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CODING NETWORK GROUPING DATA OF
SAME DATA TYPE INTO BLOCKS USING
FILE DATA STRUCTURE AND SELECTING
COMPRESSION FOR INDIVIDUAL BLOCK
BASE ON BLOCK DATA TYPE

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Serial No. 60/036,548 liled Mar, 7, 1997, the teachings of
which are incorporated herein by relerence in their entirety.

BACKGROUND OF THE INVENTION

High performance data compression systems use models
ol the dala 1o increase their ability o predict values, which
in turn leads to greater compression. The best models can be
achieved by building a compression sysiem 10 support a
gpecific data format. Instead of (rying o deduce a crude
model from the data within a specific file, a format-specitic
compression system can provide u precise pre-determined
model. The model can take advantage not just of the file
format structure, but also ol statistical data gathered from
sample databuses.

Previous efforts at format-specific compression have been
focused on solutions 1o a few individual formals rather than

on the development of a generalized method that could be 2

adapted to many formats., The models which bhave been
crealed lypically involve a small number of components.
This works adequately when most of the data is included in
a few components, such as an image file having mostly red,
blue, and green pixel values. But may formats are best
modeled using a large number of components, and the
previous systems are not designed to build or encode such
models.

SUMMARY OF THE INVENTION

A preferred coding system in accordance wilh the inven-
tion solves both ol these problems in the prior art: it provides
a generalized solution which can be adapted 10 handle a wide
range of formats, and it effectively handles models that use
large numbers of components, The system involves new
approaches at many levels: from the highest (inlerface) level
io the lowest (core encoding algorithms) level. The coding
nelwork inclodes a compression network for encoding data
and a decompression nelwork lor decoding data.

Al the highest level, a preferred compression system in
accordance with the invention uses an architecture called a
Base-Filter-Resource (BFR) system. This approach inte-
grates the advantages of format-specific compression into a
general-purpose compression tool serving a wide range of

data formats. The system includes filters which each support s

a specilic data format, such as for Excel XLS worksheels or
Word DOC files. The base includes the system control
modules and a library used by all the lilters. The resources
include routines which are used by more than one filter, but

which are not part of the base. I a filter is installed which  s:

maltches the format of the data to be encoded, the advantages
ol formal-specific compression can be realized for that data.
Otherwise, 4 “generic” filter is used which achieves perfor-
mance similar (o other non-specific data compression sys-
tems (such as PKZip, Stacker, elc.).

Al the next level, the system prelerably includes a method
for parsing source data into individual components. The
basic approach, called “structure flipping,” provides a key 1o
converting format information into compression models.
Structure flipping reorganizes the information in a file so that
similar components that are normally separated are grouped
together.
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Upon this foundation are a numbers ol ools, such as:

a language to simplify the creation of parsing routines;

tools to parse the source data using this method into

separale componenls; and

tools 1o generate models for individual components by

automated analysis of sample data bases.
These tools can be applied to the filters for a wide range of
lile and data types.

The compression system prelerably includes lools called
customized array translorms for specific filters and for
certain types of filters, These techniques handle a specific
file type or cerlain data constructions used by several file
lypes, such as encoding Iwo dimensional arrays ol data as
found in many database formats.

Al the low-level of the systermn are preferably a number of
mechanisms lor encoding data arrays, including:

new low-level encoding algorithms;

methods for integrating a large number of transforms and

encoding algorithms;

methods [or eliminating overhead so that small data

blocks can be efficiently coded; and

a4 new method for integrating both static models

(determined [rom statistical analysis of sample
databases) and dynamic models (adapled to the data
within a particular array) into the encoding of cach
component.

A preferred method of encoding source data comprising
parsing the source data into a plurality of blocks. The parsed
blocks typically have a different formal than the source data
format. In particular, similar data [rom the source dala arc
collected and grouped inlo respective blocks.

For each block, a compression algorithm is selected from
a plurality of candidate compression algorithms and applied
to the block. The compression algorithms can be determined
based on the amount of data in the respective block.
Furthermore, the compression algorithm can be adapted 10
the respective block, including the use of a cuslomized
transform. The selection of an algorithm can also be based
on @ compression model, which is denved from the [ormal
of the source data. The compressed data from the plurality
of blocks are then combined into encoded data.

The coding network can also include a decompression
network 1o convert the encoded data back into the source
data, [irst the data is decoded and then the parsing is
reversed, In a lossless system, Lhe resulting data is identical
1o the source dala.

Embodiments of the invention preferably 1ake the form of
machine executable instructions embedded in a machine-
readable format on a CD-ROM, floppy disk or hard disk, or
another machine-readable distribution medium. Thesc
instructions are execuled by one or more processing units Lo
implement the compression and decompression networks.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
of the invention will be apparent from the [ollowing more
particular deseription ol preferred embodiments of the
invention, as illustrated in the accompanying drawings in
which like relerence characlers refer 1o the same parls
throughout the different views. The drawings are nol pec-
essarily 1o scale, emphasis instead being placed upon illus-
trating the principles of the invention.

FIG. 1 is a high-level block diagram of a typical data
compression system.

FIG. 2 is a block diagram of a preferred encoder using the
BI'R system in accordance with the invention.
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I'IG. 3 is a flow chart of an array coder.

I'lG. 4 is a block diagram of the string coder 40 of FIG.
3.

FIG. 5 is a block diagram of the float coder 50 of FIG. 3.

FIG. 6 is a lowchart of a preferred automated analysis
system,

FIG. 7 is a flowchart overviewing the high-level of the
integer coder.

F1G. 8 is a llowchart overviewing the mid-level ol the
inleger coder.

DETAILED DESCRIPTIONS OF PREFERRED
EMBODIMENTS OF THE INVENTION

FIG. 1 is a high-leve] block diagram of a typical data
compression system. The primary components of the system
arc a sending application 1, an encoder 3, a decoder 5, and
a receiving application 7.

The sending application 1 provides source data 2 to be
encoded by the encoder 3. The sending application can be a
file archiver, a communication system, or any other appli-
calion with a need to represent data using fewer bytes than
in the native format.

The encoder 3 receives the source data 2 and uses data
compression algorithms (o represent the data using Fewer
bytes. The tvpical implementation ol the encoder 3 is as
software running on a general purpose compuler, although
the algorithms to be described may also be implemented on
specialized hardware.

The output of the encoder is encoded data 4, which can be
stored in memory (in which case the encoding allows more
source data to be stored within the same hardware), or
transmitted 1o the decoder 5 (in which case the encoding 1he
source data to be transmitled laster when the transmission
channel bandwidth is limited).

The decoder 5 retrieves or receives the encoded data 4 and
reverses Lhe algorithms used to encode the data so as o
reconstruct the source data as decoded data 6. In a lossless
system, the decoded data 6 is identical 1o the source data,
Depending on the application, however, some data loss may
be acceptable. As with the encoder 3, the decoder 5 is
typically embodied as software running on a general purpose
compuler, bul can be implemented 10 specialized hardware.

The receiving application 7 receives the decoded data 6
for processing.

A preferred compression engine includes filter-based
encoders and decoders which can be utilized by a large
number of sending applications 1 and receiving applications
7. While the applications 1,7 that store/retrieve or transmil/
receive the encoded data are not part of the compression
system, they may adjust encoding and decoding operations
according 1o system conditions such as available transmis-
sion channel bandwidth.

The descriptions to follow will mosily cover the encoder.
The decoder just reverses the encoder’s actions, so a descrip-
tion of the encoder is sufficient o describe the overall
vocoding/decoding system. The lerm “File” will be used 1o
describe a block ol source data, which malches the conven-
tional usage, but which should also be undersiood 1o be
applicable to many other types of data blocks such as a dala
exchange in a Client-Server application.

ENCODER

FIG. 2 is a block disgram of a preferred encoder using a
Base-Filier-Resource (BI'R) network in accordance with the

20

30

35

40

50

L
el

60

65

4
invention. The encoder ' is based on the use of a plurality
of filters 10a. . . . , 10x, . . ., 10z which serve specific file

formats. For example, one filter 102 might support several
versions of 1he DBT database [ormat, while another hlter 10z
might support several versions of the DOC [ormat used by
the Microsoft Word software program. The individual filters
provide respective selection criteria 12 1o a filier selection
system 22.

The filter selection system 22 receives the source data 2
and checks the selection criteria 12a, . .., 12y, .. ., 12z of
all filters 10a, . . ., 10x, . . ., 10z installed in the system 1o
see il any of them support the source data’s format. I not,
a “generic” filter is used which provides compression per-
formance similar 1o other generic compression systems,
such as Lempel-Ziv (LZ) engines. In a particular preferred
embodiment of the invention, the generic compression sys-
tem employs an SZIP engine as described by Mr, Schindler
in U.S. application Ser. No. 08/970.220 filed Nov, 14, 1997,
the teachings of which are incorporaled herein by reference
in their entirety. The deseriptions of the network will pri-
marily cover the situations in which a filter 1o support the
data format is successfully found,

Brielly, a parsing system 24 parses the source data 2 into
4 large number ol parsed Arrays 25, which each include all
the instances ol a particular component in the source file.
The term “Array”, described in further detail below. is
capitalized 1o indicate that this refers (o a type of structure
specific o the network, as opposed (o the usual use of the
term “array™. The algorithm used to parse the source data 2
is called “Structure Flipping™, an important aspect of the
network, described in further detail below.

