
Page 1 of 65

FOREWORD

The CCITT (the International Telegraph and Telephone Consultative Committee) is a permanent organ of the
International Telecommunication Union (ITU). CCITT is responsible for studying technical, operating and tariff
questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide
basis.

The Plenary Assembly of CCITT which meets every four years, establishes the topics for study and approves
Recommendations prepared by its Study Groups. The approval of Recommendations by the members of CCITT between
Plenary Assemblies is covered by the procedure laid down in CCITT Resolution No. 2 (Melbourne, 1988).

Recommendation G.796 was prepared by Study Group XV and was approved under the Resolution No. 2
procedure on the 1st of September 1992.

CCITT NOTES

1) In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized private operating agency.

2) A list of abbreviations used in this Recommendation can be found in Annex F.

 ITU 1992

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Page 2 of 65

Recommendation G.728 (09/92) 1

Recommendation G.728

CODING OF SPEECH AT 16 kbit/s USING LOW-DELAY
CODE EXCITED LINEAR PREDICTION

(1992)

1 Introduction

This Recommendation contains the description of an algorithm for the coding of speech signals at 16 kbit/s
using low-delay code excited linear prediction (LD-CELP). This Recommendation is organized as follows.

In § 2 a brief outline of the LD-CELP algorithm is given. In §§ 3 and 4, the LD-CELP encoder and LD-CELP
decoder principles are discussed, respectively. In § 5, the computational details pertaining to each functional algorithmic
block are defined. Annexes A, B, C and D contain tables of constants used by the LD-CELP algorithm. In Annex E the
sequencing of variable adaptation and use is given. Finally, in Appendix I information is given on procedures applicable
to the implementation verification of the algorithm.

Under further study is the future incorporation of three additional appendices (to be published separately)
consisting of LD-CELP network aspects, LD-CELP fixed-point implementation description, and LD-CELP fixed-point
verification procedures.

2 Outline of LD-CELP

The LD-CELP algorithm consists of an encoder and a decoder described in §§ 2.1 and 2.2 respectively, and
illustrated in Figure 1/G.728.

The essence of CELP techniques, which is an analysis-by-synthesis approach to codebook search, is retained
in LD-CELP. The LD-CELP however, uses backward adaptation of predictors and gain to achieve an algorithmic delay
of 0.625 ms. Only the index to the excitation codebook is transmitted. The predictor coefficients are updated through
LPC analysis of previously quantized speech. The excitation gain is updated by using the gain information embedded in
the previously quantized excitation. The block size for the excitation vector and gain adaptation is five samples only. A
perceptual weighting filter is updated using LPC analysis of the unquantized speech.

2.1 LD-CELP encoder

After the conversion from A-law or µ-law PCM to uniform PCM, the input signal is partitioned into blocks of
five-consecutive input signal samples. For each input block, the encoder passes each of 1024 candidate codebook
vectors (stored in an excitation codebook) through a gain scaling unit and a synthesis filter. From the resulting 1024
candidate quantized signal vectors, the encoder identifies the one that minimizes a frequency-weighted mean-squared
error measure with respect to the input signal vector. The 10-bit codebook index of the corresponding best codebook
vector (or “codevector”), which gives rise to that best candidate quantized signal vector, is transmitted to the decoder.
The best codevector is then passed through the gain scaling unit and the synthesis filter to establish the correct filter
memory in preparation for the encoding of the next signal vector. The synthesis filter coefficients and the gain are
updated periodically in a backward adaptive manner based on the previously quantized signal and gain-scaled excitation.

Page 3 of 65

Page 4 of 65

Page 5 of 65

Page 6 of 65

Recommendation G.728 (09/92) 5

3.1 Input PCM format conversion

This block converts the input A-law or µ-law PCM signal so(k) to a uniform PCM signal su(k).

3.1.1 Internal linear PCM levels

In converting from A-law or µ-law to linear PCM, different internal representations are possible, depending on
the device. For example, standard tables for µ-law PCM define a linear range of –4 015.5 to +4 015.5. The
corresponding range for A-law PCM is –2 016 to +2 016. Both tables list some output values having a fractional part of
0.5. These fractional parts cannot be represented in an integer device unless the entire table is multiplied by 2 to make all
of the values integers. In fact, this is what is most commonly done in fixed point digital signal processing (DSP) chips.
On the other hand, floating point DSP chips can represent the same values listed in the tables. Throughout this document
it is assumed that the input signal has a maximum range of –4 095 to +4 095. This encompasses both the µ-law and A-
law cases. In the case of A-law it implies that when the linear conversion results in a range of –2 016 to +2 016, those
values should be scaled up by a factor of 2 before continuing to encode the signal. In the case of µ-law input to a fixed
point processor where the input range is converted to –8 031 to +8 031, it implies that values should be scaled down by a
factor of 2 before beginning the encoding process. Alternatively, these values can be treated as being in Q1 format,
meaning there is one bit to the right of the decimal point. All computation involving the data would then need to take
this bit into account.

For the case of 16-bit linear PCM input signals having full dynamic range of –32 768 to +32 767, the input
values should be considered to be in Q3 format. This means that the input values should be scaled down (divided) by a
factor of 8. On output at the decoder the factor of 8 would be restored for these signals.

3.2 Vector buffer

This block buffers five consecutive speech samples su(5n), su(5n + 1), ..., su(5n + 4) to form a 5-dimensional
speech vector s(n) = [su(5n), su(5n + 1), ..., su(5n + 4)].

3.3 Adapter for perceptual weighting filter

Figure 4/G.728 shows the detailed operation of the perceptual weighting filter adapter (block 3 in
Figure 2/G.728). This adapter calculates the coefficients of the perceptual weighting filter once every four speech
vectors based on linear prediction analysis (often referred to as LPC analysis) of unquantized speech. The coefficient
updates occur at the third speech vector of every 4-vector adaptation cycle. The coefficients are held constant in between
updates.

Refer to Figure 4a)/G.728. The calculation is performed as follows. First, the input (unquantized) speech
vector is passed through a hybrid windowing module (block 36) which places a window on previous speech vectors and
calculates the first 11 autocorrelation coefficients of the windowed speech signal as the output. The Levinson-Durbin
recursion module (block 37) then converts these autocorrelation coefficients to predictor coefficients. Based on these
predictor coefficients, the weighting filter coefficient calculator (block 38) derives the desired coefficients of the
weighting filter. These three blocks are discussed in more detail below.

First, let us describe the principles of hybrid windowing. Since this hybrid windowing technique will be used
in three different kinds of LPC analyses, we first give a more general description of the technique and then specialize it
to different cases. Suppose the LPC analysis is to be performed once every L signal samples. To be general, assume that
the signal samples corresponding to the current LD-CELP adaptation cycle are su(m), su(m + 1), su(m + 2), ..., su(m + L –
1). Then, for backward-adaptive LPC analysis, the hybrid window is applied to all previous signal samples with a
sample index less than m (as shown in Figure 4b)/G.728). Let there be N non-recursive samples in the hybrid window
function. Then, the signal samples su(m – 1), su(m – 2), ..., su(m – N) are all weighted by the non-recursive portion of the
window. Starting with su(m – N – 1), all signal samples to the left of (and including) this sample are weighted by the
recursive portion of the window, which has values b, bα, bα2, ..., where 0 < b < 1 and 0 < α < 1.

Page 7 of 65

Page 8 of 65

Recommendation G.728 (09/92) 7

At time m, the hybrid window function wm(k) is defined as

wm(k) =


 fm(k) = bα–[k–(m–N–1)], if k ≤ m – N – 1

 gm(k) = –sin [c(k – m)], if m – N ≤ k ≤ m – 1
 0, if k ≥ m

(3-1a)

and the window-weighted signal is

sm(k) = su(k) wm(k) =


 su(k) fm(k) = su(k) bα–[k–(m–N–1)], if k ≤ m – N – 1

 su(k) gm(k) = –su(k) sin [c(k – m)], if m – N ≤ k ≤ m – 1
 0, if k ≥ m

(3-1b)

The samples of non-recursive portion gm(k) and the initial section of the recursive portion fm(k) for different
hybrid windows are specified in Annex A. For an M-th order LPC analysis, we need to calculate M + 1 autocorrelation
coefficients Rm(i) for i = 0, 1, 2, ..., M. The i-th autocorrelation coefficient for the current adaptation cycle can be
expressed as

Rm(i) = ∑
k = –∞

m–1
 sm(k) sm(k – i) = rm(i) + ∑

k = m–N

m–1
 sm(k) sm(k – i) (3-1c)

where

rm(i) = ∑
k = –∞

m–N–1
 sm(k) sm(k – i) = ∑

k = –∞

m–N–1
 su(k) su(k – i) fm(k) fm(k – i) (3-1d)

On the right-hand side of equation (3-1c), the first term rm(i) is the “recursive component” of Rm(i), while the
second term is the “non-recursive component”. The finite summation of the non-recursive component is calculated for
each adaptation cycle. On the other hand, the recursive component is calculated recursively. The following paragraphs
explain how.

Suppose we have calculated and stored all rm(i)s for the current adaptation cycle and want to go on to the next
adaptation cycle, which starts at sample su(m + L). After the hybrid window is shifted to the right by L samples, the new
window-weighted signal for the next adaptation cycle becomes

sm+L(k) = su(k) wm+L(k) =


 su(k) fm+L(k) = su(k) fm(k) αL, if k ≤ m + L – N – 1

 su(k) gm+L(k) = –su(k) sin [c(k – m – L)], if m + L – N ≤ k ≤ m + L – 1
0, if k ≥ m + L

(3-1e)

The recursive component of Rm + L(i) can be written as

rm+L(i) = ∑
k = –∞

m+L–N–1

 sm+L(k) sm+L(k – i)

= ∑
k = –∞

m–N–1
 sm+L(k) sm+L(k – i) + ∑

k = m–N

m+L–N–1
 sm+L(k) sm+L(k – i)

= ∑
k = –∞

m–N–1

 su(k) fm(k) αL su(k – i) fm(k – i) αL + ∑
k = m–N

m+L–N–1
 sm+L(k) sm+L(k – i)

(3-1f)

or

rm+L(i) = α2L rm(i) + ∑
k = m–N

m+L–N–1
 sm+L(k) sm+L(k – i) (3-1g)

Page 9 of 65

8 Recommendation G.728 (09/92)

Therefore, rm+L(i) can be calculated recursively from rm(i) using equation (3-1g). This newly calculated
rm+L(i) is stored back to memory for use in the following adaptation cycle. The autocorrelation coefficient rm+L(i) is then
calculated as

Rm+L(i) = rm+L(i) + ∑
k = m+L–N

m+L–1
 sm+L(k) sm+L(k – i) (3-1h)

So far we have described in a general manner the principles of a hybrid window calculation procedure. The
parameter values for the hybrid windowing module 36 in Figure 4a)/G.728 are

M = 10, L = 20, N = 30 and α = 



1

2

1
40 = 0.982820598 





 so that α2L =
1
2

Once the 11 autocorrelation coefficients R(i), i = 0, 1, ..., 10 are calculated by the hybrid windowing procedure
described above, a “white noise correction” procedure is applied. This is done by increasing the energy R(0) by a small
amount:

R(0) ← 



257

256 R(0) (3-1i)

This has the effect of filling the spectral valleys with white noise so as to reduce the spectral dynamic range
and alleviate ill-conditioning of the subsequent Levinson-Durbin recursion. The white noise correction factor (WNCF)
of 257/256 corresponds to a white noise level about 24 dB below the average speech power.

Next, using the white noise corrected autocorrelation coefficients, the Levinson-Durbin recursion module 37
recursively computes the predictor coefficients from order 1 to order 10. Let the j-th coefficients of the i-th order
predictor be aj(i). Then, the recursive procedure can be specified as follows:

E(0) = R(0) (3-2a)

ki = –

R(i) + ∑
j=1

i–1

 a
(i–1)
j R(i – j)

E(i – 1) (3-2b)

a
(i)
i = ki (3-2c)

a
(i)
j = a

(i–1)
j + ki a

(i–1)
i–j ; 1 ≤ j ≤ i – 1 (3-2d)

E(i) = (1 – k
2
i) E(i – 1) (3-2e)

Equations (3-2b) through (3-2e) are evaluated recursively for i = 1, 2, ..., 10, and the final solution is given by

qi = a
(10)
i , 1 ≤ i ≤ 10 (3-2f)

Page 10 of 65

Recommendation G.728 (09/92) 9

If we define q0=1, then the 10-th order “prediction-error filter” (sometimes called “analysis filter”) has the
transfer function

∼
Q(z) = ∑

i=0

10
 qi z–i (3-3a)

and the corresponding 10-th order linear predictor is defined by the following transfer function

Q(z) = –∑
i=1

10
 qi z–i (3-3b)

The weighting filter coefficient calculator (block 38) calculates the perceptual weighting filter coefficients
according to the following equations:

Q(z / γ1) = –∑
i=1

10

 (qi γ
i
1) z

–i (3-4b)

and

Q(z / γ2) = –∑
i=1

10

 (qi γ
i
2) z

–i (3-4c)

The perceptual weighting filter is a 10-th order pole-zero filter defined by the transfer function W(z) in
equation (3-4a). The values of γ1 and γ2 are 0.9 and 0.6, respectively.

Now refer to Figure 2/G.728. The perceptual weighting filter adapter (block 3) periodically updates the
coefficients of W(z) according to equations (3-2) through (3-4), and feeds the coefficients to the impulse response vector
calculator (block 12) and the perceptual weighting filters (blocks 4 and 10).

3.4 Perceptual weighting filter

In Figure 2/G.728, the current input speech vector s(n) is passed through the perceptual weighting filter
(block 4), resulting in the weighted speech vector v(n). Note that except during initialization, the filter memory
(i.e. internal state variables, or the values held in the delay units of the filter) should not be reset to zero at any time. On
the other hand, the memory of the perceptual weighting filter (block 10) will need special handling as described later.

3.4.1 Non-speech operation

For modem signals or other non-speech signals, CCITT test results indicate that it is desirable to disable the
perceptual weighting filter. This is equivalent to setting W(z)=1. This can most easily be accomplished if γ1 and γ2 in
equation (3-4a) are set equal to zero. The nominal values for these variables in the speech mode are 0.9 and 0.6,
respectively.

3.5 Synthesis filter

In Figure 2/G.728, there are two synthesis filters (blocks 9 and 22) with identical coefficients. Both filters are
updated by the backward synthesis filter adapter (block 23). Each synthesis filter is a 50-th order all-pole filter that
consists of a feedback loop with a 50-th order LPC predictor in the feedback branch. The transfer function of the
synthesis filter is F(z) = 1/[1 – P(z)], where P(z) is the transfer function of the 50-th order LPC predictor.

