az United States Patent

US007079051B2

10y Patent No.: US 7,079,051 B2

Storer et al. 45) Date of Patent: Jul. 18, 2006
(54) IN-PLACE DIFFERENTIAL COMPRESSION 5,126,739 A 6/1992 George et al.
5,153,591 A 10/1992 Clark
(76) Inventors: James Andrew Storer, 89 S. Great 5,175,543 A 12/1992 Lantz
Rd., Lincoln, MA (US) 01773; Dana 5,179,378 A * 1/1993 Ranganathan et al. 341/51
Shapira, 80 Pleasant St., Apt. 53, D20 X * 10/1993 Clark
Brookline, MA (US) 02446 5,379,036 A 1/TO95] ISTOLEn: suvssowvsssnessvwsmmanms 341/51
% 5,406,279 A * 4/1995 Anderson et al. 341/51
. 5,479,654 A 12/1995 Squibb
(*) Notice: Subject. to any dlsclalmer,. the term of this 5.608396 A 3/1997 Cheng et al.
patent is extended or adjusted under 35 5745906 A 4/1998 Squibb
U.S.C. 154(b) by 0 days. 5813,017 A 9/1998 Morris
6,018,747 A 1/2000 Burns et al.
(21) Appl. No.: 10/803,507 6,233,589 B1 5/2001 Muralidhar
6,374,250 Bl 4/2002 Ajtai et al.
(22) Filed: Mar. 18, 2004 6,671,703 B1 12/2003 Thompson et al.
(65) Prior Publication Data OTHER PUBLICATIONS
US 2005/0219075 Al Oct. 6. 2005 Ajtai, Burns, Fagin, and Long. “Compactly Encoding
o Unstructured Inputs with Differential Compression”, J. of
(51) Int. CL the ACM 49:3, 318-367. (U.S.), vol. 49, No. 3, May 2002.
HO3M 7/38 (2006.01) Apostolico, Browne, and Guerra [1992]. “Fast Linear-Space
(52) US.Cl 341/51: 341/50 Computations of Longest Common Subsequences”, Theo-
(58) Field of Classification Search 341/50, ~ 'etical Computer Science, 92:1,3-17 (US.), vol. 92, No. 1,

341/51
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,366,551 A 12/1982 Holtz
4,558,302 A 12/1985 Welch
4,646,061 A 2/1987 Bledsoe
4,701,745 A 10/1987 Waterworth
4,730,348 A 3/1988 MacCrisken
4,814,746 A 3/1989 Miller et al.
4,876,541 A 10/1989 Storer
4,905,297 A 2/1990 Langdon et al.
4,906,991 A 3/1990 Fiala et al.
5,003,307 A 3/1991 George et al.
5,016,009 A 5/1991 Whiting et al.

Jan. 6, 1992.
(Continued)

Primary Examiner—lJean Bruner Jeanglaude
57 ABSTRACT

To enhance the distribution or backup of data similar to
previously distributed or backed up data, to provide simi-
larity testing, and other benefits, a first body of data T of size
n is compressed with respect to a second body of data S of
size m in-place; that is, the memory containing S is over-
written from left to right so that at no time is more than a
total of MAX{m,n}+O(1) memory used.

23 Claims, 3 Drawing Sheets

«— Sisof size m

Tis of size n >

I///// /I_-]

window of size MAX{m,n} T

encoder

decoder\ <¢— partially decoded T —p»<«— remainder of S —3»

n-m X

/A

y

IPSW method.

Oracle 1106

US 7,079,051 B2
Page 2

OTHER PUBLICATIONS

Burns and Long [1997]. “A Linear Time, Constant Space
Differencing Algorithm”, Proc. IEEE Int. Conf. on Perform.,
Comp., and Communications. (U.S.), Feb. 1997.

Burns and Long [1997b]. “Efficient Distributed Backup and
Restore with Delta Compression”, Workshop on I/O in
Parallel and Distributed Systems (IOPADS). (U.S.), no
month.

Burns, Stockmeyer, and D. D. E. Long [2002]. “Experimen-
tally Evaluating In-Place Delta Reconstruction”, NASA
Conf. on Mass Storage Sys. and Tech.,(U.S.), no month.
Cormode, Paterson, Sahinalp and Vishkin [2000]. “Commu-
nication Complexity of Document Exchange”, Proc. 11th
Symp. on Discrete Algorithms, 197-206. (U.S.), no month.
Factor, Sheinwald, and Yassour [2001]. “Software Compres-
sion in the Client/Server Environment”, Proc. Data Com-
pression Conf., IEEE Comp. Society Press, 233-242. (U.S.),
Mar. 27-29, 2001.

Fraser and Myers [1987]. “An Editor for Revision Control”,
ACM Transactions on Programming Languages and Sys-
tems 9:2, 277-295. (U.S.), vol. 9 No. 2, Apr. 1997.

Hunt, Vo, and Tichy [1998]. “Delta algorithms: An Empiri-
cal Analysis”, ACM Trans. on Software Engineering and
Methodology 7, 192-214. (U.S), vol. 2, No. 2, Apr. 1998.
Huffman [1952]. “A Method for the Construction of Mini-
mum-Redundancy Codes”, Proceedings of the IRE 40,
1098-1101. (U.S.), Sep. 1952.

Lempel and Ziv [1976]. “On the Complexity of Finite
Sequences”, IEEE Transactions on Information Theory
22:1, 75-81. (U.S.), no month.

Miller and Myers [1985]. “A File Comparison Program”,
Software—Practice and Experience 15:11, 1025-1040.
(U.S.), unknown month.

