United States Patent 9

Storer

00 00O

US005379036A
1] Patent Number: 5,379,036
[451 Date of Patent: Jan. 3, 1995

[54] METHOD AND APPARATUS FOR DATA
COMPRESSION
[76] Inventor: James A. Storer, 89 8. Great Rd.,
Lincoln, Mass. 01773
[21] Appl. No.: 861,572
[22] Filed: Apr. 1, 1992
[51] Imt. CLS HO3M 7/30
S22 VUBYEL. it e i i 341/51
[58] Field of Search 341/51
[56] References Cited
U.S. PATENT DOCUMENTS
4,558,302 12/1985 Welch ....ccccvrcncunnrarmsmmraseneneses 341/51
4,814,746 3/1989 Miller et al. ...ccoovvicmenrrroserrens 341/95
4,847,619 7/1989 Katoetal, ., 341/51
4,876,541 10/1989 Storer .. .. 341/51
4,881,075 11/1989 WEDE ..cccccmmmrmnersensssassrinimnns 341/87
5,175,543 12/1992 Lantz .......... .. 341/51

OTHER PUBLICATIONS

Gonzalez-Smith, et al., “Parallel Algorithms for Data
Compression”; Journal of the Association for Comput-
ing Machinery; vol. 32 No. 2, Apr. 1985 pp. 344-373.

Primary Examiner—Howard L. Williams

[57] ABSTRACT

A data compression system utilizes multipie en-
coding/decoding processing units arranged in a mas-
sively parallel systolic pipe array for compressing a
stream of input characters received at an input end of
the pipe. The systolic pipe executes data compression
by textual substitution, converting the uncompressed
stream of input characters into a compressed set of
pointers representative of the input. The processors
store a dictionary of strings of previously-read input
characters in association with corresponding pointers.
The processors match portions of the input stream with
the stored strings, and transmit the corresponding point-
ers in place of the strings. In order to execute decoding
or decompression of the stream of pointers, the proces-
sors maintain a dictionary identical to that generated
during encoding. The processors match received point-
ers with stored strings of data and transmit the corre-
sponding data strings in place of the pointers. Novel
methods for matching, update, and deletion in a mas-
sively parallel systolic pipe structure enhance process-
ing speed.

23 Claims, 6 Drawing Sheets

10

1-BIT REGISTERS
SFULLB
®FULL A

@MARK A
®MARK B

RESET——

YDD

FINITESTATE | l— RESET

AND COMPARATOR | | AR
237

— LEADER

Oracle 1119



U.S. Patent Jan, 3, 1995 Sheet 1 of 6 5,379,036

(101)\

INITIALIZE THE LOCAL DICTIONARY D TO HAVE ONE ENTRY
FOR EACH CHARACTER OF THE INPUT ALPHABET

U0~ .

REPEAT FOREVER:

A4
(GET THE CURRENT MATCH STRING S:)

USE A MATCH OPERATION MX TO READ S
FROM THE INPUT.

Y

TRANSMIT (LOGZ [Di) BITS FOR THE INDEX
OF S.

) l

(UPDATE D)

ADD EACH OF THE STRINGS SPECIFIED
BY AN UPDATE OPERATION UX TO D.

Y

(IF D IS FULL, THEN FIRST EMPLOY A
|PELETION OPERATION DX TO MAKE SPACE),

FIG. 1



U.S. Patent

(201)\‘

Jan. 3, 1995 Sheet 2 of 6

5,379,036

BY PERFORMING STEP 1 OF THE ENCODING OPERATION.

INITIALIZE THE LOCAL DICTIONARY D

(202)~

|

(A)

(B)

REPEAT FOREVER:

(GET THE CURRENT MATCH STRING S:)

RECEIVE (LOGZ [D}) BITS FOR THE INDEX
OF S.

Y

RETREIVE S FROM D AND OUTPUT THE
CHARACTERS OF S.

!

(UPDATE D:)

PERFORM STEP 2b OF THE ENCODING
ALGORITHM.

FIG. 2



U.S. Patent Jan, 3, 1995 Sheet 3 of 6 5,379,036

—> > > —> > |
1017 1027 1037 1047 105 1067
Tl(— e Je  fe
109 \10.8 107
—> > | —
e [ e & |
* I /—10.N
> > 2 > P P
FIG. 3



U.S. Patent Jan, 3, 1995 Sheet 4 of 6 5,379,036

/-20
VD VDD
RESET =3 1-BIT REGISTERS FINITE STATE RESET
; A mesaenon | [
MARK ®RESET ®FULLB AND CO TOR MARK
eMODE @FULLA ot =~
LEADER<—| |®FLUSH @MARKA LEADER
=R ®LEADER @MARKB 24 i
@ STOP
22
f'26 /-28
12-B i
¢ 30 32
NIL =—>> ' i | =1
STORE A STORE B
GND GND

FIG. 4



U.S. Patent Jan. 3, 1995 Sheet 5 of 6 5,379,036

f-IO

PROCESSOR ARRAY

1 1 T I T
NIL MARK STOP
l RESET l LEADER
. ! £
CONTROL:
12 BITSSSWITCH CONTROLLER

>STATUS

7 1

NIL T MARK1 STOP
l REjET J LEij 1/10

PROCESSOR ARRAY

FIG. 5



U.S. Patent Jan. 3, 1995 Sheet 6 of 6 5,379,036

INDEXING SCHEME

* This is one possible indexing scheme. The indentations reflect the
symmetry of the numbering sequence in the upper four bits.

chip@1[801...87e] --> chip@2[881...8fe] -->
chip@3[901...97e] --> chip@4[981...9fe] -->
chip@S[a@l...a7e] --> chip@6[a8l...afe] -->
chip@7[b0@1l...b7e] --> chip@8[b81...bfe] -—>
chip@9[c01...c7e] --> chipl@[c8l...cfe] -->
chipli[dei...d7e] --> chip12[d8l...dfe] -->
chipl3[e@l...e7e] --> chipl4[e8l...efe] -->
chiplS[f01...f7e] --> chipl6[f81...ffe] -->
chip17[101...17e] --> chip18[181...1fe] -->
chip19[201...27e] --> chip20[281...2fe] -->
chip21[301...37e] --> chip22[381...3fe] -->
chip23[401...47e] --> chip24[481...4fe] -->
chip25[501...57e] --> chip26[581...5fe] -->
chip27[601...67e] --> chip28[681...6fe] -->
chip29[701...77e] --> chip3@[781...7fe]

* During encode chips 15 and 16 need f(hex) as their upper four bits; but
during decode they need O(hex) as their upper four bits. This is to be
handled by the external control logic.

FIG. 6



3,379,036

1

METHOD AND APPARATUS FOR DATA
COMPRESSION

BACKGROUND OF THE INVENTION

This invention relates generally to systems for digital
data processing, and, more particularly, relates to
highly parallel methods and apparatus for dynamic,
high speed, on-line compression and decompression of
digital data,

Data compression methods, most of which exploit the
redundancy that is characteristic of data streams, are
becoming an essential element of many high speed data
communications and storage systems. In communica-
tions systems, a transmitter can compress data before
transmitting it, and a receiver can decompress the data
after receiving it, thus increasing the effective data rate
of the communications channel. In storage applications,
data can be compressed before storage and decom-
pressed after retrieval, thereby increasing the effective
capacity of the storage device.

Particular applications of data compression include
magnetic and optical disk interfaces, satellite communi-
cations, computer network communications, intercon-
nections between computers and attached devices, tape
drive interfaces, and write-once media, where storage
space reduction is critical.