Page 11 of 65

10 Recommendation G.728 (09/92)

After the weighted speech vector v(n) has been obtained, a zero-input response vector r(n) will be generated
using the synthesis filter (block 9) and the perceptual weighting filter (block 10). To accomplish this, we first open the
switch 5, i.e. point it to node 6. This implies that the signal going from node 7 to the synthesis filter 9 will be zero. We
then let the synthesis filter 9 and the perceptual weighting filter 10 “ring” for five samples (one vector). This means that
we continue the filtering operation for five samples with a zero signal applied at node 7. The resulting output of the
perceptual weighting filter 10 is the desired zero-input response vector r(n).

Note that except for the vector right after initialization, the memory of the filters 9 and 10 is in general
non-zero; therefore, the output vector r(n) is also non-zero in general, even though the filter input from node 7 is zero. In
effect, this vector r(n) is the response of the two filters to previous gain-scaled excitation vectors e(n – 1), e(n – 2), ...
This vector actually represents the effect due to filter memory up to time (n – 1).

3.6 VQ target vector computation

This block subtracts the zero-input response vector r(n) from the weighted speech vector v(n) to obtain the VQ
codebook search target vector x(n).

3.7 Backward synthesis filter adapter

This adapter 23 updates the coefficients of the synthesis filters 9 and 22. It takes the quantized (synthesized)
speech as input and produces a set of synthesis filter coefficients as output. Its operation is quite similar to the perceptual
weighting filter adapter 3.

A blown-up version of this adapter is shown in Figure 5/G.728. The operation of the hybrid windowing
module 49 and the Levinson-Durbin recursion module 50 is exactly the same as their counterparts (36 and 37) in
Figure 4a)/G.728, except for the following three differences:

a) the input signal is now the quantized speech rather than the unquantized input speech;

b) the predictor order is 50 rather than 10;

c) the hybrid window parameters are different: N = 35, α = 



3

4

1
40 = 0.992833749

Note that the update period is still L = 20, and the white noise correction factor is still 257/256 = 1.00390625.

Let
^
P(z) be the transfer function of the 50-th order LPC predictor, then it has the form

P̂(z) = –∑
i=1

50

 âi z–i (3-5)

where âi are the predictor coefficients. To improve robustness to channel errors, these coefficients are modified so that
the peaks in the resulting LPC spectrum have slightly larger bandwidths. The bandwidth expansion module 51 performs
this bandwidth expansion procedure in the following way. Given the LPC predictor coefficients âi, a new set of
coefficients ai is computed according to

ai = λi âi , i = 1, 2, . . ., 50 (3-6)

where λ is given by

λ =
253
256 = 0.98828125 (3-7)

Page 12 of 65

Recommendation G.728 (09/92) 11

23

49

50

51

T1506790-92

Hybrid
windowing
module

Levinson-
Durbin
recursion
module

Bandwidth
expansion
module

Quantized speech

Synthesis filter
coefficients

FIGURE 5/G.728

Backward synthesis filter adapter

This has the effects of moving all the poles of the synthesis filter radially toward the origin by a factor of λ.
Since the poles are moved away from the unit circle, the peaks in the frequency response are widened.

After such bandwidth expansion, the modified LPC predictor has a transfer function of

P(z) = –∑
i=1

50
 ai z–i (3-8)

The modified coefficients are then fed to the synthesis filters 9 and 22. These coefficients are also fed to the
impulse response vector calculator 12.

The synthesis filters 9 and 22 both have a transfer function of

F(z) =
1

1 – P(z) (3-9)

Similar to the perceptual weighting filter, the synthesis filters 9 and 22 are also updated once every four
vectors, and the updates also occur at the third speech vector of every 4-vector adaptation cycle. However, the updates
are based on the quantized speech up to the last vector of the previous adaptation cycle. In other words, a delay of two
vectors is introduced before the updates take place. This is because the Levinson-Durbin recursion module 50 and the
energy table calculator 15 (described later) are computationally intensive. As a result, even though the autocorrelation

Page 13 of 65

12 Recommendation G.728 (09/92)

of previously quantized speech is available at the first vector of each four vector cycle, computations may require more
than one vector worth of time. Therefore, to maintain a basic buffer size of one vector (so as to keep the coding delay
low), and to maintain real-time operation, a 2-vector delay in filter updates is introduced in order to facilitate real-time
implementation.

3.8 Backward vector gain adapter

This adapter updates the excitation gain σ(n) for every vector time index n. The excitation gain σ(n) is a
scaling factor used to scale the selected excitation vector y(n). The adapter 20 takes the gain-scaled excitation vector e(n)
as its input, and produces an excitation gain σ(n) as its output. Basically, it attempts to “predict” the gain of e(n) based
on the gains of e(n – 1), e(n – 2), ... by using adaptive linear prediction in the logarithmic gain domain. This backward
vector gain adapter 20 is shown in more detail in Figure 6/G.728.

46 47 48

45

44
43 40 39

41 67

20

T1506800-92

e (n)

e (n –1)

42

σ (n)

δ (n –1)

δ (n) Log-gain
limiter

Excitation gain

Levinson-
Durbin
recursion
module

Hybrid
windowing
module

Logarithm
calculator

1-vector
delay

Inverse
logarithm
calculator

Gain-scaled
excitation vector

FIGURE 6/G.728

Backward vector gain adapter

Log-gain
linear
predictor

Bandwidth
expansion
module

Root-mean-
square (RMS)
calculator

Log-gain
offset value
holder

Refer to Figure 6/G.728. This gain adapter operates as follows. The 1-vector delay unit 67 makes the previous
gain-scaled excitation vector e(n – 1) available. The root-mean-square (RMS) calculator 39 then calculates the RMS
value of the vector e(n – 1). Next, the logarithm calculator 40 calculates the dB value of the RMS of e(n – 1), by first
computing the base 10 logarithm and then multiplying the result by 20.

In Figure 6/G.728, a log-gain offset value of 32 dB is stored in the log-gain offset value holder 41. This value
is meant to be roughly equal to the average excitation gain level (in dB) during voiced speech. The adder 42 subtracts
this log-gain offset value from the logarithmic gain produced by the logarithm calculator 40. The resulting offset-
removed logarithmic gain δ(n – 1) is then used by the hybrid windowing module 43 and the Levinson-Durbin recursion

Page 14 of 65

Recommendation G.728 (09/92) 13

module 44. Again, blocks 43 and 44 operate in exactly the same way as blocks 36 and 37 in the perceptual weighting
filter adapter module (Figure 4a)/G.728), except that the hybrid window parameters are different and that the signal
under analysis is now the offset-removed logarithmic gain rather than the input speech. (Note that only one gain value is
produced for every five speech samples.) The hybrid window parameters of block 43 are:

M = 10, N = 20, L = 4, α = 



3

4

1
8 = 0.96467863

The output of the Levinson-Durbin recursion module 44 is the coefficients of a 10-th order linear predictor
with a transfer function of

R̂(z) = –∑
i=1

10

 α̂i z–i (3-10)

The bandwidth expansion module 45 then moves the roots of this polynomial radially toward the z-plane
original in a way similar to the module 51 in Figure 5/G.728. The resulting bandwidth-expanded gain predictor has a
transfer function of

R(z) = –∑
i=1

10

 αi z–i (3-11)

where the coefficients αi are computed as

αi = 



29

32

i
 α̂i = (0.90625)i α̂i (3-12)

Such bandwidth expansion makes the gain adapter (block 20 in Figure 2/G.728) more robust to channel errors.
These αi are then used as the coefficients of the log-gain linear predictor (block 46 of Figure 6/G.728).

This predictor 46 is updated once every four speech vectors, and the updates take place at the second speech
vector of every 4-vector adaptation cycle. The predictor attempts to predict δ(n) based on a linear combination of

δ(n – 1), δ(n – 2), ..., δ(n – 10). The predicted version of δ(n) is denoted as
^δ(n) and is given by

^δ(n) = –∑
i=1

10

 αi δ(n – i) (3-13)

After
^δ(n) has been produced by the log-gain linear predictor 46, we add back the log-gain offset value of

32 dB stored in 41. The log-gain limiter 47 then checks the resulting log-gain value and clips it if the value is
unreasonably large or unreasonably small. The lower and upper limits are set to 0 dB and 60 dB, respectively. The gain
limiter output is then fed to the inverse logarithm calculator 48, which reverses the operation of the logarithm calculator
40 and converts the gain from the dB value to the linear domain. The gain limiter ensures that the gain in the linear
domain is in between 1 and 1000.

3.9 Codebook search module

In Figure 2/G.728, blocks 12 through 18 constitute a codebook search module 24. This module searches
through the 1024 candidate codevectors in the excitation VQ codebook 19 and identifies the index of the best codevector
which gives a corresponding quantized speech vector that is closest to the input speech vector.

Page 15 of 65

14 Recommendation G.728 (09/92)

To reduce the codebook search complexity, the 10-bit, 1024-entry codebook is decomposed into two smaller
codebooks: a 7-bit “shape codebook” containing 128 independent codevectors and a 3-bit “gain codebook” containing
eight scalar values that are symmetric with respect to zero (i.e. one bit for sign, two bits for magnitude). The final output
codevector is the product of the best shape codevector (from the 7-bit shape codebook) and the best gain level (from the
3-bit gain codebook). The 7-bit shape codebook table and the 3-bit gain codebook table are given in Annex B.

3.9.1 Principle of codebook search

In principle, the codebook search module 24 scales each of the 1024 candidate codevectors by the current
excitation gain σ(n) and then passes the resulting 1024 vectors one at a time through a cascaded filter consisting of the
synthesis filter F(z) and the perceptual weighting filter W(z). The filter memory is initialized to zero each time the
module feeds a new codevector to the cascaded filter with transfer function H(z) = F(z)W(z).

The filtering of VQ codevectors can be expressed in terms of matrix-vector multiplication. Let yj be the j-th
codevector in the 7-bit shape codebook, and let gi be the i-th level in the 3-bit gain codebook. Let {h(n)} denote the
impulse response sequence of the cascaded filter. Then, when the codevector specified by the codebook indices i and j is
fed to the cascaded filter H(z), the filter output can be expressed as

∼xij = Hσ(n)gi yj (3-14)

where

H =









 h(0) 0 0 0 0

 h(1) h(0) 0 0 0

 h(2) h(1) h(0) 0 0

 h(3) h(2) h(1) h(0) 0

 h(4) h(3) h(2) h(1) h(0)

(3-15)

The codebook search module 24 searches for the best combination of indices i and j which minimizes the
following mean-squared error (MSE) distortion.

D = || x(n) – ~xij || 2 = σ2(n) || x̂(n) – gi Hyj || 2 (3-16)

where ̂x(n) = x(n)/σ(n) is the gain-normalized VQ target vector. Expanding the terms gives us

D = σ2(n)  

 || x̂(n) || 2 – 2gi x̂T(n) Hyj + g 2

i
 || Hyj || 2 (3-17)

Since the term ||x̂(n)||2 and the value of σ2(n) are fixed during the codebook search, minimizing D is equivalent
to minimizing

D̂ = –2gi pT(n)yj + g 2
i
 Ej (3-18)

where

p(n) = HT x̂(n) (3-19)

and

Ej = || Hyj || 2 (3-20)

Page 16 of 65

Recommendation G.728 (09/92) 15

Note that Ej is actually the energy of the j-th filtered shape codevectors and does not depend on the VQ target
vector x̂(n). Also note that the shape codevector yj is fixed, and the matrix H only depends on the synthesis filter and the
weighting filter, which are fixed over a period of four speech vectors. Consequently, Ej is also fixed over a period of
four speech vectors. Based on this observation, when the two filters are updated, we can compute and store the 128
possible energy terms Ej, j = 0, 1, 2, ..., 127 (corresponding to the 128 shape codevectors) and then use these energy
terms repeatedly for the codebook search during the next four speech vectors. This arrangement reduces the codebook
search complexity.

For further reduction in computation, we can precompute and store the two arrays

bi = 2gi (3-21)

and

ci = g 2
i

(3-22)

for i = 0, 1, ..., 7. These two arrays are fixed since gis are fixed. We can now express D̂ as

D̂ = –bi Pj + ci Ej (3-23)

where Pj = pT (n)yj.

Note that once the Ej, bi, and ci tables are precomputed and stored, the inner product term Pj = pT (n)yj, which
solely depends on j, takes most of the computation in determining D̂. Thus, the codebook search procedure steps through
the shape codebook and identifies the best gain index i for each shape codevector yj.

There are several ways to find the best gain index i for a given shape codevector yj.

a) The first and the most obvious way is to evaluate the eight possible D̂ values corresponding to the eight
possible values of i, and then pick the index i which corresponds to the smallest D̂. However, this requires
two multiplications for each i.

b) A second way is to compute the optimal gain ĝ = Pj/Ej first, and then quantize this gain ĝ to one of the
eight gain levels {g0, ..., g7} in the 3-bit gain codebook. The best index i is the index of the gain level gi

which is closest to ̂g. However, this approach requires a division operation for each of the 128 shape
codevectors, and division is typically very inefficient to implement using DSP processors.

c) A third approach, which is a slightly modified version of the second approach, is particularly efficient for
DSP implementations. The quantization of ĝ can be thought of as a series of comparisons between ĝ and
the “quantizer cell boundaries”, which are the mid-points between adjacent gain levels. Let di be the mid-
point between gain level gi and gi+1 that have the same sign. Then, testing “ĝ < di?” is equivalent to
testing “Pj < diEj?”. Therefore, by using the latter test, we can avoid the division operation and still
require only one multiplication for each index i. This is the approach used in the codebook search. The
gain quantizer cell boundaries dis are fixed and can be precomputed and stored in a table. For the eight
gain levels, actually only six boundary values d0, d1, d2, d4, d5, and d6 are used.

Once the best indices i and j are identified, they are concatenated to form the output of the codebook search
module – a single 10-bit best codebook index.

3.9.2 Operation of codebook search module

With the codebook search principle introduced, the operation of the codebook search module 24 is now
described below. Refer to Figure 2/G.728. Every time when the synthesis filter 9 and the perceptual weighting filter 10
are updated, the impulse response vector calculator 12 computes the first five samples of the impulse response of the
cascaded filter F(z)W(z). To compute the impulse response vector, we first set the memory of the cascaded filter to

Page 17 of 65

16 Recommendation G.728 (09/92)

zero, then excite the filter with an input sequence {1, 0, 0, 0, 0}. The corresponding five output samples of the filter are
h(0), h(1), ..., h(4), which constitute the desired impulse response vector. After this impulse response vector is computed,
it will be held constant and used in the codebook search for the following four speech vectors, until the filters 9 and 10
are updated again.