The BIR system uses an automated analysis system (also
deseribed in detail below) 1o build a model for each Array
25, which will be used when the Arrays 25 are encoded in
an array coder 28, In some cases, betler compression can be
achieved if cuslomized array transforms 26 are first used.
While the models generated by the auiomated analysis
system process each component Array 25 independently, the
customized routines can take advantage of inter-component
relationships.

The array coder 28 encodes the Arrays 25 using a count-
dependent modeling system, which includes a mixiure of
slatic models (constanl lor all databases) and dynamic
adjustment to each particular Array 25.

The filter 10x has components o support each of the [our
sections of the encoder 3'. The selection criteria 12v, deter-
mined by the file format specification, includes information
needed to recognize files served by the filter Ty such as byte
vitlues at the beginning of the file or file title sulfices. Parsing
instructions 14, also determined by the file format
specification, include the information needed o parse the
source lile inlo parsed Arrays 25 having all the instances of
@ particular component in the source file. The cusiom
component models 16 are constructed by referencing both
the file format specification and sample databascs. They can
take advantage of inter-component relationships o trans-
lorm some of the component Arrays 25 to muke them more
compressible. Encoding parameiers 18 are generated by an
automaled apalysis system which examines componenl
Arrays 25 parsed [tom a large number ol sample dalabases.
The encoding parameters 18 provide the data necessary Lo
support the count-dependent modeling system in the array
coder 28.

FILTER SELECTION SYSTEM

A preferred compression system wses an expandable

architecture that allows vsers to support new or updated
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formats by adding or replacing (ilters 10 As noted above, a
filter 10 can support more than one format. For example, a
filter called “LOTUS123v4"™ might support all file formals
associaled with the Lotus 123 program, such as the current
WEK4 format and the earlier WEK3 and FM3 formais. If a
Filter was later developed for a new Lotus WKS [ormal, a
uscr replaces the old filter with one supporting the new
format and which would also be backwardly compatible
with the earlier filter with respect 1o the older formals.

In the Microsoft Windows environment, each Liller 1s a
separale dynamically linked library (DLL) file. In addition
to data tables, a filter includes executable code.

If & filter is found for a file, then it is dynamically linked
and then called 1o encode the file. The encoded data stream
includes an identification (ID) code indicating which filier
was used to encode the data, and the decoder has 1o have a
corresponding decoding filler.

To implement the filter selection system 22, the base
module maintains a registry of the currently installed files,
which includes the data need to identify source files of that
type as well as the path to the DLL. This registry is updated
cach time a filter is added or replaced. The identification data
can include both a list of file title suffices and a method 1o
identify files via byle values near the beginning of the file.
The identification procedure uses a search tree method 1o
reduce the time needed Lo check the list when many filters
arc installed. From this registry, the appropriate filter 10 is
invoked for the file type.

To handle compound file formats such as Microsolt’'s
OLEZ, one filter can invoke another filter 10 encode a
sub-file or stream within the compound file. For example, a
Winword Filler might call an Excel Filter 10 encode some
Excel data which was embedded within a compound docu-
ment lile.

PARSING SYSTEM

As noted above, the parsing system 24 creates o large
number of parsed Arrays 25, Each parsed Array 25 includes
all instances of a particular component in & lile, A separate
componenl is created for cach member of each defined
structure type.

EXAMPLE 1
For example, consider the following description ol a record
defined in a file format description.
Cell Value:

The format uses a special method of coding numbers in an
internal number type, called an RK number, to save
memory and disk space.

Record Data:

Oillset Name Size Cantents
4 ™w 2 Row number
[ col 2 Column number
8 fmt 2 Index 1o the record that includes
the cell format
10 oum 4 the coded number

The parsing system 24 creates parsed Arrays 25 for each
of the four components of this record. Lach time an RK
record is found, an entry is added 1o cach array. The parsed
Arrays 25 are much more compressible thin the raw source
data, as shown by data from live records:
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Ree Row Col Index Num Val
1 Cx0001 Ox0002 %0055 Dx30Te100
2 Ox0001 0x0003 Ox00SE Nx31a300
3 (0001 04 Ox0053 Ox3T14000
4 L0001 06 Ox005F 31400
5 Cre0i001 00007 OxO05F 0314300

The source data would appear almost random Lo a byie-
matching algorithm (shown in hex):

01 00 02 00 55 00 00 ¢l / 301 00 03 00 5f 00 00 43 i

31 01 00 04 00 53 00 00 dO 11 3f
01 00 06 00 51 00 00 ¢4 el 1 3001 00 07 00 51 00 00 d3
i 3r

But when handled as four separate Arrays 25 (Row, Cal,
Index, and Num) using algorithms optimized for each
component, the dala can compress significantly. This
approach is referred 10 herein as “structure Qipping” becausce
of the way it rearranges the data,

To encode together the instances of the same component
in a dalabase is a common compression fechnique, and 1he
file format is often used to identify such components. But in
the prior art, this approach has been limited 1o isolating a few
major components of a specific file formal, and the file
lormal description used only as a lechnigue of finding these
major components. In accordance with prelerred embodi-
ments of the invention, a file formalt is actually converted
into a compression model, which is then interfaced into an
automated system for analyzing the data and opltimizing the
coding performance of cach component. While this com-
pression model is usvally enhanced by the customized array
transforms 26, it is still an aspect of the overall system.

The extent 1o which preferred approaches differ from
prior arl systems is reflected n the new tools constructed in
order 10 implement it. This approach creates a large number
of Arrays 25. Each Array 25 requires a dilferent compression
model, and the pumber ol entries in each can change
significantly from file to file. In order to work effectively in
such a case, preferred embodimenis of the invention emplay
new approaches in how the low-level coding is handled such
as the elimination of overhead, count-dependent processing,
and the use of a processing nelwork instead of fixed coding
algorithms. These techniques, described above, are preferred
m order 10 handle the output of the parsing systemn 24,

All of these implementation features are integrated at a
high level, so that high-level calls can handle all of the
operations needed to initialize the sysiem, parse the data,
and encode the Arrays.

In accordance with a particular preferred embodiment of
the invention, the hle parsing syslem 24 uses three sub-
syslems:

FILE_BUFFER  Input:Ouipul Toterface
ARRAYS To store the data for a single component
PVSTRUCT To parse the inpul inlo Armys or 1o wrile the decoded

Amrays into the Output stream

A plurality of FILL _BUFFER routines provide a llexible
input/output interface using FILE BUFFER structures, so
the same sel of parsing routines can be used regardless of the
input/output formats. This allows the compression system 1o
be independent of the I/O format. The file parsing system
preferably supports two file formais: DOS wnd OLEZ, bul
this can expanded 10 other file formats as well as to inter-
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faces to communication ports and other /O options. For
DOS fliles, the logical stream positions are usually the same
as the raw [ile positions. The OLE2 lormat requires an
extensive layer ol code 1o follow an OLLE2 stream within the
container file.

A plurality of ARRAY routines provide a system [or
managing the process of inilializing, adding data 1o,
encoding, and freeing arrays of data. Each ARRAY structure
includes one array of data and the information needed Lo
manage these processes, such as the number of entries in the
Array 25, the size of the bulfer currently allocated for the
array, and information which will be useful in encoding the
array.

In particular, ARRAY XX structure stores all the data
from a component, and includes mechanisms 1o support fast
sequential read/wrile access 1o the data, an expandable
buffer for the data, and storage of mode] data. This struciure
also allows a simple sel of ools to bandle all allocation,
parsing, and coding functions. The XX pomenclature
imdicates that slightly dilferent ARRAY structures are
defined for different data types, such as dilferent integer
word sizes, strings, and Hoating point types, although many
of the processing routines work on all of the variations,

A plurality of PYVSTRUCT routines make up an aulo-
mated sysiem for parsing the file data. During encoding,
they read data from the FILE_ BUFFER structure and write
data into Arrays 25. Dunng decoding, they lake data from
the Arrays 25 and wrile it into the FILE BUFFLR struc-
tures. These routines can lake a high-level description of a
file format and handle all the tasks associated with managing
the parsing as well as the encoding of the parsed data. Many
of the Filters 10 will also include customized parsing
routines which call the FILE BUFFER and ARRAY rou-
tines directly instead of using the PVSTRUCT routines, But
an aspect ol the parsing system 24 is the PVSTRUCT
routines, and this discussion will be concerned primarily
with their operation.

A PVSTRUCT structure includes all information needed
o parse and code a data structore defined in a file format.
This usually involves multiple components, so it provides
and handles individual Arrays 25 for each component. The
term “pystruct” comes from Predictor Variable Structure,
where Predictor refers to the use of statistical data gained
from analyzing a large number of sample files (o assist in the
encoding of the data, and Variable indicates thal it supporls
structures where the component counts can vary al run time
for each instance (called “dynamic structures”™ in some
texibooks).

