0
6

/1
0

/9
8

0
6

/2
3

/9
8

0
7

/0
6

/9
8

0
7

/1
9

/9
8

0
8

/0
1

/9
8

0
8

/1
4

/9
8

0
8

/2
7

/9
8

0
9

/0
9

/9
8

0
9

/2
2

/9
8

1
0

/0
5

/9
8

1
0

/1
8

/9
8

1
0

/3
1

/9
8

1
1

/1
3

/9
8

1
1

/2
6

/9
8

1
2

/0
9

/9
8

1
2

/2
2

/9
8

0
1

/0
4

/9
9

0
1

/1
7

/9
9

0
1

/3
0

/9
9

0
2

/1
2

/9
9

0
2

/2
5

/9
9

0
3

/1
0

/9
9

Date

T
ot

al
 N

um
be

r
of

 C
on

ne
ct

io
ns

/d
ay

Series1

Figure 1: 30 Day Rolling Average of Onion Routing Usage: 3/1/98 – 3/1/99

make the system robust and scalable, and to resist insider attacks or more extensive eavesdropping. A design
for a second generation system that addresses these issues is complete, and the processes required to release
the source code for public distribution have been initiated. Several companies have contacted NRL to with
intent to commercially license Onion Routing.

This paper analyzes the protection provided by the second generation design. We start by describing, briefly,
the architecture and features of the second generation system relevant to our analysis. In section 3 we define
security goals for anonymity and/or traffic-analysis-resistance. In section 4 we give some assumptions about
the configuration of our network. In section 5, we set out our adversary model. In section 6, we present a
security assessment based on the definitions and assumptions made in earlier sections. Finally, we compare
Onion Routing to systems with similar goals, most specifically with Crowds [17].

2 Onion Routing Overview

This section provides a brief overview of Onion Routing for readers not familiar with it. Conceptual de-
velopment of Onion Routing as well as a description of the design for the previous system can be found in

84

ATTACHMENT E

Microsoft Exhibit 1067

[9, 16]. Brief description of different aspects of the current design can be found in [10, 20]. Readers familiar
with Onion Routing may wish to skip to the next section.

Onion Routing builds anonymous connections within a network of onion routers, which are, roughly, real-
time Chaum Mixes [3]. A Mix is a store-and-forward device that accepts a number of fixed-length messages
from different sources, performs cryptographic transformations on the messages, and then forwards the
messages to the next destination in an order not predictable from the order of inputs. A single Mix makes
tracking of a particular message either by specific bit-pattern, size, or ordering with respect to other messages
difficult. By routing through numerous Mixes in the network, determining who is talking to whom is made
even more difficult. While Chaum’s Mixes could store messages for an indefinite amount of time waiting
to receive an adequate number of messages to mix together, a Core Onion Router (COR) is designed to
pass information in real time, which limits mixing and potentially weakens the protection. Large volumes of
traffic (some of it perhaps synthetic) can improve the protection of real time mixes.

Onion Routing can be used with applications that are proxy-aware, as well as several non-proxy-aware appli-
cations, without modification to the applications. Supported protocols include HTTP, FTP, SMTP, rlogin,
telnet, NNTP, finger, whois, and raw sockets. Proxies have been designed but not development for Socks5,
DNS, NFS, IRC, HTTPS, SSH, and Virtual Private Networks (VPNs).

The proxy incorporates three logical layers: an optional application specific privacy filter, an application
specific translator that converts data streams into an application independent format of fixed length cells
accepted by the Onion Routing (OR) network, and an onion management layer (the onion proxy) that
builds and handles the anonymous connections. The onion proxy is the most trusted component in the
system, because it knows the true source and destination of the connections that it builds and manages. To
build onions and hence define routes the onion proxy must know the topology and link state of the network,
the public certificates of nodes in the network, and the exit policies of nodes in the network.

Onion Routing’s anonymous connections are protocol independent and exist in three phases: connection
setup, data movement, and connection termination. Setup begins when the initiator creates an onion, which
defines the path of the connection through the network. An onion is a (recursively) layered data structure that
specifies properties of the connection at each point along the route, e.g., cryptographic control information
such as the different symmetric cryptographic algorithms and keys used during the data movement phase.
Each onion router along the route uses its private key to decrypt the entire onion that it receives. This
operation exposes the cryptographic control information for this onion router, the identity of the next onion
router in the path for this connection, and the embedded onion. The onion router pads the embedded onion
to maintain a fixed size and sends it onward. The final onion router in the path connects to a responder proxy,
which will forward data to the remote application.

After the connection is established, data can be sent in both directions. The initiator’s onion proxy receives
data from an application, breaks it into fixed size cells (128 bytes long, at present), and encrypts each cell
multiple times – once for each onion router the connection traverses – using the algorithms and keys that
were specified in the onion. As a cell of data moves through the anonymous connection, each onion router
removes one layer of encryption, so the data emerges as plaintext from the final onion router in the path.
The responder proxy regroups the plaintext cells into the data stream originally submitted by the application
and forwards it to the destination. For data moving backward, from the recipient to the initiator, this process
occurs in the reverse order, with the responder proxy breaking the traffic into cells, and successive onion
routers encrypting it using (potentially) different algorithms and keys than the forward path. In this case the

85

ATTACHMENT E

Microsoft Exhibit 1067

initiator’s onion proxy decrypts the data multiple times, regroups the plaintext cells, and forwards them to
the application.

Normally, either the application that initiates a connection or the destination server will terminate it. Since
onion routers may fail, however, any onion router involved in a connection can cause that connection to be
terminated. To an application (either at the initiating site or at the destination), such a failure looks the same
as if the remote site had simply closed its TCP connection.

Longstanding TCP connections (called ‘links’ or ‘thick pipes’) between CORs define the topology of an OR
network. Links are negotiated pairwise by CORs in the course of becoming neighbors. All traffic passing
over a link is encrypted using stream ciphers negotiated by the pair of onion routers on that link. This cipher
is added on top of the onion layers by the COR sending a cell across a link and stripped off again by the
receiving COR. Since TCP guarantees sequential delivery, synchronization of the stream ciphers is not an
issue. To support a new anonymous connection, an onion proxy creates a random route within the current
OR network topology. The (fixed) size of an onion would limit a route to a maximum of 11 nodes in the
current implementation. Because connections can be tunneled, however, arbitrarily long routes are possible,
even though they will become impractical at some point because of the resulting network latencies.

An eavesdropper or a compromised onion router might try to trace packets based on their content or on
the timing of their arrival and departure at a node. All data (onions, content, and network control) is
sent through the Onion Routing network in uniform-sized cells (128 bytes). Because it is encrypted (or
decrypted) as it traverses each node, a cell changes its appearance (but not its size) completely from input to
output. This prevents an eavesdropper or a compromised onion router from following a packet based on its
bit pattern as it moves across the Onion Routing network. In addition, all cells arriving at an onion router
within a fixed time interval are collected and reordered randomly (i.e., “mixed”) before they are sent to their
next destinations, in order to prevent an eavesdropper from relating an outbound packet from a router with
an earlier inbound one based on timing or sequence of arrival.

If traffic levels are low and requirements for real-time transmission are high, waiting for enough traffic to
arrive so that mixing provides good hiding might cause unacceptable transmission delays. In this case,
padding (synthetic traffic) can be added to the thick pipes. Conversely, an attacker might try to use a pulse
of traffic to track cells flowing through the system. This attack can be made more difficult by imposing limits
on the traffic flow over particular links, though this strategy can increase latency.

If a link between two CORs goes down or comes up, that information is propagated among the active
CORs and proxies (again using the fixed cell size, and with the same protections as other OR traffic). This
information permits proxies to build onions with feasible routes. Since routes are permitted to have loops of
length greater than one hop, the number of active nodes does not limit the route length, as long as at least
two nodes are active.

An onion router cannot tell the ultimate destination of traffic it forwards to another onion router. The
Responder Proxy running on the last onion router in a path, however, can determine where traffic leaving
the OR network is bound. Some operators of onion routers may wish to restrict the set of destinations
(non onion-router destinations) to which their machines will forward traffic. For example, a commercial
onion router might decide that it would forward traffic only to .com sites, or a government onion router
might decide only to permit outgoing traffic destined for .gov sites. We call this an “exit policy,” and have
implemented software so that sites can define and enforce such policies. The onion proxy creating a path
through the OR network needs information about exit policies, so that it doesn’t create an infeasible route,

86

ATTACHMENT E

Microsoft Exhibit 1067

and the second generation system provides this information. The use of this mechanism could of course
warp the traffic flows through the network and might therefore permit some inferences about traffic flow. To
counteract the ability of compromised CORs to lie about network topography, public keys, or exit policies,
an external audit and verification system for this information has been built into every component. Without
both mechanisms, however, we believe far fewer institutions would be willing to operate ORs, and the
decreased level of participation could also reduce the effectiveness of our scheme.

The initial OR prototype, since it was not intended for wide deployment, took a number of short cuts. It
enforced a fixed length (five hops) for all routes. It did not provide a method for maintaining topology
information or communicating topology information among nodes. It did not provide padding or band-
width limiting facilities. All of these mechanisms are included in the second generation system. To ease
its widespread distribution, the second generation system does not include actual cryptographic software.
Cryptographic functions are invoked via calls to Crypto APIs, and the operator must provide cryptographic
libraries to implement those APIs.

3 Security Goals

Protection of communications against traffic analysis does not require support for anonymous communi-
cation. By encrypting data sent over a traffic-analysis-resistant connection, for example, endpoints may
identify themselves to one another without revealing the existence of their communication to the rest of the
network. However, traffic analysis is a potent tool for revealing parties in conversation, thereby compromis-
ing a communication that was intended to be anonymous. Thus, we consider goals for anonymous, as well
as private, communication. In fact, the goals for these two cases differ very little; the distinction comes in
the specification of the adversary.

There are various basic properties relating initiators, responders, and connections that we wish to protect.
Pfitzmann and Waidner[22] have described sender and receiver anonymity as respectively hiding the identity
of the sender or receiver of a particular message from an attacker, and unlinkability as a somewhat weaker
property, preventing an attacker from linking the physical message sent by the sender with the physical
message received by the recipient. In a similar vein, we define:

Sender activity: the mere fact that a sender is sending something.

Receiver activity: the mere fact that a receiver is receiving something.1

Sender content: that the sender sent a particular content.

Receiver content: that the receiver received a particular content.

These are the basic protections with which we will be concerned. We will also be concerned with more
abstract anonymity protection. For example, it may be far more revealing if these are compromised in

1It may be useful to distinguish principals that actually receive messages from those that are the target (intended receiver) of a
message. For example, if a message is public-key encrypted for a principal and broadcast to this principal and 99 others, then barring
transmission problems, all 100 received the message. However, only one was the intended destination of the message. In this paper,
it is with the intended receiver that we are concerned.

87

ATTACHMENT E

Microsoft Exhibit 1067

combination. As one example, consider 50 people sending the message “I love you” to 50 other people, one
each. We thus have sender and receiver activity as well as sender and receiver content revealed for all of these
messages. However, without source and destination for each of these, we don’t know who loves whom.

One of the combined properties that concerns us is:

Source-destination linking that a particular source is sending to a particular destination.2

This may or may not involve a particular message or transmission. Building on our previous example,
suppose 50 people send 50 messages each to 50 other people (2500 messages total). Then, for any sender
and receiver, we can say with certainty that they were linked on exactly one message; although we may not
be able to say which one. For purposes of this paper we will be concerned with connections, specifically, the
anonymity properties of the initiator and responder for a given connection.

4 Network Model

For purposes of this analysis, an Onion Routing network consists of onion proxies (or simply proxies),
Core Onion Routers (CORs), links, over which CORs pass fixed length cells, and responder proxies, which
reconstruct cells into the application layer data stream.

An attempt to analyze the traffic on a real onion routing network might try to take advantage of topological
features, exit policies, outside information about communicants, and other details that we cannot hope to
incorporate in a mathematical assessment of onion outing networks generally. We make a number of general
and specific assumptions to permit us to proceed with the analysis. We also comment on the validity of these
assumptions below.

Assumption 1. The network of onion routers is a clique (fully connected graph).

Since links are simply TCP/IP connections traversing the Internet, a COR can maintain many
such connections with relatively little overhead, and the second generation implementation allows a
COR to have on the order of fifty thick pipe links to other CORs. Beyond that size, one is likely
to find regions of highly connected nodes with multiple bridges between them. Assumption 1 thus
seems reasonable for OR networks of up to 50 CORs.

Assumption 2. Links are all padded or bandwidth-limited to a constant rate.

This simplification allows us to ignore passive eavesdroppers, since all an eavesdropper will see
on any link is a constant flow of fixed length, encrypted cells. In fact, we expect that padding and
limiting will be used to smooth rapid (and therefore potentially trackable) changes in link traffic
rather than to maintain absolutely fixed traffic flows. Even if fluctuations could be observed, no
principal remote from a link can identify his own traffic as it passes across that link, since each link is
covered by the stream cipher under a key that the remote principal does not possess.

2In [17], ‘unlinkability’ is limited to the case where a sender and receiver are both explicitly known to be active and targeted by an
adversary; nonetheless they cannot be shown to be communicating with each other. Onion Routing does provide such unlinkability
in some configurations, and depending on the adversary, but this is not a general goal for all connections.

88

ATTACHMENT E

Microsoft Exhibit 1067

Assumption 3. The exit policy of any node is unrestricted.

As noted in section 2, we expect that many CORs will conform to this assumption, but some
may not. Restrictive exit policies, to the extent that they vary among CORs, could affect the validity
of Assumption 4, since the exit policy will limit the choice of the final node in a path. However,
since in our adversary model the last COR may always be compromised, it makes no difference to the
security of a connection given our other assumptions. Also note that this assumption is independent
of whether or not the connection of some destinations to the final COR is hidden, e.g., by a firewall.

Assumption 4. For each route through the OR network each hop is chosen at random.

This assumption depends primarily on the route selection algorithm implemented by the onion proxy,
and secondarily on conflicts between exit policies and connection requests. In practice, we expect this
assumption to be quite good.

Assumption 5. The number of nodes in a route, n, is chosen from 2 � n <1 based on repeated flips of a
weighted coin.

Note that the expected route length is completely determined by the weighting of the coin.
The length is extended by one for each flip until the coin-flip comes up on the terminate-route
side—typically the more lightly weighted side. Thus, for example, if the coin is weighted so that the
probability of extending the route is :8, then the expected route length is 5. Choosing route length by
this means, as opposed to choosing randomly within some range was largely motivated by the Crowds
design and the security analysis in [17], of which we will say more below.

Many configurations of Onion Routing components are possible, all yielding different kinds and degrees
of assurance. [20] We will limit our analysis to the two configurations that we expect to be both the most
common and the most widely used.

In the remote-COR configuration, the onion proxy is the only OR system component that runs on a
machine trusted by the user. The first COR (and any infunnels) are running on a remote untrusted machine.

In the local-COR configuration, all components up to the first COR are running on locally trusted ma-
chines. This corresponds to a situation where a COR is running on an enclave firewall, and onions might
be built at individual workstations or at the firewall depending on efficiencies, enclave policy, etc. It also
corresponds to a situation where an individual with good connections to the Internet is running his own
onion router to reduce the amount of information available to untrusted components. The important aspect
of this connection is that the system from end application to the first COR is essentially a black box. Per-
haps contrary to initial appearance, a PC using dial-up connection to a (trustworthy) ISP might naturally be
considered to be in this configuration. This view is appropriate with respect to any attacker residing entirely
on the Internet because it is excluded from the telephone dial-up connections running between the customer
and the ISP, and the ISP is assumed to be trusted.

We must also make assumptions about the entrance policy of sites. Since entrance policy is controlled by the
proxy, it is natural to assume that anyone may connect using any protocol in the remote-COR configuration.
In practice, CORs might only accept connections from specific principals (subscribers?); although the COR

89

ATTACHMENT E

Microsoft Exhibit 1067

will be unable to determine, hence control, the application being run. In the local-COR configuration, the
entrance policy is effectively to exclude all connections from outside the black box. (However, it still will
forward connections from any other COR, and it is assumed to have an open exit policy.) These assumptions
are then:

Assumption 6. Every COR is connected to the OR network and the outside via either the remote-COR
configuration or the local-COR configuration, but not both.

Assumption 7. The entrance policy for entering the OR network via the remote-COR configuration is
unrestricted.

Assumption 8. The entrance policy for entering the OR network via the local-COR configuration is to
exclude all but internal connections.

Notice that these policy assumptions also determine the initiator being protected by use of the OR network.
For the remote-COR configuration, it is the end application (via its proxy) that is being protected. For the
local-COR configuration, it is the local COR that is effectively the initiator being protected. This conforms
well with the possibility that a corporate or other enclave may wish to protect not just the activity of individual
users of the network but that of the enclave as a whole. Likewise, an individual who is running his own COR
would clearly want to protect connections emanating from that COR since he is the only possible initiator
of those connections.

5 Adversary Model

One of the main challenges in designing anonymous communications protocols is defining the capabilities of
the adversary. Given the tools at our disposal today, the adversary model essentially determines which salient
characteristics the system should deploy in order to defeat her.

The basic adversaries we consider are:

Observer: can observe a connection (e.g., a sniffer on an Internet router), but cannot initiate connections.

Disrupter: can delay (indefinitely) or corrupt traffic on a link.

Hostile user: can initiate (destroy) connections with specific routes as well as varying the traffic on the
connections it creates.

Compromised COR: can arbitrarily manipulate the connections under its control, as well as creating new
connections (that pass through itself).

All feasible adversaries can be composed out of these basic adversaries. This includes combinations such as
one or more compromised CORs cooperating with disrupters of links on which those CORs are not adjacent,
or such as combinations of hostile outsiders and observers. However, we are able to restrict our analysis of
adversaries to just one class, the compromised COR. We now justify this claim.

90

ATTACHMENT E

Microsoft Exhibit 1067

Especially in light of our assumption that the network forms a clique, a hostile outsider can perform a subset
of the actions that a compromised COR can do. Also, while a compromised COR cannot disrupt or observe
a link unless it is adjacent to it, any adversary that replaces some or all observers and/or disrupters with a
compromised COR adjacent to the relevant link is more powerful than the adversary it replaces. And, in
the presence of adequate link padding or bandwidth limiting even collaborating observers can gain no useful
information about connections within the network. They may be able to gain information by observing
connections to the network (in the remote-COR configuration), but again this is less than what the COR
to which such connection is made can learn. Thus, by considering adversaries consisting of collections of
compromised CORs we cover the worst case of all combinations of basic adversaries. Our analysis focuses
on this most capable adversary, one or more compromised CORs.

The possible distributions of adversaries are

� single adversary

� multiple adversary: A fixed, randomly distributed subset of CORs is compromised.

� roving adversary: A fixed-bound size subset of CORs is compromised at any one time. At specific
intervals, other CORs can become compromised or uncompromised.

� global adversary: All CORs are compromised.

Onion Routing provides no protection against a global adversary. If all the CORs are compromised, they
can know exactly who is talking to whom. The content of what was sent will be revealed as it emerges
from the OR network, unless it has been end-to-end encrypted outside the OR network. Even a firewall-to-
firewall connection is exposed if, as assumed above, our goal is to hide which local-COR is talking to which
local-COR.

6 Security Assessment

As discussed above, there are several possible adversary models. Having specifically ruled out the case of a
global adversary, we now focus on the roving adversary model. (The remaining models are subsumed by it.)
We begin the security assessment by defining some variables and features of the environment.

Recall that routes are of indeterminate length and that each route is a random walk from the route origin
through the network.

We assume a closed system composed of a multitude of users and a set S of CORs. Let r be the total number
of active CORs in the system, and—as mentioned in Section 4—let n be the (variable) length of a specific
route R = fR1; :::; Rng, where each Rj is a COR in the route R. Routes are selected randomly (each
route is a random walk from the Route origin through the network) and hops within a route are selected
independently (except cycles of length one are forbidden).

Our roving adversary is characterized by c, the maximum number of CORs the adversary is able to corrupt
within a fixed time interval (a round). At the end of each round, the adversary can choose to remain in place
or shift some of its power to corrupt other CORs. In the latter case, previously-corrupted CORs are assumed

91

ATTACHMENT E

Microsoft Exhibit 1067

to be instantly “healed”, i.e., they resume normal, secure operation. Ci represents the set of CORs controlled
by the adversary at round i (Ci � S). We note that this roving adversary model closely follows that found in
the literature on proactive cryptography, e.g., [2, 13]. This is a standardly accepted model based on the view
that system locations can be compromised periodically, but periodic security checks will detect compromises.
Resulting responses as well as periodic system updates, etc. will return compromised components to normal.

At present, most connections through an Onion Routing network are likely to be for Web browsing or email.
Given the short duration of typical Web and email connections, a static attack is all that can realistically be
mounted; by the time a roving attacker has moved, the typical connection will have closed, leaving no trace
amongst honest CORs. (This is in contrast to Crowds, cf. below.) Roving attacks are more likely to be
effective against longer telnet or ftp connections.

We first analyze connections initiated from the remote-COR configuration and then connections initiated
from the local-COR configuration. Within each case we consider short-lived and long-lived connections.

6.1 Assessment for Remote-COR Configuration

Given a route R as above, suppose that some but not all of the CORs in the route are compromised. There
are three significant cases:

1. R1 2 Ci
The first node is compromised. In this case sender activity is established by the adversary. Sender
content is not lost since senders always pre-encrypt traffic. The probability of this event, assuming a
random route and random node compromises, is P1 = c=r.

2. Rn 2 Ci The last node in the route is compromised. In this case receiver content as well as receiver
activity are compromised. Sender content, sender activity, and source-destination linking remain
protected. The probability of this event is P2 = c=r.

3. R1 and Rn 2 Ci Both the first and last node in the path are compromised, so sender/receiver activity
and receiver content are compromised. Moreover, the COR end-points are now able to correlate
cell totals and compromise source-destination linking. Consequently, sender content can be simply
inferred. The probability of this event is P3 = c2=r2 (unless n = 2, in which case P3 = c(c� 1)=r2

since self-looping is not allowed).

R1 2 Ci Rn 2 Ci R1 and Rn 2 Ci
sender activity Yes No Yes
receiver activity No Yes Yes
sender content No No Yes (inferred)
receiver content No Yes Yes

source-destination linking No No Yes
probability c=r c=r c2=r2

Table 1: Properties of Attack Scenarios.

92

ATTACHMENT E

Microsoft Exhibit 1067

The adversary’s goal must be to compromise the endpoints, since he gains little by controlling all intermediate
(Ri for 1 < i < n) CORs of a given route R = fR1; :::; Rng. In the case of short-lived connections, the
roving adversary has, in effect, only one round in which to compromise the connection, and succeeds in
compromising all properties of a connection with probability c2=r2 (or c(c � 1)=r2).

We now consider the roving adversary against a long-lived connection.

At route setup time, the probability that at least one COR on the route of length n is in C1 is given by:

1� P (R \ C1 = ;) = 1�
(r � c)n

rn

We now make (a perhaps optimistic) assumption that, if none of the CORs on the route are compromised
at route setup time, then the adversary will not attempt the attack. In any case, for such an adversary the
expected number of rounds must be at least one more than for an adversary that starts with at least one
compromised COR on the route. Given at least one compromised COR on the route, how many rounds
does it take for the adversary to achieve source-destination linking?

In general, the attack starts when one of the subverted CORs receives a route setup request. She then proceeds
to attempt the discovery of the route’s true endpoints.

In either case, at round 1, the adversary can establish:

Rs where s = min(j 2 [1::n] and Rj 2 R \ C1)

as well as:
Re where e = max(j 2 [1::n] and Rj 2 R \ C1)

While the actual indices e and s are not known to the adversary, she can identify Rs and Re by timing the
propagation of route setup. Moreover, the adversary can trivially test if Re = R1 or Rs = Rn.

The adversary’s subsequent optimal strategy is illustrated in Figure 2. As shown in the pseudocode, the game
played by the adversary is two-pronged:

1. In each round she moves one hop closer towards route endpoints (moving to the preceding hop of Rs

and next hop of Re.)

2. She also randomly picks a set of (at least c � 2) routers to subvert from among the uncorrupted set
(which is constantly updated). When one of the end-points is reached, the adversary can concentrate
on the other, thus having c� 1 routers to corrupt (at random) at each round.

In the worst case, it takes a (c � 2)-adversary MAX (s; n � e) rounds to reach both endpoints. More
generally, the greatest value of MAX (s; n � e) is n. (Also, a single roving adversary always takes exactly n
rounds to compromise source and destination.)

An interesting open issue is the expected number of rounds a (c � 2)-adversary needs in order to reach the
route endpoints provided that she starts out with at least one compromised COR on the route. In lieu of
an analytic solution, it might be interesting to run this for sample sets of test configurations of nodes and
adversary nodes for various possible (sets) of connections. We leave this for future work.

93

ATTACHMENT E

Microsoft Exhibit 1067

/* assume at least one router initially compromised */

/* assume t>=2 */

/* HEALTHY_ROUTERS is the set of hereto uncorrupted routers */

/* remove_from_set() returns set minus element to be removed; */

/* if an element not in set, return set unchanged */

/* compute_max_span() returns R_s and R_e, the compromised routers */

/* farthest apart on the route; */

R_1_found = R_n_found = false;

available_random = c-2;

HEALTHY_ROUTERS = ALL_ROUTERS;

while ((! R_1_found) && (! R_n_found))

{

/* identify first, last subverted routers */

compute_max_span(R_s,R_e);

/* note that it's possible that R_s=R_e */

if (R_s==R_1)

{ R_1_found = true;

available_random ++;

}

if (R_e==R_n)

{ R_n_found = true;

available_random ++;

}

R_s = prev_hop (R_s);

R_e = next_hop (R_e);

subvert (R_s);

remove_from_set(HEALTHY_ROUTERS, R_s);

subvert (R_e);

remove_from_set(HEALTHY_ROUTERS, R_e);

/* subvert a set of random routers */

for (i=0; i<available_random; i++)

{ j = random_router_index(HEALTHY_ROUTERS);

subvert (R_j);

remove_from_set(HEALTHY_ROUTERS, R_j);

}

}

Figure 2: Pseudo-code for the adversary’s game.

94

ATTACHMENT E

Microsoft Exhibit 1067

6.2 Assessment For Local-COR Configuration

The local-COR configuration is distinguished from the remote-COR configuration by the fact that the first
COR in the connection is assumed to be immune from compromise. In the remote-COR configuration,
compromising the first COR is the only way to compromise sender properties or source-destination linking.
In the local-COR configuration, the only way that source-destination linking or any sender properties can
be compromised is if the adversary can somehow infer that the first COR is in fact first. There is no way for
this to happen within our threat model unless all other CORs are compromised. (If all CORs connected to
the local-COR were compromised they could infer that this was the first COR, but since we have assumed a
clique of CORs, this would imply that the local-COR is the only uncompromised COR in the onion routing
network.)

There is a way that the first COR could be identified as such that is outside of our described threat model:
if the second COR is compromised, and if it is possible to predict that some data cells will produce an
immediate response from the initiator, then the second COR may be able to infer that the first COR is first
by the response time. This possibility is less remote if the last COR is also compromised and we assume that
the data sent over it is not end-to-end encrypted for the responder. We will return to this discussion below.

7 Related Work

Basic comparison of Onion Routing to broadly related anonymity mechanisms, such as remailers [11, 5] and
ISDN-Mixes [14] can be found in [16]. Also mentioned there are such complementary connection-based
mechanisms as LPWA [7] and the Anonymizer [1]. These are both very effective at anonymizing the data
stream in different ways, but they both pass all traffic directly from the initiator via a single filtering point
to the responder. There is thus minimal protection for the anonymity of the connection itself, which is our
primary focus. We therefore restrict our comments to related work that is directed to wide-spread Internet
communication either below the application layer or specifically for some form of connection based traffic.
For this reason, direct comparisons to local anonymity systems such as TG and SS [12] are omitted due to
their small deployable size and tight timing constraints.

We know of only one other published proposal for application-independent, traffic-analysis-resistant Inter-
net communication, viz: that of [6], wherein a system is described that effectively builds an onion for every
IP packet. There is thus no connection, either in the sense of a TCP/IP socket, or more significantly, in the
sense of a path of nodes that can perform fast (symmetric) encryption on passing traffic. In Onion Routing,
computationally expensive public-key cryptography is used only during connection setup. Using an onion
for every IP packet makes for real-time capabilities significantly slower than those of Onion Routing and
thus less applicable to such things as telnet connections or even Web traffic—if loading pages is expected to
be anywhere close to current speeds. On the other hand, for applications that do not have these require-
ments, such a design may offer better security since there is no recurrent path for packets in an (application)
connection.

A commercial system that appears to be quite similar to Onion Routing is being built by Zero Knowledge
Systems (www.freedom.net). Like Onion Routing, it establishes a connection in the form of a path of
routers that have been keyed for subsequent data passing; however, its underlying transmission is based on
UDP rather than TCP/IP. While the system provides other services, such as pseudonym management, it

95

ATTACHMENT E

Microsoft Exhibit 1067

appears to be limited to the configuration comparable to a customer building onions and connecting to an
onion router at an ISP. Unless the ISP is trusted, this constitutes the remote-COR configuration. Also,
routes appear to be limited to a fixed length of three hops. This means that the middle hop knows the entire
route. Besides being more vulnerable to a roving attacker, these observations show that the system is not
suited to enclave level protection without some modification and extension. This is not surprising since the
design appears focused on the protection of individual users.

Given the above, our remaining comparative comments will be with respect to Crowds. We begin with
a brief comparative description. The first thing to note is that Crowds is designed exclusively for Web
traffic. Interestingly, though Crowds is only to be used for (short-lived) Web connections, it make use
of longstanding cryptographic paths. Once a path is established from an initiator through a Crowd, all
subsequent HTTP connections are passed through that path. (The tail of a path is randomly regenerated
only beyond a break point and only when broken. Whole paths are regenerated only when new members are
brought into the Crowd.) This means that a path initiator is less likely to be identified than would be the
case if a new path were built for each connection [17]. This is especially important because, unlike in Onion
Routing, a compromised node knows content and destination of all connections passing through it (see
below). This means that adversaries have a better means to build likely profiles of repeated connections by
the same initiator. The static paths of Crowds makes such profile information less useful by making it harder
to know which Crowds member is profiled. If a new path were built for each connection, compromised
nodes would have a better chance of intersecting predecessors with the same profile and thus identifying the
initiator. On the other hand, known (rather than inferred) path profiles in that case would be much less
complete, i.e., forward anonymity (in the sense of [21]) is worse for static paths. Put another way, in the
remote-COR configuration, assuming a fixed distributed adversary, the likelihood that some connection one
makes will have a compromised first and last node increases over the number of connections made (if the
first COR is chosen different each time). However, the compromise pertains only to the current connection.
If paths are static, compromise is ongoing.

Encrypted traffic looks the same as it passes along a path through a Crowd. And, the decryption key is
available to all path participants. Thus, any compromised node on the path compromises both receiver
activity and receiver content. Also, link padding is not a system option. As a result, a local eavesdropper
(observing links from the initiator) and any one compromised member of a path completely compromise
all properties mentioned in section 3. A local eavesdropper in the remote-COR configuration of Onion
Routing compromises sender activity; however, unless the last COR in the connection is also compromised,
nothing else is revealed. On the other hand, in this configuration, the first untrusted component of the
system is able to compromise sender activity. And, a local eavesdropper together with a compromised last
COR compromise all properties in section 3. For Crowds without a local eavesdropper, the first untrusted
component of the system (i.e., the next node on the path) cannot identify the initiator with certainty, in
fact with any more likelihood than that dictated by the probability of forwarding (i.e., the probability of
extending the path vs. connecting to the responder).

In the local-COR configuration Onion Routing provides similar protections to Crowds of sender activity,
source-destination linking, and sender content, and much better protection against receiver activity or re-
ceiver content, with the adversary model we have set out above and without a local eavesdropper. If we add
to the adversary model, things get more complicated.

As noted in section 6.2, if an adversary that has compromised the second COR in a route can predict which
data will prompt an immediate response from the initiator (e.g., if the final COR is also compromised), then

96

ATTACHMENT E

Microsoft Exhibit 1067

she may be able to time responses to determine that there can be at most one COR prior in the route. This
sort of problem was recognized early on in the design of Crowds. It is a more serious problem for Crowds
because the second node alone can read requests and responses, making it easy to find the timing-relevant
data. In Crowd, if URLs are included in data coming from a responder that will prompt a subsequent request
from the initiator, nodes later on the path will themselves parse the HTML and make these requests back in
the direction of the responder, thus eliminating the timing distinction between the first node and any others.

Timing information is thus obscured by having the nodes on the path actively processing and filtering data
as well as managing the connection. This is important because it means that all nodes must be able to read
all traffic so that the data stream must be anonymous. Therefore, unlike Onion Routing, Crowds inherently
cannot be used in circumstances where one would like to identify (and possibly authenticate) oneself to the
far end but would like to hide from others with whom one is communicating. Perhaps more importantly, as
ever more functionality is added to Web browsers, and since nodes on a Crowds route must be able to read
and alter all traffic on a connection, a single compromised node can embed requests, either for identifying
information or to open connections directly back to it—bypassing the crowd and identifying the originator.
Obvious means of attack such as by use of cookies, or by Java, Javascript, etc. are easily shut off or filtered
(along with their provided functionality). However, other more subtle mechanisms are also available (cf.
www.onion-router.net/Tests.html for a list of test sites, in particular www.onion-router.net/dynamic/snoop
), and more are becoming available all the time. The upshot of all this is that, for Crowds, the anonymity
of the connection is always at best as good as the latest installed filtering code for anonymity of the data
stream. For Onion Routing, these two functions—anonymity of the connection and anonymity of the data
stream—are separate, and a new means to identify the initiator via the data stream only affects the anonymity
of the data stream. Even then, it is only employable at the far end of a connection, rather than by any node
on an anonymized connection.

The last point of comparison we discuss is performance. Direct comparison in practice is nearly impossible.
Each onion routing connection requires several public-key decryptions. So, with respect to cryptographic
overhead Crowds has much better performance potential. On the other hand, within an onion routing
network, connections are expected to be longstanding high-capacity channels between dedicated machines,
possibly with cryptographic coprocessors. The major performance limitation is often likely to be the end
user’s Internet connection. But, for Crowds the end users are the network. Thus, Crowds members with
slow or intermittent connections will affect the performance of everyone in their crowd. One can limit
Crowds participation to those with longstanding, high-speed (say T1 or better) Internet connections. But,
this will seriously limit the population for whom it is feasible. Depending on the user population, network
configuration, and the components that make up the network, one is likely to find very different performance
numbers in each of the systems.

8 Conclusions and Future Work

We have presented some of the features of the current Onion Routing design and analyzed its resistance to
worst-case adversaries. This design generally resists traffic analysis more effectively than any other published
and deployed mechanisms for Internet communication.

We note some ways that the design might be changed to improve security: Adding a time delay to traffic at
the proxy could complicate timing attacks against the local-COR configuration to determine the first COR.

97

ATTACHMENT E

Microsoft Exhibit 1067

(Similarly, if the last COR is local to the responder, in the sense of this paper, then it would be possible to add
a time delay at the responder proxy.) Of course, this is only necessary when the goal is actually to protect the
local COR, for example to protect the activity of an enclave or if the COR is run by one or a few individuals
who are the only ones accessing/exiting the onion routing network through that COR. Suppose a typical
customer-ISP configuration, in which the initiator is someone connecting through dial-up to an ISP running
an onion router. As noted above in Section 4, this could be viewed as a local-COR configuration. But, in
this case, it is the anonymity of the individual source rather than the COR that matters. Thus, no delay is
necessary. (One could address a semi-trusted local-COR by building onions at the workstation for a COR,
e.g., at an ISP or an enclave firewall. Such options are discussed in [20].)

Finally, if partial-route padding is used on individual connections, besides link padding, then compromise by
even internal attackers is complicated. For example, a local eavesdropper or compromised first COR (in the
remote-COR configuration) would not be able to easily cooperate with a compromised last COR to break
source-destination linking. In fact, the second generation design has been made consistent with the possibility
that onion proxies can choose to do this via in-channel signaling to intermediate CORs if they so desire. Also,
long-lived application connections could be hopped between shorter-lived Onion Routing connections using
specialized proxies. This would both frustrate a roving attacker, and make such connections look more like
short-lived connections even to network insiders. We have discussed some of the features such proxies might
have, but such proxies have not yet been designed.

Acknowledgments

This work supported by ONR and DARPA. Jim Proto and Jeremy Barrett have done much of the coding
of the second generation system, and Mark Levin did much of its design specification. Lora Kassab has
investigated route selection algorithms, and her work has influenced the above discussion. Thanks to Mike
Reiter and Avi Rubin for helpful discussions about the goals of Crowds. Thanks to Ira Moskowitz, Cathy
Meadows, and LiWu Chang for other helpful discussions.

References

[1] The Anonymizer. http://www.anonymizer.com

[2] R. Canetti and A. Herzberg. “Maintaining Security in the Presence of Transient Faults”, Advances in
Cryptology—CRYPTO’94, LNCS vol. 839, Springer-Verlag, 1994, pp. 425–438.

[3] D. Chaum. “Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms”, Communica-
tions of the ACM, vol. 24, no. 2, Feb. 1981, pages 84-88.

[4] D. Chaum. “The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceabil-
ity”, Journal of Cryptology, vol. 1, no. 1, 1988, pages 65-75.

[5] L. Cottrell. Mixmaster and Remailer Attacks,
http://obscura.obscura.com/˜loki/remailer/remailer-essay.html

98

ATTACHMENT E

Microsoft Exhibit 1067

[6] A. Fasbender, D. Kesdogan, O. Kubitz. “Variable and Scalable Security: Protection of Location Infor-
mation in Mobile IP”, 46th IEEE Vehicular Technology Society Conference, Atlanta, March 1996.

[7] E. Gabber, P. Gibbons, Y. Matias, and A. Mayer. “How to Make Personalized Web Browsing Sim-
ple, Secure, and Anonymous”, in Financial Cryptography: FC ‘97, Proceedings, R. Hirschfeld (ed.),
Springer-Verlag, LNCS vol. 1318, pp. 17–31, 1998.

[8] I. Goldberg and D. Wagner. “TAZ Servers and the Rewebber Network: Enabling Anonymous Publish-
ing on the World Wide Web”, First Monday, vol. 3 no. 4, April 1998.

[9] D. Goldschlag, M. Reed, P. Syverson. “Hiding Routing Information”, in Information Hiding, R. An-
derson, ed., LNCS vol. 1174, Springer-Verlag, 1996, pp. 137–150.

[10] D. Goldschlag, M. Reed, P. Syverson. “Onion Routing for Anonymous and Private Internet Connec-
tions,” Communications of the ACM, vol. 42, num. 2, February 1999.

[11] C. Gülcü and G. Tsudik. “Mixing Email with Babel”, in 1996 Symposium on Network and Distributed
System Security, San Diego, February 1996.

[12] D. Martin Jr., “Local Anonymity in the Internet”, Ph.D. Dissertation, Boston University, 1999.

[13] R. Ostrovsky and M. Yung. “How to Withstand Mobile Virus Attacks”, in Proceedings of the Tenth
ACM Symposium on Principles of Distributed Computing (PODC ’91), ACM Press, 1991, pp. 51–
59.

[14] A. Pfitzmann, B. Pfitzmann, and M. Waidner. “ISDN-Mixes: Untraceable Communication with
Very Small Bandwidth Overhead”, GI/ITG Conference: Communication in Distributed Systems,
Mannheim Feb, 1991, Informatik-Fachberichte 267, Springer-Verlag, Heidelberg 1991, pp. 451-463.

[15] M. Reed, P. Syverson, and D. Goldschlag. “Protocols using Anonymous Connections: Mobile Appli-
cations”, in Security Protocols: Fifth International Workshop, B. Christianson, B. Crispo, M. Lomas,
and M. Roe, eds., LNCS vol. 1361, Springer-Verlag, 1997, pp. 13–23.

[16] M. Reed, P. Syverson, and D. Goldschlag. “Anonymous Connections and Onion Routing”, IEEE Jour-
nal on Selected Areas in Communications, vol. 16 no. 4, May 1998, pp. 482–494. (A preliminary
version of this paper appeared in [19].)

[17] M. Reiter and A. Rubin. “Crowds: Anonymity for Web Transactions”, ACM Transactions on Informa-
tion System Security, vol. 1, no. 1, November 1998, pp. 66–92. (A preliminary version of this paper
appeared in [18].)

[18] M. Reiter and A. Rubin. Crowds: Anonymity for Web Transactions, DIMACS Technical Reports 97-
15, April 1997 (Revised August 1997).

[19] P. Syverson, D. Goldschlag, and M. Reed. “Anonymous Connections and Onion Routing”, in Proceed-
ings of the IEEE Symposium on Security and Privacy, Oakland, CA, IEEE CS Press, May 1997, pp.
44–54.

99

ATTACHMENT E

Microsoft Exhibit 1067

[20] P. Syverson, M. Reed, and D. Goldschlag. “Onion Routing Access Configurations”, in DISCEX 2000:
Proceedings of the DARPA Information Survivability Conference and Exposition, Hilton Head, SC,
IEEE CS Press, January 2000, pp. 34–40.

[21] P. Syverson, S. Stubblebine, and D. Goldschlag, “Unlinkable Serial Transactions”, in Financial Cryp-
tography: FC ‘97, Proceedings, R. Hirschfeld (ed.), Springer-Verlag, LNCS vol. 1318, pp. 39–55,
1998.

[22] A. Pfitzmann and M. Waidner, “Networks without User Observability”, Computers & Security, vol. 6
(1987), pp. 158–166.

100

ATTACHMENT E

Microsoft Exhibit 1067

Web MIXes: A system for anonymous and unobservable
Internet access

Oliver Berthold � Hannes Federrath y Stefan Köpsell �

Abstract

We present the architecture, design issues and functions of a MIX-based system for anonymous and
unobservable real-time Internet access. This system prevents traffic analysis as well as flooding attacks.
The core technologies include an adaptive, anonymous, time/volume-sliced channel mechanism and a
ticket-based authentication mechanism. The system also provides an interface to inform anonymous
users about their level of anonymity and unobservability.

1 Introduction

Using Internet services nowadays means leaving digital traces. Anonymity and unobservability on the Inter-
net is a sheer illusion. On the other hand, most people agree that there is a substantial need for anonymous
communication as a fundamental building block of the information society. The availability of anonymous
communication is considered a constitutional right in many countries, for example for use in voting or
counseling.

We are doing research on anonymity and unobservability in the Internet to evaluate the feasibility and costs
of such systems and to explore several deployment opportunities within the Internet. Our goal is to explore
the foundations and to provide a secure and anonymous technical infrastructure for the Internet.

Systems that provide unobservability ensure that nobody, not even the transport network, is able to find out
who communicates with whom. However, the communicating parties may know and usually authenticate
each other. Example: Paying users browsing a patent data base.

Systems that provide anonymity ensure that client or server (or both) can communicate without revealing
identity. Example: Users browsing the World Wide Web.

During the last three years we developed several MIX-based and proxy-based anonymity services (for web
surfing and similar real-time services). Our academic interest is to show that anonymity and unobservability
can be efficiently realized. The special objective is to develop a theoretical background for the efficient
implementation of anonymity services in the Internet. We are building an anonymous transport system
based on a specific IP format. The goal is to provide asynchronous (like SMTP) as well as nearly synchronous
modes of communication (like HTTP). The system should also be able to handle various kinds of packets.