Compression of data streams can be lossiess or lossy.
Lossless data compression transforms a body of data
into a smaller body of data from which it is possible to
exactly and uniquely recover the original data. Lossy
data compression transforms a body of data into a
smaller one from which an acceptable approximation of
the original—as defined by a selected fidelity criter-
ion—can be constructed.

Lossless compression is appropriate for applications
in which it is unacceptable to lose even a single bit of
information. These include transmission or storage of
textual data, such as printed human language, program-
ming language source code or object code, database
information, numerical data, and electronic mail, Loss-
less compression is also used for devices such as disk
controllers that must provide exact preservation and
retrieval of uncorrupted data.

Lossy compression is useful in specialized applica-
tions such as the transmission and storage of digitally
sampled analog data, including speech, music, images,
and video. Lossy compression ratios are typically much
higher than those attainable by purely lossless compres-
sion, depending upon on the nature of the data and the
degree of fidelity required. For example, digitized
speech that has been sampled 8,000 times per second,
with 8 bits per sample, typically compresses by less than
a factor of 2 with any lossless algorithm. However, by
first quantizing each sample, which preserves accept-
able quality for many applications, compression ratios
exceeding 20 to 1 can be achieved. In contrast, typical
lossless compression ratios are 3 to 1 for English text, 5
to 1 for programming language source code, and 10 to
I for spreadsheets or other easily compressible data.
The difference is even greater for highly compressible
sources such as video. In such cases, quantization and
dithering techniques may be applied in combination
with otherwise lossless compression to achieve high
ratios of lossy compression.

Among the most powerful approaches to lossless data
compression are textual substitution methods, in which
frequently-appearing data strings are replaced by

5

10

20

35

40

45

S0

55

60

65

2

shorter indexes or pointers stored in correspondence
with the data strings in a dictionary. Typically, an en-
coder module and a decoder module maintain identical
copies of a dictionary containing data strings that have
appeared in the input stream. The encoder finds
matches between portions of the input stream and the
previously-encountered strings stored in the dictionary.
The encoder then transmits, in place of the matched
string, the dictionary index or pointer corresponding to
the string.

The encoder can also update the dictionary with an
entry based on the current match and the current con-
tents of the dictionary. If insufficient space is available
in the dictionary, space is created by deleting strings
from the dictionary.

The decoder, operating in a converse manner, re-
ceives at its input a set of indexes, retrieves each corre-
sponding dictionary entry as a ‘“‘current match”, and
updates its dictionary. Because the encoder and decoder
work in a “lock-step” fashion to maintain identical dic-
tionaries, no additional communication is necessary
between the encoder and decoder.

Thus, the input to the encoder of an on-line textual
substitution data compressor is a stream of bytes or
characters, and the output is a sequence of pointers.
Conversely, the input to the decoder is a stream of
pointers and the output is a stream of bytes or charac-
ters.

A common example of a textual substitution method
is the publicly available COMPRESS command of the
UNIX system, which implements the method devel-
oped by Lempel and Ziv. See J. Ziv, A. Lempel, “A
Universal Algorithm for Sequential Data Compres-
sion,” IEEE Transactions on Information Theory, Vol.
IT-23, No. 5, pp. 337-343, 1977; and J. Ziv, A. Lempel,
“Compression of Individual Sequences Via Variable
Rate Coding,” IEEE Transactions on Information The-
ory, Vol. IT-24, No. 5, pp. 530-536, 1978.

Textual substitution methods are generally superior
to conventional methods such as Huffman coding. For
example, the COMPRESS command of the UNIX sys-
tem easily out-performs the COMPACT command of
UNIX, which is based on Huffman coding.

Further examples of data compression methods and
apparatus are disclosed in the following:

U.S. Pat. No. 4,876,541.

U.S. Pat. No. 4,814,746.

S. Henriques, N. Ranganathan, “A Parallel Architec-
ture for Data Compression,” Proceedings of the IEEE
Symposium on Parallel and Distributed Processing, pp.
260-266, December 1990.

R. Zito-Wolf, “A Broadcast/Reduce Architecture
for High-Speed Data Compression,” Proceedings of the
IEEE Symposium on Parallel and Distributed Program-
ing, pp. 174-181, December 1990.

S. Bunton, G. Borriello, “Practical Dictionary Man-
agement for Hardware Data Compression,” Apr. 2,
1990.

R. Zito-Wolf, “A Systolic Architecture for Sliding-
Window Data Compression,” Proceeding of the IEEE
Workshop on VLSI Signal Processing, pp. 339-351, 1990.

C. Thomborson, B. Wei, “Systolic Implementations
of a2 Move-to-Front Text Compressor,” Journal of the
Association for Computing Machinery, pp. 282-290, 1989.

J. Storer, Data Compression, Computer Science Press,
pp. 163-166, 1988.



5,379,036

3

J. 8torer, “Textual Substitution Techniques for Data
Compression,” Combinatorial Algorithms on Words,
Springer-Verlag (Apostolico and Galil, ed.), pp.
111-130, 198s.

V. Miller, M. Wegman, “Variations on a Theme by
Ziv and Lempel,” Combinatorial Algorithms on Words,
Springer-Verlag (Apostolico and Galil, ed.), pp.
131-140, 1985.

M. Gonzalez Smith, J. Storer, “Paralle] Algorithms
for Data Compression,” Journal of the Association for
Computing Machinery, Vol. 32, No. 2, pp. 344-373,
April 1985.

U.S. Pat. No. 4,876,541 discloses a data compression
system including an encoder for compressing an input
stream and a decoder for decompressing the com-
pressed data. The encoder and decoder maintain dictio-
naries for storing strings of frequently appearing char-
acters. Each string is stored in association with a corre-
sponding pointer. The encoder matches portions of the
input stream with strings stored in the encoder dictio-
nary, and transmits the corresponding pointers in place
of the strings, thereby providing data compression. The
decoder decompresses the compressed data in 2 con-
verse manner. The system utilizes selected matching,
dictionary update, and deletion methods to maintain
processing efficiency,

U.S. Pat. No. 4,814,746 discloses a data compression
method including the steps of establishing a dictionary
of strings of frequently appearing characters, determin-
ing a longest siring of the input stream that matches a
string in the dictionary, transmitting the pointer associ-
ated with that string in place of the string, and adding a
new string to the dictionary. The new string is a concat-
enation or linking of a previous matched string and the
current matched string. The method also includes the
step of deleting a least recently used string from the
dictionary if the dictionary is full.

Henriques et al. discloses a systolic array of proces-
sors for executing sliding window data compression in
accordance with the Ziv and Lempel method. Data
compression is divided into parsing and coding. During
parsing, the input string of symbols is split into sub-
strings. During coding, each substring is sequentially
coded into a fixed length code.

Zito-Wolf (“A Broadcast/Reduce Architecture for
High-Speed Data Compression’) discusses a data com-
pression system utilizing a sliding window dictionary
and a combination of a systolic array and pipelined trees
for broadcast of input characters and reduction of re-
sults. In this system, for every character position of the
input stream, the processor computes a pair (length,
offset) identifying the longest matched string ending at
that character.

Bunton et al. discusses data compression methods
utilizing a dictionary tagging technique for deleting
selected entries from the data compression dictionary.
The TAG dictionary management scheme disclosed
therein employs a structure known as a trie data struc-
ture with tagged nodes.

R. Zito-Wolf (“A Systolic Architecture for Sliding-
Window Data Compression’™) discusses a systolic pipe
implementation of textual substitution data compression
utilizing a sliding window. The systolic-array architec-
ture codes substrings of the input by reference to identi-
cal sequences occurring in a bounded window of pre-
ceding characters of the input, wherein the contents of
the window form a dictionary of referenceable strings.