Next, the shape codevector convolution module 14 computes the 128 vectors Hyj, j = 0, 1, 2, ..., 127. In other
words, it convolves each shape codevector yj, j = 0, 1, 2, ..., 127 with the impulse response sequence h(0), h(1), ..., h(4),
where the convolution is only performed for the first five samples. The energies of the resulting 128 vectors are then
computed and stored by the energy table calculator 15 according to equation (3-20). The energy of a vector is defined as
the sum of the squared value of each vector component.

Note that the computations in blocks 12, 14, and 15 are performed only once every four speech vectors, while
the other blocks in the codebook search module perform computations for each speech vector. Also note that the updates
of the Ej table is synchronized with the updates of the synthesis filter coefficients. That is, the new Ej table will be used
starting from the third speech vector of every adaptation cycle. (Refer to the discussion in § 3.7.)

The VQ target vector normalization module 16 calculates the gain-normalized VQ target vector

x̂(n) = x(n)/σ(n). In DSP implementations, it is more efficient to first compute 1/σ(n), and then multiply each component
of x(n) by 1/σ(n).

Next, the time-reversed convolution module 13 computes the vector p(n) = HTx̂(n). This operation is
equivalent to first reversing the order of the components of x̂(n), then convolving the resulting vector with the impulse
response vector, and then reverse the component order of the output again (and hence the name “time-reversed
convolution”).

Once Ej, bi, and ci tables are precomputed and stored, and the vector p(n) is also calculated, then the error
calculator 17 and the best codebook index selector 18 work together to perform the following efficient codebook search
algorithm:

a) Initialize ̂Dmin to a number larger than the largest possible value of D̂ (or use the largest possible number
of the DSPs number representation system).

b) Set the shape codebook index j = 0.

c) Compute the inner product Pj = pt(n)yj.

d) If pj < 0, go to step h) to search through negative gains; otherwise, proceed to step e) to search through
positive gains.

e) If Pj < d0Ej, set i = 0 and go to step k); otherwise proceed to step f).

f) If Pj < d1Ej, set i = 1 and go to step k); otherwise proceed to step g).

g) If Pj < d2Ej, set i = 2 and go to step k); otherwise set i = 3 and go to step k).

h) If Pj > d4Ej, set i = 4 and go to step k); otherwise proceed to step i).

i) If Pj > d5Ej, set i = 5 and go to step k); otherwise proceed to step j).

j) If Pj > d6Ej, set i = 6; otherwise set i = 7.

k) Compute ̂D = –biPj + ciEj.

l) If D̂ < D̂min, then set ̂Dmin = D̂, imin = i, and jmin = j.

m) If j < 127, set j = j + 1 and go to step c); otherwise proceed to step n).

n) When the algorithm proceeds to here, all 1024 possible combinations of gains and shapes have been
searched through. The resulting imin, and jmin are the desired channel indices for the gain and the shape,
respectively. The output best codebook index (10-bit) is the concatenation of these two indices, and the
corresponding best excitation codevector is y(n) = giminyjmin. The selected 10-bit codebook index is
transmitted through the communication channel to the decoder.

Page 18 of 65

Recommendation G.728 (09/92) 17

3.10 Simulated decoder

Although the encoder has identified and transmitted the best codebook index so far, some additional tasks have
to be performed in preparation for the encoding of the following speech vectors. First, the best codebook index is fed to
the excitation VQ codebook to extract the corresponding best codevector y(n) = giminyjmin. This best codevector is then
scaled by the current excitation gain σ(n) in the gain stage 21. The resulting gain-scaled excitation vector is e(n) =
σ(n)y(n).

This vector e(n) is then passed through the synthesis filter 22 to obtain the current quantized speech vector
sq(n). Note that blocks 19 through 23 form a simulated decoder 8. Hence, the quantized speech vector sq(n) is actually
the simulated decoded speech vector when there are no channel errors. In Figure 2/G.728, the backward synthesis filter
adapter 23 needs this quantized speech vector sq(n) to update the synthesis filter coefficients. Similarly, the backward
vector gain adapter 20 needs the gain-scaled excitation vector e(n) to update the coefficients of the log-gain linear
predictor.

One last task before proceeding to encode the next speech vector is to update the memory of the synthesis
filter 9 and the perceptual weighting filter 10. To accomplish this, we first save the memory of filters 9 and 10 which
was left over after performing the zero-input response computation described in § 3.5. We then set the memory of filters
9 and 10 to zero and close the switch 5, i.e. connect it to node 7. Then, the gain-scaled excitation vector e(n) is passed
through the two zero-memory filters 9 and 10. Note that since e(n) is only five samples long and the filters have zero
memory, the number of multiply-adds only goes up from 0 to 4 for the five-sample period. This is a significant saving in
computation since there would be 70 multiply-adds per sample if the filter memory were not zero. Next, we add the
saved original filter memory back to the newly established filter memory after filtering e(n). This in effect adds the zero-
input responses to the zero-state responses of the filters 9 and 10. This results in the desired set of filter memory which
will be used to compute the zero-input response during the encoding of the next speech vector.

Note that after the filter memory update, the top five elements of the memory of the synthesis filter 9 are
exactly the same as the components of the desired quantized speech vector sq(n). Therefore, we can actually omit the
synthesis filter 22 and obtain sq(n) from the updated memory of the synthesis filter 9. This means an additional saving of
50 multiply-adds per sample.

The encoder operation described so far specifies the way to encode a single input speech vector. The encoding
of the entire speech waveform is achieved by repeating the above operation for every speech vector.

3.11 Synchronization and in-band signalling

In the above description of the encoder, it is assumed that the decoder knows the boundaries of the received
10-bit codebook indices and also knows when the synthesis filter and the log-gain predictor need to be updated (recall
that they are updated once every four vectors). In practice, such synchronization information can be made available to
the decoder by adding extra synchronization bits on top of the transmitted 16 kbit/s bit stream. However, in many
applications there is a need to insert synchronization or in-band signalling bits as part of the 16 kbit/s bit stream. This
can be done in the following way. Suppose a synchronization bit is to be inserted once every N speech vectors; then, for
every N-th input speech vector, we can search through only half of the shape codebook and produce a 6-bit shape
codebook index. In this way, we rob one bit out of every N-th transmitted codebook index and insert a synchronization
or signalling bit instead.

It is important to note that we cannot arbitrarily rob one bit out of an already selected 7-bit shape codebook
index, instead, the encoder has to know which speech vectors will be robbed one bit and then search through only half of
the codebook for those speech vectors. Otherwise, the decoder will not have the same decoded excitation codevectors for
those speech vectors.

Page 19 of 65

18 Recommendation G.728 (09/92)

Since the coding algorithm has a basic adaptation cycle of four vectors, it is reasonable to let N be a multiple
of 4 so that the decoder can easily determine the boundaries of the encoder adaptation cycles. For a reasonable value of
N (such as 16, which corresponds to a 10 milliseconds bit robbing period), the resulting degradation in speech quality is
essentially negligible. In particular, we have found that a value of N = 16 results in little additional distortion. The rate of
this bit robbing is only 100 bits/s.

If the above procedure is followed, we recommend that when the desired bit is to be a 0, only the first half of
the shape codebook be searched, i.e. those vectors with indices 0 to 63. When the desired bit is a 1, then the second half
of the codebook is searched and the resulting index will be between 64 and 127. The significance of this choice is that
the desired bit will be the leftmost bit in the codeword, since seven bits for the shape codevector precede the three bits
for the sign and gain codebook. We further recommend that the synchronization bit be robbed from the last vector in a
cycle of four vectors. Once it is detected, the next codeword received can begin the new cycle of codevectors.

Although we state that synchronization causes very little distortion, we note that no formal testing has been
done on hardware which contained this synchronization strategy. Consequently, the amount of the degradation has not
been measured.

However, we specifically recommend against using the synchronization bit for synchronization in systems in
which the coder is turned on and off repeatedly. For example, a system might use a speech activity detector to turn off
the coder when no speech were present. Each time the encoder was turned on, the decoder would need to locate the
synchronization sequence. At 100 bit/s, this would probably take several hundred milliseconds. In addition, time must be
allowed for the decoder state to track the encoder state. The combined result would be a phenomena known as front-end
clipping in which the beginning of the speech utterance would be lost. If the encoder and decoder are both started at the
same instant as the onset of speech, then no speech will be lost. This is only possible in systems using external signalling
for the start-up times and external synchronization.

4 LD-CELP decoder principles

Figure 3/G.728 is a block schematic of the LD-CELP decoder. A functional description of each block is given
in the following sections.

4.1 Excitation VQ codebook

This block contains an excitation VQ codebook (including shape and gain codebooks) identical to the
codebook 19 in the LD-CELP encoder. It uses the received best codebook index to extract the best codevector y(n)
selected in the LD-CELP encoder.

4.2 Gain scaling unit

This block computes the scaled excitation vector e(n) by multiplying each component of y(n) by the gain σ(n).

4.3 Synthesis filter

This filter has the same transfer function as the synthesis filter in the LD-CELP encoder (assuming error-free
transmission). It filters the scaled excitation vector e(n) to produce the decoded speech vector sd(n). Note that in order to
avoid any possible accumulation of round-off errors during decoding, sometimes it is desirable to exactly duplicate the
procedures used in the encoder to obtain sq(n). If this is the case, and if the encoder obtains sq(n) from the updated
memory of the synthesis filter 9, then the decoder should also compute sd(n) as the sum of the zero-input response and
the zero-state response of the synthesis filter 32, as is done in the encoder.

4.4 Backward vector gain adapter

The function of this block is described in § 3.8.

Page 20 of 65

Recommendation G.728 (09/92) 19

4.5 Backward synthesis filter adapter

The function of this block is described in § 3.7.

4.6 Postfilter

This block filters the decoded speech to enhance the perceptual quality. This block is further expanded in
Figure 7/G.728 to show more details. Refer to Figure 7/G.728. The postfilter basically consists of three major parts:
long-term postfilter 71, short-term postfilter 72, and output gain scaling unit 77. The other four blocks in Figure 7/G.728
are just to calculate the appropriate scaling factor for use in the output gain scaling unit 77.

T1506810-92

73 75

74 76

71 72 77

34

Sum of
absolute value
calculator

Scaling factor
calculator

Long-term
postfilter

Short-term
postfilter

First-order
lowpass filter

Decoded
speech

Postfiltered
speech

Long-term
postfilter update
information

Output gain
scaling unit

FIGURE 7/G.728

Postfilter block schematic

Sum of
absolute value
calculator

Short-term
postfilter update
information

From postfilter adapter (block 35)

The long-term postfilter 71, sometimes called the pitch postfilter, is a comb filter with its spectral peaks
located at multiples of the fundamental frequency (or pitch frequency) of the speech to be postfiltered. The reciprocal of
the fundamental frequency is called the pitch period. The pitch period can be extracted from the decoded speech using a
pitch detector (or pitch extractor). Let p be the fundamental pitch period (in samples) obtained by a pitch detector, then
the transfer function of the long-term postfilter can be expressed as

Hl (z) = gl (1 + b z–p) (4-1)

where the coefficients gl, b and the pitch period p are updated once every four speech vectors (an adaptation cycle) and
the actual updates occur at the third speech vector of each adaptation cycle. For convenience, we will, from now on, call
an adaptation cycle a frame. The derivation of gl, b, and p will be described later in § 4.7.

Page 21 of 65

20 Recommendation G.728 (09/92)

The short-term postfilter 72 consists of a 10th-order pole-zero filter in cascade with a first-order all-zero filter.
The 10th-order pole-zero filter attenuates the frequency components between formant peaks, while the first-order all-
zero filter attempts to compensate for the spectral tilt in the frequency response of the 10th-order pole-zero filter.

Let ãi, i = 1, 2, ..., 10 be the coefficients of the 10th-order LPC predictor obtained by backward LPC analysis
of the decoded speech, and let k1 be the first reflection coefficient obtained by the same LPC analysis. Then, both ãi and
k1 can be obtained as by-products of the 50th-order backward LPC analysis (block 50 in Figure 5/G.728). All we have to
do is to stop the 50th-order Levinson-Durbin recursion at order 10, copy k1 and ã1, ã2, ..., ã10, and then resume the
Levinson-Durbin recursion from order 11 to order 50. The transfer function of the short-term postfilter is

Hs (z) =

1 – ∑
i=1

10

 b̄i z–i

1 – ∑
i=1

10

 āi z–i

 [1 + µz–1] (4-2)

where

b̄i = ~ai (0.65)i; i = 1, 2, . . ., 10 (4-3)

āi = ~ai (0.75)i; i = 1, 2, . . ., 10 (4-4)

and

µ = (0.15) k1 (4-5)

The coefficients a
–

i; b
–

i and µ are also updated once a frame, but the updates take place at the first vector of each
frame (i.e. as soon as ãi becomes available).

In general, after the decoded speech is passed through the long-term postfilter and the short-term postfilter, the
filtered speech will not have the same power level as the decoded (unfiltered) speech. To avoid occasional large gain
excursions, it is necessary to use automatic gain control to force the postfiltered speech to have roughly the same power
as the unfiltered speech. This is done by blocks 73 through 77.

The sum of absolute value calculator 73 operates vector-by-vector. It takes the current decoded speech vector
sd(n) and calculates the sum of the absolute values of its five vector components. Similarly, the sum of absolute value
calculator 74 performs the same type of calculation, but on the current output vector sf (n) of the short-term postfilter.
The scaling factor calculator 75 then divides the output value of block 73 by the output value of block 74 to obtain a
scaling factor for the current sf (n) vector. This scaling factor is then filtered by a first-order lowpass filter 76 to get a
separate scaling factor for each of the five components of sf (n). The first-order lowpass filter 76 has a transfer function
of 0.01/(1 – 0.99z–1). The lowpass filtered scaling factor is used by the output gain scaling unit 77 to perform sample-by-
sample scaling of the short-term postfilter output. Note that since the scaling factor calculator 75 only generates one
scaling factor per vector, it would have a staircase effect on the sample-by-sample scaling operation of block 77 if the
lowpass filter 76 were not present. The lowpass filter 76 effectively smooths out such a staircase effect.