�Dresden University of Technology, Fakultät Informatik, fob2, sk13g@inf.tu-dresden.de
yInternational Computer Science Institute, Berkeley, hannes@icsi.berkeley.edu

101

ATTACHMENT E

Microsoft Exhibit 1067

The web site of our project is http://www.inf.tu-dresden.de/˜hf2/anon/.

Anonymity and unobservability are not new security goals. The following systems that provide anonymity
services are known both in literature as well as in the Internet: (selection)

� Anonymizer [1],

� Crowds [2],

� Onion Routing [3],

� Freedom [4].

The attacker models for these systems are different, i.e., these systems provide different levels of anonymity.
A comparison of these systems is given in [5].

This paper is organized as follows. In section 2 we give an overview of the architecture of our system. Section
3 deals with several attacks and their prevention. In section 4, we explain additional design issues of our
practical system and their implementation.

2 Components and Functionality

Basically, we use

� a modified Mix concept with

� an adaptive chop-and-slice algorithm (see below),

� sending of dummy messages whenever an active client has nothing to send,

� a ticket-based authentication system that makes flooding attacks impossible or very expensive and

� a feedback system that gives the user information on his current level of protection.

The MIX concept [6] as well as the adaptive chop-and-slice algorithm will be described in this section. The
ticket-based authentication procedure is explained in section 3.1.3 and the feedback mechanism in section
3.1.4.

The complete system consists of three logical parts: the JAP (Java Anon Proxy) on the client-side, the MIXes
and the cache-proxy on the server-side. These parts are concatenated into a chain, building the anonymous
tunnel. All network traffic to be anonymized is sent through this tunnel. In principle, a single user remains
aonymous since the tunnel has many entrances (users), but only one exit. Every user can possibly cause the
traffic observed at the tunnel-exit.

102

ATTACHMENT E

Microsoft Exhibit 1067

Browser

Cascade of MIXes:
– real-time deployable MIXes
– different operators
– different locations
– cascade: fixed sequence of servers
– secure against traffic analysis
– for better performance: more than one cascade

CA

Web
Server

Certification Authority:
– independent of Web Mixes System
– issues certificates of public keys

Information Service:
– traffic situation
– anonymity level
– warnings

Java Anon Proxy:
– client software
– platform independent
– local proxy
– constant dummy traffic
– adaptive time-slices
– tickets against flooding

unobservable data flow

redundant Info Service requests

Info
Service

Client 1

.

.

..
.
.

Browser

Client n

Anonymity group:
Each client is unobservable in
the group of n clients

JAP Cache
Proxy

Server

Server

JAP

MIXMIX

Info
Server

MIX

Info
Server

Secure reliable update
and replication of Info
Servers

Figure 1: Architecture of our service

JAP. JAP is connected to the first MIX via Internet. Ideally, the MIXes should be connected via separate
high-speed connections due to performance reasons. However, this would be very complex and expensive,
hence our MIXes use only the Internet.

The JAP is a program which is installed locally on each user’s computer. All network traffic to be anonymized
goes through this software. The JAP transforms the data so that it can be anonymized by the MIXes.

Following functions are provided by JAP:

� Registration of the user to the MIXes,

� Periodical set-up of time-slice-channels (generating and sending of asymmetrically encrypted channel-
building messages),

� Sending and receiving data via the channels. Dummy messages (for instance, random bits or encrypted
zero bits) are generated if there is nothing to send.

103

ATTACHMENT E

Microsoft Exhibit 1067

� Listening for requests coming from the browser or other programs of the client that like to communi-
cate in an anonymous way,

� Filtering of content that would be dangerous for the anonymity, e.g., cookies and active contents like
JavaScript, ActiveX and other embedded objects,

� Transforming data into the MIX-format and sending through an anonymous channel,

� Receiving data from the active MIX-channel and forwarding it to the originating application,

� Periodical utilization of an info-service, so that the user gets feedback about his current level of
anonymity.

MIXes. Our basic concepts are very similar to other systems based on the idea of MIXes [6]. A MIX
scrambles the order of data streams and changes their coding using cryptography to make traffic correlation
attacks difficult.

The MIXes are simple computers connected via the Internet. They form a logical chain, called “MIX-
cascade”. The first MIX receives data sent by the JAPs. A MIX makes some cryptographic transformations
(strips a layer of encryption, prevents replay attacks, reorders messages and creates a batch that consists of all
messages) and sends the data to the next MIX.

The last MIX sends the data to the cache-proxy.

By means of constant dummy traffic, all senders send messages at any time to create the same anonymity
group. If necessary, random data is generated which cannot be distinguished from genuine encrypted traffic.
Dummy traffic has to be sent between the endpoints of a communication relation. Dummy traffic between
MIXes only is not sufficient to prevent traffic analysis.

Our attacker may

� control up to n� 1 MIXes if n is the total number of MIXes in the MIX-cascade,

� control the cache-proxy and knows the receiver and content of all messages because all traffic goes
(mostly unencrypted) through the cache-proxy to the Internet,

� block every message, generate his own messages and modify all messages. These active attacks will be
recognized and consequently prevented by a ticket-based authentication system explained in section
3.1.3.

Cache-proxy. The cache-proxy sends the data to the Internet and receives the answers from the servers
(e.g., web servers). The answers will be sent back to the user via the MIXes (in reverse order). As JAP does,
the cache-proxy has to send dummy traffic as well.

Once a time-slice-channel is established, it can transport a certain number of bytes. Thereafter, the channel
is released automatically. If more data needs to be transmitted sequential time-slice connections must be
established. See section 3.1.2 for more information.

104

ATTACHMENT E

Microsoft Exhibit 1067

Another functionality of both JAP and cache-proxy affects the HTTP protocol. As far as security and perfor-
mance are concerned, it makes sense that the cache-proxy automatically loads every object embedded into a
HTML-page, e.g., links to embedded images. The cache-proxy can then send the whole page (including the
embedded objects) at the same time through the anonymous channel. This idea was proposed the first time
by the Crowds project [2].

In order to realize this idea, both cache-proxy and JAP must provide the following functions:

� Cache-proxy scans the data received from a web server for embedded objects.

� Cache-proxy automatically requests these objects and sends them through the anonymous channel to
the user’s JAP. In addition, cache-proxy should provide traditional caching functionality in order to
reduce the number of requests sent to the Internet.

� JAP replies to the requests for embedded objects by sending data already received from the cache-
proxy. The number of requests sent from JAP through the anonymous channel is thereby dramatically
reduced.

Info-service. Info-service provides data for maintenance and operation of the anonymous network. It
provides

� addresses and public keys of the MIXes,

� information on the traffic situation,

� the availability of MIXes,

� data about the achievable level of anonymity, i.e., the number of active users in the anonymous net-
work.

A screenshot of the graphical user-interface of the info-service is given in section 4.2.

3 Attacks and Solutions

For real-time communication, we additionally developed the following concepts both to make traffic analysis
harder and to increase the efficiency.

Traffic analysis means that an attacker who is able to control the cache-proxy, can link a particular request to
the same user. Every message was possibly sent by a different group of users, so that the attacker can use this
information to intersect the anonymity group.

Several attacks exist against the basic concept of MIXes. The attacker’s goal is to observe users or to stop the
service (Denial-of-Service attack, DoS-attack).

We describe concepts which prevent these attacks or make them very difficult and eventually identify the
attacker.

105

ATTACHMENT E

Microsoft Exhibit 1067

3.1 Solutions against observation

There are two sorts of attacks: passive and active attacks.

A passive attacker can only eavesdrop on communication links, but cannot modify any network traffic.

It is impossible to detect passive attacks. The only solution is to prevent them.

3.1.1 Dummy messages

Dummy messages are sent from the starting point (i.e., client) of a communication into the MIX network to
make traffic analysis harder.

Sending dummy messages guarantees that all users send the same amount of data during each time slice.
Since all traffic (including the dummies) is encrypted, no one, even an attacker, who observes all network
cables can know which user sends dummies and which one sends real information.

If the group of users does not change (especially when nobody leaves the group), a passive attacker cannot
split the group.

Thus it is necessary that each user operates at least one channel at all times. He has to:

� periodically send channel-building messages,

� send real data or dummy traffic on his channels,

� receive data sent by the cache-proxy.

Each MIX has to send dummy messages back to the user if the user does not receive real data. This ensures
that each user receives the same amount of data during each time slice. Since at least the trustworthy (i.e.,
“unattacked”) MIX will send these dummies, it successfully avoids these attacks, supposing that any other
MIX (or the cache proxy) does not send dummies.

3.1.2 Adaptive chop-and-slice algorithm

Large messages (and streaming data) are chopped into short pieces of a specific constant length, called “slice”.
Each “slices” is transmitted through an anonymous MIX channel. In addition, active users without an active
communication request send dummy messages. Thus nobody knows the starting time and duration of a
communication, because all active users start and end their communication at the same time. Otherwise, an
observer could determine where and when the anonymous channel starts and ends and could find out who
is communicating with whom. Depending on the traffic situation, we modify the throughput and duration
of the anonymous channel. The concept of chopping long communications into slices was introduced the
first time in [8].

We use a modified version with an adaptive duration or throughput. Once a time-slice-channel is estab-
lished, it can transport a certain number of bytes and is afterwards released automatically. If an anonymous
connection takes longer than one time-slice, it will be composed of a number of time-slices. In this case, JAP

106

ATTACHMENT E

Microsoft Exhibit 1067

{Get Server/Page.html}

response

Get Server/Page.html

{Response NIL, wait, Sl, Padding}

{Response Block[i], wait, Sl, Padding}

{Response Block[i], EOF, Sl, Padding}

{Get C-Proxy, Sl}

END

JAP
Cache
proxy

MIX MIX MIX

Create and store Sl

IF (no answer from
Server yet) AND (no
timeout)) THEN send

IF not EOF send

ELSE send

Server

IF not EOF send

ELSE send

Figure 2: Time Slice Protocol

provides ID numbers, which cache-proxy uses to refer to an anonymous connection (Slice number Sl, see
Fig. 2).

In comparison to sending each MIX message separately, a MIX channel is more efficient, because it’s not
necessary to decrypt all these messages using a slow asymmetric algorithm. Since a MIX must collect all
messages of the users before sending them to the next one, the delay time in every MIX is proportional to
the length of messages.

To establish a new slice, a user sends (together with all other users) a conventional MIX message through the
MIXes. This message contains a symmetric key for each MIX. This key will be used to decrypt or encrypt
data, which will be sent later through the channel. The time when the channel starts is defined by the state
of the whole system. Normally, it starts when the last slice ends. The slice ends when a committed number
of bytes have been transferred. In case of an error, especially if an attacker has manipulated some data, the
channel is supposed to stop immediately. Otherwise, the attacker can possibly observe which channel is
damaged and is thereby able to correlate sender and receiver.

107

ATTACHMENT E

Microsoft Exhibit 1067

3.1.3 Ticket-based authentication system

A very difficult problem occurs when an active attacker floods the anonymity service with messages in order
to uncover a certain message.

We believe that we have found a new concept to suppress flooding of messages both from outsiders (normal
users) and insiders (MIXes).

Firstly we limit either the available bandwidth or the number of concurrently used time slices for each user.

Secondly every user has to show that he is allowed to use the system at the respective time “slice” by providing
a ticket only valid for a certain “slice”. To protect the identity of the user, the ticket is a blinded signature
[7] issued by the anonymous communication system. More precisely, each MIX issues a limited number of
tickets for each channel and user.

Detailed description of procedure:

Step 1: The user established a connection to a MIX. This connection guarantees confidentiality and in-
tegrity and authenticates both MIX and user (i.e., it is possible to use SSL). The user owns a digital
certificate and authenticates himself to the MIX. The MIX checks that he gets this certificate for the
first time (so it is impossible to get more than one ticket by reconnecting to the MIX). The certificate
authority guarantees that each user gets one and only one certificate or it must be recognizable that
different certificates belong to the same user (i.e., by including the user’s identity).

Step 2: Now the user sends a blinded message to the MIX, which the MIX should sign. This message
consists of a key for a symmetric cipher and some bits forming a redundancy.

Step 3: The MIX signs the message using a special key (pair), which is only valid for a certain time slice. We
are using RSA and for each new key pair (for each time slice) we use the same modulus n, but we
change the public and private exponents.

Step 4: The user unblinds the message and verifies the signature. Now he owns a valid ticket, which is not
linkable to him.

Step 5: The user repeats steps 1-4 for each MIX.

Step 6: The user generates the message (channel-building message or data message). Assuming that there are
k MIXes. The user concatenates the ticket that he gets from MIX k with the data he wants to send.
Then he encrypts the message. He uses the public key of MIX k in order to encrypt the first part of
the message. For the rest of the message he uses the symmetric key included in the ticket. Next, he
concatenates the ticket issued by MIX k � 1 with the generated message for MIX k. He encrypts
the message in the same way using the public key of MIX k � 1 and so forth until he encrypts the
ticket issued by the first MIX.

Step 7: The user sends the message (generated in step 6) through the MIX-cascade.

108

ATTACHMENT E

Microsoft Exhibit 1067

If the MIX uses the same prime numbers p and q (and therefore the same modulus n) for the asymmetric en-
cryption/decryption of the message and for signing/checking the tickets, there will be no additional overhead
for verifying the tickets.

The ticket exactly fits in the first (asymmetric encrypted) part of the message (step 6). The MIX decrypts
the message and verifies the ticket in one step by decrypting the message using the product of it is secret
decryption key and it is public signature test key. Furthermore, the MIX extracts the symmetric key, which
will be used for the channel and verifies the ticket by checking the redundancy.

As we already explained, a ticket only consists of a symmetric key and a redundancy. For an acceptable level
of security, about 200 bits are needed to store a ticket. Since we use RSA, the size of the ticket would increase
at least up to 1024 bits.

Each ticket has unused space of about 800 bits. It is possible to store other data in this free space, but it must
be known when the ticket is requested. This is actually not a disadvantage, since the ticket is used for the
channel-building message. The free space of each ticket could be used to store a part of the message, which
is addressed to the next MIX. Thus the channel-building message would become smaller, because we only
need 200 bits per Mix instead of 1024 (except for the last MIX).

In order to use this optimization, we have to change the procedure as follows:

Steps 1-4 are modified so that the tickets will be requested sequentially starting at the last MIX. The user
generates the next ticket (step 2). He chooses the symmetric key, computes the redundancy and fills the free
space with the first bytes of the already generated message.

Since we know the whole remaining message at the time we generate a ticket, we can use a fingerprint of this
message as redundancy. The MIX can calculate the fingerprint in step 7 and thus verify the integrity of the
whole received message.

Step 1-4 (and perhaps step 6) can be done parallel, so that we can only send one large message (requesting
many tickets) instead of many short ones. This will increase the efficiency, especially the authentication (step
1) has to be done only ones.

If the duration of one time slice is long enough, the overhead for the ticket method won’t be very high, since
we’ll need only one ticket per MIX and channel. The most expensive factor is that the user must directly get
the tickets from each mix through an encrypted channel.

Using tickets is useful in order to add the dimension of a prepaid payment system for the anonymity system,
too.

However, this has not yet been implemented.

3.1.4 Measurement of anonymity level

If the attacker observes all network traffic, he is able to reduce the number of possible senders (i.e., the
number of members within the anonymity group) of a message. At the extreme, he may be able to identify
the user who sends the message. This is called “intersection attack”. The intersection attack can only be
prevented if the anonymity group remains constant.

If the group of active users had changed, the linked messages must have been sent by a user, who is member
of the intersection of all groups of users.

109

ATTACHMENT E

Microsoft Exhibit 1067

Dummy traffic makes intersection attacks more difficult, but does not completely prevent them. If all active
users permanently send dummy messages, each received message could possibly come from any user.

However, up to now, it is not clear how to prevent such an attack, especially if we consider a global observer.

The anonymity level depends on the number of active users within the system. We need a mechanism or a
heuristic that informs the user of his level of protection when he requests contents from the Internet.

In our design we inform each user of his current level of anonymity. The user can decide to recede his
communication relation if the anonymity level becomes less than a user-defined threshold, i.e., the number
of active users in the system. We believe that it is important for the user to be aware of his degree of privacy.
This makes the system more reliable and trustworthy for the user.

Each MIX has to publish periodically

1. the number of active users and

2. the logout time of each user who leaves the group.

The client (JAP) receives this information via the info-service and computes the time when the first linkable
message of the current session was sent. JAP computes how many users were active from this time on,
using the published logout times. These users represent the anonymity group, because only they are possible
senders of all messages.

When a new connection is established, JAP stores the time and number of active users. Every time the MIXes
publishes the logout times, JAP decreases the size of the anonymity group for each detected relevant logout.
A logout is relevant if the corresponding logout was earlier than the stored starting time. The user will be
alerted if the anonymity group becomes too small.

The information about the number of active users and logout times are digitally signed by each MIX. So it
is impossible for the attacker to manipulate them in order to fake a bigger anonymity group.

The client should always assume that the lowest published number of active users and the highest number of
logouts is true in order to prevent attacks from a MIX itself.

Since it is impossible to prevent the intersection attack, we can only give advice to users on how to mitigate
the effect of intersection attacks: The success of an attack can be further reduced by avoiding linkable events
such as Cookies, request of personal web pages or usage of pseudonyms in chat services more than once.

If an attacker also uses active attacks, he can increase his chance to identify a sender. In order to do so, he
tries to exclude particular users from the group of possible senders by

� blocking some messages or destroying a network cable,

� sending messages, which appear to be sent by other users, and

� manipulating messages.

However, it is possible to detect active attacks.

110

ATTACHMENT E

Microsoft Exhibit 1067

3.2 Protection against DoS-Attacks

In section 3.1.3 we described a procedure for detecting active attacks, but we did not discuss what to do if
we detected such one. If an attack is ignored or affected message is simply deleted, the attacker has partly
reached his goal.

One solution could be to delete all affected messages or to close all open channels. As a consequence, it would
be very easy to start a DoS-attack: The attacker only has to send one broken message in order to impair the
whole MIX-cascade. If the attacker is unable to break the anonymity, he may simply prevent the usage of the
MIX-cascade.

A better solution is to give each honest user or MIX the chance to prove that he/it has sent correct messages
only.

If an error occurs, each MIX will have to prove that it has worked correctly. An attacking MIX cannot do so
and is consequently identified. If all MIXes worked correctly, the user, who has sent the broken message is
the attacker.

In order to prove the correctness of each participant (including the MIXes) and to detect network errors (or
attacks), all output should be digitally signed.

Detailed description of procedure:

a. If a MIX cannot verify the signature, it requests the output of the previous MIX again. If it does not
get correct data after a certain period of time (timeout), it will signal a signature-error. In this case, it
is not clear who the attacker is. Possible candidates are:

– the MIX itself,

– the previous MIX,

– the network between these MIXes.

b. If MIX i detects an error, it publishes the whole decrypted message (including the error). Now every-
body is able to encrypt that message by using the public key of the MIX. If the result is identical with
the received message, the MIX has proved that it has decrypted the received message correctly, but
that message nevertheless contains an error. The error must have occurred at or caused by the previous
MIX.

c. All preceeding MIXes i� x (x = 1 : : : i� 1) are obliged to contribute to the following “uncovering-
procedure” until the error has been found:

1. MIX i� x has to provide the input-output correlation of the certain message and everyone can
verify that the MIX has decrypted the message correctly (see b.).

2. If the error is found, the uncovering-procedure has to stop immediately and the results have to
be published. That means that MIXes i� x+ 1 : : : i� 1 are attackers.

3. If the check was successful, the MIX has to publish the decrypted message (like MIX i).

111

ATTACHMENT E

Microsoft Exhibit 1067

d. If all MIXes prove that they have worked correctly, only the sender of the broken message can be the
attacker. He is the only one who was able to generate a message, which contains an error that would
be detected by MIX i.

Hence faulty MIXes can be excluded unless they have been proven that working correctly. A user, who
produces errors can also be excluded from the group of users.

A user can only carry through a DoS-attack for a long time if he periodically changes his identity. This is
possible if he works together with a corrupt certificate authority. After a period of time, no one will trust this
certificate authority any longer.

Nevertheless, there still remains a disadvantage: The trustworthy MIX has to uncover his decryption. If all
other MIXes are attackers and work together, they could determine the sender and receiver of a message.
However, the attacker “loses” one MIX each time the uncovering-procedure will be performed.

If at least two MIXes are trustworthy, the uncovering-procedure won’t break the anonymity:

1. A user has cheated: There is no need to protect this user, because the only reason for his message was
to confuse the system.

2. A MIX has cheated: The first trustworthy MIX of the cascade, which gets a faulty message, starts the
uncovering-procedure. This procedure continues until the attacking MIX is reached. If the second
trustworthy MIX is before the attacking MIX, the attacker will not be able to detect the sender of a
message, because the trustworthy MIX will not perform an invalid uncovering-procedure.

If the second trustworthy MIX is behind, the receiver of the message is not detectable. The attacker
may get the correct message through the uncovering-procedure, but the second trustworthy MIX
protects the correlation between sender an receiver.

The described uncovering-procedure is useful for the asymmetric encrypted MIX messages as well as to verify
the transmissions of the channels. On each channel, a redundancy for each mix (i.e., a message digest of the
data already sent) is sent.

Additionally, each MIX has to store all transmitted data and the channel-building-messages. If an error
occurs, it will be able to prove that it has decrypted the data of the channel correctly by using the symmetric
key included in the corresponding channel-building message.

One specific feature of the channel is that the data will reach the receiver in very small pieces. If the verifi-
cation of the channel is done later, the attack may have already been successful. This is possible, even if all
other MIXes are trustworthy. But in this case the attacker will lose at least one attacking MIX every time he
attacks a channel. This is not acceptable even for a very strong attacker, so that the anonymity of a normal
user will not be reduced, if the uncovering-procedure is performed.

4 Other Design Issues

4.1 General

The main focus of our development process is the usability of the whole system. This includes two aspects.
Firstly we try to make the handling of the Client (JAP) as easy as possible, so that many people are able to

112

ATTACHMENT E

Microsoft Exhibit 1067

use it. This includes the installation and configuration as well as the design of the user interface.

The second aspect of usability covers the performance, especially the throughput and the delay time of the
anonymous network access.

4.2 The Client (JAP)

The development is based on the following requirements:

� The client must be executable on different hardware/operating systems, including at least Windows
(95, 98, NT, 2000), Linux, Apple Macintosh.

� The client (JAP) must be easy to install by the user. It should be possible to do this via the Internet or
CD-ROM without special knowledge.

� The configuration must be as easy as possible. Even users without extensive knowledge in security and
cryptography should be able to configure the system.

� Users must be protected from thinking to be anonymous if they use a misconfigured client.

� A anonymous network access should be possible, even if the user is behind a firewall or proxy.

� The user interface must show and explain the user’s current level of anonymity.

� It must be easy to switch between anonymous or non-anonymous network access.

At the moment, JAVA is used as the programming language. That’s because of the JAVA-capability: “Write
once, run anywhere”. Later it should be possible to develop special versions for each operating system. These
versions will provide a better performance and lesser resources will be needed. A suitable integration into the
look & feel of the target operating system will increase the user-friendliness.

For the execution of the JAP it is necessary to have Java Runtime Environment Version 1.1.8 or equivalent,
the GUI-library “Swing” (Version 1.1.1), and a cryptographic library, presently “logi-crypt”, installed. These
libraries are completely written in JAVA so that we can easily distribute them with our client. All other files
needed for the JAP (the JAVA byte code, pictures, help files and so on) are included in one single archive
(.jar-file). This file must be copied to the target system and can directly be executed.

In order to make the configuration process easy, it should be possible to download the whole configuration
data via Internet. Of course, we have to develop a secure infrastructure for this.

Furthermore, many users gain access to the Internet via an ISP. The provider can force the surfer to use a
special web-proxy that does not allow direct Internet connections. In order to give such people the chance
to surf anonymously, it must be possible to connect to the first MIX via the web-proxy of the ISP. Therefore,
all data must be embedded into the HTTP-Protocol.

Fig. 3 shows the “Anonym-O-Meter”, our first attempt to give the user feedback about his current level of
protection. This is an area of our future research as well.

113

ATTACHMENT E

Microsoft Exhibit 1067

Figure 3: Screenshot

4.3 The MIX-Servers

A main point concerning the development of the MIXes is the performance, since this has a great influence
on the usability of the whole system. Nevertheless, we also focus on easy administration and maintenance.
In contrast to the JAP-user, administrators have a deeper knowledge in computers, and possibly in security.

Our MIXes are implemented using C++ as programming language. We do not use JAVA due to performance
reasons. C++ has become a standard and is available on many operating systems. Differences result from
using the system functions like network input/output or from programming the graphical user interface.
Since MIXes are console applications without any GUI, this is unproblematic. We only need a few system
calls. The main tasks of MIXes are cryptographic and algorithmic operations. In order to port the MIXes to
a new target operating system, only a few modules/functions must be adapted. Our goal is to support a few
important and capable operating systems (for instance Linux, Solaris, AIX and Windows NT).

The administration is realized via a special network interface implemented by the MIXes. Thus, it is possible
to separate the MIXes and the administration tools physically and logically. Presently, we are thinking about
a GUI for administration purposes written in JAVA.

114

ATTACHMENT E

Microsoft Exhibit 1067

Acknowledgements

We would like to thank Prashant Agarwal, Christoph Federrath, Mary Weiss and the anonymous referees for
their very useful hints and suggestions.

References

[1] The Anonymizer. http://www.anonymizer.com

[2] Michael K. Reiter, Aviel D. Rubin: Crowds: Anonymity for Web Transactions. ACM Transactions on
Information and System Security 1/1, November 1998, 66-92.

[3] Onion Routing. http://www.onion-routing.net

[4] The Freedom Network. http://www.freedom.net

[5] Oliver Berthold, Hannes Federrath, Marit Köhntopp: Project “Anonymity and Unobservability in the
Internet”. Workshop on Freedom and Privacy by Design / Conference on Freedom and Privacy 2000,
Toronto/Canada, April 4-7, 2000, 57-65.

[6] David Chaum: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Communica-
tion of the ACM 24/2 (1981) 84-88.

[7] David Chaum: Blind Signature System. Crypto ’83, Plenum Press, New York 1984, 153.

[8] Andreas Pfitzmann, Birgit Pfitzmann, Michael Waidner: ISDN-MIXes – Untraceable Communication
with Very Small Bandwidth Overhead. 7th IFIP International Con-ference on Information Security
(IFIP/Sec ’91), Elsevier, Amsterdam 1991, 245-258.

115

ATTACHMENT E

Microsoft Exhibit 1067

ATTACHMENT E

Microsoft Exhibit 1067

Privacy Incorporated Software Agent (PISA):
Proposal for building a privacy guardian for the electronic age

John J. Borking
Vice-President Dutch Data Protection Authority

jbo@registratiekamer.nl

1 Introduction

In the coming years, electronic commerce (E-commerce) and electronic government (E-government) will
become more and more part of citizens’ every day life. Many transactions will be performed by means
of computers and computer networks. However, several hurdles have to be taken before E-commerce and
E-government can develop its full potential.

An essential element of E-commerce and E-government is the collection of information on large computer
networks, where either the information itself is the product sought, or information about products and
services is being retrieved. Currently the retrieval of information on large computer networks, in particular
the Internet, is getting more and more complicated. The volume of the stored information is overwhelming,
and time and capacity needed for retrieval of information is growing strongly. Congestion in computer
networks is a serious problem.

Numerous services are currently available to ease these problems, ranging from simple push technologies such
as “PointCast” which brings information to your doorstep by “narrow-casting” or filtering information based
on an individual’s specified interests; to sophisticated systems that allow for the “personalization” of network
user sessions and the tracking of user activities. Collaborative filtering of a user’s “clickstream” or history of
Web-based activity, combined with neural networks, which look for detailed patterns in a user’s behavior, are
just beginning to emerge as powerful tools used by organizations of all kinds.

While the majority of these technologies are at the moment essentially being in design and utility, they are
indicative of the types of products that are being developed. The end result culminates in the creation and
development of Intelligent Software Agent Technologies (ISATs). Intelligent Software Agents are software
programs, at times coupled with dedicated hardware, which are designed to complete tasks on behalf of their
user without any direct input or supervision from the user.1 Agents for that purpose contain a profile of
their users. The data in this profile are the basis for the actions an agent performs: searching for information,
matching this information with the profile and performing transactions on behalf of its u ser.

1Ted Selker of IBM Almaden Research Center defined an intelligent software agent as a software thing that knows how to do
things that you could probably do yourself if you had the time.

117

ATTACHMENT E

Microsoft Exhibit 1067

2 Specific technology objectives

At first glance, intelligent agent technologies (ISAT) appear to hold out great promise for automating routine
duties and even conducting high level transactions. However, upon greater reflection, it becomes clear that
ISATs could present a significant threat to privacy relating to the wealth of personal information in their
possession and under their control. Accordingly, it is highly desirable that their development and use reflect
European privacy standards (i.e. European Union Directives 95/46/EC and 97/66/EC) in order to safeguard
the personal information of their users.

The functionality and utility of user agents, lies in what they can do for the user. Remember their whole
raison-d’être is to act on one’s behalf and function as one’s trusted personal servant, serving one’s needs and
managing one’s day-to-day activities.

Their powers are constrained by a number of factors: the degree of software sophistication, the number of
services with which they can interact, and, most importantly, the amount of personal information that they
possess about the user.

3 User Profiling

It is this issue of “user profiling” that is at the core of the privacy risk associated with the use of ISATs.
Typically, an ISAT user profile would contain a user’s name, contact numbers and e-mail addresses.

Beyond this very basic information, the profile could contain a great deal of additional information about
a user’s likes and dislikes, habits and personal preferences, frequently called telephone numbers, contact
information about friends and colleagues, and even a history of Web sites visited and a list of electronic
transactions performed.

Because agents could be requested to perform any number of tasks ranging from downloading the daily
newspaper to purchasing concert tickets for a favorite singer, the agent is required to know a great deal of
information about the user.

In order to function properly, ISATs must also have the following characteristics2:

� Mobility, or a connection to a communications network;

� Deliberative behavior, or an ability to take an action based on a set of criteria;

� The following three abilities – to act autonomously, co-operatively, and to learn.

Depending upon the levels of security associated with the user profile, this information may be saved in a
plain text file or encrypted. However, the security of the data residing within the agent is only one part of
the concerns regarding privacy. The arguably more significant concern is the dissemination of information
during transactions, and in the general conduct of the agent’s activities on behalf of the user.

As an agent collects, processes, learns, stores and distributes data about its user and the user’s activities, the
agent will possess a wide variety of information which should not be divulged unless specifically required for

2See J.J.Borking, B.M.A van Eck, P.Siepel -Intelligent Software Agents and Privacy- A&V 13- The Hague 1999, p.12 -14

118

ATTACHMENT E

Microsoft Exhibit 1067

a transaction. In the course of its activities, an agent could be required, or be forced to divulge information
about the user that he or she may not wish to be shared. The most important issue here is one of openness
and transparency. As long as it is clear to the user exactly what information is being requested, what purpose
it is needed for, and how it will be used (and stored), the user will be in a position to freely make decisions
based on informed consent. Of even greater concern is the situation where the ISAT may not be owned
directly by the user but is made available (rented, leased) to the user by an organization in order to assist in
accessing one or more services3.

4 Privacy Threats of ISATs

Summarizing, there are two main types of privacy threats that are posed by the use of ISATs:

1. Threats caused by agents acting on behalf of a user (through loss of control over the activities that are
executed to get the right results, through the unwanted disclosure of the user’s personal information
and when an agents runs into a more powerful or an agent in disguise),

And;

2. Threats caused by foreign agents that act on behalf of others (via traffic flow monitoring, data mining
and even covert attempts to obtain personal information directly from the user’s agent or by entering
databases and collecting personal data)4. Resuming, the user is required to place a certain degree of
trust in the agent – that it will perform its functions correctly as requested. However, this trust could
well come with a very high price tag, one that the user may have no knowledge or awareness of – the
price to his or her privacy. Failing to ensure such trust may prove to be a mayor hindrance for the
development of electronic transactions and commerce.

Most Member States in the European Union have by now implemented the European Directives 95/46/EC
and 97/66/EC. The first mentioned Directive provides a general legal framework for the protection of per-
sonal data. The second one contains specific privacy requirement for telecommunication. The current
challenge is to implement the EU based national legislation in such a way that effective consumer and citizen
privacy protection is the result.

5 Privacy-Enhancing Technologies (PET)

Conventional information systems generally record a large amount of information. This information is often
easily linked to an individual. Sometimes these information systems contain information that is privacy-
sensitive to some individuals. To prevent information systems from recording too much information the
information systems need to be adjusted.

There are a number of options to prevent the recording of data that can be easily linked to individuals. The
first is not to generate or record data at all. The second option is not to record data that is unique to an

3See J.J.Borking, op.cit. p. 27
4See J.J. Borking, op.cit. p.28 - 31

119

ATTACHMENT E

Microsoft Exhibit 1067

individual (identifying data). The absence of such data makes it almost impossible to link existing data to a
private individual. These two options can be combined into a third one. With this third option, only strictly
necessary identifying data will be recorded, together with the non-identifying data. In PISA we will study
how this Privacy Enhancing Technology (PET) can be implemented in software agents.

The conventional information system contains the following processes: authorization, identification and
authentication access control, auditing and accounting. In the conventional information system, the user’s
identity is often needed to perform these processes. The identity is used within the authorization process, for
instance, to identify and record the user’s privileges and duties. The user’s identity is thus introduced into
the information system. Because in a conventional information system all processes are related, the identity
travels through the information system.

The main question is: is identity necessary for each of the processes of the conventional information system?
For authentication, in most cases, it is not necessary to know the user’s identity in order to grant privileges.
However, there are some situations in which the user must reveal his identity to allow verification of certain
required characteristics. For identification and authentication, access control and auditing the identity is not
necessary. For accounting, the identity could be needed in some cases. It is possible that a user needs to be
called to account for the use of certain services, e.g. when the user misuses or improperly uses the information
system.

6 Identity Protector (IP)

The introduction of an Identity Protector (IP)5, as a part of the conventional information system, will
structure the information system in order to protect the privacy of the user. The IP can be seen as a part of
the system that controls the exchange of the user’s identity within the information system.

The Identity Protector offers the following functions:

1. Reports and controls instances when identity is revealed;

2. Generates pseudo-identities;

3. Translates pseudo-identities into identities and vice versa;

4. Converts pseudo-identities into other pseudo-identities;

5. Combats misuse.

An important functionality of the IP is conversion of a user’s identity into a pseudo-identity. The pseudo-
identity is an alternate (digital) identity that the user may adopt when consulting an information system (see
Figure 1).

The user must be able to trust the way his personal data is handled in the domain where his identity is known.
The IP (as system element), can be placed anywhere in the system where personal data is exchanged. This

5cf. R.Hes and J.J.Borking editors, Privacy Enhancing Technologies: The path to anonymity. revised edition, A&V 10, The
Hague 1998

120

ATTACHMENT E

Microsoft Exhibit 1067

OPERATIONAL
PRIMITIVES

Agent

perception action

BELIEFS

SITUATIONS

GOALS

OPTIONS

INTENTIONS

(communication)

Environment

Privacy-Enhancing Technologies
Integrity-
mechanism

PET from
[PET]

PISA Model 1: PET wrapped around the agent

PISA (privacy incorporated software agent)

OPERATIONAL
PRIMITIVES

Agent

perception action

BELIEFS

SITUATIONS

GOALS

OPTIONS INTENTIONS

Environment

 Integrity check

Log & Audit
Log & Audit

 PET *

Access Control

Security services to support the PET and integrity check mechanisms
(e.g. a crypto-mechanism to perform digital signatures)
PET as in [PET] Cf.J.J.Borking et all.: Intelligent software agents and privacy p. 39 The Hague 1999 ISBN 9074087132

 Integrity
 check

 PISA model 2: PET integrated in the software agent

Figure 1: The identity protector separates the identity and pseudo domains

121

ATTACHMENT E

Microsoft Exhibit 1067

offers some solutions for privacy-compliant information systems. Techniques that can be used to implement
an IP are: digital signatures, blind digital signatures, digital pseudonyms, and trusted third parties. In PISA
the technological objective is to solve the problems of design and implementation of an IP in software agents
to be used on the electronic highway for privacy issues.

7 PET-Agent (PISA)

The challenge is to design an PET-agent that independently performs these tasks, while fully preserving
the privacy of the persons involved, or at least up to the level specified by the persons themselves. The
agent should for that purpose be able to distinguish what information should be exchanged in what circum-
stances to which party. The challenge here is to implement privacy laws, specifically the European Directive
95/46/EC (being the highest privacy standard at this moment in the world) and other rules into specifica-
tions for a product. Next the specifications have to be implemented by software programming. Also there
should be appropriate (cryptographic) protection mechanisms to ensure the security of the data and prevent
’leakage’ to third parties. PET-agents (PISA) will enable the user in its quality of consumer or citizen in
e-commerce and e-government transactions and communications to protect himself against loss of his infor-
mational privacy contrary to systems like P3P where an asymmetric situation exists to the benefit of the web
site owner. PISA empowers the consumer and citizen to decide at any time and in any circumstance when to
reveal his or her identity.

8 Specific Demonstration Objectives

Thus, if the use of agents could lead to so many potential privacy risks, one wonders if it could be possible
for anyone to use ISATs safely. I believe this still remains within the realm of possibility, and that the answer
lies in the use of so-called privacy-enhancing technologies (PET). The tracking and logging of a person’s use
of computer networks is a major source of potential privacy violation. Conventional information systems
perform the following transactions: authorization, identification and authentication access control, auditing
and accounting. At each phase, a user’s identification is connected with the transaction. However, by means
of a system element (filter) called the “Identity Protector” (IP) the design of a system will go a long way to
protecting privacy. The introduction of an IP into an information system can improve the protection of the
user’s information by structuring the system in such a way as to remove all unnecessary linkages to the user’s
personally identifying information.

The Identity Protector filter can be placed either between the user and the agent; this prevents the ISAT from
collecting any personal data about the user without the knowledge and prior consent of the user. Conversely,
the IP can be located between the agent and the external environment, preventing the ISAT from divulging
any personal information unless specifically required to do so in order to perform a particular task or conduct
a specific transaction. Additional technical means may also be integrated into the ISAT in order to bring
even more transparency to the user in the operation of the agent, thus ensuring the user’s knowledge, and if
necessary, informed consent.

An international team consisting of the Dutch Physics and Electronics Laboratories (TNO), The Dutch
Technical University of Delft, Sientient, a Dutch company designing data mining systems, Italsoft from

122

ATTACHMENT E

Microsoft Exhibit 1067

Roma (Italy), CIME-Labs an d Toutela from Paris, the Canadian National Research Council and the Regis-
tratiekamer (Dutch Data Protection Authority) will build a demonstrable PISA not later than 2003.

The main objectives of the demonstrator are to show the security of the privacy of the user in the types of
processes that could be employed:

� Clearly detailed audit logging and activity tracking of agent transactions so that the user can monitor
and review the behavior of the agent;

� The use of programs to render the user and/or the agent anonymous, or alternatively, the use of a
“pseudo-identity” unless identification is specifically required for the performance of a transaction;

� The use of identification and authentication mechanisms such as digital signatures and digital certifi-
cates to prevent the “spoofing” of a user or their agent by a malicious third party intent on committing
fraud or agent theft;

� The use of data encryption technology to prevent unauthorized “sniffing” or accessing of agent trans-
action details;

� The use of trusted sources: the agent can be instructed to only visit sites that have been indepen-
dently verified (through a variety of means such as trusted seals, audits, etc.) as having proper privacy
provisions in place;

� Placing limitations on an agent’s autonomy so they only perform a certain range of activities – limited
activities will be permitted to be freely conducted without additional authorization; any requests for
unauthorized transactions will be flagged for the user to scrutinize.

The integration of these technologies into the core of the ISAT, combined with a process that places similar
technology between the agent and the external environment would result in a demonstration system PISA
that shows and enjoyed the maximum protection against threats to the user’s privacy enabling users protecting
themselves not being dependent systems like P3P or on other privacy seals. The international team hopes to
get a subsidy of the European Commission under EU Technology program.

9 Contribution to EU Technology programme and key action objectives

The PISA-project contributes to EU - IST-programme and key action line II4.1 and II4.2 objectives:

II4.1: “To develop and validate novel, scalable and interoperable technologies, mechanisms and architectures
for trust and security in distributed organizations, services and underlying infrastructures”.

With the focus on:

“Building technologies to empower users to consciously and effectively manage and negotiate their “personal
rights” (i.e. privacy, confidentiality, etc.). This includes technologies that enable anonymous or pseudony-
mous access to information society applications and services, for example by minimizing the generation of
personal data.”

123

ATTACHMENT E

Microsoft Exhibit 1067

II4.2: To scale-up, integrate, validate and demonstrate trust and confidence technologies and Architectures
in the context of advanced large-scale scenarios for business and everyday life. This work will largely be
carried out through trials, integrated test-beds and combined RTD and demonstrations.

Focus on:

“Generic solutions that emphasize large-scale interoperability and are capable of supporting broad array
of transactions (e.g. e-purses and e-money), applications and processes. Development of solutions that
reconcile new e-commerce models and processes with security Requirements, paying particular attention
to the needs of SMEs and consumers Validation should generally include assessing legal implications of
proposed solutions, especially in the context of solutions aimed at empowering users to consciously and
effectively manage their personal “rights and assets”.

PISA contributes at building a model of a software agent within a network environment, to demonstrate that
it is possible to perform complicated actions on behalf of a person, without the personal data of that person
being compromised. In the design of the agent an effective selection of the presented privacy enhancing
technologies will be implemented. We label this product as a Privacy Incorporated Software Agent (PISA).

The PISA demonstration model is planned to be a novel piece of software that incorporates several advanced
technologies in one product:

� Agent technology, for intelligent search and matching;

� Data mining or comparable techniques to construct profiles and make predictions;

� Cryptography for the protection of personal data, as well as the confidentiality of transactions.

Additionally the project involves:

� Legal expertise to implement the European privacy legislation and the needed development of new
legal norms in this field;

� System design knowledge in order to turn legal boundary condition into technical specifications;

� Advanced software programming skills to implement the privacy boundary conditions.

In order to prove the capability of the PISA-model, we propose to test it in a model environment in two cases
in e-commerce that closely resembles a real-life situation.

Case 1: Matching supply and demand on the labor market

The demonstrator will be applied to a practical case, which is suitable to test several aspects of privacy
protection. Testing of the demonstrator will be done in a local network environment. The proposed test
object is the matching of supply and demand on the labor market. In the coming years it is expected that the
matching on the labor market will increasingly be performed through such (Internet based) intermediaries.
The agent on behalf of the consumer/citizen carries in this process the profile of a person, including sensitive

124

ATTACHMENT E

Microsoft Exhibit 1067

information about his or her history, (dis) abilities, skills, labor history etc. When matching this information
with the available functions, a match has to be made between the user profile and the demands of the party
requiring personnel. In this process personal data will be exchanged in an anonymous way. After the match
has been made successfully and so has been reported by the agent to its user, he or she may decide to reveal
his/her identity.