A parsing language is a defined instruction set which
provides a concise way to specily the parsing of a
PVSTRUCT structure. The instruction set includes support
for a wide range of dynamic variation, including where the
counts of components are dependent on lile counts of other
components as well as on external factors. It incorporates
other file format data, such as defined values or range
restrictions. 1t also provides a means ol exchanging data
between the parser and the lilter.

The compression system is based on parsing 4 file so as
1o place items together thal are similar. In the following
description of the compression system, examples illusirating
some slructures which might be found in a 1ypical spread-
sheet file format.

EXAMPLE 2

Spreadsheet files typically include a series of records.
Each record begins with a 16-bit word indicating the type of
record followed by a 16-bit word giving the number of bytes
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in the body ol the record. The lile specification then
describes the contents of cach record. A specification for a
TABLE SIZE record might be:

RecType=0x402

Rec Body Size=12

Record Data:

Offset Name Size Conlenls
4 MinRow 2 Firsl defined row on the sheet
o MaxRow 2 Last defined row on the sheet, plus 1
8 MinCol 2 First defined column on the sheel
10 MaxCol 2 Last defined column on the sheet, plus 1
12 (Reserved) 4 Reserved

There can be more than one such record in the data. When
there 18 more than one record, the values of the same
component in each record are going 1o be similar to each
other. This enables the compression system to lake advan-
tage ol the similaritics to increase the compression ratio.

The compression system is preferably based oo the
ARRAY XX structures, including:

ARRAY _U18: for 8-bit data jrems, reated by Lhe encoding system as
being unsigned

ARRAY _16: for 16-bit dats items, treated by the encoding system s
being signed

ARRAY 3l for 32-bit dala items, treated by the encoding system as
being signed

ARRAY _FaZ: for 32-bil floats

ARRAY _Fpd for 64-bit flonts ("doubles™)

ARRAY_ F80: for 80-bit floats (“long doubles™)

ARRAY _STR:  cach entry includes several byles whose count is given

by @ size (string size).

For the TABLE S1ZE record, five arrays would be created
(relerring to the record specification). Each time a record is
parsed, an entry is added into each of the five arrays.

When all the records had been parsed, a funclion is
invoked 1o encode the items in cach array. This function
includes a large number of algorithms, which can exploil a
wide variety of relationships 1o achieve maximum compres-
sion, The implementation is extremely efficient in that it
requires virtually no overhead: an array with only one entry
can cven be efficicntly compressed, This is necessary
because the parsing system can transform a file into a huge
mumber of these small arrays. The encoding function can
also free 1the data alter it finishes encoding it

The decoding process reverses the sequence. First, each of
the component arrays is decoded. Then the parsing is
reversed.

As this type of parsing has 1o be done exiensively, a
number of lools are used o simplify the process. They are
based on the use of insiructions called vstruct defs. To
continue with the TABLLE SIZE example, the instruction sel
1o parse such a record would be:

[ the first 3 instructions always provide general infe about the record:
8, [/ num instructions in this set

12, Jf size of the record body, which 15 a fixed a2 of 12 bytes

55 /f num arrays o be created

If Whe remaining instructions fell how (o parse the record:

INT16, /f Parse a 16 hit integer for the first component (“MinRow™)
INT16,
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~conlinued -continued
INT16. #define FLOAT32 3
INT16. #define FLOATb4 i
INTA2 |/ Parse a 32 bit inleger lor the last component (" Reserved") s #define FLLOATSD 5
#Hdefine STRING 6
#define STRINGZ 7
The vstruct _del instructions are 16 bit integers. The first #define SYS_ §1 ]
three words always include the same general info about the x“ﬁm g; ;f' 3
3 e Oyt ot 857 g 4 . cfine _ &l i
record. The resi of .th"' wards include instructions which tell |, Hdefine SYS_ S22 ke
the aulomated parsing system how (o proceed when encoun-
tering such a record. In this case, the instructions are the R .
simplest possible—just a list of data Lypes for cach compo- In the encoder, no dislinction is made belween signed and
nent of the record. The parser would create an array for each unsigned integers. 8-bit values are always processed as
component, and load one entry of that type into the array | unsigned; 16 and 32-bit values as signed, This convention is
cach lime it parses a record of that type; used 1o simplify and speed up the routines, such as 10 have
Functions are then provided to automate the parsing and fewer cases 10 check in a switch statement. 1t has little
encoding of records based on these instructions. Again, the impact on compression performance, but where the file data
decoding process reverses the actions ol the encoder. is also used in parsing (such as when element counts are parl
The vstruet_def instructions can handle sitations much ,; of the fle data). carc should be exercised.
more complex than the previous example. For convenience, The STRINGZ refers to zero terminated sirings. They are
a summary of the construction of these instructions will be stored in the same ARRAY STR as normal sirings, but can
summarized next. The upper byle of the 16 bil instruction is be handled diflerently during parsing. For example, the
an argument as required by the lower byte. The lower byte siring length needs 10 be provided when parsing a regular
is divided into two 4-bit codes. The lowest 4 bits describe the . siring, but a STRINGZ can find its own length. The
type of instruction and determine the meaning of the next 4 STRINGZ also does not need fo store the zero terminaling
bits. This bitfield siructure makes the instructions very char,
readable in hexadecimal notation, which is vused in the The SYS_ Sxx types refer to sysiem sirings. Normally,
following deseription of the codes. The characler *x’ repre- cach component of each pvstruct is self contained, in that
sents hexadecimal values that do not affect the code word , cach is placed into a separale array and coded independently.
being described: Having many small but highly correlated arrays is very
clhcient for numerical data when using the encode routines.
Bits =3 set the Instruction type (opcode) But lor sirings, the compression can ofien be improved by
! . , placing many component sirings into a single array, such as
If opeode <=b, this value gives the component’s data type. +s 0 combine text data from multiple records. The system
The upper liclds are Iben psed as [ollows: allows for two “System” sirings 10 hold these combined
Bits §-15 are the arguments (ARG) when used. componenis. The sirings added into these system data may
Tie 427 e vised g be regular or STRINGZ types.
To illustrate, two simple examples are described below.
40
3 - - EXAMPLE 3
xxx: simple entry. Read one data item of this Lype
sxlx: add ARG entries of that type inio a single amay 4 & " oty a8,
£x2x: also adds multiple items into the same areay, bul the In this C).d!‘l‘lp]&), W*_uw depth al a p_arucular location is
count is given in DatsBuf [ARG) measured 8 dillerent times and stored in a database:
xx8x: Value item is defined in spec. Value is read & 4%
checked, but does not need 10 be stored, Record COI‘I‘I[JDDUIIL\\
xxbx: value range is restricted (o less than the range allowed inkl 6 TocationXs
by the dats type. ARG selects a defined range or a 1nt ocationas
defined lisl intl6 location;
If opeode = xxsd: Start sub-structure r L
It opeode = xxxe: Start sub-sub-stucture 50 31111 6 deplh[sj' A
1 opeode = xxxf: Special instruct, lype determined by Bils 4-7; e I'he depth measurements would be very similar, so one
xxUx: end sub structure would want (o place them into a single Array. The instruction
xxpdx; end sub-sub struetuce set would he:
xx2x; add value to DataBul (position given by ¥ %
ARG)
xx5x; alores the number of words of size ARG _
remaining in the externally-supplied a5
record length vstruct_def VD _ex?| [={
0, /6 instruction words
21. i 20 byles per recond
The data types selected by the opeode are defined as: f“] /f num armys 1o be crealed
NT16.
ol INT16,
0x811): /8 intl6 entries inlo single armay
where the Dx811:
#define C;HAR u xxxl: data type is INT16
wdefin L(_-:!',]AR o xxlx: num instances for this component in each
z;?ﬁ; ll_.,l.:t:'ll{‘ld } record is given by the ARG
O8xx: ARG =¥
#define INT32 2 &5 o e
&

#define TINT32



US 6,253,264 Bl

1
EXAMPLE 4

In this example, @ record stores the ages for someone’s
friends:

Record Components

intl6 num _ [riends:
uchar ages[num_ friends];

An array with a variable size such as this cannotl be
declared wilhin a structure o the *C° programming
language, but it occurs frequently in file formats. This type
ol construction is often called a dynamic structure. It can be
parsed via the instruction sect:

vstrucr def VD _exd] | = {
i}

y /6 instruction words
INTERN SZ,

{f Size of record defermined by internal data
/f nuny arrays o be erealed

EN'I'! 0,

/f the num__ Friends entry
(12f, [ store the previous val in register |
01207 M U8 vals: ot from register 1
swhere the Ox121:
xxxf:  special instruction
xx2x: slore the data value parsed by the previous
imstruction in the register specilied by the
ARG
Olxx: ARG = 1. use register 1
and the Ox120:
xxx(): data type s uchar
xxlx: maltiple entries, count found in regisier
given in ARG
Olxxt ARG = 1: use register 1

Registers are allocated as part of the PYSTRUCT struc-
ture and are used for lemporary storage of data while
processing a record. Register 0 is used lor special purposes
(sce the following example). The programmer designing a
filter can use the rest of the entries arbitrarily. The registers
can also be used 1o exchange data between i pvstruct and the
rest of the program. For example, if one itlem buried in a
large record is needed for contral purposes, il can be dumped
into a register with a xx2f instruction following the instruc-
tion that read the data item. The data item will then be
available in the register alter the call 1o read or wrile the file.