10

15

20

25

30

35

45

50

55

65

4

Thomborson et al. discloses systolic implementations
of data compression utilizing move-to-front encoding.
A move-to-front encoder finds the current ordinal posi-
tion of a symbol in the input stream, transmits that ordi-
mal position, and moves the symbol to the front of the
list. A characteristic of this encoder is that more-fre-
quently occurring input symbols will be at the front of
the list.

Storer (1988) discusses parallel processing implemen-
tations utilizing the dynamic dictionary model of data
compression. An ID heuristic is implemented for updat-
ing the dictionary, and a SWAP heuristic is executed
for deleting entries from the dictionary to create space
for new entries. The SWAP heuristic is implemented by
doubling the storage elements and adding a controller
to each end of the pipe, for switching input/output lines
appropriately as the dictionaries are switched. A sys-
tolic pipe implementation utilizes a “bottom up™ match-
ing technique. In particular, as a stream of characters or
pointers flows through the systolic pipe, longer
matched strings are constructed from pairs of smaller
matched strings. Each processor supports 2a FLAG bit
that can be set during data compression to designate a
“learning” processor in the pipe. The learning proces-
sor is the first processor along the pipe that contains a
dictionary entry.

Storer (1985) discusses off-line and on-line data com-
pression methods utilizing textual substitution in which
pointers are transmitted in place of character strings.
An on-line implementation described therein utilizes an
encoder and decoder, each having a fixed amount of
local memory forming a local dictionary. Another im-
plementation utilizes a systolic array of processing ele-
ments utilizing a sliding dictionary to match strings in
the input stream. The sliding dictionary stores the last N
characters processed in the systolic pipeline, one char-
acter per processing element. The dictionary is updated
by sliding old characters to the left in order to bring in
new characters.

Miller et al. (1985) discusses enhancements to the data
compression methods of Ziv and Lempel, including a
dictionary replacement strategy that enables the use of
a fixed size dictionary, methods for using a larger class
of strings that can be added to the dictionary, and tech-
nigues that avoid uncompressed output.

Gonzalez-Smith et al. discloses systolic arrays for
parallel implementation of data compression by textual
substitution. The systems described therein implement a
sliding dictionary method, in which characters being
read in are compared with each of the elements of a
dictionary that spans the N characters preceding the
current character.

These publications accordingly disclose various sys-
tems for data compression. However, one deficiency
shared by conventional data compression methods and
systems, such as those described above, is the tradeoff
between the benefits of data compression and the com-
putational costs of the encoding and subsequent decod-
ing. There exists a need for data compression systems
that provide high compression ratios and high speed
operation, without necessitating complex encoding and
decoding modules.

It is thus an object of the invention to provide lossless
data compression systems utilizing massively parallel
architectures to compress and decompress data streams
at high rates, and with high compression ratios.



5,379,036

5

It is a further object of the invention to provide such
methods and apparatus that can be embodied in rela-
tively simple, low-cost digital hardware.

A further object of the invention is to provide data
compression methods and apparatus that dynamically
adapt to changing data streams.

Other general and specific objects of the invention
will in part be obvious and will in part appear hereinaf-
ter.

SUMMARY OF THE INVENTION

The foregoing objects are attained by the invention,
one aspect of which provides a data compression sys-
tem utilizing multiple encoding/decoding processing
units arranged in a systolic pipe array for compressing a
stream of input data received at an input end of the pipe.

The systolic pipe executes data compression by tex-
tual substitution, converting the uncompressed stream
of input data into a compressed set of pointers represen-

5

10

15

tative of the input. The processors store a dictionary of 20

previously-read strings of input data in association with
corresponding pointers- The processors match portions
of the input stream with the stored strings, and transmit
the corresponding pointers in place of the strings.

In order to execute decoding or decompression of the
stream of pointers. the processors maintain a decoding
dictionary identical to that generated during encoding.
The processors match the pointers with stored strings of
data, and transmit the corresponding data strings in
place of the pointers.

A further aspect of the invention utilizes selected
matching, update, and deletion methods to increase
processing efficiency. The matching methods can in-
clude a modified “greedy” heuristic; the updating fea-
ture can include an implementation of a modified “iden-
tity” (“TD"™) heuristic; and the deletion methods include
a “swap” henristic.

One practice of the invention utilizes 2 “bottom up”
approach to finding the longest possible match between
the input stream and a stored string, in which succes-
sively longer match strings are constructed from
shorter matches.

The invention will next be described in connection
with certain illustrated embodiments; however, it will
be clear to those skilled in the art that various modifica-
tions, additions and subtractions can be made without
departing from the spirit or scope of the claims.

DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the nature and objects
of the invention, reference should be made to the fol-
lowing detailed description and the accompanying
drawings, in which:

FIG. 1 is a flow chart of the overall data compres-
sion/encoding method of the invention;

FIG. 2 is a flow chart of the overall data decompres-
sion/decoding method of the invention;

FIG. 3 is a schematic diagram of a systolic pipe for
data compression in accord with the invention;

FIG. 4 is a schematic diagram of a processor in the
systolic pipe of FIG. 3;

FIG. 5 is a schematic diagram of a complete data
compression system constructed in accordance with the
invention, including two processor arrays and control-
ler logic for executing 2 SWAP operation; and

FIG. 6 is a schematic diagram of an indexing se-
quence utilized in one practice of the invention,

25

30

40

50

55

65

6

DESCRIPTION OF ILLUSTRATED
EMBODIMENTS

Overview: FIGS. 1-3 depict the overall structure and
function of a data compression system constructed in
accord with the invention. In particular, FIGS. 1 and 2
are flow charts of encoding and decoding operations
utilizing on-line dynamic textual substitution. The en-
coding operation depicted in FIG. 1 reads a stream of
characters and writes a compressed stream of corre-
sponding bits, while the decoding operation depicted in
FIG. 2 receives the compressed stream of bits and gen-
erates a stream of corresponding characters.

FIG. 3 shows the systomic pipe structure of a data
compression system constructed in accord with the
invention, for executing the method steps depicted in
FIGS. 1 and 2. A systolic pipe is a linear array of pro-
cessors in which each processor communicates only
with left and right adjacent processors. As indicated in
FIGS. 1-3, the invention provides a massively parallel,
systolic pipe multiprocessor system that compresses
data by means of textual substitution.

Paralle] implementations of dynamic textual substitu-
tion were previously thought to require data broadcast
or other complex global communication. The invention,
however, exploits the massively parallel nature of the
systolic pipe to execute dynamic textual substitution at
high speed, without complex interprocessor connec-
tions.

Encoding/Decoding: These advantages are provided
by implementation of the steps depicted in FIGS. 1 and
2. As indicated therein, the encoder and decoder each
have a fixed, finite quantity of local memory forming a
local dictionary D. The two local dictionaries are ini-
tialized at a time TO to be empty. During encoding and
decoding operations, the dictionaries change dynami-
cally, and are maintained by a novel variant of an iden-
tity (“ID™) update technique, a SWAP deletion tech-
nique, and a “bottom up” parallel version of the
“greedy” match technique. These methods are dis-
cussed in detail hereinafter.

The illustrated methods and apparatus constitute a
real-time, on-line data compression system. In an op-line
system, neither the sender nor the receiver can “see™ all
of the data at once. Data are constantly passed from the
sender through the encoder, then through the decoder,
and on to the receiver. The encoding and decoding
operations shown in FIGS. 1 and 2 satisfy the require-
ments of the following definition: an on-line compres-
sion/decompression method is real-time if there exists a
constant k (which is independent of the data being pro-
cessed or the size of the dictionary) such that for every
k units of time, exactly one new character is read by the
encoder and exactly one character is written by the
decoder.