Case 2: Matching supply and demand for vehicle and real estate markets

The second demonstrator will be an extension of an existing Web portal, providing a range of intermediation
services oriented towards both individual consumers and business users, addressing areas like buying and sell-
ing of vehicles (cars, vans, boats, ...), buying, selling and renting of real estate, etc. Respecting and protecting
privacy of the users posting requests on this site is a key aspect of user acceptance of the intermediation ser-
vices proposed. Testing of the demonstrator will be done in a local network environment. The proposed test
object is the matching of supply and demand on the vehicle and real estate markets. In the coming years it
is expected that the matching on these markets will increasingly be performed through such (Internet based)
intermediaries. In the intermediation process, the agent matches requests and offerings posted by individuals,
which may encompass confidential information not to be disclosed to the outside world.

10 Innovation

E-commerce/E-government and other ICT developments introduce a fundamentally new modus of
consumer-transactions with new challenges to data protection. A growing awareness exists that, next to a
legal framework, effective privacy protection should be supported by technical and organizational measures.
This is particularly needed in view of the difficulty to attach global electronic transactions to a particular
jurisdiction. In order to increase the visibility of privacy compliance websites involved in E-commerce activ-
ities apply so-called “privacy seals” like P3P. These are mere visual statements of compliance, the credibility
of which is difficult to judge for consumers.

Rather than relying on legal protection and self-regulation only, the protection of consumers’ privacy is
probably more effective if transactions are performed by means of technologies that are privacy enhancing.
This group of technologies is commonly referred to as Privacy Enhancing Technologies (PET).

In the context of E-commerce on the consumers market, a major current initiative to increase privacy compli-
ance is the so-called P3P, under development by the W3C consortium. Major players in the software industry
back the W3C consortium. P3P provides for a standardized language and interface for both consumer and
website to provide their personal data and privacy preferences. Transactions can be accomplished according
to the specified level of openness given by consumers on their personal data. The P3P, as being developed
now, does not foresee any “negotiation” between consumer and market party. It is basically a compliance
check between consumer preferences and website policy, therefore relatively static and it needs active user
input for each transaction. Given the limited capability of P3P it is also difficult to implement the privacy
principles underlying the European Directive into this technology. Although an essential first step, P3P is
not sufficient for effective and efficient privacy protection of consumers.

As will be demonstrated later E-commerce and E-government will only lift off if the search for matches
of supply and demand and the accompanying negotiation on privacy preferences can be performed in a

125

ATTACHMENT E

Microsoft Exhibit 1067

distributed way. This would both decrease the load on network capacity and on the time spent by a consumer.
Intelligent agents are the right types of software for this task. In contrast to current systems like P3P, agents
should be able to negotiate intelligently with the consumer, a website or with each other. Skills to negotiate
privacy and a common platform for communication will have to develop. This level of sophistication will
enable developers to implement more deeply the principles of privacy into the technology itself. Once
equipped with these skills a “PET-agent” will become an enabler of secure E-commerce and E-government
and will provide a structural feed back and control of the user over his personal or to him identifiable data in
cyber space preventing harmful privacy int rusions.

11 Dutch Data Protection Authority

The project results will be of importance to the Dutch Data Protection Authority and other privacy commis-
sioners in several respects.

Firstly the resulting model software will be an element towards an effective and user-friendly implementation
of the European Directive 95/46/EC. Parallel to the legal approach, the emergence of new forms of electronic
business and interactions urges for a data protection approach that ties in more closely with the dynamic
technological environment. On a time scale of a few years, the software agents to be built, will become an
important instrument for data protection, additional to the legal instruments used now. The results to be
achieved will have a feedback on the legislative process within the EU as well.

For the DDPA participating in the protect helps the office to develop practical ways to make its task effective
as well as a way to keep up its renowned high standard of expertise on the connection between ICT and
privacy. It is necessary to be within the arena of technology development and to translate the Directive
95/46/EC into design recommendations if the organization should retain its viability as authority, and to
serve the consumers within the EU, in matters of data protection.

A fruitful collaboration between the DDPA and the industrial partners, finally, will also help to keep up the
competitive advantage of the European software industry in designing tools that provide trust and security
as added values.

126

ATTACHMENT E

Microsoft Exhibit 1067

Identity Management Based On P3P

Oliver Berthold� Marit Köhntoppy

Abstract

Identity management is a powerful mechanism to enhance user-privacy. In this paper we will exam-
ine the idea of an identity management system built atop of an anonymous-communication network.
First, we will develop some basic approaches to realize identity management, and we will introduce the
Platform for Privacy Preferences Project (P3P) as a standard for exchanging personal data in the World
Wide Web. After discussing the feasibility of using P3P as a basis, we will outline some possibilities for
designing an identity management system using P3P. For this purpose, other building blocks, especially
considering the representation of different kinds of pseudonyms as the core of an identity management
system, are described. Finally, we will sketch possible future developments of identity managers.

1 Introduction

Several projects deal with anonymity in the Internet. Assuming the existence of a network allowing anony-
mous communication in the lower OSI layers, a mechanism for managing, disclosing, verifying, and negotiat-
ing personal data on higher layers is required to give users the choice between real anonymity, pseudonymity,
optional self-identification, authentication, and mandatory identification where necessary [6]. Powerful ser-
vices for identity management should be designed to enable the user to choose the degree of anonymity and
the security level of an authentication appropriate to a given context. Additionally, she should be able to ne-
gotiate her preferences with the ones of other involved parties. The aim of our project is to realize an identity
management system and exert influence on both technical and legal standardization processes concerning
this topic.

1.1 The Idea of Identity Management

Identity management is something we do in normal conversation everyday when we decide on what to tell
one another about ourselves. As a part of this process, each person considers the situational context and the
role she is currently acting in as well as the respective relationship to the communication partners. Therefore,
it makes a difference whether a person is at home, in the office, with her family, doing sports in her club, going
shopping etc. Sometimes this goes as far as a person being known by different names in different contexts,

�Dresden University of Technology, Germany, Oliver.Berthold@gmx.de
yIndependent Center for Privacy Protection Schleswig-Holstein, Germany; Unabhängiges Landeszentrum für Datenschutz

Schleswig-Holstein, Düsternbrooker Weg 82, D-24105 Kiel, Germany; http://www.datenschutzzentrum.de; marit@koehntopp.de

127

ATTACHMENT E

Microsoft Exhibit 1067

e.g. by using specific names, nicknames or pseudonyms suiting the occasion. This common social behavior
is the inspiration for an identity management in a digital world, where all disclosed data can potentially
be linked and aggregated to informative user profiles. By managing her identity, roles and personal data, a
user may decide whom to give which data to, when to act anonymously (like when real-life shopping in a
city), when to use a pseudonym, when to authenticate herself etc. Ideally, the different pseudonyms which
represent her identity or roles can be linked only if the holder so desires.

An identity management system empowers the users to maintain their privacy and control their digital iden-
tity. It contains considerable advantages for providers as well. Surveys1 show that users currently do not trust
the Internet and e-commerce mainly because of security and privacy risks. Secondly, most users fill in false
personal data in web forms (like “Mickey Mouse”) when they see no reason to give authentic data. Identity
management and other measures for empowering the users, as well as building in technical privacy baselines,
could support e-commerce: Users with no fear of risking their privacy are more willing to use the Internet
and its services. The providers not only would get more customers, the quality of the personal data a user
explicitly discloses will also increase.

Identity management is useful for realizing an “e-government”, too. Even for applications which require
authenticity, like user participation processes or voting, a person’s real name is not needed in most cases;
the use of certified pseudonyms would be sufficient. Thus, registration offices would issue pseudonymous
certificates for some cryptographic keys to be used in specific e-government applications. Attributes like
the graduation, the profession, a specific membership or the holding of certain licenses could be certified.
Different properties of pseudonyms and certificates have to be supported, concerning for instance the expira-
tion, the non-repudiation, and the possibilities for checking, exposing, revoking, or passing them on to other
users.

For an identity management system in relation with commercial applications which cannot be realized totally
anonymously, providers would issue certificates for customers and their personal data which is needed for the
purchase or shipment and for personalization of their offer. Again the user’s real name is not required, but
pseudonyms are sufficient, and with integrating third parties the provider can even do without personal
address data. Additionally, attributes like “Has bought products at ACME Inc. for $ 1000” can be certified,
which could be used as a voucher for discounts on future purchases and act as a financial incentive to
strengthen customer loyalty. To prove authenticity, the certificates could be checked online. Others would
have an expiration date. Some of the certificates would be transferable, others would not, depending on the
application.

1.2 Existing Approaches to Identity Management Systems

The basic ideas of identity management systems have already been described by David Chaum since 1985,
although the term itself seems to be newer. His fundamental text “Security without Identification: Card
Computers to Make Big Brother Obsolete” [4] comprises the vision of a personal “card computer” to handle
all payments and other transactions of the user while protecting her security and privacy. Moreover, it
sketches the building blocks for such a system. Unfortunately there has been no implementation of the
“big picture” given in the article, yet. But now the requirements of an underlying anonymous network and
appropriate infrastructures become more and more available.

1E.g. http://www.cdt.org/privacy/survey/findings/surveyframe.html and http://www.privacyexchange.org/iss/surveys/surveys.html.

128

ATTACHMENT E

Microsoft Exhibit 1067

Since 1995 the concept of an “Identity Protector” has been in discussion [15]. Most existing implementations
center around identity protectors in specific applications, but not directly controlled by the user, or at least
not in her own space. A good identity management system could be regarded as an universal, generic identity
protector on the user side.

The “Personal Reachability and Security Management” for callers and the subscribers being called was devel-
oped and prototypically implemented in the context of the Kolleg “Security in Communication Technology”
as an example of Multilateral Security [8]. It also contains a concept for user identification and the way users
handle identity functions. Users are able to communicate anonymously, or by using a pseudonym – hav-
ing the freedom of choice and using a negotiation protocol. Furthermore, users may present themselves in
different roles by means of different identity cards, being issued as pseudonyms. For the purposes of identi-
fication and recognition, each user participating in the communication employs digital identity cards which
are stored as data structures in her personal digital assistant (PDA). They may contain several data items in-
cluding a cryptographic key pair used for digital signatures and the encryption of communication contents.
Certificates issued from some certification authorities (CA) confirm the validity of the identity card and its
data.

Thinking of business models concerning personal data, Hagel and Singer proposed the concept of “infomedi-
aries” [9]: “In order for customers to strike the best bargain with vendors, they will need a trusted third party
– a kind of personal agent, information intermediary, or infomediary – to aggregate their information with
that of other consumers and to use the combined market power to negotiate with vendors on their behalf.”
Some of the existing infomediaries provide the possibility for managing different personae, e.g. digitalme2

and PrivaSeek3 [7]. However, from the privacy point of view, a great disadvantage of present-days infomedi-
aries is the lack of user control: The personal data are stored on the server which might log and analyze each
access to gain a detailed picture of the user’s behavior. Sometimes infomediaries even build psychograms with
sensitive personal data about the user’s psyche. In many cases the providers will not tell the users about their
profile because they regard the process of analyzing the user’s behavior as a trade secret.

1.3 Criteria for Identity Management Systems

The existing approaches towards identity management systems are not sufficient or might even be potentially
privacy-invasive in current implementations. Instead, a powerful identity management system, like the one
we aim to develop, should meet the following criteria [11]:

� Privacy protection baseline
as much privacy as possible through : : :

– anonymous underlying communication network,4

– trustworthy user device, e.g. trustworthy personal digital assistant,

– transparency, e.g. through open source and an informative user interface,
2http://www.digitalme.com/.
3http://www.privaseek.com/.
4Additionally, anonymous cash and anonymous delivery services would be useful for aspects of identity management in e-

commerce. By use of the cryptographic means needed for an identity management system anyway, at least anonymous “tokens” or
vouchers could be created which could serve as money. Moreover, they could help realizing anonymous delivery services as well.

129

ATTACHMENT E

Microsoft Exhibit 1067

– validation of the data security level by independent experts,

– data security concerning the communication with other parties,

– personally restricted access to the identity manager, e.g. through biometrics;

� empowering the user
by the following means:

– convenient user interface to manage different pseudonyms / roles / identity cards [8], [2],

– storage of personal data under user control,

– possibility of recording the communication in order to be able to reconstruct which party pos-
sesses which personal data,

– negotiation tool for the decision which data the user wants to disclose under what conditions,

– supporting user-controlled privacy facilities like grant of consent, data inspection, desire for
change, desire for removal, and revocation of consent,

– negotiation tool for other aspects like personal reachability or security configuration,

– possibility of support from privacy protection authorities, e.g. help with configuration;

� representation of pseudonyms / roles / identity cards with different properties
through cryptographic means (blind signatures, credentials, secret-key certificates) and integration of
public key infrastructures [13];

� based on standardized protocols and open data structures
with possible extensions so that the identity management system is not restricted to Internet or phone
communication or to only few specific applications;

� possibility for easy monitoring
through privacy protection authorities or other auditing facilities;

� compliance with legal framework.

2 The Platform for Privacy Preferences Project

Seeking existing standards for exchange of personal data suitable for putting on an identity management
system, the most popular and most universal approach is the Platform for Privacy Preferences Project (P3P)5,
which is being developed by the World Wide Web Consortium (W3C) [14].

5http://www.w3.org/P3P/.

130

ATTACHMENT E

Microsoft Exhibit 1067

2.1 General Functionality of P3P

P3P enables web sites to express their privacy practices in a standard format that can be retrieved automatically
and interpreted easily by user agents. P3P user agents will allow users to be informed of web site practices
(in both machine- and human-readable formats) and to automate decision-making based on these practices
when appropriate.

When a P3P-compliant client requests a resource, a service sends a link to a machine-readable privacy policy
in which the organization responsible for the service declares its identity and privacy practices. The privacy
policy enumerates the data elements that the service proposes to collect and explains how each will be used,
with whom data may be shared, and how long the data will be retained. Policies can be parsed automatically
by user agents – such as web browsers, browser plug-ins, or proxy servers – and compared with privacy
preferences set by the user. Depending on those preferences, a user agent may then simply display information
for the user, generate prompts or take other actions like accepting or rejecting requests. The matching process
takes place in a “safe zone”, in which a P3P-compliant server should only collect a minimum of information
about a client.

2.2 A Closer Look on the Technical Details of P3P 1.0

A basic P3P interaction might proceed as follows:

1. The agent requests a web page from a service.

2. The service responds by sending a reference to a P3P policy in the header of its HTTP response. A
policy consists of one or more statements about a service’s privacy practices.

3. The agent fetches the policy, evaluates it according to the user’s ruleset (which represents her prefer-
ences, expressed in APPEL – A P3P Preference Expression Language [1]), and determines what action
to take: accepting or blocking the required data transfer, simply informing the user about the privacy
policy in place, or prompting her for a decision).

A typical P3P policy expressed as XML may look as shown in table 1.

P3P defines a Base Data Schema which all P3P-compliant user agent implementations must take into ac-
count. It specifies a wide variety of commonly used data elements, but also provides basic data types, which
can be conveniently reused by other new schemas, e.g. “personname” or “contact” (postal, telecom, online).
The P3P Base Data Schema defines the “user” data set as a record comprising the user’s name, her birth date,
a user’s identity certificate, gender, employer, department, jobtitle, home info and business info. It is always
optional whether the user fills in the correct information or not, but the server may require a value in a data
field.

Additionally, P3P allows the definition of new data elements which have to be assigned to categories like
the predefined data elements. Categories are attributes of data elements that provide hints to users and user
agents as to the intended uses of the data. They build a group of a set of single data elements. A single
data element like “user.name.personname” can belong to multiple categories at the same time. Categories
allow users to express more generalized preferences and rules for the exchange of their data. Often, they

131

ATTACHMENT E

Microsoft Exhibit 1067

Elements of a P3P policy Typical example for a privacy policy of a shop
URL of P3P version and the
policy

<POLICY xmlns="http://www.w3.org/2000/P3Pv1"
discuri="http://www.catalog.example.com/PrivacyPracticeBrowsing.html">

Entity:
description of the legal entity
making the representation of
the privacy practices

<ENTITY>
<DATA-GROUP>
<DATA ref="#business-info.name">CatalogExample</DATA>
<DATA ref="#business-info.contact-info.postal.street.line1"> [: : :]

</DATA>
</DATA-GROUP>

</ENTITY>
Disputes:
dispute resolution procedures

<DISPUTES-GROUP>
<DISPUTES resolution-type="independent"

service="http://www.PrivacySeal.example.org" [: : :]
</DISPUTES>

</DISPUTES-GROUP>
Access:
the ability of the individual
to view identifiable
information

<ACCESS><contact_and_other/></ACCESS>

Statement:
data practices that are applied
to particular types of data;
with purpose, recipient,
retention policy, and data
groups consisting of some
standard data elements, and
with the “miscdata” element
which in this case stands for
some financial data as
indicated in the categories
field

<STATEMENT>
<PURPOSE><current/></PURPOSE>
<RECIPIENT><ours/></RECIPIENT>
<RETENTION><stated-purpose/></RETENTION>

<DATA-GROUP>
<DATA ref="#user.name"/>
<DATA ref="#user.home-info.postal"/>
<DATA ref="#user.home-info.telecom.phone" optional="yes"/>
<DATA ref="#user.home-info.online.email" optional="yes"/>
<DATA ref="#miscdata>
<CATEGORIES><financial/><CATEGORIES/>

</DATA>
</DATA-GROUP>

</STATEMENT>
[: : :]
</POLICY>

Table 1: P3P policy expressed as XML

132

ATTACHMENT E

Microsoft Exhibit 1067

will be included when defining a new element or when referring to data that the user is prompted to type
in (as opposed to data stored in the user data repository). Categories in P3P 1.0 address physical contact
information, online contact information, unique identifiers, purchase information, financial information,
computer information, navigation and click-stream data, interactive data, demographic and socioeconomic
data, content, state management mechanisms, political information, health information, and preference data.
To add new categories, the “<other/>”-tag shall be used in addition to a human-readable explanation.

Furthermore, P3P provides a flexible and powerful mechanism to extend its syntax and semantics using the
element “<EXTENSION>”. The meaning of the data within the “<EXTENSION>” element is defined by
the extension itself. Thus, it is not only possibly to extend the P3P vocabulary, but to lay down rules for the
interpretation of such any data attributes.

Because users may wish to use their user agent to help them convey distinct identities to different sites (e.g.
establishing single-session anonymous relationships with certain sites, long-term pseudonymous relationships
with other sites, and identified relationships with even other sites), the P3P specification provides the op-
tional use of “personae” in the user agent. A persona is defined as a unique identifier for a set of data element
values in the user’s data repository that the user wants to employ during the current browsing session [1]. Im-
plementations could offer to store multiple values for the same data element and allow users to conveniently
choose between certain sets of values when giving out information from the repository (e.g. a set of values to
be used in the office and a different set to be used on weekends). Thus, different kind of pseudonyms might
be used, including automatically-generated pseudonyms. For each persona, the behavior of the user agent
when interpreting a site’s P3P policy may be different. APPEL provides a mechanism for the user to specify
various rules or rulesets depending on the persona.

2.3 Outlook on the Future Functionality of P3P

In P3P 1.0 some significant sections from earlier drafts of the specification were removed in order to facilitate
rapid implementation and deployment of a P3P first step. Future releases will include e.g. the possibility
of a negotiation6 between the user and a web site. Moreover, P3P will support future digital certificate and
digital signature capabilities as they become available.

2.4 Compliance of P3P with the Criteria for an Identity Management System

Considering the possibility to use the P3P protocol as an underlying technical standard for the data exchange
which is necessary for an identity management system, the compliance with the criteria for a powerful identity
management system have to be checked. Table 2 shows which requirements are met by P3P in the current
version and in future versions.

Important is the fact, that no property of P3P contravenes the given criteria. In contrast, in the specifications
both on the server and the client side, the designers of P3P already make arrangements for the possibility
of realizing different personae in P3P-compliant user agents. Thus, P3P may help to realize an identity
management system, although it can only be one of several building blocks.

6Stefan Brands points out that such an automated negotiation mechanism as it is planned in P3P (and in fact has been proposed
in earlier versions of the specification, but was eliminated for getting a sleeker version 1.0) could be uses to implement the negotiation
process in the certificate showing protocol of his secret keys [3, page 27].

133

ATTACHMENT E

Microsoft Exhibit 1067

Criterion Addressed by P3P?
Privacy protection baseline P3P can only act as a module in a larger context, thus it does not realize the full

privacy protection itself, but may be integrated.
Nevertheless, some privacy principles which can be technically achieved or
supported, are already realized in P3P: transparency and anonymity to a certain
degree (through preferences or safe zone).
Besides, it is planned to integrate P3P in small devices under user control later
on.

Empowering the user In P3P 1.0 this is addressed by:
� informed consent by user choice (including which personal data,

recipients, purposes),
� data management with categories,
� storage of personal data under user control,
� possibility of recording the communication,
� possibility of loading configuration files from privacy protection

authorities.
Negotiation is not addressed in P3P 1.0, but will be realized in further versions.
Furthermore, user control possibilities for expressing privacy functions are not
addressed, but can be added on the base of P3P, e.g. via projects like DASIT7.

Representation of
pseudonyms / roles / identity
cards with different
properties

This is addressed by the persona concept (depending on the user agent) and
structured data types and fields for managing certificates provided by P3P.
It would be necessary to integrate cryptographic means, e.g. by P3P’s extension
mechanism concerning syntax and semantics.

Based on standardized
protocols and open data
structures

P3P 1.0 will realize this because it:
� will be an open standard protocol and coacts with other commonly used

standards (like HTTP, XML),
� defines a base data schema,
� allows a flexible expansion of the data schema,
� comprises an extension mechanism concerning syntax and semantics.

Possibility for easy
monitoring

P3P 1.0 provides the possibility of online-monitoring and comparison of the
privacy policies, but cannot guarantee that companies follow them.

Compliance with legal
framework

Legal aspects are not directly addressed, because this is mostly independent of
P3P; nevertheless the technical standard does not contradict the legal framework.

Table 2: Requirements met by P3P

134

ATTACHMENT E

Microsoft Exhibit 1067

3 Building Blocks for an Identity Management System

The criteria for an identity management system lead to a more detailed specification of some building blocks.
The need for some of them is quite obvious, e.g. a comfortable user interface, the underlying anonymous
network or a suitable legal baseline. The core component is the realization of different kinds of pseudonyms
by different cryptographic means. Related to providing some kinds of pseudonyms is the existence of an
appropriate infrastructure of CAs.

3.1 Properties of Pseudonyms

A pseudonym is an identifier for an identity. It could be an other name instead of the real name of a person
(as some authors, actors, or pop stars choose), but digital pseudonyms mostly rely on identification numbers
or digital signatures. If different occurrences of pseudonyms of one person can be linked, it is possible to
establish a specific reputation. If there is a trusted third party involved in a transaction, it may give the
interacting parties some guarantees like ensuring a fair deal by revealing the identity of a party or to cover
the claim in the case of abuse. For some applications the number of pseudonyms per person may be limited,
e.g. for an election. Additionally, there might be other limitations, e.g. an expiration date. Table 3 illustrates
typical examples for pseudonyms and their properties.

There are many further constellations for using different kinds of pseudonyms.8 In many cases, it is im-
portant for other parties who are involved in a transaction where pseudonyms are used, to figure out what
kinds of pseudonyms they are. This knowledge is both useful for the holder of the pseudonym and for
other partners to estimate under which circumstances which persons might link different occurrences of the
pseudonym, reveal the identity, revoke it or block it. Additionally, it is important to know the degree of
authenticity and to be aware of guarantees which may be related with the use of the pseudonym.

3.2 Realization of Some Pseudonym Properties

Digital pseudonyms may be realized as public key certificates with unique bit strings. A CA certifies that
a specific bit string has been presented from a person who has certain properties or fulfils certain demands.
This bit string is the public key of a digital signature system; only the holder of the pseudonym knows the
corresponding private key. If she signs a document with her private key, other parties may check it with
the public key of the pseudonym to be sure about its authenticity. The CAs which assign properties to
pseudonyms may achieve this by means of blind digital signatures.

Convertible credentials provide realizing pseudonymous authentication without one identifiable bit string.
There are various concepts: Chaum’s Credentials [5], Brands’ Secret Keys [3] and Lysyanskaya’s Pseudonym
Systems [12]. With all these kinds of credentials, it is possible that the user can obtain a credential from
one organization using one of her pseudonyms, but demonstrate possession of the credential to another
organization without revealing her first pseudonym. For this purpose, a credential can be converted into a
credential for the currently used pseudonym. Therefore the use of different credentials is unlinkable. The
approaches of Chaum, Brands and Lysyanskaya differ in some properties: Whereas Chaum’s credentials

8E.g. some special pseudonyms may be defined for groups, where the identity of a single member may only be revealed by
cooperation of a certain number of group members.

135

ATTACHMENT E

Microsoft Exhibit 1067

Example Pseudonym
Description

tr
an

sf
er

ab
le

?

li
nk

ab
le

?

id
en

ti
ty

re
ve

al
ab

le
by

C
A

?

li
m

it
ed

va
li

di
ty

?

Remarks

used by a person
for a wide variety
of business
relationships over
a long period of
time

person pseudonym:
substitute for name

� + Should not be transferable to
other persons.

customer uses
pseudonym for
e�commerce (i.e.
all dealers);
club membership

role pseudonym:
assigned to the role a
person is currently
playing

� + Should not be transferable to
other persons;
used for many transactions;
linkable;
for establishing a reputation
which may be used for other
partners.

customer uses a
different
pseudonym for
each dealer;
club membership

business-relationship
pseudonym:
kind of role
pseudonym for many
transactions

� + Should not be transferable to
other persons;
used for many transactions;
linkable;
for establishing a reputation
which may be used for one
partner.

customer uses a
different
pseudonym for
each transaction

transaction
pseudonym:
kind of role
pseudonym for only
one transaction

� � in the case of
abuse, where
required

Unlinkable (unless by means
of context data);
in the case of abuse, CA
should be able to reveal the
identity or to cover the claim.

voucher to spend
a specific amount
at a company

voucher + � no double-
spending;
time limit

Transferable;
not reusable;
unlinkable.

user provides
evidence to be of
age

attribute pseudonym
/ certificate

� � +, or only
valid in
combination
with other
pseudonym

+, or only
valid in
combination
with other
pseudonym

From CA;
not transferable;
unlinkable.

one single vote
per adult in an
election

personal transaction
pseudonym (one
unique pseudonym
per person and
application)

� � time limit,
or only vaid
for a specific
transaction

Each adult may use only one
pseudonym;
it is not transferable; not
reusable;
unlinkable.

(not) transferable
annual ticket for
public transport

pseudonym with time
limit

+/� + � time limit With date of expiration.

driver’s license revocable certificate � revocable or
blockable

Online-check or revocation
lists of CA.

Table 3: Typical examples for pseudonyms and their properties

136

ATTACHMENT E

Microsoft Exhibit 1067

do not prevent an unauthorized lending of credentials (i.e. the sharing of identity), the newer approaches
motivate the user not to give away her credentials by tying them tightly to her digital identity. Additionally
the involvement of CAs is much more reduced compared to Chaum’s system.

The following paragraphs illustrates how to achieve certain properties of pseudonyms.

Preventing the transfer of pseudonyms:

There are some possibilities to take care that pseudonyms will not be transferred to other persons:

� In the case of abuse, the user’s identity may be revealed (as stated below).

� Giving away one’s own digital identity could be an inevitable consequence of the transfer of a
pseudonym; thus, it would be a high risk for the holder of a pseudonym (like approach of pseudonym
systems and secret keys).

� All pseudonyms of a person may be stored in a tamper-resistant device (perhaps smartcards); thus there
would be a high risk of giving it to another person.

� Additionally, the use of biometrics for working with the pseudonym on a tamper-resistant device could
prevent using other persons’ pseudonyms.

If a tamper-resistant device was used, it would have one private key which would be certified by a CA. In
order to certify pseudonyms, a CA would receive the pseudonyms which are signed with the private key of the
device and/or of the user. After checking the signature, the CA would sign them and send back the certified
pseudonyms. To ensure the confidentiality, the certified pseudonyms would be additionally encrypted by the
public key of the device.

Preventing the possibility of linking pseudonyms:

To prevent linking pseudonyms, blind signatures may be used if a single use of a document is sufficient: To
certify specific attributes, the CA or the vendor signs a blinded document of the user. The user may present
the unblinded – and therefore unlinkable – document. A multiple use of the document could be recognized
because there is only one unblinded representation. With this method, the user may pass on her document
to other parties.

Other methods are based on the use of convertible credentials (see above). Chaining various CAs with dif-
ferent tasks is another solution for unlinkable pseudonyms, here illustrated with three CAs: After encrypting
the pseudonym first with the public key of CA1 and then the result with the public key of CA2, the user
sends the string ca2(ca1(pseudonym)) to CA3 along with the information about her real name. CA3 signs
the string and sends it to CA2, which checks the signature of CA3. If it is valid, CA2 decrypts the string,
signs it and sends it to CA1. There the new signature is checked again, before the CA decrypts the string.
This yields a pseudonym which can only be linked to the real name if all CAs collaborate.

137

ATTACHMENT E

Microsoft Exhibit 1067

Possibility to reveal the user’s identity:

It is much easier to propagate the use of pseudonyms in e-commerce if there is the guarantee that no party
may trick the other. For that reason, a trustee can be involved whose task is in the case of abuse to cover
the claim or to reveal the identity of the fraudulent party for disputing the assignment of damages. Naive
implementations consisting of an integration of a single third party, which is involved in each communication
process of the user, may be a threat to privacy itself. Therefore, solutions with less involvement should
be preferred, e.g. the concept of identity escrow [10]: A party B receives a guarantee that a third party
C can determine A’s identity without being involved in the day to day operation, but is only called in
when anonymity must be revoked. With concepts of chaining or secret sharing schemes, the cooperation of
multiple instances for revealing the user’s identity could be enforced.

Limited number of uses:

The limited number of uses may be important for vouchers and can be realized as follows: Each use of
a pseudonym is signed by the user, and the signature is stored in a database. If a multiple use has to be
prohibited, a double signature would be rejected so that the pseudonym cannot be used again (or not more
times than allowed). A (transferable) voucher could be represented by a private key. It would be issued by a
vendor who holds the corresponding public key. In order to redeem the voucher, the customer would sign a
document “The voucher XYZ was redeemed.” with the private key of the voucher. The vendor would check
the digital signature with the public key of the voucher to be sure that it is a voucher he issued. He stores
this signed document in a database to be able to prevent multiple uses.

Limited validity:

A limited validity, e.g. a time limit or the restriction to a specific application, has to be stated in the certificate
of the pseudonym. The issuer of the certificate, e.g. a CA or a vendor, would sign a document which includes
the pseudonym, its properties or specific type and the limitations of its validity. A time limit is reasonable for
many applications not only because of the erosion of the cryptographic security over time regarding specific
keylengths or algorithms. Furthermore, in many cases a permanent online check that a certificate has not
been revoked would not be necessary, and the duration for storing users’ pseudonyms in databases to prevent
multiple use could be reduced.

Possibility of revocation:

CAs can revoke certificates or block the access to them, e.g. the certificate representing a driver’s license of
a person. Several problems, which are already well-known in respect to digital signatures, arise: Does the
certificate has to be checked online each time, or are black- or whitelists sufficient? How can the integrity
and the availability of the entire public key infrastructure be ensured?

3.3 Infrastructure to Support Pseudonyms

The requirements for an infrastructure supporting pseudonyms differ depending on their desired properties.
Nevertheless, the public key infrastructure which is needed for the use of digital signatures could be a good

138

ATTACHMENT E

Microsoft Exhibit 1067

basis for tasks of identity management as well.

The tasks of a CA may comprise the generation and certification of pseudonyms, the generation of credentials
and the generation of (blinded) attribute certificates. There are differences in the requirements whether
online checks are necessary, and if so, under which conditions the identity may be revealed or certificates
may be revoked or blocked, and whether there is a limitation in assigning pseudonyms (e.g. limited number,
only after identification at a registration office). Further tasks of trustees may comprise the involvement in
transactions on behalf of one or multiple parties considering the payment, the delivery, or giving guarantees
for a fair deal.

3.4 Comfortable User Interface for Managing Pseudonyms

A well-designed human-machine interface is important for an identity manager to enable the user to “change
their appearance”. Depending on the context, the user may choose different roles or pseudonyms. The user
should be warned if other parties may link some information, which has been given explicitly or implicitly
(by context information), so that the desired degree of anonymity is not guaranteed anymore. Incorrect usage
or accidentally false decisions of the user should be prevented as far as possible.

To visualize the amount of personal data third parties may possess, databases for log files of the recorded
communication with a powerful and scalable inference mechanism could be provided. This may not be
possible in each configuration, especially for small and less powerful devices like PDAs with limited display
and storage or when the user changes her computer equipment in different environments. Thus, the user
interface and the behavior of the user agent may differ a lot depending on the context.

4 Integration into P3P

As shown before, P3P’s standardized data format and data exchange mechanism could be used for an identity
management system although it is not specialized on that purpose. Looking into the P3P specification, there
are different possibilities:

1. Persona concept: The existing data sets could be used in combination with the concept of different
personae which is supported by P3P. This means that the user agent would provide multiple data sets
and allow the user to select the appropriate values from a list if desired. The user’s APPEL preference
file could distinguish between different roles.

2. Definition of new data schemas: P3P-compliant web sites could introduce new data schemas, e.g.
for business relationship or role pseudonyms, but for transaction or attribute pseudonyms as well. User
agents could build their own data repositories of the defined elements. The semantics, which would
be associated with the data elements, could be realized in the application both on the server and client
side, but would be somewhat independent of P3P.

3. Extension: The P3P functionality, i.e. syntax and semantics, would be extended by its EXTENSION
mechanism. By use of extra XML namespaces, methods for digital signatures or credentials could be
provided. However, this would require the specification of many formats and methods.

139

ATTACHMENT E

Microsoft Exhibit 1067

4.1 The Persona Concept

The disadvantage of P3P’s current persona concept is the lack of authenticity because of the missing digital
signatures which will be provided not until the next version.9 Nevertheless, it is a starting point for developers
to experiment with user agents which provide different repositories for multiple personae, and for users to
get accustomed to it.

Here is an example for an APPEL rule which accepts the data transfer for the user’s persona “bank customer”:

<APPEL:RULE behavior="accept"

persona="bank customer"

description="My bank collects data only for itself and its agents">

<APPEL:REQUEST-GROUP>

<APPEL:REQUEST uri="http://www.my-bank.com/*"/>

</APPEL:REQUEST-GROUP>

<POLICY APPEL:connective="and">

<STATEMENT APPEL:connective="and">

<RECIPIENT APPEL:connective="or-exact">

<ours/>

</RECIPIENT>

</STATEMENT>

</POLICY>

</APPEL:RULE>

4.2 Definition of New Data Schemas

This approach uses P3P only as a shell taking advantage of its mechanism of defining new structured data sets.
It could be suitable for some specific applications. For a broader use, both syntax and semantics would have
to be standardized, at least between the communicating parties, but, for even more impact, also in official
standards. The problem of lacking authenticity can be solved within the applications, but the support of
digital signatures, as it is planned for the next version of P3P, would be reasonable.

The following example shows the realization of a voucher, leaving out the additional elements for encapsu-
lating the data by means of a digital signature10. The signature of the vendor is needed because in the process
of redeeming, he will check that it is in fact one of the vouchers he issued. Moreover, while redeeming the
voucher, the vendor would ask for the signature of the used pseudonym.

The new type called ACMEvoucher could be structured this way:

ACMEvoucher.amount (of primitive type number)

ACMEvoucher.expire (of basic type date)

ACMEvoucher.nymcert (of basic type certificate)

9The standardization process of W3C’s “XML-Signature Syntax and Processing” is in an advanced stage, see working draft
version from July 11, 2000, http://www.w3.org/TR/2000/WD-xmldsig-core-20000711/.

10The digital signature can be realized as proposed from the XML-Signature Working Group of the W3C,
http://www.w3.org/Signature/.

140

ATTACHMENT E

Microsoft Exhibit 1067

The public key of the pseudonym is represented in the “ACMEvoucher.nymcert” field. The certificate type
is a structured type to specify identity certificates. It consists of the field “key” of primitive type binary and
the field “format” of primitive type text, which may be a registered public key or authentication certificate
format. Both fields belong to the category “unique identifiers”.

For the definition and the introduction of two new data elements called book-voucher and
perfume-voucher, both of the above type ACMEvoucher, the following code could be placed at
http://www.ACME.com/voucher-schema:

<DATASCHEMA xmlns="http://www.w3.org/2000/P3Pv1">

<DATA-TYPE name="ACMEvoucher.amount"

typeref="http://www.w3.org/TR/P3P/base#number"

short-description="Amount" size="63">

<CATEGORIES><purchase/></CATEGORIES>

</DATA-TYPE>

<DATA-TYPE name="ACMEvoucher.expire"

typeref="http://www.w3.org/TR/P3P/base#date"

short-description="Expire Date"

size="63">

<CATEGORIES><purchase/></CATEGORIES>

</DATA-TYPE>

<DATA-TYPE name="ACMEvoucher.nymcert"

typeref="http://www.w3.org/TR/P3P/base#certificate"

short-description="Pseudonymous Certificate"

size="0">

<CATEGORIES><purchase/></CATEGORIES>

</DATA-TYPE>

<DATA-DEF name="book-voucher" typeref="#voucher"/>

<DATA-DEF name="perfume-voucher" typeref="#voucher"/>

</DATASCHEMA>

Continuing with the example, in order to reference a book voucher the service could send the following
references inside a P3P policy:

<DATA-GROUP base="http://www.ACME.com/voucher-schema">

<DATA ref="#book-voucher.amount"/>

<DATA ref="#book-voucher.date.ymd"/>

<DATA ref="#book-voucher.nymcert.key"/>

<DATA ref="#book-voucher.nymcert.format"/>

</DATA-GROUP>

Remember that a realization without any digital signature would not be very useful.

In general, three kinds of data elements are needed:

1. elements of certificates, pseudonyms, or credentials

141

ATTACHMENT E

Microsoft Exhibit 1067

2. elements for describing the semantics of the elements in 1. (e.g. the information which test keys
should be used for a blind digital signature)

3. elements for the digital signature over the entire data set (to be tested with keys from fields in 1. or 2.
which are signed by a CA).

4.3 The Extension Mechanism

This is P3P’s most powerful method to realize the needed functionality of an identity management system.
The same problem occurs as in the above cases: The work for authenticity and pseudonymity has to be done
outside P3P. There could be only defined or standardized interfaces which may support identity management
functionality to have the possibility of sharing the data between several applications. In addition, it would
be useful to standardize certain kinds of pseudonyms so that all parties are aware of the implications which
are associated with the use of those pseudonyms. Then, it may be visualized by the user agent that the other
party uses a specific pseudonym type. Moreover, the guarantees which tied to the use of the pseudonym to
ensure fair deals may be presented.

4.4 Additional Requirements

Because P3P uses structured data sets for addressing privacy aspects, P3P user agents may provide the pos-
sibility to log the transferred information into a database. This would comprise details about the web site’s
policy including the contact information, the amount of the personal data, the presented purposes for data
processing, and other possible recipients. Thus, the user is able to anticipate who will have dossiers about her
(or about which of her pseudonyms) and what information they comprise. This functionality is also useful
for e-commerce aspects regarding contracts in general, because then the negotiated agreement of all partners
could be recorded. Such log files should be stored in a way that a manipulation could not happen or at least
would be noticed.

5 Possibilities and Limitations of Identity Management Systems

Identity managers could become a common tool for each member of our information society. They could be
integrated as a module in all communication systems, e.g. computers with network access or mobile phones.
The use would not be restricted to the Internet world, but in form of a PDA it could manage all other
purposes where smartcards are used today or in the future. Thus, it may comprise many of the areas where
personal data are exchanged, not only in business-to-consumer application, but also in communicating with
other people or in e-government applications. The user could even record information about personal “live”
contacts to keep her database up to date. Unfortunately, not all data trails are transparent to the user or
her identity manager, e.g. biometric surveillance methods or the data flow through covert channels would
not be noticed. However, this growing complexity and intransparency of our world is a serious problem
independent from the use of identity managers which could at least help a bit to cope with that situation.

All the same, the power and possible influence of an identity manager would lead to an increasing dependency
of such systems. First, confidentiality and integrity are important properties which an identity manager has

142

ATTACHMENT E

Microsoft Exhibit 1067

to guarantee. This is not an easy task from the security point of view. Furthermore, privacy aspects are
difficult to visualize, because a potential risk could easily be under- or overestimated. The identity manager’s
trustworthiness can be increased by means of evaluation and certification of the whole system by independent
experts, both from governmental institutions and – like the open source approach – from any interested
person in the (Internet) community. Secondly, the availability is a relevant point as well. While the stored
information in the identity manager can be regularly archived in backup media, the functionality may be
not available in certain situations when one module in the entire process including the communication with
the CAs will not work or when the identity manager itself may get lost. Thirdly, an unauthorized use of the
identity manager of another person has to be prevented, because it may have the effect that the attacker takes
over the very valuable (digital) identity of the victim. Biometric authentication methods could be of help
here.

Furthermore, the risk of being forced to disclose personal data may increase, because the identity manager
mirrors a great part of the user’s life. Due to the desired authenticity, the quality of the data will be high.
Thus, an identity manager is an attractive aim for attackers – with all kinds of methods including social
engineering or the pressure to accept an adverse compromise. This deals not only with the personal data of
the holder herself, but extends additionally to third persons’ data, e.g. of the communication partners, which
may be stored in the identity manager for a long time. These aspects will have to be discussed in both the
social and the legal context.

6 Conclusions and Outlook

The idea of a powerful identity management seems to be a good way to achieve a high degree of self-
determined privacy for a user in our information society. The necessary building blocks exist already or are
being developed. For a widespread use, standardized data structures and exchange protocols are relevant.
P3P 1.0 as a first basic standard for addressing privacy aspects provides some appropriate mechanisms for
that goal, although much work is to be done. Digital signatures and negotiation procedures have to be
integrated in future P3P versions for this purpose. Furthermore, it is important to standardize different
kinds of pseudonyms with their realization by cryptographic means and an integration in an infrastructure
of CAs and trustees. P3P-compliant user agents with respect to this additional functionality have to be
developed and supported.

P3P essentially provides means for automated, but legally binding contract making between two parties,
where one agrees to provide certain information and the other agrees to process this information only within
the negotiated limits. To make P3P function, it is not only necessary to provide a technical framework
(which is already in place mostly), but also a legal framework to make these automated contracts legally
binding and internationally enforceable. This is by far the more complex, but also more important aspect of
this technology.

Identity management plays a role in a joint project of the Independent Center for Privacy Protection
Schleswig-Holstein and Dresden University of Technology. Both privacy points of views and ideas of busi-
ness models as well as legal aspects are being investigated. Integrating existing standards, ways for realizing
different kinds of pseudonymity and possibilities to exchange and negotiate personal data will be proposed.
To empower the users to maintain their privacy and control their digital identity in various environments, it
is necessary to develop user interfaces to manage personal data on PCs as well as small devices with limited

143

ATTACHMENT E

Microsoft Exhibit 1067

display and storage. Further work is needed to find appropriate ways for visualizing the amount of personal
data third parties may possess, e.g. by integrating databases for log files of the recorded communication with
a powerful and scalable inference mechanism.

There are many chances for identity management systems, but it is important that the user is aware of the
limitations of those tools as well. Otherwise, the use could be even more dangerous to the right of self-
determination, because the users might fully rely on the protection through the identity manager without
being cautious anymore.

References

[1] A P3P Preference Exchange Language (APPEL); Marc Langheinrich (Ed.); W3C Working Draft 20
April 2000; http://www.w3.org/TR/2000/WD-P3P-preferences-20000420.

