United States Patent [
Chu

O 0O 0

US005150430A
Patent Number:

Date of Patent:

5,150,430
Sep. 22, 1992

1]
[45]

[54] LOSSLESS DATA COMPRESSION CIRCUIT
AND METHOD
[75] Inventor: Ke-Chiang Chu, Saratoga, Calif.
[73] Assignee: The Board of Trostees of the Leland
Stanford Junior University, Stanford,
Calif.
[21] Appl. No.: 670,281
[22] Filed: Mar, 15, 1991
[51] [IREHICLT dvmimniviisisiiaiinissmmennyin TIOAMVE 7/34
{52] VIS, EL: vcniammimasmimpnriarinnr S8/ 50y 341 /51
341/67
[58] Field of Searchccoeevnun, 382/56; 341/51, 67,
341/95, 106; 358/261.1, 261.4, 261.2
[56] References Cited
U.S. PATENT DOCUMENTS
4,558,302 12/1985 WEICH ovvvvvvveveressssssssnmennssnenes 341/95
4,941,193 7/1990 Barnsley et al ... 382/56
5,001,478 371991 NaEY cooorrvrsrrsren e 341751
5,003,307 3/1991 Whiting et al. 341/51
5,051,745 9/1991 Katz 341/51

Primary Examiner—Leo H. Boudreau

Assistant Examiner—Steven P. Klocinski
Anorney, Agent, or Firm—Flehr, Hohbach, Test,
Albritton & Herbert

57 ABSTRACT
A lossless data compression circuit compares a new

data string with a set of comparison data, and produces
a sequence of codewords representing a sequence of
successive, non-overlapping substrings of the new data
string. A shift register stores and shifts the comparison
data until all of the characters in the comparison data
have been compared with the new data string. A com-
posite reproduction length circuit finds the maximum
length string within the set of comparison characters
matching substrings of characters in the new data string
beginning at each position in the new data string. The
composite reproduction length circuit produces a multi-
plicity of data pairs, one for each position of the new
data string. Each data pair comprises a maximum length
value, corresponding to the maximum length matching
comparison string found for the new data substring
starting at the corresponding position, and a pointer
value denoting where the maximum length matching
comparison string is located in the comparison data. A
codeword generator then generates a sequence of code-
words representing the new data string, each codeword
including one of these data pairs and representing a
substring of the new data string. By vusing N such data
compression units in parallel, with each storing an iden-
tical new data string, and each unit's shift register stor-
ing and shifting a different subset of a specified compari-
son string, processing time for generating codewords is
reduced by a factor of approximately (N—1)/N.

9 Claims, 6 Drawing Sheets

200
,202 £

A NEW DATA
204
OLD DATA
=] 222, 5 v 7 206
ok COMPARATORS
E"u." 1,1 1,0/0 o000 ‘1 1 0! 0=MATCHO..55
=2 [Y ' '
o T ' (] L
8" l+— ‘'mwco]: ‘ :
v “210 y ; :
<4+ RLG1 '
~ [N N] \ \
210 v A210%
<4— RLGN-1

Oracle 1109

U.S. Patent Sep. 22, 1992 Sheet 1 of 6 5,150,430

INPUT STRING

t |hie] |f nit| |a|x]l |e

r‘\o

«ptr,length,tail_character>=codeword=<125,5,"r">

) ' 1023 90
tlhlel ltlilrk|t] lt]imlel [.].] 1 —
N
HISTORY BUFFER
FIGURE 1
102
116 100

110l CIPU m‘_h./ @ /-\./
1o | lemle [S

MEM 112
FIGURE 2
134 /\/1 20
/ 130
SR2 %—— MESSAGE BUFFER l‘— CLK
= 'R ;
ok REPRODUCTION LENGTH | 122
E g GENERATOR
8 2 L v 1 13Eom::
O COMPARATOR 132
TMRL F 124
»
}¢—— MAXIMUM REPRODUCTION FSM
LENGTH REGISTER "1 .
€4—— POINTER REGISTER -
4 —~128 CLK CLK2 CW_RDY
COUNTER 4—CLK

FIGURE 3

U.S. Patent Sep. 22, 1992 Sheet 2 of 6 5,150,430

r 154 ¥ 152
CLK2—» CODEWORD REGISTER M—— CODEWORD BUFFER

i PTR | |

T
OFFSET 160
164 L FSM [~

ADDRESS GENERATOR

,‘ 62 C{KC K28£L

HISTORY BUFFER 4—'
e 166~
MESSAGE MUX <J \-’\

BUFFER DECODED T 150
symeoLs —F
SEL
FIGURE 4
200
202
¢ NEW DATA
204
- OLD DATA
g 4 ; 206
o E COMPARATORS
=k 1,1 1,0,0 oo e "1 1 0! 0= MATCHO..55
o= [¥ \ '
2] T] []
8 [+ !mco]! : :
210 : :
<+— RLGI E :
= eeoe ‘ '
210 v 210y
<4—] RLGN-1

FIGURE 5

U.S. Patent Sep. 22, 1992 Sheet 3 of 6 5,150,430
200 LD_CW1,
NN\ SHIFT_NEW_DATA é%c,—r;ﬁ:
J, 1 230
226 ? E %
- =
COUNTER | PTR %E
CLK 1 oo
hE e
ML
7234 50 DECODERS
o
FSM > § 5 > >
3| 3 3| 3| 2
by =~ = = | 220
CLK LD_CW1, 50 TALLY COLUMNS
Lo_cwz, ' 3
s e BB 5| E| B
—INEW_ - = = - & =
L9 o« L4 L.s
SHIFT_OLD_DATA < < < < S| 2
COMPARATORS| | 55 54| eoe 2 1 0
44 A4 A2 X3 Fx
- 202
~ 232
l!55—b54 eee P21 ™Mo NEW DATA
DATA 204
BUFFER | .
55 FPisa | o0 = 2 1 FPlo OLD DATA
CLK —P
FIGURE 6
LD_CW1
230\,_\ 2700 v 302 S
PTR plow |
0 7300
ML | SIPRIORITY] I CW L
' ﬁJ ENCODER [LEN
272-0
EXTERNAL
7 202-0 304 CODEWORD
NEW DATA() TAIL | [INTERFACE
CHR |
LD_CW2
CW_RDY—p
FIGURE 10 7/

U.S. Patent Sep. 22, 1992 Sheet 4 of 6 5,150,430
240
NEW DATA(-1) B (2 5 NEW DATA() 208
5 6 NEW DATA [g 244 24p
- SHIFT e .
~——| REGISTER [= >
3 3 6
2 2 e] O—Po—
1 1 5 STD——M—
R o) 2 248
4 O match
SHIFT_NEW_DATA =% 3 :g_.; !
: [242 : 3 Ot oTauy
IRCUI
& | OLDDATA [G > LD—DO— CIRCUM
3 SHIFT 5 1
7 REGISTER 4 1 W
3 3 0
2 2 0
1 1
OLD DATA(i-1) g 9[{(Lo |2 OLD DATA()
SHIFT_OLD_DATA =y
CLK FIGURE 7
270 ML(i)
224 MATCH
3 Ml
Ny s LENGTH [z 0 284
: LATCH [P—>—>0— o
3 3 |3
2 > 2 £°
1 7 T E°
SHIFT_NEW STl ok g PO
_DATA 280 ok, LB [>0— —
I
MUX
286
ML(i-1) = Lo 6
11 11 - ;D_
10 POINTER |19 5
: LATCH . ; - e
L] [] -
3 3 - 5 UPDATEi
2 2 3
1 1 2
. CLK yp [0 Hal
N\ At 1
w] | T LD
PTR(i-1) = CLK I o P)—
COUNTER
100 yauvi
FIGURE 9

Sheet 5 of 6 5,150,430

Sep. 22, 1992

U.S. Patent

0ATIVL €—

o SEERERERERE X
ZATIVL €— .ﬁﬁ‘ﬁﬁﬁ w_.ﬂ
gL |) N B Y G TV T | 0 3T e ¥ ZHOLYI N_
= .
MR ENANESANAES L
I S T Y O I T L T L T Y
o