The only exception to this rule is the allowance of a
small “lag” between the encoder and decoder. Thus,
there exists another constant L (that is independent of
the data being processed) such that (i) during the first L
units of time the decoder produces no characters, and
(ii) given an input of finite length, L time units may
elapse between the time that the encoder has finished
reading characters, and the time that the decoder is
finished transmitting characters.

Further explanation of the invention is simplified by
assuming that the input date stream is a sequence of 8-bit
characters. The set of all possible characters, ie., the
integers 0 through 255, is referred to herein as the input



5,379,036

7

alphabet S. In addition, data handling in compressed
form is assumed to be noiseless, such that no bits are
added, lost, or changed. While this assumption is made
for convenience, those skilled in the art will recognize
that known error detection and correction techniques
can be utilized to ensure that no bits are corrupted or
lost.

The input data stream is then encoded by executing
the following steps, as depicted in FIG. 1:

(101) Initialize the local dictionary D to have one
entry for each character of the input alphabet. (102)
repeat forever:

(a) (Get the current match string Use a match opera-
tion MX to read s from the input. Transmit [logz|D|]
bits for the index of s.

(b) (Update D:) Add each of the strings specified by
an update operate UX to D (if D is full, then first em-
ploy a deletion operation DX to make space).

The compressed stream can then be decoded by exe-
cuting the following steps, as depicted in FIG. 2:
(201) Initialize the local dictionary D by performing

Step 1 of the encoding operation.

(202) repeat forever:

(a) (Get the current match string s:) Receive
[logz2| D[] bits for the index of s. Retrieve s from D and
output the characters of s.

(b) (Update D:) Perform step 25 of the encoding
algorithm.

The encoding and decoding operations of FIGS. 1
and 2 are executed in lock-step to maintain identical
copies of the constantly changing dictionary D. The
encoder repeatedly finds a match between the incoming
characters of the input stream and the dictionary, de-
letes these characters from the input stream, transmits
the index of the corresponding dictionary entry, and
updates the dictionary. The dictionary update opera-
tion, described hereinafter, generates an update string
that is a function of the current contents of the dictio-
nary and the most recent match. If insufficient space is
available in the dictionary for updating, a deletion oper-
ation must be performed, as discussed in below.

Similarly, the decoder repeatedly receives an index,
retrieves the corresponding dictionary entry as the
“current match”, and then executes the same operation
as the encoder to update its dictionary.

In accordance with the invention, the number of
entries in the dictionary D can be varied. The term
Dnax is used herein to denote the maximum number of
entries that the dictionary D may contain. A typical
value is Dpae=4,096. Experimental simulations indi-
cate that this value permits the system to achieve most
of the compression attainable by the underlying en-
coding/decoding method, while providing a reasonable
limit on the number of entries in the dictionary. In one
practice of the invention, the local dictionary D utilizes
a data structure in which each dictionary entry occupies
a constant amount of data space, independent of the
actual length of the corresponding string.

MX UX, DX: In executing the steps depicted in
FIGS. 1 and 2, the invention performs the following
operations:

The match operation, MX: This operation removes
from the input stream a string “s” that is contained
within the dictionary D. Since the characters of S are
implicitly in D and can never be deleted, there is always
at least one such s.

The update operation, UX: This operation that takes
the local dictionary D and returns a set of strings that

15

20

25

30

35

40

45

50

55

60

65

8
should be added to the dictionary if space can be found
for them,

The deletion operation DX: This operation takes the
local dictionary D and returns a string of D that may be
deleted.

In accordance with the invention, the following
methods are utilized for the matching, updating, and
deleting tasks:

The match operation MX provides an approximate
determination of the longest possible match string, uti-
lizing a modified “greedy™ match heuristic (which takes
the longest possible match between the input stream and
a string in D) in conjunction with a “bottom up” tech-
nique, in which longer match strings are constructed
from shorter matches.

The update operation UX employs a modified ver-
sion of an identity (ID) technique. A typical ID opera-
tion adds the previous match concatenated with the
current match. In conventional data compression sys-
tems, the ID technique required complex data struc-
tures that were characterized by undesirable worst-case
properties. However, by employing a modified ID tech-
nique in conjunction with the massively parallel archi-
tecture depicted in FIG. 3, the invention avoids the
need for complex data structures. The modified TD
method is described hereinafter.

In one practice of the invention, the deletion opera-
tion DX employs a SWAP technique that untilizes pri-
mary and auxiliary dictionaries. When the primary dic-
tionary first fills to capacity, an auxiliary dictionary is
started, but compression based on the primary dictio-
nary is continued. From this point on, each time the
auxiliary dictionary becomes fuil, the roles of the pri-
mary and auxiliary dictionaries are reversed, and the
auxiliary dictionary is reset to be empty. A structure for
providing this function is depicted in FIG. 5, using two
identical copies of the systolic pipe architecture (10,
10'), in conjunction with conventional control logic
elements (34, 36, 38) for switching the roles of the pri-
mary and auxiliary dictionaries.

Those skilled in the art will appreciate that the inven-
tion can be implemented using other DX methods. Al-
ternatives for DX include the known FREEZE
method, in which the dictionary remains unchanged
after it fills to capacity, and the conventional LRU
(least recently used) method, in which the processors
delete the least recently matched dictionary string. The
FREEZE heuristic, however, can be unstable if the
data characteristics change after the dictionary fills.
Moreover, the SWAP method described above in con-
nection with FIG. 5 is better adapted for paralle] imple-
mentations than is an LRU technique.

Systolic Pipe: As indicated in FIG. 3, a preferred
embodiment of the invention executes the above-
described method steps using a systolic pipe 10. The
pipe 1 includes a linear array of processors 10.1, 10.2,
103, . . . , 10.N, each connected only to left and right
adjacent processors. The “snake” arrangement depicted
in FIG. 3 can implement textual substitution methods at
much higher data rates than are achievable in serial
structures,

A simple example of a systolic pipe is an automobile
assembly line, which may produce a new automobile
every twenty minuotes even though each car is in the
assembly line for a day. Although each station in the
automobile assembly line performs a different task, the
stations are at least conceptually identical, if we view
them all as taking as input a partially built car, perform-



5,379,036

9
ing an elementary operation (such as welding), and then
transmitting a partially completed car to the next sta-
tion.

From the standpoint of VLSI fabrication and opera-
tion, a systolic pipe has a number of desirable proper-
ties, For example, all processors can be identical, and
the length of connections between adjacent processors
can be bounded by a constant. The systolic pipe struc-
ture can be set out in a linear array such that power and
ground pathways can be routed without crossing wires.
Additionally, the layout strategy can be independent of
the number of chips used. A larger pipe can be obtained
by placing as many processors as possible on a chip and,
using the same layout strategy, placing as many chips as
possible on a board.

Processors: The processors (10.1, 10.2, 10.3, . . . ,
10.N) indicated in FIG. 3 can be, in principle, any com-
putational device, including a main-frame computer.
However, as depicted in FIG. 4, one practice of the
invention utilizes processors that are extremely simple,
consisting of registers 22, 24, 26, 28, 30, 32, and a com-
parator and finite-state logic module 23. The processor
20 depicted in FIG. 4 includes several one-bit registers
22, referred to as RESET, MODE, FLUSH,
LEADER, ACTIVE, STOP, FULL_B, FULL_A,
MAREK_B, and DUMMY. The LEADER BIT, STOP
BIT, and MARK BITS are discussed in detail below.
The processor also includes four twelve-bit registers 26,
28, 30, 32 referred to as BUF_A, BUF_B, STORE_A
and STORE__B, respectively. The registers 22, 24, 26,
28, 30, 32, and the comparator and finite-state logic 23
are conventional in design, and are constructed in ac-
cordance with standard engineering practice.

