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Abstract

This paper describes the design and evaluation of SITECITY, a semi-automated building extraction system
integrating photogrammetry, geometric constraints, image understanding and user interfaces. Existing au-
tomated building extraction systems often produce mixed results and it is clear that human intervention is
required to correct mistakes from fully automated systems. SITECITY gives human operators the ability to
construct and manipulate three dimensional building objects using multiple images. Image understanding
algorithms are integrated into SITECITY to assist users. These automated processes are selected and inte-
grated based on methods and criteria derived from the GOMS (Goals, Operators, Methods and Selection
Rules) human-computer interaction principle. The performance of these automated processes are rigorously
evaluated. Twelve human subjects were used to evaluate the usability of the semi-automated system in
comparison with the fully manual version. The methodology for the usability evaluation is described and
the result of this evaluation shows that automated processes in SITECITY enhance the overall usability of
the system and reduce the complexity of manual mensuration of three dimensional building objects.

This work was sponsored by the Advanced Research Projects Agency under Contracts DACA76-91-C-0014 and
DACA76-95-C~0009 monitored by the U.S. Army Topographic Engineering Center, Fort Belvoir, VA. The views
and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Advanced Research Projects Agency, the U.S. Army Topographic
Engineering Center, or the United States Government.
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1 Introduction

Efficient and accurate delineation of man made featurcs from digital aerial imagery has been a shared
goal of the photogrammetry and computer vision communities for a number of years. The proliferation of
digital photogrammetric workstations shows exciting possibilities for automating tedious and time consuming
menial tasks. Among these tasks are automatic aerial triangulation, image mosaicing, and the generation of
orthophotos and digital elevation maps [24; 20; 6; 31].

There currently exist three approaches to perform digital feature extraction tasks: fully manual, fully
automated and semi-automated, all of which require images and camera parameters as input. A fully manual
system requires users to measure all points on all building objects in all available images. On the other
hand, a fully automated system requires no manual intervention and producing an accurate and complete
site model in which users are not required to correct any mistakes. A semi-automated system requires users
and automated processes in the system to work sequentially. For example, a semi-automated site modeling
system can require users to supply the automated processes with inputs and cues. Based on these inputs,
automated processes produce a site model, and finally, users correct mistakes in that site model.

Research in automated urban feature extraction, such as buildings and roads, has produced mixed re-
sults [17; 26; 33; 42; 12; 32; 25; 28; 36; 51; 54; 18; 2]. No system has been shown to work both accurately
and completely with a variety of images and objects, and few [51; 36] produce 3D descriptions of extracted
buildings in object space. In order to utilize these automated processes, an integrated system is needed that
allows a user to correct and enhance the results of the automated systems.

While most research has focused on fully automated feature extraction systems, there are some systems
which attempt to integrate manual and automatic processes [22; 48; 43; 19; 55; 24], where users and auto-
mated systems work in harmony. In [24], Heipke presented a survey of interactive softcopy photogrammetric
workstations, which discusses the interactive and automated aspects of these workstations. Tilley [55] de-
scribes some current and potential uses of softcopy workstations and some automated extraction tools for
natural feature data. In [19], a conceptual framework and applications of image understanding tools are
described.

There are two recent examples of semi-automated building extraction systems. In [43], Mueller and Olson
use a model based approach to detect and delineate rectangular and peak roof building models. In their
system, users are required to specify a range of plausible parameters for the building models and approximate
locations of the buildings in the image. The other system is the Cartographic Modeling Environment
(CME) [22; 48]. Tt has evolved through the years to become a test bed for image understanding algorithms [44]
and a site modeling system. It uses model-based optimization techniques such as snakes [30] to perform
feature extraction in an interactive environment.

The concept of integrating automated processes in an interactive environment is a familiar one. The idea
is to use the automated processes to simplify the tedium of manual tasks, and to give end users the ability
to provide cues to reduce the problem domain for the automatic processes so that they will have a high
success rate while reducing the amount of user interaction. However, there has been no formal discussion
of methods to select, integrate and evaluate automated processes in an interactive system, especially when
the automated processes are known to be imperfect. We believe that it is unlikely that perfect automated
processes for man-made feature extraction will be developed in the near future, because digital cartography
involves a large variety of imagery and scenes. It is difficult to design a system that can handle all possible
cases. However, we believe that these imperfect automated processes can be rigorously integrated into a
semi-automated system to increase the efficiency of cartographic extraction tasks. We have developed a
system, SITECITY, that attempts to address these issues. In addition to proposing a design methodology for
semi-automated systems, we propose a set of methods to evaluate the performance of the semi-antomated
system and to compare the usability of the semi-automated and the fully manual systems. These evaluations
can answer the question: How well does the system perform? It cannot evaluate the productiity of the
system, which depends on the goals and requirements of individual users, and we hypothesize an approach
to determine the productivity of an interactive site modeling system.

SITECITY is a semi-automated three-dimensional site modeling system developed in the Digital Map-
ping Laboratory at Carnegie Mellon University. SITECITY is a tool for generation of sites using multiple
images. A site is a collection of three dimensional man-made structures in a scene. SITECITY uses rigorous
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photogrammetric principles and multiple images to accurately determine 3D locations of objects, such as
buildings or roads in the scene. Photogrammetric methods supply cues to reduce the complexity of auto-
mated feature extraction tasks [39]. Automated processes such as model matching are used to reduce the
number and complexity of manual measurements. A set of graphical user interface tools are provided for
users to modify and create arbitrary objects and to supply other cues, such as area of interest, to assist the
automated processes. :

A snapshot of SITECITY is shown in Figure 1. Three windows (Figure 1(a), 1(b), 1(c)) are used for
the image measurements and are called image windows. The fourth window(Figure 1(d)) displays the 3D
position of the measured object and is the site window. Each image window has an identical graphical user
interface in which a variety of menus provide support for measurement and modification of image features.
Image features are triangulated to form 3D objects which are displayed in the site window for verification
and visualization.

The main focus of this paper is the application of the semi-automated processes towards building detection
and delineation in multiple images. First, the philosophical motivation for selecting and evaluating the
usability of automated processes is described, followed by a description of various integrated automated
processes for the construction of 3D building objects. Next, we propose a set of metrics to evaluate semi-
automated systems and show the results of these metrics for SITECITY. These evaluation methods and
metrics evaluate the accuracy and usability of the semi-automated system in comparison with the fully
manual system, and can be adopted by other semi-automated feature extraction systems.

2 Methods and Criteria for Integration of Automated Processes

There are many interactive systems in fields other than computer vision and photogrammetry [47; 21; 9;
49] where Intelligent Agents or Automated Processes (APs) are used to assist users and to provide increased
comfort and efficiency in their problem solving endeavors. While experimental results and performance
analyses on some existing systems [52; 15] have been obtained, a discussion of formal methods to assess the
performance and usability of these interactive systems has been lacking.

Common sense dictates that the inclusion and successful application of APs should improve the efficiency
of the overall problem solving system. For some domains, APs can produce erronepus results; and these
errors can be costly to users and decrease the overall efficiency of the system. When the cost of using APs
exceeds some threshold, users will be not likely to utilize them. The problem is especially visible in the area
of recognition-based user interfaces, such as speech recognition [49] and hand writing recognition [52], and
in image understanding domains. In these fields, the state of the art is such that a perfect Intelligent Agent
is not yet available. For speech and hand writing recognition, there is an emphasis on training the system
and the user to bridge the gap. It is not clear if this approach is useful in an interactive image feature
extraction system due to the diversity of the input data sets. It is also unclear if using an imperfect speech
or handwriting recognition system is more efficient than using a keyboard and a well designed traditional
graphical user interface.

2.1 Cost of Problem Solving

The purpose of incorporating APs in an interactive system is to reduce the user cost of solving a problem.
Conceptually, user cost can be defined by the amount of work required by the user to solve a problem. One
way to quantify user cost is to use the Goals, Operators, Methods and Selection Rules (GOMS) model of
human computer interaction [10; 29], which is an extension of the task decomposition strategies proposed
in [45]. In the GOMS model, a problem (goal) can be decomposed into subgoals. To solve a problem, users
select a method, which is a sequence of operators and subgoals, from a set of available methods based on a
set of selection rules.

The GOMS model offers predictive power for estimating the efficiency and complexity of a human com-
puter interface. The role of APs in the GOMS model is to solve subgoals or the entire goal for the user. Using
the GOMS model allows us to analyze the efficiency of an AP by comparing the performance of the semi-
automated system with the fully manual system. To perform this comparison, a task analysis approach [10]
can be used. Ordinary, task analysis is used to predict human performance by decomposing a problem into
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(c) Image measurement window: fhrad4 (d) Three dimensional display window

Figure 1: Snapshot of SiteCity
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unit tasks. The elapsed time and the number of operations required to complete the tasks are collected.
The human performance is evaluated based on the measured elapsed time and number of operations. The
comparison of the human performance with and without using APs allows us Lo evaluale the utility of the
automated processes in the semi-automated system:.

A problem can be decomposed into a set of tasks. If every task is equally expensive to perform, in terms
of the elapsed time, then the user cost of solving the problem can be considered to be the number of tasks the
users need to perform. In this scheme, the role of APs is to complete a task or a set of tasks. For example,
assume we are given a problem with N tasks. The user cost of manually solving the problem is N, because
users are required to perform all N tasks. If an AP exists to perform one of these tasks, and the AP was
able to complete the task correctly, the user cost becomes N — 1. However, if the AP does not perform the
task correctly, the user faces the task of correcting the error. Errors of this nature can cause the user cost to
be greater than N. A fully automated system which can solve all the tasks of a problem correctly will have
a user cost of zero. This definition of user cost does not take into account the time to solve the problem,
or the mental or psychological perceptions of solving the problem. Time is system and machine dependent;
mental and psychological perceptions depend on the user interface and the users themselves.

Obviously, the measure of user cost is system dependent, because different systems can decompose a
problem into different sets of tasks. For example, consider the problem of drawing a square. In one decom-
position of the problem, the tasks are measuring the zy locations of 4 points, because a square must have
4 points. The property of equal length on every edge of a square is a constraint which these 4 points must
satisfy and is not considered to be a task. A different decomposition might define the square parametrically
by its zy position, side length, and orientation, and three tasks will be required to draw a square. It will be
difficult to directly compare these two drawing programs because the cost of measuring a point’s location
might be different than the cost of specifying a parameter such as orientation. Therefore, to readily compare
the performance of a semi-automated system with a fully manual system, the two systems must decompose
the problems in similar fashion.

Using the square- drawmg problem as an example, the role of APs and methods for comparmg the
fully manual and semi-automated system can be illustrated. The fully manual drawing program requires
measurement of four points and has a user cost of 4, assuming point measurement is a unit task. A different
semi-automated drawing program is developed to take advantage of the constrained geometric shape of the
square and only requires the input of 2 points (2 opposing corner points). The semi-automated program
still needs to calculate the position of the remaining 2 points based on the input points so 4 tasks were still
accomplished. However, the semi-automated drawing program used an AP to perform 2 of the 4 required
tasks. If the semi-automated program does not make any mistakes, it will incur a user cost of 2, because
only two measurements were performed by the user. The semi-automated drawing program will be an
improvement over the fully-manual program, and can be considered usable. However, user cost alone does
not truly measure the usability of the system, because elapsed time is not considered. If a user can manually
measure a point in two seconds while the AP takes an hour to perform the same task, then it would be
difficult for a user to accept the semi-automated system.

Therefore, in addition to comparison of the user cost, another component of the usability analysis is the
comparison of elapsed time, which is not explicitly addressed by the user cost analysis. In the user cost
analysis, we assume that each unit task can be solved in the same amount of time and that APs are assumed
to require no time. In reality, APs require finite amounts of time that might be different- from the times
required by users. The time requirement of APs needs to be considered to determine the overall usability of
the semi-automated system.

In our square-drawing problem, if the time required to measure the zy location of a point is ¢, then a
user can draw a square in 4¢ units of time using the fully manual program. Assuming the semi-automated
program is perfect, the time required by a user using the semi-automated program to draw the square is
2t + T, where T is the time required for APs to determine a solution. If T' is equal to 2t, then a user
using the semi-automated program will spend the same amount of time as the fully manual program, but
fewer manual operations were needed in the semi-automated program. If 7' is less than 2¢, then the semi-
automated program is a definite improvement over the fully manual program. However, if T is greater than
2t, the usability of the system will be in doubt. »
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2.2 Criteria for Selecting Automated Processes

Not every automated algorithm is suitable in an interactive system; some algorithms are more usable than
others. Commonly, the usability of a system is defined to be the ease and effectiveness of the system. Ease
and effectiveness include concepts such as flexibility, learnability, error handling, speed and accuracy [11; 49;
53]. ‘

A usable AP can enhance the usability of the entire system by decreasing the amount of work. A perfect
AP that does not decrease the ease and effectiveness of the system will always be usable. At what point will
an imperfect AP be usable? We argue that an imperfect AP is potentially usable if it reduces the overall user
cost of the system, and usable if it reduces both the user cost and the elapsed time of a user. A potentially
usable AP reduces the number of manual tasks for a user at the expense of time. If the time requirement is
great, then it is unlikely that the AP will be used and cannot not be considered usable. However, the AP can
be re-engineered to be more efficient, or advances in hardware can reduce the time requirement for the AP,
and it is possible that the AP can become usable in the future. Based on these definitions of usability and
user cost , four criteria are proposed to determine the feasibility of an automated algorithm in an interactive
system.:

¢ Speed and Robustness

A fast algorithm will reduce the idle time of the user. A robust algorithm should not be affected by
differences in scenes, images, object types, and users. Of the two criteria, robustness should be more
important. Advances in computer hardware will make some slow algorithms practical. An unreliable
algorithm will remain so regardless of hardware and should not be integrated into an interactive system.

¢ Non-Intrusiveness

Automatic processes must not be a hindrance to the user. If an automated process fails in its tasks,
the failure should not add any user cost to the task. Let the user cost of solving a problem without
an AP be A, and solving the same problem with an AP be B. If for all scenes, the average value of
A is greater than the average value of B, then the AP should be considered usable. Otherwise, the
inclusion of the AP should be reconsidered. For example, consider a building detection algorithm, M,
which returns 20 false building hypotheses for an image where there is only one building. For the same
image, algorithm N returns nothing. Both processes failed to detect the building correctly. However,
at the end of process M, a user must visually verify and delete all the false hypotheses, in addition
to manually measuring the building; whereas users of process N only need to measure the building.
Everything else being equal, process N should be considered superior to process M for integration in
the semi-automated system.

In addition, a user should not need to alter problem—solving strategies when using the automated
processes. Once the tasks have been decomposed for a problem in a system, the users should be able
to rely on the same strategy to solve the problem, with or without the use of automated processes.

e The Janitor Model

Some APs are governed by a set of parameters. Optimizing the performance of these APs often becomes
a problem of finding the optimal combination of these parameters. Often, these optimal values are
problem and task dependent. Some of these parameters are intuitive; others are only meaningful to
the developer of the algorithm. These parameters contribute to the overall complexity of the system
and decrease the learnability.

We believe that it is unreasonable to expect an average user to understand the theoretical intricacies
of an AP in order to optimize the performance of the AP within the interactive environment. For a
system with a set of complicated parameters, it is likely that the time it takes for a user to find a set of
plausible parameters is better spent performing the task manually. The act of parameter tweaking also
violates the non-intrusive criteria. Therefore, we argue that an interactive system should be designed
according to the janitor model [40]; ie., a janitor should be able to sit down and perform the task.
Clearly, the janitor may need some minimal training, but the level of training is commensurate with
the complexity of the tasks.
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In a survey of CAD users [15], it was found that users tend to have a small command repertoire, and
these users complained that commands and parameters were too abstract and inconsistent. Half of
the subjects report that they felt lost in the system and felt it would be easier and faster to use pen
and paper rather than CAD. These findings further support the idea that a simple system is a better
system for human interaction.

o Flexibility

Often, some APs will make many limiting assumptions in order to reduce the complexity of the problem.
However, these limitations should not affect the operation of the interactive system. The inability of
an algorithm to detect circles should not limit the ability of the user to draw and measure a circle. In
addition, an AP that can be applied to different tasks and be reused can reduce the complexity and
increase the maintainability of the system.

As with many system design problems, judging the feasibility of APs in an interactive system involves
trade-offs. If an automated process is correct 99% of the time, the question to ask is: “ Does the usefulness
of the automated processes offset the cost of error correction and the complexity?” In section 4.6 we attempt
to address this question for SITECITY using the proposed definitions of usability and user cost , bearing in
mind that these measures can not take into account purely psychological factors; user preferences are difficult
to predict.

3 Automated Processes in SiteCity

The criteria presented in Section 2.2 allow us to determine the feasibility of automated processes for inte-
gration into a semi-automated system. However, we still nieed to determine specific tasks in SITECITY to
_ automate. Again, the task analysis approach can be utilized to determine the problem domains of the APs.
In SITECITY, the design of the fully-manual interactive system dictates the task decomposition of a problem.
Once the tasks are known, the APs can be selected and evaluated for integration. Currently, SITECITY is
designed for detection and delineation of three types of buildings:

e Flat Roof Building Model: A flat roof building model has two horizontal polygons, the roof and
the floor. These horizontal polygons are connected by a number of vertical rectangles, the walls. An
example of a flat roof building model is shown in Figure 2(a). There are no limits on the number of
vertices for the roof and floor polygon, but the roof and floor must have the same number of vertices.

e Rectilinear Flat Roof Building Model: A rectilinear flat roof building model is similar to a flat
roof building model. However, it has one further constraint; the roof and the floor polygons must
be rectilinear (right angles at every vertex). An example of the rectilinear flat roof building model is
shown in Figure 2(b). ‘

e Peak Roof Building Model: The peak roof model is shown in Figure 2(c). The bottom half of the
peak roof model is a rectilinear flat roof building model with a rectangular roof and floor. The roof is
a triangular prism.

