Geoffrey Holden Hans R. Kricheldorf Roderic P. Quirk

Thermoplastic Elastomers

3rd Edition

HANSER

The Editors:

Dr. Geoffrey Holden, Holden Polymer Consulting, Inc.; PMB 473, 1042 Willow Creek, Rd A1111-273, Prescott, AZ 86301-1670 USA

Prof. Hans R. Kricheldorf, Universität Hamburg, Institut für Technische und Molekulare Chemie,

Bundesstraße 45, 20146 Hamburg, Germany

Prof. Roderic P. Quirk, 66 Southwood Road, Akron, OH 44313, USA

Distributed in the USA and in Canada by Hanser Gardner Publications, Inc. 6915 Valley Avenue, Cincinnati, Ohio 45244-3029, USA Fax: (513) 527-8801

Phone: (513) 527-8977 or 1-800-950-8977 Internet: http://www.hansergardner.com

Distributed in all other countries by Carl Hanser Verlag Postfach 86 04 20, 81631 München, Germany Fax: +49 (89) 98 48 09 Internet: http://www.hanser.de

The use of general descriptive names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Library of Congress Cataloging-in-Publication Data

Thermoplastic elastomers / edited by Geoffrey Holden ... [et al.]; with contributions by G. Holden ... [et al.].— 3rd ed. p. cm. Includes bibliographical references and index. ISBN 1-56990-364-6 (hc)
1. Elastomers. 2. Thermoplastics. I. Holden, G. TS1925. T445 2004
678—dc22

2004010544

Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der DeutschenNationalbibliografie; detaillierte bibliografische Daten sind im Internetüber http://dnb.ddb.de> abrufbar. ISBN 3-446-22375-4

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying or by any information storage and retrieval system, without permission in wirting from the publisher.

© Carl Hanser Verlag, Munich 2004
Production Management: Oswald Immel
Typeset by Manuela Treindl, Laaber, Germany
Coverconcept: Marc Müller-Bremer, Rebranding, München, Germany
Coverdesign: MCP • Susanne Kraus GbR, Holzkirchen, Germany
Coverillustration by kind permission of KRATON Polymers, Houston
Printed and bound by Druckhaus "Thomas Müntzer", Bad Langensalza, Germany

List of Contributors

Dr. Geoffrey **Holden**Holden Polymer Consulting, İnc
PMB 473
1042 Willow Creek, Rd. A111-273
Prescott, AZ 86301-1670

Prof. Roderic P. **Quirk**The University of Akron
Polymer Engineering
Maurice Morton Institute
of Polymer Science
Akron, OH 44325-3909

Prof. Hans R. **Kricheldorf** Institut fuer Technische und Makromolekulare Chemie Bundesstr. 45 D-20146 Hamburg, Germany

W. Robert **Abel III**Advanced Polymer Alloys
3521 Silverside Rd.
Wilmington, DE 19810

Mr. Rowland K. **Adams** 35 Linden Street Claymont, DE 19803

Professor Frank S. **Bates**University of Minnesota
Department of Chemical Engineering
and Materials Science
421 Washington Ave., S. E.
Minneapolis, MN 55455

Mr. Augustin T. **Chen** Olin Corporation Corporate Research Center Cheshire, CT 06410

Professor Dr. Aubert Y. Coran 1001 N. Washington Blvd. Ste. 205 Sarasota, FL 34236 Mr. Glenn H. **Fredrickson** University of California Department of Chemical and Nuclear Engineering Santa Barbara, CA 93106

Mr. W. Goyert Bayer AG Werk Dormagen K-A Forschung 41538 Dormagen, Germany

Dr. David R. **Hansen** Kraton Polymers Westhollow Technology Center 3333 Highway 6 South Houston, TX 77082

Mr. Takeji **Hashimoto** Kyoto University Graduate School of Engineering Department of Polymer Chemistry Kyoto, 06-01, Japan

Mr. Guenther K. **Hoeschele** 2007 Dogwood Lane Wilmington, DE 19810-3606

Dr. George H. **Hofmann**DuPont
Packaging and Industrial Polymers
Wilmington, DE 19880-0269

Professor Robert **Jérôme** Université de Liège CERM Sart-Tilman (B6) 4000 Liège, Belgium