4.6.1 Non-speech operation

CCITT objective test results indicate that for some non-speech signals, the performance of the coder is
improved when the adaptive postfilter is turned off. Since the input to the adaptive postfilter is the output of the
synthesis filter, this signal is always available. In an actual implementation this unfiltered signal shall be output when the
switch is set to disable the postfilter.

Page 22 of 65

Recommendation G.728 (09/92) 21

4.7 Postfilter adapter

This block calculates and updates the coefficients of the postfilter once a frame. This postfilter adapter is
further expanded in Figure 8/G.728.

84

83

81 82

85

35

T1506820-92

To long-term postfilter To short-term postfilter

Long-term
postfilter
coefficient
calculator

Pitch
predictor
tap

Short-term
postfilter
coefficient
calculator

Decoded
speech

Pitch predictor
tap calculator

Pitch
period

10th-order
LPC inverse
filter

Pitch period
extraction
module

10th-order LPC
predictor

coefficients

First
reflection
coefficient

FIGURE 8/G.728

Postfilter adapter block schematic

Refer to Figure 8/G.728. The 10th-order LPC inverse filter 81 and the pitch period extraction module 82 work
together to extract the pitch period from the decoded speech. In fact, any pitch extractor with reasonable performance
(and without introducing additional delay) may be used here. What we described here is only one possible way of
implementing a pitch extractor.

The 10th-order LPC inverse filter 81 has a transfer function of

~A(z) = 1 – ∑
i=1

10

 ~ai z–i (4-6)

where the coefficients ãi are supplied by the Levinson-Durbin recursion module (block 50 of Figure 5/G.728) and are
updated at the first vector of each frame. This LPC inverse filter takes the decoded speech as its input and produces the
LPC prediction residual sequence {d(k)} as its output. We use a pitch analysis window size of 100 samples and a range

Page 23 of 65

22 Recommendation G.728 (09/92)

of pitch period from 20 to 140 samples. The pitch period extraction module 82 maintains a long buffer to hold the last
240 samples of the LPC prediction residual. For indexing convenience, the 240 LPC residual samples stored in the
buffer are indexed as d(–139), d(–138), ..., d(100).

The pitch period extraction module 82 extracts the pitch period once a frame, and the pitch period is extracted
at the third vector of each frame. Therefore, the LPC inverse filter output vectors should be stored into the LPC residual
buffer in a special order: the LPC residual vector corresponding to the fourth vector of the last frame is stored as d(81),
d(82), ..., d(85), the LPC residual of the first vector of the current frame is stored as d(86), d(87), ..., d(90), the LPC
residual of the second vector of the current frame is stored as d(91), d(92), ..., d(95), and the LPC residual of the third
vector is stored as d(96), d(97), ..., d(100). The samples d(–139), d(–138), ..., d(80) are simply the previous LPC residual
samples arranged in the correct time order.

Once the LPC residual buffer is ready, the pitch period extraction module 82 works in the following way.
First, the last 20 samples of the LPC residual buffer [d(81) through d(100)] are lowpass filtered at 1 kHz by a third-order
elliptic filter (coefficients given in Annex D) and then 4:1 decimated (i.e. down-sampled by a factor of 4). This results in
five lowpass filtered and decimated LPC residual samples, denoted d̄(21), d̄(22), ..., ̄d(25), which are stored as the last

five samples in a decimated LPC residual buffer. Besides these five samples, the other 55 samples d̄(–34),

d̄(–33), ..., ̄d(20) in the decimated LPC residual buffer are obtained by shifting previous frames of decimated LPC
residual samples. The i-th correlation of the decimated LPC residual samples are then computed as

ρ(i) = ∑
n=1

25

 d̄(n) d̄(n – i) (4-7)

for time lags i = 5, 6, 7, ..., 35 (which correspond to pitch periods from 20 to 140 samples). The time lag τ which gives
the largest of the 31 calculated correlation values is then identified. Since this time lag τ is the lag in the 4:1 decimated
residual domain, the corresponding time lag which gives the maximum correlation in the original undecimated residual
domain should lie between 4τ–3 and 4τ+3. To get the original time resolution, we next use the undecimated LPC
residual buffer to compute the correlation of the undecimated LPC residual

C(i) = ∑
k=1

100
 d(k) d(k – i) (4-8)

for seven lags i = 4τ–3, 4τ–2, ..., 4τ+3. Out of the seven time lags, the lag p0 that gives the largest correlation is
identified.

The time lag p0 found this way may turn out to be a multiple of the true fundamental pitch period. What we
need in the long-term postfilter is the true fundamental pitch period, not any multiple of it. Therefore, we need to do
more processing to find the fundamental pitch period. We make use of the fact that we estimate the pitch period quite
frequency – once every 20 speech samples. Since the pitch period typically varies between 20 and 140 samples, our
frequent pitch estimation means that, at the beginning of each talk spurt, we will first get the fundamental pitch period
before the multiple pitch periods have a chance to show up in the correlation peak-picking process described above.
From there on, we will have a chance to lock on to the fundamental pitch period by checking to see if there is any
correlation peak in the neighbourhood of the pitch period of the previous frame.

Let p̂ be the pitch period of the previous frame. If the time lag p0 obtained above is not in the neighbourhood

of p̂, then we also evaluate equation (4-8) for i = p̂–6, ̂p–5, ..., ̂p+5, p̂+6. Out of these 13 possible time lags, the time

Page 24 of 65

Recommendation G.728 (09/92) 23

lag p1 that gives the largest correlation is identified. We then test to see if this new lag p1 should be used as the output
pitch period of the current frame. First, we compute

β0 =

∑
k=1

100
 d(k) d(k – p0)

∑
k=1

100
 d(k – p0) d(k – p0)

(4-9)

which is the optimal tap weight of a single-tap pitch predictor with a lag of p0 samples. The value of β0 is then clamped
between 0 and 1. Next, we also compute

β1 =

∑
k=1

100
 d(k) d(k – p1)

∑
k=1

100
 d(k – p1) d(k – p1)

(4-10)

which is the optimal tap weight of a single-tap pitch predictor with a lag of p1 samples. The value of β1 is then also
clamped between 0 and 1. Then, the output pitch period p of block 82 is given by

p =


p0

 if β1 ≤ 0.4 β0

p1 if β1 > 0.4 β0
(4-11)

After the pitch period extraction module 82 extracts the pitch period p, the pitch predictor tap calculator 83
then calculates the optimal tap weight of a single-tap pitch predictor for the decoded speech. The pitch predictor tap
calculator 83 and the long-term postfilter 71 share a long buffer of decoded speech samples. This buffer contains
decoded speech samples sd(–239), sd(–238), sd(–237), ..., sd(4), sd(5), where sd(1) through sd(5) correspond to the
current vector of decoded speech. The long-term postfilter 71 uses this buffer as the delay unit of the filter. On the other
hand, the pitch predictor tap calculator 83 uses this buffer to calculate

β =

∑
k= –99

0
 sd(k) sd(k – p)

∑
k= –99

0
 sd(k – p) sd(k – p)

(4-12)

The long-term postfilter coefficient calculator 84 then takes the pitch period p and the pitch predictor tap β and
calculates the long-term postfilter coefficients b and gl as follows

b =



0 if β < 0.6

0.15 β if 0.6 ≤ β ≤ 1

0.15

if β > 1

(4-13)

gl =
1

1 + b

Page 25 of 65

24 Recommendation G.728 (09/92)

In general, the closer β is to unity, the more periodic the speech waveform is. As can be seen in equations
(4-13) and (4-14), if β < 0.6, which roughly corresponds to unvoiced or transition regions of speech, then b = 0 and
gl = 1, and the long-term postfilter transfer function becomes Hl(z) = 1, which means the filtering operation of the long-
term postfilter is totally disabled. On the other hand, if 0.6 ≤ β ≤ 1, the long-term postfilter is turned on, and the degree
of comb filtering is determined by β. The more periodic the speech waveform, the more comb filtering is performed.
Finally, if β > 1, then b is limited to 0.15; this is to avoid too much comb filtering. The coefficient gl is a scaling factor
of the long-term postfilter to ensure that the voiced regions of speech waveforms do not get amplified relative to the
unvoiced or transition regions. (If gl were held constant at unity, then after the long-term postfiltering, the voiced regions
would be amplified by a factor of 1+b roughly. This would make some consonants, which correspond to unvoiced and
transition regions, sound unclear or too soft.)

The short-term postfilter coefficient calculator 85 calculates the short-term postfilter coefficients āi, b̄i, and µ
at the first vector of each frame according to equations (4-3), (4-4), and (4-5).

4.8 Output PCM format conversion

This block converts the five components of the decoded speech vector into five corresponding A-law or µ-law
PCM samples and output these five PCM samples sequentially at 125 µs time intervals. Note that if the internal linear
PCM format has been scaled as described in § 3.1.1, the inverse scaling must be performed before conversion to A-law
or µ-law PCM.

5 Computational details

This section provides the computational details for each of the LD-CELP encoder and decoder elements.
Subsections 5.1 and 5.2 list the names of coder parameters and internal processing variables which will be referred to in
later sections. The detailed specification of each block in Figure 2/G.728 through Figure 6/G.728 is given in § 5.3
through the end of § 5. To encode and decode an input speech vector, the various blocks of the encoder and the decoder
are executed in an order which roughly follows the sequence from § 5.3 to the end.

5.1 Description of basic coder parameters

The names of the basic coder parameters are defined in Table 1/G.728. In Table 1/G.728, the first column
gives the names of coder parameters which will be used in later detailed description of the LD-CELP algorithm. If a
parameter has been referred to in § 3 or 4 but was represented by a different symbol, that equivalent symbol will be
given in the second column for easy reference. Each coder parameter has a fixed value which is determined in the coder
design stage. The third column shows these fixed parameter values, and the fourth column is a brief description of the
coder parameters.

5.2 Description of internal variables

The internal processing variables of LD-CELP are listed in Table 2/G.728, which has a layout similar to Table
1/G.728. The second column shows the range of index in each variable array. The fourth column gives the
recommended initial values of the variables. The initial values of some arrays are given in Annexes A, B or C. It is
recommended (although not required) that the internal variables be set to their initial values when the encoder or decoder
just starts running, or whenever a reset of coder states is needed (such as in DCME applications). These initial values
ensure that there will be no glitches right after start-up or resets.

Note that some variable arrays can share the same physical memory locations to save memory space, although
they are given different names in the tables to enhance clarity.

Page 26 of 65

Recommendation G.728 (09/92) 25

TABLE 1/G.728

Basic coder parameters of LD-CELP

As mentioned in earlier sections, the processing sequence has a basic adaptation cycle of four speech vectors.
The variable ICOUNT is used as the vector index. In other words, ICOUNT = n when the encoder or decoder is
processing the n-th speech vector in an adaptation cycle.

It should be noted that, for the convenience of Levinson-Durbin recursion, the first element of A, ATMP,
AWP, AWZ, and GP arrays are always 1 and never get changed, and, for i ≥ 2, the i-th elements are the (i – 1)-th
elements of the corresponding symbols in § 3.

In the following sections, the asterisk (*) denotes arithmetic multiplication.

Name Equivalent
symbol

Value Description

AGCFAC 0.99 AGC adaptation speed controlling factor

FAC λ 253/256 Bandwidth expansion factor of synthesis filter

FACGP λg 29/32 Bandwidth expansion factor of log-gain predictor

DIMINV 0.2 Reciprocal of vector dimension

IDIM 5 Vector dimension (excitation block size)

GOFF 32 Log-gain offset value

KPDELTA 6 Allowed deviation from previous pitch period

KPMIN 20 Minimum pitch period (samples)

KPMAX 140 Maximum pitch period (samples)

LPC 50 Synthesis filter order

LPCLG 10 Log-gain predictor order

LPCW 10 Perceptual weighting filter order

NCWD 128 Shape codebook size (number of codevectors)

NFRSZ 20 Frame size (adaptation cycle size in samples)

NG 8 Gain codebook size (number of gain levels)

NONR 35 Number of non-recursive window samples for synthesis filter

NONRLG 20 Number of non-recursive window samples for log-gain predictor

NONRW 30 Number of non-recursive window samples for weighting filter

NPWSZ 100 Pitch analysis window size (samples)

NUPDATE 4 Predictor update period (in terms of vectors)

PPFTH 0.6 Tap threshold for turning off pitch postfilter

PPFZCF 0.15 Pitch postfilter zero controlling factor

SPFPCF 0.75 Short-term postfilter pole controlling factor

SPFZCF 0.65 Short-term postfilter zero controlling factor

TAPTH 0.4 Tap threshold for fundamental pitch replacement

TILTF 0.15 Spectral tilt compensation controlling factor

WNCF 257/256 White noise correction factor

WPCF γ2 0.6 Pole controlling factor of perceptual weighting filter

WZCF γ1 0.9 Zero controlling factor of perceptual weighting filter

Page 27 of 65

26 Recommendation G.728

TABLE 2/G.728

LD-CELP internal processing variables

Name
Array index

range
Equivalent

symbol
Initial value Description

A 1 to LPC+1 –ai–1 1,0,0,... Synthesis filter coefficients

AL 1 to 3 Annex D 1 kHz lowpass filter denominator coefficients

AP 1 to 11 –āi–1 1,0,0,... Short-term postfilter denominator coefficients

APF 1 to 11 –∼ai–1 1,0,0,... 10th-order LPC filter coefficients

ATMP 1 to LPC+1 –ai–1 Temporary buffer for synthesis filter
coefficients

AWP 1 to LPCW+1 1,0,0,... Perceptual weighting filter denominator
coefficients

AWZ 1 to LPCW+1 1,0,0,... Perceptual weighting filter numerator
coefficients

AWZTMP 1 to LPCW+1 1,0,0,... Temporary buffer for weighting filter
coefficients

AZ 1 to 11 -b̄i–1
1,0,0,... Short-term postfilter numerator coefficients

B 1 b 0 Long-term postfilter coefficients

BL 1 to 4 Annex D 1 kHz lowpass filter numerator coefficients

DEC –34 to 25 ¯d(n) 0,0,...,0 4:1 decimated LPC prediction residual

D –139 to 100 d(k) 0,0,...,0 LPC prediction residual

ET 1 to IDIM e(n) 0,0,...,0 Gain-scaled excitation vector

FACV 1 to LPC+1 λi–1 Annex C Synthesis filter BW broadening vector

FACGPV 1 to LPCLG+1 λg
i–1 Annex C Gain predictor BW broadening vector

G2 1 to NG bi Annex B Two times gain levels in gain codebook

GAIN 1 σ(n) Excitation gain

GB 1 to NG–1 di Annex B Mid-point between adjacent gain levels

GL 1 gl 1 Long-term postfilter scaling factor

GP 1 to LPCLG+1 –αi–1 1,–1,0,0,... Log-gain linear predictor coefficients

GPTMP 1 to LPCLG+1 –αi–1 Temporary array for log-gain linear predictor
coefficients

GQ 1 to NG gi Annex B Gain levels in the gain codebook

GSQ 1 to NG ci Annex B Squares of gain levels in gain codebook

Page 28 of 65

Recommendation G.728 27

TABLE 2/G.728 (cont.)