To create a 3D building object, the outline of the roof is measured and SITECITY estimates the dimensions
of the building. An example of manual building creation is shown in Figures 3 and 4 and is as follows:

1. Roof Measurement

The first task in SITECITY is to manually measure the roof of a building in an image. SITECITY creates
a building model based on the delineation of the roof. The building model has a default height
dimension of 30 meters, and is projected to all images and object space using a DEM to determine the
elevation of building floor. (see Figure 3(a) and 3(b)).

2. Floor Position Measurement

Since the building height was determined arbitrarily and most likely incorrect, the next task is to
measure the floor position(Figure 4(a) and 4(b)).

6
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Top View Side View Top View Side View
Side View @ Side View Side Views
(2) Flat roof building model (b) Rectilinear flat roof building (c) Peak roof building model
model

Figure 2: Three building models

3. Correct Building Location In Other Images

The final task is to correct the location of the building in other images (See Figures 4(c) and 4(d)).
When an object is projected from one image to the next, the projected buildings usually do not agree
with the image due to inaccuracies in the DEM and the camera parameters. This step is essential for
achieving accurate 3D building models.

Given this procedure, two tasks were identified for automation.

1. Floor Position Measurement

Given a roof delineation in an image, the purpose of this task is to determine the height of the building
for the roof using a single image. This task involves location of the floor, based on the roof delineation.
A similar task was performed in [36]. This task should be non-intrusive. If the automated process
for task 2 failed, it should not require the user to perform more operations than he otherwise would
have had to. Without the automated processes, the floor position is set to a default value. With
the automated processes, if the estimated floor position is erroneous, this position.should be no worse
than the default position, and the user would perform the floor position measurement tasks as if no
automated processes were used. The only drawback is the addition of one system: parameter, which
bounds the search space for building height. Another attractive feature of automating this task is that
the process can be used with both the flat roof and peak roof building model.

2. Correct Building Location In Other Images

This task involves correcting the location of the building in other images (See Figure 4(c) and 4(d)),
and is related to many stereo or multi-image matching processes in which image features were matched
along the epipolar line [5; 38; 13; 51; 3; 14]. The relative success of the stereo processes make this task
a likely candidate for automation. In addition, many current building detection approaches have also
succeeded in using stereo to verify roof hypotheses [42; 18]. The APs for this task can also be designed
to be non-intrusive; if the process failed, the user does not have to do any additional error correction,
instead just performing this task manually. The additional complexity of this automation lies in two
system parameters that bound the search space in terms of disparity range. The process can also be
building object independent.

Figure 5 shows the control flow design of SITECITY. First, a user identifies a task, which can be performed
using a set of manual processes. For some manual processes, automated processes are available to perform
parts of the task. These automated processes shares three automated components.

7
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(a) Measure the first four roof points in radt9 image (b) Measured roof in radt9 image

Figure 3: Measuring the roof of a flat roof building in one image
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(c) Initial projection in radt9ob {d) Corrected projection in radt9ob

Tigure 4: Correcting building delineations
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Figure 5: Control Process Flow of SiteCity

3.1 Components of Automated Processes

For the problem of building measurement, two tasks were identified as candidates for automation within the
SITECITY system. These tasks described in the previous section can be broken down into three component
processes; a verification component, an object matching component and an edge estimation component.
The verification component takes an object in image space, and verifies the existence of the object using
the image and the 3D geometry of the object. Given an object model in image space, the object matching
component generates a set of hypotheses in image space for the object location in an image. The verification
component can be used to select feasible hypotheses. The edge estimation component takes an model edge,
with a known orientation in object space, and uses search region specified by the automated processes for
matching. This component generates a set of possible edge hypotheses for the model edge.

3.1.1 Verification Component

The goal of the verification component is to verify the existence of a hypothesized building object in an image.
In most existing fully automated building detection algorithms, the verification of building hypotheses are
performed on the roof structures. Since most of these automated algorithms only hypothesize two dimensional
roofs in image space, the verification of building hypotheses cannot take advantage of the 3D geometric and
photometric constraints.

The verification component used in SITECITY uses full 3D geometry to predict the visible building -
and shadow structures. The task of verification is to match the hypotheses with image features. When a
3D object is projected to an image, some of the edges might not be visible due to the viewing geometry.
Therefore, before any verification is attempted, the hidden lines of the object in the image are first removed
from consideration. The result is a two dimensional line drawing of the expected visible edges of the object
in the image, and the problem reduces to matching this 2D line drawing to the image. The shadow structure
of the hypothesis is constructed using the knowledge about the sun’s elevation and azimuth angles during
image acquisition, and the viewing angle of the camera. The shadow is projected to the ground, which is
assumed to be locally flat and horizontal with the same elevation as the floor of the building.

The verification component is based on the following functions:

¢ Visible Edges

The visible edge function is similar to many edge template matching algorithms using distance trans-
forms [27; 8; 46]. Let A = {ay,as,...,a,} and B = {by,bs,...,bn} be the finite set of edge pointsin a
building hypothesis and the image, respectively. The chamfer distance [7] of point a; in A with respect

10
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is defined as
B‘ls ¢ C(a;, B) = min||a; — b||.
beB

Thé set of chamfer distances for all points in A can be computed,
CA = {C(a1, B),C(az, B),...,C(an, B)}.

TLet V(CA,v) be a function that returns the number of points in CA whose chamfer distance is less
than v. v is a threshold that determines the maximum distance for a point in A to match a point in
B. Then, V determines the number of points in A that have a match in B. Let m be the number of
.. points in the model, then

g V(CA,v)
P(CA,v,m) = ———=

m :
is the percentage of points in CA that satisfies the distance threshold, v. In other words, P is the
percentage of model points that match image points.
is defined as the chamfer score

The visible edge scoring component is defined to be
VE(A, B,v) = min(P(CA,v,m), P(CB,v,n)),

where

CB = {C(by, A), ..., Cbm, A)}.

In SITECITY, the value v is currently set to 2 pixels, to account for uncertainty of the position of edge
points and the discretization error of line segments.

Edge Gradient

The visible edge (V E) component is susceptible to the particular edge detection algorithm used to
construct the set of edge points in the image because different edge operators have different responses
on the same image. Furthermore, it does not account for the contrast across edge boundaries, which
makes it sensitive to coincidental alignments of edge points. An edge gradient function is used to
account for the contrast across edge points.

Let A be the set of edge points in the model, grad(l,z,y, o, f) be the gradient of the image 1, at
position [z, y], perpendicular to direction vector [e, ]. Edge visibility is defined as:

Paealyrad(l, 5(@), ¥(a), o(0), ()

EG(A, ) = o

Intuitively, BG(A, I) is the average contrast of the expected edge points in a model.

Visible Shadow Edges

Given a 3D building object, we can compute its expected shadow boundary in the image given the
camera parameters, sun azimuth and elevation angle and the shadowed surface (the ground). Currently,
SITECITY assumes that the shadowed surface is a horizontal plane lying at the same elevation as the
floor of the building object.

To compute the shadow region, each individual facet of the building is projected to the ground. The’
projected regions are merged into one polygon and the building regions are subtracted from the shadow
region. Once the shadow boundaries are known, the ground/shadow boundary can be determined ,
and the visible shadow edges can be evaluated using VE().

Let S be a set of points on the shadow boundary separating the ground and the shadow, S =
{s1,82,...,5p}, and B be a set of edge points in the image, B = {b1,b3,...,b,}. The visible shadow
edges component is defined as

VSE(S, B,v) = VE(S, B,v).
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¢ Shadow Color

In most cases, shadow regions should be darker than the ground on which they are cast. This observa-
tion can be used as an additional constraint. Let G = {g1,92,...,4:} be a set of points in the ground
region that is less than T pixels away from the shadow-ground boundary (See Figure 6). G can be
computed using the chamfer distance image computed for the visible shadow edge component. Then
Gmed 1s the median intensity of the ground region, and Ggagey is the average deviation of the intensity
values.

Zi‘:1 |Intensity(gi) — Gmed|

; .
Likewise, Upneq and Uggey are the median and average deviation intensity values of the shadow region,
U. Then, u is defined to be the number of points in the shadow region that are darker than a threshold
representing the expected ground intensity. The expected ground intensity is defined to be Geq.
However, to account for the variations in the ground intensity values, the threshold is lowered by
Gadew, S0 that a pixel whose intensity value is within Ggaaey of Gpneq is not labelled as a shadow pixel.

Gadey =

We define the shadow color component,

U Usdeu

‘%:m—wsc 956 .

The shadow is assumed to be uniformly dark and U;g‘g” , the normalized average deviation of the shadow
region, is used to penalize a hypothesized shadow region with non-uniform intensity. 256 is the largest
possible deviation for an 8 bit image. The uniformity of the shadow region is weighted by w;., which

is currently set to 0.5. In SITECITY, T is currently set to a distance of 4 pixels.

Shadow-Ground Boundary

Ground Region

Shadow Region

Figure 6: Hlustration of shadow color component

The final verification confidence of a building model, VC, is simply:

VC(A, B, S, I1,v) = wmiVE(A, B,v) + wo BG(A, I) + w3VSE(S, B, v) + wsSC.
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w; are the weights for each compénent, and they are currently each set to a value of 1 in SITECITY. Hence,
VO returns a value between 0 and 4, where 4 is the ideal confidence of a model building. This verification
component is currently used for all automated processes described in this paper.

3.1.2 Edge Estimation Component

Often, it is desirable to determine the terminating endpoint of an edge of known directed orientation # and
length ¢ in an image; the edge estimation component is used to achieve this task. Figure 7 illustrates this

~ task. The edge estimation component generates a set. of edge hypotheses such that one terminating endpoint
of the edge hypothesis lies on the edge L. 6, ¢ and the endpoints of L are inputs to the edge estimation
component.

Area of Edge Hypotheses
Extraction
I
Y oz
Cmax
Image
. L
Cmin . -
K
X

Figuré 7: Edge estimation component

The line equation for one edge hypothesis is aX + bY + ¢ = 0, where a and b are known via 6. Let
C = {e1,cq,...,¢,} be the set of possible ¢ values; then the Hough transform [4] is used to collect evidence
for each ¢; using image edge points extracted from the image. Clearly, the image edge points need not be
extracted from the entire image. The portion of the image that needs to be considered is the parallelogram
defined by L, 6 and ¢q. The parallelogram can be computed by extruding edge L in the direction of 8 with
a distance of .q. If the number of image edge points on an edge hypothesis is less than 2, then the edge
hypothesis is rejected. The minimum and maximum values in C are limited by the constraining edge, L.
Let I be the set of possible edge locations for one terminating endpoint. Then I is the set of intersections of
Land aX +bY +¢;, =0, Ve; € C. '

3.1.3 Object Matching Component

The object matching process is used to generate hypotheses for a known object in the image given a search
region. The search region is defined by the automated processes that use this component. Given a projection
of a 3D object to the image, the goal is to find instances of the projection of this object in the image, similar
to the 2D object matching problem described in [27; 8; 46].
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The brute force approach is simply to instantiate the model at every possible location within the searFll
region and find good matches. This approach ensures us that the correct location will be in the set of initial
hypotheses assuming the search region contains it, but the cost of searching can be prohibitive. Therefore,
a simple heuristic is used to reduce the search space. Given the projection of a 3D object to an image, the
size and the orientation of visible corners can be predicted. For each predicted model corner, all the corners
within the search space that have the same orientation and size are used to generate a list of plaus’ible
hypotheses. For an image corner that has the same shape and orientation as the model corner, an object
hypothesis is created by copying and positioning the the model such that the model corner is located at the
position of the image corner. Object hypotheses that extend outside the search region are ignored. Thi§ set
of plausible hypotheses can be pruned using the verification component. The pruning criteria are specified
by the automated processes that use this component.

3.2 Automated Processes in SiteCity

The three components described in the previous section can be composed in a variety of ways to perform
different tasks. The verification component is the heart of the automated system, since it defines goqd .and
bad hypotheses. Edge estimation allows us to generate hypotheses from partially specified objects, since
image edges can be used to determine object extent. The object matching component can be utilized to
match objects in a single image.

3.2.1 Estimate Peak Edge of a Peak Roof Building

For a peak roof building model, once the user measures the rectangular outline for the roof, the first task is
to estimate the position of the peak edge. According to the peak roof building model, the peak edge must
be horizontal, above the rectangular roof outline, and lie halfway between two walls. Therefore, the end
points of a peak edge must be on the vertical lines intersecting the roof edges perpendicular to the peak edge.
These two vertical lines are the constraining edges used to define the search space in the edge estimation
component. Currently, the maximum possible height (length of L in Figure 7) of the peak edge is comPUte.d
using a maximum peak angle of 60 degrees. To evaluate the edge hypotheses, the verification Component' 18
used. However, the shadow components of the: verification process are not used because we cannot predict
the location of the peak edge shadow, without first knowing the floor location.

Every peak edge hypothesis can be exhaustively combined with every floor hypotheses to generate a
building hypothesis, and each of these could then be evaluated. However, this is a time consuming process
and not implemented in the current system. The peak edge hypothesis with the best confidence value
returned by the verification component without shadow analysis is selected. )

Figure 8(a) shows the user delineated building roof. The search bound for the peak and the vertical
vanishing lines based on the roof are shown in Figure 8(b). Figure 8(c) shows the set of possible peak edggs
extracted from the image, in black. The set of possible peak edge positions, where a peak edge hypothesis
intersects the vertical vanishing line, are shown as white dots.

3.2.2 Estimate Building Height

In [37], the height of a building is measured by using an imperfect sequence finding technique (1] to locate
vertical edges. Another clue in the image that allows us to determine the building height is the location Qf
the visible floor edges, where the walls of.the building meet the ground. Since the delineation of the roof is
given, the orientation and size of the visible floor edges can be predicted. For the defined building ‘models in
SITECITY, the floor is simply a vertical extrusion of the delineated roof outline. Given these floor edgfas n
image space and the vanishing point geometry, we can use the edge estimation component to hypothesize a
set of building hypotheses. The plausible edges are those that are within the search region bounded by the
vertical vanishing line. The search length of the vertical vanishing line is defined by the roof points an.d ?he
maximum height parameter set by the user. Each floor edge hypothesis produces a hypothesized building
model. All the building models are viewed to be in competition with each other, because there should be
only one building model for a given roof outline; therefore, the verification component is used to select the
best model.
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(c) Detected peak edge and possible peak edge loca-
tion

(e) Detected floor edges and possible floor location (f) Detected building

Figure 8: Example of building height estimation
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Figure 8(a) shows the user delineated building roof. The search bound defined by the maximum height
and the vertical vanishing line based on the roof is shown in Figure 8(d). Figure 8(e) shows the set of possible
floor edges extracted from the image in black. The set of possible floor corner positions shown as white dots
and the building selected using the verification component are shown in Figure 8(f).

The position of the floor points for the model is used to determine the position of the building in 3D
space using a single image. Since the building is assumed to be on the ground, the DEM is used to determine
the elevation of the floor position. The length of the vertical edge in the image space is converted to height
in object space [37], and the resulting 3D model can be projected to other images.

3.2.3 Epipolar Matching

Due to errors in the DEM, and the uncertainties of the camera parameters, the projection of a 3D object
onto another image might not be correct. To achieve a good 3D measurement, it is often necessary to locate
the projected object in several images.

If the location of the object is known in one image, then the search space in another image is defined by
the epipolar line and the precision of the epipolar line. To account for uncertainty of the epipolar line, the
epipolar line used to construct the search region is assumed to have a width. This width is the standard
deviation of the epipolar line position, which is derived from the camera models. The search region is also
constrained by the minimum and maximum elevation range set by the user. Given the object model in the
image and the search space, the object matching component is used to generate a set of hypotheses. The
hypotheses generated by the object matching component have one more constraint. All the corner points of
an object hypothesis must fall within the neighborhood of their corresponding epipolar lines. The verification
component is used to select the best hypothesis.

Figure 9(a) shows the initial projection of an object in an image. Figure 9(b) shows the epipolar lines
associated with each vertex of the projected building object. For each epipolar line, the errors are estimated
based on imaging parameters. In Figure 9(b), none of the epipolar lines go through their corresponding
points in the image due to inaccuracies in imaging parameters. If these errors of the epipolar lines are not
considered, it will be difficult to determine a valid search region. The search region is constructed using the
epipolar lines and the error bounds. A set of plausible corners are shown in Figure 9(c). Finally, the selected
building location is shown in Figure 9(d).