Rick [1995]. “A New Flexible Algorithm for the Longest
Common Subsequence Problem”, Proc. 6th Annual Sympo-
sium on Combinatorial Pattern Matching, Espoo, Finland,
5-7. (U.S.), unknown month.

Shapira, and Storer [2002]. “Edit Distance with Move
Operations”, Proceedings Conference of Combinatorial Pat-
tern Matching (CPM) Springer, 85-98. (U.S.), unknown
month.

Reichenberger [1991]. “Delta Storage for Arbitrary Non-
Text Files”, Proc. 3rd Int. Workshop on Software Configu-
ration Management, Trondheim, Norway, 12-14 (U.S.),
unknown month.

Shapira, and Storer [2003]. “In-Place Differential File Com-
pression”, Proc. 2003 Data Comp. Conf. (published Mar. 25,
2003), IEEE Comp. Soc. Press, 263-272. (U.S.).

Storer and T. G. Szymanski [1978]. “The Macro Model for
Data Compression”, Proc. 10th Annual ACM Symposium of
the Theory of Computing, San Diego, CA, 30-39. (U.S.),
unknown month.

Storer and Szymanski [1982]. “Data Compression Via Tex-
tual Substitution”, Journal of the ACM 29:4, 928-951.
(U.S.), unknown month.

Storer [1988]. Data Compression: Methods and Theory,
Computer Science Press (a subsidiary of W. H. Freeman
Press). (U.S.), unknown month.

Storer [2002]. “An Introduction to Data Structures and
Algorithms”, Birkhauser—Springer. (U.S.), unknown
month.

Tichy [1984]. “The String to String Correction Problem with
Block Moves”, ACM Transactions on Computer Systems
2:4, 309-321. (U.S.), unknown month.

Wagner and Fischer [1973]. “The String-to-String Correc-
tion Problem”, Journal of the ACM 21:1, 168-173. (U.S.),
unknown month.

Weiner [1973]. “Linear Pattern Matching Algorithms”, Pro-
ceedings of the 14th Annual IEEE Symposium on Switching
and Automata Theory 1-11. (U.S.), unknown month.

Ziv and Lempel [1977]. “A Universal Algorithm for Sequen-
tial Data Compression”, IEEE Transactions on Information
Theory 23:3, 337-343. (U.S.), unknown month.

Ziv and Lempel [1978]. “Compression of Individual
Sequences Via Variable-Rate Coding”, IEEE Transactions
on Information Theory 24:5, 530-536. (U.S.), unknown
month.

Burns and Long [1998]. “In-place Reconstruction of Delta
Compressed Files”, Proc. ACM Conf. Principles of Distrib-
uted Comp. (PODC) (U.S.), no month.

* cited by examiner

U.S. Patent Jul. 18, 2006 Sheet 1 of 3 US 7,079,051 B2

«— Sisof sizem ' S Tis of size n :
I |
window of size MAX{m,n} T
encoder

decoder\ <€— partially decoded T —)»><€— remainder of S —3»

7

FIG. 1
IPSW method.

U.S. Patent Jul. 18, 2006 Sheet 2 of 3 US 7,079,051 B2

incoming
~——— text already seen > characters
ELEPHANT ELEPHANT
€ 5?0 > o \
Suppose that "ELEPHANT" Encode the 8 characters
has already been seen 500 "ELEPHANT"
characters back in the text. as the pair of numbers (500,8).

FIG. 2 (prior art)

sliding window compression

U.S. Patent Jul. 18, 2006 Sheet 3 of 3 US 7,079,051 B2

FIG. 3

linking of gaps

US 7,079,051 B2

1
IN-PLACE DIFFERENTIAL COMPRESSION

BACKGROUND OF THE INVENTION

The present invention relates to in-place differential com-
pression, where a body of data T is compressed with respect
to a body of data S by performing copies from S in such a
way that no additional memory is used beyond what is
needed to store the longer of S or T; that is, when decoding,
S is overwritten from left to right as T is constructed in its
place.

There have been many patents and technical papers that
pertain to data compression. Many relate to techniques
different than ones that employ string copying such as
Huffman coding (e.g., U.S. Pat. No. 4,646,061) or arithmetic
coding (e.g., U.S. Pat. No. 4,905,297). Many relate to
techniques that employ string copies but in a traditional data
compression model where a single body of data is com-
pressed, not in-place differential compression of a first body
of data with respect to a second body of data; for example,
U.S. patents such as Holtz [U.S. Pat. No. 4,366,551], Welch
[U.S. Pat. No. 4,558,302], Waterworth [U.S. Pat. No. 4,701,
745], MacCrisken [U.S. Pat. No. 4,730,348], Miller and
Wegman [U.S. Pat. No. 4,814,746], Storer [U.S. Pat. Nos.
4,876,541, 5,379,036], Fiala and Greene [U.S. Pat. No.
4,906,991], George, Ivey, and Whiting [U.S. Pat. Nos.
5,003,307, 5,016,009, 5,126,739], Rubow and Wachel [U.S.
Pat. No. 5,023,610], Clark [U.S. Pat. Nos. 5,153,591, 5,253,
325], Lantz [U.S. Pat. No. 5,175,543], Ranganathan and
Henriques [U.S. Pat. No. 5,179,378], Cheng, Craft, Garibay,
and Karnin [U.S. Pat. No. 5,608,396], and technical articles
such as Lempel and Ziv [1977, 1979] and Storer [1978,
1988, 1982, 2002].