Professor Dr. Joseph P. **Kennedy** The University of Akron Institute of Polymer Science Akron, OH 44325-3909 Dr. Edward N. **Kresge** Polymers Consultant 68 Parlin Lane Watchung, NJ 07060

Mr. R. D. **Lundberg** Exxon Research and Engineering Company Route 22 East Annandale, NJ 08801

Mr. W. J. **MacKnight** University of Massachusetts Dept. of Polymer Science and Engineering Amherst, MA 01003

Prof. Krzystof **Matyjaszewski**Center for Macromolecular Engineering
Department of Chemistry
Carnegie Mellon University
4400 Fifth Avenue
Pittsburgh, PA 15213

Mr. W. Meckel Bayer AG Werk Dormagen K-A Forschung 41538 Dormagen, Germany

Mr. Robert G. **Nelb II**The Dow Chemical Company 2040 Dow Center
438 Building

Dr. R. P. **Patel** Teknor Apex Co. 505 Central Ave. Pawtucket, RI 02861

Midland, MI 48667

Deanna L. Gomochak **Pickel** The University of Akron Polymer Engineering Maurice Morton Institute of Polymer Science Akron, OH 44325-3909 Prof. Judith E. Prof. Judit **Puskas**Director, Macromolecular Engineering
Research Centre
Department of Chemical and
Biochemical Engineering
University of Western Ontario
London, Ontario, N6A 5B9, Canada

Mr. Richard W. **Rees** 105 Sharply Road Wilmington, DE 19803

Prof. James **Spanswick**Center for Macromolecular Engineering
Department of Chemistry
Carnegie Mellon University
4400 Fifth Avenue
Pittsburgh, PA 15213

Prof. L. H. **Sperling**Materials Research Center
Lehigh University
5 East Packer Avenue
Bethlehem, PA 18015

Dr. Gerald O. **Schulz** The Goodyear Tire & Rubber Company 142 Goodyear Blvd Akron, OH 44305

Mr. W. **Wieder**Bayer AG
KA-P/S-Oekologie
Geb. M16 Ost
41538 Dormagen, Germany

W. K. **Witsiepe** (deceased)
Dr. Hans-Georg **Wussow**Bayer AG
BPO-IIS-INN-PUR-TPU

41538 Dormagen, Germany

Geb. F 29

Dedication

The original organizer of this work was Dr. N. R. Legge. He also served as an editor for the first two editions. Dr. Legge was best known as the leader of the Shell team that discovered and developed the styrenic thermoplastic elastomers. In 1987 the Rubber Division of the American Chemical society award him the Charles Goodyear Medal for this and other achievements. He recently passed away and this new edition is dedicated to his memory.

Contents

ы	St Of C	JOHUFID	utors				
De	Dedication VII						
Pr	Preface to Third EditionIX						
1		oduction rences .	n				
2	Ther	moplas	tic Polyurethane Elastomers				
	2.1		uction				
	2.2	Raw N	Materials				
		2.2.1	Soft Segments				
		2.2.2	Hard Segments				
		2.2.3	Additives				
	2.3	Synthe	esis				
	2.4	Morph	ology24				
		2.4.1	Structure of Hard Segments				
		2.4.2	Thermal Transitions				
		2.4.3	Dynamic Mechanical Property Measurements				
		2.4.4	Stress–Strain and Ultimate Properties				
	2.5	Proper					
		2.5.1	Mechanical Properties				
		2.5.2	Thermal Properties				
		2.5.3	Hydrolytic Stability				
		2.5.4	Oil, Grease, and Solvent Resistance				
		2.5.5	Resistance to Microorganisms				
		2.5.6	UV Resistance				
	2.6	Proces	sing				
	2.7	Blends	3				
	2.8	Applic	ations				
		2.8.1	Film and Sheet				
		2.8.2	Hose, Tubes, and Cable Sheathing				
		2.8.3	Automotive				
		2.8.4	Mechanical Goods and Other Applications				
		2.8.5	Shoes				
		2.8.6	Medical				
	2.9	Future	Trends				
	Ackn		ments				
	Refer	ences .					