3.2.4 Automatic Copying

Frequently, many objects in the scene might be identical. Suburban scenes often have repetitive instances
of the same buildings. Two objects are identical if they share the same shape, size and orientation. The
object matching component can be used to reduce the effort of copying an object to a different part of the
image. Since the object matching component requires the determination of the search area and the object,
we devised three methods to specify the search region:

e Point Cue

When the goal is to duplicate only one object, a point cue can be used. To specify a point cue, a point
is specified on top of the desired object as it appears on the image. The only requirement for the point
cue is that it must reside within the boundary of the desired object. Figure 10(b) shows an example;
the position of the point cue is specified in black and the computed search region using the point cue
and the known object is shown in white. Only one object can be created from automated copy process
using the point cue. The search region can be computed by finding all possible locations of the object
in the image such that the object overlaps the location of the point cue. The search region is simply
*  the union of all the possible locations.

e Line Cue

When multiple identical objects are aligned along a line, a line cue can be used. A line cue can be
specified by specifying two points on the image, and is an edge. The semantics of the line cue are that
the desired objects must intersect the line. Figure 10(c) shows the line cue specified by the user in
black; the computed search region using the line cue and the known object is shown in white. More
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(c) Detected corners (d) Localized building

Figure 9: Example of epipolar matching
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than one object can be created from the automated copy process using the line cue. The search region
for the line cue can be computed in a similar fashion as the point cue.

o Area Cue

Finally, a polygon can be drawn that serves as the search space. Figure 10(d) shows an example of the
polygon cue. The desired objects must lie wholly within the polygon. The polygon cue must have at
least three points.

After processing by the object matching component, a number of hypothesized object locations are
determined. Most of these hypotheses are erroneous and the verification component is used to compute -
the confidence of each hypothesis. With a point cue, the semantics of the cue specifies the existence of
only one object within the search region; therefore, the hypothesis with the best confidence is selected.
Tor the line and area cues, the actual number of objects in the image is unknown. To reduce the number
of false hypotheses, overlapping hypotheses are pruned. The best hypothesis is used to remove all other
hypotheses that overlap it. When no hypothesis overlaps the best hypothesis, the second best hypothesis
is used to remove all the remaining hypotheses. The process continues until all remaining hypotheses are
non-overlapping. Two hypotheses overlap if their floor footprints intersect in object space.

At this stage, one possibility is to use a threshold to remove non-plausible hypotheses. Based on exper-
iments, we found that a threshold of 2.0 prunes away the majority of false hypotheses. Another possibility
is to return all non-overlapping hypotheses. Since the automated copy AP is to be used in an interactive
environment, it is possible to let users delete false hypotheses. Currently, the threshold approach is used in
SITECITY. ’

3.3 Incorporating Automated Processes For Building Measurements

Once the user delineates the roof of a building, there are three paths in which the automated processes can
be used to generate a building hypothesis.

¢ Single Image Building Detection (SIBD)

Figure 11 shows the process flow for SIBD. In this scheme, a building object is generated and verified
using a single image. The 3D position of the building is computed by epipolar matching of the building
objects in image space.

After the user measures the corner points for the roof, the floor detection process is invoked to es-
tablished the structure and location of the building object in the image. The floor of the building is
assumed to be on the ground. The length of the vertical edges in the image are converted to meters in
object space. Since the roof position differs from the ground only in elevation, the height measurement
allows us to construct the building structure in the local coordinate system. The peak edge detection
process is invoked if the building is a peak roof building.

The estimated 3D structure is projected to other images. Since the elevation of the building is estimated
based on the DEM, or a preset. default ground elevation, and since there are uncertainties in the camera
parameters, the projected structure often does not correspond to the building object in the images.
Therefore, the epipolar matching process is invoked to localize the building in these images.

Once the building object is measured in all the images, the 3D position of the object is re-triangulated
and geometric constraints on the building model are applied.

¢ External Building Verification (EBV)

In this approach (Figure 12), a set of building hypotheses is generated using a single image. Then, all
the available images are used to determine the best hypothesis.

As usual, the roof corners for the building are measured by the user, but instead of returning the best
hypothesis, the peak and floor detection processes return a set of building hypotheses. Each building
hypothesis is projected to other images and epipolar matching is performed to form a set of 3D building
hypotheses. The confidence for each 3D building hypothesis is the combination of all the computed
confidences from the different images. The hypothesis with the highest confidence is selected.
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Figure 11: Process flow for single image building detection (SIBD)

e Multi-Image Roof Matching (MIRM)

After the user measures a roof outline, this method takes the roof outline and performs the epipolar
matching of the roof on other images and generates a set of roof hypotheses in each of the images. For
each roof hypothesis in an image, peak edge and floor detection processes are used to determine a set
of possible building hypotheses in that image. Three-dimensional building hypotheses are generated by
triangulating building hypotheses from at least two images. All possible permutations for combining
building hypotheses in image space need to be considered. The confidence for a 3D building hypothesis
is the combination of the computed confidences from the building hypotheses in image space. The
hypothesis with the highest confidence is selected. This method is shown in Figure 13.

The differences between the three methods can be summarized as follows: SIBD generates and verifies
building hypotheses using a single image, similar to [37]. EBV generates building hypotheses using a single
image, and verifies them using multiple images. MIRM generates and verifies buildings hypotheses using
multiple images similar to the MultiView system described in [51]. In MultiView, the primitive object used
in the matching process is corners, while MIRM matches roof delineations (polygons) in multiple images.
After the corner matching process, MultiView attempts to form three dimensional polygonal descriptions
by hypothesizing and linking edges with corners. In MIRM, the three-dimensional polygons are used to
hypothesize three dimensional building objects.

It should be clear that SIBD has the lowest complexity in terms of combinatorics, and EBV and MIRM
are more complex. Assume that for each roof outline, the peak edge and floor detection processes generate
a maximum of « building hypotheses. For each hypothesis, the epipolar matching process generates a
maximum of 8 hypotheses for each additional image that needs to be verified. Let n be the number of
images used. Using SIBD, a total of @ + (77 — 1) 3D building hypotheses can be generated. Using EBV, a
total of aB(n —1) 3D building hypotheses are produced because for a building hypothesis in the image where
it was hypothesized, 8 building hypotheses are generated using the epipolar matching process for the other
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Figure 12: Process flow for external building verification (EBV)

(n— 1) images, producing a3 3D building hypotheses for each of these images. For MIRM, # roof hypotheses
can be generated from a single roof outline for each additional image. Each roof hypothesis can generate
another « building hypotheses, resulting in o image space building hypotheses for each additional image.

Combining image space building hypotheses in all possible ways gives E?;Zl < K : 1 ) (aB)t 3D building

hypotheses that need to be evaluated and is exponential in the number of images in the worst case.

The preceding analysis considers the worst case scenario, as the values of @ and 8 vary across images.
Nonetheless, our experiments show that both MIRM and EBV are currently slow due to combinatorics, and
for reasons of speed, only SIBD is currently used within SrTeCiTy. The main drawback of using SIBD is
that the user needs to select the images with care, because it 1s not always possible to extract heights and
find floors in vertical images, and often, walls and floors might be occluded in one view and not in another.

3.4 Measurement Errors

Due to uncertainty in the imaging parameters and the image measurements, the calculated 3D position of the
measured points will also be uncertain. In order to assess the quality of these measurements, a least-squares
optimization with error propagation [41] is implemented to quantify the precision of all 3D measurements.
The least-squares approach requires as input an estimate of the initial measurement precision.

There have been numerous attempts to quantify image measurement precision [16; 23; 58; 57; 56]. These
reports show that the measurement precision on a digital image depends on Signal to Noise Ratio (SNR),
quantization level and pixel size of the digital image. Since it is difficult to derive the SNR for an arbitrary
image, and the quantization level is typically restricted to 8 bits per pixel for grey scale images, only the
effect of pixel size is considered. The size of the pixel on a monitor is affected by two factors. The first is
the resolution of the scanning process, in which an image on film is discretized into a digital image. The
other factor is the displayed resolution, where the pixels on the screen can be artificially enlarged, and
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values between pixels are interpolated to increase the resolution of the original digital image. Since an end
user often does not have control of the scanning resolution, SITECITY only considers the effect of displayed
resolution on the accuracy of image measurements. The initial image measurement error for a measurement
is based on the classification of the measurement. Every measurement is classified into one of the following

four categories:

e User Input

A measurement labeled user input is manually measured by users. The measurement error of this type

of measurement is defined to be .
Image Sigma

Zoom Level ~
Image Stgmais a measure of the estimated human measurement error in terms of pixels at a zoom level
of 1 and is a user adjustable parameter. Zoom Level is a measure of the display resolution in which
a measurement is performed; more details can be observed at higher zoom level. At lower resolutions
(lower zoom level), the expected precision of user measurements is lower than at higher resolutions.

¢ Automated Process

This measurement was performed by an automated process and the measurement error depends on the
accuracy of the process. If the process performs on a sub-pixel level, the measurement error can be less
than 1 pixel. The measurement error of automated processes also depends on the quantization level
and SNR of an image. The measurement error denotes the geometric accuracy of the measurement,
not the correctness or confidence of that measurement.

e Initial Position

Sometime, SITECITY has to set the position of a required measurement at some initial position, and
when 1t occurs, the measurement is classified as Initial Position. For example, when the users copies
a point without specifying its location, SITECITY has to display the point somewhere on the image.
1If there is no information about the nature of the point, it will set the position of the point to some
default location and set the measurement error to some appropriately large value. In the current
system, a measurement error of 100 pixels is used. This is required to estimate the uncertainties of
the triangulated 3D objects; a 3D object whose image measurements have larger measurement error
should be more uncertain.

¢ Invisible

In some cases, a point on a 3D object might be occluded in some images; the location of the point
is inferred and cannot be directly measured. The measurement error of such a point need not be
larger than the dimensions of the occluding region because if the measurement error is larger than the
occluding region, then it cannot be occluded by the occluding region. In SITECITY, the image sigma
for the invisible point is defined to be the greatest distance of the point from any point on the occluding
region. Let P be the invisible point, ) be the occluding region and @ = {q1,492,-..,¢n} is a finite set
of points. Then the measurement error for P is

MAX(||P — qll),Yax € Q.

Every measured image point can be assigned one of the above four classifications. The image sigma
for each point, derived from these classifications, is used as an initial error estimate for the least-squares
error propagation to assess the precision of the triangulated 3D measurement. Table 1 shows an example of
measurement classifications using the manually measured building in Figure 14. The building consists of eight
points and was manually measured on two images. The standard deviation matrices for each triangulated
three-dimensional point are also shown to illustrate the effect of the image sigma on the precision of the 3D
point. Point 3 is invisible in both images, hence, the triangulated 3D point for point 3 has poor precision and
its location in object space appears to be inaccurate. The triangulated building is shown in Figure 14(c),
and it does not agree with our expectation of the shape of the building. Therefore, geometric constraints
are used to apply knowledge about the shape of the model in the triangulation process.
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3.5 Geometric Constraints

Often, despite careful image measurements, the three dimensional object calculated by triangulating multiple
image measurements does not conform to our precise expectations for the real 3D object. In addition,
direct image measurements are sometimes impossible due to occlusions or shadows. Therefore, geometric
constraints [35] that incorporate knowledge about the object shape are utilized to produce a more accurate
3D model.

Tigure 14 shows an example of a rectangular building object measured in three images. Even though
the measured building points in the images are perceived to be correct, the triangulated three dimensional
building does not have the expected shape. One of the floor corner points, point 3, has significant error, since
it is not visible in any of the images. As expected, the covariance of that point is relatively large compared
to other visible points (See Table 1). Figure 14(d) shows the 3D building model after the application of
geometric constraints, and the precision for the constrained model is also shown in Table 1. These types
of geometric constraints are intrinsic constraints. Their purpose is to constrain the measured object to the
geometric model of the object. The set of intrinsic geometric constraints for each building type is different,
and they are derived from the definition of the building model. For example, a flat roof building model has
the following intrinsic constraints: ‘

1. All the points on the roof must be coplanar and horizontal.
2. All the points on the floor must also be coplanar and horizontal.
3. Every vertical line on the wall must be vertical.

Another application of geometric constraints is the construction of complex objects by composition of
a few primitive object types; this alleviates the need to define a model for every type of object one can
encounter. These types of constraints are called external constraints; examples are shown in Figures 15
and 16. The complex building is composed of 4 sections. Two smaller rectilinear buildings, A and B, sit on
top of the main rectilinear building, C and a smaller rectilinear building, D, is adjacent to building C. Without
geometric constraints, the measured building can have gaps or intersections and its components may not
be properly aligned. The geometric constraints are specified (Figure 15(d)) such that the floors of building
A and B are coplanar with the roof of building C. The adjacent walls and the connecting walls between
buildings C and D are also coplanar. Figure 16 shows the 3D building before and after the application of
geometric constraints.

3.6 System Parameters

One requirement for the automated processes according to the criteria described in Section 2.2 is to have as
few parameters as possible. Due to the nature of the problems, it is difficult to design image understanding
algorithms to be free of parameters. Therefore, we have decided to hide most of the unavoidable parameters
from the user. These hidden parameters are hardwired into SITECITY and are defined throughout the
descriptions of the automated processes and their components. Only four parameters are alterable by users.

e Image Sigma

This parameter determines the expected error in a user measurement on the image at its original
resolution (See Section 3.4). The units for image sigma is pixels.

e Error Propagation Sensitivity

Error propagation sensitivity defines the trustworthiness of the uncertainty estimate based on camera
parameters. This error is used to construct search regions in the automated processes. Ideally, the error
bound should be as small as possible while still remaining valid for the entire image. The estimated
error is multiplied by the error propagation sensitivity to produce the error value used by the automated
processes. If the error propagation sensitivity is greater than 1.0, then SITECITY treats the results of
error propagation as underestimates of the true error. If this value is less than 1.0, the system treats
the error propagation results as overestimates of the true error.
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Point fhrad1 fthrad3 triangulated 3D constrained 3D
D Classification | Classification standard deviation standard deviation
’ ' matrix . matrix

3.00 0.35 0.57 1.80 0.16 0.29

0 user input invisible 0.35 270 0.57 0.16 1.70 0.28
‘ 0.7  0.57 8.50 0.29 028 4.00

3.00 034 0.57 1.80 0.14 0.28

1 user input user input 034 270 0.56 0.14 170 0.27
0.567 0.56 8.50 0.28 0.27 4.00

3.10 0.35 0.59 190 0.15 0.30

2 invisible user input 0.35 2.70 0.55 0.15 1.70 0.27
0.59 0.65 8.50 0.30 027 4.00

580 0.39 0.89 1.90  0.08 0.36

3 invisible invisible 0.39 2.80 0.48 0.08 170 0.17
0.89 0.48 18.00 0.36 0.17 4.00

3.00 0.35 057 1.80 0.15 0.28

4 user input user input 0.35 2.70 057 0.15 1.70 0.28
0.57 0.57 8.40 0.28 0.28 3.70

3.00 0.34 0.57 1.80 0.14 0.27

5 user input user input 0.34  2.70 0.56 0.14 170 0.27
0.57 0.56  8.40 0.27 027 370

3.00 0.35 0.59 1.90 0.15  0.29

6 user input user input 0.35 2.70 0.55 0.15 170 0.26
0.59 0.55  8.40 0.29 026 3.70

3.00 036 0.59 1.90 0.08 0.30

7 user input user input 0.36  2.70  0.57 0.08 170 0.24
' 0.59 0.57 8.40 0.30 024 3.70

Table 1. Example of measurement errors
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(a) Measurements in fhrad1 (b) Measurements in fhrad3

(¢) Triangulated 3D building (d) Result of applying intrinsic geometric constraints

Figure 14: Example of building measurement without geometric constraints
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(a) Measurements in j24 (b) Measurements in j2

coplanar
constraints coplanar
constraints A /3
D
coplanar coplanar coplanar
constraints constraints constraints
Side View Front View
(c) Measurements in j4 (d) External geometric constraints

Figure 15: Example of complex building for external geometric constraints
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(a) Before applying external geometric constraints (b) After applying external geometric constraints

Figure 16: Front view of the complex building before and after external geometric constraints

¢ Minimum Elevation and Maximum Elevation

The minimum and maximum elevation define the elevation range of the scene. These two values can be
interpreted in two ways. When applied to epipolar matching, these values define the range of heights
in which to search for a match relative to the default ground elevation or the DEM elevation value.
When applied to floor and peak detection, the difference between the maximum and minimum elevation
defines the maximum building height.

3.7 Photogrammetric Tools

Three of the system parameters can be estimated using the photogrammetric tools provided in SITECITY. In
addition, these photogrammetric tools can be used to sanity check the image orientation parameters. These
photogrammetric tools operate on the photogrammetric control points, manually measured as correspond-
ing points in each of the images. Photogrammetric control points are point objects that are used by the
_photogrammetric functions built into SITECITY. They are indistinguishable from point objects, except that
point objects do not interact with the photogrammetric functions.

The following methods are used to sanity check the image orientation parameters:

¢ Displaying Overlapping MBR: This method takes the corners of the image in the window where
the menu was activated and projects the corner points to other images. The elevation of the corner
points are assumed to be at the ground level, defined by either the DEM or the default elevation value.
This method is useful for determining image overlap for multiple images and checking the correctness
of the ground elevation value.

¢ Displaying Epipolar Line and Error Bound: This method calculates and displays epipolar line
and error propagation for all the measured photogrammetric control points. For each control point, the
epipolar line, the zero position and a bounding control polygon representing the error of the epipolar
line are computed and drawn. The zero position is the image to world projection of the control point,
and represents the zero disparity location. The length of the epipolar line represents the minimum and
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mazimum elevation range. The size of the bounding polygon shows the uncertainty of the epipolar line
projection; a large polygon means a large expected error in the position of the epipolar line.

Wworld to Image Projection: This method projects the triangulated 3D object to all images.
The 3D objects should project to the appropriate locations in the images. The difference between
the projected 3D object and the actual image object is the consequence of inaccuracies in the camera
model and measurement errors.