There have also been a number of patents and technical
papers relating to differential compression that do not per-
form decoding in-place; for example: Squibb [U.S. Pat. Nos.
5,479,654, 5,745,906], Morris [U.S. Pat. No. 5,813,017],
Muralidhar and Chandan [U.S. Pat. No. 6,233,589], Thomp-
son, Peterson, and Mohammadioun [U.S. Pat. No. 6,671,
703], and technical articles such as Weiner [1973] (who
developed a linear time and space greedy copy/insert algo-
rithm using a suffix tree to search for matching substrings),
Wagner and Fischer [1973] (who considered the string-to-
string correction problem), Heckel [1978] (who presented a
linear time algorithm for detecting block moves using long-
est common substring techniques), Tichy [1984] (who used
edit-distance techniques for differencing and considered the
string to string correction problem with block moves),
Miller and Myers [1985] (who presented a comparison
program for producing delta files), Fraser and Myers [1987]
(who integrated version control into a line editor so that on
every change a minimal delta is retained), Reichenberger
[1991] (who presented a greedy algorithm for differencing),
Apostolico, Browne, and Guerra [1992] and Rick [1995]
(who considered methods for computing longest common
subsequences), Burns and Long [1997b] (use delta compres-
sion to modify ADSM, Adstar Distributed Storage Manager
of IBM, to transmit compact encodings of versioned data,
where the client maintains a store of reference files), Hunt,
Tichy and Vo [1998] (who combine Lempel-Ziv type com-
pression and differential compression to compute a delta file
by using a reference file as part of the dictionary to compress
a target file), Factor, Sheinwald and Yassour [2001] (who
present a Lempel Ziv based compression with an extended
dictionary with shared data), Shapira and Storer [2002] (who
give theoretical evidence that determining the optimal set of
move operations is not computationally tractable, and

10

15

20

25

30

35

40

45

55,

2

present an approximation algorithm for a block edit-distance
problem), Agarwal, Amalapurapu, and Jain [2003] (who
speed up differential compression with hashing techniques
and additional data structures such as suffix arrays).

There has also been commonly available software avail-
able for differencing that does not employ in-place decoding
with string copying, such as the UNIX diff, xdelta and zdelta
utilities.

Burns and Long [1997], M. Ajtai, R. Burns, R. Fagin, and
D. D. E. Long [2002], and the U.S. patent of Ajtai, Burns,
Fagin, and Stockmeyer [U.S. Pat. No. 6,374,250] use a hash
table with Karp-Rabin footprints to perform differential
compression of one file with respect to another, using
constant space in addition to that used by both files, but do
not provide for in-place decoding.

Burns and Long [1998], Burns, Stockmeyer, and Long
[2002], and the U.S. Patent of Burns and Long [U.S. Pat. No.
6,018,747] present an in-place reconstruction of differential
compressed data, but do not perform the reconstruction with
copies that overwrite from left to right. They begin with a
traditional delta file and work to detect and eliminate write-
before-read conflicts (increasing the size of the delta cod-
ing).

The invention disclosed here is in part motivated by the
research presented in Shapira and Storer [2003].

BRIEF SUMMARY OF THE INVENTION

Therefore, it is an object of this invention to perform
in-place differential compression. With differential compres-
sion, a body of data T is compressed with respect to a body
of data S. That is, an encoder and decoder have available
identical copies of S, and the encoder may copy substrings
from S to form T. A pointer that copies a string w from S
achieves data compression when the bits representing that
pointer are fewer than the bits representing w. We use the
variable n to denote the size of T and m to denote the size
of' S. Differential compression is in-place if the memory
containing S is overwritten when decoding T so that at no
time is more than a total of MAX{m,n} memory used, in
addition to the constant amount of memory to store the
program itself along with its local variables.

It is another object of this invention to rearrange the
substrings of S to better align S and T to enhance the
effectiveness of copying substrings from S to Tin-place.

An in-place differential compression method according to
the present invention includes the steps of rearranging
substrings of S to improve the alignment of substrings of T
with substrings of S and decoding in-place by copying
substrings of S to form portions of T in a way that overwrites
S.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF
THE DRAWING

FIG. 1 shows encoding on the top and on the bottom the
way in which in-place decoding overwrites memory.

FIG. 2 shows the well known method of sliding window
compression (prior art).

FIG. 3 shows the of linking gaps when off-the-shelf
compression follows aligned moves.

DETAILED DESCRIPTION OF THE
INVENTION

With differential compression, a body of data S of size m
is compressed with respect to a body of data T of size n. That

US 7,079,051 B2

3

is, both the encoder and the decoder have a copy of S and
then a new string T may be encoded and subsequently
decoded by making use of S (e.g. copying substrings of S).

There are many practical applications where new infor-
mation is received or generated that is highly similar to
information already present. When a software revision is
released to licensed users, the distributor can require that a
user must perform the upgrade on the licensed copy of the
existing version. When incremental backups are performed
for a computing system, differential compression can be
used to compress a file with respect to its version in a
previous backup, with respect to a similar file in a previous
backup, or with respect to a file already processed in the
current backup. Differential file compression can also be a
powerful string similarity test in browsing and filtering
applications.

One of ordinary skill in the art can understand that there
are many ways that compressed data may be transmitted
from an encoder to a decoder, including on a communica-
tions link, over a wireless connection, through a buffer, by
transfer to and from a storage device, etc., and that the form
of compressed data transmission from the encoder to
decoder does not limit the invention herein disclosed.