EXAMPLE 5

A file specilication lor a record called COLUMN TYPLES
might be:

RecType=0x413

Rec Body Size=Variable
Record Data:

Offset Name Size  Contents
4 AlignCode 1 Alignment Code
5 Style 1 Column Style Code
6 Font 2 Defaull Font Used for Column
8 Offsets var Caolunin Offsets

Olfsels are 1 byte values. The number of offsels is deter-
mined by the record size
The instruction set for this record wounld be:

vatruct_del VD_413[ |
8, i/ & instructions
EXTERN _SZ, i the size of the record body
is set externally

-continued

4, /f num arrays Lo be created
UCHAR. UCHAR,

s INTi6
x50  lond num 1byte words left in
filer register 0 used by
default for this
HENDTO count
0x020}: U8 wals: et from register O
10

The last component of the record is a list ol 1-byte column
offsets. These will be similar to each other and should all be
placed in a single array. In this case, the number of such
entrics cannot be determined internally: have to use the
record size which would have been previously parsed. The
(x15f instruction rells the parser 1o determine the oumber of
1-byte words remaining in the record, and this count is
always stored in register 0. The 0x020 tells the parser that
multiple 1 byle items are to be added into a single array, and
that the number of such items can be found in register 0,

0

EXAMPLE 6
An example of a reeord called RANGE DEFINITION
including a string might be:
RecType=0x215
Rec Body Size=24
Record Data:

Offset Nante Size Contents

4+ Name
20 StartRow
22 End Row
24 StartCol
26 EndCol

o=

Name of Range

First Row in Range
Tast Row in Range
First Column in Range
Last Column in Range

i
L

[FREREE S

40 The instruction set for this record is:

vstruet_def VD_215[ =
8, J/ & instructions
24,

if fixed sz = 24 byles
5S¢ ¢/ num arrays to be crested
Ox1018,  // 8=5YS_STRI; sz 16 (Ux10)
INT16,
INTI16,
INTI16,
30 INT16};
whert Ox1018:
xxx8; indicate thal the siring will be stored in the
SYS_STRI asray,
xxlx: length is given by ARG
1xx: ARG = 16 (0x10)
55

A subjective decision has been made here by the person
writing the filter. The component which was bandled as a
siring could also have been handled as multiple entries as

. previously shown. Its instruction would have been:
Ox 1010
where

xxx0=UCHAR type

xx I x=fixed count given in arg

L0xx=ARG=16 (0x10 hex)

The decision 1o use a String Array wis based on the nature
ol the entry. The record includes a text string, The array
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encoding system provides a number ol special leatures 1o
handle sirings. I'or example, it checks for full string maiches
(all 16 chars of one entry match another), which can be
encoded very efficiently. Consequently, text strings are
always compressed more efficiently when stored as Strings.
In contrast, the offsets in the previous section would be
better handled within the numeric compressor, which docs
not nse siring sizes.

EXAMPLE 7

The lile specilication lor another record called EXTER-
NAL REFERENCES including a siring might be:

RecType=0x17A
Ree Body Size=var

Record Data:

Offzet Name Size Conlents
4 StadRow 2 First Row in Range
¢ EndRow 2 Last Row in Range
& StartCol 2 Fisl Column in Range
10 EndCol 2 Last Colunm in Range
§2  Name wvar  Zero-lerminated String Containing Range

Reference

The instruction set for this record is:

wstruct_det VD_178[]={
B /I 8 instructions

INTERN 52, /! rec body size not fixed, but will be set by
internal data

5 S mum arravs to be created

INTI6,

INT16.

INT16.

INT16,

SYS_sz2):

The last component of the record is a zero lerminaled
string. The length of the string can be found by searching for
the terminating character. As the siring array will store and
encode the siring size, the terminating character does not
need o be saved. The INTERN SZ indicates thal the size
of the record, while nol known in advance, will be deter-
mined internally, so that the record size would not need 1o
be encoded, as was needed for the Column Types record of
Example 5.

EXAMPLLE 8

A structure can be nested within another structure. The
parent structure can include muliiple instances of the nesled
structure. A description of such a COLUMN STATUS record
might be:

RecType =0x7
Ree Body Size=var

L)

=
L=

i

20

W
A

40

L
h

=

[
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Record Data:

Offset Nume Size  Conlents
4 Default Stais 1 Defuult Status for Columns
5 Col Dala var I'he list of ColData entries as

defined below

The ColData entries give the offsel 1o each column whose
slatus doe not equal the delaull, and the status ol that
column. Each entry is 2 byles:

Offiset
Stalus

1 byte
1 byte

The instruction for this record is:

vatruct_def VD_7] J={
8, M 8 instructions

EXTERN_SZ, 1 varible size needing extern inpul

3, Hum armys o bhe created
UCHAR, I{ the “Default Status™ is part of the parent
structyure

{l ready to start Lhe sub-strocture, Count is the number that can [t
into the remaining space
/ in the externally supplied record hody size:

Ux2SEL /! load tum 2byte words left in file into register
(), the defined location
// for ENDTO data

Oxi)2d, !/ start sub: ot from tegister 1)

UCHAR. I/ the "Offset’ is the first component of the sub-
structure

UCHARL {/ the “Slatus™ is the second companent of the

suh-stiucture

The last component of the record is a series of offset/status
pairs. Separate arrays need o be created for the offsel
component and for the width component. The parser has to
wo through the sequence of pairs and place the items into
their proper array. This general procedure is handled by
sub-structures. In this case, the sub-structure has two uchar
components. Two instructions were involved in selling up
the sub-structure,

Used to sel the counl in this case

xxxl:  the [ indicates a special instmiclion

xx5x: determine the number of ARG length units left in the
record and slore il in register 0

02xx: The unit size i= 2 (2 byles per sub-structure)

The actual eommand to star a sub-structire

xxxd: Starl a substruciure

xxIx: Num instances of the sub-stmcture in the record is found

in the regisier [ARG]

ARG=0 (so count 15 al register 0)

0% 251

Ux02d:

Ofhx:

All subsequent components are trealed as elements ol the
sub-structure until a End_SubStructure instruction is
encountered (Ox000f). 11 none is encountered prior to the end
of the instruction list, all remaining components are part of
the sub-structure. IF' an Lnd  Substructure command 1s
found, subsequent instructions refer o components o be
included as part of the main structure.

Although the parsing system also supports a sub-sub-
structure (4 sub structure within a sub-structure), higher
levels of nesting are preferably not allowed because no file
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specs so complicated have yet been identified. As many
sub-siructures or sub-sub-siructures can be defined as
necded within a pvstruct, preferably as long as the resting
woes no deeper than two levels at a ime: 1.¢., return back 1o
the parent nesting level via an End  SubStructure instruc-
tion.

EXAMPLE 9

In some case, the range of data 1o be wrillen into an array
15 defined by the file format as being less than the full
numerical range allowed by the word size. For example, a
file specification might specily 4 one byie entry that is either
0 or 1. This information can be used both by the parsing
system as @ sanily check and by the encoding sysiem 1o
increase compression, The description of an illustrative
COLUMN OPEN record is:

RecType=0x11

Ree Body Size=1
Record Data:

Offset Name Size  Contents

4 ColOpen 1 Either 0 (column closed) or 1

(coltmn open

The instruction sel Tor this record is;

vstruet_def VD11 }={
4.

/' 4 instructions

ot fl fixed sz = 1 byle
Xy f num arrays w be created
DE_1%h /i defined constant as a deseribed helow

Instead of entering UCHAR, D8 1 is enlered, a delined
code indicating an 8-bit word size and a 1-bit range of values

actually used. These range restrictions do nol afleet the

parsing of the file: a range restriction entry is parsed accord-
ing 1o its word size. The range restrictions are used 1o assist
the automated generation of the PREDICTOR siructure,
which includes the static model for a component and con-
trols the encoding of the Arrays. The code words currently

defined pse the formal:

Defined ranges where min_ val=0; max  val=(| <<nbits)—
13

DX
X=word size (8=uchar;16=in116:32=in132)
Y=nbils

Defined ranges slarting al L:min_val=1; max_val=
(l<<nbils);

DX_5.1:
X=word size (S=uchar;16=in116;32=in132)
Y-nbils

Specially defined Ranges

DX rY:
X=word size (8=uchar;106=in116;32=in132)
Y=index of RANGE ecniry in PREDICTOR _

CONTROL->spec range[ ]

Specially defined list of Values:

DX_+Y:
X=word size (8=uchar; 16=in116;32=in132)

Y=index of VALUE LIST entry in PREDICTOR.
CONTROL->spec_dlisi[ ]

5
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The parsing system 24 (F1G. 2) is preferably implemented
as a [unection library wrilten in the C programming language.
This description of the library is divided into three sections:
the FILE 1/0 routines, the ARRAY routines, and the
PVSTRUCT routines.