[2] Oliver Berthold, Hannes Federrath: Identitätsmanagement; to be published in: Helmut Bäumler (Ed.):
E-Privacy; Proceedings Summer School of the Independent Center for Privacy Protection Schleswig-
Holstein, August 28, 2000, Kiel; Vieweg, Wiesbaden 2000.

[3] Stefan Brands: Rethinking Public Key Infrastructures and Digital Certificates – Building in Privacy;
Thesis; Brands Technologies; 1999; http://www.xs4all.nl/~brands/.

[4] David Chaum: Security Without Identification: Card Computers to Make Big Brother Obso-
lete; http://www.chaum.com/articles/Security_Wthout_Identification.htm. Original version: Security
Without Identification: Transaction Systems to Make Big Brother Obsolete; Communications of the
ACM, Vol. 28 No. 10, October 1985; 1030-1044.

[5] David Chaum: Showing Credentials without Identification: Transferring Signatures between Un-
conditionally Unlinkable Pseudonyms; in: J. Seberry/J. Pieprzyk (Eds.): Advances in Cryptology –
AUSCRYPT ’90, volume 453 of Lecture Notes in Computer Science, 8-11 January, 1990, Sydney,
Australia, Springer; 246-264.

[6] Roger Clarke: Identified, Anonymous and Pseudonymous Transactions: The Spectrum of Choice; in:
Simone Fischer-Hübner, Gerald Quirchmayr, Louise Yngström (Eds.): User Identification & Privacy
Protection: Applications in Public Administration & Electronic Commerce; Kista, Schweden; June
1999; IFIP WG 8.5 and WS 9.6; http://www.anu.edu.au/people/Roger.Clarke/DV/UIPP99.html.

[7] Lorrie Faith Cranor: Agents of Choice: Tools that Facilitate Notice and Choice about
Web Site Data Practices; Proceedings of the 21st International Conference on Privacy
and Personal Data Protection; September 13-15, 1999; Hong Kong SAR, China; 19-25;
http://www.research.att.com/~lorrie/pubs/hk.pdf.

[8] Herbert Damker, Ulrich Pordesch, Martin Reichenbach: Personal Reachability and Security Manage-
ment – Negotiation of Multilateral Security; in: Günter Müller, Kai Rannenberg (Eds.): Multilateral
Security in Communications – Technology, Infrastructure, Economy; Proceedings Multilateral Security
in Communications, July 16-17, 1999, Stuttgart; Addison-Wesley-Longman, Munich 1999; 95-111.

144

ATTACHMENT E

Microsoft Exhibit 1067

[9] John Hagel, Marc Singer: Net Worth: Shaping Markets When Customers Make the Rules; Harvard
Business School Press, U.S.; 1999.

[10] Joe Kilian, Erez Petrank: Identity Escrow; in: H. Krawczyk (Ed.): Advances in Cryptology –
CRYPTO ’98; Volume 1642 of Lecture Notes in Computer Science; Springer, Berlin 1998; 169-185;
http://www.cs.technion.ac.il/~erez/ident_crypto.ps.

[11] Marit Köhntopp: Generisches Identitätsmanagement im Endgerät; 2000;
http://www.koehntopp.de/marit/publikationen/idmanage/.

[12] Anna Lysyanskaya: Pseudonym Systems; Master’s Thesis at the Massachusetts Institute of Technology;
June 1999; http://theory.lcs.mit.edu/~cis/theses/anna-sm.ps.gz.

[13] Birgit Pfitzmann, Michael Waidner, Andreas Pfitzmann: Secure and Anonymous Electronic Com-
merce: Providing Legal Certainty in Open Digital Systems Without Compromising Anonymity;
IBM Research Report RZ 3232 (#93278) 05/22/00, IBM Research Division, Zurich, May 2000;
http://www.semper.org/sirene/publ/PWP_00anoEcommerce.ps.gz.

[14] The Platform for Privacy Preferences 1.0 (P3P1.0) Specification; Massimo Marchiori (Ed.); W3C
Working Draft 10 May 2000; http://www.w3.org/TR/2000/WD-P3P-20000510.

[15] Henk van Rossum, Huib Gardeniers, John Borking et al.: Privacy-Enhancing Technologies: The
Path to Anonymity, Volume I u. II; Achtergrondstudies en Verkenningen 5a/5b; Registratiekamer,
The Netherlands & Information and Privacy Commissioner/Ontario, Canada; August 1995;
http://www.ipc.on.ca/english/pubpres/sum_pap/papers/anon-e.htm.

145

ATTACHMENT E

Microsoft Exhibit 1067

ATTACHMENT E

Microsoft Exhibit 1067

On Pseudonymization of Audit Data for Intrusion Detection�

Joachim Biskup, Ulrich Flegel
University of Dortmund, D-44221 Dortmund, Germany

{biskup, flegel}@ls6.cs.uni-dortmund.de

Abstract

In multilaterally secure intrusion detection systems (IDS) anonymity and accountability are poten-
tially conflicting requirements. Since IDS rely on audit data to detect violations of security policy, we can
balance above requirements by pseudonymization of audit data, as a form of reversible anonymization.
We discuss previous work in this area and underlying trust models. Instead of relying on mechanisms
external to the system, or under the control of potential adversaries, in our proposal we technically bind
reidentification to a threshold, representing the legal purpose of accountability in the presence of policy
violations. Also, we contrast our notion of threshold-based identity recovery with previous approaches
and point out open problems.

1 Introduction

Stimulated by the increasing reliance on information and communication technology, particularly the broad-
ening offer of services on the Internet, potentially conflicting demands emerge, such as accountability and
anonymity. To establish accountability, suboptimal preventive security mechanisms and intrusion detection
facilities are meant to complement one another. Since intrusion detection is based on audit data, which
in part can be associated with real persons, it deals with personal data. Conventional approaches to intru-
sion detection prioritize the interests of IT-system owners, emphasizing accountability, event reconstruction,
deterrence, as well as problem and damage assessment.

Unobservability, anonymity and unlinkability as instruments derived from the concept of informational self-
determination, confine the collection and processing of personal data. Basic preconditions of informational
self-determination are either the data subject’s informed consent on or the legal or contractual necessity of
processing the personal data, accompanied by strict purpose binding for collecting, processing and commu-
nicating personal data.

Since data in processible form is perfectly reproducible, and since formally verifying, that a conventional IT
system as a whole preserves its users’ rights wrt. information self-determination, is impractical, it is insuffi-
cient to legally interdict misuse of personal data [1]. Consequently there is an increasing demand for the

�The work described here is currently partially funded by Deutsche Forschungsgemeinschaft under contract number Bi

311/10-1.

147

ATTACHMENT E

Microsoft Exhibit 1067

technical enforcement of privacy principles in multilaterally secure systems, taking into account all, and ac-
ceptably balancing contrary security requirements of all involved parties [2]. A multilaterally secure Intrusion
Detection System (IDS) that respects the users’ desire for privacy, may allow them to act pseudonymously,
hiding the association between the data and the real persons, as far as the detection goals can still be achieved.
To hold people responsible for violations of the security policy, a multilaterally secure IDS also (re)identifies
users upon good cause shown.

In this paper we survey and contrast approaches to employ pseudonyms in intrusion detection, and we pro-
pose an approach to pseudonyms with the ability for threshold-based identity recovery, that is, the circum-
stances accompanying the necessity of reidentification can be described as the transgression of a threshold.
By technically binding reidentification to a threshold, we can enforce a strong binding to the purpose of
establishing accountability for violations of policy.

The rest of this paper is organized as follows. First we selectively review pertinent European legislation that
inspires technical purpose binding (section 2), identify important aspects of pseudonymization (section 3)
and survey related approaches (section 4). We then present our approach, specifying the underlying trust
and threat model (Sect. 5), exemplifying the targeted audit environment (section 6), and proposing to apply
secret sharing to pseudonymization (Sect. 7). A more technically inclined elaboration can be found in [3].
We conclude pointing out open issues for investigation (Sect. 8).

2 European Legislation

According to consideration (2) in the EC directive [4], IT-systems must respect the right to privacy. Since it is
one objective of the European Community (EC) to ensure “economic and social progress by common action
to eliminate the barriers which divide Europe” (ibid., consideration (1)), within the EC a harmonization of
national laws has been initiated to achieve similar levels wrt. protection of personal data (ibid. considera-
tions (3),(5),(7)-(9)). Based on articles 25, 26 and 4, for third countries the directive, as well as resulting
national laws, are authoritative regarding to export and processing of personal data from and on EC territory,
respectively. The directive [4] amalgamates different traditions in dealing with personal data. We found
exemplary statements about fundamental protection principles in German law, specifically a census sentence
[5] of the German Constitutional Court, which postulates the informational self-determination (ibid. C II
1a). This sentence clarifies that there exists no insignificant data, since its sensitivity depends not merely on
its nature, but rather on its linkability and processibility, as well as the pursued objective (ibid. C II2). To
fix data sensitivity, the objectives are fixed beforehand, and consequently the nature and scope of data being
collected, as well as the nature of processing results have to be fixed. This fundamental privacy principle
is henceforth referred to as purpose binding. Further principles require that personal data being collected is
adequate, relevant and not excessive with respect to a legal purpose of processing, which is proportional wrt.
to the data sensitivity (ibid. C II 1b).

3 Assessing Pseudonymization

Consider multilaterally secure intrusion detection balancing accountability requirements of system owners
and anonymity demands of users. In this scenario, both parties are represented by system security officers

148

ATTACHMENT E

Microsoft Exhibit 1067

(SSO) and data protection officials (PPO), respectively. It is part of an individual’s right of informational
self-determination to separate different spheres of life on demand, for example by acting more or less anony-
mously. An entity is called anonymous if an attacker cannot link its identity with its role or activities within
an anonymity group. Though there are several methods to achieve anonymity, we focus on pseudonymization
here. By means of pseudonymization we unlink events from identities.

We consider some criteria determining the strength of anonymity. The strength should be proportionate
wrt. the risk posed by data collection and processing, as well as the effort required by an attacker. The threat
model, defines which potentially colluding parties may collect and correlate information. This model influ-
ences when and where data needs to be pseudonymized, since this should happen, before it enters domains
monitored by adversaries.

Another role plays an instance with the ability for reidentification. The participant(s) required for identity
recovery depend on the method of pseudonymization and on the pseudonym introducer. Generally, for the
purpose of accountability, identity recovery should be independent from the pseudonymous entities. On
the other hand, the IDS and SSOs are considered adversaries to the entities’ privacy, requiring the IDS for
identity recovery either to depend on the cooperation of a PPO, or to restrict analysis results exclusively to
detected security policy violations. Consequently domains controlled by an IDS and by SSOs should by
organizational and technical means be strictly separated from domains where personal data is processed in
the clear.

The strength of anonymity depends on the cardinality of the anonymity group. The losses of an attacker
should be higher than the gains when damage by reidentification is done to all members of the anonymity
group instead of just one entity. For scarce anonymity group populations it seems advisable to choose a new
pseudonym per transaction.

To what degree inferences can be extracted from audit data depends on the linkability of features being
pseudonymized. Feature selection for pseudonymization and the class of pseudonyms being employed sub-
stantially influence linkability. For a discussion about user identifying features and feature selection refer to
[6]. We need to trade the strength of anonymity off against the quality of analysis, which depends on the
linkability of certain features.

Assuming an entity has only one identity, it may wish to act under one or more pseudonyms. We consider
various classes of pseudonyms achieving increasing degrees of anonymity [1]:

Entity-based pseudonyms are substitutes for the identity of an entity being used for many transactions in
differing contexts and relations. Actions of the same entity are linkable via equality of pseudonyms.
Frequent use of the pseudonym implies the risk of information cumulation and eventually reidentifi-
cation. Entity-based pseudonyms can be extended to represent groups of entities, severely limiting the
capability to account events to individual entities.

public: Identity assignment is publicly available such as phone numbers, reidentification is feasible
for everyone.

non-public: Identity assignment is available to a few selected sites only, such as unpublished phone
numbers, which may reidentify the entity.

anonymous: Only the entity itself is acquainted with the assignment of its identity to the pseudonym.

149

ATTACHMENT E

Microsoft Exhibit 1067

Role-based pseudonyms are assigned to the roles an entity assumes in the context of different relations.
Pseudonyms for roles mitigate the risk of reidentification by means of information cumulation.

relation-based: A pseudonym is used for many transactions in the context of a given relation, such as
a club member number. Busy relations allow information cumulation and eventually reidentifi-
cation.

transaction-based: A pseudonym is used in the context of a relation for one transaction only, similar
to one-time passwords.

An IDS shouldn’t collect and permanently store data not strictly necessary for the purpose of analysis (data
avoidance). As soon as data becomes unnecessary for that purpose, it should be discarded (data reduction).
An example is found in the IDS ANIDA (see section 4.4), where the anomaly detection component reduces
the audit stream by discarding non-anomalous data, before it is handed to the misuse detection component.
This approach is based on the following two assumptions: Known attack behavior as defined in misuse
detection approaches is always detected as being an anomalous deviation from normal behavior as defined
by anomaly detection approaches. Not all detectable anomalies posing a security threat are covered by the
attack behavior encoded in misuse detection systems.

Finally, since false positives are affecting a users’ privacy due to undesirable reidentifications, detection ap-
proaches with low false positive rate are required [7], [8].

4 Related Approaches

First of all we roughly describe the relevant details in work related to pseudonymous intrusion detection.
Subsequently we review some more general approaches to anonymous service access.

4.1 IDA

The Intrusion Detection and Avoidance system (IDA) and its fundamental privacy concepts are described in
[9], [10] and [6]. IDA audits certain system calls concerned with user sessions and clearance levels as well
as object creation, deletion, access and respective permission modifications. Apart from protecting personal
data by conventional mechanisms, IDA developed the notion of pseudonymous audit analysis. The kernel
reference monitor introduces anonymous entity-based pseudonyms before audit data is passed to the audit
trail and the kernel integrated analysis component, including anomaly detection as well as misuse detection
analysis. The IDA concept incorporates the introduction of pseudonyms wherever subject identifiers are
used, particularly for access control. To prevent information cumulation with respect to a pseudonym,
relation-based pseudonyms based on combinations of subject and object identifiers are proposed. These
role-based pseudonyms are proposed for use in access control only, but not for audit analysis which in IDA
requires linkability across subjects. Analysis proceeds on pseudonymized audit data. The close coupling of
the analysis and decision components to the reference monitor allows enforcement of decisions without the
need for automated reidentification. Obviously, in the IDA approach pseudonymization is deeply entangled
with the innards of the operating system, limiting ease of application to todays off-the-shelf platforms.

150

ATTACHMENT E

Microsoft Exhibit 1067

The IDA concept proposes symmetric encryption of subject identifiers in audit data. To limit the risk of in-
formation cumulation and hence reidentification with respect to the entity-based pseudonyms, pseudonym
changes by rekeying after certain time intervals are proposed. Since IDA can react without requiring au-
tomatic reidentification, enforcement of purpose binding for identity recovery is handled external to the
system by sharing the symmetric key between SSO and PPO. Prerequisite to this proceeding is the symmet-
ric key used in monitored systems being safe against attackers, meaning SSOs must not be able to control
the responsible subsystems.

To prevent reidentification by correlation of information other than subject identifiers in audit trails or in
profiles, it is proposed to pseudonymize all features that uniquely identify subjects. In addition it is proposed
to pseudonymize features an attacker may have external knowledge about, such as actions and their time
stamps, parameters and required privileges.

4.2 AID

Privacy related aspects concerning the Adaptive Intrusion Detection system (AID) are described in [11], [12],
[6], [13] and [14]. In case of conflicting descriptions in those publications we base our summary on the
latest information available. The AID implementation comprises a central RTworks based misuse detection1

analysis station and distributed event monitoring agents. The Solaris based analysis station controls and
adaptively polls the agents for Solaris BSM and Windows NT audit data respectively. Available publications
do not describe the Windows NT matters.

AID uses Solaris BSM to audit system calls and selected applications concerned with user sessions, file cre-
ation, deletion, accesses and respective permission modifications as well as processes and administrative ac-
tivities, some being non-attributable to any user. The fundamental concepts of pseudonymous audit analysis
of IDA and AID are fairly similar, but the realizations differ in detail. AID introduces pseudonyms on moni-
tored hosts after audit records have been emitted by the Solaris user level auditd. Owing to the implementa-
tion of AID being based on an off-the-shelf platform, there is no holistic concept as in IDA, pseudonymizing
occurrences of identifying features outside the BSM audit stream. Monitoring agents pseudonymize audit
records, add supplementary information needed for misuse analysis and convert the records into a reduced
format. Analysis proceeds on pseudonymous records in the central station.

Reidentifications occur automatically if the expert system generates an alarm, or when alarm reports are
generated, and before audit trails are archived in encrypted form. All AID monitoring agents reporting to
the same central analysis station use the same key to symmetrically encrypt identifying features in order to
pseudonymize them. It follows, that if an adversary monitors the key on any AID host, the adversary is able
to reidentify any audit records he monitors. Since AID uses a confidential channel (SecureRPC) for audit
data transport, an adversary is limited to AID host access, the central station being the most desirable target.
Consequently SSOs must not be able to monitor either the pseudonymization keys, or the audit data, as
well as the activities of users on any AID host. In the AID Solaris/Unix environment an SSO must therefore
neither be able to control the AID machines, nor to monitor user activities, which are severe limitations,
considering that particularly SSOs would want to control and monitor the security of the tools and machines
they are responsible for. Reviewing archived audit records requires cooperation of an SSO and a PPO because

1Further work on a neural network based anomaly detection analysis component has been announced in several publications,
but results to date have not been published.

151

ATTACHMENT E

Microsoft Exhibit 1067

the archive encryption key is shared between SSOs and PPOs. AID logs automatic reidentifications to an
audit, but there are no provisions forcing SSOs to make this audit available PPOs.

AID symmetrically encrypts identifying features such as real and effective user and group IDs of subjects and
object owners, audit, session, terminal and process IDs as well as host names and home directories in paths
if they denote the user name. Additionally the AID concept proposes pseudonymization of host platform
types, names of originating hosts and home directory names in command execution parameters and the
respective environment. To limit the risk of reidentification by information cumulation with respect to the
non-public entity-based pseudonyms, as in IDA, pseudonym changes by rekeying after irregular time periods
are proposed.

4.3 Chalmers firewall audit pseudonymizer

Both [7] and [8] describe a yet to be named anomaly detection tool that uses statistical methods to analyze
pseudonymous audit data. The tool analyzes login event audit records produced by a proxy-based firewall.
Pseudonyms seem to be introduced in large batches2, of audit records before exporting the batches and
pseudonym mappings for anomaly analysis.

Some identifying features are pseudonymized: user names, server host names, client host names as well as free
text fields containing user and host names. Other potentially identifying features not being used as profile
discriminators, but statistically analyzed, such as activities and time stamps, were not pseudonymized. Audit
records are pseudonymized by replacing them bijectively with sequentially numbered place holders denoting
the respective feature type (eg. user0, user1, : : :). Host names and each domain name part are mapped
separately. This kind of entity-based non-public pseudonyms is memory inefficient, and after reidentifica-
tions the respective mappings are easily remembered by SSOs. IP addresses are mapped to an address in
the same address class, allowing to determine an IP addresse’s class from its pseudonym. The mapping of
pseudonyms to the substituted data is stored in a separate database. Analysis proceeds on pseudonymized
audit records. In [8] it is proposed to use group-based pseudonyms and thereby losing the ability to account
events to individual users.

There are no documented precautions taken protecting the confidentiality of the pseudonym mapping nei-
ther while in transit nor during analysis. Reidentification is not supported in an automatic way and seems to
be established manually by the SSO. The question remains, what technically keeps an SSO from reidentify-
ing all audit records independently from analysis results. Certainly the concept could be extended to avoid
such problems.

Both [7] and [8] propose and discuss several improvements. Based on [6], information cumulation regarding
pseudonyms could be limited by changing the mapping of pseudonyms. This would also limit the problems
generated by easily remembered pseudonyms. To restrict leakage of personal or business related information
it is proposed to insert dummy or chaff audit records blurring the genuine patterns and statistics of resource
usage. Similar to ANIDA’s GRPs (see Sect. 4.4) it is proposed to associate users with groups to support
the SSO’s intuitive manual anomaly detection capabilities. These associations are not to be mixed up with
aforementioned lossy group-based pseudonyms.

2The pseudonymizer though technically is prepared to pseudonymize audit data on the fly.

152

ATTACHMENT E

Microsoft Exhibit 1067

4.4 ANIDA

Privacy aspects concerning the Windows NT based Aachener Network Intrusion Detection Architecture
(ANIDA) are described in [15]. In contrast to the other reviewed systems ANIDA’s architecture is focused
towards analysis of network-based audit data from client-server applications and underlying protocol stacks.
The concept comprises components monitoring all traffic on the network and traffic exchanged with selected
networked services. ANIDA fundamentally requires cooperation with a generic distributed authentication
and access control mechanism. As a result, the monitored services need to support this mechanism. For the
purpose of concealing identifying information related to a connection, Kerberos was chosen and modified
concerning the tickets, initial authentication and some protocol steps. A stronger approach is concealing
even the fact of a connection taking place, realized by the integration of MIXes [16], [17] with Kerberos.

ANIDA uses a kind of transaction-based pseudonyms introduced by the authentication service after user
authentication or by one (ore more) trusted MIX(es). The pseudonyms are supplemented with group iden-
tifiers confirming group memberships for the purpose of access control. The anonymity group of a user
therefore comprises all members of those groups she itself is member of [15]. Kerberos tickets were modi-
fied to use these augmented pseudonyms, referred to in ANIDA parlance as group reference pseudonyms3

(GRP), instead of a client principal name. Furthermore the client’s host network address has been omitted
from tickets. GRPs are valid and can be used for several transactions until the bearing ticket expires. Thus,
GRPs can be classified somewhere in between relation-based and transaction-based pseudonyms. Choice of
appropriate timeouts allows balancing strength of anonymity against the overhead involved in making out
tickets.

Reidentification requires cooperation of the GRP introducer (the Kerberos authentication server or the MIX),
which must be independent of SSOs and could be administered by PPOs. As there are no monitoring
components internal to client hosts and the GRP introducer, SSOs should not be able to monitor activities
on client hosts and the GRP introducer.

The ANIDA approach implies group-based and thus coarse-grained access control and entity profiling for
anomaly detection. While group-based access control is widely in use for authorization of network service
accesses, it would be too limited for system internal authorizations such as file accesses. Group-based profiling
for anomaly detection offers several advantages, such as requiring cooperation of the group majority to
achieve unnoticed profile drift defining malicious behavior as acceptable. This concept emerged with NIDES
[18].

In order to support the principle of data reduction, the anomaly analysis component supplies the misuse
analysis component only with audit data known to be free of anomalies. In ANIDA’s case the misuse analysis
will not miss any anomalous data because the transaction-based anomaly detection technique used in ANIDA
claims to isolate all anomalies with respect to defined valid transactions. In this scenario misuse detection
based analysis should not be solely dependent on the linkability of the group identifiers. Otherwise it could
become confused and mistake different entities for a single one, possibly leading to false alarms.

3Again, this kind of transaction-based pseudonyms including group associations is not to be mixed up with lossy group-based
pseudonyms.

153

ATTACHMENT E

Microsoft Exhibit 1067

4.4.1 More General Approaches.

Some related work is described in [19], [20] and [21]. They propose modifications to authentication, based
on the observation, that traditional access control requires the collection of identifying data, which is required
for the resolution of extraordinary circumstances, before access is granted. Instead, authentication compo-
nents can collect information strictly necessary for the purpose of access control and require a guarantee, that
identifying data can be recovered with the help of an independent third party.

The approaches in [19] and [20] generate transaction-based pseudonyms during user authentication, com-
prising a zero-knowledge proof, that identity recovery is possible later on. [21] presents an approach based on
[22], basically interpreting electronic cash as certificates of pseudonyms, leading to entity-based pseudonyms,
but not transaction-based pseudonyms as in [19] and [20]. Entity-based pseudonyms provide linkability as
required for some intrusion detection methods, respectively, but linkable pseudonyms allow cumulation of
information related to the user of the pseudonym, which can eventually enable reidentification. After an
initial session login entity-based pseudonyms could be used in traditional access control scenarios. Since in
aforementioned approaches pseudonyms are introduced before resources are accessed, the identity of actors
is protected against the entire accessed system. In the case of transaction-based pseudonyms this comes at the
cost of major efforts required to modify the concerned access control systems traditionally used in off-the-
shelf operating systems. On the other hand we were mainly interested in pseudonymous intrusion detection.
If we can afford to place trust in a component to correctly introduce pseudonyms on behalf of the actors,
and if we can technically separate observability of identifying accesses from pseudonymous event processing,
we can easily integrate pseudonymous audit with major operating systems.

Different from related work, our approach allows for transaction-based pseudonyms that guarantee automatic
reidentification independently of a third party, if certain conditions bound to a specified purpose are met.

5 Trust and Threat Model of our Approach

For an IDS observing user activities within a host, seamless integration with an off-the-shelf operating system
is important, for it relies on event data, i.e. audit records, collected within the host. For Unix operating
systems this always implies potential integrity loss of event data in case an attacker achieves root privileges.
If we can afford to rely on event data under these conditions, we can also afford to rely on pseudonyms
introduced within the same machine, after user authentication was performed and users are identified in the
clear. Stronger approaches would require pseudonym introduction prior to or during user authentication at
the console, which comes at the expense of major modifications of the operating system (see Sect. 4.4.1).

Starting from here, we have to take into account conflicting security requirements of basically two parties.
Firstly, users are interested in anonymous use wrt. to IT system owners. Secondly, the IT system owners,
specifically their representatives responsible for the system security (SSO), when faced with policy violations,
are interested in establishing accountability. Neither party can be allowed to control the event generator
as well as the pseudonymizer. Otherwise the respective mutual security requirement were at risk. We thus
introduce a third party, the personal data protection official (PPO). The PPOs are trusted by the users to
protect their anonymity interests, and they are trusted by the SSOs to protect their accountability require-
ments. In accordance with their position, PPOs control both, event generators and pseudonymizers (see
Fig. 1). Users may verify both components for proper functionality, SSOs may do so during official user

154

ATTACHMENT E

Microsoft Exhibit 1067

��

accountability

Event
generator

Pseudonymizer

Event
analyser

Reidentifier

��

identifiable entities

��
��
��
��

pseudonymized

BiAA trusts B to protect A’s interest i

A BA controls B
BAA verifies B’s functionality

anonymityUser SSOPPO

Figure 1: Model of trust relationships in our approach

inactivity times. As outlined above, corruption of the event generator threatens accountability. Corruption
of the pseudonymizers additionally threatens anonymity.

The event generators, either by themselves or by appropriate extensions, forward sensitive audit data to re-
mote analyzers only if that data is required to detect harmful behavior of the involved entities. Pseudonymiz-
ers are implanted just behind the standard audit services, or their extensions, respectively. The pseudonymiz-
ers inspect audit data, and they substitute identifiers by carefully tailored pseudonyms. Exploiting Shamir’s
cryptographic approach to secret sharing, these pseudonyms are actually shares, which can be used for rei-
dentification later on, if justified by sufficient suspicion. Sufficient suspicion is defined by a threshold on
weighted occurrences of potentially harmful behavior, and accordingly, by a threshold on shares belonging
together. Exceeding such a threshold results in the ability to reveal the secret, i.e. to recover the identity
behind the pseudonyms. Thus the analyzers, holding the pseudonymized audit data including the shares,
can reidentify the data if and only if the purpose of accountability requests to do so.

Since SSOs are considered potential adversaries threatening the anonymity of users, they must be confined to
pseudonymous event data for user observation. Consequently, attacks on user anonymity are expected and
countered as soon as pseudonymized event data leaves the pseudonymizer (see Fig. 1).

6 Envisioned Audit Architecture

Most modern operating systems offer similar audit components, and in the majority of cases is the iden-
tity of acting subjects part of the event information being recorded. A comprehensive solution requires
pseudonymizing all event data observed by SSOs, but for our first prototype we chose to support the syslog
event format only. Other possible event generators to be considered include process accounting, network
packet event data, TCSEC C2 audit data [23], [24], such as produced by Sun’s BSM.

syslogd collects event data from user and kernel level sources, and it can additionally be fed remotely.
syslogd can distinguish event sources, henceforth referred to as facilities, and event severity levels. Via syslog

155

ATTACHMENT E

Microsoft Exhibit 1067

we can can collect host-based data from applications and the kernel. Using additional kernel modules we
can also collect event data derived from sources associated with the network. Out-of-band data derived from
other sources is covered by corresponding applications using syslog. Owing to its uniformity and availability
in all significant Unixes, syslog is widely utilized by the kernel and by user level applications for auditing.
Generally, merely serious user actions appear in syslog events, but many important network services audit via
syslog with diverse detail levels.

Pseudonymization can take place somewhere between the event generator and the border of the domain con-
trolled by attackers. Placing the pseudonymizer closer to the event generator reduces opportunities to observe
exposed plaintext identities, but scalability and ease of implementation suffer. We decided to pseudonymize
the output event stream of syslogd by having the daemon write into pipes connected to the pseudonymizer.
This way we can also pseudonymize event data normally written by applications to separate files.

6.1 Required Parsing

A pseudonymizer receives audit records from syslogd containing directly or indirectly identifying features
[6]. Since each feature may contribute with a specific priority to an attack scenario Ag , the pseudonymizer
shall be able to distinguish different event types and associate each feature type with an attack scenario and
the respective priority or weight. The PPO specifies a priori knowledge about the syntax of events and the
features to be pseudonymized. In cooperation with the SSO, the PPO models attack scenarios by specifying
associations between features and attack scenarios, as well as the weight of each feature’s contribution to its
associated attack scenario.

To locate and pseudonymize identifying features in syslog audit records, we have to parse them. We quote
some typical syslog records generated by applications on host pony:

Oct 20 20:48:29 pony identd[22509]: token TWpldDmO2sq65FfQ82zX == uid 1000 (deedee)
Dec 19 16:02:45 pony su: BAD SU deedee to root on /dev/ttyp1
Dec 19 16:03:27 pony su: BAD SU deedee to root on /dev/ttyp1
Dec 19 16:03:53 pony su: BAD SU deedee to root on /dev/ttyp1

Dec 19 16:04:11 pony su: BAD SU deedee to root on /dev/ttyp1
Dec 19 16:04:39 pony su: deedee to root on /dev/ttyp1
Dec 20 09:58:46 pony postfix/smtpd[22190]: connect from pony.puf[192.168.1.1]
Dec 20 09:58:48 pony postfix/smtpd[22190]: BFF41AD8D: client=pony.puf[192.168.1.1]
Dec 20 09:58:52 pony postfix/cleanup[29752]: BFF41AD8D: message-id=<385D1476.4FDB096B@manda.rk>
Dec 20 09:58:53 pony postfix/qmgr[1519]: BFF41AD8D: from=<dexter@secret.lab>, size=7910 (queue active)
Dec 20 09:58:53 pony postfix/smtpd[22190]: disconnect from pony.puf[192.168.1.1]
Dec 20 09:58:55 pony postfix/local[4864]: BFF41AD8D: to=<deedee@puf>, relay=local, delay=7, : : :

For brevity we will henceforth omit the time and date and host fields from audit records. Since the syntax of
the records is mainly determined by the originating facility, recognition of different event and feature types
is based on the evaluation of syntactical contexts, eg. by means of regular expressions for pattern matching as
defined in POSIX 1003.2 Sect. 2.8.

The facility (framed fields 1 and 8 below) of a record indicates an application or a kernel component, option-
ally followed by its process ID (frame 2).

identd 1[22509 2]: token 3 TWpldDmO2sq65FfQ82zX == uid 4 1000 5 (6 deedee 7)

su 8: BAD SU 9 deedee 10 to root 11 on 12 /dev/ttyp1 13

156

ATTACHMENT E

Microsoft Exhibit 1067

virtual root

facility

event type context

feature type context

event type
feature type

Figure 2: Representation of the parser knowledge as a tree

An audit record represents an event, whose type is uniquely specified by the event type context (frames 3 with
4, and 9 with 12) and the facility. Each event type may contain a number of identifying features (frames 5,
7, 10, 11 and 13) of a type specified by a feature type context and the event type. A feature (f.i. frame 5) thus
is an instance of a feature type determined by context (f.i. frames 4 and 6).

To determine a feature’s contribution to an attack scenario Ag, we assign its type f to a group Ig and a
weight function wfg(), representing Ag and the priority of f ’s contribution to Ag, respectively. The triplets
hf; Ig; wfg()i expand to quintuples:

hfacility, event type context, feature type context; Ig; wfg()i

Above tuples, understood as a decision tree, such as in Fig. 2, can be used to parse audit records. By
sequentially matching facility, event type context and feature type contexts, we isolate the event’s features,
to be pseudonymized. For each feature, the corresponding entry in Ig is located, or instantiated in case the
feature has not yet been observed. Then wfg() pseudonyms are generated, replacing the respective feature.
The more pseudonyms are generated for a feature, the earlier can it be recovered (see Sec. 7).

For an illustrating example we chose some audit records including a simple password guessing attack to
demonstrate the record handling (see above). We assume a knowledge specification that does not model
realistic circumstances of attack scenarios, we rather arbitrarily chose the groups, thresholds and weights.
According to that knowledge specification each of the example audit records has been augmented with the
respective groups and weights for their matching, hence underlined features. Sequence numbers have been
assigned to each record such that their original chronological order is preserved.

1: identd[22509]: token TWpldDmO2sq65FfQ82zX == uid 1000I2,w=1 (deedeeI1,w=1)

2: su: BAD SU deedeeI1,w=3 to rootI1,w=1 on /dev/ttyp1I3,w=1

3: su: BAD SU deedeeI1,w=3 to rootI1,w=1 on /dev/ttyp1I3,w=1

4: su: BAD SU deedeeI1,w=3 to rootI1,w=1 on /dev/ttyp1I3,w=1

5: su: BAD SU deedeeI1,w=3 to rootI1,w=1 on /dev/ttyp1I3,w=1

6: su: deedeeI1,w=2 to rootI1,w=1 on /dev/ttyp1I3,w=1

7: postfix/smtpd[22190]: connect from pony.pufI4,w=1[192.168.1.1I4,w=1]

8: postfix/smtpd[22190]: BFF41AD8D: client=pony.pufI4,w=1[192.168.1.1I4,w=1]

157

ATTACHMENT E

Microsoft Exhibit 1067

9: postfix/cleanup[29752]: BFF41AD8D: message-id=<385D1476.4FDB096B I6,w=1@manda.rkI5,w=1>

10: postfix/qmgr[1519]: BFF41AD8D: from=<dexterI6,w=1@secret.labI5,w=1>, size=7910 (queue active)

11: postfix/smtpd[22190]: disconnect from pony.pufI4,w=1[192.168.1.1I4,w=1]

12: postfix/local[4864]: BFF41AD8D: to=<deedeeI6,w=1@pufI5,w=1>, relay=local, delay=7, : : :

Each of the twelve records has been pseudonymized as described above in accordance with the specification.
Pseudonyms are denoted by place-holders indicating the group Ig, the identity’s (idig) index ig into Ig, and
the running number of the entity’s pseudonym mig . The six tables below present the states of the feature
type groups I1; : : : ; I6 after processing all twelve audit records. The column ‘#’ marks the total number of
audit records having been processed when the respective idig is reidentifiable from its pseudonyms.

I1; t1 = 10:
i1 idi1 mi1 #
1 deedee 15 4
2 root 5

I2; t2 = 50:
i2 idi2 mi2 #
1 1000 1

I3; t3 = 4:
i3 idi3 mi3 #
1 /dev/ttyp1 5 5

I4; t4 = 100:
i4 idi4 mi4 #
1 pony.puf 3
2 192.168.1.1 3

I5; t5 = 100:

i5 idi5 mi5 #
1 manda.rk 1
2 secret.lab 1
3 puf 1

I6; t6 = 100:

i6 idi6 mi6 #
1 385D1476.4FDB096B 1
2 dexter 1
3 deedee 1

1: identd[22509]: token TWpldDmO2sq65FfQ82zX == uid I2:1.1 (I1:1.1)
2: su: BAD SU I1:1.2-4 to I1:2.1 on I3:1.1
3: su: BAD SU I1:1.5-7 to I1:2.2 on I3:1.2
4: su: BAD SU I1:1.8-10 to I1:2.3 on I3:1.3
5: su: BAD SU I1:1.11-13 to I1:2.4 on I3:1.4
6: su: I1:1.14-15 to I1:2.5 on I3:1.5
7: postfix/smtpd[22190]: connect from I4:1.1[I4:2.1]
8: postfix/smtpd[22190]: BFF41AD8D: client=I4:1.2[I4:2.2]
9: postfix/cleanup[29752]: BFF41AD8D: message-id=<I6:1.1@I5:1.1>

10: postfix/qmgr[1519]: BFF41AD8D: from=<I6:2.1@I5:2.1>, size=7910 (queue active)

11: postfix/smtpd[22190]: disconnect from I4:1.3[I4:2.3]
12: postfix/local[4864]: BFF41AD8D: to=<I6:3.1@I5:3.1>, relay=local, delay=7, : : :

Note that the attacker’s identity deedee, according to the respective weights in records 2–6, generates more
pseudonyms than other identities. With respect to the pseudonyms I1 : 1:1 � 10 of the first four records,
deedee can be reidentified because the threshold t1 is reached. Equally the identifying feature /dev/ttyp1
reaches threshold t3 with respect to the pseudonyms I3 : 1:1 � 5 in records 2–6. The identity deedee

in record 12 is not associated with I1 as the other occurrences of deedee, but with I6. The respective
pseudonym I6 : 3:1 therefore is not compatible with the pseudonyms I1 : 1:1� 15.

7 An Approach Based on Secret Sharing

Basically our approach to pseudonymization should live up to the following requirements. Different
pseudonyms can be issued for each transaction that involves a given identity, that is we have transaction-
based pseudonyms. Pseudonyms issued for transactions of a given identity within a given attack scenario can

158

ATTACHMENT E

Microsoft Exhibit 1067

be used to reveal that identity only if t or more of these pseudonyms are known. Knowledge of less than t

pseudonyms does not enable identity recovery.

We can use secret sharing threshold schemes to split an identity into shares, which then are the pseudonyms,
fulfilling above requirements. For this purpose we chose Shamir’s threshold scheme [25], which is perfect,
ideal, and allows generation of new shares independently from preceding shares. Prioritization of transactions
is possible by issuing a different number of shares for identities in the context of some kinds of transactions.

For our approach we apply Shamir’s threshold scheme somewhat different than in other applications of
secret sharing, such as key splitting. Since the reidentifiers in our approach receive all shares generated
by the pseudonymizer, and since each reidentifier is a potential adversary, it is not required to protect the
confidentiality of shares during distribution. We also generate shares on demand, i.e. whenever specific events
occur. Due to this stepwise generation of shares we pair the value of ordinate and abscissa, and we can’t take
advantage of an optimization specific to Shamir’s scheme. To avoid inferences wrt. abscissa values, we have
to use unique x-coordinates for all shares related to a given attack scenario.

To be independent of the size and characteristics of identities to be shared, we assign secrets to identities,
which are are unique within an attack scenario. We then use Shamir’s scheme to share these secrets. We have
to fulfill some security requirements for the mapping of secrets to identities. First, reidentifiers need to know
the mapping, but are controlled by SSOs. Then Unix access control cannot protect the confidentiality of
the mapping. We thus use cryptograms of identities, considering the respective decryption keys as sharable
secrets. Secondly, a user reidentified once in a given attack scenario cannot act anonymously in further
transactions that occur in that attack scenario, but don’t complete it. We therefore consider expiring valid
shares after an epoch, trading anonymity off against accountability.

Both, pseudonymizer and reidentifier know which shares belong to which attack scenario, but the shares,
merely being ordinate-abscissa-pairs, provide no information, which of them belong to the same identity. If
they did, they weren’t transaction-based pseudonyms. A reidentifier thus can only guess, which shares stem
from the same identity, i.e. are compatible. When guessing combinations of shares, a reidentifier sometimes
will interpolate a value, which matches nowhere in above mentioned mapping. In other cases the reidentifier
hits a secret. Unfortunately this match is valid only, if all involved shares are compatible. In case not all
shares stem from the same identity, the match is considered a mismatch, which would result in holding an
identity accountable for an event it did not cause.

We propose some straightforward approaches to handle mismatches. One can mark compatible shares with
identical labels, but these labels effectively are relation-based pseudonyms for identities within a given attack
scenario. To retain the advantages of transaction-based pseudonyms, one could defer the issuing of the labels
of compatible shares, until t of them have been distributed.

We can also avoid mismatches without marking shares. To confirm a match, we have to provide a verifier
for each identity cryptogram, which is the value of a secure one-way hash function, applied to the respective
decryption key, i.e. the shared secret. The pseudonymizer can test for matches using all combinations of
t incompatible shares, including the newly generated share to be issued. Since a match in this case is a
mismatch, the new share must not be issued and a new one is to be chosen and tested. Although mismatches
then will not occur at reidentifiers, they too have to search a match in combinations of t shares, including
the new incoming share.

Note, that depending on t and the number of shares issued in the context of an attack scenario, the number
of combinations to test grows very large. While reidentifiers could reside on machines dedicated to this task,

159

ATTACHMENT E

Microsoft Exhibit 1067

pseudonymizers are located on the machine in use, to be able to protect the user’s anonymity. If we need
to avoid high computational cost at pseudonymizers, we let them issue unmarked shares without filtering
mismatches. Reidentifiers then have to verify the validity of matches with the issuing pseudonymizer. In
an online-protocol the reidentifier provides the pseudonymizer with information enabling validation of the
compatibility property of the shares involved in the match, such as a reference to Ig , the shares and the
match. Note, that we sacrifice the ability to perform offline identity recovery to reduce the pseudonymizer’s
performance costs.

Considering the unlinkability of shares, the ability for offline validation, and computational costs, the ap-
proach using deferred marking of shares seems most desirable.

To be able to take full advantage of transaction-based pseudonyms, it is necessary to hide or at least coarsen
the number of actually involved users. This obviously cannot be achieved when shares are marked, but labels
are not deferred. An approach to coarsen the number of actors is the introduction of dummy entities in
the secret-to-identity mapping. The issues to be considered concerning dummy entities include how many
dummies are needed for a certain degree of security, the upper bound for a useful number of dummies, the
choice of the dummy identity string, and concealment of replacements of dummies with real identities.

The useful number of dummies, which from the viewpoint of attackers determines the number of potential
actors, is clearly bounded by the known total number of identities of the kind under consideration. Since this
number may be large, it may be more storage-efficient to restrict the number of dummies to the product of
the estimated number of actors and the estimated number of shares generated per actor. The identity string
for dummies should be chosen to be indistinguishable from real identity strings, but if mismatches are not
handled, dummies should be distinguishable from real identity strings. When a yet unknown real actor has
to be added to the secret-to-identity mapping, we have to conceal which dummy is replaced with the new
real identity. A simple way to achieve this, is to completely change the appearance of all entries, all exhibiting
the same size. Since the updated mapping needs to be distributed to the reidentifiers, we also have to conceal
the number of these transmission, e.g. by means of dummy traffic.