Differential compression is in-place if the memory con-
taining S is overwritten when decoding T so that at no time
is more than a total of MAX{m,n} memory used. Of course,
the decoder has stored somewhere the executable code for
the decoding program (possibly in read-only memory or
hardware), which not is part of memory used when we refer
to the computation being in-place; that is, in-place refers to
the amount of memory used above and beyond the program
code. The program code may also make use of some fixed
number of local program variables (indices of for loops, etc.)
which are also not part of the memory used when referring
to the computation as being in-place. We allow the encoder
to use more memory if needed. The restriction that the
decoder must operate in-place is desirable because it reflects
practical applications where the decoder may have unknown
or limited resources.

It is an object of this invention to perform in-place
differential compression with methods that are both power-
ful (i.e., typically achieve high compression) and provide for
fast and space efficient decoding.

MAX and MIN Notation
We use the notation MIN{x,y} to denote the smaller of x
and y and MAX{x,y} to denote the larger of x and y.

Big O Notation

It is standard in the computer science literature to use Big
O notation to specitfy how the amount of time or memory
used by a method increases as a function of the input size.
For two functions f and g, both of which map non-negative
integers to non-negative integers, f{(x) is said to be O(g(x))
if there exist two constants a and b such that for all integers
xZa, f(x)=b*g(x). For example, if a parameter K is chosen
in such a way that K is O(log,(MIN{m,n})), then it must be
true that there exists two constants a and b which are
independent of m and n (a and b remain the same no matter
what the values of m and n are) such that for all values of
m and n for which MIN{m,n} Za, K=b* log,(MIN{m,n}).

The notation O(1) denotes a fixed constant. That is, f(x)
is O(1) if there exists two constants a and b such that for all
integers x=a, f(x)=b; if we let ¢ be the constant equal to the
maximum value of {(x) in the range 0=x=b, then f(x)=c for
all integers x=0. A big O constraint can be combined with
other constraints. For example, for a parameter K, saying
that “K<MIN{m.n} and K is O(/MIN{m,n})” means that

10

15

20

25

30

35

40

45

50

55,

60

65

4

although K may be chosen to be a function of m and n (i.e.,
K is larger when MIN{m,n} is larger), for all m and n
K<MIN{m,n}, and also, there exists two constants a and b
such that KEb* /MIN{m,n}, for all m and n for which
MIN{m,n}Za.

Memory

We use the term memory to refer to any type of computer
storage, such as the computer’s internal RAM memory, a
hard drive, a read-writable disc, a communications buffer,
etc. We use the term character to refer to the basic unit of
data to which compression is being applied to a body of data
in some computer memory. A common example of a char-
acter is a byte (8 bits) or a set of items that are stored one
per byte (e.g. 7-bit ASCII codes). However, all of what we
describe applies as well to other types of characters such as
audio, image, and video data (e.g., for audio data that is
stored using 12 bits per sample, the set of possible characters
is the set of 4,096 distinct 12-bit values).

Although it is common for a body of data to be stored in
sequential locations of memory, it is not required for this
invention, it could be that different portions of the data are
stored in different portions of memory. We assume that there
is a linear ordering to a body of data (a first character, a
second character, a third character, etc.). If a character x
occurs earlier than a character y in the sequence of charac-
ters that comprise a body of data, then we say x is to the left
of'y, and y is to the right of x.

The size of a body of data is the number of characters that
comprise it, and corresponds to the size of the memory used
to store it (if the body of data resides in two or more
disconnected portions of memory, the size of the body of
data is the sum of the size of each of the portions of memory
it occupies).

When we refer to the amount of memory used when
decoding for in-place differential compression of a body of
data T with respect to a body of data S, it is always
understood that we are referring to the memory used to store
portions of S and T, and that there may be an additional fixed
amount of memory used to contain decoding instructions
and local variables used for decoding (indices for loops,
etc.).

Sliding Window Compression
Referring to FIG. 2, to help describe our invention, we
first review the well known method in the prior art of sliding
window compression. The standard UNIX gzip utility is an
example of a sliding window compressor/decompressor.
Given a string, sliding window compression represents it
with a smaller string by replacing substrings by a pointer
consisting of a pair of integers (d,1) where d is a displace-
ment back in a window of the last N characters and 1 is the
length of an identical substring. The reduction in size
achieved on a string depends on how often substrings are
repeated in the text, how the pairs (d,]) are coded, etc.
Typically “greedy” matching is used (always take the long-
est match possible).
There are many ways that have been proposed to encode
pointers. A simple method based on fixed length codes is:
Displacements are represented with [log,(N)] bits.
Lengths range from 3 to some upper limit MaxLength,
which can be represented by the MaxLength-2 integers
0 through MaxLength-3, and use [log,(MaxLength-2)]
bits.
An initial flag bit distinguish a pointer (to a substring of
3 or more characters) from a code for a single character,
where the leading bit is a 0 if the next [log,(A)] bits
to follow are a character and a 1 if the next [log,(N)|+[

US 7,079,051 B2

5

log,(MaxLength-2)] bits to follow are a displacement
and length, where A denotes the size of the input
alphabet.

For example, if N=4,095, MaxLength=10, and we use the
128 character ASCII alphabet (A=128), a single char-
acter is represented with one byte (a flag bit and 7
ASCII bits) and a pointer uses two bytes (a flag bit, 12
displacement bits, and 3 length bits).

Other methods may use variable length codes (some of
which may be able to represent a string of two bytes with
less than 16 bits).

It is also possible to employ an off-the-shelf variable
length coder to encode fields of a pointer. For example, to
compress data where very large matches may be present, one
could use the following coding method for pointers that
employs an arithmetic coder:

The pointer format begins with a control integer between

0 and 4 that indicates one of the following cases:

Case 0: No displacement or length; the bits to follow
indicate a single raw character.