Systolic Pipe Encoding: The encoding operations of
the systolic pipe will now be discussed with reference to
FIGS. 3 and 4. As indicated in FIG. 3, the pipe 10
contains a plurality of processors 10.1, 10.2, 10.3, . . .,
10.N. During encoding, data passes through the pipe
from left to right, entering at the leftmost processor 10.1
and exiting at the rightmost processor 10.N.

The pipe stores a representation of the dictionary in
which each dictionary entry is represented by a pair of
multi-bit digital pointer values that point to two other
entries, or to single characters. In one practice of the
invention, all pointers are represented by the same num-
ber of bits; the bits for each input character are “pad-
ded” to the left with zeros to form the corresponding
pointer and sent into the left end of the pipe. In a VLSI
embodiment of the invention discussed hereinafter,
each input character of & bits is padded to the left with
4 zeros to form a 12 bit pointer.

Referring to FIG. 4, each processor in the pipe is
capable of holding a dictionary entry—i.e., a pair of
pointers stored in the processor’s 12-bit registers—and
each processor has an associated index stored in index
register 24. The range of index values, and the number
of processors in the pipe, are a function of S (the input
alphabet) and Dpex (the maximum number of entries
that the dictionary D may contain). No processors are
provided for indices O through |S|- 1, because the
characters of the input alphabet S are always implicitly
in the dictionary. Additionally, there is no processor
numbered Dyyae - 1. This value is instead used for the
NILPOINTER discussed below. Thus, the processors
have indexes |S| through Dygx - 2, from left to right
(corresponding to processor elements 10.1, 10.2, 10.3, .
.-, 10.N in FIG. 3), and the total number of processors
in the pipe is equal to Dmax - |S]- 1. The processors are

15

20

25

30

35

40

45

50

55

60

65

10
numbered sa that if i <j, then processor i is to the left of
processor j and occurs earlier in the pipe than processor

J-
Asindicated in FIG. 4, a one-bit LEADER register is

provided in register module 22 of each processor in the
pipe. The LEADER BIT is initially ONE for the left-
most processor and ZERO for all others. It is always
the case that at most one processor is the LEADER
PROCESSOR, that the processors to its left contain
dictionary entries, and that processors to its right are
empty.

As the data stream passes through the processors to
the left of the LEADER PROCESSOR, it is encoded.
In particular, whenever a pair of pointers enter a pro-
cessor and matches the pair of pointers stored in the
storage registers of that processor (see FIG. 4), that pair
of pointers is removed from the data stream and re-
placed by a single pointer—the index of that processor.
Specifically, upon detection of a match, the index stored
at index register 34 is pushed down into the BufB regis-
ter 28. Data passes unchanged through the processors to
the right of the LEADER PROCESSOR. When a pair
of pointers enters the LEADER PROCESSOR, they
represent adjacent substrings of the original data re-
ferred to as the “previous” -match and the “current”
match. The LEADER PROCESSOR can simply adopt
this pair of pointers as its entry, set its LEADER BIT to
ZERO, and send a signal to the processor to its right to
set its LEADER BIT to ONE.

In contrast to methods utilized in serial data process-
ing, this is referred to as a “bottom up” approach to
finding a maximal match, because longer matches are
built from smaller matches.

The new LEADER PROCESSOR must not adopt
the same pair of pointers that was just adopted by the
processor to its left. Accordingly, when a processor
first becomes the LEADER PROCESSOR, it must
allow one pointer to pass through before proceeding to
“learn.”

When the rightmost processor becomes the
LEADER PROCESSOR, it adopts a pair of pointers as
its entry and then sends a signal to the right to pass on
the LEADER BIT. This signal indicates that the dictio-
nary is full. At this point, utilizing the configuration
depicted in FIG. 5, the SWAP deletion heuristic can be
implemented. As indicated in FIG. 5, two systolic pipe-
lines 10 and 10’ like that depicted in FIG. 3 communi-
cate through a controller 34 and switches 36 and 38.
The controller 34 receives and transmits NIL, REST,
MARK, LEADER, and STOP signals from the proces-
sor arrays. Dictionary entries are transmitted between
arrays 10, 10' through switches 36, 38 in response to
signals asserted to the switches 36, 38 by controller 34.
Thus, the SWAP technique is implemented by control-
ler 34 and switches 36, 38, utilizing the two identical
copies of the pipe 10, 10'. The controller 34 utilizes
conventional logic elements to route input/output lines
appropriately as the dictionaries exchange places.

Decoding: Referring again to FIGS. 3 and 4, the pipe
depicted therein executes both encoding and decoding,
During decoding, data still enters from the left and
leaves to the right. However, the numbering of proces-
sors is reversed, such thaf the rightmost processor is
numbered |S|. Processor indices are sent down the pipe
by the controller into the index registers upon power-
up, or upon 2 RESTART that causes a change between
encoding and decoding modes. Operation of the decod-
ing pipe is essentially the reverse of the encoding pipe.



5,379,036

11

Processor | S| is initially the LEADER PROCESSOR,
and the remaining processors are empty. Compressed
data enters from the left, passes through the empty
processors unchanged, and is decoded in the non-empty
portion of the pipe. In particular, when a pointer arrives §
at a processor that is equal to the processor index, it is
replaced by the two pointers stored by that processor.
The LEADER BIT propagates from right to left—the
opposite of the direction of propagation during encod-
ing.

It is an inherent aspect of data compression that there
may be no reasonable bound on how far the number of
decompressed bits exceeds the number of compressed
bits. This potential problem is addressed in the inven-
tion by employing a STOP BIT (FIGS. 4 and 5) that is
transmitted by a given processor to the processor to its
left, to signal that no more data should be sent until the
STOP BIT is turned off. As indicated in FIG. 4, each
processor has a buffer capable of holding two pointers,
in its BUF_A and BUF_B registers. A typical se-
quence of events for a decoding processor would be the
following:

1. The input buffer currently contains one pointer
that is not the same as the processor index; the STOP
BIT from the processor to the right is not set.

2. A clock cycle occurs; the current pointer in the
buffer is sent to the right and a new pointer is read into
the buffer.

3. The new pointer in the buffer is the same as the
processor index. This pointer is replaced bV the first of 30
the two pointers stored in the processor memory and
the STOP BIT is set.

4. A clock cycle occurs. The pointer in the buffer is
transmitted to the right. Although a STOP BIT is now
being transmitted, the processor to the left has not yet 35
encountered the STOP BIT, and another pointer ar-
rives. The second pointer in the processor memory is
placed in the buffer before the pointer that just arrived.
The buffer now contains two pointers.

5. A clock cycle occurs and the first of the two point-
ers in the buffer is transmitted to the right (no new
pointer arrives from the left since the STOP BIT was
set on the last clock cycle). The STOP BIT is un-set.

6. A clock cycle occurs, the pointer in the buffer is
sent to the right, and a new pointer arrives from the left.

Thus, referring again to FIG. 4, if a match is detected
during decoding, the processor can upload StoreB and
StoreA into BufB and BufA, respectively, and transmit
a STOP BIT to the left.

If the STOP BIT is sent from the leftmost processor
to the communication line, this event can be handled by
generating a conventional XON/XOFF protocol sig-
nal. The signal is transmitted to the data source, thereby
turning off the source for a time.

Those skilled in the art will appreciate that the use of 55
the STOP BIT requires no signal propagation. On each
clock cycle, the only communication occurs between a
processor and the processors to its immediate left and
right.