—— EHOLVW =)
Qo
PATIVL €— ﬁﬁﬁﬁﬁ b _w Ly
= 2 ® ﬂ
=
° N
&
i
BPATIVL @— 4...IJ|.
—— BYHOLVI x
%
6PATIV]L @— N_
-

6VHOLV

5

MATCH55
MATCH54
MATCHS53
MATCHS52
MATCH51
MATCH50
vCC

FIGURE 8A

U.S. Patent Sep. 22, 1992 Sheet 6 of 6 5,150,430
324
320-1 320-2 320-N DATA
- L £ STORE
R-
NEW DATA [#] NEW DATA [NEW DATA & e
OLD DATA & OLD DATA & OLD DATA j& P
[B I
PTR PTR PTR
MRL MRL MRL
A 4 vy \ A 4
CODEWORD!1 CODEWORD2 CODEWORDN
vy 3222 v 322N
BEST BEST
CODEWORD CODEWORD
“——| SELECTOR ® ® ¥ seiecTOR | BEST
(WITH LARGEST (WITH LARGEST| CODEWORD
MRL) MRL)

FIGURE 11

5,150,430

1

LOSSLESS DATA COMPRESSION CIRCUIT AND
METHOD

The present invention relates generally to data com-
pression systems and circuits and particularly to a cir-
cuit and method for performing a number of data com-
pression operations in parallel so as to substantially
reduce the computation time required for performing
lossless data compression.

BACKGROUND OF THE INVENTION

The term “lossless data compression” means that all
of the information in an input string or message is re.
tained when that information is compressed so as to be
represented by a smaller amount of data. Thus, when
the compressed data is decoded, the reconstructed mes-
sage will be identical to the original input message rep-
resented by the compressed data.

The present invention is, in essence, a highly efficient
system and method for implementing a well known
lossless data compression technigue, sometimes known
as the “Lempel and Ziv noisless universal data compres-
sion algorithm™, This data compression algorithm is
also sometimes called the “history buffer” algorithm.

THE LEMPEL AND ZIV LOSSLESS DATA
COMPRESSION METHOD.

Referring to FIG. 1, this data compression algorithm
works as follows. The data compression unit (or pro-
gram) stores the last X (e.g., 1024) characters (some-
times called symbols) that have already been encoded in
a "history buffer" 90, typically implemented as a circu-
lar buffer. When new input data is encoded, the data
compression unit looks for the longest string in the
history buffer 90 that matches the new input data, be-
ginning with the first character of that new input data.
For instance, if the new input data is the string

“the front axle of the vehicle snapped when . ™

the data compression unit would look for the longest
matching string beginning with the letters “th ... ", If
the best match found in the history buffer was, say, “the
' (e.g., as part of the phrase “the first time . . . ™), then
the “reproduction length™ of the longest matching
string would be five characters: “t", “h™, *e”, ", and
“P'. The form of the codeword used to represent the
compressed data is as follows:

< pointer, reproduction length, tail character>.

Thus the codeword comprises (1) a pointer to a position
in the history buffer where a matching string can be
found, (2) the length of the matching string, and (3) a
tail character which is the next character in the input
string. One reason for including the tail character is to
handle cases in which a character is not found in the
history buffer. In such cases, the pointer and length
fields of the codeword are set equal to **0,0" and the tail
character field is equal to the first character of the input
string.

Eagch time that a portion of the input string is con-
verted into a codeword, the input string is shifted so
that the beginning of the input string is the first charac-
ter that has yet to be converted into codeword form.
Furthermore, the contents of the history buffer are
periodically updated by adding the portions of the input
string that have been processed 1o the end of the history

5

10

5

20

25

50

2
buffer. Since the length of the history buffer is typically
constant, adding new data at the end of the buffer usu-
ally means that data at the beginning of the buffer is
erased or overwritten, unless the history buffer is not
vet full. Depending on the particular implementation of
the data compression algorithm, the contents of the
history buffer may be updated each time that a new
codeword is generated, or it may be updated each time
that a certain number of input characters have been
processed, For instance, the contents of the history
buffer may be updated every time that another thirty-
two input string characters have been processed by the
data compression algorithm.

The net result of the data compression algorithm is
that an input string is converted into a sequence of
codewords, as described above. To see how this pro-
duces data compression, consider the following exam-
ple. Assume that the history buffer contains 1024 char-
acters, that the maximum allowed reproduction length
will be seven, and that it takes eight bits to represent an
uncompressed character. The length of each codeword
will be:

10 bits Pointer to history buffer position
3 bits Reproduction length value
8 bits Tail character

21 bits length of each codewaord

If, on average, each codeword has a reproduction
length of four characters, each codeword will represent
a total of five characters, including the tail character.
Thus, on average, it will take 21 bits to represent five
characters instead of 40 bits, representing a compression
ratio of about two to one (2:1).

DECODING COMPRESSED DATA

Data decoding, which is the process of converting
the codewords back into regular character strings, is
very easy. The data decoding unit or program maintains
a history buffer that is identical to the one maintained by
the data compression unit, updating the contents of the
history buffer with newly decoded characters. Each
codeword is decoded simply by using the pointer in the
codeword 1o locate a position in its history buffer. Then
the specified number of characters in the history buffer
are copied, following by the specified tail character, to
regenerate the string represented by the codeword.
Data decoding is very fast and uncomplicated.

Note that we have not specified the contents of the
history buffer when one first begins to compress or
decompress data. This is a peripheral issue not relevant
to the present invention, but is addressed here to en-
hance the reader’s understanding of the compression
method. There are at least two standard methods of
dealing with what to put in the history buffer at the
beginning of the process: (1) initially clear the history
buffer (e.g., fill it with null characters), or (2) always
initially fill the history buffer in both the data compres-
sion unit and in the data decoding unit with a predefined
set of data that is known to produce reasonably good
data compression with a wide variety of input data. The
first solution results in a lower data compression ratio
when small sets of data are compressed, while the sec-
ond requires a certain amount of coordination between
the data compression and data decoding units. Either

5,150,430

3

solution, or any other such solution, can be used in
conjunction with the present invention.

As will be understood by those skilled in the art, there
is a set of tradeoffs between the length of history buffer,
the maximum allowed reproduction length, the com-
pression ratio and the amount of processing time re-
quired to perform the data compression. In particular, if
the history buffer is made longer (say to 4096 charac-
ters), the chances of finding good matching strings in-
crease, and the average reproduction length will in-
crease. However, this will also increase the length of
each codeword, because more bits will be required to
represent positions in the history buffer, and it will take
more processing time to perform the compression be-
cause it will take longer to find the best matching string
in a larger history buffer.

PROCESSING TIME FOR DATA COMPRESSION

The present invention is primarily concerned with
the problem that compressing data using the Lempel
and Ziv is very time consuming. As will be explained
next using some numerical examples, the Lempel and
Ziv data compression method has been used in a num-
ber of contexts in which the speed at which data com-
pression is accomplished is not critical, such as transmit-
ting data over telephone lines using standard medium
speed modems. The Lempel and Ziv data compression
method has generally not been used in high speed appli-
cations, such as data storage on hard disks, because the
amount of time required for data compression prior to
storage on disk has been assumed to be excessive.

Consider the following example of the processing
time required to compress data for transmission over a
2400 baud (i.e., 2400 bits per second) transmission line,
which is typical of modem transmission used by desktop
computers. What we are computing in this example is
the number of instructions per second that would have
to be executed by a software data compression program
in order to keep up with a 2400 baud modem. We will
assume a data compression ratio of two to one, meaning
that 4800 bits of data, or about 600 characters must be
encoded for transmission each second. Also assume a
history buffer of 1024 characters, and that the average
codeword represents five characters. Since the average
codeword represents five characters, the compression
unit must generate about 120 codewords per second. To
generate a codeword, the compression unit must try to
match an input string with strings of characters in the
1024 character history buffer. A ballpark figure for
performing this would be about 10,000 instructions:
about four instructions for performing each character to
character comparison, with an average of about 1.5 to
2.0 such comparisons being required for each character
in the history buffer, plus a small number of instructions
required to keep track of the best match and to con-
struct the codeword.