Case 1: Displacements <4,096 that point to a match of
length <256.

Case 2: Displacements between 4 KB and 36 KB that
point to a match of length <256.

Case 3: Displacements larger than 36 KB that point to
a match of length <256.

Case 4: Displacements larger than 36 KB that point to
a match of length >256.

Separate off-the-shelf arithmetic encoders are used to
encode control integers, the raw character for Case O,
and the length fields for Cases 1 through 3.

A fixed code of either 12 or 15 bits is used for the
displacements for Cases 1 and 2. A fixed length [
log,(N)] code is used for the displacement fields of
Cases 3 and 4 and for the and length field of Case 4.

The Present Invention

A problem with previous methods for differential com-
pression is their use of more computational resources (e.g.,
time and memory) than may be necessary and/or the need to
sacrifice achievable compression in order to achieve accept-
able resources. Here we propose a high performance fast
method for performing differential compression in place.

The solution proposed here uses the In-Place Sliding
Window (IPSW) method to compress a body of data T of
size n with respect to a body of data S of size m:

IPSW Encoding Algorithm:

Step 1: Append T to the end of S.

Step 2: Compress T with a sliding window of size

MAX{m,n}.

When the encoder slides a window of size MAX{m,n}, if
m is equal to or larger than n, then only at the start can
pointers reach all the way back to the start of S, and as we
move to the right, more of S becomes inaccessible. If m is
less than n, then after producing the first n-m characters of
T, it again becomes the case that pointers cannot reach all the
way back to the start of S. In either case, by overwriting the
no longer accessible portion of S from left to right, decoding
can be done in-place, using MAX{m,n} memory (encoding
may use m+n memory). That is, each time an additional
pointer is received by the decoder, it is decoded and the
window slides right to add characters to the right of T and
remove them from the left of S. If m<n, then decoding
increases the size m of the memory to store S to a size n of
memory to store T. If m>n, then after decoding is complete,

10

15

20

25

30

35

40

45

50

55,

60

65

6

T resides in what used to be the rightmost n characters of S,
and the memory for what used to be the first m-n characters
of S can be reclaimed.

Of course, the decoding may use a fixed amount of
memory for the decoding instructions (which could be
read-only memory or hardware) and a fixed amount of
memory to contain a fixed number of local variables used for
decoding (indices of loops, etc.). This fixed amount of
memory is independent of m and n. Using big O notation,
the memory used for decoding instructions is O(1) and the
number of local variables is O(1). When we say that decod-
ing can be done in-place using MAX{m,n} memory, it is
always understood that the memory used for decoding
instructions and local variables is in addition to this
MAX{m,n} memory.

Referring to FIG. 1, depicted is encoding (top) and
decoding (bottom) for when the size of T is 50 percent larger
than the size of S, and we are at the point when n-m+x
characters of T have been encoded. The hatched region is all
of'S on the top and the remaining portion of S on the bottom.
The lightly shaded region is the n—-m characters of T that
have already been encoded and decoded by the decoder
without having to overwrite S. The dark shaded region is the
portion of T that has already been encoded by overwriting
the first x characters of S. The remaining m-x characters of
T have yet to be encoded, and hence the rightmost m-x
characters of S are still available to the decoder. The
decoder’s window can be viewed as two pieces: the already
decompressed portion of T (the lightly shaded and darkly
shaded regions) that is to the left of the pointer and the
remaining portion of S that is to the right of the pointer (but
was to the left of the lightly shaded and darkly shaded
regions when encoding). So for each pointer decoded, at
most two string copies must be performed: a single copy
when the match is contained entirely in S (hatched region)
or entirely in T (lightly shaded and darkly shaded regions)
or two copies when the match starts in S and ends in T (the
encoder encodes a match that crosses the boundary between
the hatched region and the lightly shaded region). Since in
many practical applications matches that cross this boundary
are really just “lucky” (i.e., we may be primarily looking for
large matches to S and if they are not found then a match in
T that is a shorter distance away), an alternate embodiment
of this invention is to forbid copies that cross this boundary,
in order to further simplify decoding.

Any reasonable implementation of sliding window encod-
ing can be used that allows for large matches. For example,
the UNIX gzip utility that uses a window of size 32K and
maximum match length 256; it is easy to modify the UNIX
gzip utility to use a simple escape code for long pointers
(e.g. reserve the longest possible length or displacement for
the escape code) so that the same algorithm can be used for
normal matches and the increased pointer length is only
associated with large matches.

Another object of this invention is, when in some appli-
cations it may be that there is some additional amount of
memory K available, to take advantage of this additional
memory to improve the amount of compression achieved. It
could be that K is a relatively small amount of memory that
grows larger as m and n grow larger, such as K being
O(/MIN{m,n}) or even K being O(log,(MIN{m,n})), or it
could be that K is relatively large, but still not large enough
to retain a separate copy of S while decoding (that is,
K<MIN{m,n}), such as 50 percent of the additional memory
needed (that is, K=MIN{m,n}/2) or even 90% of the addi-
tional memory needed (that is, K=(9/10)MIN{m,n}). An
additional amount of memory K can be utilized to poten-

US 7,079,051 B2

7
tially improve compression by lengthening the sliding win-
dow to size MAX{m,n}+K, thus delaying by an additional
K characters the point at which S begins to be overwritten
when decoding. That is, encoding begins with S as the
rightmost characters of a window of size MAX(m,n)+K.