The parsing system 24 includes a lexible input/outpul
interface, so the same set of parsing routines can be nsed
regardless of the inpul/outpul formats. Two file formats are
supported: DOS and OLEZ, but this can be expanded 1o
other file formals as well as to interfaces © communication
ports and other 1/O options. The DOS formal is trivial, in
that the logical stream position is usually the same as the raw
file position. The OLE2 [ormal requires an extensive layer of
code 1o reconstruct an OLE2 siream using the internal
allocation table.

CUSTOMIZED ARRAY TRANSFORMS

The parsing syslem 24 creates Arrays 25 [or each com-
ponent in the source file, and the array coder 28, assisted by
the encoding parameters 18 penerated by the antomated
analysis system, finds the best way 10 encode each Array 25
using the algorithms available to it In some cases, these
automated default mechanisms can be improved upon using
custom routines. The custom routines are called transforms,
becavse they begin with parsed Arrays 25 and the result is
a different set of Arrays 25 sent {o the array coder 28.

The primary role of the customized array transforms 26 is
o implement inter-component models: when the data from
one component can assist in the coding of another compo-
nent. The automated defaull mechanisms process each com-
ponent individually, and the compression performance can
sometimes be improved by exploiting inter-component rela-
tionships. Such a svstem is one that can accurately prediet all
the values in an Array 25, so that no code is required for the
Array 25. The customized array transforms 26 becomes a
simulator: duplicating the [unclionality of the program
which generaled the source data file. Bach cuslom routine 1s
a separale crealion solving a specilic problem associated
with & single Filter 10. Many of these routines could be
independently applicd as a solution to that particular prob-
lem.

Because custom routines require more labor to construct
and inflate the size of the executable, their use is preferably
resiricied to cases which are likely to produce a significant
hooslt in the overall performance. In many file formats, a tew
of the components make up most of the data. Customized
array transforms 26 can usually improve the compression of
these frequent components, while the automated defaull
mechanisms achieve adequate compression of the remaining
components.

The other parts of the system play a signilican! role even
on components for which customized array transforms 26
are wrilten. The parsing system 24 simplifies the isolation of
the components and the identilication and analysis ol com-
ponents needing custom work, The array coder 28 and the
automaled analysis routines still process the Arrays gener-
ated by the customized array transforms 26. The capabilities
of the array coder 28 allow [or innovalive approaches to the
custom modeling. One such approach is compression via
sub-division: transforming an Array 25 into multiple Arrays
25, each of which being inlernally correlaled in a way that
can be exploiled by the array coder 28.

As an example ol this, consider the coded numbers above
in Example 1. These values would be parsed into a single
Array 25 of 32-bit integers. Bult these values are not inlegers
but rather are codes in which two of the bits indicate that the
coiry is one of four dilferent 1ypes, and the remaining bits
have different meanings for each lype. A new Array 25 can
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be created for the 2-bil lags. and then separale arrays can be
created for each of the four types. The automated analysis
system and the array coder 28 can {ind different and optimal
models for each of these five Arrays, and the system’s
efficiency at handling Arrays with fewer entries eliminates
the overhead [rom using the multiple Arrays. As a resull, the
tolal codes size resulting from coding these five highly
correlated Arrays is significantly less than encoding the
single original Array.

If a customized array transform can be used by more than
one lilter 10, il can be twurned nlo a resource. Resources are
separate modules (DLLs in the Windows eovironment)
which are used by more than one filier. The main reasons for
using resources is 10 reduce the redundant code.

ARRAY CODER

Most compression algorithms involve transforming a data
block and then encoding the results using a method that
represents the most frequent values using fewer bits, Several
successive transforms can be used, and each transform may

create mulliple output blocks. 1n a typical LZ77 coder, for 2

example, the source data is transformed into four different
arrays: a block ol 1-bit flags indicating whether a maiching
sequence was found, an arrav of bytes which did not match
aoy previous sequence, and the length and position of a

maltching sequence when one was found. The first three 2

arrays are often combined into a single array and then
Huffman coded, while the malch posilions are range-
transformed and then Hullman coded.

This type of compression syslem can be viewed as a
processing network, where the source Array undergoes
transforms which convert it into vne or more different Arrays
which in turn may go through other transforms. At the end
of cach path is the low-level coder, such as the Huffman
coder or arithmetic coder, which converis a probabilistic
model inlo the encoded output, Conventional approaches 1o
data compression are based on “compression algorithms™
having a small number of transforms and defining a lixed
path through them. These fixed systems handle the encoding
needs of conventional parsing systems which generate a
small number of components.

A preferred parsing sysiem 24 in accordance with the
invention creates large numbers of Arrays 25 representing
different components in the different Filiers 10, The data
type (strings, floating poinl values and integers of various
word sizes) can be different [or each component. The data
within cach ol these component Arrays can be inlernally
correlated in many different ways. To achieve oplimum
compression requires using a compression algorithm which
exploits these patterns. The optimum algorithm is also

alfected by the current availability of memory and the s

desired trade-off between speed and compression perfor-
mance. The number of entries in each Array also varies
widely, and diflerent coding approaches can work beller at
different Array counts.

The prelerred coder system has available a static model of
cach component. This model is obtained by analyzing
imstances of this component in a large number of source files
of the type being served by a lilter. The system is neither
“static” nor “adaptive”, bul rather uses information from the
slatic model wherever il is helpful, while being fully able 10
respond Lo the unique dala set found in each Array, The static
model can both guide the selection ol transform algorithms
and provide pre-computed encoding tables for the various
algorithms.

Consequently, the preferred coder system has 1o support
thousands of dilferent ways lo encode each Array. The
processing system is not a fixed algorithm, but rather a
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dynamic network and each path through this network creales
a dilferent encoding algorithm. The path of the data through
the network is guided by both static models and dynamic
considerations, such as the number of entries in the Array,
the speed and memory constrainis.

An uspeet of the prelerred coder svstem is the exlensive
use of the Array counls (the number of entries in an Array)
to conltrol the network. At lower counts, the system relies
heavily upon a slatic model, generaled [rom analysis of
sample databases. As the counl increases, Lhe syslem uses
approaches which adapt more 1o the characleristics a specilic
Array, because the gains from using adaptive models begin
o outweight the overhead of encoding the adaptive model.
The overhead at low counis is almost completely eliminated,
s0 that Arrays with only a single entry can even be ¢ncoded
cfficiently. This elimination of overhead in turn allows new
types of approaches to be used which might be called
compression by sub-division, wherein source Arrays are
transformed infto large numbers ol highly correlated, smaller
Arrays,

The prelerred coder system also includes a number of
original algorithms which provide increased compression
performance for many of the components which have been
encountered. Routines such as the Hoating point and string
Array transforms provide significant benefits over previous
methods for encoding these components.

FIG. 3 is a flow chart ol an array coder. To simplily the
interface with other routines, a prelerred implementation of
the array coder includes a single encoding routine which
handles all Array types (integers and floating point values of
virious word sizes, sirings, ¢te.). The master routine then
roules each Array 1o 4 specialized encoding routine [or thal
data type as shown.

lo particular at step 32, the Array 25 type is checked as a
siring array. If the Array is a siring array, then a string coder
40 is called. 1f the array is not a string array, the Array type
is checked at step 34 as a loat type. I[ the Array is a [loat
type, then a float coder 50 is called. If the Array is neither
a string nor a float type, then it is an integer type and an
integer coder 70 is called.

FIG. 4 is a block diagram of the string coder 40 of FIG.
3. The term “String” is used herein o describe a multi-hyte
sequence of characiers. A siring Array can include one or
more such sirings, each of which can have a different string
size (the number of byles in that sequence), The siring coder
lirst may check lor string maltches in received string data
using a string matcher 41—cases where an entire string
maltches all another string in the Array. The string matcher
41 can operate on siring data from the array coder 28 or a list
of predicted strings supplied by a static model 43.
Afterward, the Array may be encoded by several mecha-
nisms. Smaller Arrays such as unmalched sirings can be
processed by a text coder 47 which vses a variation of the LZ
translform, which 1 turn takes advantage of the string
positions and which can also use static models to prime the
dictionary or suggest coding tables. Larger arrays ol match
codes can be serviced by standard text compression routines
provided by ihe array coder 28, such as block sorting
algorithms and other well known techniques. If the text
coder 47 is used by 1he static model 43, the coder is primed
by the stalic model 43,

FI1G. § is a block diagram of the lloat coder 50 ol FIG. 3.
Floating point Arrays may be in either 32, 64, or S0 bit
formats. The float coder receives Aoat data from the array
coder 28 and first checks For matches with previous values
using an L.Z coder 51, which matches only full-words (such
as all 8 byles ol a double-precision {loating point valvue) and
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returns an Array having the un-matched values. The
un-malched values are then be converled 1o base 10 notation
in a base 1 converter 53, as many databasces include floating
point values which were originally emered as base 10
values. and encoding the values through the array coder 28
in their native [ormat is more efficient. The base 10
manlissas, exponents and conversion errors are processed
separately by the array coder 28. For lossless coding an
olfsel may have 1o be stored (o correct slight rounding errors
in the conversion. Values which were not eflectively con-
verled o base 10 are then encoded using the stnng coder 40
(F1G. 4).

AUTOMATED ANALYSIS SYSTEMS

The parsing system parses the source files into a large
number of components. By examining the same component
in a number of sample files, a static model can be built of
that component, which can increase compression of Arrays
of that component in the Array coder. The automated analy-
sis system finds the best such model.