Name
Array index

range
Equivalent

symbol
Initial value Description

GSTATE 1 to LPCLG δ(n) –32,–32,...,–32 Memory of the log-gain linear predictor

GTMP 1 to 4 –32,–32,–32,–32 Temporary log-gain buffer

H 1 to IDIM h(n) 1,0,0,0,0 Impulse response vector of F(z)W(z)

ICHAN 1 Best codebook index to be transmitted

ICOUNT 1 Speech vector counter (indexed from 1 to 4)

IG 1 i Best 3-bit gain codebook index

IP 1 IPINIT b) Address pointer to LPC prediction residual

IS 1 j Best 7-bit shape codebook index

KP 1 p Pitch period of the current frame

KP1 1 p̂ 50 Pitch period of the previous frame

PN 1 to IDIM p(n) Correlation vector for codebook search

PTAP 1 β Pitch predictor tap computed by block 83

R 1 to NR+1 a) Autocorrelation coefficients

RC 1 to NR a) Reflection coefficients, also as a scratch
array

RCTMP 1 to LPC Temporary buffer for reflection coefficients

REXP 1 to LPC+1 0,0,...,0 Recursive part of autocorrelation,
synthesis filter

REXPLG 1 to LPCLG+1 0,0,...,0 Recursive part of autocorrelation, log-gain
predictor

REXPW 1 to LPCW+1 0,0,...,0 Recursive part of autocorrelation,
weighting filter

RTMP 1 to LPC+1 Temporary buffer for autocorrelation
coefficients

S 1 to IDIM s(n) 0,0,...,0 Uniform PCM input speech vector

SB 1 to 105 0,0,...,0 Buffer for previously quantized speech

SBLG 1 to 34 0,0,...,0 Buffer for previous log-gain

SBW 1 to 60 0,0,...,0 Buffer for previous input speech

SCALE 1 Unfiltered postfilter scaling factor

Page 29 of 65

28 Recommendation G.728

TABLE 2/G.728 (Cont.)

Name
Array index

range
Equivalent

symbol
Initial value Description

SCALEFIL 1 1 Lowpass filtered postfilter scaling factor

SD 1 to IDIM sd(k) Decoded speech buffer

SPF 1 to IDIM Postfiltered speech vector

SPFPCFV 1 to 11 SPFPCFi–1 Annex C Short-term postfilter pole controlling vector

SPFZCFV 1 to 11 SPFZCFi–1 Annex C Short-term postfilter zero controlling vector

SO 1 so(k) A-law or µ-law PCM input speech sample

SU 1 su(k) Uniform PCM input speech sample

ST –239 to IDIM sq(n) 0,0,...,0 Quantized speech vector

STATELPC 1 to LPC 0,0,...,0 Synthesis filter memory

STLPCI 1 to 10 0,0,...,0 LPC inverse filter memory

STLPF 1 to 3 0,0,0 1 kHz lowpass filter memory

STMP 1 to 4* IDIM 0,0,...,0 Buffer for perceptually weighted filter hybrid
window

STPFFIR 1 to 10 0,0,...,0 Short-term postfilter memory, all-zero section

STPFIIR 10 0,0,...,0 Short-term postfilter memory, all-pole section

SUMFIL 1 Sum of absolute value of postfiltered speech

SUMUNFIL 1 Sum of absolute value of decoded speech

SW 1 to IDIM v(n) Perceptually weighted speech vector

TARGET 1 to IDIM x̂(n); x(n) VQ target vector (gain-normalized)

TEMP 1 to IDIM Scratch array for temporary working space

TILTZ 1 µ 0 Short-term postfilter tilt-compensation
coefficients

WFIR 1 to LPCW 0,0,...,0 Memory of weighting filter 4, all-zero portion

WIIR 1 to LPCW 0,0,...,0 Memory of weighting filter 4, all-pole portion

WNR 1 to 105 wm(k) Annex A Window function for synthesis filter

WNRLG 1 to 34 wm(k) Annex A Window function for log-gain predictor

WNRW 1 to 60 wm(k) Annex A Window function for weighting filter

Page 30 of 65

Recommendation G.728 29

TABLE G-728 (cont.)

a) NR = Max(LPCW,LPCLG)>IDIM.

b) IPINIT = NPWSZ–NFRSZ+IDIM.

Note – The asterisk (*) denotes arithmetic multiplication.

5.3 Input PCM format conversion (block 1)

Input: SO

Output: SU

Function: Convert A-law or µ-law or 16-bit linear input sample to uniform PCM sample.

Since the operation of this block is completely defined in Recommendations G.721 or G.711, we will not repeat it here.
However, some scaling may be necessary to conform to this description’s specification of an input range of – 4 4095 to
+ 4 095 (see § 3.1.1).

5.4 Vector buffer (block 2)

Input: SU

Output: S

Function: Buffer five consecutive uniform PCM speech samples to form a single 5-dimensional speech vector.

Name
Array index

range
Equivalent

symbol
Initial value Description

WPCFV 1 to LPCW+1 γi–1
2

Annex C Perceptual weighting filter pole controlling
vector

WS 1 to 105 Work space array for intermediate variables

WZCFV 1 to LPCW+1 γi–1
1

Annex C Perceptual weighting filter zero controlling
vector

Y 1 to
IDIM*NCWD

yj Annex B Shape codebook array

Y2 1 to NCWD Ej Energy of yj Energy of convolved shape codevector

YN 1 to IDIM y(n) Quantized excitation vector

ZIRWFIR 1 to LPCW 0,0,...,0 Memory of weighting filter 10, all-zero
portion

ZIRWIIR 1 to LPCW 0,0,...,0 Memory of weighting filter 10, all-pole
portion

Page 31 of 65

30 Recommendation G.728

5.5 Adapter for perceptual weighting filter (block 3, Figure 4a)/G.728)

The three blocks (36, 37 and 38) in Figure 4a)/G.728 are now specified in detail below.

HYBRID WINDOWING MODULE (block 36)

Input: STMP

Output: R

Function: Apply the hybrid window to input speech and compute autocorrelation coefficients.

The operation of this module is now described below, using a “Fortran-like” style, with loop boundaries indicated by
indentation and comments on the right-hand side of “|”. The following algorithm is to be used once every adaptation
cycle (20 samples). The STMP array holds 4-consecutive input speech vectors up to the second speech vector of the
current adaptation cycle. That is, STMP(1) through STMP(5) is the third input speech vector of the previous adaptation
cycle (zero initially), STMP(6) through STMP(10) is the fourth input speech vector of the previous adaptation cycle
(zero initially), STMP(11) through STMP(15) is the first input speech vector of the current adaptation cycle, and
STMP(16) through STMP(20) is the second input speech vector of the current adaptation cycle.

N1 = LPCW + NFRSZ
N2 = LPCW + NONRW
N3 = LPCW + NFRSZ + NONRW

| Compute some constants (can be
| precomputed and stored in memory)

For N = 1,2,..,N2, do the next line
SBW(N) = SBW(N + NFRSZ)

For N = 1,2,..,NFRSZ, do the next line
SBW(N2 + N) = STMP(N)

| Shift the old signal buffer

| Shift in the new signal
| SBW(N3) is the newest sample

K = 1
For N = N3,N3 — 1,..,3,2,1, do the next two lines

WS(N) = SBW(N) * WNRW(K)
K = K + 1

| Multiply the window function

For I = 1,2,..,LPCW + 1, do the next four lines
TMP = 0
For N = LPCW + 1,LPCW + 2,..,N1, do the next line

TMP = TMP + WS(N) * WS(N + 1 — I)
REXPW(I) = (1/2) * REXPW(I) + TMP | Update the recursive component

For I = 1,2,..,LPCW + 1, do the next three lines
R(I) = REXPW(I)
For N = N1 + 1,N1 + 2,..,N3, do the next line

R(I) = R(I) + WS(N) * WS(N + 1 — I) | Add the non-recursive component

R(1) = R(1) * WNCF | White noise correction

Page 32 of 65

Recommendation G.728 31

LEVINSON-DURBIN RECURSION MODULE (block 37)

Input: R (output of block 36)

Output: AWZTMP

Function: Convert autocorrelation coefficients to linear predictor coefficients.

This block is executed once every 4-vector adaptation cycle. It is done at ICOUNT = 3 after the processing of block 36
has finished. Since the Levinson-Durbin recursion is well-known prior art, the algorithm is given below without
explanation.

If R(LPCW + 1) = 0, go to LABEL

If R(1) ≤ 0, go to LABEL

RC(1) = R(2)/R(1)
AWZTMP(1) = 1
AWZTMP(2) = RC(1)
ALPHA = R(1) + R(2) * RC(1)
If ALPHA ≤ 0, go to LABEL

| Skip if zero

| Skip if zero signal
|

|
| First-order predictor
|
| Abort if ill-conditioned

For MINC = 2,3,4,..,LPCW, do the following:
SUM = 0
For IP = 1,2,3,..,MINC, do the next two lines

N1 = MINC — IP + 2
SUM = SUM + R(N1) * AWZTMP(IP)

RC(MINC) = —SUM/ALPHA
MH = MINC/2 + 1
For IP = 2,3,4,..,MH, do the next four lines

IB = MINC — IP + 2
AT = AWZTMP(IP) + RC(MINC) * AWZTMP(IB)
AWZTMP(IB) = AWZTMP(IB) + RC(MINC) AWZTMP(IP)
AWZTMP(IP) = AT

|
| Reflection coefficients
|

|
| Predictor coefficients
|

AWZTMP(MINC + 1) = RC(MINC)
ALPHA = ALPHA + RC(MINC) * SUM
If Alpha ≤ 0, go to LABEL

|
| Prediction residual energy
| Abort if ill-conditioned
|

Repeat the above for the next MINC

Exit this program | Program terminates normally if
| execution proceeds to here

LABEL: If program proceeds to here, ill-conditioning had happened, then, skip block 38, do not update the weighting filter
coefficients. (That is, use the weighting filter coefficients of the previous adaptation cycle.)

Page 33 of 65

32 Recommendation G.728

WEIGHTING FILTER COEFFICIENT CALCULATOR (block 38)

Input: AWZTMP

Outputs: AWZ, AWP

Function: Calculate the perceptual weighting filter coefficients from the linear predictor coefficients for input
speech.

This block is executed once every adaptation cycle. It is done at ICOUNT = 3 after the processing of block 37 has
finished.

For I = 2,3,..,LPCW + 1, do the next line
AWP(I) = WPCFV(I) * AWZTMP(I)

For I = 2,3,..,LPCW + 1, do the next line
AWZ(I) = WZCFV(I) * AWZTMP(I)

|
| Denominator coefficients

|
| Numerator coefficients

Page 34 of 65

Recommendation G.728 33

5.6 Backward synthesis filter adapter (block 23, Figure 5/G.728)

The three blocks (49, 50 and 51) in Figure 5/G.728 are specified below.

HYBRID WINDOWING MODULE (block 49)

Input: STTMP

Output: RTMP

Function: Apply the hybrid window to quantized speech and compute autocorrelation coefficients.

The operation of this block is essentially the same as in block 36, except for some substitutions of parameters and
variables, and for the sampling instant when the autocorrelation coefficients are obtained. As described in § 3, the
autocorrelation coefficients are computed based on the quantized speech vectors up to the last vector in the previous
4-vector adaptation cycle. In other words, the autocorrelation coefficients used in the current adaptation cycle are based
on the information contained in the quantized speech up to the last (20-th) sample of the previous adaptation cycle.
(This is in fact how we define the adaptation cycle.) The STTMP array contains the four quantized speech vectors of
the previous adaptation cycle.

N1 = LPC + NFRSZ
N2 = LPC + NONR
N3 = LPC + NFRSZ + NONR

| Compute some constants (can be
| precomputed and stored in memory)

For N = 1,2,..,N2, do the next line
SB(N) = SB(N + NFRSZ)

For N = 1,2,..,NFRSZ, do the next line
SB(N2 + N) = STTMP(N)

| Shift the old signal buffer

| Shift in the new signal
| SB(N3) is the newest sample

K = 1
For N = N3,N3 — 1,..,3,2,1, do the next two lines

WS(N) = SB(N) * WNR(K)
K = K + 1

| Multiply the window function

For I = 1,2,..,LPC + 1, do the next four lines
TMP = 0
For N = LPC + 1,LPC + 2,..,N1, do the next line

TMP = TMP + WS(N) * WS(N + 1 — I)
REXP(I) = (3/4) * REXP(I) + TMP | Update the recursive component

For I = 1,2,..,LPC + 1, do the next three lines
RTMP(I) = REXP(I)
For N = N1 + 1,N1 + 2,..,N3, do the next line

RTMP(I) = RTMP(I) + WS(N) * WS(N + 1 — I)
| Add the non-recursive component

RTMP(1) = RTMP(1) * WNCF | White noise correction

Page 35 of 65

34 Recommendation G.728

LEVINSON-DURBIN RECURSION MODULE (block 50)

Input: RTMP

Output: ATMP

Function: Convert autocorrelation coefficients to synthesis filter coefficients.

The operation of this block is exactly the same as in block 37, except for some substitutions of parameters and
variables. However, special care should be taken when implementing this block. As described in § 3, although the
autocorrelation RTMP array is available at the first vector of each adaptation cycle, the actual updates of synthesis filter
coefficients will not take place until the third vector. This intentional delay of updates allows the real-time hardware to
spread the computation of this module over the first three vectors of each adaptation cycle. While this module is being
executed during the first two vectors of each cycle, the old set of synthesis filter coefficients (the array “A”) obtained in
the previous cycle is still being used. This is why we need to keep a separate array ATMP to avoid overwriting the old
“A” array. Similarly, RTMP, RCTMP, ALPHATMP, etc. are used to avoid interference to other Levinson-Durbin
recursion modules (blocks 37 and 44).