Decoder Learning: One simple method of decoder
learning is to execute essentially the same operations as
the encoder. The deficiencies of this simple implementa-
tion, however, are demonstrated by the following ex-
ample. Suppose that four pointers are propagating
down the pipe: pointer X, followed by pointer W, fol-
lowed by pointer V, followed by pointer U. Consider
what occurs when pointers W and X have arrived at the
LEADER PROCESSOR. The LEADER PROCES-

25

45

65

10

20

40

50

12

SOR adopts the entry WX and then passes leadership to
the left. The processor to the left waits until pointers U
and V have arrived and then adopts the entry UV. The
encoder would have also learned the entries UV and
WX, and would have additionally learned the entry
VW. The entry VW will be “lost” by this simple imple-
mentation of the decoder.

This problem can be remedied by interspersing a
NILPOINTER between every pointer in the input
stream to the decoder. As noted above, the processor
numbered D,qx- 1 has been omitted from the pipe. The
corresponding pointer value (which is all ONEs when
Dinax is a power of two) is the NILPOINTER. The
effect of interspersing NILPOINTERS is to slow down
the operation of the decoder to allow time for the
“overlapping” entries such as VW to be learned. The
interspersion of NILPOINTERS is necessary only dur-
ing the learning period when not all processors have
adopted an entry. The output data rate from the de-
coder is unaffected so long as the data has been com-
pressed by at least a factor of two,

Experiments conducted in conjunction with one em-
bodiment of the invention indicate that learning every
other entry provides compression equivalent to learning
every entry. Thus, one practice of the invention utilizes
the simple decoder implementation described above,
while modifying the encoder to also learn only every
other entry. In accord with this practice, while the
original rule for a LEADER in the encoder was to
adopt a pointer pair only if at least one of the pair was
not adopted by the preceding LEADER PROCES-
SOR, the modified rule is to adopt a pointer pair only if
neither pointer was adopted by the preceding proces-
SOT.

This modified version of the ID heuristic is imple-
mented by marking a pointer by passing an extra
bit—referred to as 2 MARK BIT—along with each
pointer once it has been adopted by a LEADER PRO-
CESSOR. This could also be achieved by waiting for
two pointers to pass by before attempting to adopt. As
indicated in FIG. 4, the MARK BIT is transmitted by a
given processor to the processor on its right to mark the
adopted pointer. The MARK BIT is also useful for
finite state control p ’

The FLUSH Operation: The NILPOINTER is alsa
utilized during a FLUSH operation, to record the
FLUSH operation in the compressed data stream. Dur-
ing a FLUSH operation, 2 FLUSH signal (FIG. 4) is
transmitted down the encoding pipe to expel a1l data out
of the pipe. A FLUSH operation can be employed to
initiate 2 new input stream that will utilize 2 new dictio-
nary. It is not necessary to wait for a FLUSH to propa-
gate through the entire pipe before starting a new input
stream, Instead, after one clock cycle, new data can
“follow” the FLUSH that is expelling old data.

The controller element depicted in FIG. 5 can moni-
tor compression ratios, and when the ratio falls below a
selected threshold, the controller can execute a FLUSH
operation to cause the pipe to leamn a new dictionary.
As noted above, the FLUSH operation and new learn-
ing operation can occur without stopping the pipe.

FLUSH operations can also be employed to signal
that there is a pause in the input stream. Consider the
example of a satellite that transmits data to earth contin-
uously for one day, and then pauses for a short period of
time while a sensor is adjusted. Rather than require the
ground-based receiver to wait for the data that is left in
the pipe, a FLUSH signal can be sent to push out the



5,379,036

13
data. The dictionary that has been learned remains in
the pipe.

Each time a FLUSH occurs, a single NILPOINTER
is stored in the compressed data stream so that when
decoding, FLUSH operations can be performed at the
same relative points that they were executed during
encoding, thus ensuring proper decoding of the data.

A Massively Parallel VLSI chip: A VLSI chip em-
bodying the invention has been constructed and tested.
The chip is a 1.0 micron double metal CMOS construc-
tion with a 68-pin L.CC package (48 pins for signals, 20
pins for power and ground), having a die size of 9.650
by 10.200 microns (0.38 by 0.40 inches), and power
consumption of 750 milliwatts. The consumption is
evenly distributed, and the chip has no “hot" spots. The
chip includes approximately 350,000 transistors forming
128 processing elements, processing 8 bits per clock
cycle.

A prototype compression/decompression board was
constructed with thirty of these chips interconnected to
create a complete encoding/decoding pipe of 3,839
processing elements. This structure is depicted in FIG.
5, with control logic constructed in accord with known
engineering principles. Using a 20 megahertz clock,
with the prototype board reading or writing a new byte
on every clock cycle, the board operates at 160 million
bits per second. This speed was attained using relatively
conventional VLSI technology. Those skilled in the art
will appreciate that this speed can be increased by im-
proved chip technology, to rates approaching 600 mil-
lion bits per second.

The packaged chips are less than 1 inch square. Due
to the extremely simple pattern of interconnections,
with communication only between a chip and the chips
to its immediate left and right, a board area of approxi-
mately 5 by 6 inches would accommodate the 30 chips
that form the complete systolic array of 3,389 process-
ing elements. Smaller areas are possible with multiple
chip packaging.

To speed completion time and reduce costs, the de-
sign process was kept simple, with standard cell con-
struction, and the size of the chip was kept relatively
modest. Current technology would enable the use of
less area per processing element, more processing ele-
ments per chip, and higher processing speeds. Simula-
tions indicate that the maximum delay time of a single
cell is only 13 nanoseconds, so a clock rate of up to 75
megahertz may be possible with current technology,
yielding a data rate of 600 million bits per second.

The preceding description sets forth the basic struc-
ture and operation of the invention. The following dis-
cussion addresses further aspects of the invention that
advantageously resolve certain practical issues.

Implicit LEADER BIT: In the embodiment de-
scribed above in connection with FIGS. 3 and 4, leader-
ship is explicitly passed from left to right in the encoder
pipe by means of a LEADER BIT. However, since
MARK BITS are already used in the pipe structure to
indicate whether a pointer has participated in a learning
step, leadership can be passed implicitly—without the
explicit use of a LEADER BIT—by treating all empty
processors as LEADERS. Because only unmarked
pointers can be “adopted” by a processor, and all point-
ers that are adopted are then marked, only the leftmost
empty processor will perform learning at a given step.
The remaining empty processors to the right can be
considered LEADERS but will take no action,

10

15

25

35

45

55

65

14

Flexible Processor Ordering and Usage: As discussed
above, indices are dynamically loaded into the proces-
sor index registers 24 (FIG. 4) at start-up. Any ordering
of the processors can be utilized, so long as the number-
ing used by the encoder is reversed by the decoder. An
index value that is not used by a processor is used to
encode the NILPOINTER. The invention permits any
combination of indices to be unused by processors and
reserved for other uses in the encoder, so long as the
same combination of index values is employed in the
decoder.

Static Indexing Scheme: By choosing the ordering of
processors to be symmetric about a center, as shown in
FIG. 6, a static indexing scheme can be employed and
the space required for the processor index registers 24
(FIG. 4) can be eliminated. The ordering shown in FIG.
6 is but one possible static indexing scheme. The inden-
tations in the drawing figure reflect the symmetry of the
numbering sequence in the upper four bits of each in-
dex.