The following two methods assist users in defining system parameters:

o Compute Error Propagation Sensitivity: This function uses the control points to compute the
system parameter error propagation sensitivity. This is accomplished by adjusting the error propagation
sensitivity value for all images such that all the control points lie within the estimated position and
error bound.

¢ Compute Minimum and Maximum Elevation: The same technique can be applied to the
calculation of the minimum and maximum search elevation, with respect to the ground as given by a
Digital Elevation Map (DEM) or a default elevation.

3.8 Summary

A set of automated processes is designed and implemented to satisfy the criteria of automated processes
defined in Section 2.2. The automated processes are modular and flexible enough to be used for a variety
of applications. SITECITY only requires four intuitive parameters. Combined with the photogrammetric
functions, a method is devised to estimate these parameters interactively. Since Image sigma estimates
the accuracy of a measurement performed by a user, its value needs to be determined by individual users.
Typically, the value of one pixel is used. The automated processes are designed such that they are part of the
measurement processes and errors of the automated processes should not, in theory, increase the amount of
work for the user. The remaining issue is the determination of the performance of the automated processes
and the usability of SITECITY to test this theory.

4 Evaluation of the Semi-Automated System

A semi-automated system can be broken down into two components, the user interface aspects and the
automated processes. For the purpose of this paper, we are interested in two aspects of a semi-automated
system: the performance of the automated processes and the impact of the automated processes on the
semi-automated system. The first issue addresses the validity of the automated processes, and the second
one evaluates the usefulness of the automated processes in SITECITY. Based on these two issues, we pose
the following three questions which we will attempt to answer in the following sections:

1. Do the automated processes introduce bias into the measurement processes?

One concern about the semi-automated approach is that it might induce a bias in measurements. Since
the purpose of the automated processes is to delineate buildings, does a user become lazy in the process
and stop correcting mistakes, however minor, made by the automated processes?

This question can be answered by comparing points measured using the fully manual approach and
the semi-automated approach; this analysis is presented in section 4.4.

2. Given partially delineated building structures, do the automated processes detect and
delineate the buildings correctly?

In the literature for the fully automated building detection systems, there are currently two approaches
for evaluating the performance of a system. The first method is the pixel and voxel based evaluation [37].
In this approach, image space or object space is discretized into pixel or voxel units. Each pixel/voxel
unit is labelled either as a building or background pixel/voxel using ground truth. The same labelling
process is performed with buildings hypothesized using an automated system. Both sets of pixel/voxel
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labellings are compared to evaluate the performance of the automated system. The dimensional method
described in [50] concerns the delineation of the detected building objects in object space. A 3D
ground truth building is matched to an automatically generated 3D.building hypothesis based on shape,
dimension and overlap. If a hypothesized building cannot be matched to a ground truth building, it
is considered to be an error. Once a building hypothesis is matched to a ground truth building, the
dimensions of the building object, such as length, width and height, and the position and orientation
of the building are compared between the ground truth building and the hypothesized building.

However, these two metrics are not appropriate for the evaluation of a semi-automated system. The
pixel/voxel approach is concerned mainly with the detection rate, whether or not a pixel/voxel is
classified correctly by a system. It does not provide a good evaluation for building delineation. In
addition, since the semi-automated system is given a partially delineated building, the detection rate
for the semi-automated system should be essentially good. On the other hand, the dimensional ap-
proach is performed in object space and attempts to evaluate the accuracy of 3D building hypotheses.
Dimensional discrepancies in object space are a direct consequence of the measurement errors in image
space and are affected by the errors in the camera models. It will be difficult to isolate errors in
the automated processes from the measurement errors and errors of camera models. In addition, the
automated processes in SITECITY are primarily image based algorithms. Therefore, it is preferable to
perform the evaluation of building delineation in image space. '

For S1TECITY, another method is proposed to judge the accuracy of the building detection and de-
lineation. In this approach, we assume that every point on a hypothesized building can be matched
to every point on a ground truth building without ambiguity; i.e., there exists a one-to-one matching
between all ground truth and hypothesized points. The discrepancy between the matched ground
truth and hypothesized points is used to determine the accuracy of the automated building detection
and delineation. The analysis of the automated processes in SITECITY for delineation of buildings is
presented in Section 4.5.

3. Is the inclusion of the automated processes helpful to users?

A full-fledged usability analysis for a semi-automated system is difficult and is beyond the scope of
this paper, because many ergonomic and user interface issues are involved. However, assessing the
effects of the automated processes in a fully manual system allows us to determine the usability of
the automated processes within a system. To accomplish this analysis, twelve subjects were used to
measure three scenes using both the semi-automated and the fully manual system. The fully manunal
system is identical to the semi-automated system, except that the automated processes in SITECITY are
deactivated. By analyzing the tasks, execution, and duration of these measurements, the impact of the
automated processes can be determined, and allows us to identify weaknesses of the current system.
This analysis is described in Section 4.6.

To accomplish these analyses, human subjects are needed to perform measurement tasks using both the
semi-automated and the fully manual system. The use of human subjects in an experiment presents numerous
pitfalls that can confound the results of an experiment. Therefore, we propose the following guidelines to
assist the experimental design for the evaluation of semi-automated feature extraction systems.

o The fully manual system should be identical to the semi-automated system, except that the automated
processes are deactivated. If the fully manual system and the semi-automated system have different user
interfaces, a different set of unit tasks might be performed. In this case, the performance evaluation
based on the task analysis approach might not be appropriate because unit tasks from different systems
might have different costs.

e A system can be biased toward a particular type of user or imagery. To reduce bias due to variations in
users, as many subjects as possible should be used in the study. Likewise, a variety of images covering
a wide range of viewing angles and scene content should be used to avoid bias towards a particular type
of imagery.

e According to the definition of user cost presented in Section 2, the usability of the automated pro-
cesses can be determined by analyzing the operations of users. Therefore, the system will need to be
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instrumented to record every operation during the experiment. Ideally, every action of a user during
the experiment should be recorded. By analyzing the tasks, execution, and duration of unit tasks
performed during the experiment, the impact of the automated processes can be determined.

e In the feature extraction task, different users might extract different features when given the same
image. This will introduce difficulties when the extracted features are to be compared. In addition,
some users may spend more time to achieve better accuracy in the feature extraction tasks than other
less diligent users. The user cost between these two users will not be comparable because results
of differing quality are produced. Therefore, the subjects will need to be instructed to perform the
measurements and the extraction tasks at the same standard of performance.

4.1 Description of the Scenes

Three scenes were selected for the experiments. One scene with a single building was designed as an example
allowing a subject to familiarize himself with SITECITY. Two of the scenes are sparsely populated, with one
of them having many buildings of similar shape. These scenes are identified and described below.

e Radto-A

Figure 17 shows a lone peak roof building model in four images. This scene is part of the Fort Hood
aerial images distributed under the RADIUS program. It consists of two near-vertical and two oblique
shots. The two oblique shots are designated with ob and wob (wide oblique) suffix. The primary use
of this scene is to familiarize the subjects with SiTECITY.

e Radth

Figure 18 shows the radtb scene which is part of the four Fort Hood aerial images. There are eleven
peak roof buildings and 1 rectilinear flat roof building visible in all four images. Of the 11 peak roof
buildings, one row of seven buildings has the same size and another row of four buildings have shorter
height. .

¢ Radtl0

Figure 19 shows the radt10 scene. Once again, this scene is part of the four Fort Hood aerial images.
This scene consists of four rectilinear flat roof buildings and three peak roof buildings. There are
inter-building occlusions in the scene, where one building partially occludes another building.

4.2 Description of the Methodology

For the experiment, twelve subjects were used. Eight of the subjects are undergraduate students working
in the Digital Mapping Laboratory, and others are full-time members of the lab. Many of the subjects
are familiar with the building detection tasks, however all the subjects are novices to SITECITY. For each
subject, approximately half an hour was spent training them how to use SITECITY. Each subject was given
the same instructions. Subjects were asked to measure buildings. A building is measured in SITECITY by
measuring the vertices of the building in images. Subjects were asked to measure these vertices as accurately
and as fast as possible. ‘

Each subject measured the buildings in radt9, radt5 and radt10 twice, with and without the automated
processes. The radt9 scene is used for training purpose. In the semi-automated system, subjects do not have
control over the automated processes. To reduce any bias caused by measurement order, the subjects are
randomly broken into four groups, as shown in table 2. Each group contains three subjects, two of which are
undergraduate students. The differences in the groups are the order in which radtb and radt10 scenes are
measured and for a given scene, whether the fully manual (m) or semi-automated (ap) approach is performed
first. The reason for each subject measuring a scene using both methods is to account for variations in the
users. Some users are more meticulous, while others are lazy; it is difficult to compare the performance for
different subjects when they use different methods, especially when the size of the subject pool is small. We
hope that by having subjects perform measurement tasks using both methods, some user variations might
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(c) Radt5s (d) Radt5wob

Figure 18: Scene 2 : Radth

33

Exactware Exhibit 1004
Page 0038 of 0083



(c) Radt100b (d) Radt10wob

Figure 19: Scene 3 : Radt10
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Group A | Group B | Group C | Group D |
radt9-A(m)| radt9-A(ap)| radt9-A(ap)| radt9-A(m)
radt9-A(ap)| radt9-A(m) radt9-A(m)| radt9-A(ap)

radt10(m)| radtlO(ap) radtb(ap) radt5(m)

radt10(ap)] radtl0(m) radt5(m)] radt5(ap)
radtb(ap)] radtb(m)| radtlO(m)| radtl0(ap)
radt5(m)| radtb(ap) radtlO(ap) radtl0(m)

Table 2: Measurements performed by four groups of subjects

be reduced. However, measuring a scene twice introduces another bias: a subject will become familiar with
the scene, and should be able to perform the second set of measurement tasks with more efficiency. To'
account for this bias, half of the subjects measure a scene using the semi-automated process first, then the
fully-manual approach. The other half perform the measurements in the opposite order. Finally, the order
of the scenes are also swapped. '

For the semi-automated measurements, a set of correspondence points were measured before the exper-
iment in order to determine three of the four parameters used by SITECITY; error propagation sensitivity
and mintmum and marimum elevation. These parameters are computed using the methods described in Sec-
tion 3.6. The same set of parameters are used throughout the experiments and they are shown in Table 3.
One of the system parameters, image sigma, is set to 1.0 for all experiments. To ease the task of comparing
building measurements, subjects were given a hard copy of the wire frame representations of the buildings
in the scene and were told to measure buildings so that they had the same shape. The wire frames of the
building in the hard copies were not overlaid over the images.

Error Minimum | Maximum | Number of

Propagation | Elevation | Elevation Control
Image Sensitivity (meters) (meters) Points
radt9 0.439580 —4.164819 | 14.212819 6
radt9ob 0.590738 —4.164819 | 14.212819 6
radt9s 0.306422 —4.164819 | 14.212819 6
radt9wob 0.488199 —4.164819 | 14.212819 6
radtb 0.622361 —5.546944 { 17.085346 8
radtbob 0.596222 —5.546944 | 17.085346 8
radtbs 0.329514 —5.546944 | 17.085346 8
radtbwob 0.651511 —5.546944 | 17.085346 8
radt10 0.726335 | —10.387142 | 16.697507 7
radt10ob 0.845945 —-10.387142 | 16.697507 7
radt10s 0.657902 —10.387142 | 16.697507 7
radt10wob 0.708745 —10.387142 | 16.697507 7

Table 3: Parameters used in the semi-automated measurements

4.3 Establishing the Ground Truth

In order to evaluate the accuracy and precision of t_he delineation of an automated building detection system, a
ground truth is needed to compare results. In previous studies {37, 50], the ground truth used in the automated
building detection system was typically generated by. one user. However, the ground truth generated by one
user will vary from that generated by another user. Slnfle a user is part of the the semi-automated system, it
becomes difficult to assess the differences between semi-automated delineation and fully manual delineation
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using this approach.

In our experiment, a building in an image is measured by numerous users. A building is measured by
locating the image positions of building vertices in all available images and a measurement is the image
position of a building vertex in an image. A ground truth in image space can be established by determining
an average position of a point using multiple measurements. An advantage of generating a ground truth
using multiple measurements is the ability to generate an error measure for each ground truth position. This
error measure, expressed as a covarlance matrix, allows us to quantify the accuracy and precision of any
individual measurement compared to the mean, or the average position. To establish the average position
and the covariance of a building point, corresponding building points from different measurements need to
be determined. Since all buildings are measured with the same shape, it is trivial to establish an one-to-one
correspondence between all the points. Once the correspondence of image point measurements is established,
the average position and covariance of the point can be calculated. Figure 20 shows the covariance ellipse
(drawn as a diamond shape) for measured building points on all four images for the radt9 scene. The average
position of these measurements is the center of the ellipse (diamond) and the wireframe building shown in
Figure 20 is drawn using the average positions. The size of the ellipse denotes the uncertainty of an image
measurement and is drawn so that the boundary of the ellipse represents a distance of one standard deviation
away from the mean. Figure 20 suggests that the measurement uncertainty of a point in an image is related
to the quality of a corner in an image. When there is good contrast for a point, the covariance ellipse is
small. This suggests that most users agree on the position of this point. When there is ambiguity, the size
of the covariance ellipse increases, denoting more disagreement among users. If a point is occluded, the size
of the covariance ellipse is larger than any other visible points.

To determine the precision of a ground truth measurement, the area of the covariance ellipse of one
standard deviation is defined to be the measurement uncertainty. If the area, or the measurement uncertainty,
for a point is large, the group of measurements for that point is less precise. The occluded points are not
used in any of the measurement statistics because it is meaningless to talk about precision of a measurement
when the point is not measurable. The measurement uncertainties for all points are plotted as a cumulative
histogram in Figure 23(a). Each point on the graph represents the percentage of points from the three test
scenes having measurement uncertainty less than the values shown on the x axis. For example, the figure
show that approximately 80% of measured points have measurement uncertainty of less than 10 square pixels.

4.4 Effects of Automated Processes on Measurement Accuracy

To evaluate the effect of the automated processes on the precision of measurements, the measured points are
partitioned according to the method of measurements, fully manual or semi-automated. The measurement
uncertainty for these two sets of measurements are shown in Table 4 and the average measurement uncertainty
for each scene and method is plotted in Figure 23(b). The overall average measurement uncertainty, 10.48
square pixels, for all visible points is quite small, which corresponds to the area of a circle whose radius
is 1.8 pixels. The radius of the equivalent circle of the covariance ellipse is another way to visualize the
measurement uncertainty . Comparing to other scenes, measurement uncertainty for points in the radt10
scene is extremely large. This can be explained by noting that many corner points on the roofs are not
visible due to poor imaging and photometry, especially in images radt10ob and radt10wob.

Our results show that the semi-automated system tends to produce more consistent measurements than
the fully manual approach, because the average and standard deviation of measurement uncertainty for
points measured using the semi-automated system is consistently less than the fully-manual system. This
means that there are less variations in measurements performed by different users when the seml—a,utomated
system is used and does not necessary mean that the measurements are better.

However, this consistency might be attributed to a bias introduced by the semi-automated system. To
evaluate possible bias of the measurements between the semi-automated and the fully manual approaches,
the distance vector between the average positions estimated by the semi-automated and fully manual system
is used. For each point in the scene, the distance vector between the position of the same point measured
by a subject using the semi-automated and the fully manual approaches are computed and plotted as a
scattergram for each subject in Figures 21 and 22. The differences between the average positions of the
semi-automated and fully manual measurements for all subjects are plotted in Figure 23(c).
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(a) Radt9-A

(c) Radt9ob-A (d) Radt9wob-A

Figure 20: Covariance Ellipse For Radt9-A

37

Exactware Exhibit 1004
Page 0042 of 0083



H
&
¥

2000 -15.00  -10.00

dy (pixel)

1000 15.00 2000 2000 35,00 -10.00 000 15.00 .00 2000 5w . T
dx (pixel) - dx (pixel} dx {pixel}
10.00 ~10.00 ‘
15.00 15.00 -15.00
-20.00 -20.00 ~20.00
(a) AL (b) A2 (c) A3
§ 20,00 ':.: 20.00 3 20.00
i & g
g .
T 500 ¥ 15.00 ¥ 15.00
10.00 10.00 10.00
2660 ~15.00 005 15.00 2000 -2000 1500 -16.00 7000 15.60 2000 20060 1500  -10.00 ¢ 7650 15.00  20.00
dx (pixel) dx (pixel) N dx (pixel)
10.00 ~10.00
15.00 15.00 “15.00
2000 -20.00 2000
(d) B1 (e) B2 (f) B3
T 2000 3 2000 T 2000
£ X K
s & g
Ny
T s & 15.00 ¥ 15.00
10.00 10,00 10.00 .
* s
at,
N
2000 1500 506 20.00 20600 -15.00 000 1500 2000 2000 1500 -10.00 B0 T 500 2000
dx (pixel) dx {pixef) e dx (pixal)

-10.00!

-15.00

-20.00

(g) C1

-15.00

-20.00

(h) C2

-15.00

-20.00

(i) C3

Figure 21: Difference vectors between fully manual and semi-automated measurements for each subject
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Figure 22: Difference vectors between fully manual and semi-automated measurements for each subject

The distribution of the distance vector appears to be evenly distributed and no significant bias can be
observed. Furthermore, the absolute distances between these two sets of measurements are plotted as a
histogram in Figure 23(d); each rectangle represents the percentage of points whose distance between the
semi-automated and the fully manual measurements is less than the distance shown in the x axis. This
figure shows that approximately 80% of all measured points differs by less than 1 pixel. The few points
with large differences consists of images points that are occluded by shadows, trees or other buildings, or the
* locations of the image points that are hard to measure due to poor image quality. These variations are to
be expected. Based on these results, we conclude that there is no significant differences in the measurement
accuracy between the semi-automated and fully manual system.