8 Open Issues and Further Research

There are a number of open issues to be investigated, such as the probability of mismatch occurrence, the
transition from an epoch of share validity to the next epoch, as well as concerns mentioned above regarding
dummy handling. Areas of interest wrt. to dummies are further methods for reducing the granularity of
reidentifications, and potential benefits and required properties of dummy audit records. If we can do
without the decoupling of identities and secrets, we don’t need to solve the problems associated with the
secret-to-identity mapping. Another important point is the correlation and reidentification of pseudonyms
issued by distributed pseudonymizers for the same user.

Some desired properties wrt. reidentification are automation, technical purpose binding and infrequent in-
volvement of a TTP. Also adversaries should not be able to link pseudonyms to the identities. This obviously
is not the case, if pseudonyms are introduced within the system while the SSOs can observe the pseudonyms
and the identities. As a result, we have to preclude SSOs from observing user identities in the monitored
system. This is hard to accomplish if the IDS is local to the system under surveillance, or if IDS personnel has
to perform tasks on that system (see Sect. 4.1, 4.3). Approaches such as ANIDA (Sect. 4.4), [19], [20] and

160

ATTACHMENT E

Microsoft Exhibit 1067

[21] solve this problem by introducing pseudonyms external to the monitored system by means of a TTP,
or by using a protocol that does not disclose the real identities. Since in these approaches the monitored
system uses the pseudonyms for access control, damage can be avoided, even if pseudonyms are invalid, i.e.
the identity will not be recoverable. Thus, users may generate the pseudonyms without involving a TTP.

We assume, that reasonable use of a complex system requires fine-grained access control. There are basically
two different implementations of access control. Capabilities bestow the right to execute certain known
operations on certain known objects upon subjects, which hold the capability. Since for the use of capabilities
the identifier of the subject is irrelevant4, we can use all kinds of pseudonyms. Unfortunately the Unix systems
we use do not support capabilities. Alternatively access control lists (ACL) bound to objects can be used to
assign to certain known subjects the right to execute certain known operations. If the system trusts in the
authenticity of a subject identifier, it just compares the identifier with entries in the ACL to determine the
subject’s rights. The subject then can use entity-based pseudonyms only, though the pseudonyms stored in
the ACL can be relation-based5. This basically is, what Unix allows for, if you consider user names being
entity-based pseudonyms. Alternatively, if the system authenticates the subject in advance to each access
using proofs as described in [19] and [20], there is no need for entity-based pseudonyms to be used by
subjects. Then, even if transaction-based pseudonyms are used, the system needs to know against which
property to authenticate. It seems advisable to authenticate group memberships, while the cardinality of the
groups should be sufficiently large. Unfortunately, the Unix systems we use don’t support this kind of access
control. Pragmatism led us to the trust model we propose in Sect. 5. We seek to support transaction-based
pseudonyms for IDS, but since off-the-shelf Unix only supports entity-based pseudonyms, we introduce
pseudonyms independently from access control. Decoupling pseudonyms from access control is dangerous,
because we can not avoid illicit accesses in the presence of invalid pseudonyms. We propose a TTP, known to
generate valid pseudonyms, allowing identity recovery. If users were to generate pseudonyms on their own,
the pseudonyms would have to comprise a proof vouching for pseudonym validity.

Assuming we have valid pseudonyms, i.e. reidentification is possible, then we have to decide, whether SSOs
are trusted to respect the privacy of users. In case they are, adherence to purpose binding is expected when
identity recovery information is used, thus recovery information may always be available to SSOs. Since
primary tasks of SSOs in some environments may inherently conflict with user privacy, we may not be able
to afford this kind of trust. We have to make sure, identity recovery information is usually not available to
SSOs. In the approaches described in Sect. 4.1, 4.2 and 4.3, isolation of that information from SSOs would
require extra tamper-proof hardware.

It is easy to achieve manual purpose binding for reidentification by placing the information needed for
identity recovery at a TTP, which most of the time lays dormant. Only if accountability wrt. policy violations
requires identity recovery, and upon good cause shown, the TTP makes use of the recovery information (see
the approaches in Sect. 4.4.1). Manual purpose binding impedes automatic reidentification.

To achieve automatic identity recovery, which is a desired property of IDS, technical purpose binding is
required. Note, that it is not sufficient to merely trust the IDS analysis component to adhere to purpose
binding, for it is controlled by SSOs (see Sect. 4.2). Our approach provides for technical purpose binding
independently of the IDS components controlled by SSOs, but it does so at the cost of always involving a
TTP (here the PPO) to ensure generation of valid pseudonyms.

4Here we ignore the intricacies involved in implementing secure capabilities.
5The ACL-pseudonyms could be implemented as a one-way function of the concatenation of subject, object and operation.

161

ATTACHMENT E

Microsoft Exhibit 1067

References

[1] Birgit Pfitzmann, Michael Waidner, and Andreas Pfitzmann. Rechtssicherheit trotz Anonymität in
offenen digitalen Systemen (in German). Datenschutz und Datensicherheit, 14(5-6):243–253, 305–
315, 1990.

[2] Kai Rannenberg, Andreas Pfitzmann, and Günther Müller. IT security and multilateral security. In
Müller and Rannenberg [26], pages 21–29.

[3] Joachim Biskup and Ulrich Flegel. Transaction-based pseudonyms in audit data for privacy respect-
ing intrusion detection. In Proceedings of the Third International Workshop on Recent Advances in
Intrusion Detection (RAID 2000), Toulouse, France, October 2000. Springer.

[4] Directive 95/46/EC of the European Parliament and of the Council of 24 october 1995 on
the protection of individuals with regard to the processing of personal data and on the free
movement of such data. Official Journal L 281, October 1995. http://europa.eu.int/eur-
lex/en/lif/dat/1995/en_395L0046.html.

[5] Erster Senat des Bundesverfassungsgerichts. Urteil vom 15. Dezember 1983 zum Volkszählungsgesetz
- 1 BvR 209/83 u.a. (in German). Datenschutz und Datensicherung, 84(4):258–281, April 1984.
http://www.datenschutz-berlin.de/gesetze/sonstige/volksz.htm.

[6] Michael Sobirey, Simone Fischer-Hübner, and Kai Rannenberg. Pseudonymous audit for privacy en-
hanced intrusion detection. In L. Yngström and J. Carlsen, editors, Proceedings of the IFIP TC11 13th
International Conference on Information Security (SEC’97), pages 151–163, Copenhagen, Denkmark,
May 1997. IFIP, Chapman & Hall, London.

[7] Emilie Lundin and Erland Jonsson. Privacy vs intrusion detection analysis. In Proceedings of the
Second International Workshop on the Recent Advances in Intrusion Detection (RAID’99), West
Lafayette, Indiana, September 1999. Purdue University, CERIAS.

[8] Emilie Lundin and Erland Jonsson. Some practical and fundamental problems with anomaly detection.
In Proceedings of NORDSEC’99, Kista Science Park, Sweden, November 1999.

[9] Simone Fischer-Hübner and Klaus Brunnstein. Opportunities and risks of intrusion detection expert
systems. In Proceedings of the International IFIP-GI-Conference Opportunities and Risks of Artificial
Intelligence Systems ORAIS’89, Hamburg, Germany, July 1989. IFIP.

[10] Simone Fischer-Hübner. IDA (Intrusion Detection and Avoidance System): Ein einbruchsentdeck-
endes und einbruchsvermeidendes System (in German). Informatik. Shaker, 1993.

[11] Michael Sobirey. Aktuelle Anforderungen an Intrusion Detection-Systeme und deren Berücksichtigung
bei der Systemgestaltung von AID2 (in German). In Hans H. Brüggemann and Waltraud Gerhardt-
Häckl, editors, Proceedings of Verläßliche IT-Systeme, DuD-Fachbeiträge, pages 351–370, Rostock,
Germany, April 1995. GI, Vieweg.

162

ATTACHMENT E

Microsoft Exhibit 1067

[12] M. Sobirey, B. Richter, and H. König. The intrusion detection system AID – Architecture and ex-
periences in automated audit trail analysis. In P. Horster, editor, Proceedings of the IFIP TC6/TC11
International Conference on Communications and Multimedia Security, pages 278–290, Essen, Ger-
many, September 1996. IFIP, Chapman & Hall, London.

[13] Michael Sobirey. Datenschutzoruientiertes Intrusion Detection (in German). DuD-Fachbeiträge.
Vieweg, 1999.

[14] Michael Meier and Thomas Holz. Sicheres Schlüsselmanagement für verteilte Intrusion-Detection-
Systeme (in German). In Patrick Horster, editor, Systemsicherheit, DuD-Fachbeiträge, pages 275–286,
Bremen, Germany, March 2000. GI-2.5.3, ITG-6.2, ÖCG/ACS, TeleTrusT, Vieweg.

[15] Roland Büschkes and Dogan Kesdogan. Privacy enhanced intrusion detection. In Müller and Rannen-
berg [26], pages 187–204.

[16] David Chaum. Untraceable electronic mail, return addresses, and digital signatures. Communications
of the ACM, 24(2):84–88, February 1981.

[17] D. Kesdogan, R. Büschkes, and J. Egner. Stop-and-go-mixes providing probabilistic anonymity in an
open system. In Proceedings of the 2nd Workshop on Information Hiding (IHW’98), number 1525
in LNCS, pages 83–98. Springer, 1998.

[18] Teresa F. Lunt, R. Jagannathan, Rosanna Lee, Sherry Listgarten, David L. Edwards, Peter G. Neumann,
Harold S. Javitz, and Al Valdes. IDES: The enhanced prototype, a real-time intrusion-detection expert
system. Technical Report SRI-CSL-88-12, SRI Project 4185-010, Computer Science Laboratory SRI
International, 1988.

[19] Joe Kilian and Erez Petrank. Identity escrow. In Proceedings of Advances in Cryptology (CRYPTO’98),
pages 196–185, 1998.

[20] Dan Boneh and Matt Franklin. Anonymous authentication with subset queries. In Proceedings of
the 6th ACM Conference on Computer and Communications Security, pages 113–119, Kent Ridge
Digital Labs, Singapore, November 1999. ACM SIGSAC.

[21] Yuen-Yan Chan. On privacy issues of internet access services via proxy servers. In Rainer Baumgart,
editor, Secure Networking – CQRE[Secure]’99, number 1740 in LNCS, pages 183–191, Düsseldorf,
Germany, November 1999. secunet, Springer.

[22] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Proceedings of Advances
in Cryptology (CRYPTO’88), pages 319–327, 1988.

[23] National Computer Security Center. US DoD Standard: Department of Defense Trusted Computer
System Evaluation Criteria. DOD 5200.28-STD, Supercedes CSC-STD-001-83, dtd 15 Aug 83,
Library No. S225,711, December 1985. http://csrc.ncsl.nist.gov/secpubs/rainbow/std001.txt.

[24] National Computer Security Center. Audit in trusted systems. NCSC-TG-001, Library No. S-228,470,
July 1987. http://csrc.ncsl.nist.gov/secpubs/rainbow/tg001.txt.

163

ATTACHMENT E

Microsoft Exhibit 1067

[25] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptography.
Discrete Mathematics and its Applications. CRC Press, Inc., Boca Raton, Florida, 1997.

[26] Günter Müller and Kai Rannenberg, editors. Multilateral Security in Communications. Information
Security. Addison Wesley, first edition, 1999.

164

ATTACHMENT E

Microsoft Exhibit 1067

Protection Profiles for Remailer Mixes

Kai Rannenberg
Microsoft Research Cambridge, UK

kair@microsoft.com

Giovanni Iachello
Telematics, IIG, Freiburg University

g.iachello@iol.it

Abstract

In the past independent IT security evaluation according to published criteria has not realized its po-
tential for the assessment of privacy enhancing technologies (PETs). The main reason for this was, that
PETs were not covered appropriately in the evaluation criteria. This situation has changed somewhat,
and therefore this paper reports on a case study, in which we developed Protection Profiles for remailer
mixes. One reason for the development of these Protection Profiles was to test the privacy related compo-
nents in the new Evaluation Criteria for IT Security - Common Criteria (International Standard 15408,
ECITS/CC) and to develop improvements. Another reason was to contribute to an independent eval-
uation of privacy enhancing technologies. The experiment shows, that the ECITS/CC enable PPs for
remailer mixes, but that there are still improvements necessary. The paper presents the Protection Profiles
and the structured threat analysis for mixes, on which the Protection Profiles are based.

1 Introduction

Independent IT security evaluation can be very useful for privacy enhancing technologies (PETs), as PETs
very often aim at the protection of individual users, and this is exactly the user group that usually does not
have the resources to assess IT on its own. Of course evaluations and criteria then have to cover privacy
aspects properly. This is not trivial, and early IT security evaluation criteria like the TCSEC and the ITSEC
caught much criticism for their lack of coverage of privacy-related requirements, and for their tendency
towards ever increasing data storage and centralization of trust. Meanwhile, evaluation criteria, like the
recent Evaluation Criteria for IT Security - Common Criteria (International Standard 15408, ECITS/CC)
contain components assigned to privacy. Therefore we used them to specify a number of Protection Profiles
for remailer mixes. One reason for the development of these Protection Profiles was to test the privacy
related components in the ECITS/CC and to develop improvements. Another reason was to contribute to
an independent evaluation of privacy enhancing technologies.

The paper commences with an introduction into IT security certification and evaluation criteria (Chapter 2)
and an overview of their problems regarding privacy and multilateral security (Chapter 3). It then describes
the new ECITS/CC and their privacy components (Chapter 4). Chapters 5 and 6 describe the approach
of writing PPs for remailer mixes and give a short introduction into mix technology. Chapter 7 presents
the Protection Profiles and their rationales. Chapter 8 summarizes the experiences gained by writing the
Protection Profiles. Chapter 9 proposes changes to the ECITS/CC. Chapters 10 and 11 give a summary and
conclusion as well as a number of questions to the workshop audience. The Annex provides not only the
references (Chapter 12) but also the three proposed functional families in a notation conformant with the
prescriptions of the ECITS/CC (Chapter 13).

165

ATTACHMENT E

Microsoft Exhibit 1067

Sponsor

Evaluation
Report

Product/System
(TOE)

Certificate +
Certification Report

Monitoring

Evaluation
Report

Certification Body

Application for
Certification

Accreditation

ITSEF

Application for
Accreditation

Accreditation Body

11

2

3
4

a

b

Figure 1: Evaluation and certification of a TOE (1-4) and accreditation of an ITSEF (a-b)

2 IT security certification and evaluation criteria

The complexity of today’s information technology (IT) makes it impossible to evaluate its security by simple
“examination”. However, it is scarcely possible for many users to conduct more detailed checks, which are
necessary for a qualified evaluation, as they cannot afford the expenditure this would entail. Thus, more and
more users are faced with the problem of knowing very little about the technique they use for important
transactions (e.g. processing sensitive patient data, signing documents, or making payments).

One way to enable confidence in IT is to evaluate and certify products and systems by neutral and competent
institutions on the basis of published IT security evaluation criteria. Related certification schemes exist since
the mid 80’s, for example, in the USA, the UK and Germany. There are regional differences between
the schemes, but typically a sponsor asks (and pays) for an evaluation that is conducted by an accredited
(commercial or governmental) IT Security Evaluation Facility (ITSEF) and monitored and certified by a
(governmental or commercial) Certification Body (CB), cf. Figure 1. In most cases the sponsor of an
evaluation is the manufacturer of the Target of Evaluation (TOE). An overview of Certification Schemes and
more details can be found in [19].

To enable comparisons of evaluation results, criteria catalogs have been developed, which structure the IT
security requirements. Some examples are given in Table 1.

While the TCSEC [22] had a rather fixed security model aiming at the confidentiality of military informa-
tion, subsequent criteria e.g. the ITSEC [6] had a broader scope. These criteria are frameworks that IT
manufacturers, vendors, or users can use to specify what security functions (Functionality) they wish to have
evaluated and to what depth, scope, and rigor the evaluation should be performed (Assurance).

Functionality refers to the behavior of the product with regard to security concerns, while assurance allows
stating requirements on e.g. the development process, the evaluation of the compliance to the requirements
documents, the preservation of security during installation and maintenance, and the documentation. In

166

ATTACHMENT E

Microsoft Exhibit 1067

Publication /
Project Dates

Editors Criteria Name
Current Version

1983/85 USA
Department of Defense (DoD)

Trusted Computer System Evaluation Criteria
(TCSEC - “Orange Book”)

1990/91 Commission of the European Communities (CEC) Information Technology Security Evaluation
Criteria (ITSEC) Version 1.2

1990-99 International Organization for Standardization /
International Electrotechnical Commission
ISO/IEC JTC1/SC27/WG3

Evaluation Criteria for IT Security (ECITS)
International Standard 15408: 1999

1993-99 Common Criteria Project
Govt. Agencies from CDN / D / F / GB / NL / USA

Common Criteria (CC)
Version 2.1

Table 1: Some IT security evaluation criteria and their editors

practice, these requirements specify a series of actions, which the developer, the writers of documentation
and the evaluators must complete.

Independent evaluation can be very useful for privacy enhancing technologies, as those very often aim at the
protection of individual users, and this is exactly the user group that usually does not have the resources to
assess IT on its own. Of course evaluations and criteria then have to be comprehensive, especially regarding
privacy. As the next chapter shows, this was not the case.

3 Problems regarding privacy and multilateral security

Various aspects of security certification and the underlying early criteria have been criticized, for example the
balance of the criteria and the meaningfulness and use of results (cf. e.g. [10, 18, 19]).

A main point of criticism from the application side was that the criteria were too biased towards hierarchically
administered systems and the protection of system operators. The criteria seemed to not consider the fact that
dangers are caused not only by users and outsiders, but also by operators and manufacturers of the systems.
So there was a lack of multilateral security, i.e. taking the security requirements, not only of operators, but
also of users and customers into account. Especially privacy aspects of telecommunication transactions were
not covered, e.g. unobservability of calls to help lines or anonymous access to patent information on the
Internet.

From a technical point of view systems with distributed organization and administration were only insuffi-
ciently covered. Also data-collecting functionality was overemphasized, while data economical functionality
was ignored.

The following example illustrates how this lack of consideration for user protection in the criteria affects
evaluation results. It also shows that the evaluation, which is described, was focused on the protection of the
operators and neglected the protection of users or customers. A function for the selective logging of activities
of individual users was classified as a non-critical mechanism that did not need evaluation. In the opinion
of the evaluators, failure of this mechanism would not create weaknesses because if the function was not
active, the activities of all users were logged [8]. From the operator point of view no real security risk existed,
because no audit data would be lost - only perhaps more data than planned would be collected. However,
from the users’ point of view this is a considerable risk, because excessive logging and the resulting data can
lead to substantial dangers for users and customers, e.g. when this data is misused.

167

ATTACHMENT E

Microsoft Exhibit 1067

4 The new ECITS/CC and their privacy components

Since 1990 two initiatives aim at globally uniform evaluation criteria, mainly to enable the mutual acknowl-
edgement of evaluation results. A joint committee of ISO and IEC (JTC1/SC27/WG3) developed the
“Evaluation Criteria for IT Security” (ECITS), which are being finished as IS 15408 [16]. In parallel to the
ISO/IEC standardization, North American and European government agencies developed the “Common
Criteria” (CC). Since CC Version 2.0 [3] there is a large convergence with the ISO ECITS, and CC Version
2.1 [4] and IS 15408 are fully aligned. After the problems with earlier criteria had also been brought up in
ISO/IEC the new criteria contain a section aiming at privacy protection (cf. Chapter 4.2). At the moment
there are no plans for another version of the CC, but the ECITS will undergo the usual periodic revision of
ISO/IEC standards, which will probably be done by JTC1/SC27/WG3 in 2003.

4.1 Overview of the ECITS/CC

The ECITS/CC share the goals and general approach of other evaluation criteria, as briefly introduced in
Chapter 1, but provide a more flexible structure regarding functional and assurance requirements. In fact,
they provide a catalogue of functional requirements components, which is a modular, structured library of
customizable requirements, each of which tackles one specific aspect of the security requirements for the
TOE. The Criteria provide also a catalogue of assurance requirements, which are grouped in seven ordered
subsets, of increasing depth, scope and rigor.

On the one hand, these modifications create more liberty for the formulation of security targets, but on
the other hand, they make the comparison of evaluation results more complicated. In order to resolve this
problem and still give users the opportunity to formulate their own requirements, the CC introduced the
concept of the “Protection Profile” (PP). A PP describes the functionality and assurance requirements for a
certain application (e.g. health care administration) or technique (e.g. firewalls). Ideally, several products
will be evaluated against a PP, so that the results can be compared. ISO is setting up a regulated registry for
PPs and the CC project is maintaining a PP list [5].

The ECITS/CC also provide a catalog of seven Evaluation Assurance Levels (EALs). These are an ordered
set of packages of assurance components. Each EAL contains the lower level EAL and adds to it some other
assurance requirements. The EALs are largely derived from the ITSEC. PP authors, who wish to concentrate
on the functional requirements of their PP, can simply choose an EAL.

In most cases the ECITS/CC model the properties and behavior of a TOE by specifying a set of relevant
entities and imposing constraints on the relationships between such entities. For this purpose, the following
four entities are defined:

� Subject: “An entity within the TSC1 that causes operations to be performed”; this can be, for example, a
UNIX process;

� Object: “An entity within the TSC that contains or receives information and upon which subjects perform
operations”; for example a file, a storage medium, a server system, a hardware component;

1TSC = TSF Scope of Control: The complete set of interactions that are under the control of the TOE to satisfy its security
requirements and to implement its security features.

168

ATTACHMENT E

Microsoft Exhibit 1067

� Operation: a process initiated by a subject or user, which employs a subject to interact with one or
more objects or subjects; this term is not directly defined in the criteria’s’ glossary.

� User: “Any entity (human user or external IT entity) outside the TOE that interacts with the TOE”. It
is necessary to clearly distinguish between “Subject” and “User”. “User” is the physical user with all
its attributes (name, role. . .), or an external IT entity (i.e. another system interacting with the TOE),
that initiates operations on the TOE, which are carried out, on its behalf, by “Subjects” operating in
the TOE.

4.2 The ECITS/CC privacy families

The ECITS/CC contain four Functional Families directly related to privacy and organized in a privacy Class.
Some of their components were inserted late in the criteria development process (for example, some of the
Unobservability components were not present in version 1.0 of the CC). Most components have several
levels, which sometimes are organized in hierarchies. A hierarchical level contains extra requirements. The
following description of the components sticks close to that in the ECITS/CC.

4.2.1 Anonymity (FPR ANO)

Anonymity ensures that a user may use a resource or service without disclosing the user’s identity. The
requirements for Anonymity provide protection of the user identity, but Anonymity is not intended to
protect the subject identity. There are two hierarchical levels:

FPR ANO.1 Anonymity requires that other users or subjects are unable to determine the identity of a
user bound to a subject or operation.

FPR ANO.2 Anonymity without soliciting information enhances the requirements of FPR ANO.1 by
ensuring that the TSF does not ask for the user identity.

Applications include the ability to make inquiries of a confidential nature to public databases, respond to
electronic polls, or make anonymous payments or donations.

4.2.2 Pseudonymity (FPR PSE)

Pseudonymity ensures that a user may use a resource or service without disclosing its user identity, but can
still be accountable for that use. There are three partially hierarchical levels.

FPR PSE.1 Pseudonymity requires that a set of users and/or subjects are unable to determine the iden-
tity of a user bound to a subject or operation, but that this user is still accountable for its actions.

FPR PSE.2 Reversible pseudonymity requires the TSF to provide a capability to determine the original
user identity based on a provided alias. FPR PSE.2 is hierarchical to FPR PSE.1.

169

ATTACHMENT E

Microsoft Exhibit 1067

FPR PSE.3 Alias pseudonymity requires the TSF to follow certain construction rules for the alias to the
user identity. FPR PSE.3 is hierarchical to FPR PSE.1.

Applications include the ability to charge callers for premium rate telephone services without disclosing their
identity, or to be charged for the anonymous use of an electronic payment system.

4.2.3 Unlinkability (FPR UNL)

Unlinkability ensures that a user may make multiple uses of resources or services without others being able
to link these uses together.

FPR UNL.1 Unlinkability requires that users and/or subjects are unable to determine whether the
same user caused certain specific operations in the system.

Applications include the ability to make multiple use of a pseudonym without creating a usage pattern that
might disclose the user’s identity.

4.2.4 Unobservability (FPR UNO)

Unobservability ensures that a user may use a resource or service without others, especially third parties,
being able to observe that the resource or service is being used. There are four partially hierarchical levels.

FPR UNO.1 Unobservability requires that users and/or subjects cannot determine whether an opera-
tion is being performed.

FPR UNO.2 Allocation of information impacting unobservability requires that the TSF provide specific
mechanisms to avoid the concentration of privacy related information within the TOE. Such concen-
trations might impact unobservability if a security compromise occurs. FPR UNO.2 is hierarchical to
FPR UNO.1.

FPR UNO.3 Unobservability without soliciting information requires that the TSF does not try to obtain
privacy related information that might be used to compromise unobservability.

FPR UNO.4 Authorised user observability requires the TSF to provide one or more authorized users
with a capability to observe the usage of resources and/or services.

Applications include technology for telecommunications privacy, especially for avoiding traffic analysis to
enforce constitutional rights, organizational policies, or defense requirements.

170

ATTACHMENT E

Microsoft Exhibit 1067

5 Experimenting by writing Protection Profiles for mixes

As the ECITS/CC aim at covering security requirements also for untraditional applications that were not
covered in earlier criteria, it seemed useful to experiment with the new approach by using it. Actually, during
the development of the CC a number of example PPs had been produced on the basis of CC V1.0 for testing
purposes (see [5]), but there was no (published) PP aiming at privacy requirements. To gain more experience
as to whether the ECITS/CC are complete and adequate enough to express requirements on privacy friendly
functionality, some example PPs were written.

The mix application (cf. Chapter 6) was chosen because it is a prime example of a distributed application
where multilateral security concerns involving operators and users come into existence. The availability of
an extensive literature on the subject, of real world implementations and the interest that anonymous and
untraceable communication have gained recently, are also all favorable reasons which make this kind of
application an ideal testing ground.

The development of the PPs started with an initial survey of the mix literature and implementations to get
acquainted with the underlying concepts and technology. A mix implementation was installed and operated
in a controlled manner for a couple of weeks. This process resulted in the enumeration of a set of threats that
were then used as the basis of the PPs (cf. 7.2).

6 Short introduction into mixes

A mix is a remailer system with the objective of hiding the correspondence between sender and recipient of
a message. The concept was introduced by D. Chaum in 1981 [7] and has been subsequently refined and
applied to other applications besides email, such as ISDN telephony and WWW access (e.g. [21, 17, 24]).
This basic functionality allows achieving unlinkability of communicating partners, but anonymity can also
be achieved if the sender does not explicitly state its identity in the message. As a further development also
pseudonymity can be implemented using a mix remailer system, using so-called “return addresses”.

There are at least two working implementations of mixes: the first one, is a free software called Mixmaster
[9], which evolved from a first-generation plain anonymizing remailer to a complete mix system in 1994.
The software is now in use at various sites, but is generally administered by volunteers and thus not apt for
widespread commercial use.

A commercial pseudonym-based mix system is being produced by Zero Knowledge Systems [24], which
offers a client product for sending email through a set of independently administered nodes. Some of these
nodes are administered by ZKS, which also produces the remailer software.

A mix system achieves untraceability of messages essentially by deploying a distributed architecture, where
each node is independently administered. The sender selects a path in the mix network to reach the receiver,
and each node resends the message to the next one according to instructions present in the message itself.
The message is encrypted in such a way that each relay node only gets to know the node from which it
received the message and the node to which it forwarded the message.

171

ATTACHMENT E

Microsoft Exhibit 1067

7 The Protection Profiles written

Several Protection Profiles were written to cover the features and threats regarding mixes and to test the
Common Criteria privacy components. Section 7.1 documents the development history of the PPs and their
versions, Section 7.2 gives an overview of the threats considered. The remaining sections in this chapter
document the three PPs:

� “Single Mix PP” (7.3);

� “Protection Profile for an Unobservable Message Delivery Application Using Mixes” (or “Multiple Mix
PP”) (7.4);

� “User-oriented PP for Unobservable Message Delivery Using Mix Networks” (7.5) This PP is de-
scribed in most detail giving a mapping from threats and other assumptions to security objectives and
functional components.

7.1 Development history of the Protection Profiles

The development history of the Protection Profiles already shows some of the issues coming up and is there-
fore documented here. The following figure gives an overview of the development history; the boxes represent
PPs and are positioned in a temporal order (temporal axis from top to bottom); the arrows connecting the
PPs represent a “flow of knowledge” (i.e. e. addressed threats, security objectives) from one PP to the other.

Initially, a choice was made to write two PPs following an “architectural” subdivision suggested also by the
criteria, i.e. writing a PP for a single mix node (“Single Mix Protection Profile”), and then one for the
whole mix network (“Protection Profile for an Unobservable Message Delivery Application Using Mixes”,
or “Multiple Mix PP” [12]). This represents a rather traditional way of subdividing security problems into
manageable pieces, and derives from the “secure each part to secure the system” paradigm.

In the case of the mix network, however, this path resulted in a dead-end, because the second PP, which stated
requirements for the whole network, actually tried to make a compromise between the security requirements
of the network, and those of the user of the network. For example, a standard option for protecting the
mix network from some kinds of flooding attacks is that of keeping audit logs. This clearly endangers the
potentially anonymous users, because corrupt administrators or others gaining access to the logs could use
the information contained therein to trace back the messages to their original senders.

After unsuccessfully following this path, an alternative decision was made, to divide the security requirements
documents based on the so-called “multiple interests” paradigm, i.e. writing one document for each of the
involved parties, which in the mix system are the administrators and the users, and each time taking into
account the security needs and concerns of the focused party. This approach again led to the writing of two
documents: the “Single Mix Protection Profile” [11], which was largely rewritten from the first PP with the
same title, and the “User-Oriented Protection Profile for unobservable message delivery using Mix networks”
[13], which incorporated parts of the “Multiple Mix PP”.

The former document states the security requirements of a single node, which overlap largely with the re-
quirements as felt by the administrator of such node (e.g. resistance to attacks, secure operating environment,

172

ATTACHMENT E

Microsoft Exhibit 1067

PP for an Unobservable
Message Delivery
Application using Mixes

User-Oriented PP for
Unobservable Message
Delivery using Mix Networks
versions 1.0 - 1.4

Single Mix PP

version 1.7

Multiple Mix PP

Single Mix PP

Unobservable Message
Delivery using Mix Networks

User-Oriented PP for

versions 1.0 - 1.5

versions 1.0 - 1.6

versions 1.7 - 1.11

Introduction of
new components

makes User-Oriented PP independent
Second spawn from Multiple Mix PP

Present-day Protection Profiles

from structural to interests approach

each other
the two PPs are still dependent from

First spawn from Multiple Mix PP

Unobservable Message
Delivery using Mix Networks
versions 1.5 - 1.5.1.3

User-Oriented PP for

versions 2.0 - 2.4

Figure 2: PP Development history

173

ATTACHMENT E

Microsoft Exhibit 1067

physical protection. . .), while the latter addresses the needs of the user with respect to the whole network,
and includes requirements of anonymity, unlinkability of communicating parties, etc.

Eventually it was found that the main challenges for the expressive power of the Criteria were posed by
this second document, because some of the security requirements related to fundamental privacy-enhancing
properties were not to be found in the stock ECITS/CC components (cf. Chapter 11).

Choosing an EAL (see section 4.1) was easier than formulating the functional requirements. The choice is
influenced by many external factors, which include the intended use and operational environment of the
TOE, policies of the organization that will deploy the TOE, and the will of the sponsor to let the product be
evaluated at a high level (which rises the evaluation costs).

Two rather different choices were made: for the “Single Mix PP” and the “Multiple Mix PP” a relatively low
level (EAL 3) of assurance was requested; this choice was justified by the fact that the mix is a rather simple
system, where the architectural security strengths derive not from the single system, but from the fact that
multiple systems operate together.

The “User-Oriented Mix PP” follows another approach. The idea in this case is that the user wants to gain
full assurance that the single mix systems were correctly developed, and that the architecture and project, as
a whole, were examined by independent organizations. EAL 5 was chosen because it is the first EAL that
introduces complete independent testing of the TOE.

It is however to be noted that an independent test of the TOE is not sufficient to assure the user that the
system will not be malevolently administered after deployment. The ECITS/CC assurance requirements did
not aim at evaluating the operation of deployed systems. Closer to this task are risk management standards
like IS 13335 [15] or BS7799 [1] and related certification schemes like c:cure [2].

7.2 The threats considered in the Protection Profiles

Considering and documenting threats to a TOE is the basis of a PP. The threat list must be complete and
relevant. Obviously, there is no guarantee, that a list of threats is complete. Therefore peer review and
multiple incremental cycles are necessary. Each PP was rewritten many times before reaching a stable state
for the time being. Moreover an analysis of the threats by the workshop participants would be welcome.
Additionally, the threats must be stated in a manner to ease the formal demonstration of correspondence
with the security objectives, to the degree mandated by the choice of the EAL.

The threat lists are summarized in Table 2, where they are subdivided according to the three Protection
Profiles written for the mix system. The threats are briefly described in terms of implementation, effects and
countermeasures, and ordered by type. The threat type is one of:

� Active: the threat requires an attacker to actively interfere with the operation of the mix or network,
e.g. by blocking communications,

� Passive: this kind of threat is limited to passive operation (e.g. observing traffic through a mix),

� Error: these threats derive from erroneous operation of the mix, due to e.g. bad configuration, etc.

174

ATTACHMENT E

Microsoft Exhibit 1067

Name Type Implementation Permits
Analysis. . .

(Potential) Effects Countermeasure(s)

Single mix threats
(threats to a single mix system, as seen by the mix operator, and basis for the Single mix PP)
Logical
access

Active Gain access to the TSF
data and algorithms

Of administrative
logs
Of mix operation

Total failure of mix
security functions

Trusted OS,
Limit remote
administration

Physical
access

Active Gain access to the TSF
physical location

Of administrative
logs
Of mix operation

Total failure of mix
security functions

Trusted site

Administrator
corruption

Active Corrupt the
administrator

Of administrative
logs
Of mix operation

Total failure of mix
security functions

Organizational policies,
Operation review

Replay
attack

Active Intercept and resend a
message many times

Of outgoing traffic Leak of (partial)
information

Replay detection on
message paths

Flooding
attack
(DoS)

Active Flood mix with dummy
messages

n/a Interruption of
service

Flooding resistant mix
and OS,
Origin check

Flooding
attack
(traffic
analysis)

Active Flood mix with known
messages

Of outgoing traffic Leak of information
on singled-out

Origin check message
path

Size analysis Passive Intercept messages and
record their sizes

Of ingoing and
outgoing traffic

Leak of information
on message paths

Standard and fixed
message size

Timing
analysis

Passive Intercept messages and
record their
transmission times

Of ingoing and
outgoing traffic

Leak of (partial)
information on
message paths

Random delay strategies

Order
analysis

Passive Intercept messages and
record their order

Of ingoing and
outgoing traffic

(Partial)
information on
message paths

Random reordering
strategies

Content-
based traffic
analysis

Passive Intercept messages and
read their content

Of ingoing and
outgoing traffic

Leak of complete
information on
message paths

Encryption of message
traffic

Mismanage-
ment

Error Mismanagement of
some TSF

n/a Loss of TOE
security properties

Documentation,
Design for
manageability,
Organizational policies

Processing
error

Error Accidental processing
error resulting in
truncation, loss,
alteration of messages

n/a Unreliable service Redundancy assurance
techniques

Table 2: Threats used as basis for the Protection Profile (part 1)

175

ATTACHMENT E

Microsoft Exhibit 1067

Name Type Implementation Permits
Analysis. . .

(Potential) Effects Countermeasure(s)

Multiple mix threats
(threats to the entire mix network, or related to the network connections, and basis for the Multiple mix PP)
Network
block

Active Block the network
connections to part of
the TOE

n/a. Interruption of
service,
Degraded service

Organizational policies,
distribution of the TOE

Impersonation Active Intercept and redirect
the network
connections to part of
the TOE

Of requested traffic
in the impersonated
network

Degraded service,
Leak of information
on message paths

Encryption,
Sound key distribution
policy

Message
interception

Passive Intercept and read
messages

Message content
exchanged by parts
of the TOE

Leak of information
on message paths

Encryption

Network
unreliability

Error Accidental damage of
messages (truncation,
loss, alteration)

n/a Unreliable service Redundancy (multiple
path. . .),
Error detection and
report

Mismanage-
ment of
network
security
functions

Error Erroneous configuration
of the TSF

n/a Loss of security
properties

Documentation,
Design for
manageability,
Organizational practices

User mix threats
(Threats as seen by the User and basis of the User-oriented mix PP)
Untrusted
mix

Active A mix in the network
may be compromised
and reveal tracing
information

Of transiting
messages

Exposure of linking
information

Division of trust

Mix
conspiracy

Active Some mixes in the
network may conspire
to share and analyze
traffic information

Of transfer logs and
TSF operation

Loss of expected
security
functionalities

Organizational policies,
Independent
administration

Forgery Active An attacker may send
forged messages using a
user’s origin credentials

n/a Loss of
accountability
properties

Use of digital signatures

Intercept Passive Messages are intercepted
while transiting from
user to a mix

Of incoming and
outgoing traffic

Information on use
patterns

Generation of dummy
messages by the users

Misuse Error Erroneous use of the
TSF by the user

n/a Loss of expected
security
functionalities

Documentation,
Ease of use

Unreliability Error The connecting
network may be
unreliable, resulting in
message loss, truncation
or alteration

n/a Unreliable service Redundancy,
Error detection

Table 2: Threats used as basis for the Protection Profile (part 2)

176

ATTACHMENT E

Microsoft Exhibit 1067

The threats in the preceding list are then stated in each Protection Profile as formal threats, adhering to the
requirements imposed by the PP structure as described in the CC, as shown in the following sections.

The complete text of the PPs [11, 12, 13] is freely available and also contains extensive justifications for the
selection of threats and countermeasures.

7.3 Single Mix Protection Profile

The Single Mix Protection Profile was written to address the security problems of a single mix system, without
consideration towards the necessities of the user (who wants to send anonymous mail) and also ignoring all
the security threats, which may derive from the connection of the system with other mixes. The threat list
of this Protection Profile includes items such as flooding attacks, logical access to the TOE, replay attacks, traffic
size analysis, as shown in Table 3. The last two threats (marked with “TE”) are intended to be countered not
only by the mix itself but also by the environment (operating system, etc.).

At this point a general observation regarding the following lists of threats is necessary. These threat lists derive
from a detailed analysis of the operation, and risks, of mix networks, both from a practical point of view and
from a theoretical one. Afterwards, an informal threat list is produced (see the previous section), which is
then used to build a more structured threat list, which complies with the structural requirements (ease of
correspondence demonstration, avoiding overlapping threats, etc.) needed by the PP.

The lists must be, obviously, considered together with assumptions, which are also included in separate
tables. The idea behind this structure is that the PP should aim at completeness in addressing the security
issues, either by stating assumptions, or by indicating possible threats. However, the decision of how to
subdivide assumptions and threats is a very delicate one, because assumptions clearly do not need to be
addressed by the PP, but may hide some major security issues, thus causing the PP to be ineffective.

Table 4 lists the assumptions related to the previous threat list.

Table 5 shows the list of functional components used by the PP to address the shown threats. All the
functional components are taken from the ECITS/CC catalog. Each of the selected components listed in the
table introduces into the PP a number of atomic requirements that can be tailored by the author.

The selected EAL (Evaluation Assurance Level) is 3. This EAL was selected because it is commonly consid-
ered the highest attainable EAL through current not security oriented development practices. Moreover EAL
3 was considered as a good compromise between the TOE analysis complexity and the intended use of the
TOE. Recall that a single mix is to be used in a network, and the real strength of the system relies upon the
existence of a large number of independent systems.

7.4 Multiple Mix Protection Profile

The “Protection Profile for an Unobservable Message Delivery Application Using Mixes” (or Multiple Mix
Protection Profile) was written initially to complement the previous, and to take into account both the entire
network of mixes, and the requirements set by the user, which sees the mix network as one homogeneous
and opaque entity. Thus, the threats this PP addresses include threats like message interception and denial of
service, as shown in Table 6.

177

ATTACHMENT E

Microsoft Exhibit 1067

Threat Label Description
T.DenialOfService An attacker may try flooding the mix with a great amount of messages, thus causing an

overload on the mix and possibly leading to Denial of Service by the mix.
T.FloodingAttack An attacker may try flooding the mix with a great amount of messages, to single out only

one unknown message and discover its destination.
T.ForgeOrigin An attacker may send to the mix messages with a forged origin field.

This can be done for various reasons, for example to hide a flooding attack.
T.InterceptMessages An attacker may intercept and read the content of the messages (including the message

origin and final destination, arrival and departure order and time) exchanged by users and
the mix or between mixes.
The attacker may use intercepted messages to perform a traffic analysis to reveal input/output
message flow patterns.

T.LogicalAccess An attacker (this includes unauthorized users of the host system) may gain access to the
mix.
This may cause the complete failure of the mix.

T.ReplayAttack An attacker may intercept an incoming message and feed it to the mix many times, and, by
checking the outgoing messages, discover where it is directed.

T.SizeAnalysis An attacker may track the sizes of incoming and outgoing messages, thus linking origin and
destination.

T.WrapAndImpede An attacker may completely wrap the mix, thus selectively or totally impeding exchange of
messages with the users or other mixes.

TE.UntrustworthyAdministrator The mix administrator may abuse his trust and compromise completely the operation of
the mix.
Possible actions include: recompiling the mix application and modifying its behaviour, so to
trace messages, and impairing the mix and causing DoS.

TE.ProperAdministration The mix may be administered by the mix administrator in an insecure or careless manner.
This includes both the administration of the mix itself, such as unintentionally disclosing the
confidential security attributes of the mix, and the administrative practice, such as not using a
trusted channel when remotely administering the mix.

Table 3: Threats in the Single Mix Protection Profile

Assumption Label Description
A.Environment The mix works in a networked environment, on a single host.
A.Spam In case of a spam attack, the mix may not be able to satisfy ist goal.
A.DedicatedHost The mix is the only process on its host system. Its administrator coincides with the host’s

system administrator.
This assumption, and the following, is one possible formulation of the main relevant assumption:
that the host operating system will not allow or cause security breaches against the TOE. Having
the mix as the only application of the host system greatly reduces the complexity of the host’s
analysis.

A.OS The Operating System of the host of the mix identifies authorized users and protects the
mix operation and its data with regard to confidentiality, integrity, availability, and account-
ability.

Table 4: Assumptions in the Single Mix Protection Profile

178

ATTACHMENT E

Microsoft Exhibit 1067

Short name Unique name Component Description and Comments
FAU ARP.1 Security alarms This family defines the response to be taken in case of detected events indicative of a potential

security violation.
This requirement states what the mix should do when a security violation is detected (e.g. Spam
attack, Access to the security functions. . .) For example, the TOE may inform the administrator of
potential attacks, and possibly switch to a secure fail mode upon detection of security violations.

FAU GEN.1 Audit data
generation

Audit data generation defines the level of auditable events, and specifies the list of data that
shall be recorded in each record.
This component requires the TOE to generate an audit trail, which can then be used by an automated
or manual attack analysis and by an attack alarm system.

FAU SAA.3 Simple attack
heuristics

Simple attack heuristics, the TSF shall be able to detect the occurrence of signature events that
represent a significant threat to TSP enforcement. This search for signature events may occur
in real-time or during a post-collection batch-mode analysis.
This component is used to require the TOE to provide some means for automatic detection of (and
thus reaction to) potential attacks.