Thus the number of executed instructions required to
generate the 120 codewords needed on average each
second would be about: 120 10,000 or about 1.2 mil-
lion instructions per second, requiring a2 computer capa-
ble of at least 1.2 MIPS. Using an average of three or
four computer clock cycles per instruction, 1.2 MIPS is
equivalent to 2 CPU cycle rate of about 4 or 5 mega-
hertz (i.e., 4 or 5 million computer clock cycles per
second). This is well within the capabilities of many
desktop computers, with the fastest desktop computers
in 1990 having CPU cycle rates of approximately 40
megahertz. In comparison, data decoding requires only

—

0

=

5

20

25

35

40

45

50

55

60

65

4

about a hundred instructions per codeword, and thus is
extremely fast.

Next, we consider the processing requirements for
using the Lempel and Ziv data compression method for
storing and retrieving data to and from a hard disk or a
comparable medium in a computer system. The idea
here is that if data compression can be used with such
hard disks, then one could approximately double the
amount of data stored on any hard disk.

The hard disks vsed in desktop computers, as of the
end 1990, can store up to about |1 million characters per
second. High performance hard disks used with more
expensive computer systems can store up to about 3.5
million characters per second, but we will use a data
storage rate of 1 million characters per second for the
purposes of this example. Using a data compression
scheme with a two to one compression ratio, the rate of
data storage would be about 2 million characters per
second, or about 400,000 codewords per second (using
an average of five characters per codeword). In order
to avoid slowing down the rate of data storage to disk,
data compression would need to be accomplished about
3300 times faster than in the above 2400 baud modem
example. Thus, performing “seamless” data compres-
sion for hard disk storage without impacting on a com-
puter's data storage performance is much, much more
challenging. Furthermore, it is clear that such data
compression cannot be accomplished with software,
since it would require that the computer’s processor
have a CPU cycle rate on the order of 10 gigahertz.

The present invention provides a data compression
circuit using parallel processing techniques which is
sufficient fast that it can keep up with the data storage
rates of current hard disks. That is, using a 40 megahertz
clock rate and the current invention, one can compress
two million bytes or characters per second into the
codewords associated with the Lempel and Ziv lossless
data compression method.

It is noted that there is always a trade-off between
implementation feasibility, or processing complexity, of
a data compression system and compression ratio. The
present invention provides data compression apparatus
that is feasible for high speed, using a simple, hardward
implementation.

SUMMARY OF THE INVENTION

In summary, the present invention is a lossless data
compression circuit which produces a sequence of
codewords representing a sequence of successive, non-
overlapping substrings of a specified set of data. A first
shift register stores a new input string, while a second
shift register stores and shifts a prefix string until all of
the characters in the prefix string data have been com-
pared with the new data string.

A composite reproduction length circuit finds the
maximum length strings within the prefix string which
match substrings of characters in the new data string
beginning at each position in the new data string. The
composite reproduction length circuit produces a multi-
plicity of data pairs, one for each position of the new
data string. Each data pair comprises a maximum length
value, corresponding to the maximum length matching
prefix string found for the new data substring starting at
the corresponding position, and a pointer value denot-
ing where the maximum length matching string is lo-
cated in the prefix string. A codeword generator then
generates a sequence of codewords representing the
new data string, each codeword including one of these

5,150,430

5

data pairs and representing a substring of the new data
string.

In the preferred embodiment, the composite repro-
duction length circuit has the following components. A
reproduction length register stores a separate length
value corresponding to each position of the new data
string, and a pointer register stores a separate pointer
value corresponding to each position of the new data
string. A counter generates a pointer value denoting
which subset of the prefix characters are currently
stored in the shift register, A modified tallying circuit
generates a tally value for each position in the new data
string, each tally value representing how many consec-
utive prefix characters in the shift register, up to a pre-
defined maximum value, match characters in the new
data string beginning at a corresponding position in the
new data string. Finally, a decoder compares each tally
value with a corresponding one of the length values
stored in the reproduction length register, and when the
tally value exceeds the corresponding stored length
value, it replaces the stored corresponding length value
with the tally value and replaces the corresponding
pointer value stored in the pointer register with the
pointer value generated by the counter.

By using N such data compression units in parallel,
with each storing an identical new data string, and each
unit’s shift register storing and shifting a different subset
of a specified prefix string, processing time for generat-
ing codewords is reduced by a factor of (N—1)/N (e.g.,
using three parallel data compression units would re-
duce processing time by a factor of approximately #).

BRIEF DESCRIPTION OF THE DRAWINGS

Additional objects and features of the invention will
be more readily apparent from the following detailed
description and appended claims when taken in con-
junction with the drawings, in which:

FIG. 1 conceptually depicts how a codeword is gen-
erated from an input string and a prefix string,

FIG. 2 is a conceptual diagram of a computer system
incorporating the lossless data compression and data
decoding circuits of the present invention in the data
path between a hard disk storage system and the com-
puter system’s internal bus,

FIG. 3 is a block diagram of a simple hardware cir-
cuit for lossless data compression.

FIG. 4 is a block diagram of a circuit for decoding
compressed data generated using the circuit of FIG. 3.

FIG. 5 is a conceptual diagram of a high speed loss-
less data compression circuit which speeds data com-
pression using one type of parallel data processing.

FIG. 6 is a block diagram of a preferred embodiment
of a high speed lossless data compression circuit using
the first type of parallel data processing.

FIG. 7 is a block diagram of a data comparison cir-
cuit.

FIGS. BA and 8B are circuit schematics for a modi-
fied tally circuit.

FIG. 9 is a block diagram of a decoder for selecting
the longest string in a set of comparison data which
matches a specified new data string.

FIG. 10 is a block diagram of codeword generator
circuit.

FIG. 11 is a block diagram of a high speed lossless
data compression circuit which speeds data compres-
sion using a second type of paralle]l data processing.

e

20

25

30

35

45

50

55

65

6

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring to FIG. 2, we show a typical computer
system 100 in which the present invention can be used.
The computer system 100 includes a CPU 102, memory
module 104, an internal bus 110, and a hard disk storage
system 112 which stores data on a hard disk 114. In the
preferred embodiment, data being written to the hard
disk 114 are processed by a data encoding circuit 120
and data being retrieved from the hard disk are pro-
cessed by a data decoding circuit 150. In the preferred
embodiment, both the encoder 120 and decoder 150 are
implemented on a single, integrated circuit 116. The
combined encoder/decoder circuit 116 is used in the
data path between a computer’s internal bus 110 and its
hard disk storage system 112, causing data stored on
hard disk 114 to be automatically encoded and com-
pressed as it is being written to the hard disk 114, and to
be automatically decoded as it is retrieved. If the en-
coder circuit 120 is sufficiently fast at performing the
necessary encoding operations, the use of the data com-
pression and decoding circuits will be “seamless”, in
that their presence would not affect the performance of
the computer system 100, except that the amount of
data that could be stored on the hard disk 114 would be
approximately doubled (assuming a compression ratio
of 2:1).

Referring to FIG. 3, we will first describe a very
simple hardware implementation of a data compression
circuit 120 for performing the Lempel and Ziv lossless
data compression algorithm. The first data encoding
circoit 120 is approximately thirty times faster than a
comparable software data compression program. Later,
we will show a data compression circuit which is faster
than this first circuit, on average, by a factor of ten. This
means that, on average, the improved circuit reduces
the number of clock cycles required to produce the
same codewords by about a factor of ten. As will also be
described below, the speed of data compression can be
further increased by an additional factor of four to ten,
if one is willing to use a commensurate amount of addi-
tional circuitry.

The term “‘character” as used in this document is
defined to mean any symbol or other form of data
which occupies a predefined amount of storage space
(i.e., a predefined number of bits), such as a byte or
“word".