XIII

3	Styre	nic The	rmoplastic Elastomers	. 45
3	3.1	Introdu	ction	. 45
	3.2	Historia	cal Review	. 45
	3.3	Structu	re	. 46
	3.4	Synthes	sis	. 48
	3.5	Propert	ies	. 51
	3.3	351	Tensile Properties	. 51
		3.5.2	Swelling	. 56
		3.5.3	Viscous and Viscoelastic Properties	. 56
		354	Solution Properties	. 59
		3.5.5	Morphology	. 60
		3.5.6	Stress-Ontical Properties	. 62
		3.5.7	Critical Molecular Weights for Domain Formation	. 62
		3.5.8	Miscibility	. 63
		3.5.9	Structural Variations	. 64
	Refe	rences		. 65
4	Rese	arch on	Anionic Triblock Copolymers	. 69
•	4.1	Introdu	ection	. 69
	4.2	Method	is and Problems in the Laboratory Synthesis of Triblock Copolymers	. /1
	1.2	4.2.1	Three-Stage Process with Monofunctional Initiator	. 71
		4.2.2	Two-Stage Process with Monofunctional Initiator	. 72
		4.2.3	Two-Stage Process with Diffunctional Initiators	. 73
		424	Star-Branched Block Copolymers	. 75
	4.3	Anioni	c Triblock Copolymer Research	. 75
		4.3.1	Higher T End Blocks	. 75
		4.3.2	Triblock Copolymers with Crystallizable End Blocks	. 78
		4.3.3	Complete Hydrogenation of Polystyrene and Polybutadiene Blocks	
			of S=B=S	. 81
		4.3.4	Tapered Triblock Copolymers	. 81
		4.3.5	Block Copolymers with SBR Soft Segments	. 84
		4.3.6	Unsymmetrical (Heteroarm) Star-Branched Block Copolymers	85
		4.3.7	Functionalized Triblock Copolymers	87
	Refe	rences .		. 89
5	Poly	olefin-B	ased Thermoplastic Elastomers	93
	5.1	Introdi	uction	9.
	5.2	Rando	m Block Polymers	94
		5.2.1	Ethylene–Propylene Copolymers	94
		5.2.2	Ethylene-Higher α -Olefin Copolymers	90
		5.2.3	Propylene–Higher α-Olefin Copolymers	98
		524	Random Stereoblock Polypropylene	98
	5.3	Block	Copolymers	. 103
		5.3.1	Ziegler–Natta Block Copolymers	. 10.
		5.3.2	Hydrogenated Diene Block Copolymers	. 10
	5.4	Graft	Conglymers	. 10
		541	Polyolefins Grafted with Crystalline Chains	. 10
	5.5	Polyo	lefin Blend Thermoplastic Elastomers	. 10

		5.5.1	Morphology of Polyolefin Blend Thermoplastic Elastomers 110		
		5.5.2	Mechanical Properties of Polyolefin Blends		
		5.5.3	Blends of Polyolefins with Other Polymers		
		5.5.4	Applications for Polyolefin Blend Thermoplastic Elastomers 115		
	Ackr	owledg	ments		
	Refe	rences.			
6	Ther	moplas	tic Elastomers Based on Halogen-Containing Polyolefins119		
	6.1	Introd	uction119		
	6.2	Melt F	Processible Rubber		
		6.2.1	Chemistry		
		6.2.2	Mechanical Properties		
		6.2.3	Chemical Resistance		
		6.2.4	MPR Grades		
		6.2.5	Weather and Flame Resistance		
		6.2.6	Electrical Properties		
		6.2.7	Processing		
		6.2.8	Blends with Other Polymers		
		6.2.9	Applications		
	6.3	PVC-	Nitrile Rubber Blends		
		6.3.1	Chemistry		
		6.3.2	Melt Compounding and Processing		
		6.3.3	Mechanical Properties		
		6.3.4	Chemical Resistance		
		6.3.5	Applications		
	6.4	Poly(V	/inyl Chloride)-Copolyester Elastomer Blends		
		6.4.1	Chemistry		
		6.4.2	Mechanical and Chemical Properties		
		6.4.3	Weather Resistance		
		6.4.4	Melt Compounding		
		6.4.5	Processing		
		6.4.6	Applications		
	6.5	Poly(V	/inyl Chloride)-Polyurethane Elastomer Blends		
		6.5.1	Chemistry		
		6.5.2	Melt Compounding and Processing		
		6.5.3	Weather Resistance		
		6.5.4	Mechanical and Chemical Properties		
		6.5.5	Applications		
	Ackr	owledg	ments		
	Refe	rences.			
7			tic Elastomers Based on Dynamically Vulcanized Elastomer-		
	Thermoplastic Blends				
	7.1		uction		
	7.2		ration of Elastomer-Plastic Blends by Dynamic Vulcanization 145		
	7.3		ties of Blends Prepared by Dynamic Vulcanization		
		7.3.1	Polyolefin Based Thermoplastic Vulcanizates		
		7.3.2	Nitrile Rubber-Nylon Thermoplastic Elastomer Compositions 158		