If RTMP(LPC + 1) = 0, go to LABEL

If RTMP(1) ≤ 0, go to LABEL

RCTMP(1) = —RTMP(2)/RTMP(1)
ATMP(1) = 1
ATMP(2) = RCTMP(1)
ALPHATMP = RTMP(1) + RTMP(2) * RCTMP(1)
If ALPHATMP ≤ 0, go to LABEL

| Skip if zero
|
| Skip if zero signal
|

|
| First-order predictor
|
| Abort if ill-conditioned

For MINC = 2,3,4,..,LPC, do the following:
SUM = 0
For IP = 1,2,3,..,MINC, do the next two lines

N1 = MINC — IP + 2
SUM = SUM + RTMP(N1) * ATMP(IP)

RCTMP(MINC) = —SUM/ALPHATMP
MH = MINC/2 + 1
For IP = 2,3,4,..,MH, do the next four lines

IB = MINC — IP + 2
AT = ATMP(IP) + RCTMP(MINC) * ATMP(IB)
ATMP(IB) = ATMP(IB) + RCTMP(MINC) * ATMP(IP)
ATMP(IP) = AT

|
| Reflection coefficients
|

|
| Update predictor coefficients

ATMP(MINC + 1) = RCTMP(MINC)
ALPHATMP = ALPHATMP + RCTMP(MINC) * SUM
If ALPHATMP ≤ 0, go to LABEL

|
| Predictor residual energy
| Abort if ill-conditioned
|

Repeat the above for the next MINC

Exit this program | Recursion completed normally if
| execution proceeds to here

LABEL: If program proceeds to here, ill-conditioning had happened, then, skip block 51, do not update the synthesis filter
coefficients. (That is, use the synthesis filter coefficients of the previous adaptation cycle.)

Page 36 of 65

Recommendation G.728 35

BANDWIDTH EXPANSION MODULE (block 51)

Input: ATMP

Output: A

Function: Scale synthesis filter coefficients to expand the bandwidths of spectral peaks.

This block is executed only once every adaptation cycle. It is done after the processing of block 50 has finished and
before the execution of blocks 9 and 10 at ICOUNT = 3 take place. When the execution of this module is finished and
ICOUNT = 3, then we copy the ATMP array to the “A” array to update the filter coefficients.

For I = 2,3,..,LPC + 1, do the next line
ATMP(I) = FACV(I) * ATMP(I)

|
| Scale coefficients

Wait until ICOUNT = 3, then
For I = 2,3,..,LPC + 1, do the next line

A(I) = ATMP(I)

|
| Update coefficients at the third
| vector of each cycle

5.7 Backward vector gain adapter (block 20, Figure 6/G.728)

The blocks in Figure 6/G.728 are specified below. For implementation efficiency, some blocks are described
together as a single block (they are shown separately in Figure 6/G.728 just to explain the concept). All blocks in
Figure 6/G.728 are executed once every speech vector, except for blocks 43, 44 and 45, which are executed only when
ICOUNT = 2.

1-VECTOR DELAY, RMS CALCULATOR, AND LOGARITHM CALCULATOR
(blocks 67, 39 and 40)

Input: ET

Output: ETRMS

Function: Calculate the dB level of the root-mean square (RMS) value of the previous gain-scaled excitation
vector.

When these three blocks are executed (which is before the VQ codebook search), the ET array contains the gain-scaled
excitation vector determined for the previous speech vector. Therefore, the 1-vector delay unit (block 67) is
automatically executed. (It appears in Figure 6/G.728 just to enhance clarity.) Since the logarithm calculator
immediately follows the RMS calculator, the square root operation in the RMS calculator can be implemented as a
“divide-by-two” operation to the output of the logarithm calculator. Hence, the output of the logarithm calculator (the
dB value) is 10 * log10 (energy of ET/IDIM). To avoid overflow of logarithm value when ET = 0 (after system
initialization or reset), the argument of the logarithm operation is clipped to 1 if it is too small. Also, we note that
ETRMS is usually kept in an accumulator, as it is a temporary value which is immediately processed in block 42.

ETRMS = ET(1) * ET(1)
For K = 2,3,..,IDIM, do the next line

ETRMS = ETRMS + ET(K) * ET(K)

|
| Compute energy of ET
|

ETRMS = ETRMS * DIMINV
If ETRMS < 1, set ETRMS = 1
ETRMS = 10 * log10 (ETRMS)

| Divide by IDIM
| Clip to avoid log overflow
| Compute dB value

Page 37 of 65

36 Recommendation G.728

LOG-GAIN OFFSET SUBTRACTOR (block 42)

Inputs: ETRMS, GOFF

Output: GSTATE(1)

Function: Subtract the log-gain offset value held in block 41 from the output of block 40 (dB gain level).

GSTATE(1) = ETRMS — GOFF

HYBRID WINDOWING MODULE (block 43)

Input: GTMP

Output: R

Function: Apply the hybrid window to offset-subtracted log-gain sequence and compute autocorrelation
coefficients.

The operation of this block is very similar to block 36, except for some substitutions of parameters and variables, and
for the sampling instant when the autocorrelation coefficients are obtained.

An important difference between block 36 and this block is that only four (rather than 20) gain samples are fed to this
block each time the block is executed.

The log-gain predictor coefficients are updated at the second vector of each adaptation cycle. The GTMP array below
contains four-offset-removed log-gain values, starting from the log-gain of the second vector of the previous adaptation
cycle to the log-gain of the first vector of the current adaptation cycle, which is GTMP(1). GTMP(4) is the
offset-removed log-gain value from the first vector of the current adaptation cycle, the newest value.

N1 = LPCLG + NUPDATE
N2 = LPCLG + NONRLG
N3 = LPCLG + NUPDATE + NONRLG

| Compute some constants (can be
| precomputed and stored in memory)

For N = 1,2,..,N2, do the next line
SBLG(N) = SBLG(N + NUPDATE)

For N = 1,2,..,NUPDATE, do the next line
SBLG(N2 + N) = GTMP(N)

| Shift the old signal buffer

| Shift in the new signal;
| SBLG(N3) is the newest sample

K = 1
For N = N3,N3 — 1,..,3,2,1, do the next two lines

WS(N) = SBLG(N) * WNRLG(K)
K = K + 1

| Multiply the window function

For I = 1,2,..,LPCLG + 1, do the next four lines
TMP = 0
For N = LPCLG + 1,LPCLG + 2,..,N1, do the next line

TMP = TMP + WS(N) * WS(N + 1 — I)
REXPLG(I) = (3/4) * REXPLG(I) + TMP | Update the recursive component

For I = 1,2,..,LPCLG + 1, do the next three lines
R(I) = REXPLG(I)
For N = N1 + 1,N1 + 2,..,N3, do the next line

R(I) = R(I) + WS(N) * WS(N + 1 — I) | Add the non-recursive component

R(1) = R(1) * WNCF | White noise correction

Page 38 of 65

Recommendation G.728 37

LEVINSON-DURBIN RECURSION MODULE (block 44)

Input: R (output of block 43)

Output: GPTMP

Function: Convert autocorrelation coefficients to log-gain predictor coefficients.

The operation of this block is exactly the same as in block 37, except for the substitutions of parameters and variables
indicated below: replace LPCW by LPCLG and AWZ by GP. This block is executed only when ICOUNT = 2, after
block 43 is executed. Note that as the first step, the value of R(LPCLG + 1) will be checked. If it is zero, we skip
blocks 44 and 45 without updating the log-gain predictor coefficients. (That is, we keep using the old log-gain predictor
coefficients determined in the previous adaptation cycle.) This special procedure is designed to avoid a very small
glitch that would have otherwise happened right after system initialization or reset. In case the matrix is ill-conditioned,
we also skip block 45 and use the old values.

BANDWIDTH EXPANSION MODULE (block 45)

Input: GPTMP

Output: GP

Function: Scale log-gain predictor coefficients to expand the bandwidths of spectral peaks.

This block is executed only when ICOUNT = 2, after block 44 is executed.

For I = 2,3,..,LPCLG + 1, do the next line
GP(I) = FACGPV(I) * GPTMP(I)

|
| Scale coefficients

LOG-GAIN LINEAR PREDICTOR (block 46)

Inputs: GP, GSTATE

Output: GAIN

Function: Predict the current value of the offset-subtracted log-gain.

GAIN = 0
For I = LGLPC,LPCLG — 1,..,3,2, do the next two lines

GAIN = GAIN — GP(I + 1) * GSTATE(I)
GSTATE(I) = GSTATE(I — 1)

GAIN = GAIN — GP(2) * GSTATE(1)

LOG-GAIN OFFSET ADDER (between blocks 46 and 47)

Inputs: GAIN, GOFF

Output: GAIN

Function: Add the log-gain offset value back to the log-gain predictor output.

GAIN = GAIN + GOFF

Page 39 of 65

38 Recommendation G.728

LOG-GAIN LIMITER (block 47)

Input: GAIN

Output: GAIN

Function: Limit the range of the predicted logarithmic gain.

If GAIN < 0, set GAIN = 0
If GAIN > 60, set GAIN = 60

| Correspond to linear gain 1
| Correspond to linear gain 1000

INVERSE LOGARITHM CALCULATOR (block 48)

Input: GAIN

Output: GAIN

Function: Convert the predicted logarithmic gain (in dB) back to linear domain.

GAIN = 10(GAIN/20)

5.8 Perceptual weighting filter

PERCEPTUAL WEIGHTING FILTER (block 4)

Inputs: S, AWZ, AWP

Output: SW

Function: Filter the input speech vector to achieve perceptual weighting.

For K = 1,2,..,IDIM, do the following:
SW(K) = S(K)
For J = LPCW,LPCW — 1,..,3,2, do the next two lines

SW(K) = SW(K) + WFIR(J) * AWZ(J + 1)
WFIR(J) = WFIR(J — 1)

|
| All-zero part of the filter

SW(K) = SW(K) + WFIR(1) * AWZ(2)
WFIR(1) = S(K)

|
| Handle last one differently

For J = LPCW,LPCW — 1,..,3,2, do the next two lines
SW(K) = SW(K) — WIIR(J) * AWP(J + 1)
WIIR(J) = WIIR(J — 1)

|
| All-pole part of the filter

SW(K) = SW(K) — WIIR(1) * AWP(2)
WIIR(1) = SW(K)

|
| Handle last one differently

Repeat the above for the next K

Page 40 of 65

Recommendation G.728 39

5.9 Computation of zero-input response vector

Subsection 3.5 explains how a “zero-input response vector” r(n) is computed by blocks 9 and 10. Now the
operation of these two blocks during this phase is specified below. Their operation during the “memory update phase”
will be described later.

SYNTHESIS FILTER (block 9) DURING ZERO-INPUT RESPONSE COMPUTATION

Inputs: A, STATELPC

Output: TEMP

Function: Compute the zero-input response vector of the synthesis filter.

For K = 1,2,..,IDIM, do the following:
TEMP(K) = 0
For J = LPC,LPC — 1,..,3,2, do the next two lines

TEMP(K) = TEMP(K) — STATELPC(J) * A(J + 1)
STATELPC(J) = STATELPC(J — 1)

| Multiply-add
| Memory shift

TEMP(K) = TEMP(K) — STATELPC(1) * A(2)
STATELPC(1) = TEMP(K)

|
| Handle last one differently

Repeat the above for the next K

PERCEPTUAL WEIGHTING FILTER DU RING ZERO-INPUT
RESPONSE COMPUTATION (block 10)

Inputs: AWZ, AWP, ZIRWFIR, ZIRWIIR, TEMP computed above

Output: ZIR

Function: Compute the zero-input response vector of the perceptual weighting filter.

For K = 1,2,..,IDIM, do the following:
TMP = TEMP(K)

For J = LPCW,LPCW — 1,..,3,2, do the next two lines
TEMP(K) = TEMP(K) + ZIRWFIR(J) * AWZ(J + 1)
ZIRWFIR(J) = ZIRWFIR(J — 1)

|
| All-zero part of the filter

TEMP(K) = TEMP(K) + ZIRWFIR(1) * AWZ(2)
ZIRWFIR(1) = TMP

|

| Handle last one differently

For J = LPCW,LPCW — 1,..,3,2, do the next two lines
TEMP(K) = TEMP(K) — ZIRWIIR(J) * AWP(J + 1)
ZIRWIIR(J) = ZIRWIIR(J — 1)

|
| All-pole part of the filter

ZIR(K) = TEMP(K) — ZIRWIIR(1) * AWP(2)
ZIRWIIR(1) = ZIR(K)

|
| Handle last one differently

Repeat the above for the next K

Page 41 of 65

40 Recommendation G.728

5.10 VQ target vector computation

VQ TARGET VECTOR COMPUTATION (block 11)

Inputs: SW, ZIR

Output: TARGET

Function: Subtract the zero-input response vector from the weighted speech vector.

Note — ZIR(K) = ZIRWIIR(IDIM + 1 — K) from block 10 above. It does not require a separate storage location.

For K = 1,2,..,IDIM, do the next line
TARGET(K) = SW(K) — ZIR(K)

5.11 Codebook search module (block 24)

The seven blocks contained within the codebook search module (block 24) are specified below. Again, some
blocks are described as a single block for convenience and implementation efficiency. Blocks 12, 14 and 15 are
executed once every adaptation cycle when ICOUNT = 3, while the other blocks are executed once every speech
vector.

IMPULSE RESPONSE VECTOR CALCULATOR (block 12)

Inputs: A, AWZ, AWP

Output: H

Function: Compute the impulse response vector of the cascaded synthesis filter and perceptual weighting filter.

This block is executed when ICOUNT = 3 and after the execution of block 23 and 3 is completed (i.e. when the new
sets of A, AWZ, AWP coefficients are ready).

TEMP(1) = 1
RC(1) = 1
For K = 2,3,..,IDIM, do the following:

A0 = 0
A1 = 0
A2 = 0
For I = K,K — 1,..,3,2, do the next five lines

TEMP(I) = TEMP(I — 1)
RC(I) = RC(I — 1)
A0 = A0 — A(I) * TEMP(I)
A1 = A1 + AWZ(I) * TEMP(I)
A2 = A2 — AWP(I) * RC(I)

| TEMP = synthesis filter memory
| RC = W(z) all-pole part memory

|
| Filtering
|

TEMP(1) = A0
RC(1) = A0 + A1 + A2

Repeat the above indented section for the next K

ITMP = IDIM + 1
For K = 1,2,..,IDIM, do the next line

H(K) = RC(ITMP — K)

| Obtain h(n) by reversing the
| order of the memory of all-pole
| section of W(z)

Page 42 of 65

Recommendation G.728 41

SHAPE CODEVECTOR CONVOLUTION MODULE AND ENERGY
TABLE CALCULATOR (blocks 14 and 15)

Inputs: H, Y

Output: Y2

Function: Convolve each shape codevector with the impulse response obtained in block 12, then compute and store
the energy of the resulting vector.