In many practical applications, such as distribution of
successive versions of a software application, S and T are
highly similar and reasonably well aligned; that is, large
matches between S and T occur in approximately the same
relative order. In this case, IPSW can be a fast method that
performs in-place as well as methods that are not in-place.

Another object of this invention is to achieve good
performance even when S and Tare not well aligned, by
preceding IPSW with an additional step to improve align-
ment. Poor alignment could happen, for example, with a
software update where for some reason the compiler moved
large blocks of code around. An extreme case is when the
first and second halves of S have been exchanged to form T
(S=uv and T=wvu); to decompress T the IPSW algorithm
overwrites u as it copies v, and then the ability to represent
v with a single copy is lost. Rather than modify IPSW
(which is already a very fast and practical method that
suffices for many and perhaps most practical inputs), we
propose a preprocessing stage for IPSW that moves sub-
strings within S to better align S with T. The compressed
format can incorporate a way for the decoder to determine
whether preprocessing was performed (e.g., compressed
data can be begin with an initial bit indicating whether
preprocessing has occurred). The encoder can compress T
with IPSW and compare that to compressing T with respect
to S not in place (so at all times all substrings of S are
available to be copied). If the difference is significant, this
initial bit can be set, alignment preprocessing performed,
and a list of moves prepended the normal IPSW encoding.
The decoder can perform the moves and then proceed
in-place with normal IPSW decoding.

If the encoder determines that S and Tare not well aligned,
then the goal of preprocessing for the IPSW algorithm is to
find a minimal set of substring moves to convert S to a new
string S' that is well aligned with T. We limit our attention
to moves that are non-overlapping, where the moves define
a parsing of S and T into matched blocks, {b,},., , and
junk blocks, {x,,y,},—, ., thatis, S=x b1y X, boayXs - .
X,_1 by X, and T=yyb -y, 'byy, . . .y, °b,y,. When using
the sliding window method, we would like to copy sub-
strings of S only from the part that was not yet overwritten
by the reconstruction of T. That is, we would like to perform
only left copies, i.e., a copy (s;, d;, 1,) that copies a substring
with 1, characters from position s, to position d, that satisfies
s,=2d,.

We can improve upon the idea of greedy block-move edit
distance computation proposed in Shapira and Storer [2002]
by using two different kinds of rearrangements of the blocks.
Moves rearrange the blocks {b,},_; , so that they occur in
S and T at the same order. Jigglings move the junk blocks of
S backwards, so that, as a side affect, the matched blocks are
moved forwards.

Move Preprocessing Algorithm:

Step 1: Find Non Overlapping Common Substrings
(NOCS) of S and T from longest to shortest down to a
minimum length stoplength. These are the {b,},_,
blocks.

Step 2: Compute the minimum number of rearrangements
(moves and jigglings) in S so that the blocks {b;},_, .
are left copies within S and T.

10

15

25

30

40

45

50

55,

60

65

8

Step 3: Generate S' according to step 2.

Step 4: Compute IPSW(S',T).

Step 1 can be performed by repeatedly applying a longest
common substring computation (see, for example, the text
book An Introduction to Data Structures and Algorithms, by
J. A. Storer, Birkhauser/Springer, 2002), or by using the
linear time method of M. Meyerovich, D. Shapira, and J. A.
Storer (“Finding Non-Overlapping Common Substrings in
Linear Time”, Technical Report CS-03-236, Comp. Science
Dept., Brandeis University); minlength can be tuned for
different applications, where a value of 256 has been found
to be a good general practical choice. Since the encoder is
not restricted to work in-place, generating S' in Step 3 can
be done in linear time by copying the strings to a different
location. Step 4 uses the fast linear time IPSW algorithm that
has already been described as one of the objects of this
invention.

We now describe how Step 2 can be done in quadratic
time of the number of blocks, which is in the worst case
O((n/stoplength)?); in practice, the number of blocks is
much smaller than /n, and Step 2 works in linear time. The
NOCS found in Step 1 are renamed using different charac-
ters, and then the method of Shapira and Sorer [2002] can be
performed to compute minimum edit distance with moves to
attain the moved characters for the minimum cost which
correspond to moving the NOCS. Our next goal is to
produce a (source, destination) format for the NOCS moves
to be sent to the decoder based on the character moves. For
example, when dealing with 5 NOCS renamed by {1, 2, 3,
4, 5} one possibility to obtain 12345 from 15432 by char-
acter moves is by moving 2, 3, and 4, where 4 is moved
backwards. Another option for transforming 15432 to 12345
is by moving 3, 4 and 5, where 4 is moved forwards. Each
one of these solutions can be obtained from the dynamic-
programming table from different optimal paths going from
cell [rr] (for integers 1 through r) back to cell [0,0], from
which their alignment can be extracted. The source and
destination positions depend on the order the moves are
performed. Therefore, the encoder performs and reports one
character move at a time, updating the source and destina-
tion locations, before proceeding with the next move. We
define each item’s destination to be the corresponding
positions just after the last aligned item to its left. If there is
no such item, the item is moved to the beginning of the array.
The move causes a shift of all items to its right, and the item
is marked as an aligned item after the move is performed.
Let {b,},_, ,beasetofrmatched blocks to be moved from
source positions s, to destination position d,, and let
{x},o; , be the ‘junk’ blocks we wish to jiggle to the
beginning of S, so that all blocks {b,},_, , perform only
left copies, i.e., S,=d,. After performing the block moves in
S to obtain S', we have S'=xb,x,'b,X, . . . X,_;'b,'X,, and
T=yob;'y; by, - - . y,_1'b,y,. To see that it is always
possible to perform jigglings so that the matched blocks
become left copies consider the worst situation, where all
blocks {b,},_, , are shifted all the way to the right, without
ruining their order obtained from the edit-distance algo-
rithm. Since the space available is at least n, we are left with
only left copies. Thus, in the worst situation we perform r-1
moves and r jigglings. We are interested in minimizing this
number. Each block that was moved already in the edit-
distance with move algorithm, is farther moved to the right,
so that it is now adjacent to its right non-junk neighbor.
These moves are done for free, since they can be moved to
the final point directly. At each stage of the jiggling algo-
rithm, when we reach an illegal copy (i.e., a right copy), we

US 7,079,051 B2

9

choose the longest junk block to its right, and move it to the
left of the leftmost illegal copy, which results in shifting all
other blocks to the right.