In the following description, the string of characters
that is being compressed is represented by the letter S.
The string S contains characters at positions beginning
at position 0 and continuing to position N—1, where N
is the length of the string. A substring of § which starts
at position i and ends at position j is denoted as S(i,j).
For convenience, the string currently stored in the
history bufTer is labelled H, and substrings in the history
buffer are denoted H(i,j), where i and j are the begin-
ning and ending positions of the substring in the history
bufler. The contents of the history buffer are sometimes
called a proper prefix of the string which is currently
being processed for data compression.

Given a string S, the reproduction length of the string
S at position i is the largest integer L;such that

S(i,i-+Li~=H(kk+Li~1)

where H represents the contents of the history buffer
and k is any position within the history buffer. The

5,150,430

7

position Pjin the history buffer corresponds to the maxi-
mum value of the reproduction length L;at position i.

Let S=s)52. . . be the string of source symbols that is
being compressed. The sequential encoding of § parses
S into successive source words, S=5(S;. . .. For each
source word §;, the encoder looks for the longest repro-
duction length L;, and assigns a codeword Cj:

Ci=<F; Li Tr>

where T; is the last symbol of S;. To ensure that all
codewords have the same number of bits, 2 maximum
value Lmax is imposed on the reproduction length,
typically 7 or 15.

The core of the Lempel-Ziv encoder shown in FIG.
3, isimplemented with two shift registers, SR1and SR2,
a reproduction length generator (RLG) 122, maximum
reproduction length and pointer latches 124 and 126,
and a counter 128. In addition, a memory circuit or
message buffer 130 is used to store the data that is being
compressed, a finite state machine (FSM) 132 controls
the sequence of steps performed by the entire circuit
120, and a codeword buffer 134 is used to temporarily
hold portions of the codewords generated by the circuit
120. The FSM 132 generates the two clock signals CLK
and CLK2 which control the shift registers SR1 and
SR2, and also generates a signal CW_RDY whenever a
new codeword has been generated.

Both shift registers SR1 and SR2 are of the same
length. In particular, they both store a number of char-
acters which is equal to the maximum allowed repro-
duction length. For specificity, we will assume that
both SR1 and SR2 store seven characters at any one
time.

Shift register SR1 stores the substring to be parsed.
After SR1 1s initially loaded with data, the contents of
SR1 are shifted only after the generation of each code-
word. As SR1 is shifted, new data is loaded into the shift
register from the message buffer 130. In particular, if a
codeword with a reproduction length of L is generated,
SR1 is shifted L+ 1 times using clock signal CLK2. The
last character shifted out of SR1 is held in the codeword
buffer 134 as the tail character of the codeword.

At the beginning of each codeword generation cycle,
the contents of registers 124 and 126 are cleared, i.e., set
to zero. In addition, the counter 128 is also reset to a
predefined beginning value, such as zero, Then the
history buffer contents, also called the proper prefix
substring, is shifted through SR2 using clock signal
CLK. Lmax—1 clock cycles are required to preload
SR2, where Lmax is the maximum allowed reproduc-
tion length, and is also the number of characters posi-
tions in SR1 and SR2. Then, each time that SR2 shifts,
the reproduction length generator 122 compares the
contents of SR1 and SR2, and generates a reproduction
length value L. Comparator 136 compares the current
reproduction length value L with the current value
MRL stored in the maximum reproduction length regis-
ter 124. If the current reproduction length value L is
greater than MRL, the comparator 136 generates a
LOAD signal, which causes the current reproduction
length value L to be stored in register 124, and also
causes the current pointer value generated by counter
128 to be stored in pointer register 126.

After the proper prefix substring has completely
shifted through SR2, the codeword can be generated
from the contents of MRL register 124 and pointer
register 126, followed by the appropriate tail symbaol.

20

25

40

45

60

65

The encoding procedure can be formally described as
follows.

1. Initially, SR2 is reset to be 0. SR1 stores the string (o

be parsed.

2. The history buffer string is shifted into SR2 sequen-
tially, at the rate of one symbol per clock cycle. RLG
122 compares SR1 against SR2 at each clock cycle. A
reproduction length L is generated. At the end of
every clock cycle, the contents of MRL and pointer
registers 124 and 126 are updated, if necessary.

. After N clock cycles, where N is the length of the
history buffer string, a codeword C; is generated,
Ci=<P.L;Ti>.
To update the contents of SR1, the symbols occupy-
ing the first L;4-1 positions are shifted out, while
L;+1 new source symbols are shifted in. Go back to
step 1, and repeat the procedure until the end of the
string to be parsed is reached.
In the preferred embodiment, during the first CLK2
eycle during which old symbols are shifted out of SR1
and new symbols are shifted in, the contents of the
MRL and pointer registers 124 and 126 are latched into
the codeword buffer 134, and simultaneously these reg-
isters are cleared. At the same time, the contents of SR2
are also cleared. Thus, no additional clock cycles are
required for codeword generation. Codewords are gen-
erated, and registers are cleared for the new codeword
generation cycle, simultaneously with the shifting in of
new symbols into the SR1 register. Using a history
buffer of 1024 symbols, and data registers SR1 and SR2
of length Lmax, it will take 1024 +Lmax— 14 LC clock
cycles to generate a codeword which represents LC
symbols, as well as to prepare for generating the next
codeword.

Assuming that codewords, on the average, each rep-
resent five symbols, the data compression circuit of
FIG. 3 requires about 206 clock cycles per character to
compress a sel of data. As a result, a computer system
with a 40 megahertz clock rate could compress data
using this circuit at a rate of about 200,000 characters or
symbols per second. This is about a factor of ten slower
than the rate of processing required for seamless pro-
cessing of data being stored to a hard disk at a rate of
one million bytes per second, which is equivalent to
about two million symbols per second for a system with
a two to one compression ratio.

The data compression circuits described below with
reference to FIGS. 5 through 11 overcome the failure
of the circuit of FIG. 3 to encode data with sufficient
speed. First, however, we describe a compressed data
decoder circuit, which while simple, is more than suffi-
ciently fast to keep up with even the fastest hard disk
systems.

COMPRESSED DATA DECODER

Referring to FIG. 4, the compressed data decoder
circuit 150 temporarily stores received codewords in a
buffer 152, which are then loaded into codeword regis-
ter 154 using clock CLK2, which is generated by finite
state machine (FSM) 160 each time the decoder circuit
150 is ready to process the next codeword. The current
contents of the history buffer or prefix string are stored
in buffer 162, which is typically a memory circuit used
as circular buffer. The FSM 160 keeps track of the
current position of the beginning of the prefix string
within the message buffer 162, and generates a corre-
sponding OFFSET value that is added by address gen-
erator circuit 164 to the pointer value PTR from the

5,150,430

9

codeword being decoded. The resulting address is the
address of the first character of the substring repre-
sented by the codeword. The OFFSET wvalue is then
incremented by the FSM 160 L times, where L is the
reproduction value from the codeword being decoded,
during each new CLK clock cycle, until the decoding
of a new codeword begins.

After the initial CLK2 signal used to load a code-
word into register 154, the FSM generates L 41 clock
signals CLK, is the reproduction length value obtained
from the codeword being decoded. At each CLK sig-
nal, a new decoded symbol is generated. The new de-
coded symbol is read from the output of a multiplexer
166, which outputs either (1) the tail character T from
the codeword being decoded, or (2) the symbol read
from the message buffer 162 at the address generated by
address generator 164. These decoded symbols are then
stored at the appropriate position in the history buffer
162, as well as in an output message buffer 170. Depend-
ing on how the history buffer 162 is designed, the read-
ing of a decoded symbol from one address and the stor-
age of that symbol back into the history buffer at a
different address can be accomplished in either one or
two clock cycles. By using a history buffer that stores,
say, 1024 bytes, but limiting the length of prefix string to
say, 1020 or 1023 bytes, one of ordinary skill in the art
can design a dual ported memory buffer 162 that allows
both the reading and storage of decoded symbols from
the history buffer to be accomplished in a single clock
cycle, with the storage of each symbol occurring one
clock cycle after it has been read. In other embodiments
of the decoder circuit 150, the history buffer 162 may be
updated less frequently, such as only after a predefined
number of characters have been decoded.