FIG. 6 is a flowcharl ol a preferred automated analysis
svstermn. Al step 62, the operation is simplified by lirst parsing
all of the source data files into liles having all ol the
instances of 4 particular component in all of the source files,
These parsed liles are then analyzed at step 64. This analysis
does nol have 1o be fast, because it is done off-line. The
resulls for all components for the Filter are then consolidated
al step 66 into a single “Predictor Data” file, which elimi-
nates redundant data among the multiple component models.

CODER FOR INTEGER DATA

The coder for integer data is preferably based on a three
level system. The highest level operations are based on
models which exploit relationships between a data jtem and
specilic previous ilems in the data block, such as a 1LZ
algorithm, which encodes the distance 1o a sequence of
malching values, or as a dillerence transform, which trans-
forms a value inlo the offset from the previous value. The
mid-level operations are based on models which are inde-
pendent of the position of the data values in the source data
block. They exploit characteristics of the data such as the
frequency at which specilic values occur in the overall block
or the frequency at which the data values lie in various
numecical ranges. They transform the data values into a
block of codes. The low level coder compresses these codes
based on a probabilistic model, Two well known low-level
coders are the HulTman and arithmetic, and either can be
used in the current system. The following discussion will
only describe the mid and high level systems.

The bigh-level coder is not a single solution, but rather a
collection of methods and models, each of which being
effective on a particular type of data sel. There is no single
solution to this part of the problem. as many other methods
could also serve the same general purpose or provide a
solution 1o data sets with different characteristics than those
considered here. Some ol the methods which will be
deseribed are standard techniques, and the others are unique
adaptations of standard techniques. In addition to describing
these methods, a general framework is described for inte-
arating these high-level models and 10 show how the data
resulting from their transforms is efficiently handled by the
mid-level coder.

The mid-level coder has (o reduce the size of the alphabet
to one which can effectively be handled by the low level
coders. Common numerical word sizes often require more
svmbols than can be handled by conventional implementa-
tions of cither Huftman or arithmetic codes. For example,
over 4.000,000,000 symbols would be required to represent

o

0

25

35

A

o

S0

o

60

65

20

the alphabel ol 32-bit integers, which far exceeds the book-
keeping capabilities of these coders. The mid-level coder
takes advantage of two characteristics which are common in
numerical data blocks.

Firsl, specific data values often occur at a high frequency
in data blocks. Each data block can have a unique sel
of these magic values, and these values can occur at any
point in the numerical range.

Second, dala values may be distributed unequally with
respect 1o the numerical range. For example, in some
dala blocks, smaller values lend 10 be more lrequent
than larger values.

FIG. 7 is a flowchart overviewing the high-level ol the
integer coder. The integer coder 70 begins, at step 71, by
constructing the high-level model, which determines which
transforms will be used and the other parameters needed to
implement those (ransforms. This data is stored in an
encoded module data structure at step 73 and used at various
sleps during processing, as illustrated,

The first option 1s an initial splitter at step 75, which is
used when the lower byles in a value are highly correlated
independently ol the upper bytes. A common example of this
is the occurance of zeroes in the lower digils of base 10
vilues al a frequency much higher than the 10% expected
under a random dala set. When the high level modeler
deteets such a condition. it can cause the source array, al step
77, to be splil inlo separale arrays representing the upper and
lower digils in the source values. The plurality of Arrays
returned by the splitler are processed separately.

Array data is next tested at step 79 1o determine il a
malching algorithm should be applied to the data. The
matching algorithms at step 81 eliminate redundant data
iiems: those which completely match a previous entry in the
array. The matching algorithms store Arrays having malched
data al siep 83. Unmalched values are processed by an
oversize array handler at siep 85.

The system preferably limits the size ol an inleger Array
1o a hixed maximum, which improves efliciency and simpli-
lies some of the design issues. I an Array count exceeds this
maximum, the oversize array handler (step 85) breaks the
array up into a series ol smaller Arrays. These Arrays are
then converted, al step 87, (o int32s so that the remaining
routines can operate on & common data type. These trans-
forms take place after the matching algorithms (step 81),
because the malching algorithms work more efficiently on
the larger blocks.

The int32 data is next checked at step 89 to determine if
a numeric transform is o be done next. At step 91, numeric
algorithms transform the array inlo offsets from a value
predicted using previous values. These offsets from the
model are then provided to the splitler decision block at step
3.

As belore, il a splitter [unction is needed, a splitter
operation is performed at step 95, The splitter [unction
returns a plurality of Arrays, which are processed separately.

At step 97, a determination is made whether to vse a
repeat transform (step 99). The repeat transform al step 99
is a 1ype of malching transform, but can be used aller all 1he
other transforms. In either case, processing flows 1o the
mid-level coder 100,

Note that the splitter is shown in two places (steps 77 and
95) in the flow charl. This is because splitling is Lypically
done before a numeric transform or after a matching
transform, when on¢ of these transforms is used. The
matching, numeric, and repeal transforms exploit the rela-
tionship between a data ilem and previous data items in the
block being encoded.
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It should also be noted that the 1erm “high-level” refers 1o
the construction of this coder, but not 1o the relation between
this coder and the overall compression system. Before
sending a data block o this coder, the overall sysiem can do
many things to enhance compression, such as parsing the
source data so as to create arrays of similar components and
taking advaniage ol imterrelationships between different
components. The operation described here excludes those
which should be handled at the system level. This descrip-
tion also assumes that the overall system is screening out
data types which are betler served by specialized coders,
such as hilevel data, text, bit-mapped images, etc.

The purpose of the high-level coder is to exploit relation-
ships between different data itlems in a data block. Two types
ol relationships are currently handled: numerical transforms
and matching. The numerical (ransforms predict a data value
D[i] as a function of an arithmetic operation performed on
previously data values in the block. The D[] is then repre-
sented as an oflset from the value predicted by the transform
cquation. The transform is efficient if the number of bits
needed 1o encode the transformed value are less than that
needed 1o encode the original value., The malching algo-
rithms encode malches between D[i] and a previous value in
the data block, The algorithm is ellicient if the number of
bits needed to encode the position of the matching value is

less than that needed 1o encode [i]. Both types of operations =

may be performed on the same block. For an example, a
dilference transtorm which represents D[] as the offset [rom
D[i-1], can be lollowed by a matching algorithm which
finds malches of these offsets.

The decision as to which operations o perform on a data
block is made by a modeler, Maximum compression can be
achieved by encoding the full data block using each possible
combination of algorithms, but this requires more process-
ing time than most real-world applications can sparc. The
evaluation can be speeded up by testing an alternative on
only a subset of the data block to be encoded and by building
models which estimate the encoding costs of the trins-
formed data blocks without [ully encoding them. The coder
provides the abilitiy to trade-ofl” processing cycles against
compression performance: when the application environ-
ment is under less lime pressure, il can spend more time
evaluating allerpatives to improve compression perfor-
mance. The discussion of each algorithm wil include a
description of the model used to estimate the encoding costs
il that algorithm is used.

The first step in the high-level coder is to determine the
cosls of encoding the data block il no triansform is used, as
the bypass coding tables will later be used to evaluate the
eflectiveness of the other alternatives, The bypass mode can
be tested by creating a sample data block and sending it to
the mid-level simulator. The mid-level simulator, 0 be
deseribed below, provides a fast mechanism for estimating
the costs of encoding blocks sent Lo the mid-level coder, The
size of the sample data block is adjusted according 10 time

constraints. Because the mid-level coding is independent of ~°

the position of data values, the samples can be randomly
dispersed in the data block, instead ol selecting sample
blocks as needed 1o evaluate a sequential algorithm. When
evaluating other high-level modes, the modeler can use the
encoding tables generated by the mid-level coder to estimate
the cost ol encoding cach item in the source data block.

The simplest relationship is to encode a value as an offset
from & previous value. This essentially predicts that D[i]=
D[i-1], and transforms D[i] into the oflset from the pre-
dicted value:

Dil=Dfi]-Dli-1] (1)
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The system also supports a variation on this which is less
susceplable 10 noise, in that it predicts that a value equals the
average valuc over the N previous colries:

21

1 &
O'lil = Bl - % 3, Dli= ]}
]

Equation 1 can be viewed as a case ol Lquation 2 in which
N=1. Bul they are implemented using separale roulines to
take advantage of the increased speeds when processing the
simpler LEquation 1.

While some data (ypes (sound, images, ete.) could take
advantage of more complex relationships, such data types
are preferably encoded vsing specialized routines, so that no
olher equation is integrated inio the general purpose integer
coder.

The modeler is done in two stages. The first stage selects
the best numerical model, which in ourcorrent set-up is just
the selection of the optimum value of N i Equation 2. It 1s
adequate 10 check just a few values, such as N=1,2 and 4,
and then select the value of N which produces the smallest
olfsels. The most accurate rellection of coding costs would
be 1o compare the base 2 logarithms of the offsets, bul it is
adequale just o evaluale the absolule values of the offsels:

| 3
TmpCosty = Z abs( D, [i])

=N

where cl=number of entries in the data block

This rovtine can quickly find the oplimum oumeric
relitionship, so that the more elaborate routine needed 1o
cstimate encoding costs only has to be run on one pumeric
alternative. The current routine Lo estimate the actual encod-
ing costs is based on encoding a sample dala set using the
mid-level eoder as was done for the bypass assessment,

Three matching algorithms are preferably implemented: a
version of the LZ algorithm which bas 4 number of improve-
ments for working with integers; a repeat transform, and a
Move-1o-Front (MTF) algorithm.