A further object of this invention is for the decoder to
perform the move pre-processing in-place. Let S be a string
of length m, and x, y denote the source and destination
locations of a substring s of S of length 1 to be moved. Since
the problem is symmetric for left versus right moves, and
since we can easily incorporate an offset, assume x=0, y>0,
and y specifies the character that follows s after the move
(e.g., if S=abcdefgxyz, 1=3, and y=7, then abc is moved so
that S=defgabcxyz). A naive algorithm, that uses O(1)
additional memory and O(y?) time, moves the characters of
s individually, shifting the entire string between the source
and destination locations at each step.

For a more eflicient algorithm, observe that each character
of s goes a distance d=y-1, and the move is tantamount to
rearranging positions 0 through y-1 by the permutation
i—=(i+d) MOD y. A standard in-place permutation algorithm
(e.g., see the book of Storer [2002]) starts with positions 0
through y-1 “unmarked” and then for each position, if it is
unmarked, follows its cycle in the permutation and marks
each position visited, for a total of O(y) time and y additional
bits of memory for the mark bits. Here, mark bits for only
MIN{1,d} positions are needed, since every cycle passes
through at least one of the positions 0 through 1-1 and at
least one of the positions 1 through y-1. If 1 or d is
O(log(m)), then we use O(1) memory under our model,
since we are assuming at least enough memory to store O(1)
local variables, which are each capable of holding O(log(m))
bits (e.g., for m<4 billion, 32 bits suffice to store an index
variable in a loop that counts from 1 to m). If an additional
amount of memory K is available that suffices to store these
bits, then we can employ this additional memory for this
purpose. Otherwise, in O(y"? log(y)) time we can test y,
y-1,y-2, ... until we find the largest prime p =y; that is, d*/?
operations suffice to test, and approximately In(y) positions
are tested, where In denotes the natural logarithm (this
follows from the classic the “Prime Number Theorem”
which appears in many basic texts on number theory). Then,
let d'=p-1, and using no mark bits, move s most of the way
by the permutation i—(i+d") MOD p (since p prime implies
that the permutation is a single cycle that we can traverse
until we return to the start). Finally, after adjusting the offset
so that s starts at position 0, move s to position y'=l+(y-p)
with the permutation i—=(i+(y-p)) MOD y'; since (y—p)=In
(y)=O(log(m)), again, this can be can be done with O(1)
additional memory in our model (i.e., we are assuming at
least enough memory to store O(1) local variables, which are
each capable of holding O(log(m)) bits).

Another object of our invention is to provide the possi-
bility of using an existing “off-the-shelf” compression
method after a set of strongly aligned moves has been
performed on S. We say that a set of substring moves
performed on S to create a string S2 is strongly aligned if
when we write S2 below S and draw a straight line from each
character in S that is moved to where it is in S2, then no lines
Cross.

We can perform all strongly aligned moves for a string of
length m in a total of O(m) time and O(1) additional
memory, using only simple string copies (that may overwrite
characters that are no longer needed). We scan twice, first
from left to right to copy blocks that go to the left and then
from right to left to copy blocks that go to the right. Let x,,
y;and 1,, 1=i=n, denote the source and destination locations
and the lengths of k aligned move operations for a string
stored in the array A:

15

20

40

45

50

10

fori:=1 to n do ifi is a source position such that x,>y, then

for j:=1 to 1, do Aly,+j]:=A[x,+j]

for i:=n downto 1 do if i is a source position such that

X <y, then
for j:=1, downto 1 do Aly,+j]:=A[x,+j]

Any reasonable encoder (which need not work in-place)
to construct a sequence of aligned moves may suffice in
practice for applications where large aligned moves exist.
For example, a greedy approach can parse the text twice,
using two thresholds: C, and C,, where C, is much larger
than C,. First extract matches longer than C,, and then
search between two subsequent aligned matches for matches
longer than C,.

Assuming that a move operation is represented by three
components (source position, destination position, and
length), after the preprocessing step is complete, and the
decoder has performed all of the move operations, the gaps
can now be filled in by running a standard decompressor on
the remaining bits so long as we are careful during prepro-
cessing to remember these positions. This can be done by
linking them together as depicted in FIG. 3; the encoder can
be implemented to insure that each gap is large enough to
hold a pointer (e.g., 4 bytes to handle moves of 4 billion
characters). From the point of view of the off-the-shelf
decoder, a contiguous string is produced, which we just
happen to partition to fill the gaps.

Another way to use the off-the-shelf compressor is to
modify it slightly so that gaps are compressed in their local
context. For example, with a sliding window method, the
window could be defined to go contiguously back to the left
end of the current gap and then continue on back into the
previous block.