The FSM 160 keeps track of how many decoded
symbols have been read, and when it is time for the tail
character to be stored in the history and message buffers
162 and 170, the FSM 160 enables the SEL signal. At
the same clock cycle used to store the tail character in
the history and message buffers, the next codeword is
latched into register 154. Thus, the decoder circuit 150
can process one decoded symbol per clock cycle. Even
for medium speed desktop computers, with CPU speeds
in the range of 10 to 20 megahertz, this rate of decoding
is far faster than the rate at which data can be retrieved
from currently available hard disks (approximately one
million bytes per second). Thus, even the simple com-
pressed data decoder 150 of FIG. 4 is sufficient to en-
sure that the data decoding process has no impact on the
operating speed of the computer system in which it is
used.

DATA ENCODER WITH PARALLEL
REPRODUCTION LENGTH GENERATORS

Referring to FIG. 5, the improved data encoder 200
is implemented with two shift registers 202 and 204,
which are longer than the ones used in the simple en-
coder of FIG. 3. In the preferred embodiment, each
shift register now holds fifty-six characters, although
the mazimum reproduction length Lmax allowed for
any single codeword remains seven, As before, any
maximum reproduction length value can be used, but
seven and fifteen are typically the best values. The first
shift register 202 stores the data to be encoded, while
the prefix or history buffer data is shifted through the
second shift register 204. Also, as with the first encoder,
when the new data shift register 202 is shifted, new data
is loaded into the shift register.

20

25

30

35

40

45

50

55

60

65

10

A set of fifty-six comparators 206 compares the con-
tents of the two shift registers, producing a set of fifty-
six match values MATCHO through MATCHSS. Then,
at least conceptually, the encoder 200 has fifty repro-
duction length generators 210 labelled RLGO through
RLG49. Each reproduction length generator 210 accu-
mulates a pair of data values, comprising a maximum
reproduction length and a corresponding history buffer
pointer value, for a string of new data beginning at a
corresponding position in the new data shift register
202.

When all the history buffer data has been compared
with the new data, a multiplicity of codewords are
generated using the data pairs accumulated by the fifty
reproduction length generators 210. Note that the num-
ber of characters in each shift register 202, 204 is equal
to the number of RLGs 210 plus the maximum repro-
duction length value (e.g., 7), minus one.

The first codeword generated by the enceder 200
corresponds to the contents of the first reproduction
length generator, plus a tail character. This first code-
word represents a substring of L+ 1 characters of the
new data in register 202, where L is the reproduction
length for the best matching substring in the history
buffer data. The next codeword is generated by using
the data pair from reproduction length generator L+-2.
That is, each new codeword is generated using the
length and pointer values corresponding to the first
character position in the new data register 202 which is
not represented by the previously generated code-
words. This process continues until all the characters in
the new data register 202 are represented by code-
wards. Then a new set of data is encoded.

It may be noted that the preferred embodiment of the
improved data encoder 200 has been sized, in terms of
the amount of parallel processing performed, so as to
perform data encoding about ten times faster than the
data encoder 120 of FIG. 3. In particular, this encoder
circuit will use between 1130 and 1137 clock cycles to
produce a set of codewords representing between fifty
and fifty-seven input data characters. Thus this circuit
200 requires, on average, about 21.4 clock cycles per
character to compress a set of data, which is about ten
times faster than the circuit of FIG. 3 which required
about 206 clock cycles per encoded character. Using a
clock rate of 40 megahertz, the encoder circuit 200 can
encode about 1.87 million characters per second, which
is about what is required for keeping up with a fast hard
disk storage system.

It should be noted that the compression ratio will
vary depending on the type of data being encoded,
which will in turn affect the amount of codeword data
generated and thus the rate at which encoded data is
presented to the hard disk system for storage. Typically,
the compression ratio for text documents and software
source code files is a little better than 2.0 to 1, but the
compression ratio varies from one set of data to another.
The number of parallel “reproduction length genera-
tor"” circuits 210 used in any particular implementation
of the present invention will depend on the speed re-
quirements of the system in which the encoder will be
used, and perhaps on the “worst-case™ compression
ratio situations that one expects to encounter.

The encoder 200 of FIG. 5 will now be described in
detail with reference to FIGS. 6 through 10.

Referring to FIG. 6, there is shown a block diagram
of all the main components of the encoder 200. Going
generally from the boitom of FIG. 6 to the top, and

5,150,430

11

from left to right, we have the new data and prefix or
*old" data shift registers 202, 204, each of which holds
fifty-six characters. Then we have fifty-six comparators
206 which compare each character in the new data
register 202 with the corresponding character in the old
data register 204, The resulting match signals
MATCHO through MATCHSS are sent to 2 modified
tally circuit 220 which generates a reproduction length
value TALLYO-TALLY49 corresponding to each of
the first fifty positions in the new data register 202. In
particular, each reproduction length value TALLYx
represents the number of consecutive characters in the
old data register 204 which match corresponding char-
acters in the new data register 202 beginning at a posi-
tion x in the new data register 202, The modified tally
circuit 220 will be described below with reference to
FIGS. BA and 8B.

Next, a set of one hundred latches 222 store fifty data
pairs PTRO, MLO through PTR49, ML49. Each data
pair stores the maximum reproduction length MLx
found for a corresponding position in the new data
register 202, and a corresponding pointer value PTRx.

A set of fifty decoders 224 compares, at each clock
cycle, each current tally value TALLYx with a corre-
sponding maximum reproduction length value MLx. If
the current tally value is greater than the previously
stored maximum reproduction length value, the de-
coder 224 updates the corresponding data pair using the
new tally value and the pointer value generated by a
counter circuit 226. The decoder circuit is described in
more detail below with reference to FIG. 9.

It should be noted that the latches 222 are intercon-
nected so as to form two shift registers, one for maxi-
mum reproduction length values MLx, one for pointer
values PTRx. During the codeword phase of operation,
after all the prefix data has been processed, the data in
these two shift registers is shifted into a codeword gen-
eration circuit 230, which generates a sequence of code-
words from the accumulated data in the latches 222.
The codeword generator circuit 230 is described in
more detail below with reference to FIG. 10.

In addition, a data buffer 232 is used to store the data
that is being compressed, as well as the prefix data that
is compared with the data being encoded. A finite state
machine (FSM) 234 controls the sequence of steps per-
formed by the entire circuit 200. The FSM 234 gener-
ates a master clock signal CLK, two shift control sig-
nals SHIFT_NEW_DATA and SHIFT_OL-
D_DATA, which control when data is shifted in the
new and old data registers 202, 204, and also generates
a set of signals LD_CW1, LD_CW2 and CW_RDY
for controlling the process of generating codewords.

Referring to FIG. 7, there is shown one of the fifty-
six character comparator circunits 206. Register 240
stores one eight-bit character of data NEW DATA() in
the new data shift register 202, and register 242 stores
one eight-bit character of data OLD DATA() in the
old data shift register 204. As shown, register 240 re-
ceives input data NEW DATA(i—1) from the prior
new data register, and is shifted by the master clock
CLK when SHIFT_NEW_DATA is enabled. Regis-
ter 242 receives input data OLD DATA(i - 1) from the
prior old data register, and is shifted by the master clock
CLK when SHIFT_OLD_DATA is enabled. The
first registers 240 and 242 in the new data shift register
chain 202 and in the old data shift register chain 204
receive data from the data buffer 232.

10

—

5

20

25

10

45

50

55

60

65

12

A set of eight XOR gates 244 compares each bit of
the new data character with a corresponding bit of the
old data character. If the two characters are identical,
all eight bits will match, and the XOR gates 244 will all
output a “0". Otherwise, at least one XOR gate will
output a 1. The outputs from all the XOR gates 244
are inverted by a set of eight inverters 246, and the
resulting signals are then ANDed by AND gate 248 to
produce a match signal MATCHI, where i denotes the
position of the new data register character being pro-
cessed. MATCHIi equals “1'" if and only 1if the new and
old data characters match, and otherwise it equals 0",

Referring to FIGS. 8A and 8B, the MATCHIi signals
from the fifty-six comparison circuits 206 are used by
modified tally circuit 220 to generate fifty tally values
TALLYO to TALLY49. The tally circuit 220 used in
the preferred embodiment is herein called a “modified
tally circuit” because it differs somewhat from standard
prior art tally circuits. The tally values generated by
circuit 220 are encoded in unary format, with a maxi-
mum value of seven:

DECIMAL VALUE UNARY REPRESENTATION

0000000
0000001
0000011
0000111
0001111
oortin
0111111
1nnm

e - R SR TR S

Thus each of the TALLYi signals has seven bits,
represented as TALLY,j, where i represents the col-
umn of the modified tally circuit in which the signal is
generated, and J denotes a specific bit of the TALLYi
signal.