.Median

Scene Sample Size Average Standard Deviation

semi-automated 701 7.06(1.50) 19.16(2.47) 1.30{0.64)
fully-manual 701 11.44(1.91) 39.20(3.53) 2.10(0.82)
Total 703 10.48(1.83) 99.04(3.04) 1.97(0.79)
radt10(ap) 244 12.58(2.00) 24.60(2.80) 3.81(0.95)
radt10(m) 244 92.45(2.67) 63.34(4.49) 3.13(1.00)
radt10 scenc 544 50.61(2.56) 16.09(3.83) 3.56(1:06)
radtb(ap) 1 4.32(1.17) 15.27(2.20) 1.04(0.58)
radt5(m) 421 5.56(1.33) 10.46(1.82) 1.93(0.61)
radtb scene 423 5.25(1.29) 9.36(2.98) 1.82(0.76)
radt9(ap) 36 1.64(0.72) 2.50(0.89) 0.72(0.48)
radt9(m) 36 5.65(1.34) 17.68(2.37) 1.15(0.61)
radt9 scene 36 3.33(1.03) 7.39(1.53) 0.92(0.54)

Table 4: Measurement uncertainty in square pixels (radius of the equivalent circle in pixels)

4.5 Performance Analysis of Automated Processes

In this section, the performance of the automated processes is considered. Since the verification component
described in section 3.1.1 is used to select and validate building object hypotheses for all automated processes,
a detailed analysis concerning the sensitivity and performance of the verification component is presented first.
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Figure 23: Analysis of measurements precisions and bias
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Next, the performance of t‘he ﬁqor anc.1 peak edge Fletection processes is ev'aluated by using the manually
measured roofs as the starting point. Finally, the epipolar matching process is evaluated using the manuall
measured buildings. The inputs to the automated processes are extracted from measurements performed by
all subjects. The automated copy process is not evaluated for two reasons. First, the epipolar matching anzll
- automated copy share the same components, and hence the evaluation of the epipolar matching process and
~ the verification component should provide a reasonable assessment of the automated copy process. Secondly.
~ the automated copy process requires a cue measured by a user. The size and shape of the cues can inﬂuence’
the results of the automated copy process. This variation in the shape and size of the cues is difficult to
- control in the process of evaluation.

- 4.5.1 Analysis of the Verification Component

. The goal of the verification component is to compute a confidence value for a building hypothesis, and the
evaluation of the verification component is accomplished by comparing confidence values for the ground
© . truth and false hypotheses. The evaluation is broken down into three categories: the ability to discriminate,
- sensitivity to measurement error and sensitivity to displacement error. The ability to discriminate category
~ evaluates the ability of the verification component to differentiate between ground truth building objects
 and false hypotheses. This is determined by comparing the confidence values of the ground fruth building
 objects and randomly generated false building objects. The next two categories evaluate the sensitivity of
~ the verification component due to differences in the delineation of the building object. The sensitivity to
_ measurement error category analyzes the response of the verification component to differences in the position
of individual building vertices. The sensitivity to displacement error category determines the effect of a rigid
- body translation on the verification component. Detailed analyses of these three categories are presented
below:

1. The Ability to Discriminate

A perfect verification process should be able to select the correct building hypothesis among a set of
false solutions. In other words, the verification function that computes the confidence of a hypothesis
should give the maximum response {or maximum confidence) if the hypothesis is correct, and the
minimal response if the hypothesis is false. The maximum confidence for the verification component
in SITECITY is 4.0 and the minimum confidence value is 0.0 as described in Section 3.1.1.

For this experiment, a set of manually measured building objects for scene 2 (Figure 18) and scene 3
(Figure 19) are used. For each manually measured building, 20 buildings of the same building type
are randomly generated and placed in the image. Figure 24(b) shows a set of 20 random hypotheses
generated using the manually measured building in Figure 24(a). The size of the randomly generated
buildings can range from one half to twice the size of the manually measured building, and the position
and orientation of the generated buildings are determined randomly. The random hypotheses do not
overlap any of the manually measured buildings by more than 50% in image space. The confidence
values computed using the verification component for the random hypotheses and the corresponding
manual measurements for all images of the radtb and radt10 scenes are plotted in Figures 25 and 26.
For each trial, the confidence values of a manually measured building and a random hypothesis are
computed and plotted.

For the ideal verification component, the separation between the confidence values computed using
the manual measurements and the random hypotheses should be maximum. Even though none of the
graphs exhibits the ideal behavior, the separation between the two sets of confidence values is clearly
distinct. The result of this experiment is summarized in Table 5, where the average and standard
deviation of the confidence response for both the manual measurements and the random hypotheses
are shown.

Figures 25 and 26 show the comparison of the computed confidence values for the manual measurements
and the random hypotheses for both the radtb and radt10 scenes. These two figures show the depen-
dency of the verification component on images and scenes. While confidence values for the random
hypotheses concentrates around 1.0 for both scenes, the confidence values for the manual measure-
ments depends on both the images and the objects. For the radt5 scene, the confidence values for the
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(2) Manually measured building in radt5 image (b) 20 random hypotheses

Figure 24: An example of random building hypotheses for the discrimination experiment

manual measurements varies between 1.5 and 3.0. It performed uniformly worse on the radt10 scene.
The verification component will not be able to differentiate the manually measured buildings whose
confidence values is below 1.5 from the random hypotheses shown in Figure 26. These poor confidence
values can be explained by noting that inter-object occlusions, where one building object occludes all
or parts of another building object, exist for those buildings in the radt10 scene. Since the verification
component does not account for inter-object occlusions, it is expected to have worse performance with
this scene. In addition, the image quality of the radtl0 images is worse than the radtb images. The
buildings are blurry and the contrast is poor. The poor performance of the verification component
on the radt10 scene is reflected later in the evaluation of the automated processes and the usability
analysis.

The results of this experiment allow us to identify a threshold for determination of the good versus bad
building hypotheses and problems with the verification component. While the verification component
produced consistent confidence values for the random hypotheses, the confidence values for the man-
ually measured buildings depends on a variety of factors. Collecting and analyzing a set of manually
measured buildings with poor confidence values enables us to understand and improve the verification
component. A threshold of the confidence value that discriminates between the good and bad building
hypotheses involves tradeoffs. Figures 25 and 26 suggested that a threshold value between 1.5 and 2.0
will retain most of the good hypotheses while removing majority of the bad hypotheses. For SITECITY,
we have decided to be cautious in not allowing too many false hypotheses and set the threshold value
to be 2.0.

Sensitivity to measurement error

There are often variations in the placement of the measured points for both the manual and automated
processes. There variations can be caused by the resolution of the image, the differences in the edge
operators and the inherent differences between human operators. An ideal verification component
should be able to tolerate small perturbations in measurements.

To evaluate the sensitivity of the verification component due to measurement variations, every point
on the manually generated building object is perturbed randomly. The perturbed object is evaluated
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Figure 25: Confidence value computed using the verification component on ground truth buildings and
random hypotheses for the radth scené
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Figure 26: Confidence value computed using the verification component on ground truth buildings and
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Ground Truth Random Hypotheses

Average Confidence Average Confidence

Image (Standard Deviation) | (Standard Deviation)
radt10 1.90(0.82) 0.69(0.28)
radt100b 1.52(0.51) 0.96(0.24)
radt10s 1.84(0.63) 0.78(0.28)
radt10wob 1.93(0.70) 0.90(0.28)
radts 2.20(0.34) 0.74(0.30)
radt5ob 2.70(0.45) 1.00(0.25)
radt5s - 2.41(0.30) 0.85(0.25)
radt5wob 2.95(0.23) 1.00(0.26)

| Ideal Responses || 4.00(0.00) | 0.00(0.00) |

Table 5: Summary of discrimination expériment

using the verification component to generate a confidence value. The confidence value of the perturbed
object is plotted with respect to the perturbation distance to show the sensitivity of the verification
component. An ideal verification component would return the maximum confidence value when the
perturbation distance is 0, and monotonically decreasing as the distance increases.

The building object shown in Figure 17 is used for this experiment. Every point on the building object
is offset from the manually measured position with a random vector, for a total of 500 trials. The
result of this experiment is shown in Figure 27. Each graph shows the average perturbation distance
of the randomly perturbed building in the x axis and the confidence value of the perturbed building
object in the y axis. These graphs show the response of the verification component in SITECITY to
random perturbations of the ground truth object. Overall, the plots of distances versus the confidence
values show the monotonically decreasing trend of the verification component despite local variations.
It appears that as the distance grows larger, the confidence value approaches the average confidence
values computed for the random hypotheses presented in Figure 25.

3. Sensitivity to displacement error

Another way to evaluate the sensitivity of the verification component is to consider the effect of a
rigid translation of the building object in a image. What would be the behavior of the verification
component if the measured object is translated some distance away from its measured position? In
this experiment, the building object shown in Figure 17 is systematically translated in both the row
and column direction in all four images. The range of the translation spans from —10 to 10 pixels
away from the ground truth location. The confidence for the building object after each translation is
computed with the verification component.

The responses of the verification component are shown in Figure 28 and the confidence values are
encoded as a confidence image, where a brighter pixel value denotes higher confidence value. The con-
fidence values are scaled linearly. The row and column coordinates of the image encode the translation
distance in the row and column direction, with upper left corner having a translation vector {10, —10]
pixels, and the lower right have values of [10, 10]. The intensity at center of the confidence image repre-
sents the confidence value of the original manually measured buildings without modifications. Ideally,
the confidence values should monotonically decrease away from the center of the confidence image for
an isolated building.

Figure 28 shows the result of this experiment on four images for the peak roof building object shown in
Figure 17. The original peak roof building is drawn over the confidence images. For radt9-A, radt9ob-
A and radt9s-A, the maximum confidence responses occur at [1,0}, [0, 0] and [0, —1] respectively. For
radt9wob-A, the maximal confidence response occurs with a translation vector of {2,0]. For all of
the confidence images, the confidence values slope away from the center, the ground truth posttion.
However, the steepness of the slope is direction dependent, and this artifact is visible in the confidence
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Figure 27: Confidence value computed using the verification component on a randomly perturbed ground
truth building
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images as an intensity ridge. This artifact can be easily explained by noting that the direction of
the ridge corresponds to the longitudinal orientation of the peak roof building as it appears in the
image. Building objects translated along this axis share more similar featurcs than objects translated
in another direction, and have higher confidence values.

These three analyses demonstrate the behavior of the verification component in SITECITY. The verifi-
cation components are evaluated by comparing the computed confidence values for ground truths and noise
using real images. These experiments show that the verification component can differentiate a correct build-
ing hypothesis from noise. However, since the verification component is only part of the automated processes
used in SITECITY, the performance of these automated processes still needs to be evaluated.

4.5.2 Analysis of the Automated Process

Unlike other performance evaluations for building detection and delineation systems, where the evaluation
metric is typically on the building object level, the performance of automated processes in SITECITY is
evaluated on individual building vertices. The topology of the user delineated building objects is verified
to be correct. This requires the ability to match estimated point measurements with a ground truth point
measurement. .

For the analysis of the floor/peak detection process, the manually measured roofs are extracted from
the manually measured buildings in all images. All manually measured buildings from all subjects are used.
There are a total of 20 buildings in three scenes, and four images for each scene. Since there are 12 subjects,
and each subject measures a scene twice, a total of 1920 roofs in 12 images were used. Out of the 1920
roofs, there are only 80 unique image buildings that were measured; this redundancy allows us to evaluate
the sensitivity of the automated processes to different user inputs. For each manually measured roof in each
image, the floor detection process is invoked using the extracted roof as the initial condition, to estimate the
floor position. If the building is a peak roof building, the position of the peak edge is also estimated. Once
a building is estimated in an image, the location of every visible image point estimated by the automated
processes is compared with the ground truth measurements, the mean position and the covariance matrix
(Section 4.3). Using the average and standard deviation values associated with each ground truth point,
the accuracy of the point positions generated using the automated processes can be determined. Only the
measurable points, visible in the image, estimated by the automated processes are used. For each image
point estimated by the automated processes, the distance to the expected ground truth position, in terms of
both the number of standard deviations away from the mean, and the Euclidean distance in terms of pixels,
is computed. :

The Fuclidean distance measures the absolute accuracy of a point measurement in relationship to the
ground truth position. On the other hand, the number of standard deviations measures the relative accuracy

-of a point measurement that accounts for the expected human performance. If a group of subjects can
measure a point with good precision (i.e., there is little doubt about the location of the point) then the
automated processes are expected to return the same measurement. However, if a group of subjects measure
a point with a large covariance (i.e., they do not agree on the location of the point) then we do not expect
the antomated processes to be more accurate than an average user. .

Figure 29 shows some examples contrasting the two distance measures. The mean positions and the
ellipses representing 1 standard deviation for both points A and B are shown. Measurements 1A and 2A
estimate the position of point A and have the same distance from the mean position of point A. The accuracy
in terms of the Euclidean distance will be the same for both measurements. However, in terms of the number
of standard deviations, measurement 1A is about 4¢ away from the mean and measurement 1B is only about
0.5¢ away from the mean. The Euclidean distance measure suggests that both measurements are equally
good, but compared to the performance of user measurements, measurement 2A is significantly better than
1A.

For evaluation of a semi-automated system where users are involved, the measurements that agree with
users perception should be considered better. For point A, users disagree on the location of the point along
the major axis of the standard deviation ellipse, but agree about the location of the point along the minor
axis. Since measurement 2A agreed with users on this respect, we expect the likelihood of a user to correct
measurement 2A to be less than measurement 1A. For point B, the Euclidean distance of measurement 1B
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(a) Radt9-A (b) Radt9ob-A

(c) Radt9s-A (d) Radt9wob-A

Figure 28: Confidence value computed using verification component on translated ground truth bulldmg
Brighter value corresponds to higher confidence.
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to the mean position of point B is twice the distance of measurements 1A and 2A to the mean position of
point A. Yet, the standard deviation measure of measurement 1B would be better than measurement 1A.
This is because the position of point B is ambiguous in the image.

Using the number of standard deviations to compare the accuracy treats the antomated processes with
the same standard as human subjects; the automated processes need to perform as well as humans. At one
extreme, for a point where there is no disagreement on its position, then any deviation in measurements using
the automated processes will result in an infinite number of standard deviations away from the expected
position, and we consider that the automated processes failed to measure the position correctly, even if the
Fuclidean distance of the measurement is less than 1 pixel away from the expected position. On the other
hand, if users cannot agree on the position of a point due to poor images, then measurements made by the
automated processes that is within one standard deviation of the expected position should be considered
good regardless of Euclidean distance because there is no consensus in which to compare the measurements.

B 1 Pixel -
\ — 1‘Measurement1‘,ﬁjl
2 |
=
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Figure 29: Example contrasting Euclidean distance and number of standard deviation for assessing accuracy
of measurements

Both Euclidean distance and standard deviation distance are used to evaluate the performance of the
automated processes. This evaluation process considers only visible vertices on building objects in images. In
Figure 30(a), each bar denotes the percentage of points whose position estimated by the automated processes
is between n—1 and n standard deviations away from the mean position. Figure 30(b) shows the percentage
of point positions estimated by the automated processes that are between n—1 and n pixels away from the
mean. The results from these two figures can be summarized in Tables 6 and 7. These tables show the result
of the floor/peak detection process for each scene and image. The image column shows the image where
the floor/peak detection was performed, while npts is the number of measurable points estimated by the
automated processes. The remaining columns shows the cumulative percentage of points within N standalfd
deviation of the manual measurements. The cumulated percentage in terms of point errors are plotted in
Figures 30(c) and 30(d) for each image.