A third way to use the off-the-shelf compressor is to use
a single pointer value as an escape (followed by a displace-
ment and length) to a match into the decoded string rather
than into some additional memory used by the off-the-shelf
encoder/decoder that is in addition to the MAX{m,n}
memory normally allocated for in-place decoding; for
example, this would be another way to make use of an
additional amount K of memory.

Although this invention has been primarily described as a
method, a person of ordinary skill in the art can understand
that an apparatus, such as a computer, could be designed or
programmed to implement the method of this invention.
Similarly, a person of ordinary skill in the art can understand
that there are many types of memory that can be used to
implement memory for the purpose of this invention (RAM
memory, hard drive, read-write disk, data buffers, hardware
gates, etc.).

Since certain changes may be made in the above methods
and apparatus without departing from the scope of the
invention herein involved, it is intended that all matter
contained in the above description or shown in the accom-
panying drawings shall be interpreted in an illustrative and
not in a limiting sense.

The invention claimed is:

1. A method for differential compression of a body of data
S with respect to a body of data T, comprising the steps of:

initializing a sliding window W of size MAX{m,n}+K so

that its rightmost m characters are S,

where K is an integer such that 0=SK<MIN{m,n};

performing sliding window compression of T with win-

dow W,

to produce a sequence of pointers,

where each of said pointers represents a single charac-
ter or represents a copy of an earlier substring of T
or represents a copy of a substring of S,

US 7,079,051 B2

11

such that at least one of said pointers represents a copy
of a substring of S;
transmitting each pointer of said sequence of pointers to
a utilization device that contains a copy of S;
upon receiving each of said pointers at said utilization
device,
performing an additional sliding window decoding step
in the recovery of T,
in such a way that the size of the memory used is no
more than MAX{m,n}+K,
and such that after the last pointer is received T is fully
recovered.
2. A method according to claim 1, further comprising the
step of:
Rearranging substrings of S to that S is better aligned with
T.
3. Amethod according to claim 1 where KEMIN{m,n}/2.
4. A method according to claim 1 where K is O(/MIN{m,
n}).
5. A method according to claim 1 where K=0.
6. A method for representing a first body of data T of size
n by a second body of data S of size m and a sequence of
pointers,
where each of said pointers represents a single character
or represents a copy of an earlier substring of T or
represents a copy of a substring of S,
such that at least one of said pointers represents a copy of
a substring of S,
so that it is possible to recover T from S by processing
said sequence of pointers and overwriting S from left to
right,
in such a way that the size of the memory used is no more
than MAX{m,n}+K,
where K is an integer such that 0=K<MIN{m,n}.
7. A method according to claim 6, further comprising the
step of:
Rearranging substrings of S to that S is better aligned with
T.
8. A method according to claim 6 where KEMIN{m,n}/2.
9. A method according to claim 6 where K is O(/MIN{m,
nj}).
}10. A method according to claim 6 where K=0.
11. A method of recovering a first body of data T of size
n from a second body of data S of
size m and a sequence of pointers, where each of said
pointers represents a single character or represents a
copy of an earlier substring of T or represents a copy of
a substring of S,
such that at least one of said pointers represents a copy of
a substring of S,
by processing said sequence of pointers and overwriting
S from left to right,
in such a way that the size of the memory used is no more
than MAX{m,n}+K,
where K is an integer such that 0=K<MIN{m,n}.
12. A method according to claim 11, further comprising
the step of:
Rearranging substrings of S to that S is better aligned with
T.
13. A method according to claim 11 where K<MIN{m,
n}/2.

5

10

15

20

25

30

35

40

45

55,

60

12

14. A method according to claim 11 where K is
O(/MIN{m,n}).

15. A method according to claim 11 where K=0.

16. A system for differential compression of a body of
data S with respect to a body of data T, comprising:

means for initializing a sliding window W of size

MAX{m,n}+K so that its rightmost m characters are S,
where K is an integer such that 0SK<MIN{m,n};

means for performing sliding window compression of T

with window W,
to produce a sequence of pointers,
where each of said pointers represents a single charac-
ter or represents a copy of an earlier substring of T
or represents a copy of a substring of S,
such that at least one of said pointers represents a copy
of a substring of S;
means for transmitting each pointer of said sequence of
pointers to a utilization device that contains a copy of
S;
means for upon receiving each of said pointers at said
utilization device,
performing an additional sliding window decoding step
in the recovery of T,
in such a way that the size of the memory used is no
more than MAX{m,n}+K,
and such that after the last pointer is received T is fully
recovered.
17. A system as in claim 16, further comprising:
Rearranging substrings of S to that S is better aligned with
T.

18. A system according to claim 16 where K<MIN{m,
n}/2.

19. A system according to claim 16 where K is
O(/MIN{m,n}).

20. A system according to claim 16 where K=0.

21. A system for recovering a first body of data T of size
n from a second body of data S of size m and a sequence of
pointers,

where each of said pointers represents a single character

or represents a copy of an earlier substring of T or

represents a copy of a substring of S,

such that at least one of said pointers represents a copy of

a substring of S, with means for:

processing said sequence of pointers and overwriting S
from left to right,

in such a way that the size of the memory used is no
more than MAX{m,n}+K.

22. A system as in claim 21, further comprising:

Rearranging substrings of S to that S is better aligned with

T.

23. A system for differential compression and decompres-
sion of a body of data T with respect to a body of data S
comprising means for:

computing strongly aligned moves and using off-the-shelf

compression and decompression to represent the por-
tions of T not represented by substring moves within S,
in such a way that the size of the memory used when
decoding is no more than MAX{m,n}+K, where K is
an integer such that 0=K<MIN{m,n}.

%k ok ok