As shown in FIG. 8A, each cell 260 in the modified
tally circuit has an N-channel MOS transistor 262 and a
P-channel MOS transistor 264. Both transistors 262-264
are gated by one of the MATCHi signals. If MATCHI
is equal to 0", transistor 264 pulls the output of the cell,
TALLY1,j, to 0" and transistor 262 is off. If MATCHi
is equal to ““1”, transistor 264 is off and transistor 262
transfers the TALLYi+ 1,j— I signal from its source to
its drain to generate TALLY!,j. Thus, the cell 260 either
(1) replicates the signal TALLYi+ 1,j—1 at a position
one column to the right and one row up if the MATCHi
signal is equal to “1", or (2) puts out a value of zero if
the MATCHIi signal is equal to “0”. Thus the value of
TALLY3 will be 0000111.

It is easiest to explain the operation of the modified
tally circuit 220 by example. Referring to FIG. 8B, lets
assume that MATCH4=1 and that TALLY4 is equal to
0000011, which means that the reproduction length of
the new data string beginning at position 4 is equal to
two. In other words, chdracters 4 and 5 of the new and
old data strings match, but character 6 of the old data
siring does not match character 6 of the new data string.
The *0" bits of TALLY4 are from the cells at the top of
the column and the *1”" bits are from the two bottom
cells of the TALLY4 column,

Next, lets consider the value of TALLY3. If
MATCH3=0, then TALLY3 should equal O because
the reproduction length must equal zero if the first
character of the new and old data strings do not match.
As can be seen from FIG. 8B, if MATCH3=0, all the
tally bits for the TALLY3 column will be equal to 0. If

5,150,430

13
MATCH3=1, the first six bits of the tally value from
the TALLY4 column is replicated in the TALLY3
column, shifted upwards by one bit position. In addi-
tion, a "1™ bit is generated at the lowest bit position,
because that cell's input is connected to VCC, the posi-
tive voltage power supply for the circuit.

In general, given that the reproduction length output
by the r—+ I-th column of the modified tally circuit is
equal to T, and that the maximum allowed reproduction
length value is Lmax, then the reproduction length
output by the r-th column of the modified tally circuit
will be one of three values;

(1) If MATCHr=0, TALLYr=0.
(2) If MATCHr=1, and T<Lmax, then TAL-

LYr=T+1.

(3) If MATCHr=1, and T=Lmax, then TALLYr=-

Lmax.

The only remaining aspect of the tally circuit 220 to
be explained is the left most tally column, TALLY49. In
this column, the MATCHA49 value is replicated in the
lowest bit position. If MATCH49=1, then MATCH50
through MATCHSS5 are replicated in each of the other
bit positions of the TALLY49 column. Otherwise, if
MATCH49=0, all the bit positions of TALLY49 are
equal to 0. This column of the tally circuit is conceptu-
ally equivalent to the reproduction length generator
circuit used in a simple encoder, where the reproduc-
tion length is generated in unary format. However, in
this circuit 220, the first six bits of the each tally column
are also used as inputs to the next tally column.

Referring to FIG. 9, each unary format TALLYi
signal is processed by one of the fifty decoder circuits
224. Register 270 stores one seven-bit, unary format,
match length value ML(i). Register 272 stores one ten-
bit pointer value PTR(i). Each of these registers 270,
272 has a corresponding multiplexer 280, 282 which
controls what data is stored that register, as selected by
the SHIFT _NEW_DATA signal. During the process
of comparing the new data with the prefix data, SHIF-
T_NEW_DATA is disabled, in which case the input
data to the match length latch is TALLYj, and the input
data to the pointer latch is the counter value.

Seven inverters 284 coupled to the output of the
match length latch 270 generate the inverse of the
ML(i) value stored in latch 270. These inverted bits are
then ANDed with the seven bits of the TALLYi value
by seven AND gates 286, and the resulting signals are
then ORed by OR gate 288 to generated an UPDATEI
signal. If TALLYi is larger than ML(i), then at least one
of the AND gates will generate a 1" value, and thus
UPDATE: will be equal to “1", If TALLY(] is equal to
or smaller than ML(i), UPDATEI will be equal to “0".

When UPDATEI is equal to **1", the TALLY!1 value
is stored in latch 270 and the COUNTER value is stored
in latch 272 at the beginning of the next master clock
CLK cycle. Thus, a new reproduction length data and
an associated history buffer pointer value are loaded
into latches 270 and 272 whenever a longer prefix string
is found.

The purpose of the two multiplexers 280 and 282 is to
connect the fifty match length latches 270 into one shift
register and to connect the fifty pointer latches 272 into
another shift register during codeword generation. In
particular, after all the prefix data has been shifted
through the old data shift register, SHIF-
T_NEW_DATA is enabled, and the next fifty or so
clock cycles are used to generate codewords and to
shift new data into the new data shift register 202. Each

(1]

15

20

25

30

40

43

50

55

65

14
time that the characters in the new data shift register
202 are shifted, the contents of the match length latches
270 and the pointer latches 272 are also shifted by one
position. As a result, the codeword generation circuit
230 needs to access only the contents of the first match
length latch MLO and the first pointer latch PTR0.

Referring to FIG, 10, before considering the opera-
tion of the codeword generator 230, it is useful to con-
sider the sequence of clock and control signals used by
the entire encoder 200. Initially, the new data shift reg-
ister 202 is loaded with fifty six characters of data. The
last seven characters of the old data shift register 204, at
positions 49 through 55, are loaded with the beginning
of the prefix string and all the other positions of the old
data register 204 are cleared (filled with null charac-
ters). Then the 1024 characters of the prefix string are
shifted through the old data shift register 204, which
takes 1079 clock cycles, where the number of clock
cycles is equal to the length of the prefix string, plus the
length of the new data shift register, minus one. During
this time SHIFT_OLD_DATA is enabled and SHIF-
T_NEW_DATA is disabled.

Next, SHIFT_NEW_DATA is enabled. At the next
clock cycle codeword generation begins. Codeword
generation takes between fifty and fifty seven clock
cycles, depending on where the last encoded character
corresponding to the last codeword happens to be posi-
tioned. Each time that a character of encoded data is
shifted out of the new data shift register 202, a new
character is shifted in from the data buffer 232. In addi-
tion, the PTR and ML “shift registers” are shifted by
the same number of positions as the new data shift regis-
ter, with values of “0" being loaded into the PTR49 and
MLA49 registers. As a result, each successive codeword
is generated from the PTRO and MLD values.

The last codeword to be generated uses the PTR and
ML values initially stored somewhere between position
43 (for a codeword representing the eight characters
between positions 43 and 50) and position 50 (for a
codeword representing a substring of one to eight char-
acters beginning at position 50). The FSM 234 keeps
track of how many characters have been encoded dur-
ing any one encoding cycle. When the total number of
encoded characters is equal to fifty or more, codeword
generation stops, and the next data encoding cycle be-
gins.

Furthermore, during the first clock cycle of code-
word generation, the old data shift register 204 is
cleared. Prior to encoding the next set of new data, the
first six positions (positions 55 through 50) in the old
data shift register 204 are loaded with the beginning of
the updated prefix string. Depending on how the data
buffer 232 is designed, the pre-loading of the old data
shift register 204 can either be overlapped with the
shifting of the new data shift register 202, or else an
additional six clock cycles are required for this pre-
loading operation.