This block is also executed when ICOUNT = 3 after the execution of block 12 is completed.

For J = 1,2,..,NCWD, do the following:
J1 = (J — 1) * IDIM
For K = 1,2,..,IDIM, do the next four lines

K1 = J1 + K + 1
TEMP(K) = 0
For I = 1,2,..,K, do the next line

TEMP(K) = TEMP(K) + H(I) * Y(K1 — I)

Repeat the above 4 lines for the next K

| One codevector per loop

|
| Convolution

Y2(J) = 0
For K = 1,2,..,IDIM, do the next line

Y2(J) = Y2(J) + TEMP(K) * TEMP(K)
|
| Compute energy

Repeat the above for the next J

VQ TARGET VECTOR NORMALIZATION (block 16)

Inputs: TARGET, GAIN

Output: TARGET

Function: Normalize the VQ target vector using the predicted excitation gain.

TMP = 1 / GAIN
For K = 1,2,..,IDIM, do the next line

TARGET(K) = TARGET(K) * TMP

TIME-REVERSED CONVOLUTION MODULE (block 13)

Inputs: H, TARGET (output from block 16)

Output: PN

Function: Perform time-reversed convolution of the impulse response vector and the normalized VQ target vector
(to obtain the vector p(n)).

Note — The vector PN can be kept in temporary storage.

For K = 1,2,..,IDIM, do the following:
K1 = K — 1
PN(K) = 0
For J = K,K + 1,..,IDIM, do the next line

PN(K) = PN(K) + TARGET(J) * H(J — K1)

Repeat the above for the next K

Page 43 of 65

42 Recommendation G.728

ERROR CALCULATOR AND BEST CODEBOOK INDEX SELECTOR
(blocks 17 and 18)

Inputs: PN, Y, Y2, GB, G2, GSQ

Outputs: IG, IS, ICHAN

Function: Search through the gain codebook and the shape codebook to identify the best combination of gain
codebook index and shape codebook index, and combine the two to obtain the 10-bit best codebook
index.

Note — The variable COR used below is usually kept in an accumulator, rather than storing it in memory. The
variables IDXG and J can be kept in temporary registers, while IG and IS can be kept in memory.

Initialize DISTM tothe largest number representable in the hardware
N1 = NG/2
For J = 1,2,..,NCWD, do the following:

J1 = (J — 1) * IDIM
COR = 0
For K = 1,2,..,IDIM, do the next line

COR = COR + PN(K) * Y(J1 + K)
|
| Compute inner product Pj

If COR > 0, then do the next five lines
IDXG = N1
For K = 1,2,..,N1 — 1, do the next “if” statement

If COR < GB(K) * Y2(J), do the next two lines
IDXG = K
GO TO LABEL

| Best positive gain found

If COR ≤ 0, then do the next five lines
IDXG = NG
For K = N1 + 1,N1 + 2,..,NG — 1, do the next “if” statement

If COR > GB(K) * Y2(J), do the next two lines
IDXG = K
GO TO LABEL

| Best negative gain found

LABEL: D = —G2(IDXG) * COR + GSQ(IDXG) * Y2(J) | Compute distortion ̂D

If D < DISTM, do the next three lines
DISTM = D
IG = IDXG
IS = J

| Save the lowest distortion and the
| best codebook indices so far
|

Repeat the above indented section for the next K

ICHAN = (IS — 1) * NG + (IG — 1) | Concatenate shape and gain
| codebook indices

Transmit ICHAN through communication channel

For serial bit stream transmission, the most significant bit of ICHAN should be transmitted first.

If ICHAN is represented by the 10 bit word b9b8b7b6b5b4b3b2b1b0, then the order of the transmitted bits should be b9,
and then b8, and then b7, ..., and finally b0. (b9 is the most significant bit.)

Page 44 of 65

Recommendation G.728 43

5.12 Simulated decoder (block 8)

Blocks 20 and 23 have been described earlier. Blocks 19, 21 and 22 are specified below.

EXCITATION VQ CODEBOOK (block 19)

Inputs: IG, IS

Output: YN

Function: Perform table look-up to extract the best shape codevector and the best gain, then multiply them to get
the quantized excitation vector.

NN = (IS —1) * IDIM
For K = 1,2,..,IDIM, do the next line

YN(K) = GQ(IG) * Y(NN + K)

GAIN SCALING UNIT (block 21)

Inputs: GAIN, YN

Output: ET

Function: Multiply the quantized excitation vector by the excitation gain.

For K = 1,2,..,IDIM, do the next line
ET(K) = GAIN * YN(K)

SYNTHESIS FILTER (block 22)

Inputs: ET, A

Output: ST

Function: Filter the gain-scaled excitation vector to obtain the quantized speech vector.

As explained in § 3, this block can be omitted and the quantized speech vector can be obtained as a by-product of the
memory update procedure to be described below. If, however, one wishes to implement this block anyway, a separate
set of filter memory (rather than STATELPC) should be used for this all-pole synthesis filter.

Page 45 of 65

44 Recommendation G.728

5.13 Filter memory update for blocks 9 and 10

The following description of the filter memory update procedures for blocks 9 and 10 assumes that the
quantized speech vector ST is obtained as a by-product of the memory updates. To safeguard possible overloading of
signal levels, a magnitude limiter is built into the procedure so that the filter memory clips at MAX and MIN, where
MAX and MIN are respectively the positive and negative saturation levels of A-law or µ-law PCM, depending on
which law is used.

FILTER MEMORY UPDATE (blocks 9 and 10)

Inputs: ET, A, AWZ, AWP, STATELPC, ZIRWFIR, ZIRWIIR

Outputs: ST, STATELPC, ZIRWFIR, ZIRWIIR

Function: Update the filter memory of blocks 9 and 10 and also obtain the quantized speech vector.

ZIRWFIR(1) = ET(1)
TEMP(1) = ET(1)
For K = 2,3,..,IDIM, do the following:

A0 = ET(K)
A1 = 0
A2 = 0
For I = K,K — 1,..,2, do the next five lines

ZIRWFIR(I) = ZIRWFIR(I — 1)
TEMP(I) = TEMP(I — 1)

A0 = A0 — A(I) * ZIRWFIR(I)
A1 = A1 + AWZ(I) * ZIRWFIR(I)
A2 = A2 — AWP(I) * TEMP(I)

ZIRWFIR(1) = A0
TEMP(1) = A0 + A1 + A2

| ZIRWFIR now a scratch array

|
| Compute zero-state responses at
| various stages of the cascaded
| filter
|

Repeat the above indented section for the next K

| Now update filter memory by adding
| zero-state responses to zero-input
| responses

For K = 1,2,..,IDIM, do the next four lines
STATELPC(K) = STATELPC(K) + ZIRWFIR(K)
If STATELPC(K) > MAX, set STATELPC(K) = MAX
If STATELPC(K) < MIN, set STATELPC(K) = MIN
ZIRWIIR(K) = ZIRWIIR(K) + TEMP(K)

| Limit the range
|

For I = 1,2,..,LPCW, do the next line
ZIRWFIR(I) = STATELPC(I)

| Now set ZIRWFIR to the right
| value

I = IDIM + 1
For K = 1,2,..,IDIM, do the next line

ST(K) = STATELPC(I — K)
| Obtain quantized speech by reversing
| order of synthesis filter memory

5.14 Decoder (Figure 3/G.728)

The blocks in the decoder (Figure 3/G.728) are described below. Except for the output PCM format
conversion block, all other blocks are exactly the same as the blocks in the simulated decoder (block 8) in
Figure 2/G.728.

Page 46 of 65

Recommendation G.728 45

The decoder only uses a subset of the variables in Table 2/G.728. If a decoder and an encoder are to be
implemented in a single DSP chip, then the decoder variables should be given different names to avoid overwriting the
variables used in the simulated decoder block of the encoder. For example, to name the decoder variables, we can add a
prefix “d” to the corresponding variable names in Table 2/G.728. If a decoder is to be implemented as a stand-alone
unit independent of an encoder, then there is no need to change the variable names.

The following description assumes a stand-alone decoder. Again, the blocks are executed in the same order as
they are described below.

DECODER BACKWARD SYNTHESIS FILTER ADAPTER (block 33)

Input: ST

Output: A

Function: Generate synthesis filter coefficients periodically from previously decoded speech.

The operation of this block is exactly the same as block 23 of the encoder.

DECODER BACKWARD VECTOR GAIN ADAPTER (block 30)

Input: ET

Output: GAIN

Function: Generate the excitation gain from previous gain-scaled excitation vectors.

The operation of this block is exactly the same as block 20 of the encoder.

DECODER EXCITATION VQ CODEBOOK (block 29)

Input: ICHAN

Output: YN

Function: Decode the received best codebook index (channel index) to obtain the excitation vector.

This block first extracts the 3-bit gain codebook index IG and the 7-bit shape codebook index IS from the received
10-bit channel index. Then, the rest of the operation is exactly the same as block 19 of the encoder.

ITMP = integer part of (ICHAN / NG)
IG = ICHAN — ITMP * NG + 1

| Decode (IS — 1)
| Decode IG

NN = ITMP * IDIM
For K = 1,2,..,IDIM, do the next line

YN(K) = GQ(IG) * Y(NN + K)

Page 47 of 65

46 Recommendation G.728

DECODER GAIN SCALING UNIT (block 31)

Inputs: GAIN, YN

Output: ET

Function: Multiply the excitation vector by the excitation gain.

The operation of this block is exactly the same as block 21 of the encoder.

DECODER SYNTHESIS FILTER (block 32)

Inputs: ET, A, STATELPC

Output: ST

Function: Filter the gain-scaled excitation vector to obtain the decoded speech vector.

This block can be implemented as a straightforward all-pole filter. However, as mentioned in § 4.3, if the encoder
obtains the quantized speech as a by-product of filter memory update (to save computation), and if potential
accumulation of round-off error is a concern, then this block should compute the decoded speech in exactly the same
way as in the simulated decoder block of the encoder. That is, the decoded speech vector should be computed as the
sum of the zero-input response vector and the zero-state response vector of the synthesis filter. This can be done by the
following procedure.

For K = 1,2,..,IDIM, do the next seven lines
TEMP(K) = 0
For J = LPC,LPC — 1,..,3,2, do the next two lines

TEMP(K) = TEMP(K) — STATELPC(J) * A(J + 1)
STATELPC(J) = STATELPC(J — 1)

| Zero-input response

TEMP(K) = TEMP(K) — STATELPC(1) * A(2)
STATELPC(1) = TEMP(K)

|
| Handle last one differently

Repeat the above for the next K

TEMP(1) = ET(1)
For K = 2,3,..,IDIM, do the next five lines

A0 = ET(K)
For I = K,K — 1,..,2, do the next two lines

TEMP(I) = TEMP(I — 1)
A0 = A0 — A(I) * TEMP(I) | Compute zero-state response

TEMP(1) = A0

Repeat the above for the next K

| Now update filter memory by adding
| zero-state responses to zero-input
| responses

For K = 1,2,..,IDIM, do the next three lines
STATELPC(K) = STATELPC(K) + TEMP(K)
If STATELPC(K) > MAX, set STATELPC(K) = MAX
If STATELPC(K) < MIN, set STATELPC(K) = MIN

| ZIR + ZSR
| Limit the range
|

I = IDM + 1
For K = 1,2,..,IDIM, do the next line

ST(K) = STATELPC(I — K)
| Obtain quantized speech by reversing
| order of synthesis filter memory

Page 48 of 65

Recommendation G.728 47

10th-ORDER LPC INVERSE FILTER (block 81)

This block is executed once a vector, and the output vector is written sequentially into the last 20 samples of the LPC
prediction residual buffer [i.e. D(81) through D(100)]. We use a pointer IP to point to the address of D(K) array
samples to be written to. This pointer IP is initialized to NPWSZ — NFRSZ + IDIM before this block starts to process
the first decoded speech vector of the first adaptation cycle (frame), and from there on IP is updated in the way
described below. The 10th-order LPC predictor coefficients APF(I)s are obtained in the middle of Levinson-Durbin
recursion by block 50, as described in § 4.6. It is assumed that before this block starts execution, the decoder synthesis
filter (block 32 of Figure 3/G.728) has already written the current decoded speech vector into ST(1) through ST(IDIM).

Inputs: ST, APF

Output: D

Function: Compute the LPC prediction residual for the current decoded speech vector.

If IP = NPWSZ, then set IP = NPWSZ — NFRSZ | Check and update IP

For K = 1,2,..,IDIM, do the next seven lines
ITMP = IP + K

D(ITMP) = ST(K)
For J = 10,9,..,3,2, do the next two lines

D(ITMP) = D(ITMP) + STLPCI(J) * APF(J + 1)
STLPCI(J) = STLPCI(J — 1)

D(ITMP) = D(ITMP) + STLPCI(1) * APF(2)
STLPCI(1) = ST(K)

| FIR filtering
| Memory shift
| Handle last one
| Shift in input

IP = IP + IDIM | Update IP

PITCH PERIOD EXTRACTION MODULE (block 82)

This block is executed once a frame at the third vector of each frame, after the third decoded speech vector is generated.

Input: D

Output: KP

Function: Extract the pitch period from the LPC prediction residual.