Employing the processor ordering depicted in FIG. 6
allows the elimination of a dynamic index register and
the concomitant logic elements to load and address the
register. Instead, the processor index can be *hard-
wired,” and this static ordering can then be reversed for
decoding by simply complementing the index bits. The
one exception to this complement function is the upper
4 bits of the two center processors, which are always set
to 1111. The symmetric ordering depicted in FIG. 6
compensates for the fact that indices 0-255 are not ex-
plicitly present in the array, by placing in the center the
indices having 1111 as their high order bits.

During encode operations, chips 15 and 16 in the
illustrated embodiment require fThex] as their upper
four bits, but during decoding, chips 15 and 16 require
O[hex] as their upper four bits. Those skilled in the art
will appreciate that this change can be handled in a
conventional manner by external control logic.

In order to permit a symmetric implementation of the
NILPOINTER (i.e., an unused index), the first and last
index of every set of 128 indices are unused. For exam-
ple, indices 800, 87f, 880, 81T, . . . , 7ff are omitted. Ex-
perimentation has demonstrated that the effect of elimi-
nating sixty indices has a negligible effect on compres-
sion, while having the added benefit of providing addi-
tional values that can be used for special purposes.

Dummy Processors: In the embodiments of the in-
vention described above, each processor has an associ-
ated index value. However, the invention also permits
the utilization of processors that are not associated with

any index. These processors, referred to as dummy

processors, provide a means for using identical VLSI
chips even when the total number of chips is not an
exact divisor of the total size of the pipe. Dummy pro-
cessors are also useful in providing a fault-tolerant capa-
bility.

Fault-Tolerant Capability: A key feature of the in-
vention is that the pipe consists of a long array of identi-
cal processors or cells. A defect in a chip that contains
a plurality of cells may only destroy one or two cells.
Additional routing circuitry can be incorporated into
the pipe structure so that the data path can be routed
around a given cell that may be defective.

‘When a chip defect affects only a cell and not part of
the data path between cells, the system can locate the
defective cell at start-up time by successively compress-
ing a standard test data file, initially using only the first
processor (and routing around the rest), then only the



5,379,036

1>
first two processors, and so on, permanently routing
around 2 bad cell whenever compressed data (or de-
compressed data when checking decoding circuitry) is
found to be incorrect.

By maintaining a few extra cells on each chip, the
extra cells can be used to replace defective cells, If there
are any cells left over after replacement of defective
cells, they can be designated as dummy cells. since the
percentage of chip area used for data path is low com-
pared to the percentage used for cells, simulations show
that this moderate redundancy in construction can sig-
nificantly increase chip yield with only a very small
increase in chip size,

Pad Buffering: Where VLSI chip technology per-
mits, all cells of the systolic pipe can be placed on a
single chip VLSI chip. In a typical practice of the in-
vention, however, the cells of the pipe are placed on
several chips. For example, in the prototype board dis-
cussed above, each chip contains 126 cells and 30 chips
are provided on the prototype board. Given current
VLSI technology, significant delays can arise in trans-
mitting signals on and off each chip, due to delays in
propagation through the pads of each chip. Accord-
ingly, buffer latches are added to the front and end of
the array of cells on a chip, to reduce the required cycle
time, from the sum of both pad propagation time and
cell propagation time, to the greater of either pad time
or cell time. Because pad time and cell time are nearly
equal in conventional VLSI devices, this technigue can
nearly double chip speed. Additionally, a latch can be
placed between every pair of cells on a chip to insure
correct timing of the STOP and LEADER BITS that
propagate in the right-to-left direction in the decoder.

In another practice of this invention, the need for
placing latches between every pair of processors is
eliminated. In particular, the STOP BIT lines from the
leftmost three processors are tied together, so that if any
one of the three signals a STOP, the chip will signal a
STOP to its left. To handle the LEADER BIT, the
board-level controller periodically pauses the input to
create two pointer “gaps” at appropriate points, to give
the STOP BIT one extra clock cycle to move from one
chip to another. This has the effect of slowing the input
to the decoder by less than one percent, and has no
effect on its output, provided the data has been com-
pressed by at least one percent.

Multiple Entries per Cell: In the embodiment de-
scribed above in connection with FIGS. 3 and 4, each
cell in the systolic pipe contains exactly one dictionary
entry. In this case, approximately one-half the area of a
given processor is dedicated to finite state control. Pro-
cessor space can be saved by storing several entries in
each cell. This increases the size of each cell, but re-
duces the required number of cells, thereby providing a
net savings in hardware. If the number of entries per
cell is not too large—for example, sixteen entries suffice
to reduce the fifty percent overhead of finite state con-
trol to three percent—then a parallel comparison to all
entries in a cell within a single clock cycle is possible
with current VLSI technology. Thus, the speed penalty
associated with utilizing multiple entries per cell is not
significant.

Other Learning Strategies: As described above, a
simple implementation of the invention employs a modi-
fied version of the identity (“ID”) learning technique.
The invention can also utilize other learning methods
wherein a given dictionary entry is determined by two
other entries. For example, a modified version of the

20

25

30

35

40

45

50

55

60

65

16
first character (“FC”) learning method, wherein the
processors add the last match concatenated with the
first character of the current match, is readily imple-
mented by tagging pointers that pass through the pipe
with their first characters. These tags are internal to the
pipe and do not affect compression.

Lossy Compression: The invention has been de-
scribed in the context of a lossless compression imple-
mentation, The data compression system disclosed
herein can also be implemented so as to provide high
levels of lossy compression, utilizing the known tech-
nique of vector quantization. In particular, the systolic
pipe mechanism can be used to store a codebook table
having one entry per processor. In this embodiment of
the invention, the index and bit-displacement of the
closest match found thus far are carried along with
vectors as they pass through the encoding pipe.

Those skilled in the art will appreciate that the inven-
tion offers a combination of high speed and flexibility
not previously available. It can process data at the rate
of 320 million bits per second in a single pass, employing
novel learning algorithms to continuously adapt to
changing characteristics of the data. The invention
utilizes novel textual substitution methods, including
matching and dictionary update techniques, that yield
compression superior to that attained by conventional
methods, while being adapted to simple, high-speed,
parallel implementations.

It will thus be seen that the invention efficiently at~
tains the objects set forth above, among those made
apparent from the preceding description. It will be
understood that changes may be made in the above
construction and in the foregoing sequences of opera-
tion without departing from the scope of the invention.
For example, the processors can be configured to exe-
cute approximate matching of data strings. Other match
heuristics can be implemented, including serial-type
match heuristics.

It is accordingly intended that all matter contained in
the above description or shown in the accompanying
drawings be interpreted as illustrative rather than in a
limiting sense.

It is also to be understood that the following claims
are intended to cover all of the generic and specific
features of the invention as described herein, and all
statements of the scope of the invention which, as a
matter of language, might be said to fall therebetween.