XI	V	Conten	ts
		7.3.3	Other Thermoplastic Vulcanizates
		7.3.4	Characteristics of Elastomers and Plastics for Correlations
			with Blend Properties
		7.3.5	The Correlation Between Blend Properties and the Characteristics
			of the Blend Components
		7.3.6	Technological Compatibilization of NBR–Polyolefin Blends
			by Elastomer-Plastic Graft Formation
		7.3.7	Blends of Thermoplastic Vulcanizates Based on Dissimilar Plastics 173
	7.4		ological Applications
		7.4.1	Processing – Fabrication Technology
		7.4.2	End-Use Applications
	Refe	rences.	
8	Ther	moplas	tic Polyether Ester Elastomers
-	8.1	Introdi	ection
	8.2	Farly l	Fiber Research184
	8.3	Synthe	etic Methods
	8.4	Polym	er Structure and Morphology
		8.4.1	The Crystalline Region
		8.4.2	The Amorphous Region
		8.4.3	Overall Morphology
		8.4.4	Orientation and Stress–Strain Behavior
	8.5		ties of Commercial Copolyether Ester Elastomers
		8.5.1	Mechanical Properties
		8.5.2	Melt Rheology
		8.5.3	Degradation and Stabilization of Polyether Ester Elastomers 202
	8.6 Structural Variations		ural Variations
		8.6.1	Hard Segment Modifications
		8.6.2	Polyether Soft Segment Modifications
8.7		Polym	ner Blends with Polyether Ester Elastomers
	8.8		Major Producers
		8.8.1	Typical Applications
	D (8.8.2	Typical Applications 212
	кете	erences	······································
9	The	rmoplas	stic Elastomers Based on Polyamides
	9.1	Introd	luction
	9.2	Segm	ented Block Copolymers
		9.2.1	Structure
		9.2.2	Morphology
	9.3	Polya	mide Thermoplastic Elastomers
		9.3.1	Synthesis
		9.3.2	Morphology
	9.4		ture–Property Relationships
		9.4.1	Hard and Soft Segment Considerations
	9.5		cal Properties
		9.5.1	Tensile Properties
		9.5.2	High Temperature Tensile Properties

			Contents	XV
		9.5.3 Dry Heat Aging		
		9.5.4 Humid Aging		
		9.5.5 Chemical and Solvent Resistance		
		9.5.6 Tear Strength		. 237
		9.5.7 Abrasion Resistance		
		9.5.8 Compression Set		. 238
		9.5.9 Flex Properties		. 239
		9.5.10 Adhesion		. 240
		9.5.11 Weatherability		
		9.5.12 Electrical Properties		. 240
	9.6	Processing Conditions		. 241
	9.7	Applications		. 242
	9.8	Summary		. 243
	Refer	rences		
10	Ionor	meric Thermoplastic Elastomers: Early Research – Surlyn	® and	
	Relat	ted Polymers		. 247
	10.1	Introduction		. 247
	10.2	Ionomer Discovery		
	10.3	Development of Ionomer Technology and Applications		. 248
	10.4	Extension of Ionic Crosslinking to Other Polymer Types		. 253
	10.5	Diamine Ionomers		
	10.6	Structural Studies on Ionomers		. 257
	10.7	Ionomers in Blends and Alloys		
	10.8	Product Development		. 258
	Ackn	owledgments		. 258
	Refer	rences		. 258
1		arch on Ionomeric Systems		
	11.1	Introduction		
	11.2	Theory		
	11.3	Morphological Experiments		
		11.3.1 Scattering Studies		. 263
		11.3.2 Electron Microscopy		
		11.3.3 Summary of Morphological Information		
	11.4	Recent Developments: Synthesis		
		11.4.1 Halato-Telechelic Ionomers		
		11.4.2 Sulfonated Polypentenamers		
		11.4.3 Copolymerization of Sulfonate Monomers		. 271
		11.4.4 Block Copolymer Ionomers		. 273
		11.4.5 Polyurethane Ionomers		. 273
	11.5	Recent Developments: Properties		. 274
		11.5.1 The Glass Transition Temperature T_{α}		.274
		11.5.2 Mechanical Propertiesg		. 275
	11.6	Preferential Plasticization		. 276
	11.7	Ionic Interactions in Polymer Blends		. 277
	11.8	Applications of Ionomeric Elastomers		
		11.8.1 Thermoplastic Elastomers		