In Section 4.5, we analyzed the sensitivities of the verification component to vario A
type of sensitivity study, where we consider performance variations due to different initial conditions,
be performed on the automated processes. Ideally, the automated processes should return the same result
for an average user.

us inputs. The same
can
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Figure 30: Performance of floor/peak processes
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Image npts | B <lo | %<2 | %<3c | % <40

radt9 96 3.13 17.71 38.54 52.08
radt9ob 96 t 16.67 55.21 79.17 87.50
radt9s 96 | 29.17 64.58 83.33 94.79
radt9wob 96 | 17.71 31.25 41.67 52.08
radt9 scene 384 | 16.67 42.19 60.68 71.61
radth 864 | 19.21 38.31 51.50 62.38
radtbob 1008 | 14.19 35.52 55.16 67.66
radtbs 1128 | 24.11 47.52 59.66 66.58

radtbwob 1296 11.88 31.56 48.69 61.34
radth scene 4296 17.11 38.04 53.65 '64.41

radt10 576 | 14.24 38.37 56.94 67.36
radt10ob 504 | 17.46 38.49 55.36 65.48
radt10s 456 | 15.13 39.25 52.63 62.94

radt10wob 672 2.83 14.14 27.68 32.14
radt10 scene || 2208 11.68 31.20 46.78 55.30

[ Total | 6888 [ 15.35 | 36.08 | 51.84 | 61.89 |

Table 6: Summary of floor/peak detection performances based on standard deviation

Image . npts | % < 1 pixel | % < 2 pixels | % < 3 pixels | % < 4 pixels
radt9 96 35.42 80.21 94.79 95.83
radt9ob 96 43.75 87.50 97.92 98.96
radt9s 96 62.50 93.75 98.96 100.00
radt9wob 96 30.21 70.83 88.54 91.67
radt9 scene 384 42.97 83.07 95.05 96.35
radtd 864 25.81 64.12 83.10 88.66
radtbob 1008 20.93 56.35 87.00 94.64
radtHs 1128 28.10 59.75 70.92 73.94
radtbwob 1296 27.47 65.51 77.16 80.25
radtd scene 4296 25.77 61.57 79.03 83.66
radt10 576 17.36 47.22 65.63 - 75.17
radt10ob 504 5.75 24.80 43.25 55.75
radt10s 456 5.26 31.58 47.37 56.36
radt10wob 672 6.25 27.98 46.88 50.15
radt10 scene || 2208 8.83 33.02 51.04 59.24
[Total 6886 2130 | 5361 | 7095 | 7654 |

Table 7: Summary of floor/peak detection performances based on distance
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The input to the automated floor/peak detection process is the roof delineation. Since each building in
the three experimental scenes has 24 different roof delineations (12 subjects measuring a same roof using two-
different methods), the results of the automated processes on the 24 roof delineations for the same building
can be collected and analyzed. Each roof delineation returns a building hypothesis. Since the buildings are
of the same shape, one-to-one correspondences can be established resulting in 24 measurements for each
building point.

If the automated processes are tolerant of different user inputs, then the 24 measurements for each same
building point should be at about the same location. The measurement uncertainty metric described in
Section 4.3 can be used to assess-the similarity of these measurements. If the automated processes are
insensitive to the 24 different initial conditions in this experiment, then the measurement uncertainties for
the building point should be small. The measurement uncertainty for other buildings in other scenes can be
computed using the same method. In Figure 31(a) the cumulative percentage of points with measurement
uncertainties of less than the value on the x—axis is plotted on the y—axis. The average measurement
uncertainties for each scene and the overall results are shown in Table 8 and plotted in Figure 31(a). Overall,
about 75% of estimated points have measurement uncertainties of less than 30 square pixels, which is
equivalent to a circle whose radius is 3.1 pixels. These values suggest that the floor/peak detection process
might be too sensitive to the initial conditions.

Sample Standard

Scene Size Average Deviation Median

radt9 5 2.26( 0.85) 1.30( 0.64) | 1.69(0.73)
radt9ob 4 0.64( 0.45) 0.40( 0.36) | 0.71(0.48)
radt9s 5 0.88( 0.53) 0.33( 0.32) | 0.77(0.49)
radt9wob 51 25.30( 2.84) | 25.17( 2.83) | 23.31(2.72)
radt9 scene 19 7.62( 1.656) | 16.11( 2.26) | 1.09(0.59)
radt10 29 | 76.17( 4.92) | 141.24( 6.71) | 12.62(2.00)
radt10ob 20 | 575.77(13.54) | 937.68(17.28) | 42.86(3.69)
radt10s 26 1 39.08( 3.53) | 41.97( 3.66) | 25.46(2.85)
radt10wob 29 | 252.20( 8.96) | 588.20(13.68) | 9.76(1.76)
radt10 scene 113 | 241.03( 8.76) | 597.69(13.79) | 19.40(2.48)
radth 55 | 15.69( 2.23) | 20.66( 2.56) | 8.53(1.65)
radtbob 55 | 11.84( 1.94) | 25.97( 2.88) | 1.77(0.75)
radtbs 58 | 86.06( 5.23) | 162.04( 7.18) | 13.96(2.11)
radtbwob 58 | 33.31( 3.25) | 91.81( 5.41) | 5.73(1.35)
radth scene 226 | 37.33( 3.45) | 99.70( 5.63) | 6.43(1.43)

| All scenes || 358 | 100.05( 5.64) | 357.20(10.67) | 8.12(1.60) |

Table 8: Measurement uncertainty for peak/floor detection processes in square pixels (radius of the equivalent
circle in pixels)

The evaluation of the epipolar matching process uses the same metrics. To evaluate the epipolar matching
process, manually measured buildings in one image are projected to other images and the epipolar matching
process is performed to locate the object position in those images. The position estimated by the automated
process is not manually corrected, to evaluate the performance of the automated process. For this experiment,
all manually measured buildings from all subjects are used. For the three scenes used in the experiment,
a total of 80 delineated buildings in image space (20 buildings in 4 images) are available. Since each user
measures the building twice, there are a total of 160 independent building delineations in image space for
each subject. Each building delineation in each image is projected to the other three images and matched,
resulting in a total of 480 epipolar matching processes for each subject. Since there are 12 subjects, a total
of 5760 epipolar matching processes are used for this experiment.

Once the building objects are matched, the analysis of the epipolar matching process is similar to the
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Figure 31: Histogram of measurement uncertainties for the automated processes

analysis for the peak/floor detection processes. The point estimation errors in terms of the number of
standard deviations and distance for all points is plotted in Figures 32(a) and 32(b). The summary of the
errors are shown in Tables 9 and 10, and plotted in Figure 32(c) and 32(d). The sensitivity of the epipolar
matching process is shown in Table 11 and plotted in Figure 31(b).

4.5.3 Other Experiments

The 12 images used for the evaluation of the automated processes in the previous section only represent a
small fraction of all possible scenes and images. In order to have a good grasp of the capability of a system,
1t is important to test a system on a variety of scenes and images. However, the effort required to compile
the manual measurement statistics presented in previous sections is impractical for a large number of data
sets. Therefore, in this section, we present the performance of the automated processes on a variety of scenes
in which the results from the automated processes are compared to manual measurements by one subject,
and only the performance evaluation based on distance will be presented.

Figure 33 shows an image from each of the four additional scenes. Figure 33(a) shows the image j1 for
the model board scene, distributed under the RADIUS program. For this scene, 8 images were used, jI to
J8. This is a complicated scene due to numerous occlusions and many structures on top of the buildings. For
this scene, only buildings that are visible in all 8 images are measured. The model board scene is a small
scale model of an industrial scene imaged using a light source at a close range to the models. The shadow
verification components are not used because the shadows shown in these model board images violate our
assumption that the light source (e.g. the sun) is an infinite distance away from the scene. The computed sun
azimuth and elevation can vary as much as 20 degrees across some images. Figure 33(b) shows an industrial
scene in the Avenches dataset provided by ETH, Zurich. The images for this scene are high resolution
and contain buildings that do not correspond to the defined model type. Some of the peak roof buildings
have overhanging roofs, and some buildings that appear to be flat roof buildings actually have sloped roofs.
This scene presents a challenge to the system because it violates our assumptions about building shapes
and allows us to determine the influence of inappropriate models on the automated processes. Four images
(avenches5873, avenches5874, avenches5882 and avenches5883) are used in this scene. Figure 33(d) shows
another image of the Fort Hood scene. Four images (fhov1627, thov927, thov525 and fhov727) are used for
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Image npts | % <lo | %<2 [ % <3¢ | % <4c

radt9 976 7.47 22.74 37.85 51.39
radtOob 576 | 14.93 41.15 62.15 75.17
radt9s 576 | 20.31 51.22 68.40 79.69
radt9wob 576 7.64 25.52 42.71 57.81
radt9 scene 2304 | 12.59 35.16 52.78 66.02
radt10 4032 | 19.12 43.77 60.74 72.59
radt10ob 3812 33.13 57.58 70.91 77.28
radt10s 3672 1 29.90 55.64 69.36 76.85

radt10wob 4236 | 14.90 29.77 42.35 51.68
radtl0 scene [} 15752 | 23.89 46.11 60.27 69.10

radth 5760 | 19.17 | 43.00 | 60.23 | 71.02
radt5ob 6479 | 21.86 | 48.76 | 66.06 | 77.03
radt5s 6768 | 24.10 | 53.87 | 7135 | 8174
radt5wob 7245 | 1239 | 31.79 | 4857 | 61.68
radtd scene 262562 | 19.23 44.13 61.32 72.69
| Total I 44308 ] 2054 [ 44.37 | 6050 | 71.07 |

Table 9: Summary of épipolar matching performances based on standard deviation

Image npts | % < 1 pixel | % < 2 pixels | % < 3 pixels | % < 4 pixels
radt9 576 30.56 65.10 82.29 91.32
radt9ob 576 34.38 72.05 88.02 94.10
radt9s 576 29.86 70.83 83.33 91.15
radt9wob 576 29.86 71.88 89.76 96.53
radt9 scene 2304 31.16 69.97 : 85.85 93.27
radt10 4032 28.52 63.00 77.75 85.94
radt10ob 3812 13.93 37.99 54.20 64.77
radt10s 3672 23.77 55.07 72.60 81.37
radt10wob 4236 17.04 42.78 58.85 68.53
radt10 scene | 15752 20.80 49.66 65.77 75.07
radth 5760 29.72 65.89 81.94 88.63
radthob 6479 23.74 60.07 79.92 88.27
radtbs 6768 26.71 £3.84 81.44 88.95
radtbwob 7245 27.83 64.83 81.01 87.33
radth scene 26252 26.95 63.63 81.06 88.26
| Total [ 44308 ] 2498 [ 5899 [ 7587 [ 83.83 |

Table 10: Summary of epipolar matching performances based on distance
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Sample ‘ Standard
Scene/Image Size | Average | Deviation | Median
radt9 24 17.88 18.30 11.69
radt9ob 24 712 . 534 5.26
radt9s 27 58.21 78.54 8.51
radt9wob 27 7.43 6.25 5.62
radt9 scene 102 23.26 46.29 7.12
radth 309 48.48 74.24 13.82
radt5ob 311 7027 | 185.69 11.98
radtbs 318 38.91 78.32 9.26
radt5wob 318 52.83 73.06 21.22
radtb scene 1256 52.55 113.56 13.83
radtl10 183 98.78 181.27 14.05
radt10ob 183 | 1093.87 | 1739.64 245.14
radtl0s 169 | 180.34 522.65 38.46
radt10wob 183 | 585.55 983.35 207.98
radt10 scene 718 | 495.67 | 1114.91 67.90
[ Total | 2076 | 204.37 | 69451 | 20.27 |

Table 11: Measurement uncertainty for epipolar matching processes (square pixels)

this scene. Figure 33(c) shows the image T4ov for a complex building in the Martin Marietta image set
(mmbld), also distributed under the RADIUS program. The buildings are models as a composite of six
rectilinear flat roof building objects. This scene has two images (74ov and 5lov). The parameters for these
images are shown in Table 12.

The results of the roof/peak detection and the epipolar matching processes are shown in Tables 13 and 14,
and Figure 34. Overall, the Avenches test set produced the worst result. This is most likely a function of
the inappropriate building models used. Radt9 produced the best results for both the floor/peak detection
and epipolar matching processes, most likely due to the good image quality and the simple building objects.
The results for the floor detection process is surprisingly good for the Martin Marietta scene, considering
that most of the building components are occluded. However, the shadows in the scene are clear and shadow
verification might be a contributing factor to the performance of the automated processes.

4.5.4 Summary of Performance Evaluation of Automated Processes

Currently, the automated processes are affected by a combination of scene complexity, image contrast, view
angles and users; the automated processes perform well when the scenes are simple with few occlusions and
good contrast.

We expected that an oblique image will have better performance than a vertical image, because there can
be more visible building facets in oblique images. However, our experiments do not show a clear advantage
for oblique images; in fact, near vertical images seem to perform just as well, if not better, than some oblique
images. One possible explanation is that while oblique images provide more information about the object,
the search areas in the image also increase for the oblique image and increase the chance for mismatches.
Another explanation for the performance on the near vertical images is the use of the shadow verification -
component. Building shadows can be a useful clue in vertical images [28], where walls and floors are not
visible. .

, The evaluation of point estimation errors in terms of both the standard deviation and the pixel distance

shows the need for automated processes that can align edges and corner points with subpixel accuracy.
Overall, approximately 50% of the positions estimated by the automated processes are within 2 pixels of the
manual measurements; more work is need to increase the performance of the automated processes. Users
can often perform building delineation within subpixel accuracies by adjusting the display resolution. If the
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Error Minimum Maximum { Number of
Propagation | Elevation Elevation Control
Image Sensitivity (meters) (meters) Points
i1 0.984998 —8.906343 57.839893 11
i2 0.954196 —-8.906343 57.839893 11
13 0.170762 —8.906343 57.839893 11
j4 0.496565 —8.906343 | 57.839893 11
35 1.422047 —~8.906343 57.839893 11
j6 0.110999 —-8.906343 57.839893 11
37 0.429516 —8.906343 57.839893 11
18 1.318872 —8.906343 57.839893 11
fhov727 0.204139 —36.344445 | —17.091910 4
fhov525 0.138896 —36.344445 | —17.091910 4
thov927 0.131330 —36.344445 | —17.091910 4
fhov1627 0.199404 —36.344445 | —17.091910 4
T4ov 0.347015 —16.322330 48.709052 4
blov 0.600973 —-16.322330 | 48.709052 4
avenchesb883 1.641601 —25.887208 17.155068 6
avenchesb882 1.609350 —25.887208 17.155068 6
avenchesb874 1.545972 ~25.887208 17.155068 6
avenchesb873 1.440086 —25.887208 17.155068 61
Table 12: Parameters used for test scenes
Image | npts | % < 1 pixel | % < 2 pixels | % < 3 pixels | % < 4 pixels |
jl 236 25.85 56.78 66.10 73.31
j2 236 24 .58 56.36 64.83 69.92
i3 215 6.05 27.91 53.02 72.56
j4 204 33.33 59.31 73.53 80.39
35 206 6.31 31.07 64.56 70.87
j6 236 32.63 57.20 75.42 86.44
J7 212 12.26 37.26 64.62 74.53
18 237 30.80 54.43 71.31 76.37
j scene 1782 21.8 47.98 66.78 75.59
radt9-thov1627 226 57.08 94.69 98.67 99.12
radt9-thov027 226 68.58 83.63 91.15 92.48
radt9-fhov525 212 4.25 41.98 72.64 80.19
radt9-thov727 226 65.04 94.25 96.46 97.35
radt9 scene 890 49.44 79.21 90.00 92.47
mmbld-74ov 88 77.27 79.55 80.68 85.23
mmbld-51ov 85 58.82 88.24 90.59 91.76
mmbld scene 173 68.21 83.82 84.97 88.44
avenchesb882 96 6.25 31.25 48.96 60.42
avenchesb874 102 8.82 17.65 24.51 33.33
avenchesb873 91 15.38 34.07 48.35 59.34
avenchesb883 102 9.80 25.49 45.10 54.90
avenchindust scene 391 9.97 26.85 41.43 51.66

Table 13: Summary of floor/peak detection performances based on distance
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% < 1 pixel | % < 2 pixels | % < 3 pixels | % < 4 pixels |

i T652 | 28.51 20.19 14,
2 1652 16.65 34.26 48.;?) gggé
i3 1505 36.81 61.00 68.17 71'96
j4 1428 30.53 45.31 55.32 63.38
i5 1442 15.67 30.44 38.14 44'31
i6 1652 34.20 61.80 69.92 76‘63
7 1484 | 33.89 57.75 67.1 71.29
_________i?___.___—-— 1659 31.34 53.95 57.81 59‘07
___'AjSC__—__’iIi______________‘?___,_,_ 12474 28.46 48.16 56.18 61.10
e rovio2 | 078 | 3466 71.68 85.60 50.12
radt9-fhov927 678 38.35 77.29 89.23 94.54
radt9-thov727 678 43.36 81.86 92.18 95.72
M 636 38.05 77.04 89.94 95.60
w——-——_:’_-——__—ﬁg__“_g———— 2670 38.61 76.97 89.25 93'97
mmbld-74ov 88 22.73 44,32 54.55 80.68
mmbld-5lov 85 38.82 78.82 87.06 100‘00
% 173 30.64 61.27 70.52 90.17
avencheshH882 288 7.99 14.58 25.35 32.99
avenchesb874 306 2.61 8.17 15.69 21.90
avenches5873 23| 6.96 20.51 28.21 34.80
avenchesb883 306 3.92 10.13 28.76 35.95
w 1173 5.29 13.13 24.38 31.29

Table 14: Summary of epipolar matching performances based on distance
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Figure 34: Performance evaluation of more test scenes
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automated processes cannot produce edges and points at the expected location, even when the error is less
than one pixel, most users will be compelled to fine-tune the automated solutions, reducing the usefulness
of the automated processes.

Results in this section show the sensitivity and accuracy of the automated processes, and that these
automated processes, while effective do not always perform perfectly in many situations. However, since
these automated processes are designed for a semi-automated environment, performance evaluation within
the context of SITECITY is required to determine the usefulness of these automated processes.

4.6 Performance Analysis of the Semi-Automated System

In the previous section, the performance of the automated processes without human intervention was eval-
uated. However, these evaluations do not determine the impact of the automated processes on the overall
system. In this section, the usability of the automated processes in the semi-automated system is considered
and the analysis is based on the discussion presented in Section 2. The usability of a semi-automated system
is estimated by comparing the number of tasks executed and the elapsed time of the semi-automated system
and the fully manual system. The elapse time includes the interaction, execution and waiting time. This
comparison allows us to determine the effect of the automated processes in SITECITY. SITECITY is instru-
mented to record operations and elapsed time for every manual and automated process for the duration of
the measurements. An example of the measurement record for measuring a peak roof building using the fully
manual system is shown in Table 15. Table 16 shows the measurement record for the same task using the
semi-automated system. The Window column shows the window of the operations. If an object was selected
for manipulation, the name of the object is shown in the Object column. Operation and Mode columns define
the start and the end of the state of an operation. Finally, the last column shows the time stamp at the
start and end of each operation.