FAU SAR.1 Audit review Audit review provides the capability to read information from the audit records.
This component ensures that the audit trail is readable and understandable.

FAU STG.1 Protected audit
data trail storage

Protected audit trail storage, requirements are placed on the audit trail. It will be protected
from unauthorized deletion and/or modification.
This component is chosen to ensure that the audit trail is protected from tampering. Only the
authorized administrator is permitted to do anything to the audit trail.

FAU STG.4 Prevention of
audit data loss

Prevention of audit data loss specifies actions in case the audit trail is full.
This component ensures that the authorized administrator will be informed and will be able to take
care of the audit trail should it become full. But this component also ensures that no other auditable
events as defined in FAU GEN.1 occur. Thus the authorized administrator is permitted to perform
potentially auditable actions though these events will not be recorded until the audit trail is restore
to a non-full status.

FCS CKM.1 Cryptographic
key generation

Cryptographic key generation requires cryptographic keys to be generated in accordance with
a specified algorithm and key sizes that can be based on an assigned standard.
This and the following two requirements are included in the PP but left unspecified, since crypto-
graphic standards evolve rapidly.

FCS CKM.2 Cryptographic
key distribution

Cryptographic key distribution requires cryptographic keys to be distributed in accordance with
a specified distribution method that can be based on an assigned standard.

FCS CKM.4 Cryptographic
key destruction

Cryptographic key destruction requires cryptographic keys to be destroyed in accordance with
a specified destruction method that can be based on an assigned standard.

FCS COP.1 Cryptographic
operation

Cryptographic operation requires a cryptographic operation to be performed in accordance
with a specified algorithm and with a cryptographic key of specified sizes. The specified algo-
rithm and cryptographic key sizes can be based on an assigned standard.
The type and strength of the cryptographic functions is also left unspecified, and must be determined
in accordance to the intended use of the TOE, and the perceived threats.

FDP IFC.1 Subset
information
flow control

Subset information flow control requires that each identified information flow control SFP be
in place for a subset of the possible operations on a subset of information flows in the TOE.
This requirement (and the following) identifies the security attributes (e.g. routing information) and
the allowed information flows through the mix.

FDP IFF.1 Simple security
attributes

This component requires security attributes on information and on subjects that cause that
information to flow or that act as recipients of that information. It specifies the rules that must
be enforced by the function, and describes how security attributes are derived by the function.

Table 5: Functional Components in the Single Mix Protection Profile (part 1)

179

ATTACHMENT E

Microsoft Exhibit 1067

Short name Unique name Component Description and Comments
FDP IFF.4 Partial

elimination of
illicit
information
flows

Partial elimination of illicit information flows requires the SFP to cover the elimination of some
(but not necessarily all) illicit information flows.
Information about the correlation of origin with destination may reach the attacker through a covert
timing or storage covert channel, if care is not used in to blocking such information leakage; this
information may help timing, order, and size analysis attacks, and flooding attacks. This requirement
ensures that such leakage does not take place.

FDP RIP.2 Full residual
information
protection

Full residual information protection requires that the TSF ensure that any residual information
content of any resources is unavailable to all objects upon the resource’s allocation or dealloca-
tion.
This component requires the TOE not to retain data that could be used by an unauthorized user
of the security attributes management functions or by a malevolent administrator to trace messages.
(According to the ECITS/CC, this component only relates to “residual” data - storage space that is
not overwritten after use, etc.)

FDP SDI.2 Stored data
integrity
monitoring and
action

Stored data integrity monitoring and action adds the additional capability to the first compo-
nent by allowing for actions to be taken as a result of an error detection.
This component is needed for the correct operation of the TOE. If a message is modified while out of
TSF control (e.g. by an attacker), this component shall ensure that the message will be discarded as
invalid prior to processing.

FDP UCT.1 Inter-TSF user
data
confidentiality
transfer
protection

Basic data exchange confidentiality, the goal is to provide protection from disclosure of user
data while in transit.
This component ensures the data confidentiality during transport of the user data (namely, messages)
between separate TSFs and between user and TSF. The FDP UCT.1 and the FCS COP.1 compo-
nents work together (that is, the former requires messages to be confidential (e.g. by using encryption),
the latter sets requirements on the cryptographic functions.)

FMT MSA.1 Management of
security
attributes

Management of security attributes allows authorized users (roles) to manage the specified secu-
rity attributes.
Nobody may modify or change the security attributes associated with messages, as they are integral
part of the data needed by the mix to operate correctly. The mix does not store user data other than
the transiting messages, so there is no further data to manage.

FMT MSA.2 Secure security
attributes

Secure security attributes ensures that values assigned to security attributes are valid with respect
to the secure state.
This component requires the TOE to perform validity checks on the security attributes used by the
TOE itself, such as (local) origin and destination addresses of messages, message signatures and keys,
and the like.

FPR ANO.2 Anonymity
without
soliciting
information

Anonymity without soliciting information enhances the requirements of FPR ANO.1 by en-
suring that the TSF does not ask for the user identity.
This component (and the following) ensures that the TOE can be used without the user being required
of disclosing his own identity.

FPR UNL.1 Unlinkability Unlinkability requires that users and/or subjects are unable to determine whether the same user
caused certain specific operations in the system.

FPT FLS.1 Fail with
preservation of
secure state

Failure with preservation of secure state requires that the TSF preserve a secure state in the face
of the identified failures.
This component is used to force the TOE into biasing its operations towards a more secure than
reliable operation. The rationale behind this is that a user is more interested in using a safe mix,
rather than reliable one, since the TOE is anyhow intended to be used in an environment where
multiple mixes are in operation.

Table 5: Functional Components in the Single Mix Protection Profile (part 2)

180

ATTACHMENT E

Microsoft Exhibit 1067

Short name Unique name Component Description and Comments
FPT RCV.1 Manual

recovery
Manual recovery, allows a TOE to only provide mechanisms that involve human intervention
to return to a secure state.
This component allows for administrators to restore mix operation after a failure; prior to reactivating
the mix, however, the administrator shall analyze the audit records, understand the reason that
caused the failure, and remove its cause.

FPT RPL.1 Replay
detection

Replay detection requires that the TSF shall be able to detect the replay of identified entities.

FPT STM.1 Reliable time
stamps

Reliable time stamps requires that the TSF provide reliable time stamps for TSF functions.
This component (and the following) is selected to satisfy dependencies by other components.

FPT TST.1 TSF testing TSF testing provides the ability to test the TSF’s correct operation. These tests may be per-
formed at start-up, periodically, at the request of the authorized user, or when other conditions
are met. It also provides the ability to verify the integrity of TSF data and executable code.

FTP ITC.1 Inter-TSF
trusted channel

Inter-TSF trusted channel requires that the TSF provide a trusted communication channel
between itself and another trusted IT product.
This component is selected to ensure the presence of a trusted channel in inter-TSF communication.
The channel provides for confidential and untampered communication between trusted IT products,
namely, mixes; such channel might not be reliable, nor does it provide for party identification.

FTP TRP.1 Trusted path Trusted path requires that a trusted path between the TSF and a user be provided for a set of
events defined by a PP/ST author. The user and/or the TSF may have the ability to initiate the
trusted path.
This component is selected to ensure the presence of a trusted path between the TSF and the user;
such a path might not be reliable, nor does it provide for identification of the communicating party.

Table 5: Functional Components in the Single Mix Protection Profile (part 3)

Some of the threats may appear to be too obvious to be included in the threat list (as the T.MixPeek threat,
which states the possibility of a mix to read the information contained in a message which is not encrypted.)
However, such a statement is necessary exactly to make sure that all messages which transit through the mix
system are encrypted in such a way that each mix will not be able to read the content of the message apart
from the information of the next node where to send it.

The list of related assumptions follows (Table 7). Some of the assumptions are stated only to simplify the
PPs, like the A.DedicatedHost, which excludes other processes on the same host of each mix, and are really
not essential. However, there are assumptions, like the A.MinimalTrust, which are very important, because
they state explicitly when the entire mix network fails.

This document tries to conciliate the needs of the operators of the mixes on the network with those of the
users, and this leads to a conflict, which is difficult to solve using the standard CC components. Table 8
shows the components used to specify the requirements for this PP.

Unless otherwise indicated, the components are described and commented on similarly to the corresponding
components of the Single Mix PP (cf. Table 5).

The selected EAL is 3, because the higher EALs are mainly focused on the enhancement of the develop-
ment process, while in the case of the PP the development is of secondary importance with respect to the
installation and operation of the system.

181

ATTACHMENT E

Microsoft Exhibit 1067

Threat Label Description
T.DenialOfService The TOE may be isolated from the users by blocking the network connections, and causing

DoS.
This threat applies to the TOE as well as to the surrounding environment. The PP will however
only address if from the TOE point of view.

T.MessageInterception The network and physical layer connections between mixes are not trusted.
This means that an attacker may manage to intercept messages transiting over the network and
read their origin and destination fields.

T.Misuse Users may improperly use the TOE and produce traceable messages, while thinking the
message was correctly sent and delivered.
The administrators may inadvertently mismanage or badly configure parts of the TOE as
to loose the security properties of that part of the TOE.

T.MixPeek A subverted mix may be able to gain knowledge of the origin and destination of a message
by reading its content while processing it.

T.OneStepPath A mix may gain information linking origin and destination if the path from the origin user
to the destination user contains only one mix.

T.TOESubstitution An attacker may block messages sent by some user and act as the TOE, or a part thereof.
Inadvertent users may send messages to the attacker instead of to the TOE, and the attacker
may then read origin and destination data and forward the message to the destination.

T.UnreliableNetwork The connecting network may not be reliable on correctly delivering messages between parts
of the TOE. Specifically, messages may be lost, altered or truncated accidentally.

TE.MixConspiracy Subverted mixes may share input/output information with the goal of linking origin and
destination of a message.

Table 6: Threats in the Multiple Mix Protection Profile

Assumption Label Description
A.IndependentAdministration The mixes forming the TOE are assumed to be independently administered from each

other.
A.MinimalTrust The TOE may not be able to reach its goal if all nodes (mixes) are subverted.
A.OpenEnvironment The mix network works in an open networked environment; each mix is operated on a

single host.
A.UserCooperation Users cooperate actively at the enforcement of the security policy of the TOE.

Users are trusted to use in a correct manner the services made available by the TOE to reach
their anonymity goals.

A.DedicatedHost The mix is the only process on its host system. Its administrator coincides with the host’s
system administrator.

A.SecureLocation The mixes forming the TOE are located at secure sites and physically protected from access
by unauthorized users.

Table 7: Assumptions in the Multiple Mix Protection Profile

182

ATTACHMENT E

Microsoft Exhibit 1067

Short name Unique
name

Component Description and comments

FCS CKM.1 Cryptographic
key
generation

FCS CKM.2 Cryptographic
key
distribution

FCS CKM.4 Cryptographic
key
destruction

FCS COP.1 Cryptographic
Operation

FDP IFC.1 Subset
information
flow control

This component requires that each identified information flow control SFP be in place for a
subset of the possible operations on a subset of information flows in the TOE.
This component defines the policy of operation of the TOE and the subjects, information and opera-
tions controlled by the TOE.

FDP ITT.1 Basic internal
transfer
protection

Basic internal transfer protection requires that user data be protected when transmitted between
parts of the TOE.

FDP ITT.3 Integrity
monitoring

Integrity monitoring requires that the SF monitor user data transmitted between parts of the
TOE for identified integrity errors.
This component is required to allow safe delivery of messages through the mix network.

FDP RIP.2 Full residual
information
protection

FMT MSA.1 Management
of security
attributes

FMT MSA.2 Secure
security
attributes

FMT MSA.3 Static
attribute
initialisation

Static attribute initialisation ensures that the default values of security attributes are appropri-
ately either permissive or restrictive in nature.
The security attributes (hash values, signatures. . .) of the data stored and transferred throughout the
TSF are generated automatically by the TOE. This data is not discretionary in nature, but must
obey specific rules and may not be changed by users, or by the mix administrator.

FPR ANO.2 Anonymity
without
soliciting
information

Table 8: Functional Components in the Multiple Mix Protection Profile (part 1)

183

ATTACHMENT E

Microsoft Exhibit 1067

Short name Unique
name

Component Description and comments

FPR UNL.1
(1)

Unlinkability
of origin and
destination

Unlinkability requires that users and/or subjects are unable to determine whether the same user
caused certain specific operations in the system.
This component is introduced here to make sure that the network actually will grant the unlinkability
of origin and destination of a message.

FPR UNL.1
(2)

Unlinkability/
untraceability

This requirement is stated to make sure that an observer may not be able to link two observed
messages transiting through the mix network, as being steps of the same message chain.
This somewhat awkward formulation of the unlinkability requirements simply states that a mix shall
not be able to bind messages exchanges between other nodes together into a single mix chain.

FPR UNO.2 Allocation of
information
impacting
unobservabil-
ity

Allocation of information impacting unobservability requires that the TSF provide specific
mechanisms to avoid the concentration of privacy related Information within the TOE. Such
concentrations might impact unobservability if a security compromise occurs.
Particularly, this requirement states that routing information may be accessible to mixes only when
strictly necessary, e.g. to identify the following step in the mix chain as described for example in
[7]. This functional component provides protection both to the mix network, by minimizing the
exposure of information to attackers, which may be used to exploit covert channels, and to the user,
to guarantee that the network will continue to operate securely even when some, unless not all, nodes
are compromised.

FPT FLS.1 Failure with
preservation
of secure state

If some nodes in the network fail or are subverted, the remaining nodes shall continue to work
properly, in a secure manner.

FPT ITT.1 Basic internal
TSF data
transfer
protection

Basic internal TSF data transfer protection, requires that TSF data be protected when transmit-
ted between separate parts of the TOE.
This component (and the following) protect the data produced and used by the TSF, and transferred
between parts of the TOE, such as dummy messages, mix public keys updates transmitted between
mix nodes, etc.

FPT ITT.3 TSF data
integrity
monitoring

TSF data integrity monitoring requires that the TSF data transmitted between separate parts of
the TOE is monitored for identified integrity errors.

FTP TRP.1 Trusted path

Table 8: Functional Components in the Multiple Mix Protection Profile (part 2)

184

ATTACHMENT E

Microsoft Exhibit 1067

7.5 User-oriented Protection Profile for Unobservable Message Delivery Using Mix net-
works

The “User-Oriented Protection Profile for Unobservable Message Delivery Using Mix Networks” was devel-
oped with in mind only the needs of the user of the mix network, and thus addresses threats like untrusted
mix, misuse, key forgery, as shown in Table 9. The table also includes two Organisational Policies (marked
with an “O.” label) that state supplementary requirements for the TOE and that do not derive directly from
some threat. The policies are however treated like threats in the following steps that lead to the formal
requirements statement.

A set of assumptions for the User-Oriented PP follows in Table 10.

The second step of writing a PP is that of specifying a set of security objectives, which state the objectives
that the TOE should reach to be able to counter all the threats. A correspondence between objectives and
threats must be demonstrated (the rigor of this analysis depends on the EAL selected for the PP), but such
demonstration is omitted here due to space constrains. Table 11 shows the Security Objectives that were
stated for this PP. As for the threats table, the Security Objectives are also divided in two categories, namely,
objectives which are to be achieved solely by the TOE, and objectives for which the surrounding environment
(Operating System, Administration, etc.) are partly or wholly responsible.

A correspondence between objectives and threats must be demonstrated (the rigor of this analysis depends
on the EAL selected for the PP), but such demonstration is omitted here due to space constrains. However,
the correspondence between threats and objectives is shown in Table 12.

As written above (section 7.2), the problems encountered during the development of this PP because of
expressive deficiencies of the CC components led eventually to the writing of the proposed families. After
the development of the new components, a second version of the PP was written; this new PP maintains
the same threats and objectives of the previous PP, and simply uses also the new components to express its
requirements, accordingly to the recommended top-down practice for PP development. The new version
of this PP is decidedly simpler, more effective, and more precise in the requirements definition for the
considered application. Table 13 shows the functional components used by this new version of the PP,
which also employs the new proposed components (marked in the third column). Where relevant, a short
description of the component and its use is provided in the fourth column.

The correspondence table between components and Objectives follows (Table 14). The tables provided in
this section allow the reader to trace a single ECITS/CC component selected for inclusion in the PP to
a specific threat or policy the TOE must counter or satisfy. Security Objectives that are not “covered” by
any component must be addressed either by Assurance requirements, or by additional requirements on the
environment, which are however not relevant at this point, and are here omitted.

The selected EAL level for this PP is EAL 5. The high assurance level is selected to gain a high level of
assurance that the TOE will be developed, delivered, and evaluated following rigorous commercial practices.
A formal model of the TOE security policies must be provided and evaluated, and the system must be inde-
pendently tested. EAL 5 is the lowest level providing assurance components that impose the aforementioned
tasks.

185

ATTACHMENT E

Microsoft Exhibit 1067

Threat Label Description
O.Anonymity The TOE shall provide for an anonymous message delivery service; that is, the recipient of

a message shall not be able to know the origin of the message, unless the author expressly
inserts this information in the message body.

O.Untraceability The TOE shall provide for an untraceable message delivery service; this means that, taken
any message transiting through the system at any time, it shall not be possible to obtain
enough information to link its origin and destination users.

T.ContentDisclosure An attacker might intercept transiting messages between parts of the TOE and read their
content, thus disclosing it, together with any related information.
This is a threat not only to the operation of the TOE (as discussed in [12]), but also for the user,
whose communications might be traced. In particular, this threat relates to messages transiting
from the user client to a node on the network and refers to both the original message content
(written by the user), and also to the routing information and other auxiliary information
carried by the message.

T.EndPointTrafficAnalysis An attacker might intercept transiting messages between parts of the TOE (user client and
mix node), and use the related information to perform traffic analysis on a user.
This threat relates to the concepts of sender anonymity and receiver anonymity. As viewed tra-
ditionally, main goal of the mix network is to hide the relation between receiver and sender of a
message (this property also known as sender/receiver anonymity). However, once a suspect on a
possible communication between two users is established, it may be possible to monitor the end
points of message chains for a statistical correlation between transmission and reception times,
especially if the traffic on the network is low, the users few, and the per-user traffic low. A similar
discussion, related to Web transactions, may be found in [20].

T.KeyForgery An attacker might generate forged keys, simulating the activity of a given mix, distribute
them, and make the user employ them to encrypt message in the belief that such messages
are only readable by the replaced mix.
This is a threat to the originating user, who will send messages readable to an attacker, and might
not be warned about it. A trust scheme (implemented for example by a certification authority)
is required to counter this threat.

T.Misuse The user might install, configure or use the TOE interaction functions in an insecure
manner, hence compromising the expected security properties offered by the TOE.
This threat is particularly relevant when considering the “human” element when this is the user,
because the user is not expected to have as deep a knowledge about the TOE functions and about
the security concerns as, for example, a system administrator, who represents the human element
in the case of an administered mix node.

T.OneStepPath A mix may gain information linking origin and destination if the path from the origin user
to the destination user contains only one mix.

T.UntrustworthyMix Some mix(es) in the network may be compromised and hold, process and/or disclose in-
formation useful to trace, and/or reveal the content of, communications.

TE.MixConspiracy Some mixes in the network may be compromised and share information useful to trace,
and/or reveal the content of, communications.
This threat represents an extension to the T.UntrustworthyMix threat, in that it introduces the
concept of information sharing between parts of the TOE.

TE.PartialNetworkBlock An attacker might block the connection between parts of the TOE and the user.
This is a typical DoS attack, where part or the entire TOE is rendered unusable.

TE.Redirection An attacker might redirect the connections between parts of the TOE and act as to replace
that part seamlessly, thus effectively acting as a compromised mix subset.

Table 9: Threats in the User-Oriented Mix Protection Profile

186

ATTACHMENT E

Microsoft Exhibit 1067

Assumption Label Description
A.SecurityGoals The TOE is assumed to be used to achieve unlinkable and anonymous or pseudonymous

communication. Other security properties, as unobservability of TOE use are not contem-
plated.

A.LogicalSec The TOE will perform as long as the user takes care of securing the logical access to their
computing environment.
This assumption requires some explanatory text. As logically securing mainstream operating sys-
tems and environments, especially when networked, is close to impossible2, the assumption should
be taken rather loosely, provided that if the risk analysis leads to the conclusion that an attack on
the user’s workstation is likely, then the user should adopt a safer operating environment.

A.OS The single parts of the TOE run on operating system platforms that are assumed to be
trusted and not to expose privacy related information belonging to the TOE.

A.PhysSec The TOE will perform as long as the users take care of securing their physical access to the
message traffic handled by the TOE.
This is a point that cannot be over-stressed; an insecure physical user location may be easily ex-
ploited against the user who mistakenly believes that his or her communications are unobserved.

A.MinimalConnectivity The TOE might not be able to reach its goal if an attacker is able to block all access points
of the user to the mix network.

A.MinimalTrust The TOE might not be able to reach its goal if all nodes (mixes) of the network are sub-
verted.

A.OpenEnvironment The mix network works in an open networked environment.
A.UnreliableNetwork The connecting network might not be reliable on correctly delivering messages between

parts of the TOE. Specifically, messages may be lost, altered or truncated accidentally.
The TOE is however not required to provide reliable service. A high degree of reliability may be
achieved by sending multiple copies of a message through different paths.

A.UserCooperation Users cooperate actively at the enforcement of the security policy of the TOE.
Users are trusted to use in a correct manner the services made available by the TOE to reach
their anonymity goals.

Table 10: Assumptions in the User-Oriented Mix Protection Profile

187

ATTACHMENT E

Microsoft Exhibit 1067

Security Objective Label Description
SO.AdequateDocumentation The TOE shall provide the user with adequate, readable documentation on the correct use

of the security functions.
SO.Anonymity The TOE shall accept and process messages without requiring that the processed data may

be in any way linked to the origin user.
SO.ConcealMessageContent The TOE shall enforce that the content of all messages transiting on the network be inac-

cessible to all third parties, in whatever point of the network the messages are intercepted.
SO.CounterTrafficAnalysis The TOE shall be constructed as to counter traffic analysis techniques specifically aimed at

analyzing the communications between user client software and the mix network.
SO.DivideSecurityInformation The TOE shall be constructed as to provide the user the ability, and enforce the correct use

of such ability, of determining the allocation of unlinkability-relevant data among different
parts of the TOE..

SO.DivideSecurityProcessing The TOE shall provide to the user the ability, and enforce the correct use of such ability,
of freely choosing a combination of mix nodes among which to allocate the processing
activities achieving unlinkability.

SO.EnforceProperUse The TOE (and especially the user interface part of the TOE) shall enforce the proper and
secure use of the security functions of the TOE.
For example, require secure pass phrases, encryption, and minimum message chain length.

SO.EnforceTrustDistribution The TOE shall be constructed to enforce the user’s choice of information and processing
distribution.

SO.Identity The TOE shall uniquely identify the single mix nodes and users and provide means to
transmit data to a specific mix while preserving the confidentiality of such data.

SO.KeyTrustAssurance The TOE shall provide the user the ability, and enforce the correct use of such ability, of
validating any public key used for encryption purposes against some trusted mechanism,
to gain confidence that the communicating partner is actually who he claims to be.

SO.MinimizeSecurityInformation The TOE shall be constructed as to minimize the use, distribution and availability time
frame of information impacting unlinkability.

SO.Untraceability The TOE shall also ensure that no subject (user, administrator, threat agent) has the possi-
bility to gain sufficient information as to track back the origin of a message.

SOE.AntagonisticManagement The TOE shall be independently and antagonistically managed.
The main problem with this security objective to be fulfilled by the environment is that it is nearly
impossible to enforce it without some form of post-deployment assurance evaluation control and
maintenance.

SOE.DistributedNetwork The TOE shall rely on a topologically distributed network.
This is required to maximize the resources that an attacker must deploy in the attempt to “cut off ”
part of the network from the rest. Apart from requiring specific design choices, this requirement
can only be met by implementing a sound collective administration policy, and by providing
means to assure the users of the effects of such a policy.

Table 11: Security Objectives in the User-Oriented Mix Protection Profile

188

ATTACHMENT E

Microsoft Exhibit 1067

O
.A

no
ny

m
it

y

O
.U

nt
ra

ce
ab

ili
ty

T.
C

on
te

nt
D

is
cl

os
ur

e

T.
E

nd
Po

in
tT

ra
ffi

cA
na

ly
si

s

T.
K

ey
Fo

rg
er

y

T.
M

is
us

e

T.
O

ne
St

ep
Pa

th

T.
U

nt
ru

st
w

or
th

yM
ix

T
E

.M
ix

C
on

sp
ir

ac
y

T
E

.P
ar

tia
lN

et
w

or
kB

lo
ck

T
E

.R
ed

ir
ec

ti
on

SO.AdequateDocumentation *
SO.Anonymity *
SO.ConcealMessageContent *
SO.CounterTrafficAnalysis *
SO.DivideSecurityInformation * *
SO.DivideSecurityProcessing * *
SO.EnforceProperUse *
SO.EnforceTrustDistribution * * * *
SO.Identity * *
SO.KeyTrustAssurance *
SO.MinimizeSecurityInformation *
SO.Untraceability *
SOE.AntagonisticManagement *
SOE.DistributedNetwork * *

Table 12: Security Objectives to Threats and Organizational Policies mapping

189

ATTACHMENT E

Microsoft Exhibit 1067

Sort name Unique
name

New? Component Description and Comments

FCS CKM.1 Cryptographic
key
generation

Cryptographic key generation requires cryptographic keys to be generated in ac-
cordance with a specified algorithm and key sizes that can be based on an assigned
standard.

FCS CKM.2 Cryptographic
key
distribution

Cryptographic key distribution requires cryptographic keys to be distributed in
accordance with a specified distribution method that can be based on an assigned
standard.

FCS CKM.4 Cryptographic
key
destruction

Cryptographic key destruction requires cryptographic keys to be destroyed in ac-
cordance with a specified destruction method that can be based on an assigned
standard.

FCS COP.1 Cryptographic
operation

Cryptographic operation requires a cryptographic operation to be performed in
accordance with a specified algorithm and with a cryptographic key of specified
sizes. The specified algorithm and cryptographic key sizes can be based on an
assigned standard.

FDP ACC.2 Complete
access control

Complete access control requires that each identified access control SFP cover all
operations on subjects and objects covered by that SFP. It further requires that all
objects and operations with the TSC are covered by at least one identified access
control SFP.
This access control policy, which is composed of this component and the following, states
that:

� All data produced by subjects covered by the SFP must obey the policy’s require-
ments;

� Data produced by subjects covered by the SFP must be explicitly addressed to
some subject;

� Data explicitly addressed to some subject must be unreadable by all other sub-
jects;

� Data produced by a subject may be read by the same subject that originated it.

FDP ACF.1 Security
attribute
based access
control

Complete access control requires that each identified access control SFP cover all
operations on subjects and objects covered by that SFP. It further requires that all
objects and operations with the TSC are covered by at least one identified access
control SFP.

FDP IFC.1 Subset
information
flow control
(CCE)

Subset information flow control requires that each identified information flow con-
trol SFP be in place for a subset of the possible operations on a subset of informa-
tion flows in the TOE.
The CCE (Covert Channel Elimination) SFP, stated in this component and the follow-
ing, requires the TOE to deploy techniques to eliminate covert channels by which an
attacker may gain information about the use of the system by some user, especially with
regards to traffic analysis information. (The specific technique to adopt is not specified.)

FDP IFF.4 Partial
elimination
of illicit
information
flows

Partial elimination of illicit information flows requires the SFP to cover the elimi-
nation of some (but not necessarily all) illicit information flows.

Table 13: Functional Components in the User-Oriented Protection Profile for unobservable message delivery
using mix networks (part 1)

190

ATTACHMENT E

Microsoft Exhibit 1067

Sort name Unique
name

New? Component Description and Comments

FDP IRC.2 Full
information
retention
control

Yes Full information retention control requires that the TSF ensure that any copy of all
objects in the TSC is deleted when not more strictly necessary for the operation of
the TOE, and to identify and define the activities for which the object is required.
This component is used to state a minimization of access to information policy, which we
tried to state using the stock CC components with access control requirements. However
stating such a policy by means of access control is not satisfying, in that it represents a
considerable extension to the intended use of the components, which are, as the name
suggests, to be used to state information objects access policies in the traditional sense
and do not lend themselves to other applications.
For this reason this new component was developed and used in this PP.

FDP ITT.1 Basic internal
transfer
protection

Basic internal transfer protection requires that user data be protected when trans-
mitted between parts of the TOE.

FDP RIP.2 Full residual
information
protection

Full residual information protection requires that the TSF ensure that any resid-
ual information content of any resources is unavailable to all objects upon the
resource’s allocation or deallocation.

FIA ATD.1 User attribute
definition

User attribute definition, allows user security attributes for each user to be main-
tained individually.

FIA UID.1 Timing of
identification

Timing of identification, allows users to perform certain actions before being iden-
tified by the TSF.

FMT MSA.1 Management
of security
attributes

Management of security attributes allows authorized users (roles) to manage the
specified security attributes.

FMT MSA.2 Secure
security
attributes

Secure security attributes ensures that values assigned to security attributes are valid
with respect to the secure state.

FMT MSA.3 Static
attribute
initialisation

Static attribute initialisation ensures that the default values of security attributes
are appropriately either permissive or restrictive in nature.

FMT SMR.1 Security roles Security roles specifies the roles with respect to security that the TSF recognizes.
FPR ANO.2 Anonymity

without
soliciting
information

This component makes sure that the TOE does not request identification informa-
tion regarding the origin and destination of messages it handles, and that nobody
may gain information linking a data object (message) to users.

Table 13: Functional Components in the User-Oriented Protection Profile for unobservable message delivery
using mix networks (part 2)

191

ATTACHMENT E

Microsoft Exhibit 1067

Sort name Unique
name

New? Component Description and Comments

FPR TRD.2 Allocation of
information
assets

Yes Allocation of information assets requires that the TSF ensure that selected infor-
mation impacting privacy be allocated among different parts of the TOE in such
a way that in no state a single administrative domain will be able to access such
information.
This component, and the following one, is needed to implement a trust distribu-
tion mechanism, which by the sole use of stock CC components was stated using the
FPR UNO.2 “Allocation of information impacting observability”. However, the fact
that it refers specifically to “unobservability” has impeded its use for other security prop-
erties. Additionally, in the initial version of the PP, which used the stock CC compo-
nents, the FDP ACC.2 “Complete access control”, and FDP ACF.1 “Security attribute
based access control” were used to implement a mandatory access control policy in the
TOE, which would require data:

� To be explicitly addressed

� To be not accessible by any subject except the intended addressee.

However, using access control requirements to state requirements on the distribution of
information resulted in stating unclear and ineffective requirements, since the structure
of the CC access control components derives from experience in implementing standard
access control policies, and does not lend itself well to the requirements needed for the
mix.
Therefore, in the new PP the more general FPR TRD “Distribution of trust” family
replaces all of the cited stock CC requirements components.
This component divides the TOE (the mix network) in multiple administrative do-
mains (a single mix node), as described in section 9.3.
A more complete explanation of how this family enhances the PP can be found in section
9.3.3.

FPR TRD.3 Allocation of
processing
activities

Yes FPR TRD.3 Allocation of processing activities requires that the TSF ensure that
selected processing activities impacting privacy be executed on different parts of
the TOE in such a way that no single administrative domain will be able to make
use of information gathered from the processing activity.

FPR UNL.2 Unlinkability
of users

Yes Unlinkability of users requires that users and/or subjects are unable to determine
whether two users are referenced to by the same object, subject or operation, or are
linked in some other manner.
Originally the FPR UNL.1 “Unlinkability” component was used to state requirements
on the intended purpose of the mix network, i.e. to provide for unlinkable commu-
nication between partners. However, the fact that the CC unlinkability component is
expressly limited to “unlinkability of operations” has made it difficult to use such a com-
ponent in a more general way. For this reason it was replaced by the new, more general,
FPR UNL.2 “Unlinkability of users” component.

Table 13: Functional Components in the User-Oriented Protection Profile for unobservable message delivery
using mix networks (part 3)

192

ATTACHMENT E

Microsoft Exhibit 1067

SO
.A

de
qu

at
eD

oc
um

en
ta

ti
on

SO
.A

no
ny

m
ity

SO
.C

on
ce

al
M

es
sa

ge
C

on
te

nt

SO
.C

ou
nt

er
Tr

af
fic

A
na

ly
si

s

SO
.D

iv
id

eS
ec

ur
ity

In
fo

rm
at

io
n

SO
.D

iv
id

eS
ec

ur
ity

Pr
oc

es
si

ng

SO
.E

nf
or

ce
Pr

op
er

U
se

SO
.E

nf
or

ce
Tr

us
tD

is
tr

ib
ut

io
n

SO
.I

de
nt

it
y

SO
.K

ey
Tr

us
tA

ss
ur

an
ce

SO
.M

in
im

iz
eS

ec
ur

ity
In

fo
rm

at
io

n

SO
.U

nt
ra

ce
ab

ili
ty

SO
E

.A
nt

ag
on

is
ti

cM
an

ag
em

en
t

SO
E

.D
is

tr
ib

ut
ed

N
et

w
or

k

FCS CKM.1 *
FCS CKM.2 *
FCS CKM.4 *
FCS COP.1 *
FDP ACC.2 * *
FDP ACF.1 * *
FDP IFC.1 *
FDP IFF.4 *
FDP IRC.2 *
FDP ITT.1 *
FDP RIP.2 *
FIA ATD.1 *
FIA UID.1 * *
FMT MSA.1 * *
FMT MSA.2 * * *
FMT MSA.3 * * *
FMT SMR.1 * *
FPR ANO.2 *
FPR TRD.2 * * *
FPR TRD.3 * * *
FPR UNL.2 *

Table 14: Functional components to Security Objectives mapping

193

ATTACHMENT E

Microsoft Exhibit 1067

8 The experiences gained

The process of writing PPs is supposed to be top-down. The author identifies a set of threats, devises a set of
security objectives that should counter all the threats, and finally expresses these objectives through a set of
formal requirements taken from the ECITS/CC catalog. This methodology has many advantages, the main
one being that the development process of the PP is clean, and the formal demonstration of correspondence
between the various threats, objectives and requirements is simple.

The problems arise when the PP author needs to express requirements for security objectives not covered by
ECITS/CC components. During the development of the User-Oriented Protection Profile, three such issues
were identified:

1. Requirements on the distribution of the TOE: although it may be viewed as a purely architectural
requirement, it is worthy to note that many secure systems are based explicitly on a distributed system
to perform the security relevant tasks. Mixes are an example, but also digital payment systems, etc.
show such pattern.

2. Requirements on the policies requiring the minimization of knowledge: clearly information that has
been disposed of cannot be disclosed. Deleting information as soon as it is not essential to the opera-
tion of the system anymore is thus always a safe practice.

3. Requirements on unlinkability properties to be enforced by the TOE: the statement of unlinkability
of operations is possible through the stock ECITS/CC components, but not so for unlinkability of
users, which is precisely what the mix network provides.

To solve the expressive deficiencies of the ECITS/CC a number of options may be considered, and the
following three are worthwhile to mention:

1. Restate the security objective differently, (i.e. “fit” the objective to the requirements),

2. Try to force the criteria components to cover the objective (i.e. “fit” the requirements to the objective),

3. Develop new functional components.

The first two options show to be not viable in the long run. In fact, the first one breaks the top-down
paradigm, and distorts the PP to state what is expressible by the criteria, necessarily avoiding all security
issues which are not simply stateable by the ECITS/CC. The second option “overloads” the ECITS/CC
components to express requirements for which they were not thought. This has many drawbacks; for one
thing, it may simply be not always possible. Moreover, the requirements tend to become unclear, and
ineffective, and the PP evaluation process becomes more complicated because of the non-straightforward use
of the components.

The third option has undoubtedly many formal and theoretical advantages, and some drawbacks. On the
one hand, the requirements may be stated in a simple fashion, and the top-down structure is preserved. On
the other hand, while the ECITS/CC allow for expansion of the base requirements sets, one of their main
advantages (i.e. mutual recognition) is not guaranteed for PPs that use such novel components.

194

ATTACHMENT E

Microsoft Exhibit 1067

The full discussion of the various problems encountered, and of how it was decided to write new components
is too lengthy to be included here, but it can be said that each of the previous issues arose when trying to
express specific objectives through the criteria, and an effort was made to approach the problem by using all
three strategies [14]. In each case, the conclusion was found that the technically best way to proceed was that
of developing new components.

The decision might have been different in the situation of a concrete evaluation. There resource constraints
(getting an evaluation through without spending too much time discussing novel approaches) and the aiming
at easier mutual recognition (therefore staying with the standard set of components) might have got priority.
However, with respect to improving the ECITS/CC two new families and one largely revised family are
proposed in the next chapter

9 Proposals for new and revised functional families

Three new functional families were devised, in a general enough formulation, and in a suitable format to be
included in the ECITS/CC set. The new families are summarized inTable 15. Each family is discussed in a
separate section below. The formal statement of the three families, which follows the typographical, layout
and content standards of the ECITS/CC, can be found in the Annexes (Chapter 13).

The components were proposed to solve precise problems we incurred in while using the ECITS/CC to state
requirements for mix networks, but are devised to be as reusable and general as possible.

Label Name Purpose
FDP IRC Information retention control Limit the accumulation of non-essential information.
FPR UNL Unlinkability Extend the current unlinkability requirements.
FPR TRD Distribution of trust Allow the user to allocate information and processing activities.

Table 15: Proposed new and revised functional families

9.1 Information retention control (FDP IRC)

The “Information retention control” family addresses a basic need in secure information processing and
storage applications, which however appears not to be covered by the ECITS/CC: the need for secure man-
agement of data no more needed by the TOE to perform its operation, but still stored in the TOE. The
traditional view of IT systems as data storage systems induced naturally into thinking that once entered, data
would be seldom deleted from the system, and if so, mainly because of storage exhaustion problems.

But in a multilateral or high security environment it is important to minimize the replication, and temporal
time frame in which information is contained in the system. Also, users might want their IT products to
avoid retaining data that they consider exploitable by third parties, or threatening their privacy. In this case,
such a requirement can help users to gain confidence that the product is secure, as far as it deletes every copy
of the data when not needed anymore.

The FDP RIP “Residual information protection” family addresses one side of this problem3, but an explicit
requirement on the management of no longer needed data is missing.

3Namely, the elimination from the TOE of all traces left behind by objects upon deallocation of resources used to store or
manipulate them.

195

ATTACHMENT E

Microsoft Exhibit 1067

Of course competing requirements may arise, as data may be needed by the system for more activities over a
long period of time. Possible solutions to this problem are:

� Better protecting the information objects stored in the TOE from access,

� Re-requesting the protected information from the user each time it is needed.

9.1.1 Overview of the family

Information retention control ensures, that information no longer necessary for the operation of the TOE is
deleted by the TOE. Components of this family require the PP author to identify TOE activities and objects
required for those activities, and not to be kept in the TOE, and the TOE to keep track of such stored
objects, and to delete on-line and off-line copies of unnecessary information objects.

The suggested class for this family is class FDP “User Data Protection”, since the main purpose of this family
is the protection of user data while in the TOE.

This family sets only requirements on information objects requested for specific activities in the TOE op-
eration, and not on general data gathering. The policies which control the collection, storage, processing,
disclosure and elimination of general user data stored on the TOE must be detailed elsewhere, and are domain
of the environmental objectives and organizational policies, not of the PP.

Components belonging to this family could be used, for example, when the TOE needs some information
from the user, or generates information, which might be easily mismanaged or misused in case of a malicious
or inadvertent use or administration of the TOE. This category includes, for example:

� Connecting IP numbers on anonymizing proxy servers;

� One-time cryptographic keys, which if eventually disclosed could allow the decryption of intercepted
and stored communications or files;

� TOE usage histories, as interactive command line shell histories, or information presentation tools
cache files (i.e. WWW browser caches), which, while useful to the user and TOE during specific
activities, could be used to track user or TOE actions, if preserved across sessions;

� Any information for which security considerations (both of the TOE and of the user) suggest not to
keep on the TOE, if not strictly necessary.

When more than one activity requires the presence of a protected object, all activities, which refer to the
required object must end before deleting it.

9.1.2 Components

The family has two hierarchical components:

196

ATTACHMENT E

Microsoft Exhibit 1067

FDP IRC.1 Subset information retention control requires that the TSF ensure that any copy of a defined
subset of objects in the TSC is deleted when no longer strictly necessary for the operation of the TOE,
and to identify and define the activities for which the object is required.

FDP IRC.2 Full information retention control requires them same but regarding to all objects in the
TSC.

FDP IRC.1 Subset information retention control This component requires that, for a subset of the
objects in the TOE, the TSF will ensure that the objects will be deleted from the TOE when no longer
required for some specific action.

The formal description of the component is available in section 13.1. The PP/ST author should specify the
list of objects subject to information retention control. He should also specify the list of activities which
require specific objects to be stored in the TOE, and whose termination requires the TOE to delete the no
more required objects.

FDP IRC.2 Full information retention control This component requires that, for all objects in the TOE,
the TSF will ensure that the objects will be deleted from the TOE when no longer required for some specific
action. In other words, every object used by the TOE must be tracked for its necessity, and if not more strictly
required, deleted. Therefore this component is hierarchical to FDP IRC.1.

The assignment can be limited to specifying the list of activities which require specific objects to be stored in
the TOE, and whose conclusion requires the TOE to delete the no more required objects.

9.2 Unlinkability (FPR UNL)

The general model of entities as set up in the ECITS/CC (cf. 4.1) allows specifying various kinds of security
requirements, including privacy-related requirements. For example an unlinkability of operations require-
ment would impose a constraint on the relationship between operations in the TSC relating them to a
particular user.

However, the full expressive potential of this model is not described by the standard ECITS/CC components.
Figure 3 shows the current situation: The solid arrows indicate a relationship, which is covered by a particular
ECITS/CC component, and the dashed arrows indicate that the link they represent is not expressible using
the current ECITS/CC privacy components. With regard to unlinkability, the ECITS/CC provide the
FPR UNL.1 component that provides unlinkability of operations (cf. 4.2.3). Its only functional element
reads:

FPR UNL.1.1 The TSF shall ensure that [assignment: set of users and/or subjects] are unable to de-
termine whether [assignment: list of operations] [selection: were caused by the same user, are related as
follows [assignment: list of relations]].

Although useful, this family does not cover at least one case, which is of primary importance for mixes: the
unlinkability of users, in relation to a specific data object (the mail message). This kind of property is also

197

ATTACHMENT E

Microsoft Exhibit 1067

Subject Object

User Operation

UNO.1

ANO.1

UNL.1

ANO.1
ANO.1

UNO.1

UNO.1

Figure 3: Unlinkability properties covered (solid arrows) and not covered (dashed arrows) by existing com-
ponents

hard to express through the other families: one could try using the unobservability (FPR UNO) family,
which is however not adequate because the action itself of transmitting a message is not hidden by the mix
system. The mix hides only the relation between users, and between email and user.

In conclusion an enhancement of the unlinkability family is necessary to augment the expressiveness of the
ECITS/CC to include also the mentioned cases.

9.2.1 Overview of the family

The aim of the unlinkability family is still to ensure that selected entities may refer each another without
others being able to observe these references (cf. 4.2.3); the change is that it now applies not only to users
operations, but also to subjects and objects.