	11.8.2 Adhesives	280
	11.8.3 Miscellaneous Applications	
	11.9 Conclusions	28
	11.10 Future Developments	28
	References	28
12	Thermoplastic Elastomers by Carbocationic Polymerization	
	12.1 Introduction	
	12.2 Block Copolymers	
	12.2.1 Introduction: Living Carbocationic Polymerization and Sequentia	
	Monomer Addition	287
	12.2.2 PIB-Based Linear-, Star-, and Arborescent Blocks	
	12.3 Graft Copolymers	304
	12.3.1 Controlled Initiation and Structural Considerations	
	12.3.2 Grafts with Rubbery Backbone and Glassy Branches	
	12.3.3 Other Graft Copolymers	
	12.4 lonomers	
	12.4.1 Introduction and Structural Considerations	
	12.4.2 PIB–Based Ionomers	
	12.5 Summary	317
	Acknowledgments	
	References	318
10	N 0 70 1 4 70 4	20
13	Macromonomers as Precursors for Thermoplastic Elastomers	
	13.1 Introduction	
	13.2 Synthesis of Macromonomers	
	13.2.1 Anionic Polymerization	
	13.3 Copolymerization of Macromonomers	34 ₄
	13.3.1 Kinetics	
	13.3.2 Anionic Copolymerization	
	13.3.3 Free Radical Copolymerization	
	13.4 Effects on Graft Copolymer Properties	354
	13.5 Summary	
	References	
	References	55,
14	Thermoplastic Elastomers by Controlled/Living Radical Polymerization	364
	14.1 Introduction	
	14.2 Synthesis of Thermoplastic Elastomers by CLRP	
	14.2.1 Block Copolymers	
	14.2.2 Graft Copolymers	
	14.3 Properties	
	14.3.1 Block Copolymers	383
	14.3.2 Graft Copolymers	
	14.4 Summary	
	Acknowledgements	
	Acronyms	
	References	

15	Block	Copolymer Thermodynamics: Theory and Experiment
	15.1	Introduction
	15.2	Strong Segregation Limit
		15.2.1 Experiment
		15.2.2 Theory
	15.3	Weak Segregation Limit
		15.3.1 Theory
		15.3.2 Experiment
	15.4	Surface Behavior
		15.4.1 Experiment
		15.4.2 Theory
	15.5	Discussion and Outlook
		Update
		15.6.1 Experiment
		15.6.2 Theory
	Ackno	owledgment
		ences
16	Therr	noplastic Interpenetrating Networks
	16.1	Introduction
	16.2	Historical Development
		16.2.1 The Criterion for Dual Phase Continuity
		The Davison and Gergen Materials
	16.4	Materials Based on Ionomer-Triblock Copolymer Combinations
	16.5	Association Complexes
	16.6	Recent Advances in the Field of Thermoplastic IPNs
	16.7	Conclusions
	ences	
17		crylate-Based Thermoplastic Elastomers
		Introduction
		Synthesis and Properties of Poly(MMA-b-Butadiene-b-MMA) TPEs 444
		Synthesis of Poly(MMA-tBA-MMA) Polymers
		Derivatization of Poly(MMA-b-Alkyl Acrylate-b-MMA)
	17.5	From Linear Triblocks to Star-Shaped Diblocks
	17.6	Synthesis of Poly(MMA-b-Alkylacrylate-b-MMA) by Sequential
		Controlled Radical Polymerization
		Mechanical Properties of Fully Acrylic Triblock and Branched Block
		Copolymers
		Conclusions
		owledgments
	Refere	ences
10	O 1	Discolar Transite of the Discolar Delegan
10		:-Disorder Transition in Block Polymers
		Introduction
		Equilibrium Aspects of the Order–Disorder Transition of Block Polymers
		Characterization of the Order–Disorder Transition
	10.4	Characterization of the Order–Disorder Transition by Scattering Techniques 464