While the basic LZ algorithm does oot specify a word
size, most implementations are based on using 1-byie words.
The preferred system allows a (lexible word size, which
currently includes 1, 2 and 4 byle integers. The routine
generates three output arrays:

Unmatched values: these are the integers in the data block
whch are not part of a match sequence. The dats type
is vnchanged—il the source array was nt32s, the
unmatched values will also be in132s. This compacted
array will be sent to the lower levels of the integer
coder for compression.

Length: For match sequences, this gives the number of
words which were matched in that sequence.
Otherwise, this wives the number of unmatched values
before the next match.

Position: This gives the offset (number of words, ool
bytes) to the start of the matching sequence.

Another ionovation in the implementation of the algo-
rithm is a dynamic sysiem for evaluating matches. Tradi-
tional LZ implementations assume a fixed cost for encoding
unmatched data items, but the resulls ol the bypass evalu-
ation are available which give a good estimate of the cost of
encoding each different unmatched data value. For example,
if the value 1019 oceurs at a 25% frequency, its encoding
cost as an unmalched ilem would be 2 bits, which means thal
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it would not be efficient 10 encode a match of 2 such values
as o malch sequence, sinee the cost of encoding the maich
would exceed the cost of encoding the value as an
unmalched entry, The extent to which this system of
dynamic evaluation is implemented can be adjusted accord-
ing o the speed/compression trade-ofls in each real-time
situation.

The repeat transform replaces repeated values with repeat
codes. The prelerred system provides a Few improvements
over standard implementations. First, repeal codes are
dynamically adjusted. That is, the repeat codes used lor each
data block are adjusted according to two characteristics of
the data block: the size of the data block and the number of
repeated values in the block. Second, special run-to-end
code denotes that a repeat sequence continues 1o the end of
the block. Iinally, there are also special codes 1o represent
large values. To make room for the repeat codes, unmatched
positive values are shified upward by the number of repeat
cods. To avoid increasing our numerical range, the values at
the end of the positive range are encoded using special
codes.

Traditional MTF coders assume small word sizes, so they
can represent all possible symbaols as match distances. Large
word sizes are allowed for by using a limited size bufler and
crealing an outpul array of unmalched values which can be
senl o subsequent levels of the integer coder for encoding.
If a data value matches a value in this bufler, it is represented
vsing the index of the matching value in the bufler
Otherwise, the number of unmatched values before the next
buflfer match are recorded. The size of the bufler is adjusted
according 1o the bypass test results, When time allows, the
cost of encoding an item as an unmatched value 15 traded off
against the cost of encoding it as a buffer match, but because
of the lower overhead, this is not as critical ta the MTF
algorithm as it was 1o the LZ.

This MTT algorithm will outperform the integer LZ when
individual items match but there are few mulii-word match
sequences. To avoid redundant scarching for matches, both
algorithms are prelerably integrated into a single transform
rontine which generates separate onipul arrays, and lhen
alterward select the one which performed belter,

Rather than to evaluale the malching algorithms using
small sample sets, the transform can be run on the full data
black, and then evaluate the results for sending them to the
mid-level simulator. When the application environment is
severely time-constrained, this evaluation occurs after only
a parl of the block has becn transformed.

In many real-world data sets, the individual digits of the
base 10 representations of the values have characteristics
which can be exploited to increase compression. These
characteristics are exploited using a technique called “splil-
ting”, The array ol integers is splil inlo lwo or more separale
arrays of integers, where each array is created from a subset
of the digits in the source array. Splitting is efficient when
the total encoding cost of the split arrays is less than the cost
ol encoding the input source array. One example of an array
which is elliciently processed using splitting would be:

Source Armay Armay 1: Army 2; Amay 3:
1795434 107 95 a4
11995460 1w 95 460
13195399 131 o5 ECE)
12295501 122 o5 01
11195453 m D 453
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~continued
Source Array Armay 1t Array 2: Arriy 3:
118954069 118 95 469

Before the split, the source array appears as randomly
varying within a 21 bit range (10795454-13195399). Bul
after the split, the first column can be encoded in 4 bits/entry,
the second disappears, and the third falls within a 7 bit range
(399-501). The total coding cost is about half the cost of
coding the source array. Furthermore, each array can often
be split in several ways.

Splitting is useful because it linds correlations which
sometimes oceur between the digit fields which are not
apparent 1o other methods of evaluating the numbers. 1t is
especially important here, because some of the (ransforms to
be described for the range-remapper will treat lower bits as
random numbers, Without the use of splitting, the correla-
tions in the lower digits, such as the presence of many zeros,
would be lost:

The high level modeler has 1o make several decisions
concerning splitting. First the modeler determines the best
model 1o use and whether splitting is more efficient than 1he
other coding alternalives. Second, the modeler determines
whether a malching algorithm should be run before the
splitting is done. Finallv, the modeler determines which
high-level algorithms should be run on each of the split
arrays alter splitting, such as a numerical transform or one
of the matching algorithms.

The relationships which are amenable 1o splitting are
usually only visible in the base 10 representation, so the first
action of the splitier is to convert the data into a base 10
representation. In some cases, the source data may have
been originally in alphanumeric representation, and conver-
sion Lme is saved in such cascs by passing the string
representation ol the data block as an oplional argument 1o
the integer coder.

To evaluate the splitter algorithim, a histogram is built for
each digit, giving the frequency ol occurrence ol each of the
10 possible values in that digil field, These hislograms are
then used to identify and group the digit fields which should
be split into separate arrays. The arrays are then checked to
see Il the repeal transform is efficient, and then the coding
cosls can be estimated using the mid-level simulator.

FIG. 8 is a flowchart overviewing the mid-level of the
integer coder. Array data is input at step 101 and is first
processed by a range mapper at step 103, Extra bits 1o be
packed are stored at step 105, From the resulting range codes
4 determination is made whether to employ an MTE coder
at sicp 107. If that determination is affirmative, then the
MTF coder is executed at step 109, The linal range codes are
provided 1o the low-level coder at step 110.

This mid-level coder has to reduce the size of the alphabet
to one which can effectively be handled by the low level
coders, and to do its fupction in a way which maximizes
compression. It includes 4 range remapper (step 103) and an
optional post-transform MTE (Move to Lront) transform
(siep 109). The range coding may reintroduce a positional
component into the dala sel, in that range codes may lend 1o
malch the nearby range codes even when the original values
did not match. 1f this has occurred, the MTF translorm is run
before sending to the low-level coder, which converts these
symbols inlo the encoded data stream. The output of the
mid-level coder is sent to the low-level coder. The mid-level
simulator can also be used by higher level routines 1o
estimate coding costs.
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The range remapper converls the integer inpul into code
words, Lach input value is represented by a single code
word. Because the oumber of code words is usually less than
the number of possible data values, some of the code words
can represent more than one possible source value. In these
cases, the code word indicates a range of values, and the
range-remapper bilpacks an offset within this range. This is
a standard compression technique,

The standard approaches tend 1o use pre-delined range
tables and allow (he low-level coder o use Lewer bits [or the
range codes for the ranges most common in the data block.
The preferred svstem creates range tables which are opli-
mized for each data block, and significantly reduoces the
number of bits used 10 pack the offsets within the ranges. For
example, a fixed range table might define a range that begins
at Ox10000 and ends at Ox20000, which requires 16 bils 1o
pack the offset lor each entry in that range. But all of the
entries in that range may have the value Ox18000. The
preferred sysiem would discover this and create a special
range for this value which requires no exira bils.

The system uses the term “magic values™ (o describe
specific values which occur at a high frequency in the data
block. These values are given special treatment because they
should be packed withoul using exira bils regardless of

where they oceur in the dala range. For ihe remaining 2

“non-magic”, oplimized ranges are created which adapt 10
the distribution of values within the data block.