The components share a common structure and provide the PP author with the possibility of tailoring the
following:

1. The users and subjects from which the information should be hidden.

2. A list of specific entities that the requirement protects.

3. A selection or an assignment of a list of relationships to hide.

9.2.2 Components

The family consists of four sibling components:

198

ATTACHMENT E

Microsoft Exhibit 1067

FPR UNL.1 Unlinkability of operations requires that users and/or subjects are unable to determine
whether the same user caused certain specific operations in the system, or whether operations are
related in some other manner.

This component ensures that users cannot link different operations in the system and thereby obtain
information.

FPR UNL.2 Unlinkability of users requires that users and/or subjects are unable to determine whether
two users are referenced to by the same object, subject or operation, or are linked in some other
manner.

This component ensures that users cannot link different users of the system and thereby obtain infor-
mation on the communication patterns and relationships between users.

FPR UNL.3 Unlinkability of subjects requires that users and/or subjects are unable to determine
whether two subjects are referenced to by the same object, user or operation, or are linked in some
other manner.

This component ensures that users cannot link different subjects in the system and thereby obtain
information on the usage and operation patterns of the subjects.

FPR UNL.4 Unlinkability of objects requires that users and/or subjects are unable to determine whether
two objects are associated to the same user, subject or operation, or are linked in some other manner.

This component ensures that users cannot link different objects in the system and thereby obtain
information on the usage patterns of objects.

9.3 Distribution of trust (FPR TRD)

Among the current families in the privacy class of the ECITS/CC no provision is made to address privacy
requirements related to the distribution of trust among parts of the TOE, except in the FPR UNO.2 com-
ponent; the new functional family is therefore proposed to be integrated into the FPR class.

Trust may be defined, not only in an IT setting, as “Assured resting of the mind on the integrity, veracity,
justice, friendship, or other sound principle, of another person; confidence; reliance.” [23]. In a more restrictive
definition, one may define it as “confidence on the integrity of another person or organization in the managing
of an asset given to him, her or it”. In this context, trust division may be described as the process of allocating
assets among different trustees with the aim of minimizing the damage, which one might suffer if one of the
trustees betrays the trust given.

Clearly in IT the main asset is information, and the accidental or intentional loss or mismanagement of it
may result in great damages for the owners or beneficiaries of it. Data may be either supplied directly to
an information system, as inputted files, documents, personal information, or they may be derived from
interaction with the system, such as data regarding on-line time and login times of a user, requests and
destination of email deliveries and WWW accesses, or called telephone numbers; often the collection of this
kind of information is not clearly stated in the (contract) terms which bind user and operator of a system.
Figure 4 shows the hidden information processed and possibly stored in a system, which provides textual
data transmission capabilities to users when such an operation is initiated.

199

ATTACHMENT E

Microsoft Exhibit 1067

User
User

Text data item

sends... to...

stores...

origin user
destination user
time and date
content
size
format
other attributes

System

Figure 4: Hidden activities and information objects involved in sending a data object through a system

Another related observation is that the processing itself produces information, whose existence or content
may not even be known to the user that requested the processing activity to be initiated. For example, in
large WWW sites which employ distributed, redundant, servers requests are redirected to one of the servers
in a pool, and such mechanism, and also the identity of the server which actually executes the request is not
visible to the end user, neither is the server choice known.

The proposed “Distribution of trust” family addresses both aspects of the trust issue, i.e. the distribution of
information, and the distribution of processing activities, which may produce privacy-relevant information
themselves.

9.3.1 Overview of the family

This family describes specific functions that can be used to allocate information and processing activities
on the TOE with the objective of protecting the privacy of users of the system. To allow such allocation,
the concept of “Administrative Domain” (AD) is introduced to indicate a part of the TOE whose security
functions are accessible and usable to access data by a single subject (system user, administrator. . .) without
requesting any additional authorization or performing additional authentication procedures.

The AD is a formalization of the concept of the more intuitive “part of the TOE”, which is also used in
the statement of the FPR UNO.2 component. Moreover, it specifies that administrators of an AD may not
access other ADs without gaining rightful permission. In fact, allocating information on different “parts of
the TOE” is not very useful, if the different parts are accessible by the same administration. If all the parts are
administered by the same user or organization, a subverted administrator or an attacker gaining administrator
privileges may as well access such information even if it is distributed. Instead, it is necessary to provide for
independent administration and separate access domains for different parts of the TOE; this means that an
administrator of one part will not be able to access as such also other parts of the TOE.

200

ATTACHMENT E

Microsoft Exhibit 1067

As an example, consider a monolithic TOE (i.e. a UNIX operating system environment), where only one
administrative domain exists, and the administrator may access the security functions of the whole TOE. As
a result, if users store both their sensitive data, even in an encrypted form, and their private keys on the same
system, the administrator (or an attacker gaining administrator privileges) will be able to access the data.

To avoid this problem, the TSF could be designed to allocate data and keys on different, independently
administered systems, and to require that the decryption be done on a third system when the owner needs
to access it. This obviously raises the common chicken and egg problem of whether the system where the
cryptographic functions take place is trusted or not. Many solutions can be applied in this case, e.g.:

1. Performing a two-phase en/decryption in separate administrative domains (which is, in essence, what
the mix system does),

2. Personally administering the system where cryptographic functions take place (for example, a smart-
card with cryptographic capabilities, which stores the keys and communicates with the outside only
with the input and output of cryptographic algorithms; the card is always carried by the owner of the
data, which trusts the issuer of the card, or a certificate regarding the card4.)

9.3.2 Components

The family is structured in three components, one of which is a base component defining the concept
of administrative domain, while the other two express the requirements on information and operations
allocation:

FPR TRD.1 Administrative domains requires that the TOE be divided in distinct administrative do-
mains (AD), with separate authentication and access control procedures; administrators of one admin-
istrative domain may not access other ADs.

FPR TRD.2 Allocation of information assets requires that the TSF ensure that selected information
impacting privacy be allocated among different parts of the TOE in such a way that in no state a single
administrative domain will be able to access such information.

FPR TRD.3 Allocation of processing activities requires that the TSF ensure that selected processing
activities impacting privacy be executed on different parts of the TOE in such a way that no single
administrative domain will be able to make use of information gathered from the processing activity.

The derivate components (FPR TRD.2 and FPR TRD.3) let the PP author tailor the following:

1. A list of objects or operations which should be subject to allocation in different ADs,

2. In the case of objects, the form of allocation (e.g. distribution, encryption. . .),

3. A set of conditions that should always be maintained by the TOE with regard to assets allocation.

The formal component descriptions are available in section 13.3.
4Of course a secure administration would also require secure input (e.g. keyboard) and output (e.g. display) facility for the user.

201

ATTACHMENT E

Microsoft Exhibit 1067

9.3.3 The effect of using the new components

In the previous chapters, we stated that the introduction of the new privacy-oriented components in the
User-Oriented Mix PP greatly simplified the statement of the requirements and enhanced their effectiveness.
To support this assertion, we now show in detail how the new components perform. To avoid lengthen-
ing the paper excessively we will limit the example to only one of the new functional families (FPR TRD
“Distribution of Trust”).

The introduction of the new components has a twofold advantage. First of all, it allows requirements to
be specified in a more clear and simple manner compared to using the stock components, which had to
be overloaded to express certain requirements for which they were not intended. Secondarily, it also allows
expressing more complete and precise requirements, and reduces the number of unmet Security Objectives.

Table 16 shows the subset of security objectives in which the new FPR TRD family is used. For each Security
Objective, the table lists the stock functional components that were used in the first version of the PP (second
column), and the components used in the final version (third column).

Security Objective Initial PP Final PP
SO.DivideSecurityInformation FDP ACC.2 “Complete access

control (MUDAC)”
FDP ACF.1 “Security attribute
based access control (MUDAC)”
FMT MSA.1 “Management of
security attributes”
FMT MSA.2 “Secure security
attributes”
FMT MSA.3 “Static attribute
initialisation”
FPR UNO.2 “Allocation of
information impacting
unobservability”

FMT MSA.1 “Management of security
attributes”
FMT MSA.2 “Secure security attributes”
FMT MSA.3 “Static attribute initialisation”
FPR TRD.2 “Allocation of information assets”

SO.DivideSecurityProcessing FMT MSA.1 “Management of
security attributes”
FMT MSA.2 “Secure security
attributes”
FMT MSA.3 “Static attribute
initialisation”

FMT MSA.1 “Management of security
attributes”
FMT MSA.2 “Secure security attributes”
FMT MSA.3 “Static attribute initialisation”
FPR TRD.3 “Allocation of processing activities”

SO.EnforceTrustDistribution FDP ACC.2 “Complete access
control (MUDAC)”
FDP ACF.1 “Security attribute
based access control (MUDAC)”

FDP ACC.2 “Complete access control
(MUDAC)”
FDP ACF.1 “Security attribute based access
control (MUDAC)”
FPR TRD.2 “Allocation of information assets”
FPR TRD.3 “Allocation of processing activities”

SOE.AntagonisticManagement Previously no component available
to cover this objective

FPR TRD.2 “Allocation of information assets”
FPR TRD.3 “Allocation of processing activities”

Table 16: How the FPR TRD family helps to fulfill Security Objectives

The new components do not only replace some of the old ones, but also provide for a better coverage of the
security objectives stated in the PP. The following list shows this in detail for every security objective:

202

ATTACHMENT E

Microsoft Exhibit 1067

� SO.DivideSecurityInformation “The TOE shall be constructed as to allow the user the ability, and
enforce the correct use of such ability, the allocation of unlinkability-relevant data among different
parts of the TOE.”

Before the introduction of the new families, this objective was reached by adopting a set of three
requirements. Essentially, an access control policy would control the enforcement part of the re-
quirement, while the security attribute management components would allow the user to divide the
allocation of security-relevant information. Finally, the “Allocation of information impacting unob-
servability” component was used in an “overloaded” manner, which proved to be ineffective. Thus,
the initial PP addressed this Security Objective by using the following components:

– FPR UNO.2 “Allocation of information impacting unobservability”
This is the only component in the CC/ECITS that expressly provides for allocation of infor-
mation. However, the fact that it refers specifically to “unobservability” causes problems to its
use for other security properties. The “trick” for overloading the stock component was that of
requiring the operation of transmitting a message between users to be unobservable. However,
this results in an ambiguous requirement because nothing can be said about the link between
communicating partners, which a mix network also aims at hiding (Unlinkability).

– FDP ACC.2 “Complete access control (MUDAC)”, and FDP ACF.1 “Security attribute based
access control (MUDAC)”
These two components were introduced into the initial PP to implement a mandatory ac-
cess control policy. This policy requires data to be explicitly addressed and access to be
strictly controlled and limited to the intended recipient. The components remain in the
new PP to enforce the SO.EnforceTrustDistribution and SO.Identity objectives, but are su-
perseded by the FPR TRD.2 “Allocation of information assets” component with regard to the
SO.DivideSecurityInformation objective.
In this case, the access control requirements allow the PP author to define requirements on
which subjects may access the information that flows through the mix network. However, they
fail completely at specifying requirements on how such information flow must be structured to
achieve unlinkability and unobservability (the distributed nature of message processing in the
mix network).

In the final version, the division of trust component takes the place of both the access control compo-
nents and the allocation of unobservability information component.

� SO.DivideSecurityProcessing “The TOE shall provide to the user the ability, and enforce the cor-
rect use of such ability, of freely choosing a combination of mix nodes among which to allocate the
processing activities achieving unlinkability.”

In this case the objective was not fully satisfied in the initial version of the PP, because the CC/ECITS
do not provide a functional component for allocating processing activities in different parts of the TOE.

This previously not satisfied objective can now be fully covered by using one of the new components.
The new FPR TRD.3 “Allocation of processing activities” component provides for distribution of
processing among different, independently administered, parts of the TOE, while the ability for the
user to specify some of the security attributes (which is how routing information is considered in this
PP) allows to actually make use of distributed processing.

203

ATTACHMENT E

Microsoft Exhibit 1067

� SO.EnforceTrustDistribution “The TOE shall be constructed to enforce the user’s choice of informa-
tion and processing distribution.”

This requirement was only partially covered in the initial PP, because the access control requirements
do not allow stating requirements on the TOE structure. Adding the FPR TRD components comple-
ments the access control requirements and results in a fully covered objective.

� SOE.AntagonisticManagement “The TOE shall be independently and antagonistically managed.”

This objective that was not at all covered in the first version of the PP is now partially covered, as the
TOE is now built to allow for independent administration, at least from a technical point of view.
Obviously adequate environmental procedures and policies are still necessary for the correct operation
of the TOE.

To ease analyzing the relationship between security objectives and functional components, Table 17 splits the
objectives in atomic assertions and shows how each assertion is covered by one or more components.

Requirement name Single component statements Satisfied by. . .
SO.DivideSecurityInformation TOE shall be distributed Administrative domains FPR TRD
SO.DivideSecurityProcessing User ability of choosing a distributed

use pattern
Management of security attributes FMT MSA

SO.EnforceTrustDistribution Enforce users’ choices Mandatory access control FDP ACF, FDP ACC
Construction of the TOE as to allow
information and processing distribu-
tion

Administrative domains FPR TRD

SOE.AntagonisticManagement Independent management Administrative domains FPR TRD

Table 17: Overview of coverage of the TOE distribution objective

Note that objectives and functional components do not match exactly, i.e. more than one component is
necessary to meet a security objective, and a single component may address more than one objective. This is
a common situation when both the objectives and the components state complex requirements with multiple,
independent assertions.

As a final note one may observe that in the old PP, without the trust division components, the partial
objectives marked in Table 17, as “construction of the TOE” and “TOE shall be distributed” were simply
not covered.

10 Summary and conclusion

The experience gained while writing the Protection Profiles includes the following major issues:

1. In general the ECITS/CC provide much more flexibility than their predecessors. They also contain
much better instruments to describe privacy friendly functionality. However as shown above, the
ECITS/CC components do not offer a complete solution to all the issues which characterize privacy-
related objectives.

204

ATTACHMENT E

Microsoft Exhibit 1067

2. The greatest challenges to the expressive capacity of the functional components appear in the Multiple
Mix PP and in the User-Oriented Mix PP, where a point of multilateral security is raised (security of
the TOE vs. security of the user).

3. For some applications, architectural choices and objectives (i.e. distributed vs. centralized system)
influence the security properties of the system. This applies to mixes, but holds also for other “secure”
applications, as digital money, information handling and storage, etc.

4. The probably most relevant evidence is that simply trying to force the application’s requirements or
the functional components to “fit” is not a sustainable solution, because it results in an unclear and
ineffective requirements definition.

5. The proposed components aim at forming a useful start-up for enhancing future versions of the
ECITS/CC, even when the respective part of the criteria becomes slightly longer. Privacy oriented
functionality covers only a small part (ca. 10 %) of the criteria, so there should be space for the
improvements.

6. Especially in the area of communication the evaluation of service security becomes important for users.
While the ECITS/CC provide some help for this further work is needed.

11 Questions to the workshop

The following list of questions indicates areas, on which the authors hope for feedback from the workshop
participants:

1. Are you missing threats in the threat list? Especially interesting in this regard are threats that may be
difficult to address using the CC components.

2. Are there threats regarding mix usage that are not fully covered by the security objectives in the “User-
Oriented PP”?

3. Are further assumptions beyond those specified necessary to sustain the current threat lists?

4. Are other functional components necessary for satisfying specific security objectives (and thus address-
ing specific threats)?

5. How do you handle threats that can only partially be countered?

6. Do you have the impression that evaluation has only a commercial meaning, a “quality-stamp” for
enhancing sales and image of a product, or, by reading this document, did you gain the impression
that it can have a positive influence on the security features of the product?

7. Do you think the ECITS/CC can be used as a tool for enhancing the security of systems and applica-
tions?

205

ATTACHMENT E

Microsoft Exhibit 1067

Annexes

12 Bibliography

[1] British Standards Institution: Code of practice for information security management (BS 7799-1:
1999); Specification for information security management systems (BS 7799-2: 1999)

[2] c:cure scheme; http://www.c-cure.org

[3] Common Criteria Implementation Board: Common Criteria for IT Security Evaluation, V. 2.0, May
1998; http://csrc.nist.gov/cc

[4] Common Criteria Implementation Board: Common Criteria for IT Security Evaluation, V. 2.1, August
1999; http://csrc.nist.gov/cc

[5] Common Criteria Project: List of Protection Profiles; http://csrc.nist.gov/cc/pp/pplist.htm

[6] European Commission: IT Security Evaluation Criteria, V. 1.2; 1991-06-28; Office for Official Publi-
cations of the EC; also www.itsec.gov.uk/docs/pdfs/formal/ITSEC.PDF

[7] Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM,
1981, Vol. 24, No. 2, pp. 84-88

[8] Chris Corbett: ITSEC in Operation - an Evaluation Experience, Proc. 4th Annual Canadian Computer
Security Conference, May 1992, Ottawa, Canada, pp. 439-460

[9] Lance Cottrell: Mixmaster & Remailer Attacks; http://www.obscura.com/˜loki/remailer/remailer-
essay.html

[10] Privacy Protection and Data Security task Force of the German Society for Informatics: Statement of
Observations concerning the Information Technology Security Evaluation Criteria (ITSEC) V1.2; 24
February 1992, edited in Data Security Letter, No 32, April 1992

[11] Giovanni Iachello: Single Mix Protection Profile, Revision 1.11, May 1999; http://www.iig.uni-
freiburg.de/˜giac

[12] Giovanni Iachello: Protection Profile for an Unobservable Message Delivery Application using Mixes,
Revision 1.7, June 1999; http://www.iig.uni-freiburg.de/˜giac

[13] Giovanni Iachello: User-Oriented Protection Profile for an Unobservable Message Delivery Application
using Mix networks, Revision 2.4, June 1999; http://www.iig.uni-freiburg.de/˜giac

[14] Giovanni Iachello: IT Security Evaluation Criteria, and Advanced Technologies for Multilateral Se-
curity - The Mix Example; Tesi di Laurea; Universit”at Freiburg, Institut f”ur Informatik und
Gesellschaft, Abt. Telematik and Universit degli Studi di Padova; June 1999; http://www.iig.uni-
freiburg.de/˜giac

[15] ISO/IEC: Guidelines for the management of IT security (GMITS); Parts 1-5; Technical Report 13335
(part 5 still under development)

206

ATTACHMENT E

Microsoft Exhibit 1067

[16] ISO/IEC: Evaluation Criteria for IT Security (ECITS), Parts 1-3; International Standard 15408

[17] Anja Jerichow, Jan M”uller, Andreas Pfitzmann, Birgit Pfitzmann, Michael Waidner: Real-Time Mixes:
A Bandwidth-Efficient Anonymity Protocol; IEEE Journal on Selected Areas in Communications 16/4
(May 1998) 495-509

[18] Kai Rannenberg: Recent Development in Information Technology Security Evaluation - The Need for
Evaluation Criteria for multilateral Security; in Richard Sizer, Louise Yngstr”om, Henrik Kaspersen und
Simone Fischer-H”ubner: Security and Control of Information Technology in Society - Proceedings of
the IFIP TC9/WG 9.6 Working Conference August 12-17, 1993, onboard M/S Ilich and ashore at St.
Petersburg, Russia; North-Holland, Amsterdam 1994, pp. 113-128; ISBN 0-444-81831-6

[19] Kai Rannenberg: What can IT Security Certification do for Multilateral Security? pp. 515-530 in
G”unter M”uller, Kai Rannenberg: Multilateral Security in Communications - Technology, Infras-
tructure, Economy; Addison-Wesley-Longman, M”unchen, Reading (Massachusetts). . . 1999; ISBN
3-8273-1360-0

[20] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for web transactions. ACM Transactions on Infor-
mation and System Security 1(1):66-92, November 1998.

[21] Paul F. Syverson, David M. Goldschlag, Michael G. Reed: Anonymous connections and onion routing;
in: Proceedings of the 1997 IEEE Symposium on Security and Privacy; IEEE Pres, Piscataway NJ

[22] USA Department of Defense Trusted Computer System Evaluation Criteria; December 1985, DOD
5200.28-STD, www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html

[23] Webster’s Revised Unabridged Dictionary, 1913, ftp://ftp.dict.org/pub/dict/

[24] The Freedom Network Architecture, Version 1.0, Zero-Knowledge Systems, Inc.,
http://www.zks.net/products/whitepapers.asp

13 Proposed criteria components

The three proposed families are included in a notation conformant with the prescriptions of the ECITS/CC.
Specifically, this means that bold facing in components or in parts of components indicates an additional
requirement compared with a hierarchical lower component.

13.1 Information retention control (FDP IRC)

Family behaviour

This family addresses the need to ensure that information no longer necessary for the operation of the TOE
is deleted by the TOE. Components of this family require the PP author to identify TOE activities and
objects required for those activities, and not to be kept in the TOE, and the TOE to keep track of such
stored objects, and to delete on-line and off-line copies of unnecessary information objects.

Component levelling

207

ATTACHMENT E

Microsoft Exhibit 1067

FDP_IRC Information retention control 1 2

FDP IRC.1 Subset information retention control requires that the TSF ensure that any copy of a defined
subset of objects in the TSC is deleted when not more strictly necessary for the operation of the TOE, and
to identify and define the activities for which the object is required.

FDP IRC.2 Full information retention control requires that the TSF ensure that any copy of all objects in
the TSC is deleted when not more strictly necessary for the operation of the TOE, and to identify and define
the activities for which the object is required.

Management: FDP IRC.1, FDP IRC.2

There are no management activities foreseen for this component.

Audit: FDP IRC.1, FDP IRC.2

There are no events identified that should be auditable if FAU GEN Security audit data generation is in-
cluded in the PP/ST.

FDP IRC.1 Subset information retention control

Hierarchical to: No other components

FDP IRC.1.1 The TSF shall ensure that [assignment: list of objects] required for [assignment: list of
activities] shall be eliminated immediately from the TOE upon termination of the activities for
which they are required.

Dependencies: No dependencies.

FDP IRC.2 Full information retention control

Hierarchical to: FDP IRC.1

FDP IRC.2.1 The TSF shall ensure that all objects required for [assignment: list of activities] shall be
eliminated immediately from the TOE upon termination of the activities for which they are required.

Dependencies: No dependencies.

13.2 Unlinkability (FDP UNL)

This family ensures that selected entities may be linked together without others being able to observe these
links.

Component levelling

208

ATTACHMENT E

Microsoft Exhibit 1067

FPR_UNL Unlinkability

1

2

4

3

FPR UNL.1 Unlinkability of operations requires that users and/or subjects are unable to determine whether
the same user caused certain specific operations in the system, or are related in some other manner.

FPR UNL.2 Unlinkability of users requires that users and/or subjects are unable to determine whether two
users are referenced to by the same object, subject or operation, or are linked in some other manner.

FPR UNL.3 Unlinkability of subjects requires that users and/or subjects are unable to determine whether
two subjects are referenced to by the same object, user or operation, or are linked in some other manner.

FPR UNL.4 Unlinkability of objects requires that users and/or subjects are unable to determine whether two
objects are associated to the same user, subject or operation, or are linked in some other manner.

Management: FPR UNL.1, FPR UNL.2, FPR UNL.3, FPR UNL.4

The following actions could be considered for the management functions in FMT:

a) the management of the unlinkability function.

Audit: FPR UNL.1, FPR UNL.2, FPR UNL.3, FPR UNL.4

The following actions shall be auditable if FAU GEN Security audit data generation is included in the PP /
ST:

a) Minimal: The invocation of the unlinkability mechanism.

FPR UNL.1 Unlinkability of operations

Hierarchical to: No other components

FPR UNL.1.1 The TSF shall ensure that [assignment: set of users and/or subjects] are unable to de-
termine whether [assignment: list of operations] [selection: were caused by the same user, are
related as follows [assignment: list of relations]].

Dependencies: No dependencies.

FPR UNL.2 Unlinkability of users

Hierarchical to: No other components

FPR UNL.2.1 The TSF shall ensure that [assignment: set of users and/or subjects] are unable to de-
termine whether [assignment: list of users] [selection: are referenced by the same operation, are
referenced by the same object, are referenced by the same subject, are related as follows [assign-
ment: list of relations]].

209

ATTACHMENT E

Microsoft Exhibit 1067

Dependencies: No dependencies.

FPR UNL.3 Unlinkability of subjects

Hierarchical to: No other components

FPR UNL.3.1 The TSF shall ensure that [assignment: set of users and/or subjects] are unable to de-
termine whether [assignment: list of subjects] [selection: act on behalf of the same user, are
referenced by the same object, are referenced by the same operation, are related as follows [assign-
ment: list of relations]].

Dependencies: No dependencies.

FPR UNL.4 Unlinkability of objects

Hierarchical to: No other components

FPR UNL.4.1 The TSF shall ensure that [assignment: set of users and/or subjects] are unable to deter-
mine whether [assignment: list of objects] [selection: are associated to the same user, are associ-
ated to the same subject, are associated to the same operation, are related as follows [assignment:
list of relations]].

Dependencies: No dependencies.

13.3 Distribution of trust (FPR TRD)

This family addresses the need to ensure that privacy-relevant information referring to a user of a TOE
is divided among different parts of the TOE, or stored in such a manner (as with encryption) to make it
impossible that a part of the TOE under a single administrative domain is able to access such information.

Component Levelling

2

1FPR_TRD Distribution of trust

3

FPR TRD.1 Administrative domains requires that the TOE be divided in distinct administrative domains
(AD), with separate authentication and access control procedures; administrators of one administrative do-
main may not access other ADs.

FPR TRD.2 Allocation of information assets requires that the TSF ensure that selected information impact-
ing privacy be allocated among different parts of the TOE in such a way that in no state a single administrative
domain will be able to access such information.

210

ATTACHMENT E

Microsoft Exhibit 1067

FPR TRD.3 Allocation of processing activities requires that the TSF ensure that selected processing activities
impacting privacy be executed on different parts of the TOE in such a way that no single administrative
domain will be able to make use of information gathered from the processing activity.

Management: FPR TRD.1

There are no management activities foreseen for this component.

Management: FPR TRD.2

The following actions and definitions could be considered for the management functions in FMT:

1. The FMT SMR.1 component could define a new security role “information owner” with regard to
a specific data object or operation; this role represents the originator, and main user and beneficiary
of such object or operation, and is the only subject or user allowed to specify distribution policies as
security attributes for these entities;

2. An information owner could define default object security attributes;

3. An information owner could define and change security attributes on objects he or she owns.

Management: FPR TRD.3

The following actions and definitions could be considered for the management functions in FMT:

1. The FMT SMR component could define a new security role “information owner” with regard to a
specific data object or operation; this role represents the originator, and main user and beneficiary
of such object or operation, and is the only subject or user allowed to specify distribution policies as
security attributes for these entities;

2. An information owner could define default operation security attributes;

3. An information owner could define and change security attributes on operations it initiates.

Audit: FPR TRD.1, FPR TRD.2, FPR TRD.3

There are no events identified that should be auditable if FAU GEN Security audit data generation is in-
cluded in the PP/ST.

FPR TRD.1 Administrative domains

Hierarchical to: No other components

FPR TRD.1.1 The TOE shall be divided in separate, independent, intercommunicating parts (admin-
istrative domains) governed by distinct access control and authentication configurations.

FPR TRD.1.2 The distinct administrative domains of the TOE shall explicitly request access to data
stored on other parts of the TOE to be granted access to it.

211

ATTACHMENT E

Microsoft Exhibit 1067

Dependencies: No dependencies.

FPR TRD.2 Allocation of information assets

Hierarchical to: FPR TRD.1

FPR TRD.2.1 The TOE shall be divided in separate, independent, intercommunicating parts (administra-
tive domains) governed by distinct access control and authentication configurations.

FPR TRD.2.2 The distinct administrative domains of the TOE shall explicitly request access to data stored
on other parts of the TOE to be granted access to it.

FPR TRD.2.3 The TSF shall ensure that [assignment: list of objects] shall be stored [selection: on
different administrative domains of the TOE, in a form unreadable by a single administrative
domain of the TOE] as to maintain the following conditions: [assignment: list of conditions on
objects].

Dependencies: No dependencies.

FPR TRD.3 Allocation of processing activities

Hierarchical to: FPR TRD.1

FPR TRD.3.1 The TOE shall be divided in separate, independent, intercommunicating parts (administra-
tive domains) governed by distinct access control and authentication configurations.

FPR TRD.3.2 The distinct administrative domains of the TOE shall explicitly request access to data stored
on other parts of the TOE to be granted access to it.

FPR TRD.3.3 The TSF shall ensure that [assignment: list of operations] shall be performed by dif-
ferent administrative domains of the TOE, so that the following conditions are maintained:
[assignment: list of conditions on operations].

Dependencies: No dependencies.

212

ATTACHMENT E

Microsoft Exhibit 1067

Information Hiding Workshop
Holiday Inn University Center, Pittsburgh, PA, USA 25 - 27 April 2001

Call for Papers: 4th International Information Hiding Workshop
Many researchers are interested in hiding information or, conversely, in preventing others from doing so. As the need

to protect digital intellectual property grows ever more urgent, this research is of increasing interest to both the aca-

demic and business communities. Current research themes include: copyright marking of digital objects, covert chan-

nels in computer systems, detection of hidden information, subliminal channels in cryptographic protocols, low-

probability-of-intercept communications, and various kinds of anonymity services ranging from steganography through

anonymous communication to digital elections. An international workshop on Information Hiding held in 1996 at the

Isaac Newton Institute in Cambridge (Springer LNCS 1174) brought together these closely linked areas of study. The

workshop proved to be a success, and the research community followed it up with a second one in 1998 in Portland

(Springer LNCS 1525) and a third one in 1999 in Dresden (Springer LNCS 1768).

Interested parties are invited to submit papers on research and practice which are related to these areas of interest.

We desire a balanced program and seek submissions on topics such as anonymous communication, anonymous

online transactions, and covert/subliminal communications, along with our usual quality watermarking/fingerprinting

submissions. Claims about information hiding technology must be backed by evidence in the paper and the authors

must be prepared to publicly discuss such claims at the workshop. Submissions must be made electronically, pref-

erably as a pdf file (non-color) of no more than 15 pages, in the Springer LNCS series format with the addition of page

numbers (TeX/LaTeX output highly recommended). Submissions should be sent to the program chair, Ira Moskowitz,

at ihw@itd.nrl.navy.mil

Paper submission: 7 December 2000 (tentative)

Notification of acceptance: 12 February 2001 (tentative)
Camera-ready copy for preproceedings: 22 March 2001 (tentative)

Camera-ready copy for proceedings: 24 May 2001 (tentative)

The proceedings will be published after the workshop by Springer in their LNCS Series.

Program committee:

Ross Anderson (Cambridge University, UK)

David Aucsmith (Intel Corp, USA)

Jean-Paul Linnartz (Philips Research, Netherlands)

Steven Low (University of Melbourne, Australia)

John McHugh (SEI/CERT, USA) - General Chair

Ira Moskowitz (Naval Research Laboratory, USA) - Program Chair
Fabien Petitcolas (Microsoft Research, UK)

Andreas Pfitzmann (Dresden University of Technology, Germany)

Jean-Jacques Quisquater (Universit'e Catholique de Louvain, Belgium)

Mike Reiter (Bell Labs, Lucent Technologies, USA)

Michael Waidner (IBM Zurich Research Lab, Switzerland)

More information: http://chacs.nrl.navy.mil/IHW2001 or contact ihw@itd.nrl.navy.mil

ATTACHMENT E

Microsoft Exhibit 1067

9/20/2015 Freenet: A Distributed Anonymous Information Storage and Retrieval System ­ Springer

http://link.springer.com/chapter/10.1007%2F3­540­44702­4_4 1/5

Chapter

Designing Privacy Enhancing Technologies

Volume 2009 of the series Lecture Notes in Computer Science pp 46­66

Date: 16 March 2001

Freenet: A Distributed Anonymous
Information Storage and Retrieval
System

Ian Clarke
, Oskar Sandberg
, Brandon Wiley
, Theodore W. Hong

Abstract

We describe Freenet, an adaptive peer­to­peer network application that permits the
publication, replication, and retrieval of data while protecting the anonymity of both
authors and readers. Freenet operates as a network of identical nodes that collectively
pool their storage space to store data files and cooperate to route requests to the most
likely physical location of data. No broadcast search or centralized location index is
employed. Files are referred to in a location­independent manner, and are
dynamically replicated in locations near requestors and deleted from locations where
there is no interest. It is infeasible to discover the true origin or destination of a file
passing through the network, and dificult for a node operator to determine or be held
responsible for the actual physical contents of her own node.

Work of Theodore W. Hong was supported by grants from the Marshall Aid
Commemoration Commission and the National Science Foundation.

References

ATTACHMENT F

Microsoft Exhibit 1067

http://link.springer.com/
http://link.springer.com/book/10.1007/3-540-44702-4
http://link.springer.com/bookseries/558

9/20/2015 Freenet: A Distributed Anonymous Information Storage and Retrieval System ­ Springer

http://link.springer.com/chapter/10.1007%2F3­540­44702­4_4 2/5

1. 1.
S. Adler, “The Slashdot effect: an analysis of three Internet publications,” Linux Gazette
issue 38, March 1999.

2. 3.
R. Albert, H. Jeong, and A. Barabási, “Error and attack tolerance of complex networks,”
Nature 406, 378–382 (2000).CrossRef (http://dx.doi.org/10.1038/35019019)

3. 4.
American National Standards Institute, American National Standard X9.30.2­1997: Public
Key Cryptography for the Financial Services Industry­Part 2: The Secure Hash Algorithm
(SHA­1) (1997).

4. 5.
R. J. Anderson, “The Eternity service,” in Proceedings of the 1st International Conference on
the Theory and Applications of Cryptology (PRAGOCRYPT’ 96), Prague, Czech Republic
(1996).

5. 7.
O. Berthold, H. Federrath, and S. Köpsell, “Web MIXes: a system for anonymous and
unobservable Internet access,” in Proceedings of the Workshop on Design Issues in
Anonymity and Unobservability, Berkeley, CA, USA. Springer: New York (2001).

6. 8.
D. L. Chaum, “Untraceable electronic mail, return addresses, and digital pseudonyms,”
Communications of the ACM 24(2), 84–88(1981).CrossRef
(http://dx.doi.org/10.1145/358549.358563)

7. 9.
Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, and P. Yianilos, “A proto­type
implementation of archival intermemory,” in Proceedings of the Fourth ACM Conference on
Digital Libraries (DL’ 99), Berkeley, CA, USA. ACM Press: New York (1999).

8. 10.
B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information retrieval,” Journal
of the ACM 45(6), 965–982 (1998).MATH (http://www.emis.de/MATH­item?$1065.68524)
CrossRef (http://dx.doi.org/10.1145/293347.293350) MathSciNet
(http://www.ams.org/mathscinet­getitem?mr=1678848)

9. 12.
I. Clarke, “A distributed decentralised information storage and retrieval system,”
unpublished report, Division of Informatics, University of Edinburgh (1999). Available at
http://​www.​freenetproject.​org/​ (http://www.freenetproject.org/) (2000).

10. 13.
L. Cottrell, “Frequently asked questions about Mixmaster remailers,” http://​www.​obscura.​
com/​~loki/​remailer/​mixmaster­faq.​html
(http://www.obscura.com/~loki/remailer/mixmaster­faq.html) (2000).

11. 14.
R. Dingledine, M. J. Freedman, and D. Molnar, “The Free Haven project: distributed
anonymous storage service,” in Proceedings of the Workshop on Design Issues in
Anonymity and Unobservability, Berkeley, CA, USA. Springer: New York(2001).

12. 16.
D. J. Ellard, J. M. Megquier, and L. Park, “The INDIA protocol,” http://​www.​eecs.​harvard.​
edu/​~ellard/​India­WWW/​ (http://www.eecs.harvard.edu/~ellard/India­WWW/) (2000).

13. 18.
I. Goldberg and D. Wagner, “TAZ servers and the rewebber network: enabling anonymous
publishing on the world wide web,” First Monday 3(4) (1998).

ATTACHMENT F

Microsoft Exhibit 1067

http://dx.doi.org/10.1038/35019019
http://dx.doi.org/10.1145/358549.358563
http://www.emis.de/MATH-item?$1065.68524
http://dx.doi.org/10.1145/293347.293350
http://www.ams.org/mathscinet-getitem?mr=1678848
http://www.freenetproject.org/
http://www.obscura.com/~loki/remailer/mixmaster-faq.html
http://www.eecs.harvard.edu/~ellard/India-WWW/

9/20/2015 Freenet: A Distributed Anonymous Information Storage and Retrieval System ­ Springer

http://link.springer.com/chapter/10.1007%2F3­540­44702­4_4 3/5

14. 19.
D. Goldschlag, M. Reed, and P. Syverson, “Onion routing for anonymous and private
Internet connections,” Communications of the ACM 42(2), 39–41 (1999).CrossRef
(http://dx.doi.org/10.1145/293411.293443)

15. 21.
T. Hong, “Performance,” in Peer­to­Peer, ed. by A. Oram. O’Reilly: Sebastopol, CA, USA
(2001).

16. 22.
B. A. Huberman and L. A. Adamic, “Internet: growth dynamics of the world­wide web,”
Nature 401, 131 (1999).

17. 23.
S. Milgram, “The small world problem,” Psychology Today 1(1), 60–67 (1967).

18. 25.
M. K. Reiter and A. D. Rubin, “Anonymous web transactions with Crowds,”
Communications of the ACM 42(2), 32–38 (1999).CrossRef
(http://dx.doi.org/10.1145/293411.293778)

19. 27.
M. Richtel and S. Robinson, “Several web sites are attacked on day after assault shut
Yahoo,” The New York Times, February 9, 2000.

20. 28.
J. Rosen, “The eroded self,” The New York Times, April 30, 2000.

21. 29.
A. S. Tanenbaum, Modern Operating Systems. Prentice­Hall: Upper Saddle River, NJ, USA
(1992).

22. 30.
M. Waldman, A. D. Rubin, and L. F. Cranor, “Publius: a robust, tamper­evident,
censorship­resistant, web publishing system,” in Proceedings of the Ninth USENIX Security
Symposium, Denver, CO, USA (2000).

23. 31.
D. Watts and S. Strogatz, “Collective dynamics of’ small­world’ networks,” Nature 393,
440–442 (1998).CrossRef (http://dx.doi.org/10.1038/30918)

About this Chapter

Title
Freenet: A Distributed Anonymous Information Storage and Retrieval System

Book Title
Designing Privacy Enhancing Technologies

Book Subtitle
International Workshop on Design Issues in Anonymity and Unobservability
Berkeley, CA, USA, July 25–26, 2000 Proceedings

Pages
pp 46­66

Copyright
2001

DOI

ATTACHMENT F

Microsoft Exhibit 1067

http://dx.doi.org/10.1145/293411.293443
http://dx.doi.org/10.1145/293411.293778
http://dx.doi.org/10.1038/30918
http://link.springer.com/book/10.1007/3-540-44702-4

9/20/2015 Freenet: A Distributed Anonymous Information Storage and Retrieval System ­ Springer

http://link.springer.com/chapter/10.1007%2F3­540­44702­4_4 4/5

10.1007/3­540­44702­4_4
Print ISBN

978­3­540­41724­8
Online ISBN

978­3­540­44702­3
Series Title

Lecture Notes in Computer Science
Series Volume

2009
Series ISSN

0302­9743
Publisher

Springer Berlin Heidelberg
Copyright Holder

Springer­Verlag Berlin Heidelberg
Additional Links

About this Book

Topics

Computer Communication Networks
Operating Systems
Management of Computing and Information Systems
Information Storage and Retrieval
Information Systems Applications (incl.Internet)

Industry Sectors

Electronics
Telecommunications
IT & Software

eBook Packages

eBook Package english Computer Science
eBook Package english full Collection

Editors

Hannes Federrath (4)

Editor Affiliations

4. Institut Informatik, FU Berlin

Authors

ATTACHMENT F

Microsoft Exhibit 1067

http://link.springer.com/bookseries/558
http://www.springer.com/978-3-540-41724-8?wt_mc=ThirdParty.SpringerLink.3.EPR653.About_eBook
http://link.springer.com/search?facet-subject=%22Computer+Communication+Networks%22
http://link.springer.com/search?facet-subject=%22Operating+Systems%22
http://link.springer.com/search?facet-subject=%22Management+of+Computing+and+Information+Systems%22
http://link.springer.com/search?facet-subject=%22Information+Storage+and+Retrieval%22
http://link.springer.com/search?facet-subject=%22Information+Systems+Applications+%28incl.Internet%29%22
http://link.springer.com/industry/electronics
http://link.springer.com/industry/telecom
http://link.springer.com/industry/it
http://link.springer.com/search?package=11645
http://link.springer.com/search?package=90011652
http://link.springer.com/search?facet-creator=%22Hannes+Federrath%22
mailto:federrath@inf.tu-dresden.de

9/20/2015 Freenet: A Distributed Anonymous Information Storage and Retrieval System ­ Springer

http://link.springer.com/chapter/10.1007%2F3­540­44702­4_4 5/5

Ian Clarke (5)

Oskar Sandberg (6)

Brandon Wiley (7)

Theodore W. Hong (8)

Author Affiliations

5. Uprizer, Inc., 1007 Montana Avenue #323, CA 90403, Santa Monica, USA
6. Mörbydalen 12, 18252, Stockholm, Sweden
7. 2305 Rio Grande Street, TX 78705, Austin, USA
8. Department of Computing, Imperial College of Science, Technology and
Medicine, 180 Queen’s Gate, SW7 2BZ, London, UK

ATTACHMENT F

Microsoft Exhibit 1067

http://link.springer.com/search?facet-creator=%22Ian+Clarke%22
http://link.springer.com/search?facet-creator=%22Oskar+Sandberg%22
http://link.springer.com/search?facet-creator=%22Brandon+Wiley%22
http://link.springer.com/search?facet-creator=%22Theodore+W.+Hong%22

Freenet: A Distributed Anonymous Information
Storage and Retrieval System

Ian Clarke1, Oskar Sandberg2, Brandon Wiley3, and Theodore W. Hong4?

1 Uprizer, Inc., 1007 Montana Avenue #323, Santa Monica, CA 90403, USA
ian@octayne.com

2 Mörbydalen 12, 18252 Stockholm, Sweden
md98-osa@nada.kth.se

3 2305 Rio Grande Street, Austin, TX 78705, USA
blanu@uts.cc.utexas.edu

4 Department of Computing, Imperial College of Science, Technology and Medicine,
180 Queen’s Gate, London SW7 2BZ, United Kingdom

t.hong@doc.ic.ac.uk

Abstract. We describe Freenet, an adaptive peer-to-peer network ap-
plication that permits the publication, replication, and retrieval of data
while protecting the anonymity of both authors and readers. Freenet
operates as a network of identical nodes that collectively pool their stor-
age space to store data files and cooperate to route requests to the most
likely physical location of data. No broadcast search or centralized loca-
tion index is employed. Files are referred to in a location-independent
manner, and are dynamically replicated in locations near requestors and
deleted from locations where there is no interest. It is infeasible to disco-
ver the true origin or destination of a file passing through the network,
and difficult for a node operator to determine or be held responsible for
the actual physical contents of her own node.

1 Introduction

Networked computer systems are rapidly growing in importance as the medium
of choice for the storage and exchange of information. However, current systems
afford little privacy to their users, and typically store any given data item in
only one or a few fixed places, creating a central point of failure. Because of a
continued desire among individuals to protect the privacy of their authorship or
readership of various types of sensitive information[28], and the undesirability
of central points of failure which can be attacked by opponents wishing to re-
move data from the system[11,27] or simply overloaded by too much interest[1],
systems offering greater security and reliability are needed.