Having described the invention, what is claimed as
new and secured by Letters Patent is:

1. A real-time digital processing apparatus for dynam-
ically compressing an input data stream of characters
into a compressed stream of digital codes, and for dy-
namically decompressing a compressed stream of digi-
tal codes into an uncompressed stream of characters,
the apparatus comprising;

a plurality of digital data storage and processing cells
connected in a systolic pipe array, each digital data
storage and processing cell including digital data
storage means for storing digital data,

the digital data storage means in each digital data
storage and processing cell being in communica-
tion with a digital data storage element in a preced-
ing or a succeeding digital data storage and pro-
cessing cell in the systolic pipe of digital data stor-
age and processing cells,

the systolic pipe including:

input means for receiving the input data stream of
characters at an input end of the systolic pipe array,



5,379,036

17

dictionary means for storing an indexed dictionary of
strings of characters received in the input data
stream, each stored string in the dictionary of
strings being stored in association with a corre-
sponding digital pointer value representative of the 5
corresponding stored string,

comparator means for comparing successive portions
of the input stream with the strings stored in the
digital data storage elements, to detect a portion of
the input stream that matches a corresponding one
of the stored strings,

the comparator means including match means for
detecting the longest possible portion of the input
stream that will match a corresponding one of the
stored strings, the match means including means
for constructing successively longer matched por-
tions of the input stream for pairs of smaller, previ-
ously matched portions of the input stream,

means for transmitting, in place of the detected por-
tion of the input stream that matches a correspond-
ing stored string, the pointer representative of the
corresponding stored string, thereby to convert the
input stream in a compressed set of pointers repre-
sentative of the input stream,

decompression means for receiving a stream of point-
ers representative of strings of characters, the de-
compression means comprising

means for comparing each received pointer with
strings stored in the dictionary to locate a string
corresponding to each received pointer, and

means for transmitting, in place of each received
pointer corresponding to a stored string, the stored
string corresponding to the pointer, thereby to
decompress the stream of pointers into an uncom-
pressed stream of characters,

means for ensuring that the encoder and decoder
have a consistent method for leaning pairs of point-
ers by employing a modified learning rule and/or
retiming of the input-ontput stream.

2. Apparatus according to claim 1, wherein the digital 40

data storage means comprises first and second register

means for storing portions of the input stream.

3. Apparatus according to claim 1, wherein the de-

compression means comprises

means for generating a STOP bit upon detection of a 45
match between a received pointer and a string
stored in the dictionary means, and

means for transmitting the STOP bit to the preceding
digital storage and processing cell in the systolic
pipeline array, thereby to control the volume of 50
data generated by the decompression means.

4. Apparatus according to claim 3, wherein the de-

compression means comprises

means, responsive to detection of the STOP bit at the
input end of the systolic pipeline array, for generat- 55
ing an XON/XOFF signal representative of a re-
quest to temporarily suspend transmission of point-
ers by an external data source, and

means for transmitting to the external data source the
XON/XOFF signal.

5. Apparatus according to claim 1, further comprising

FLUSH means for generating a FLUSH signal repre-
sentative of a request to expel data stored in the
systolic pipeline array throngh successive cells of
the systolic pipeline array, thereby to enable any of 65
reception of a new data stream, generation of a new
dictionary, or switch from compression to decom-
pression.

10

—

5

25

30

35

60

18

6. Apparatus according to claim 5, further comprising
compression monitoring means, in communication with
the FLUSH means, for dynamically monitoring the
compression ratio provided by the systolic pipeline
array, and for generating the FLUSH signal when the
compression ratio falls below a selected threshold,
thereby to enable generation of a new dictionary and
unique decorability.

7. Apparatus according to claim 6 wherein the
FLUSH signal is generated without suspending recep-
tion of the input stream.

8. Apparatus according to claim 1, further comprising
means for generating a leader bit and for propagating
the leader bit through successive cells of the systolic
pipeline array, thereby to designate a leader processor
that is enabled to execute maiching.

9. Apparatus according to claim 8, further comprising
update means for updating the dictionary means with
matched strings.

10. Apparatus according to claim 9, wherein the up-
date means includes means for generating a mark bit
associated with a pointer matched by a designated
leader processor.

11. Apparatus according to claim 1, further compris-
ing deletion means for deleting selected strings from the
dictiopary means when utilization of the dictionary
means exceeds a selected threshold.

12. Apparatus according to claim 1, wherein the dic-
tionary means comprises first and second dictionary
elements, and

the systolic pipe array means comprises SWAP con-

troller means, in communication with the first and
second dictionary elements, for detecting utiliza-
tion levels in the first and second dictionary ele-
ments, and for causing a dictionary to be generated
in the second dictionary element when the first
dictionary element fills to capacity.

13. Apparatus according to claim 1, further compris-
ing means for providing an implicit leader bit,

14. Apparatus according to claim 1, further compris-
ing means for flexible processor ordering and usage that
allows any ordering or processors and any combination
of indices to be reserved for other uses.

15. Apparatus according to claim 1, further compris-
ing means for static indexing. .

16. Apparatus according to claim 1, further compris-
ing means for providing dummy processors.

17. Apparatus according to claim 1, further compris-
ing means providing for fault-tolerant capability that
circumvents cells that are determined to be defective by
compression of test data at start-up with increasing
numbers of processors.

18. Apparatus according to claim 1, further compris-
ing means for providing pad buffering.

19. Apparatus according to claim 1, further compris-
ing means for providing multiple entries per cell.

20. Apparatus according to claim 1, further compris-
ing means for employing other learning strategies that
are determined by two other entries.

21. Apparatus according io claim 1, further compris-
ing means performing for lossy compression by storing
vector quantization (VQ) codebook entries.

22. A real time method for dynamically compressing
an input data stream of characters into a compressed
stream of digital pointers, the method comprising the
steps of

electrically connecting a plurality of digital data stor-

age and processing cells into a systolic pipe array



5,379,036

19

such that a digital data storage element in each
digital data storage and processing cell can com-
municate with a digital data storage element in a
preceding or a succeeding digital data storage and
processing cell in the systolic pipe of digital data
storage and processing cells,

receiving the input data stream of characters at an
input end of the systolic pipe array,

storing, in the connected digital data storage elements
of the digital data storage and processing cells of
the systolic pipeline array, an indexed dictionary or
strings of characters received in the input data
stream, each stored string in the dictionary of
strings being stored in association with a corre-
sponding digital pointer value representative of the
corresponding stored string,

comparing, in digital processing elements in the con-

nected digital data storage and processing cells,
successive portions of the input stream with the
strings stored in the digital data storage elements,
to detect a portion of the input stream that matches
a corresponding one of the storm strings, and
transmitting, in place of the detected portion of the
input stream that matches a corresponding stored
string, the pointer representative of the corre-
sponding stored string,

thereby converting the input stream into a com-
pressed set of pointers representative of the input
stream,

wherein the comparing step includes the step of de-
tecting a portion that will match a corresponding
one of the stored strings,

the step of detecting a portion including the step of
constructing successively longer matched portions
of the input stream from pairs of smaller, previ-
ously matched portions of the input stream,

said method ensuring that the encoder learns pairs of
pointers in a way such that consistent decoding is

20
possible by employing a modified learning rule and
or retiming of the input/output stream.
23. A real time method for dynamically decompress-

ing a compressed stream of digital pointers into an un-

5 compressed stream of characters, the method compris-

10

15

25

30

35

45

50

55

65

ing the steps of

electrically connecting a plurality of digital data stor-
age and processing cells into a systolic pipe array
such that a digital data storage element in each
digital data storage and processing cell can com-
municate with a digital data storage element in a
preceding or a succeeding digital data storage and
processing cell in the systolic pipe of digital data
storage and processing cells,

receiving an input stream of pointers representative
of strings of characters at an input end of the sys-
tolic pipe array,

storing, in the connected digital data storage elements
of the digital data storage and processing cells of
the systolic pipeline array, an indexed dictionary or
strings of characters received in the input data
stream, each stored string in the dictionary of
strings being stored in association with a corre-
sponding digital pointer value representative of the
corresponding stored string,

comparing each received pointer with the strings
stored in the dictionary to locate a string corre-
sponding to each received pointer, and

transmitting, in place of each pointer corresponding
to a stored string, the stored string corresponding
to the received pointer, thereby to decompress the
stream of pointers into an uncompressed stream of
characters

said method ensuring that the decoder learns pairs of
pointers in a way that is consistent with an encod-
ing by employing a modified learning rule and or
retiming of the input/output stream.

* & * = =%