The complexity of these tasks can be reduced by collecting and summarizing tasks with similar function-
alities. These tasks are broken down into 5 classes, Automated, Administrative, Measurement, System and
Idle, as shown in Table 17. Automated tasks are the set of the automated processes described in Section 3.
Administrative tasks are tasks not related to the actual image measurement, such as zooming or panning an
image, or selecting a menu option. Measurement tasks require actual image measurements, such as measur-
ing a pixel position to add a point or selecting an existing object to modify its position. System tasks include
geometric constraints and triangulation. Finally, Idle tasks are tasks that cannot be directly measured, such
as when a user attempts to find the correct menu option, deciding the next task or studying the image.

For this evaluation, the timing and operational statistics for the radt9 scene are not considered, because
it was meant to be a test scene for subjects to become familiar with SITECITY. Table 18 shows the time and
operation statistics for all measurements performed by all subjects. For each subject, the subject’s group in
the experiment (See Table 2) is shown, along with the scene and the method used, semi-automated (ap) or
fully manual (m). In addition, for each task class, the number of operations performed and the amount of
time used to perform those operations are displayed. The same information is plotted in Figure 35.

These plots exhibited large variations between users. In order to reduce the effects of user variations,
the usability analysis of SITECITY is accomplished by considering two aspects of the measurement statistics.
First, the total elapsed time and the number of executed tasks are considered. These two metrics represent
the time and number of tasks needed to completely measure a scene regardless of the task classifications.
The problem with using the total tasks and time statistic is that they can be easily influenced by user
variations. Most of these variations are hidden in the idle time because we cannot directly observe a user’s
actions. Another class of tasks that can be influenced by user variations is the administrative tasks. While
administrative tasks are performed directly by users, they are non-essential operations and more susceptible
to user variation. The term non-essential task is used to denote a task that does not directly contribute
to the measurement of a feature. For example, it is possible to measure a building without ever having to
zoom or pan images. Contrast this to the measurement tasks, which are considered essential, because it is
impossible to measure a building without performing measurement tasks.

One example illustrating the effects of user variations on administrative tasks concerns the user’s pref-
erence on the viewing of images. Some users like to view objects at higher resolution, which requires more
image manipulation because there is less of the visible image in a window. This user will have a larger
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Window Object Operation Mode | Real time
SiteCity SiteCity Start 0.917040
radt9ob.img Zoom Start 1.674016
radt9ob.img Zoom Exit 1.738432
radt9ob.img Zoom Start 2.152832
radt9ob.img Zoom Exit 2.367552
radt9ob.img Zoom Start 2.548112
radt9ob.img Zoom Exit 2.988288
radt9ob.img Zoom Start 3.335344
radt9ob.img Zoom Exit 3.672064
radt9.img Zoom Start 4.945344
radt9.img Zoom Exit 5.157712
radt9.img Zoom Start 5.512976
radt9.img Zoom Exit 5.772592
radt9.img Zoom Start 6.227008
radt9.img Zoom Exit 6.574464
radt9.img Zoom Start 6.924848
radt9.img Zoom Exit 7.437824
radt9.img Pan Image | Start 7.857504
radt9.img Pan Image Exit 8.976576
radt9ob.img Pan Image | Start 10.012688
radt9ob.img Pan Image BExit 10.641808
radt9ob.img Create State 16.147952
radt9ob.img Peak Roof | State | 18.925824
radt9ob.img Measure Start | 20.906304
radt9ob.img Measure Exit 21.670112
radt9ob.img Measure Start | 22.360720
radt9ob.img Measure Exit 22.450512
radt9ob.img Measure Start | 23.548112
radt9ob.img Measure Exit 23.636928
radt9ob.img Measure Start | 24.512976
radt9ob.img Measure Exit 24.604720
SiteCity Finished Start 25.533472
SiteCity building Finished Exit 26.227984
radt9ob.img Modify State | 28.048800
radt9ob.img Line State | 31.064416
radt9eb.img Modify Start 32.189920
radt9ob.img | building State | 32.191872
radt9ob.img Modify Exit 33.763808
radt9ob.img Polygon State | 37.850672
(a)

Table 15: Raw tasks

Window Object Operation Mode | Real time
SiteCity Finished Start | 37.850672
SiteCity building Finished Exit 38.627168
radt9ob.img Modify Start | 38.629120
radt9ob.img | building State | 38.630096
radt9ob.img Modify Exit 41.686704
radt9.img Modify Start | 44.689632
radt9.img building State | 44.690608
radt9.img Modify Exit 45.253360
radt9.img Modify State [ 47.422208
SiteCity Finished Start | 47.422208
SiteCity building Finished Exit 48.218224
radt9.img Polygon State | 50.470032
radt9.img Modify Start | 51.407568
radt9.img building State | 51.408544
radt9.img Modify Bxit 54.238720
radt9.img Modify Start | 55.014640
radt9.amg building State | 55.017568
radt9.img Modify Exit 57.417328
radt9.img Modify Start | 57.679872
radt9.img building State | 57.681824
radt9.img Modify Exit 57.913136
radt9.img Modify Start | 58.088816
radt9.img building State | 58.091744
radt9.img Modify Exit 58.193824
radt9.img Modify Start | 58.752096
radt9.img building State | 58.754048
radt9.img Modify Exit 61.534448
radt9.img Line State | 64.858480
SiteCity Finished Start | 64.858480
SiteCity building Finished Exit 65.733552
radt9.img Modify Start | 65.827248
radt9.img building State { 65.829200
radt9.img Modify Exit 68.116144
SiteCity Constraints Start | 72.356816
SiteCity Constraints Exit 73.221152
SiteCity Save Start | 81.356816
SiteCity Save Exit 81.458320
SiteCity SiteCity Exit 84.227008
(b)

and time output for manual measurement of a peak roof building in two images
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Table 16: Raw tasks and time output for semi-automated measurements of a peak roof building in two

images

Window Object Operation Mode | Real time
SiteCity SiteCaty Start 0.917040
radt9ob.img Zoom Start 1.494832
radt9ob.img Zoom Exit 1.5699264
radt9ob.img Zoom Start 1.866288
radt9ob.img Zoom Exit 2.086864
radt9ob.img Zoom Start 2.441152
radt9ob.img Zoom Exit 2.715984
radt9ob.img Zoom Start 3.298656
radt9ob.img Zoom Exit 3.687680
radt9.img Zoom Start 4.312320
radt9.img Zoom Exit 4.489952
radt9.img Zoom Start 4.762832
radt9.img Zoom Exit 5.018544
radt9.img Zoom Start 5.345504
radt9.img Zoom Exit 5.694512
radt9.img Zoom Start 6.257664
radt9.img Zoom Exit 6.771616
radt9.img Pan Image Start 7.050752
radt9.img Pan Image Exit 7.463600
radt9.img Create State | 19.669136
radt9.img Peak Roof State | 22.711104
radt9.img Measure Start | 24.183488
radt9.img Measure Exit 25.674016
radt9.img Measure Start | 25.978528
radt9.img Measure Exit 26.067344
radt9.img Measure Start | 27.319152
radt9.img Measure Exit 27.411872
radt9.img Measure Start | 28.372832
radt9.img Measure Exit 28.491904
SiteCity Finished Start 29.456768
SiteCity Building Auto Peak Start 29.997072
SiteCity Building Auto Peak Exit 31.407968
SiteCity Building Auto Floor Start | 31.407968
SiteCity Auto Copy Start 52.392352
SiteCity Building Auto Copy Exit 54.868240
© SiteCity Building Auto Floor Exit 54.985360
SiteCity Building | Auto Localization | Start 55.000976
SiteCity Building | Auto Localization Exit 56.040016
SiteCity Building Finished Exit 56.858480
SiteCity Save Start 61.096624
SiteCity Save Exit 61.211792
SiteCity SiteCity Exit 63.640832

Task Classes || Automated Processes | Administrative | Measurement System Idle
Tasks Auto Peak Zoom Image Measure Constraints
Auto Floor Pan Image Modify Save
Auto Copy
Auto Localization
Table 17: Classes of operation and tasks
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Plot of elapsed time and number of operations for all measurements
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[ Subject ]| Scene-Method | Automated | Measurement | Administrative | System Idle Total
AL radibap T64.96(19) | 897.22( 543) | 164.38( 68) 337.00( 637) | 1683.80 | 3146.66(1556)
Al radt5-m 0.00( 0) | 775.43( 477) 97.71( 67) 256.71( 818) | 1290.35 | 2420.19(1362)
Al radt10-ap 77.93(16) | 502.35( 209) | 144.05( 71) | 307.50( 579) | 925.24 | 1957.08( 875)
Al radt10-m 0.00( 0) 1262.74( 383) 184.98(111) 418.64( 976) 2134.15 | 4000.52(1470)
A2 Tadts-ap 310.54(20) | 748.76( 837) | 125.32( 82) 184.75(1135) | 1751.75 | 3121.51(2083)
AZ radt5-m 0.00( 0) | 860.91( 912) | 121.59( 72) 225.53(1165) | 1897.85 | 3105.88(2149)
A2 radt10-ap 95.70(19) | 741.29( 667) | 79.15( 45) | 242.95( 923) | 1631.94 | 2791.03(1654)
A2 radt10-m 0.00( 0) | 1703.21(1362) | 451.50(122) | 818.18(2237) | 4028.90 | 7001.79(3721)
A3 radts-ap I14.26(45) | 813.93( 539) | 373.67(263) | 317.88(1123) | 1092.96 | 3712.70(1970)
A3 radt5-m 0.00( 0} | 1367.61( 702) | 518.88(440) | 458.99(1730) | 2616.15 | 4961.62(2872)
A3 radt10-ap 141.97(26) | 597.80( 487) | 219.62(149) | 360.20( 767) | 1326.46 | 2646.04(1429)
A3 radt10-m 0.00( 0y | 598.40( 447) | 268.91(139) | 277.59( 736) | 1245.61 | 2390.52(1322)
Bl radt5ap 185.99(27) | 660.07( 282) | 147.79( 66) 23.29( 493) | 112857 | 2146.61( 808)
Bi radt5-m 0.00( 0) | 1386.67( 357) | 219.83(141) 65.88( 780) | 1830.41 | 3502.79(1278)
Bl radt10-ap 81.63(17) | 1168.09( 197) | 125.64( 97) 55.12( 478) | 1674.98 | 3105.46( 789)
B1 radt10-m 0.00( 0) 790.57( 155) 141.09( 93) 139.05( 446) | 1302.36 | 2373.07( 694)
B2 radt5-ap TA653(20) | 782.07( 463) | 8087( 51) | 304.92( 713) | 111260 | 2536.00(1256)
B2 radt5-m 0.00( 0) | 1162.80( 630) | 106.52( 67) 384.63( 984) | 1734.21 | 3388.16(1681)
B2 radt10-ap 119.47(23) | 709.86( 360) | 217.48(105) | 238.30( 690} | 1689.36 | 2974.47(1178)
B2 radt10-m 0.00( 0) | 540.29( 303) | 179.73( 72) 162.48( 537) | 1333.30 | 2215.80( 912)
B3 radtb-ap 330.34(36) 96.70( 70) | 138.60( 63) 70.52( 228) | 46001 | 997.07( 387)
B3 radts-m 0.00( 0 | 628.26( 390) | 158.78(238) 163.77( 947) | 1842.85 | 2793.66(1575)
B3 radt10-ap 161.34(20) 236.29( 213) 155.76( 95) 136.28( 507) 1181.10 | 1870.78( 835)
B3 radt10-m 0.00( 0) | 237.32( 190) | 130.46( 85) 75.93( 421) | 83345 | 1277.16( 696)
C1 radt5-ap 148.65(35) 753.57( 352) 277.31( 69) 338.03( 687) 263551 | 4153.07(1143)
c1 radt5-m 0.00( 0j | 2005.99( 796) | 463.93(356) | 157.10(1841) | 4564.02 | 7191.04(2993)
c1 radt10-ap 93.96(20) | 394.40( 191) | 156.88( 56) 217.61( 458) | 1614.72 | 2477.58( 725)
c1 radt10-m 0.00( 0) | 478.74( 154) | 164.12( 61) 127.39( 371) | 1388.26 | 2158.51( 586)
(5) radts ap 158.32(32) | 232.88( 147) | 110.85( 80) 149.70( 370) | 1194.09 | 1845.34( 629)
c2 radtsem 0.00( 0) | 923.71( 328) | 488.09(212) | 222.01( 938) | 2651.45 | 4285.25(1478)
c2 radt10-ap 93.59(18) | 375.66( 156) | 135.12( 78) 272.13( 473) | 1292.22 | 2168.71( 725)
C2 radt10-m 0.00( 0 453.10{ 142) 140.93( 85) 200.68( 447) 1163.56 1958.27( 674)
c3 radts-ap 187.78(26) | 323.04( 184) | 131.68(129) 148.78( 540) | 1858.42 | 2649.70( §79)
C3 radt5-m 0.00( 0) | 797.58( 421) | 247.02(182) | 299.67( 912) | 3708.30 | 5052.57(1515)
C3 radt10-ap 152.08(25) | 206.85( 107) | 274.56(103) 198.18( 304) | 1672.7% | 2504.46( 539)
C3 radtl0-m 0.00( 0) 444.29( 155) 204.72(119) 130.87( 403) 1729.51 2509.39( 677)
D1 radtbap 190.74(25) | 1103.93( 535) | 241.48(188) | 353.31(1376) | 3068.32 | 4952.78(2124)
. D1 radt5-m 0.00( 0) | 1399.20( 800) | 267.61(194) 361.91(1714) | 3640.95 | 5669.67(2708)
|53} radtlC-ap $5.12(19) 474.88( 192) 261.85(100) 181.29( 517) 1197.91 2211.05{ 828)
D1 radt10-m 0.00( 0) | 626.88( 254) | 316.00(131) 123.71( 722) | 1768.55 | 2835.15(1107)
D2 Fadts-ap 367.14(31) | 1664.81( 675) | B1854(157) | 436.48(1345) | 2521.20 | 5308.26(2208)
D2 radt5-m 0.00( 0) | 1665.22( 835) | 219.48(110) | 324.70(1451) | 2045.91 | 4255.31(2396)
D2 radt10-ap 120.79(24) | 554.37( 269) | 248.59(154) 107.23( 544) | 836.70 | 1876.68( 991)
D2 radt10-m 0.00( 0) | 57857( 273) | 34a.24(152) | 235.50( 571) | 976.45 | 2134.76( 996)
D3 radts-ap 143.21(26) | 274.81( 382) 65.13( 69) 92.15( 618) | 588.10 | 1163.45(1095)
D3 radt5-m 0.00( 0) | 544.24( 534) 43.29(113) 117.24( 808) | 724.23 | 1429.00(1455)
D3 radt10-ap 162.76(21) | 175.86( 130) | 128.58( 79) 57.79( 292) | 32954 | 854.52( 522)
D3 radt10-m 0.00( 0) | 348.38( 310) | 128.84( 93) 70.56( 557) | 649.99 | 1197.77(990)

Table 18: Tasks and elapse time break down for all measurements
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number of administrative tasks. In addition, a user more proficient with SITECITY will also have fewer
administrative tasks because he/she knows how to use SITECITY efficiently. For example, a proficient user
can set up windows and images and perform his/her measurements in such a way that he/she only needs to
perform a minimum number of image manipulations. Another way a proficient user can make a difference is
to perform all measurement tasks in one image to minimize the number of changes in the selected operations
and objects, reducmg number of menu selection tasks.

Therefore, in order to reduce the effects of user variations on the analysis, we define user tasks and
user time to include only essential operations of the system 19. The number of user tasks is defined to
be the number of measurement tasks and the user time is defined to be the sum of the elapsed time for
the automated tasks and the measurement tasks. System time and tasks are not included because those
tasks are not performed by users. Measurement tasks are essential tasks that all users have to perform
regardless of proficiency and other variations. Automated process time is included in the user time because
it 1s performing some tasks for users. In this scheme, we define the user cost of SITECITY to be the number
of user tasks, and the unit tasks of SITECITY are the tasks of measuring or modifying the position of an
object.

However, the amount of administrative, system, and idle tasks can be influenced by the user cost of
SITECITY. If a user spends less time measuring, he/she will perform fewer administrative tasks to support
his/her measurement tasks. Therefore, both user time/tasks and total time/tasks are considered in the
evaluation of the semi-automated system.

Non-Essential Tasks
Idle
Administrative Tasks
System Tasks

Essential Tasks
Automated Tasks
Measurement Tasks

Table 19: Essential and non-essential tasks

Table 20 presents the average elapsed time and number of tasks for both the semi-automated and fuily
manual measurements. The first column shows the scene and the methods; radts-ap denotes the semi-
automated measurement statistics gathered for the radt5 scene, whereas radt5-m denotes statistics gathered
for the radth scene using the fully manual system. This table shows the average elapsed time and the
average number of operations for a user to completely measure a scene using a particular method. Out of 24
pairs of semi-automated and fully manual measurements, there are only 9 cases where the semi-automated
measurement takes more time and effort than the fully manual measurement, and 6 of the 9 cases involve the
radt10 scene. This is expected after the evaluation of the automated processes presented in Section 4.5.2,
where the automated processes performed poorer in the radt10 scene than the radtb scene.