We are developing Freenet, a distributed information storage and retrieval
system designed to address these concerns of privacy and availability. The system
operates as a location-independent distributed file system across many individual
? Work of Theodore W. Hong was supported by grants from the Marshall Aid Com-

memoration Commission and the National Science Foundation.

H. Federrath (Ed.): Anonymity 2000, LNCS 2009, pp. 46–66, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

ATTACHMENT G

Microsoft Exhibit 1067

Freenet 47

computers that allows files to be inserted, stored, and requested anonymously.
There are five main design goals:

– Anonymity for both producers and consumers of information
– Deniability for storers of information
– Resistance to attempts by third parties to deny access to information
– Efficient dynamic storage and routing of information
– Decentralization of all network functions

The system is designed to respond adaptively to usage patterns, transparently
moving, replicating, and deleting files as necessary to provide efficient service
without resorting to broadcast searches or centralized location indexes. It is
not intended to guarantee permanent file storage, although it is hoped that a
sufficient number of nodes will join with enough storage capacity that most
files will be able to remain indefinitely. In addition, the system operates at the
application layer and assumes the existence of a secure transport layer, although
it is transport-independent. It does not seek to provide anonymity for general
network usage, only for Freenet file transactions.

Freenet is currently being developed as a free software project on Sourceforge,
and a preliminary implementation can be downloaded from http://www.free-
netproject.org/. It grew out of work originally done by the first author at the
University of Edinburgh[12].

2 Related Work

Several strands of related work in this area can be distinguished. Anonymous
point-to-point channels based on Chaum’s mix-net scheme[8] have been imple-
mented for email by the Mixmaster remailer[13] and for general TCP/IP traffic
by onion routing[19] and Freedom[32]. Such channels are not in themselves easily
suited to one-to-many publication, however, and are best viewed as a comple-
ment to Freenet since they do not provide file access and storage.

Anonymity for consumers of information in the web context is provided by
browser proxy services such as the Anonymizer[6], although they provide no
protection for producers of information and do not protect consumers against
logs kept by the services themselves. Private information retrieval schemes[10]
provide much stronger guarantees for information consumers, but only to the
extent of hiding which piece of information was retrieved from a particular ser-
ver. In many cases, the fact of contacting a particular server in itself can reveal
much about the information retrieved, which can only be counteracted by having
every server hold all information (naturally this scales poorly). The closest work
to our own is Reiter and Rubin’s Crowds system[25], which uses a similar me-
thod of proxying requests for consumers, although Crowds does not itself store
information and does not protect information producers. Berthold et al. propose
Web MIXes[7], a stronger system that uses message padding and reordering and
dummy messages to increase security, but again does not protect information
producers.

ATTACHMENT G

Microsoft Exhibit 1067

48 I. Clarke et al.

The Rewebber[26] provides a measure of anonymity for producers of web in-
formation by means of an encrypted URL service that is essentially the inverse
of an anonymizing browser proxy, but has the same difficulty of providing no
protection against the operator of the service itself. TAZ[18] extends this idea
by using chains of nested encrypted URLs that successively point to different
rewebber servers to be contacted, although this is vulnerable to traffic analysis
using replay. Both rely on a single server as the ultimate source of information.
Publius[30] enhances availability by distributing files as redundant shares among
n webservers, only k of which are needed to reconstruct a file; however, since the
identity of the servers themselves is not anonymized, an attacker might remove
information by forcing the closure of n–k+1 servers. The Eternity proposal[5]
seeks to archive information permanently and anonymously, although it lacks
specifics on how to efficiently locate stored files, making it more akin to an ano-
nymous backup service. Free Haven[14] is an interesting anonymous publication
system that uses a trust network and file trading mechanism to provide greater
server accountability while maintaining anonymity.

distributed.net[15] demonstrated the concept of pooling computer resources
among multiple users on a large scale for CPU cycles; other systems which do the
same for disk space are Napster[24] and Gnutella[17], although the former relies
on a central server to locate files and the latter employs an inefficient broadcast
search. Neither one replicates files. Intermemory[9] and India[16] are cooperative
distributed fileserver systems intended for long-term archival storage along the
lines of Eternity, in which files are split into redundant shares and distributed
among many participants. Akamai[2] provides a service that replicates files at
locations near information consumers, but is not suitable for producers who
are individuals (as opposed to corporations). None of these systems attempt to
provide anonymity.

3 Architecture

Freenet is implemented as an adaptive peer-to-peer network of nodes that query
one another to store and retrieve data files, which are named by location-
independent keys. Each node maintains its own local datastore which it makes
available to the network for reading and writing, as well as a dynamic routing
table containing addresses of other nodes and the keys that they are thought
to hold. It is intended that most users of the system will run nodes, both to
provide security guarantees against inadvertently using a hostile foreign node
and to increase the storage capacity available to the network as a whole.

The system can be regarded as a cooperative distributed filesystem incorpo-
rating location independence and transparent lazy replication. Just as systems
such as distributed.net[15] enable ordinary users to share unused CPU cycles on
their machines, Freenet enables users to share unused disk space. However, where
distributed.net uses those CPU cycles for its own purposes, Freenet is directly
useful to users themselves, acting as an extension to their own hard drives.

ATTACHMENT G

Microsoft Exhibit 1067

Freenet 49

The basic model is that requests for keys are passed along from node to node
through a chain of proxy requests in which each node makes a local decision
about where to send the request next, in the style of IP (Internet Protocol) rou-
ting. Depending on the key requested, routes will vary. The routing algorithms
for storing and retrieving data described in the following sections are designed to
adaptively adjust routes over time to provide efficient performance while using
only local, rather than global, knowledge. This is necessary since nodes only have
knowledge of their immediate upstream and downstream neighbors in the proxy
chain, to maintain privacy.

Each request is given a hops-to-live limit, analogous to IP’s time-to-live,
which is decremented at each node to prevent infinite chains. Each request is
also assigned a pseudo-unique random identifier, so that nodes can prevent loops
by rejecting requests they have seen before. When this happens, the immediately-
preceding node simply chooses a different node to forward to. This process con-
tinues until the request is either satisfied or exceeds its hops-to-live limit. Then
the success or failure result is passed back up the chain to the sending node.

No node is privileged over any other node, so no hierarchy or central point
of failure exists. Joining the network is simply a matter of first discovering the
address of one or more existing nodes through out-of-band means, then starting
to send messages.

3.1 Keys and Searching

Files in Freenet are identified by binary file keys obtained by applying a hash
function. Currently we use the 160-bit SHA-1[4] function as our hash. Three
different types of file keys are used, which vary in purpose and in the specifics
of how they are constructed.

The simplest type of file key is the keyword-signed key (KSK), which is derived
from a short descriptive text string chosen by the user when storing a file in the
network. For example, a user inserting a treatise on warfare might assign it the
description, text/philosophy/sun-tzu/art-of-war. This string is used as input to
deterministically generate a public/private key pair. The public half is then
hashed to yield the file key.

The private half of the asymmetric key pair is used to sign the file, providing
a minimal integrity check that a retrieved file matches its file key. Note however
that an attacker can use a dictionary attack against this signature by compiling
a list of descriptive strings. The file is also encrypted using the descriptive string
itself as a key, for reasons to be explained in section 3.4.

To allow others to retrieve the file, the user need only publish the descriptive
string. This makes keyword-signed keys easy to remember and communicate
to others. However, they form a flat global namespace, which is problematic.
Nothing prevents two users from independently choosing the same descriptive
string for different files, for example, or from engaging in “key-squatting”—
inserting junk files under popular descriptions.

These problems are addressed by the signed-subspace key (SSK), which ena-
bles personal namespaces. A user creates a namespace by randomly generating

ATTACHMENT G

Microsoft Exhibit 1067

50 I. Clarke et al.

a public/private key pair which will serve to identify her namespace. To insert a
file, she chooses a short descriptive text string as before. The public namespace
key and the descriptive string are hashed independently, XOR’ed together, and
then hashed again to yield the file key.

As with the keyword-signed key, the private half of the asymmetric key pair
is used to sign the file. This signature, generated from a random key pair, is
more secure than the signatures used for keyword-signed keys. The file is also
encrypted by the descriptive string as before.

To allow others to retrieve the file, the user publishes the descriptive string
together with her subspace’s public key. Storing data requires the private key,
however, so only the owner of a subspace can add files to it.

The owner now has the ability to manage her own namespace. For ex-
ample, she could simulate a hierarchical structure by creating directory-like
files containing hypertext pointers to other files. A directory under the key
text/philosophy could contain a list of keys such as text/philosophy/sun-tzu/
art-of-war, text/philosophy/confucius/analects, and text/philosophy/nozick/
anarchy-state-utopia, using appropriate syntax interpretable by a client. Direc-
tories can also recursively point to other directories.

The third type of key is the content-hash key (CHK), which is useful for
implementing updating and splitting. A content-hash key is simply derived by
directly hashing the contents of the corresponding file. This gives every file a
pseudo-unique file key. Files are also encrypted by a randomly-generated encryp-
tion key. To allow others to retrieve the file, the user publishes the content-hash
key itself together with the decryption key. Note that the decryption key is ne-
ver stored with the file but is only published with the file key, for reasons to be
explained in section 3.4.

Content-hash keys are most useful in conjunction with signed-subspace keys
using an indirection mechanism. To store an updatable file, a user first inserts
it under its content-hash key. She then inserts an indirect file under a signed-
subspace key whose contents are the content-hash key. This enables others to
retrieve the file in two steps, given the signed-subspace key.

To update a file, the owner first inserts a new version under its content-hash
key, which should be different from the old version’s content hash. She then
inserts a new indirect file under the original signed-subspace key pointing to the
updated version. When the insert reaches a node which possesses the old version,
a key collision will occur. The node will check the signature on the new version,
verify that it is both valid and more recent, and replace the old version. Thus
the signed-subspace key will lead to the most recent version of the file, while old
versions can continue to be accessed directly by content-hash key if desired. (If
not requested, however, these old versions will eventually be removed from the
network—see section 3.4.) This mechanism can be used to manage directories
as well as regular files.

Content-hash keys can also be used for splitting files into multiple parts. For
large files, splitting can be desirable because of storage and bandwidth limita-
tions. Splitting even medium-sized files into standard-sized parts (e.g. 2n kilo-

ATTACHMENT G

Microsoft Exhibit 1067

Freenet 51

bytes) also has advantages in combating traffic analysis. This is easily accomplis-
hed by inserting each part separately under a content-hash key, and creating an
indirect file (or multiple levels of indirect files) to point to the individual parts.

All of this still leaves the problem of finding keys in the first place. The most
straightforward way to add a search capability to Freenet is to run a hypertext
spider such as those used to search the web. While an attractive solution in many
ways, this conflicts with the design goal of avoiding centralization. A possible
alternative is to create a special class of lightweight indirect files. When a real file
is inserted, the author could also insert a number of indirect files each containing
a pointer to the real file, named according to search keywords chosen by her.
These indirect files would differ from normal files in that multiple files with the
same key (i.e. search keyword) would be permitted to exist, and requests for
such keys would keep going until a specified number of results were accumulated
instead of stopping at the first file found. Managing the likely large volume of
such indirect files is an open problem.

An alternative mechanism is to encourage individuals to create their own
compilations of favorite keys and publicize the keys of these compilations. This
is an approach also in common use on the world-wide web.

3.2 Retrieving Data

To retrieve a file, a user must first obtain or calculate its binary file key. She then
sends a request message to her own node specifying that key and a hops-to-live
value. When a node receives a request, it first checks its own store for the data
and returns it if found, together with a note saying it was the source of the data.
If not found, it looks up the nearest key in its routing table to the key requested
and forwards the request to the corresponding node. If that request is ultimately
successful and returns with the data, the node will pass the data back to the
upstream requestor, cache the file in its own datastore, and create a new entry
in its routing table associating the actual data source with the requested key.
A subsequent request for the same key will be immediately satisfied from the
local cache; a request for a “similar” key (determined by lexicographic distance)
will be forwarded to the previously successful data source. Because maintaining
a table of data sources is a potential security concern, any node along the way
can unilaterally decide to change the reply message to claim itself or another
arbitrarily-chosen node as the data source.

If a node cannot forward a request to its preferred downstream node because
the target is down or a loop would be created, the node having the second-
nearest key will be tried, then the third-nearest, and so on. If a node runs out of
candidates to try, it reports failure back to its upstream neighbor, which will then
try its second choice, etc. In this way, a request operates as a steepest-ascent
hill-climbing search with backtracking. If the hops-to-live limit is exceeded, a
failure result is propagated back to the original requestor without any further
nodes being tried. Nodes may unilaterally curtail excessive hops-to-live values
to reduce network load. They may also forget about pending requests after a
period of time to keep message memory free.

ATTACHMENT G

Microsoft Exhibit 1067

52 I. Clarke et al.

= Data Request

= Data Reply

= Request Failed

start

data

2
3

5

8

9

10

4

1

11

12

6 7

This request failed

because a node will

refuse a Data Request

that it has already

seen

a b

c

d

e

f

Fig. 1. A typical request sequence.

Figure 1 depicts a typical sequence of request messages. The user initiates a
request at node a. Node a forwards the request to node b, which forwards it to
node c. Node c is unable to contact any other nodes and returns a backtracking
“request failed” message to b. Node b then tries its second choice, e, which
forwards the request to f. Node f forwards the request to b, which detects the
loop and returns a backtracking failure message. Node f is unable to contact
any other nodes and backtracks one step further back to e. Node e forwards the
request to its second choice, d, which has the data. The data is returned from d
via e and b back to a, which sends it back to the user. The data is also cached
on e, b, and a.

This mechanism has a number of effects. Most importantly, we hypothesize
that the quality of the routing should improve over time, for two reasons. First,
nodes should come to specialize in locating sets of similar keys. If a node is listed
in routing tables under a particular key, it will tend to receive mostly requests
for keys similar to that key. It is therefore likely to gain more “experience”
in answering those queries and become better informed in its routing tables
about which other nodes carry those keys. Second, nodes should become similarly
specialized in storing clusters of files having similar keys. Because forwarding a
request successfully will result in the node itself gaining a copy of the requested
file, and most requests will be for similar keys, the node will mostly acquire files
with similar keys. Taken together, these two effects should improve the efficiency
of future requests in a self-reinforcing cycle, as nodes build up routing tables and
datastores focusing on particular sets of keys, which will be precisely those keys
that they are asked about.

In addition, the request mechanism will cause popular data to be transpa-
rently replicated by the system and mirrored closer to requestors. For example, if
a file that is originally located in London is requested in Berkeley, it will become
cached locally and provide faster response to subsequent Berkeley requests. It

ATTACHMENT G

Microsoft Exhibit 1067

Freenet 53

also becomes copied onto each computer along the way, providing redundancy if
the London node fails or is shut down. (Note that “along the way” is determined
by key closeness and does not necessarily have geographic relevance.)

Finally, as nodes process requests, they create new routing table entries for
previously-unknown nodes that supply files, increasing connectivity. This helps
new nodes to discover more of the network (although it does not help the rest of
the network to discover them; for that, the announcement mechanism described
in section 3.5 is necessary). Note that direct links to data sources are created,
bypassing the intermediate nodes used. Thus, nodes that successfully supply
data will gain routing table entries and be contacted more often than nodes that
do not.

Since keys are derived from hashes, lexicographic closeness of keys does not
imply any closeness of the original descriptive strings and presumably, no clo-
seness of subject matter of the corresponding files. This lack of semantic closeness
is not important, however, as the routing algorithm is based on knowing here
keys are located, not where subjects are located. That is, supposing a string such
as text/philosophy/sun-tzu/art-of-war yields a file key AH5JK2, requests for
this file can be routed more effectively by creating clusters containing AH5JK1,
AH5JK2, and AH5JK3, not by creating clusters for works of philosophy. Indeed,
the use of hashes is desirable precisely because philosophical works will be scat-
tered across the network, lessening the chances that failure of a single node will
make all philosophy unavailable. The same is true for personal subspaces—files
belonging to the same subspace will be scattered across different nodes.

3.3 Storing Data

Inserts follow a parallel strategy to requests. To insert a file, a user first calculates
a binary file key for it, using one of the procedures described in section 3.1. She
then sends an insert message to her own node specifying the proposed key and
a hops-to-live value (this will determine the number of nodes to store it on).
When a node receives an insert proposal, it first checks its own store to see if
the key is already taken. If the key is found, the node returns the pre-existing
file as if a request had been made for it. The user will thus know that a collision
was encountered and can try again using a different key. If the key is not found,
the node looks up the nearest key in its routing table to the key proposed and
forwards the insert to the corresponding node. If that insert causes a collision and
returns with the data, the node will pass the data back to the upstream inserter
and again behave as if a request had been made (i.e. cache the file locally and
create a routing table entry for the data source).

If the hops-to-live limit is reached without a key collision being detected,
an “all clear” result will be propagated back to the original inserter. Note that
for inserts, this is a successful result, in contrast to situation for requests. The
user then sends the data to insert, which will be propagated along the path
established by the initial query and stored in each node along the way. Each
node will also create an entry in its routing table associating the inserter (as the
data source) with the new key. To avoid the obvious security problem, any node

ATTACHMENT G

Microsoft Exhibit 1067

54 I. Clarke et al.

along the way can unilaterally decide to change the insert message to claim itself
or another arbitrarily-chosen node as the data source.

If a node cannot forward an insert to its preferred downstream node because
the target is down or a loop would be created, the insert backtracks to the second-
nearest key, then the third-nearest, and so on in the same way as for requests.
If the backtracking returns all the way back to the original inserter, it indicates
that fewer nodes than asked for could be contacted. As with requests, nodes may
curtail excessive hops-to-live values and/or forget about pending inserts after a
period of time.

This mechanism has three effects. First, newly inserted files are selectively
placed on nodes already possessing files with similar keys. This reinforces the
clustering of keys set up by the request mechanism. Second, new nodes can use
inserts as a supplementary means of announcing their existence to the rest of the
network. Third, attempts by attackers to supplant existing files by inserting junk
files under existing keys are likely to simply spread the real files further, since
the originals are propagated on collision. (Note, however, that this is mostly only
relevant to keyword-signed keys, as the other types of keys are more strongly
verifiable.)

3.4 Managing Data

All information storage systems must deal with the problem of finite storage
capacity. Individual Freenet node operators can configure the amount of storage
to dedicate to their datastores. Node storage is managed as an LRU (Least
Recently Used) cache[29] in which data items are kept sorted in decreasing order
by time of most recent request (or time of insert, if an item has never been
requested). When a new file arrives (from either a new insert or a successful
request) which would cause the datastore to exceed the designated size, the least
recently used files are evicted in order until there is room. The resulting impact
on availability is mitigated by the fact that the routing table entries created when
the evicted files first arrived will remain for a time, potentially allowing the node
to later get new copies from the original data sources. (Routing table entries are
also eventually deleted in a similar fashion as the table fills up, although they
will be retained longer since they are smaller.)

Strictly speaking, the datastore is not a cache, since the set of datastores is all
the storage that there is. That is, there is no “permanent” copy which is being
replicated in a cache. Once all the nodes have decided, collectively speaking,
to drop a particular file, it will no longer be available to the network. In this
respect, Freenet differs from systems such as Eternity and Free Haven which
seek to provide guarantees of file lifetimes.

The expiration mechanism has an advantageous aspect, however, in that it
allows outdated documents to fade away naturally after being superseded by
newer documents. If an outdated document is still used and considered valuable
for historical reasons, it will stay alive precisely as long as it continues to be
requested.

ATTACHMENT G

Microsoft Exhibit 1067

Freenet 55

For political or legal reasons, it may be desirable for node operators not to
explicitly know the contents of their datastores. This is why all stored files are
encrypted. The encryption procedures used are not intended to secure the file—
that would be impossible since a requestor (potentially anyone) must be capable
of decrypting the file once retrieved. Rather, the objective is that the node
operator can plausibly deny any knowledge of the contents of her datastore, since
all she knows a priori is the file key, not the encryption key. The encryption keys
for keyword-signed and signed-subspace data can only be obtained by reversing
a hash, and the encryption keys for content-hash data are completely unrelated.
With effort, of course, a dictionary attack will reveal which keys are present—as
it must in order for requests to work at all—but the burden such an effort would
require is intended to provide a measure of cover for node operators.

3.5 Adding Nodes

A new node can join the network by discovering the address of one or more
existing nodes through out-of-band means, then starting to send messages. As
mentioned previously, the request mechanism naturally enables new nodes to
learn about more of the network over time. However, in order for existing nodes to
discover them, new nodes must somehow announce their presence. This process is
complicated by two somewhat conflicting requirements. On one hand, to promote
efficient routing, we would like all the existing nodes to be consistent in deciding
which keys to send a new node (i.e. what key to assign it in their routing tables).
On the other hand, it would cause a security problem if any one node could
choose the routing key, which rules out the most straightforward way of achieving
consistency.

We use a cryptographic protocol to satisfy both of these requirements. A
new node joining the network chooses a random seed and sends an announce-
ment message containing its address and the hash of that seed to some existing
node. When a node receives a new-node announcement, it generates a random
seed, XOR’s that with the hash it received and hashes the result again to create
a commitment. It then forwards the new hash to some node chosen randomly
from its routing table. This process continues until the hops-to-live of the anno-
uncement runs out. The last node to receive the announcement just generates
a seed. Now all nodes in the chain reveal their seeds and the key for the new
node is assigned as the XOR of all the seeds. Checking the commitments enables
each node to confirm that everyone revealed their seeds truthfully. This yields
a consistent random key which cannot be influenced by a malicious participant.
Each node then adds an entry for the new node in its routing table under that
key.

4 Protocol Details

The Freenet protocol is packet-oriented and uses self-contained messages. Each
message includes a transaction ID so that nodes can track the state of inserts and

ATTACHMENT G

Microsoft Exhibit 1067

56 I. Clarke et al.

requests. This design is intended to permit flexibility in the choice of transport
mechanisms for messages, whether they be TCP, UDP, or other technologies
such as packet radio. For efficiency, nodes using a persistent channel such as
a TCP connection may also send multiple messages over the same connection.
Node addresses consist of a transport method plus a transport-specific identifier
such as an IP address and port number, e.g. tcp/192.168.1.1:19114. Nodes which
change addresses frequently may also use virtual addresses stored under address-
resolution keys (ARK’s), which are signed-subspace keys updated to contain the
current real address.

A Freenet transaction begins with a Request.Handshake message from one
node to another, specifying the desired return address of the sending1 node. (The
sender’s return address may be impossible to determine automatically from the
transport layer, or the sender may wish to receive replies at a different address
from that used to send the message.) If the remote node is active and responding
to requests, it will reply with a Reply.Handshake specifying the protocol version
number that it understands. Handshakes are remembered for a few hours, and
subsequent transactions between the same nodes during this time may omit this
step.

All messages contain a randomly-generated 64-bit transaction ID, a hops-
to-live limit, and a depth counter. Although the ID cannot be guaranteed to
be unique, the likelihood of a collision occurring during the transaction lifetime
among the limited set of nodes that it sees is extremely low. Hops-to-live is set by
the originator of a message and is decremented at each hop to prevent messages
being forwarded indefinitely. To reduce the information that an attacker can
obtain from the hops-to-live value, messages do not automatically terminate
after hops-to-live reaches 1 but are forwarded on with finite probability (with
hops-to-live again 1). Depth is incremented at each hop and is used by a replying
node to set hops-to-live high enough to reach a requestor. Requestors should
initialize it to a small random value to obscure their location. As with hops-to-
live, a depth of 1 is not automatically incremented but is passed unchanged with
finite probability.

To request data, the sending node sends a Request.Data message specifying a
transaction ID, initial hops-to-live and depth, and a search key. The remote node
will check its datastore for the key and if not found, will forward the request to
another node as described in section 3.2. Using the chosen hops-to-live limit, the
sending node starts a timer for the expected amount of time it should take to
contact that many nodes, after which it will assume failure. While the request
is being processed, the remote node may periodically send back Reply.Restart
messages indicating that messages were stalled waiting on network timeouts, so
that the sending node knows to extend its timer.

If the request is ultimately successful, the remote node will reply with a
Send.Data message containing the data requested and the address of the node
which supplied it (possibly faked). If the request is ultimately unsuccessful and
its hops-to-live are completely used up trying to satisfy it, the remote node

1 Remember that the sending node may or may not be the original requestor.

ATTACHMENT G

Microsoft Exhibit 1067

Freenet 57

will reply with a Reply.NotFound. The sending node will then decrement the
hops-to-live of the Send.Data (or Reply.NotFound) and pass it along upstream,
unless it is the actual originator of the request. Both of these messages terminate
the transaction and release any resources held. However, if there are still hops-
to-live remaining, usually because the request ran into a dead end where no
viable non-looping paths could be found, the remote node will reply with a
Request.Continue giving the number of hops-to-live left. The sending node will
then try to contact the next-most likely node from its routing table. It will also
send a Reply.Restart upstream.

To insert data, the sending node sends a Request.Insert message specifying
a randomly-generated transaction ID, an initial hops-to-live and depth, and a
proposed key. The remote node will check its datastore for the key and if not
found, forward the insert to another node as described in section 3.3. Timers
and Reply.Restart messages are also used in the same way as for requests.

If the insert ultimately results in a key collision, the remote node will re-
ply with either a Send.Data message containing the existing data or a Re-
ply.NotFound (if existing data was not actually found, but routing table re-
ferences to it were). If the insert does not encounter a collision, yet runs out
of nodes with nonzero hops-to-live remaining, the remote node will reply with
a Request.Continue. In this case, Request.Continue is a failure result meaning
that not as many nodes could be contacted as asked for. These messages will
be passed along upstream as in the request case. Both messages terminate the
transaction and release any resources held. However, if the insert expires with-
out encountering a collision, the remote node will reply with a Reply.Insert,
indicating that the insert can go ahead. The sending node will pass along the
Reply.Insert upstream and wait for its predecessor to send a Send.Insert contain-
ing the data. When it receives the data, it will store it locally and forward the
Send.Insert downstream, concluding the transaction.

5 Performance Analysis

We performed simulations on a model of this system to give some indications
about its performance. Here we summarize the most important results; for full
details, see [21].

5.1 Network Convergence

To test the adaptivity of the network routing, we created a test network of 1000
nodes. Each node had a datastore size of 50 items and a routing table size of 250
addresses. The datastores were initialized to be empty, and the routing tables
were initialized to connect the network in a regular ring-lattice topology in which
each node had routing entries for its two nearest neighbors on either side. The
keys associated with these routing entries were set to be hashes of the destination
nodes’ addresses. Using hashes has the useful property that the resulting keys

ATTACHMENT G

Microsoft Exhibit 1067

58 I. Clarke et al.

1

10

100

1000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
eq

ue
st

 p
at

hl
en

gt
h

(h
op

s)

Time

first quartile
median

third quartile

Fig. 2. Time evolution of the request pathlength.

are both random and consistent (that is, all references to a given node will use
the same key).

Inserts of random keys were sent to random nodes in the network, inter-
spersed randomly with requests for randomly-chosen keys known to have been
previously inserted, using a hops-to-live of 20 for both. Every 100 timesteps, a
snapshot of the network was taken and its performance measured using a set
of probe requests. Each probe consisted of 300 random requests for previously-
inserted keys, using a hops-to-live of 500. We recorded the resulting distribution
of request pathlengths, the number of hops actually taken before finding the data.
If the request did not find the data, the pathlength was taken to be 500.

Figure 2 shows the evolution of the first, second, and third quartiles of the
request pathlength over time, averaged over ten trials. We can see that the initi-
ally high pathlengths decrease rapidly over time. In the beginning, few requests
succeed at all, but as the network converges, the median request pathlength
drops to just six.

5.2 Scalability

Next, we examined the scalability of a growing network. Starting from a small
network of 20 nodes initialized in the same manner as the previous section, we
added new nodes over time and measured the change in the request pathlength.

ATTACHMENT G

Microsoft Exhibit 1067

Freenet 59

0

20

40

60

80

100

100 1000 10000 100000 1e+06

R
eq

ue
st

 p
at

hl
en

gt
h

(h
op

s)

Network size (nodes)

first quartile
median
third quartile

Fig. 3. Request pathlength versus network size.

Inserts and requests were simulated randomly as before. Every five timesteps,
a new node was created and added to the network by simulating a node anno-
uncement message with hops-to-live of 10 sent from it to a randomly-chosen
existing node. The key assigned by this announcement was taken to be the hash
of the new node’s address. Note that this procedure does not necessarily imply
a linear rate of network growth, but rather a linear relationship between the
request rate and the growth rate. Since it seems likely that both rates will be
proportional to network size (yielding an exponential growth rate in real, as
opposed to simulated, time), we believe that this model is justifiable.

Figure 3 shows the evolution of the first, second, and third quartiles of the
request pathlength versus network size, averaged over ten trials. We can see
that the pathlength scales approximately logarithmically, with a change of slope
near 40,000 nodes. We posit that the slope change is a result of routing tables
becoming filled and could be improved by adding a small number of nodes with
larger routing tables. Section 5.4 discusses this issue in more depth. Where our
routing tables were limited to 250 entries by the memory requirements of the
simulation, real Freenet nodes should easily be able to hold thousands of entries.
Nonetheless, even this limited network appears capable of scaling to one million
nodes with a median pathlength of just 30. Note also that the network was grown
continuously, without any steady-state convergence period.

ATTACHMENT G

Microsoft Exhibit 1067

60 I. Clarke et al.

1

10

100

1000

0 10 20 30 40 50 60 70 80

R
eq

ue
st

 p
at

hl
en

gt
h

(h
op

s)

Node failure rate (%)

first quartile
median

third quartile

Fig. 4. Change in request pathlength under network failure.

5.3 Fault-Tolerance

Finally, we considered the fault-tolerance of the network. Starting with a net-
work grown to 1000 nodes by the previous method, we progressively removed
randomly-chosen nodes from the network to simulate node failures. Figure 4
shows the resulting evolution of the request pathlength, averaged over ten tri-
als. The network is surprisingly robust against quite large failures. The median
pathlength remains below 20 even when up to 30% of nodes fail.

5.4 Small-World Model

The scalability and fault-tolerance characteristics of Freenet can be explained
in terms of a small-world network model[23,31,22,3]. In a small-world network,
the majority of nodes have only relatively few, local, connections to other nodes,
while a small number of nodes have large, wide-ranging sets of connections.
Small-world networks permit efficient short paths between arbitrary points be-
cause of the shortcuts provided by the well-connected nodes, as evidenced by
examination of Milgram’s letter-passing experiment[23] and the Erdös number
game cited by Watts and Strogatz[31].

Is Freenet a small world? A key factor in the identification of a small-world
network is the existence of a scale-free power-law distribution of links within the
network, as the tail of such distributions provides the highly-connected nodes

ATTACHMENT G

Microsoft Exhibit 1067

ATTACHMENT G

Microsoft Exhibit 1067

62 I. Clarke et al.

Table 1. Anonymity properties of Freenet.

System Attacker Sender anonymity Key anonymity
Basic Freenet local eavesdropper exposed exposed

collaborating nodes beyond suspicion exposed
Freenet + pre-routing local eavesdropper exposed beyond suspicion

collaborating nodes beyond suspicion exposed

a file by attacking all of the nodes that hold it. Files must be protected against
malicious modification, and finally, the system must be resistant to denial-of-
service attacks.

Reiter and Rubin[25] present a useful taxonomy of anonymous communica-
tion properties on three axes. The first axis is the type of anonymity: sender
anonymity or receiver anonymity, which mean respectively that an adversary
cannot determine either who originated a message, or to whom it was sent. The
second axis is the adversary in question: a local eavesdropper, a malicious node
or collaboration of malicious nodes, or a web server (not applicable to Freenet).
The third axis is the degree of anonymity, which ranges from absolute privacy
(the presence of communication cannot be perceived) to beyond suspicion (the
sender appears no more likely to have originated the message than any other
potential sender), probable innocence (the sender is no more likely to be the
originator than not), possible innocence, exposed, and provably exposed (the
adversary can prove to others who the sender was).

As Freenet communication is not directed towards specific receivers, recei-
ver anonymity is more accurately viewed as key anonymity, that is, hiding the
key which is being requested or inserted. Unfortunately, since routing depends
on knowledge of the key, key anonymity is not possible in the basic Freenet
scheme (but see the discussion of “pre-routing” below). The use of hashes as
keys provides a measure of obscurity against casual eavesdropping, but is of
course vulnerable to a dictionary attack since their unhashed versions must be
widely known in order to be useful.

Freenet’s anonymity properties under this taxonomy are shown in Table 1.
Against a collaboration of malicious nodes, sender anonymity is preserved be-
yond suspicion since a node in a request path cannot tell whether its predecessor
in the path initiated the request or is merely forwarding it. [25] describes a pro-
babilistic attack which might compromise sender anonymity, using a statistical
analysis of the probability that a request arriving at a node a is forwarded on
or handled directly, and the probability that a chooses a particular node b to
forward to. This analysis is not immediately applicable to Freenet, however,
since request paths are not constructed probabilistically. Forwarding depends on
whether or not a has the requested data in its datastore, rather than chance.
If a request is forwarded, the routing tables determine where it is sent to, and
could be such that a forwards every request to b, or never forwards any requests
to b, or anywhere in between. Nevertheless, the depth value may provide some
indication as to how many hops away the originator was, although this is ob-

ATTACHMENT G

Microsoft Exhibit 1067

Freenet 63

scured by the random selection of an initial depth and the probabilistic means
of incrementing it (see section 4). Similar considerations apply to hops-to-live.
Further investigation is required to clarify these issues.

Against a local eavesdropper there is no protection on messages between the
user and the first node contacted. Since the first node contacted can act as a
local eavesdropper, it is recommended that the user only use a node on her own
machine as the first point of entry into the Freenet network. Messages between
nodes are encrypted against local eavesdropping, although traffic analysis may
still be performed (e.g. an eavesdropper may observe a message going out without
a previous message coming in and conclude that the target originated it).

Key anonymity and stronger sender anonymity can be achieved by adding
mix-style “pre-routing” of messages. In this scheme, basic Freenet messages are
encrypted by a succession of public keys which determine the route that the
encrypted message will follow (overriding the normal routing mechanism). Nodes
along this portion of the route are unable to determine either the originator
of the message or its contents (including the request key), as per the mix-net
anonymity properties. When the message reaches the endpoint of the pre-routing
phase, it will be injected into the normal Freenet network and behave as though
the endpoint were the originator of the message.

Protection for data sources is provided by the occasional resetting of the
data source field in replies. The fact that a node is listed as the data source for a
particular key does not necessarily imply that it actually supplied that data, or
was even contacted in the course of the request. It is not possible to tell whether
the downstream node provided the file or was merely forwarding a reply sent by
someone else. In fact, the very act of successfully requesting a file places it on
the downstream node if it was not already there, so a subsequent examination
of that node on suspicion reveals nothing about the prior state of affairs, and
provides a plausible legal ground that the data was not there until the act of
investigation placed it there. Requesting a particular file with a hops-to-live of 1
does not directly reveal whether or not the node was previously storing the file
in question, since nodes continue to forward messages having hops-to-live of 1
with finite probability. The success of a large number of requests for related files,
however, may provide grounds for suspicion that those files were being stored
there previously.

Modification of requested files by a malicious node in a request chain is an
important threat, and not only because of the corruption of the files themselves.
Since routing tables are based on replies to requests, a node might attempt to
steer traffic towards itself by pretending to have files when it does not and simply
returning fictitious data. For data stored under content-hash keys or signed-
subspace keys, this is not feasible since inauthentic data can be detected unless
a node finds a hash collision or successfully forges a cryptographic signature.
Data stored under keyword-signed keys, however, is vulnerable to dictionary
attack since signatures can be made by anyone knowing the original descriptive
string.

ATTACHMENT G

Microsoft Exhibit 1067

64 I. Clarke et al.

Finally, a number of denial-of-service attacks can be envisioned. The most
significant threat is that an attacker will attempt to fill all of the network’s stor-
age capacity by inserting a large number of junk files. An interesting possibility
for countering this attack is a scheme such as Hash Cash[20]. Essentially, this
scheme requires the inserter to perform a lengthy computation as “payment” be-
fore an insert is accepted, thus slowing down an attack. Another alternative is to
divide the datastore into two sections, one for new inserts and one for “establis-
hed” files (defined as files having received at least a certain number of requests).
New inserts can only displace other new inserts, not established files. In this way
a flood of junk inserts might temporarily paralyze insert operations but would
not displace existing files. It is difficult for an attacker to artificially legitimize
her own junk files by requesting them many times, since her requests will be
satisfied by the first node to hold the data and not proceed any further. She
cannot send requests directly to the other downstream nodes holding her files
since their identities are hidden from her. However, adopting this scheme may
make it difficult for genuine new inserts to survive long enough to be requested
by others and become established.

Attackers may attempt to displace existing files by inserting alternate versi-
ons under the same keys. Such an attack is not possible against a content-hash
key or signed-subspace key, since it requires finding a hash collision or succes-
sfully forging a cryptographic signature. An attack against a keyword-signed key,
on the other hand, may result in both versions coexisting in the network. The
way in which nodes react to insert collisions (detailed in section 3.3) is intended
to make such attacks more difficult. The success of a replacement attack can be
measured by the ratio of corrupt versus genuine versions resulting in the system.
However, the more corrupt copies the attacker attempts to circulate (by setting
a higher hops-to-live on insert), the greater the chance that an insert collision
will be encountered, which would cause an increase in the number of genuine
copies.

7 Conclusions

The Freenet network provides an effective means of anonymous information sto-
rage and retrieval. By using cooperating nodes spread over many computers in
conjunction with an efficient adaptive routing algorithm, it keeps information
anonymous and available while remaining highly scalable. Initial deployment of
a test version is underway, and is so far proving successful, with tens of thou-
sands of copies downloaded and many interesting files in circulation. Because of
the anonymous nature of the system, it is impossible to tell exactly how many
users there are or how well the insert and request mechanisms are working, but
anecdotal evidence is so far positive. We are working on implementing a simula-
tion and visualization suite which will enable more rigorous tests of the protocol
and routing algorithm. More realistic simulation is necessary which models the
effects of nodes joining and leaving simultaneously, variation in node capacity
and bandwidth, and larger network sizes. We would also like to implement a
public-key infrastructure to authenticate nodes and create a searching mecha-
nism.

ATTACHMENT G

Microsoft Exhibit 1067

Freenet 65

Acknowledgements. This material is partly based upon work supported under
a National Science Foundation Graduate Research Fellowship.

References

1. S. Adler, “The Slashdot effect: an analysis of three Internet publications,” Linux
Gazette issue 38, March 1999.

2. Akamai, http://www.akamai.com/ (2000).
3. R. Albert, H. Jeong, and A. Barabási, “Error and attack tolerance of complex

networks,” Nature 406, 378-382 (2000).
4. American National Standards Institute, American National Standard X9.30.2-

1997: Public Key Cryptography for the Financial Services Industry - Part 2: The
Secure Hash Algorithm (SHA-1) (1997).

5. R.J. Anderson, “The Eternity service,” in Proceedings of the 1st International
Conference on the Theory and Applications of Cryptology (PRAGOCRYPT ’96),
Prague, Czech Republic (1996).

6. Anonymizer, http://www.anonymizer.com/ (2000).
7. O. Berthold, H. Federrath, and S. Köpsell, “Web MIXes: a system for anonymous

and unobservable Internet access,” in Proceedings of the Workshop on Design Issues
in Anonymity and Unobservability, Berkeley, CA, USA. Springer: New York (2001).

8. D.L. Chaum, “Untraceable electronic mail, return addresses, and digital pseudo-
nyms,” Communications of the ACM 24(2), 84-88 (1981).

9. Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, and P. Yianilos, “A proto-
type implementation of archival intermemory,” in Proceedings of the Fourth ACM
Conference on Digital Libraries (DL ’99), Berkeley, CA, USA. ACM Press: New
York (1999).

10. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information retrie-
val,” Journal of the ACM 45(6), 965-982 (1998).

11. Church of Spiritual Technology (Scientology) v. Dataweb et al., Cause No. 96/1048,
District Court of the Hague, The Netherlands (1999).

12. I. Clarke, “A distributed decentralised information storage and retrieval system,”
unpublished report, Division of Informatics, University of Edinburgh (1999). Avai-
lable at http://www.freenetproject.org/ (2000).

13. L. Cottrell, “Frequently asked questions about Mixmaster remailers,”
http://www.obscura.com/˜loki/remailer/mixmaster-faq.html (2000).

14. R. Dingledine, M.J. Freedman, and D. Molnar, “The Free Haven project: distribu-
ted anonymous storage service,” in Proceedings of the Workshop on Design Issues
in Anonymity and Unobservability, Berkeley, CA, USA. Springer: New York (2001).

15. Distributed.net, http://www.distributed.net/ (2000).
16. D.J. Ellard, J.M. Megquier, and L. Park, “The INDIA protocol,”

http://www.eecs.harvard.edu/˜ellard/India-WWW/ (2000).
17. Gnutella, http://gnutella.wego.com/ (2000).
18. I. Goldberg and D. Wagner, “TAZ servers and the rewebber network: enabling

anonymous publishing on the world wide web,” First Monday 3(4) (1998).
19. D. Goldschlag, M. Reed, and P. Syverson, “Onion routing for anonymous and

private Internet connections,” Communications of the ACM 42(2), 39-41 (1999).
20. Hash Cash, http://www.cypherspace.org/˜adam/hashcash/ (2000).
21. T. Hong, “Performance,” in Peer-to-Peer, ed. by A. Oram. O’Reilly: Sebastopol,

CA, USA (2001).

ATTACHMENT G

Microsoft Exhibit 1067

66 I. Clarke et al.

22. B.A. Huberman and L.A. Adamic, “Internet: growth dynamics of the world-wide
web,” Nature 401, 131 (1999).

23. S. Milgram, “The small world problem,” Psychology Today 1(1), 60-67 (1967).
24. Napster, http://www.napster.com/ (2000).
25. M.K. Reiter and A.D. Rubin, “Anonymous web transactions with Crowds,” Com-

munications of the ACM 42(2), 32-38 (1999).
26. The Rewebber, http://www.rewebber.de/ (2000).
27. M. Richtel and S. Robinson, “Several web sites are attacked on day after assault

shut Yahoo,” The New York Times, February 9, 2000.
28. J. Rosen, “The eroded self,” The New York Times, April 30, 2000.
29. A.S. Tanenbaum, Modern Operating Systems. Prentice-Hall: Upper Saddle River,

NJ, USA (1992).
30. M. Waldman, A.D. Rubin, and L.F. Cranor, “Publius: a robust, tamper-evident,

censorship-resistant, web publishing system,” in Proceedings of the Ninth USENIX
Security Symposium, Denver, CO, USA (2000).

31. D. Watts and S. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature
393, 440-442 (1998).

32. Zero-Knowledge Systems, http://www.zks.net/ (2000).

ATTACHMENT G

Microsoft Exhibit 1067

	2015-10-15 - Brandon Wiley Declaration-signed2
	Attachment A - Wiley CV
	Attachment B - Freenet - People Involved in Freenet
	Attachment C - Freenet - Workshop Paper - HTML
	Attachment D - Freenet - Workshop Paper Postscript -icsi2
	Attachment E - ICSI Workshop Preproceedings - tr-00-011
	Attachment F - Springer landing page - Freenet Chapter, Lecture Notes in Computer Science
	Attachment G - Freenet Chapter, Lecture Notes in Computer Science