The first siep is 1o determine 4 target table size, Bach table
entry requires a fixed overhead in both the range remapper

and in the low-level coder. Smaller data blocks should use :

smualler table. But data blocks with a large numerical range
may save more bits using betler tables, so the size of the
table is also to be adjusted for the data range. The target
number of entries for each table entry, called the min  freq,
is then calculated as:

min_freq=num__entrigs/targel tah _size; (4)

The final table sizes will be substantially different from
the targets, but this gives a value 1o vse in the table
construction. A sorled histogram giving the [requency of
cach value in the data block is ereated next. The table is built
in two sections: one for positive values, and one for nega-
tive. The general procedure for creating an adaplive range
table is described lor the positive table:

Start ai the smallest value with a Ireq >0 and call it the
“hase™ of our first range. Il its [requency is less than
min__freq, expand the range by adding another value to
it until the total frequency of values included in the
range >min__freq. At this point, the range will have the

size
rapge size=last  val-base: (5)
Gel the number of bits nbits needed to express all possible
values in the range. Expand the range to the size
1<<nbits. The next range will begin al
base|i+] J=base[i]+{1 <<nbits]i]): (6)
Skip over the hist values until get to the next value
>=base[i +1], and then create the next range. The
negative table is done al the same way, beginning at -1
and moving 1o larger negative values.
EXAMPLE 10

While this introduces the general approach, it is modified
o handle the magic values. Any value whose Ireq >min
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lreq is a magic value which should get a separate table eniry
that requires no extra bits, I[ one is encountered during the
process of building the table, it is added 10 a special list
which will be maintained of the magic values. The data
range is compacted so as to remove the magic value from 1he
range:

If min_freq 10:

Fregq After Removing

Val Freg Magic Val Base Offset Ebils
106 4 4 100 0 2
101 3 3 100 1 2
102 12 0 {magic) ()
103 3 ) 100 2 2
104 2 <! 100 3 2

Il the min__freq in this exam ple was 10, and a new range
was 1o be started at value 100, value *1027 is a magic value
and is deleted from the range whose base is at 100. All four
values remaining in that range (100,101,103,104) can then
be expressed using a 2 bit offset.

The range tables can be reconstrucied using the list of
magic values and the ebits (the number of extra bits 10
encode the offsels) for each range. To encode the ebits a 2
bil code whose values represent ofsets rom the previous
ehits entry is created for each entry:

0: ebits[1]=chits]i-1]-1
: ebits[i]=ebitsg]i-1]

: ehits[i]=cbits[ i-1]+1
: ehits[i]=ebits[i-1]+oTset
where offset is packed as a signed value using a number
ol extrabils.

Four of these codes are packed into a 1 byle value, and
then a low-level coder is used with a pre-defined static table
to code the 1 byle code words. A sampling interval is
defined, and the extrabits value (the maximum number of
bits needed for any oflset) are adjusted, for each sample
group. Several sels of low-level encoding tables are also
created, and the code table is selecied according to the
amount of activily (lotal bits changed) in a sample group.

To encode the list of magic values, the list is sorted and
converted 1o oflsets from the previous value. These oflsels
are then encoded using 2-bit codes:

() offser=1

1: offset=2-5. Pack 2 extra bits 1o select which

2 olfset >=6. Use special coding procedure [or oversize

ollsets

: repeat previous offset rpt__ct tirnes, 2 bit code used 1o
find the rpt_ct:
0: rpt_c1=1
I: rpt_e1=2.3. pack exira bil 1o select
2: rpt_et=4—6. Pack 2 extra bits to sclect. Code 2 with

offset=3 vsed to indicate special MAX  RPT value

3: rplct=7-22 pack 4 extra bits lo select.

Four of these 2-hit codes are packed inio a 1 bvte word,
and then this word is encoded using a pre-defined static table
selected according 10 the last 2-bil code in the previous
word. The oversize offsels are encoded using a slatically
defined base+ollset range fable. The range codes are
encoded using the low-level encoder with a table selected
according to the previous range code. The offsets are bit-
packed.

The range codes may sometimes be positionally corre-
lated: similar codes may be clustered near each other. In

b =

e
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such cases, running the codes through a standard MTI
transform may improve the coding in the low level coder.
This is tested for using a sample block of codes prior to
sending the codes 1o the low level coder. The transform is
then used of it is eflicient.

The high level modeler often needs an cstimate of the
cocoding cosl of a block io select among competing high-
level algorithms. The simulator receives a block of sample
values as well as the size of the full data block. It uses the
samples (o generate an estimate ol the cost ol encoding the
full data block. When making this estimale, several modi-
fications are made in the operation of the mid-level coder:

Estimate of costs of encoding the tables using & model
based on the number of entries and the total number of
bits changed [or the entire table;

Lstimale of coslts of encoding the range codes from the
frequencies of each code using a fast approximation of
the standard equation:

freqli] (7

twor_freg

s = — Z log;

where: fregfi]=trequency of code[i]
ot lreg=total Irequency of all codes
log2=hase 2 algorithm
cost=numbits needed to encode the block:

Compule the cost of extra bits needed 1o code the offsets

within the ranges; and

Delete the mid-level MTE.

EQUIVALENTS

While this invention has been particularly shown and
deseribed with relerences to preferred embodiments thereol,
it will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the spirit and scope of the invention as
defined by the appended claims. Those skilled in the art will
recognize or be able 10 aseertain vsing no more than routine
experimentation, many equivalents 1o the specific embodi-
ments of the invention described specifically herein. Such
equivalents are intended to be encompassed in the scope of
the claims.

What is claimed is:

1. A computerized method of coding data having a plu-
rality of data components, each data component structured
into a data field of an associated data type according to an
organized file format, comprising:

from a source dala structure of an organized file formal,

creating a plurality of blocks based on the source dala
structure, cach block associated with a specilic respec-
tive dala field;

parsing each data component [rom the source dala struc-

ture into one of the plurality of blocks based on the data
ficld of the data component;

lor each block:

selecting a compression algorithm from a plurality of
candidale compression algorithms based on the data
type of the data field associated with the block;
applying the selected compression algorithm 1o com-
press cach dala component in the block; and
combining the compressed data components [rom the
plurality of blocks inio an encoded data structure.

2. The method of claim 1 wherein the source data siruc-
ture is organized in a first formal and parsing comprises
converling the source dala structure inlo a second format.

3. The method of claim 2 wherein converting comprises
collecting similar data from the source dala structure into
respective blocks.
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4. The method of claim 2 wherein converling comprises
lorming a compression model based on the first formal.

5. The method of claim 1 wherein the compression
algorithms are further determined based on the amonnt of
data in the respective block.

6. The method of claim 1 wherein a compression algo-
rithm is adapted to the respective block.

7. The method of claim 1 wherein selecting comprises
forming a customized transform.

8. The method of claim 1 further comprising recovering
the source data structure from the encoded data structore.

9. An article of manufaciure, comprising:

4 machine-readable medium;

a sel of instructions recorded in the machine-readable
medivm 1o implement a data coding network having a
plurality of data compopents, ¢ach data component
structured into a data field of a respective dala type
according 1o an organized file format, comprising:
from a source data structure of an organized file format,

crealing a plurality of blocks based on the source
data structure [ormat, cach block associated with a
specilic respective data field:
parsing each data component from the source data
structure into one of the plurality of blocks based on
the data field of the dala component;
for each block:
selecling a compression algorithm [rom a plurality of
candidate compression algorithms based on the
data type of the data field associated with the
block;
applying the selected compression algorithm to com-
press cach data component in the block; and
combining the compressed data components from the
plurality of blocks into an encoded data structure.

10. The article of claim 9 wherein the source data struc-
ture is organized in a first formal and parsing comprises
converting the source data structure inio a second [ormal.

11. The article of claim 10 wherein converting comprises
collecting similar data from the source data structure into
respective blocks.

12. The article of claim 10 wherein converting comprises
lorming a compression model based on the first formal.

13. The article ol claim 9 wherem the compression
algorithms are further determined based on the amount of
data in the respective block.

14, The article of claim 9 wherein a compression algo-
rithm is adapted 1o the respective block.

15. The article of claim 9 wherein selecting comprises
forming a customized fransform.

16. The article of claim 9 further comprising recovering
the source data structure from the encoded data structure.

17. An apparatus to code data having a plurality of data
components, each dala component structured into a data
lield of a respective data Lype according to an organized file
format, comprising:

a plurality of blocks based on and derived from a source
data structure of an organized file format, each block
associaled with a specific respective data field;

a parser (o parse cach data componenl [rom the source
dala structure inlo one of the plurality of blocks based
on the data ficld of the data component;

4 selection system for selecting a compression algorithm
for a block from a plurality ol candidale compression
algorithms based on the data type of the data field
associited with the block:

a coder for applying ihe selecied compression algorithm
to compress each dalta component in the block and for
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combining the compressed dala components from the
plurality of blocks inlo an encoded data structure.

18. The apparatus of claim 17 wherein the parser gronps
like data from the source data struclure into respective
blocks.

19. The apparatus of claim 17 wherein the selection
system is adaplive 1o the data in the block.

20, The apparatus of claim 17 further comprising a
recovery syslem for recovering the source data structure
from the encoded data structure.

21, The method of claim 1 wherein the organized file
format includes defined data types.

22, The method of claim 21 wherein cach data type is
determined by the type of siructure in which the block
appears and the position of the block within the structure.

23. The method of claim 7 further comprises transforming
a block based on relationships between data componcnis
associated with the block.
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24. The article of claim 9 wherein the organized file
lormal includes defined data types.

25. The article of claim 24 wherein cach data type is
determined by the type ol structure in which the block
appears and the position of the block within the siructure.

26. The article of claim 15 {urther comprises transforming
a block based on relationships between data components
associated with the block.

27. The apparatus of claim 17 wherein the organized file
Lormal includes defined data types.

28. The apparatus ol claim 27 wherein each dala Llype is
determined by the tvpe of structure in which the block
appears and the position of the block within the structure.

29. The apparatus of claim 17 further comprising a
transformer to transform a block based on relationships
between data components associated with the block.
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