Referring to FIG. 10, the codeword generator circuit
230 works as follows. A standard priority encoder cir-
cuit 300 is used to convert the unary length value MLO
into binary format. The signal LD_CW1 is used to load
MLO and PTRO into a first latching buffer 302, and
LD_CW2 is used to load a tail character from the last
position in the new data shift register 202 into a Iatching
buffer 304. If MLO is equal to zero, indicating that no
matching strings were found in the prefix string, the
FSM 234 generates LD_CW1 and LD_CW?2 simulta-
neously. In this case, only the last character in the new

5,150,430

15
data shift register is used to generate a codeword, and
the new data shift register 202 is shifted by only one
position prior to generating the next codeword,

If MLO is not equal to zero, the MLO and PTRO
values from latches 270-0 and 272-0 are loaded into
buffer 302 by the LD_CW1 signal, and these values are
used to form the first two fields of a codeword. Then
the new data shift register 202 is shifted until the tail
character for the codeword is in the last position of the
shift register 202, whereupon the FSM 234 generates
LD_CW2 to load the tail character into buffer 304 and
it also generates CW_RDY to indicate that a new code-
word is ready.

Referring back to FIG. 6, as additional columns are
added to the encoder circuit so as to speed up the rate
that data is encoded, the amount of circuitry needed
increases more slowly than performance since adding
an extra column of circuitry costs very little, For in-
stance, an additional five columns could be added to the
encoder circuit 200 so as to decrease the number of
clock cycles required to encode each character to less
than 20 clock cycles per character.

It is also noted that using a 40 megahertz clock with
the encoder requires that the circuit be able to perform
the functions for each clock cycle within 25 nanosec-
onds. The number of gate delays involved is as follows:
about two gate delays for latching shifted data, three
gate delays for the comparator 206, seven gaie delays
for the tally circuit 220, and two gate delays for the
decoder circuit 224, for a longest signal path with a total
of about fourteen gate delays. Using one micron CMOS
circuitry, a 25 nanosecond clock cycle rate is guite
feasible, since gate delays for such CMOS circuitry
tends to be between 0.5 and 1.5 nanoseconds per gate.

Referring to FIG. 11, a second method of improving
the speed at which data is encoded is to use N parallel
data encoders 320-1 through 320-N. The new data regis-
ter in each encoder 320 is loaded with the same data
string, but each encoder 320 processes a different por-
tion of the prefix string.

Initially, we will assume that each encoder 320 is a
simple encoder of the type shown in FIG. 3. After each
encoder has processed its portion of the prefix string,
each outputs a codeword. Each encoder chip will in-
clude an additional ““arbitration circuit™ 322 for receiv-
ing the codeword from another encoder chip and se-
lecting the codeword with the largest reproduction
length. If the encoder chips are arranged sequentially as
in FIG. 11, the arbitration circuit in the first encoder
320-1 is not used. Each of the other arbitration circuits
selects the better of the codeword from its encoder and
the received codeword, and passes the result on to the
next arbitration circuit, with the last arbitration circuit
producing the actual codeword. For systems using
more than, say, four encoders 320, a binary tree of code-
word selector circuits 322 would be preferable so as to
avoid long codeword signal propagation delays.

To use this form of parallel processing, a data storage
coordinator circuit 324 is used to divide up the prefix
string among the N encoders, and to provide the new
data to be encoded for each encoding cycle. To avoid
edge effects (i.e,, to avoid the possibility of missing the
best matching substring in the prefix data), the portions
of the prefix string used by the encoders must overlap
by Lmax characters, where Lmax is the maximum re-
production length. Thus, if N encoders are used, the
length of the prefix string portion used by each encoder
320 will be:

5

20

45

50

55

65

16

Liprefia) 4 (N — 1)Lmax
N

length of prefix portion =
If the prefix is 1024 characters long, Lmax equals seven,
and four encoders are used, the length of each encoder's
portion of the prefix string will be 262 characters, with
the first encoder receiving only 259 prefix string char-
acters,

Using this approach to increasing the speed of data
compression encoding, hardware cost increases slightly
faster than performance. The increase is slightly more
than a factor of N, since we need a circuit which selects
the best output from one of N encoders. This approach
to parallel data processing has the advantage that it is
modular: to increase processing speed, one need only
increase the number of chips used. By using N such data
compression umnits, processing time for generating code-
words is reduced by a factor of approximately
(N—1)/N. For example, using three parallel data com-
pression units (N =3) would reduce processing time by
a factor of approximately §. Processing time is actually
reduced by a slightly smaller factor due to the need to
overlap the portions of the prefix string used by each
encoder.

In another embodiment, the individual data compres-
sion encoders 320 used in the system of FIG. 11 are the
composite encoders 200 shown in FIG. 6. This com-
bines both types of a parallel processing in one data
compression system. For instance, the circuit of FIG. 11
could be used to combine two of the composite data
encoders of FIG. 6, thereby approximately doubling the
rate at which data is encoded. In this embodiment, a
multiplicity of codewords would be generated after
each prefix string is processed. The data storage coordi-
nator 324 would need to control the process of shifting
data in the new data shift registers of the encoders dur-
ing codeword generation, and would also need to con-
trol the codeword generators in each encoder, primar-
ily because the identity of the tail character in each
codeword will depend on which encoder has produced
the largest reproduction length value. The best code-
word selector circuits 322 in this embodiment would be
used to select a largest repreduction length value, and
then the data storage coordinator 324 would cause all
the new data shift registers to shift by the same number
of positions until the tail character is reached and added
to the end of the codeword.

In yet another embodiment, it would be possible to
cascade data compression encoders of the type shown
in FIG. 6, so as to increase the effective length of the
data shift registers and the length of the comparator,
tally, decoder, PTR latch and ML laich circuits. To do
this, one must merely provide the necessary physical
connections so that the outputs of one chip’s registers
can be shifted into those of the next encoder chip. This
requires a large number of input/output pins, but it is
nevertheless possible.

One method of using the paralle] processing of FIG.
11, would be to use the normal prefix string as the com-
parison data in one encoder 320-1, and to using a special
set of comparison data, with frequently occurring pat-
terns such as a frequently used dictionary or table in a
second parallel encoder 320-2. The encoders would be
set up so as to generate non-overlapping sets of pointer
values, making it easy to determine the source of the
selected best matching substring for each codeword.

5,150,430

17
It should be noted that the data compression encoders
described above are stand-alone hardware modules
which can be inserted into a data path. On one side of
the module, original source message symbols flow into
the module. On the other side of the module, the com-
pressed codewords flow out. Other than speed maich-
ing devices, if necessary, no other control circuits, or
any other supporting devices are required. As a result,
the data compression module can be inserted easily and
inexpensively into currently existing systems.
‘While the present invention has been described with
reference to a few specific embodiments, the descrip-
tion is illustrative of the invention and is not to be con-
strued as limiting the invention. Various modifications
may occur to those skilled in the art without departing
from the true spirit and scope of the invention as defined
by the appended claims.
What is claimed is:
1. A lossless data compression circuit, comprising:
new data register means for storing a new data string
to be compressed, said new data string containing
an ordered sequence of characters stored at corre-
sponding positions in said new data register means;

shift register means for storing and shifting a set of
comparison characters to be compared with said
characters stored in said new data register means;
said shift register shifting positions of said compari-
son characters until all of said comparison charac-
ters have been shifted through said shift register
means;
comparison means, coupled to said new data register
means and said shift register means, for simulta-
neously comparing all of said characters stored in
said new data register means with corresponding
ones of said comparison characters stored in said
shift register means each time that said comparison
characters are shifted in said shift register means;

composite reproduction length means, coupled to
said comparison means, for determining simulta-
neously, for all positions in at least a contiguous
subset of positions in said new data register means,
maximum length strings within said set of compari-
son characters matching substrings of said charac-
ters stored in said new data register means begin-
ning at corresponding positions in said new data
register means, said composite reproduction length
means producing in parallel a multiplicity of data
pairs, each data pair corresponding to a different
position in said new data register means, each data
pair comprising a length value, corresponding to
said maximum length string found for a substring
beginning at a corresponding position in said new
data register means, and a pointer value denoting
where said maximum length string is located in said
set of comparison characters; and

codeword generating means, coupled to said compos-

ite reproduction length means, for generating a
sequence of codewords representing said new data
string to be compressed, each said codeword in-
cluding data corresponding to one of said data pairs
and representing a substring of said new data
string.