Method

Sample Size System Administrative Idle - Total User
radt5-ap 12 182.05(107.08) | 229.73( 791.25) | 1657.62 2977.77(1344.83) 908.36(417.33)
radt5-m 12 246.06(182.67) | 253.18(1174.00) | 2378.89 4004.60(1955.17) 1126.47(598.50)
radt10-ap 12 178.94( 94.33) | 197.88( 544.33) | 1281.08 | 2286.49( 924.17) | 628.59(264.83)
radt10-m 12 221.29(105.25) | 231.72( 702.00) | 1546.17 || 2671.06(1153.75) | 671.87(346.50)

Table 20: Overall measurement statistics — average time(tasks)

The average user and total elapsed time/number of tasks is plotted in Figure 36. The results show that
there are significant improvements in terms of elapsed time and number of performed tasks when the semi-
automated system is used on the radtb scene. Directly comparing the average elapsed time/tasks between the
semi-automated and the fully manual methods for each scene reveals that, overall, a subject spent about 20%
less time and tasks than his/her counterpart when using the semi-automated system. The semi-automated
system also seems to reduce the variation of human performance in terms of both the elapsed time and
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Method Sample Size System Administrative Idle Total User

radt5-ap 12 97.38( 64.95) | 133.67(384.76) | 809.76 || 1374.88(630.91) | 476.26(225.79)
radt5-m 12 161.82(117.24) | 117.27(398.90) | 1109.23 || 1570.51(633.75) 446.77(206.91)
radt10-ap 12 62.89( 32.66) 95.45(179.88) 421.94 612.84(341.62) | 260.41(164.11)
radt10-m 12 102.53( 28.08) | 208.52(514.05) 883.94 || 1541.03(854.51) 414.59(335.11)

Table 21: Overall measurement statistics —— standard deviation time (tasks)

number of tasks. Table 21 shows the standard deviation values for the measured elapsed time and tasks
for each scene using different methods. The standard deviation values for the semi-automated system are
consistently smaller than the fully manual system. One explanation is that the subjects are performing fewer
operations.
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Figure 36: Usability analysis on radtb and radt10 scene

4.6.1 Analysis of the Effects of the Order of the Measurements

The previous analysis considers the overall effect of the automated processes. Another way to analyze the
effect of the automated processes is to consider how they affect the performances for individual subjects. Since
each subject measures the same scene twice, we can measure the performance of the second measurement
of a scene compared to the first measurement of the same scene. Subjects are expected to measure a scene
faster and with fewer number of operations the second time, because they are more familiar with the scene
and more proficient with the interface.

The differences between the first and the second set of measurements for the same scene is computed for
each subject. Let S = {s1,...,5x,} be a set of scenes, and U = {uy,...,un} be a set of users. If a;, is the
statistics from the first set of measurements on scene s measured by subject u, and b, ,, is the second set,
then the difference in the elapsed time between the first and second set of measurements is

dt(as,u,bs,u) = t(as,u) - t(bs,u);
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where ¢(a) returns the elapsed time for measurement set a. Likewise, the differences in terms of the number
of operations is defined as

dT(as,u, bs,u) = T(as,u) - T(bs,u)7

where T'(a) returns the number of operations for measurement set a.

Based on the subject groups presented in Table 2, a, . and b;, cannot be measured with the same
method for the same s and u. We write a7, to denote the first set of measurements performed by user u on
scene s using the semi-automated approach, and 7%, to denote the second set of measurements performed
by user u on scene s using the fully manual approach.

Let

D;lp = {dt(am

bs?P
s4,U;? Vs

‘.)uj)} Vs €S u; €U

be a set of differences of between the first and second set of measurements where the first set of measurements
was performed using the fully manual method and the second set used the semi-automated method. Likewise,
we define

D = {dr (a7, b0 )}V 5 € S €

D" = {dy(a®, b, )} ¥ si € S,uj € U,

siuj0 Vsiug

and

D = {dp(a??, b7, )}V si € S,u; € U.

The average values of D{ D7’ Di* and DJ are presented in Table 22 and Figure 37. A positive value
means that it takes less time and/or fewer tasks to perform the measurement task in the second set of
measurements. The standard deviation values for Di D7 D* and D' are shown in Table 23. When the
second method is the semi-automated system, the improvement to both the elapsed time and number of
tasks performed is dramatically better for an average user. For the radtb scene, the average user actually
performed more tasks using the fully manual system even when he/she has measured the same scene before
using the semi-automated system. The improvements are more significant for the radts scene than radtl0,
because the performance evaluation of the automated processes presented in Section 4.5.2 reveals that the
automated processes performed better in the radth scene. An additional explanation might be that there
are a number of similar buildings in radt5, and that the scene complexity is lower for the radtb scene, due
to fewer occlusions.

1st 2nd Sample
Method Method Size System Administrative Idle Total User
radt5-m || radt5-ap 6 131.3(123.0)] 43.0( 571.8 ) 1323.5 || 1980.9( 903.0) 483.1( 237.3)
radt5-ap || radt5-m 6 3.3(—28.2) —3.9(—193.7 )| —119.0 | —72.7(—317.7) 46.9(—125.0)
radti0-m | radt10-ap 6 102.1{ 25.0) 114.5( 362.8 ) 759.3 || 1204.0( 551.2) 228.1( 184.2)
radt10-ap | radt10-m 6 17.4( 3.2) 46.9( 475 )| 2291 || 434.9( 92.0) 141.5( 20.8)
Table 22: Differences between the first and the second set of measurements — average time(tasks)
1st 2nd Sample
Method Method Size System Administrative Idle Total User
radt5-m radt5-ap 6 136.24(98.32) | 115.34(329.11) | 555.64 800.58(541.89) | 341.84(129.63)
radt5-ap || radt5-m 6 85.38(78.55) | 90.69(252.10) | 444.74 || 865.93(388.88) | 277.38(110.99)
radt10-m || radt10-ap 6 135.85(31.75) | 241.36(491.58) | 916.73 || 1664.18(788.94) | 433.24(268.09)
radt10-ap || radt10-m 6 33.02(17.17) | 64.85( 85.25) | 168.85 || 308.47(133.63) | 203.77( 36.90)

Table 23: Differences between the first and the second set of measurements — standard deviation time(tasks)
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Figure 37: Differences between the first and the second set of measurements

4.6.2 Analysis of the Composition of User Tasks

The final analysis is to determine the composition of the user tasks. In our scheme, user tasks are broken
down into 3 classes; modifications of a measured object, measurements of a new point, and deletions. These
modifications are further divided according to the distance over which an object is modified. Table 24 shows
the decomposition of the user tasks for the average and standard deviation values. The majority of the user
tasks are modification tasks, which means that the user spends most of his/her time moving points around.
This is consistent with the user interface of SITECITY. Recall from Section 3 that a building is measured by
measuring the roof points in one image, followed by modifications of the corner points of the hypothesized
building object in all images. Therefore, there should be more modification tasks than measurement tasks.
The number of delete tasks for the fully manual method is slightly higher than the semi-automated method,
which is the reason that the number of measurement tasks are higher for the fully manual approaches. When
a user makes a mistake in a measurement and deletes it, he/she will have to perform the measurement again.

1ati 5a Yaga yoapiotion el o e sk e st ol Gt g . 1
The standard deviation values show that there is less variation when the semi-automated system is used.

Method Sample Size User Tasks Modification Tasks | Delete Tasks | Measure Tasks
radt5-ap 12 417.33(225.79) 376.92(223.70) 1.92(2.47) 23.50(13.90)
radt5-m 12 598.50(206.91) 557.25(204.70) 2.50(3.92) 31.17(21.36)
radt10-ap 12 264.83(164.11) 229.00(164.46) 0.25(0.62) 34.08( 3.23)
radt10-m 12 346.50(335.11) 306.08(329.16) 0.92(1.16) 39.42( 8.00)

Table 24: Breakdown of user tasks — average (standard deviation)

Since modification tasks are the bulk of the user tasks, the composition of the modification tasks needs to
be analyzed. Figure 38(a) shows a histogram of all modification tasks based on the modified distances. The
graph is truncated where the modification distance is greater than 20 pixels because the plot exhibits the
same asymptotic trend. Table 25 shows a coarse breakdown of the modification tasks in terms of translated
distance in pixels. The same information is also plotted in Figures 38(b). The figure and the table show
the average and standard deviation of the number of modification operations that are either translated by a
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distance of zero pixels, less than and equal to one pixel, and so on. A modification of zero pixels means that
an object was selected, but not changed. Selection of objects accounts for about 17% of all the modification
tasks performed. The majority of modifications, about 40%, have distance of less than one pixel. This
suggests that the users spend most of the time fine-tuning edge and corner positions. The average number
of operations where the modified distance is less than two pixels is similar for both methods. It appears that
approximately the same amount of work is spent fine-tuning the measurements regardless of the method
used. The benefit of the automated processes appears to be the reduction of modification tasks whose
distance is greater than two pixels.
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Figure 38: Breakdown of modification tasks in terms of translation distances

Method Size = 0 pixel < 1 pixel < 2 pixels > 2 pixels

radt5-ap 12 | 51.58(46.49) | 161.58(109.67) | 83.50(52.32) | 80.25(50.98)
radtb-m 12 | 80.92(73.84) | 189.75(131.00) | 99.17(48.87) | 187.42(68.64)
radt10-ap || 12 | 53.83(49.10) | 82.25( 78.15) | 40.67(28.81) | 52.25(27.25)
radt10-n 12 | 56.75(67.57) | 105.92(129.35) | 54.58(73.66) | 88.83(73.23)

Table 25: Breakdown of modification tasks in terms of translation distances — average (standard deviation)

4.6.3 Summary of Performance Analysis of the Semi-Automated System

It is difficult to conclusively demonstrate the usability of SITECITY with the experiments shown in this paper
due to small number of subjects and scenes. However, the results are promising. On average, automated
processes reduced the elapsed time by 20% and user cost by 12%. In addition, when users are familiar
with the scene, the automated processes offer greater assistance to users. The large standard deviation in
Table 21 shows that there are large variations between users, which is understandable because all subjects
" were novices to SITECITY. However, there appears to be less variation when the semi-automated system is
used. In future studies, it would be interesting to perform this experiment with expert users. Table 25 shows
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the need for automated processes to have the ability to locate the corners and edges to sub-pixel accuracies.
This should decrease the number of minute modifications.

Furthermore, informal feedbacks from the subjects reveals some iuleresting facts. First, most subjects
think the automated processes do help in their tasks and they felt that they do less work in the semi-
automated approach. When given a choice of using the semi-automated system and the fully-manual system,
most of them choose the semi-automated system. However, some would have preferred the ability to control
the activation of the automated processes, because they found it performed better when the buildings and
images have good contrast and they would use the automated processes on those buildings and images.
On images and buildings where they think the automated processes would fail, they preferred to do the
measurements manually. The most surprising response is that some of our subjects prefer the waiting in the
semi-automated system. They said that waiting for the automated processes gives them a moment to think
about what they are doing, and makes them feel less rushed. One possible explanation for this respond
can be attributed entirely to subjects not having to perform these tasks under pressures or deadlines, even
thought they were told to perform the tasks with accuracy and speed.

It was previously assumed that lag in an interactive system is detrimental to human performance. In [34],
the lag was shown to reduce the usability of an interactive system for motor-sensory tasks, such as a system
for virtual reality application. However, as the previous anecdotal evidence suggests, it is possible that
some forms of human-computer interaction, where immediate feedback is not as crucial, benefit from an
appropriate amount of lag can enhance the productivity of an user. In effect, this lag forces users to relax
and take a break between measurement tasks. This possibility suggests a future study to determine the
effect of the speed of the automated processes on system performance in the context of site modeling tasks.

4.6.4 Productivity of the Semi-Automated System

The usability analysis of SITECITY presented in Section 4.6 demonstrated the usability of semi-automated
SITECITY in comparison with the fully manual version. We found that the semi-automated version of
SITECITY is more usable than the fully manual version. However, this analysis did not address the produc-
tivity of SITECITY, which measures the usability of SITECITY in a production environment. A system that
is not productive will not be used, because it will not be cost effective to use the system. The productivity
of a system can be defined as the amount of work required to achieve a unit of benefit. A system is more
productive if it requires less work to achieve the same amount of benefit as its less productive counterpart.

For the site modeling task, the benefit of a system can be defined as a function of the number of point
measurements and the accuracy of these measurements. The definition of user cost presented in Section 2.1
can be used to quantify the amount of work for the productivity analysis. In general, we hypothesize that
site modeling systems tend to have operating cost curves similar to those shown in Figure 39, which shows
the family of operating cost curves for a given system. Each line, N = s(e)W, relates the amount of work(W)
required to perform N number of point measurements within a given error e, where s is the slope of the line,
which is a function of e.

In this scheme, we assume that the same amount of work is required to perform a point measurement
with a given accuracy for experienced operators. This model does not account for training cost. In one
extreme, where e = infinity, the cost curve tells us that very little work is needed to measure a lot of points
with zero accuracy. On the other extreme, the e = 0 curve shows that a lot of work is required to measure
few points that have no error. A more realistic operating region is somewhere in between these two extremes.

To determine if a system is productive for a given project, it is necessary to determine how many mea-
surements needs to be performed (Nd); how much work/time a user can spend on the project (Wm); and the
allowable error of these measurements (eq4). For the system with the operating cost curves and the desired
performance of Wm and Nd shown in Figure 39, the system cannot be productive if users are required to
achieve measurement errors of less than v. For example, to measure Nd measurements whose measurement
errors are within @, then the operating cost curves show that Wb units of work are required. Since the
maximum amount work allowed is Wm;, and Wb > Wm, the system is not productive for operating at this
level of performance.

In Section 4.6, we evaluated the amount of work for a given number of measurements and a specified
accuracy for these measurements. The results of these evaluation can be interpreted in terms of operating cost,
curves. In these evaluations, the same number of building points were measured using the semi-automated
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Figure 39: A typical operating cost curves for model construction systems

and the fully manual system (Section 4.2). Since Section 4.4 shows that the measurements between the
semi-automated and fully manual SITECITY system are not significantly different for an average user, we
concluded that these measurements have approximately the same error tolerance. According to the results
presented in Table 20, W0 (e.g., 1345 unit tasks for radtb scene) is less than W1 (e.g., 1955 unit tasks for
radtb scene) for an average user, as shown in Figure 40. Whether this is productive for a given site modeling
project (i.e., W0 < Wm) depends on the project requirements. However, it is clear that the semi-automated
approach is more productive than its fully manual counterpart.

5 Conclusions

In this paper, methods and criteria for designing and integrating automated processes in an interactive envi-
ronment are presented. SITECITY uses these methods to integrate image understanding algorithms into an
interactive system for extracting three dimensional building models using multiple images. These automated
algorithms are unobtrusively integrated and reduce the complexity of the measurement tasks. SITECITY al-
lows the user to measure building points on multiple images using a simple graphical interface. These building
points are triangulated to estimate the three-dimensional position and precision, and constrained according
to the geometric model. Complex building objects can be constructed by applying geometric constraints on
several primitive components. The current system allows us to measure a large variety of building types.
However, more general building object models are needed to handle scenes where the roof structures are
complex. We are currently studying methods to construct other difficult building objects within SITECITY,
such as the use of generic peak roof building type, and building models with overhanging roofs.

In addition, methods were presented to evaluate the performance of the semi-automated system. Most
subjects perform the measurements faster and using fewer operations when using the semi-automated system.
This reduction in the amount of work is not from sloppy measurements. The average difference between
the semi-automated and fully manual measurements is less than 0.6 pixels. However, it is clear that more
effort is needed to improve the automated processes. The data collected from our evaluations allows us to
determine weaknesses in the system, and suggest some ideas for future improvements:
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Increased robustness in the automated processes should enhance the usability of the system.

L]

The ability to locate points more accurately in images should reduce the number of modification tasks,
and make SITECITY more productive.

o A better understanding of idle time since it appears to account for more than 50% of all site modeling
tasks. This may reflect user interface or task analysis problems.

*

The ability to handle complex buildings will allow SITECITY to perform better on a variety of images
and scenes.

In future work, we hope to combine the use of fully automated systems with SITECITY to create a
comprehensive environment for building delineation, and to extend the concepts presented in this paper to
other semi-automated feature delineation tasks, such as road extraction, stereo matching, and multispectral
classification. At present, SITECITY is actively being used to generate accurate three dimensional ground
truth for our automated building extraction research, and to populate our spatial databases with buildings
for research in simulation of virtual worlds.

We have formulated principles for designing and evaluating semi-automated feature extraction systems.
These principles are embodied in SITECITY, a semi-automated three-dimensional building delineation sys-
tem. The rigorous evaluation of SITECITY presented in this paper shows the usability of the system and
demonstrates that the application of the presented methods and criteria leads to a usable interactive vi-
sion system. The methods and criteria introduced in this paper leads naturally to the design of usable
semi-automated vision systems in other domains such as road extraction, stereo matching, and multispectral
classification.

The demand for rapid compilation of spatial data derived from remotely sensed imagery cannot be met by
current state-of-the-art fully automated vision algorithms alone. However, the integration of fully automated
algorithms into an interactive system, as illustrated in this paper, is a promising path for increasing the utility
and productivity of computer vision techniques in traditionally tedious manual tasks.
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