Contents

XVII

XVIII Contents

		18.4.1 Principles of the Method in the Context of the Mean-Field Theory	. 464
	10 5	18.4.2 Experiments	. 465
	18.5	Changes of Spatial Concentration Fluctuations Accompanied by Order-	
		Disorder Transitions	. 469
		18.5.1 Disordered State	. 471
		18.5.2 Ordered State and Transition	. 473
	10.6	18.5.3 Effects of Thermal Fluctuations (Brazovskii's Effect)	. 483
	18.6	Kinetic Aspects of the Order–Disorder Transition	. 484
	18.7	Changes in Properties Accompanied by the Order-Disorder Transition	
	Refer	rences	. 488
19	Appl	ications of Thermoplastic Elastomers	. 493
	19.1	Introduction	. 493
	19.2	Composition	. 495
		19.2.1 Phase Structure	. 495
		19.2.2 Molecular Structure	
		19.2.3 Phase Properties	
	19.3	Commercial End-Uses of TPEs	. 499
		19.3.1 Polystyrene-Elastomer Block Copolymers	. 499
		19.3.2 Multi-Block Copolymers	. 510
		19.3.3 Hard Polymer-Elastomer Combinations	. 514
	19.4	Economics and Summary	. 517
	Refer	ences	. 518
20	Futu	re Trends	521
-v		ences	
	Reiei	checs	. 321
Inc	łex .		. 529
Ed	itors]	Biographies	. 539

1 Introduction

G. Holden, Roderic P. Quirk, Hans R. Kricheldorf

The editors had a number of reasons for bringing forth this Third Edition of Thermoplastic Elastomers. Previous editions were published in 1987 and 1996. Since then there have been many developments. As will be discussed in Chapter 20, growth of the thermoplastic elastomer industry continues. Thermoplastic elastomers have reached a high level of commercial importance, involving many new products and industrial participants. In addition, they have much potential for academic and theoretical research and have attracted a large number of strong academic research groups. From the discovery of the elastomeric character of plasticized PVC in 1926 by Waldo Semon, and the first academic work on block copolymers by Bolland and Melville in 1938, through the discovery of the polyurethanes by Otto Bayer, and all the practical industrial thermoplastic polyamides of the 1930s and 1940s, to the contributions of Flory, Mark, Tobolsky, and many others, there has been an interaction of academic and industrial research enlivened by serendipitous discoveries, which resulted in great advances. Thus we note that since 1967, the date of the first symposium on block copolymers [1] – a symposium largely devoted to the polystyrene/polydiene type – numerous texts [2-21], symposia [22-39], and review articles [40-54] have been devoted either to block copolymers or to the related subject of thermoplastic elastomers.

Most thermoplastic elastomers are block or graft copolymers, and here we include a note on their nomenclature. The most commonly applied terminology for block polymers uses A to represent a block of A mer units and, similarly, B, C, etc. to represent blocks of B mer and C mer units and so forth.

The following representations are widely used:

$$A-B$$
 $A-B-A$ $A-B-C$ $(A-B)_n$ $(A-B)_n$ x

Here, A–B represents a diblock polymer, A–B–C represents a triblock polymer in which all three segments are polymerized from different monomers, and A–B–A represents a block copolymer with two terminal A blocks and a B center block. $(A-B)_n$ represents an alternating block copolymer, A–B–A–B–A–... etc., whereas $(A-B)_n$ x represents a branched block copolymer with n branches (n = 2,3,4...) and a junction point x.

Similarly, graft copolymers may be represented as

$$B \dots B - B - \left(\begin{array}{c} B \\ | \\ A \end{array}\right)_n B - \dots B$$

This represents a polymer in which each B block has (on average) n random grafts of A blocks.

It is common to use the first letter of the monomer unit to denote the polymer block. For example, a three-block copolymer, poly(styrene-*b*-butadiene-*b*-styrene) is written as S–B–S. If one of the blocks is itself a copolymer (e.g., ethylene-propylene rubber), the block copolymer poly(styrene-*b*-ethylene-*co*-propylene-*b*-styrene) is written as S–EP–S.