2. A lossless data compression circuit as in claim 1,
said composite reproduction length means including:

reproduction length register means for storing a mul-

tiplicity of said length wvalues, each said length
value corresponding to a different position in said
new data register means;

5

30

45

50

55

65

18

pointer means for storing a multiplicity of said
pointer values, each said pointer value correspond-
ing to one of said length values in said reproduction
length register means;

counter means for generating a current pointer value
denoting which comparison characters are cur-
rently stored in said shift register means;

tallying means for simultaneously generating tally
values for all positions in said at least a contiguous
subset of positions in said new data register means,
each said tally value representing how many con-
secutive comparison characters stored in said shift
register means, up to a predefined maximum value,
match said characters stored in said new data regis-
ter means beginning at a corresponding position in
said new data register means; and

decoder means for simultaneously comparing all of
said tally values with corresponding ones of said
length values stored in said reproduction length
register means, and when any of said tally values
exceeds said corresponding stored length value,
replacing said stored corresponding length value
with said tally value and replacing said correspond-
ing pointer value stored in said pointer means with
said current pointer value generated by said
counter means.

3. A lossless data compression circuit as in claim 1,

said sequence of codewords representing a sequence
of successive, non-overlapping substrings of said
new data string, said codeword generating means
including means for repeatedly selecting a position
in said new data register means following a sub-
string represented by a previous codeword gener-
ated by said codeword generating means and gen-
erating a codeword corresponding to the data pair
for said selected position in said new data register
means.

4, A lossless data compression circuit, comprising:

(1) a plurality of lossless data compression units, each
lossless data compression unit including:

(a) new data register means for storing a new data
string to be compressed, said new data string
containing an ordered seguence of characters
stored at corresponding positions in said new
data register;

(b) shift register means for storing and shifting a set
of comparison characters to be compared with
said characters stored in said new data register
means; said shift register shifting positions of said
comparison characters until all of said compari-
son characters have been shifted through said
shift register means;

(c) comparison means, coupled to said new data
register means and said shift register means, for
comparing said characters stored in said new
data register means with corresponding ones of
said comparison characters stored in said shift
register means each time that said comparison
characters are shifted in said shift register; and

(d) reproduction length means, coupled to said
comparison means, for determining a maximum
length string within said set of comparison char-
acters matching said characters stored in said
new data register means, and for generating a
data pair comprising a length value, correspond-
ing to said maximum length string, and a pointer
value denoting where said maximum length

5,150,430

19
string is located in said set of comparison charac-
ters; and

(2) codeword generating means, coupled to said re-
production length means in all of said plurality of
lossless data compression units, including means
for determining which of said length values gener-
ated by said plurality of reproduction length means
is largest, and for generating a codeword represent-
ing a portion of said new data string, said code-
word including data corresponding to the one of
said data pairs with said largest of said length val-
ues;

wherein each said new data register means stores an
identical new data string, and each said shift regis-
ter stores and shifis a different subset of a specified
comparison string, whereby when N of said lossless
data compression units are used, processing time
for generating said codewords is reduced by a
factor of approximately (N—1)/N.

5. A lossless data compression circuit as in claim 4,

each said reproduction length means in each of said
plurality of lossless data compression units com-
prising a composite reproduction length means,
coupled to said comparison means, for determining
simultaneously, for all positions in at least a contig-
uous subset of the positions in said new data regis-
ter means, maximum length strings within said set
of comparison characters matching substrings of
said characters stored in said new data register
means beginning at corresponding positions in said
new data register means, said composite reproduc-
tion length means producing in parallel a multiplic-
ity of said data pairs, each said data pair corre-
sponding to a different position in said new data
register means; and

said codeword generating means including means for
generating a sequence of codewords representing
said new data string to be compressed, said se-
quence of codewords representing a sequence of
successive, non-overlapping substrings of said new
data string, said codeword generating means in-
cluding means for repeatedly selecting a position in
said new data string following a substring repre-
sented by a previous codeword generated by said
codeword generating means, determining a largest
length value for the plurality of data pairs corre-
sponding to said selected position in said new data
string, and generating a codeword corresponding
to the one of said plurality of data pairs with said
largest length value.

6. A lossless data compression circuit as in claim 5,

20

0

35

45

20

many consecutive comparison characters stored in
said shift register means, up to a predefined maxi-
mum value, match said characters stored in said
new data register means beginning at a correspond-
ing position in said new data register means; and

decoder means for simultaneously comparing all of
said tally values with corresponding ones of said
length values stored in said reproduction length
register means, and when any of said tally values
exceeds said corresponding stored length value,
replacing said stored corresponding length value
with said tally value and replacing said correspond-
ing pointer value stored in said pointer means with
said current pointer value generated by said
counter means. _

7. A lossless data compression method, the steps of

the method comprising:

storing in a data register a new data string to be com-
pressed, said new data string containing an ordered
sequence of characters stored at corresponding
positions in said data register;

storing in a shift register a set of comparison charac-
ters to be compared with said characters stored in
said data register; successively shifting positions of
said comparison characters stored in said shift reg-
ister until all of said comparison characters have
been shifted through said shift register;

simultaneously comparing all of said characters
stored in said data register with corresponding ones
of said comparison characters stored in said shift
register each time that said comparison characters
are shifted in said shift register;

determining, simultaneously for all positions in at
least a contiguous subset of the positions in said
data register, maximum length strings within said
set of comparison characters matching substrings
of said characters stored in said data register begin-
ning at corresponding positions in said data regis-
ter, and producing in parallel a multiplicity of data
pairs, each data pair corresponding to a different
position in said data register, each data pair com-
prising a length value, corresponding to said maxi-
mum length string found for a substring beginning
at a corresponding position in said data register,
and a pointer value denoting where said maximum
length string is located in said set of comparison
characters; and

generating a sequence of codewords representing
said new data string to be compressed, each said
codeword including data corresponding to one of
said data pairs and representing a substring of said

said composite reproduction length means in each loss-
less data compression unit including:
reproduction length register means for storing a mul-

new data string.
8. The lossless data compression method of claim 7,
said determining step including the steps of:

tiplicity of said length values, each said length
value corresponding to a different position in said
new data register means;

pointer means for storing a multiplicity of said
pointer values, each said pointer value correspond-
ing to one of said length values in said reproduction
length register means;

counter means for generating a current pointer value
denoting which comparison characters are cur-
rently stored in said shift register means;

tallying means for simultaneously generating tally
values for all positions in said at least a contiguous
subset of the positions in said new data register
means, each said tally value representing how

55

storing a multiplicity of said length values, each
length value corresponding to a different position
in said data register;

storing a multiplicity of said pointer values, each
pointer value corresponding to one of said stored
length values;

generating a current pointer value denoting which
comparison characters are currently stored in said
shift register;

each time said comparison characters are shifted in
said shift register, generating simultaneously cur-
rent tally values for all positions in said at least a
contiguous subset of the positions in said data regis-
ter, each said current tally value representing how

5,150,430

21

many consecutive comparison characters stored in
said shift register, up to a predefined maximum
value, match said characters stored in said data
register beginning at a corresponding position in
said data register; and

each time said comparison characters are shifted in
said shift register, simultaneously comparing all of
said current tally values with corresponding ones
of said stored length values, and when any of said
current tally values exceeds said corresponding
stored length value, replacing said corresponding
stored length value with said current tally value
and replacing the corresponding stored pointer

15

20

25

30

35

45

35

65

22

value with a value corresponding to said current
pointer value.

9. The lossless data compression method of claim 7,

said sequence of codewords representing a sequence
of successive, non-overlapping substrings of said
new data string; and

said codeword generating step including repeatedly
selecting a position in said data register following a
substring represented by a previous codeword gen-
erated by said codeword generating step and gen-
erating a codeword corresponding to the data pair

for said selected position in said data register.
* ® % * =