If ICOUNT ≠ 3, skip the execution of this block,
otherwise, do the following:

For K = NPWSZ — NFRSZ + 1,..,NPWSZ, do the next seven lines
TMP = D(K) — STLPF(1) * AL(1) — STLPF(2) *
AL(2) — STLPF(3) * AL(3)
If K is divisible by 4, do the next two lines

N = K/4

| Lowpass filtering & 4:1 downsampling

| IIR filter

| Do FIR filtering only if needed

DEC(N) = TMP * BL(1) + STLPF(1) * BL(2) + STLPF(2) * BL(3) + STLPF(3) * BL(4)

STLPF(3) = STLPF(2)
STLPF(2) = STLPF(1)
STLPF(1) = TMP

| Shift lowpass filter memory

M1 = KPMIN/4
M2 = KPMAX/4
CORMAX = most negative number of the machine

| Start correlation peak-picking in the
| decimated LPC residual domain

Page 49 of 65

48 Recommendation G.728

For J = M1,M1 + 1,..,M2, do the next six lines
TMP = 0
For N = 1,2,..,NPWSZ/4, do the next line

TMP = TMP + DEC(N) * DEC(N — J)

If TMP > CORMAX, do the next two lines
CORMAX = TMP
KMAX = J

For N = —M2 + 1,—M2 + 2,..,(NPWSZ — NFRSZ)/4, do the next line
DEC(N) = DEC(N + IDIM)

| TMP = correlation in decimated domain

| Find maximum correlation and the
| corresponding lag

| Shift decimated LPC residual buffer

M1 = 4 * KMAX — 3
M2 = 4 * KMAX + 3

| Start correlation peak-picking in undecimated domain

If M1 < KPMIN, set M1 = KPMIN
If M2 > KPMAX, set M2 = KPMAX
CORMAX = most negative number of the machine
For J = M1,M1 + 1,..,M2, do the next six lines

TMP = 0
For K = 1,2,..,NPWSZ, do the next line

TMP = TMP + D(K) * D(K — J)
If TMP > CORMAX, do the next two lines

CORMAX = TMP
KP = J

| Check whether M1 out of range
| Check whether M2 out of range

| Correlation in undecimated domain

| Find maximum correlation and the
| corresponding lag

M1 = KP1 — KPDELTA
M2 = KP1 + KPDELTA

If KP < M2 + 1, go to LABEL

If M1 < KPMIN, set M1 = KPMIN
CMAX = most negative number of the machine

For J = M1,M1 + 1,..,M2, do the next six lines
TMP = 0
For K = 1,2,..,NPWSZ, do the next line

TMP = TMP + D(K) * D(K — J)
If TMP > CMAX, do the next two lines

CMAX = TMP
KPTMP = J

| Determine the range of search around
| the pitch period of previous frame

| KP can't be a multiple pitch if true

| Check whether M1 out of range

| Correlation in undecimated domain

| Find maximum correlation and the
| corresponding lag

SUM = 0
TMP = 0

For K = 1,2,..,NPWSZ, do the next two lines
SUM = SUM + D(K — KP) * D(K — KP)
TMP = TMP + D(K — KPTMP) * D(K — KPTMP)

If SUM = 0, set TAP = 0, otherwise, set TAP = CORMAX/SUM
If TMP = 0, set TAP1 = 0, otherwise, set TAP1 = CMAX/TMP
If TAP > 1, set TAP = 1
If TAP < 0, set TAP = 0
If TAP1 > 1, set TAP1 = 1
If TAP1 < 0, set TAP1 = 0

If TAP1 > TAPTH * TAP, then set KP = KPTMP

| Start computing the tap weights

| Clamp TAP between 0 and 1

| Clamp TAP1 between 0 and 1

| Replace KP with fundamental pitch
| if TAP1 is large enough

LABEL: KP1 = KP | Update pitch period of previous frame

For K = KPMAX + 1,—KPMAX + 2,..,NPWSZ — NFRSZ, do the next line

D(K) = D(K + NFRSZ) | Shift the LPC residual buffer

Page 50 of 65

Recommendation G.728 49

PITCH PREDICTOR TAP CALCULATOR (block 83)

This block is also executed once a frame at the third vector of each frame, right after the execution of block 82. This
block shares the decoded speech buffer (ST(K) array) with the long-term postfilter 71, which takes care of the shifting
of the array such that ST(1) through ST(IDIM) constitute the current vector of decoded speech, and
ST(—KPMAX — NPWSZ + 1) through ST(0) are previous vectors of decoded speech.

Inputs: ST, KP

Output: PTAP

Function: Calculate the optimal tap weight of the single-tap pitch predictor of the decoded speech.

If ICOUNT ≠ 3, skip the execution of this block,
otherwise, do the following:

SUM = 0
TMP = 0
For K = —NPWSZ + 1,— NPWSZ + 2,..,0, do the next two lines

SUM = SUM + ST(K — KP) * ST(K — KP)
TMP = TMP + ST(K) * ST(K — KP)

If SUM = 0, set PTAP = 0, otherwise, set PTAP = TMP/SUM

LONG-TERM POSTFILTER COEFFICIENT CALCULATOR (block 84)

This block is also executed once a frame at the third vector of each frame, right after the execution of block 83.

Input: PTAP

Outputs: B, GL

Function: Calculate the coefficient b and the scaling factor gl of the long-term postfilter.

If ICOUNT ≠ 3, skip the execution of this block,
otherwise, do the following:

If PTAP > 1, set PTAP = 1
If PTAP < PPFTH, set PTAP = 0

| Clamp PTAP at 1
| Turn off pitch postfilter if
| PTAP smaller than threshold

B = PPFZCF * PTAP
GL = 1 / (1 + B)

SHORT-TERM POSTFILTER COEFFICIENT CALCULATOR (block 85)

This block is also executed once a frame, but it is executed at the first vector of each frame.

Inputs: APF, RCTMP(1)

Outputs: AP, AZ, TILTZ

Function: Calculate the coefficients of the short-term postfilter.

If ICOUNT ≠ 1, skip the execution of this block,
otherwise, do the following:

For I = 2,3,..,11, do the next two lines
AP(I) = SPFPCFV(I) * APF(I)
AZ(I) = SPFZCFV(I) * APF(I)

TILTZ = TILTF * RCTMP(1)

|
| Scale denominator coefficients
| Scale numerator coefficients
| Tilt compensation filter coefficients

Page 51 of 65

50 Recommendation G.728

LONG-TERM POSTFILTER (block 71)

This block is executed once a vector.

Inputs: ST, B, GL, KP

Output: TEMP

Function: Perform filtering operation of the long-term postfilter.

For K = 1,2,..,IDIM, do the next line
TEMP(K) = GL * (ST(K) + B * ST(K — KP)) | Long-term postfiltering

For K = —NPWSZ — KPMAX + 1,..,—2,—1,0, do the next line
ST(K) = ST(K + IDIM) | Shift decoded speech buffer

SHORT-TERM POSTFILTER (block 72)

This block is executed once a vector right after the execution of block 71.

Inputs: AP, AZ, TILTZ, STPFFIR, STPFIIR, TEMP (output of block 71)

Output: TEMP

Function: Perform filtering operation for the short-term postfilter.

For K = 1,2,..,IDIM, do the following:
TMP = TEMP(K)

For J = 10,9,..,3,2, do the next two lines
TEMP(K) = TEMP(K) + STPFFIR (J) * AZ(J + 1)
STPFFIR(J) = STPFFIR(J — 1)

TEMP(K) = TEMP(K) + STPFFIR(1) * AZ(2)
STPFFIR(1) = TMP

|
| All-zero part of the filter
| Last multiplier

For J = 10,9,..,3,2, do the next two lines
TEMP(K) = TEMP(K) — STPFIIR(J) * AP(J + 1)
STPFIIR(J) = STPFIIR(J — 1)

TEMP(K) = TEMP(K) — STPFIIR(1) * AP(2)
STPFIIR(1) = TEMP(K)

TEMP(K) = TEMP(K) + STPFIIR(2) * TILTZ

|
| All-pole part of the filter
| Last multiplier

| Spectral tilt compensation filter

SUM OF ABSOLUTE VALUE CALCULATOR (block 73)

This block is executed once a vector after execution of block 32.

Input: ST

Output: SUMUNFIL

Function: Calculate the sum of absolute values of the components of the decoded speech vector.

SUMUNFIL = 0
For K = 1,2,..,IDIM, do the next line

SUMUNFIL = SUMUNFIL + absolute value of ST(K)

Page 52 of 65

Recommendation G.728 51

SUM OF ABSOLUTE VALUE CALCULATOR (block 74)

This block is executed once a vector after execution of block 72.

Input: TEMP (output of block 72)

Output: SUMFIL

Function: Calculate the sum of absolute values of the components of the short-term postfilter output vector.

SUMFIL = 0
For K = 1,2,..,IDIM, do the next line

SUMFIL = SUMFIL + absolute value of TEMP(K)

SCALING FACTOR CALCULATOR (block 75)

This block is executed once a vector after execution of blocks 73 and 74.

Inputs: SUMUNFIL, SUMFIL

Output: SCALE

Function: Calculate the overall scaling factor of the postfilter.

If SUMFIL > 1, set SCALE = SUMUNFIL / SUMFIL,
otherwise, set SCALE = 1

FIRST-ORDER LOWPASS FILTER (block 76) and
OUTPUT GAIN SCALING UNIT (block 77)

These two blocks are executed once a vector after execution of blocks 72 and 75. It is more convenient to describe the
two blocks together.

Inputs: SCALE, TEMP (output of block 72)

Output: SPF

Function: Lowpass filter the once-a-vector scaling factor and use the filtered scaling factor to scale the short-term
postfilter output vector.

For K = 1,2,..,IDIM, do the following:
SCALEFIL = AGCFAC * SCALEFIL +
(1 — AGCFAC) * SCALE
SPF(K) = SCALEFIL * TEMP(K)

| Lowpass filtering
| Scale output

Page 53 of 65

52 Recommendation G.728

OUTPUT PCM FORMAT CONVERSION (block 28)

Input: SPF

Output: SD

Function: Convert the five components of the decoded speech vector into 5-corresponding A-law or µ-law PCM
samples and put them out sequentially at 125 µs time intervals.

The conversion rules from uniform PCM to A-law or µ-law PCM are specified in Recommendation G.711.

Page 54 of 65

Recommendation G.728 (09/92) 53

ANNEX A

(to Recommendation G.728)

Hybrid window functions for various LPC analyses in LD-CELP

In the LD-CELP coder, we use three separate LPC analyses to update the coefficients of three filters: the
synthesis filter, the log-gain predictor, and the perceptual weighting filter. Each of these three LPC analyses has its own
hybrid window. For each hybrid window, we list the values of window function samples that are used in the hybrid
windowing calculation procedure. These window functions were first designed using floating-point arithmetic and then
quantized to the numbers which can be exactly represented by 16-bit representations with 15 bits of fraction. For each
window, we will first give a table containing the floating-point equivalent of the 16-bit numbers and then give a table
with corresponding 16-bit integer representations.

A.1 Hybrid window for the synthesis filter

The following table contains the first 105 samples of the window function for the synthesis filter. The first 35
samples are the non-recursive portion, and the rest are the recursive portion. The table should be read from left to right
from the first row, then left to right for the second row, and so on (just like the raster scan line).

0.047760010 0.095428467 0.142852783 0.189971924 0.236663818

0.282775879 0.328277588 0.373016357 0.416900635 0.459838867

0.501739502 0.542480469 0.582000732 0.620178223 0.656921387

0.692199707 0.725891113 0.757904053 0.788208008 0.816680908

0.843322754 0.868041992 0.890747070 0.911437988 0.930053711

0.946533203 0.960876465 0.973022461 0.982910156 0.990600586

0.996002197 0.999114990 0.999969482 0.998565674 0.994842529

0.988861084 0.981781006 0.974731445 0.967742920 0.960815430

0.953948975 0.947082520 0.940307617 0.933563232 0.926879883

0.920227051 0.913635254 0.907104492 0.900604248 0.894134521

0.887725830 0.881378174 0.875061035 0.868774414 0.862548828

0.856384277 0.850250244 0.844146729 0.838104248 0.832092285

0.826141357 0.820220947 0.814331055 0.808502197 0.802703857

0.796936035 0.791229248 0.785583496 0.779937744 0.774353027

0.768798828 0.763305664 0.757812500 0.752380371 0.747009277

0.741638184 0.736328125 0.731048584 0.725830078 0.720611572

0.715454102 0.710327148 0.705230713 0.700164795 0.695159912

0.690185547 0.685241699 0.680328369 0.675445557 0.670593262

0.665802002 0.661041260 0.656280518 0.651580811 0.646911621

0.642272949 0.637695313 0.633117676 0.628570557 0.624084473

0.619598389 0.615142822 0.610748291 0.606384277 0.602020264

Page 55 of 65

54 Recommendation G.728 (09/92)

The next table contains the corresponding 16-bit integer representation. Dividing the table entries by
215 = 32 768 gives the table above.

A.2 Hybrid window for the log-gain predictor

The following table contains the first 34 samples of the window function for the log-gain predictor. The first
20 samples are the non-recursive portion, and the rest are the recursive portion. The table should be read in the same
manner as the two tables above.

1 565 3 127 4 681 6 225 7 755

9 266 10 757 12 223 13 661 15 068

16 441 17 776 19 071 20 322 21 526

22 682 23 786 24 835 25 828 26 761

27 634 28 444 29 188 29 866 30 476

31 016 31 486 31 884 32 208 32 460

32 637 32 739 32 767 32 721 32 599

32 403 32 171 31 940 31 711 31 484

31 259 31 034 30 812 30 591 30 372

30 154 29 938 29 724 29 511 29 299

29 089 28 881 28 674 28 468 28 264

28 062 27 861 27 661 27 463 27 266

27 071 26 877 26 684 26 493 26 303

26 114 25 927 25 742 25 557 25 374

25 192 25 012 24 832 24 654 24 478

24 302 24 128 23 955 23 784 23 613

23 444 23 276 23 109 22 943 22 779

22 616 22 454 22 293 22 133 21 974

21 817 21 661 21 505 21 351 21 198

21 046 20 896 20 746 20 597 20 450

20 303 20 157 20 013 19 870 19 727

0.092346191 0.183868408 0.273834229 0.361480713 0.446014404

0.526763916 0.602996826 0.674072266 0.739379883 0.798400879

0.850585938 0.895507813 0.932769775 0.962066650 0.983154297

0.995819092 0.999969482 0.995635986 0.982757568 0.961486816

0.932006836 0.899078369 0.867309570 0.836669922 0.807128906

0.778625488 0.751129150 0.724578857 0.699005127 0.674316406

0.650482178 0.627502441 0.605346680 0.583953857

Page 56 of 65

Recommendation G.728 (09/92) 55

The next table contains the corresponding 16-bit integer representation. Dividing the table entries by
215 = 32 768 gives the table above.

A.3 Hybrid window for the perceptual weighting filter

The following table contains the first 60 samples of the window function for the perceptual weighting filter.
The first 30 samples are the non-recursive portion, and the rest are the recursive portion. The table should be read in the
same manner as the four tables above.

The next table contains the corresponding 16-bit integer representation. Dividing the table entries by
215 = 32 768 gives the table above.

3 026 6 025 8 973 11 845 14 615

17 261 19 759 22 088 24 228 26 162

27 872 29 344 30 565 31 525 32 216

32 631 32 767 32 625 32 203 31 506

30 540 29 461 28 420 27 416 26 448

25 514 24 613 23 743 22 905 22 096

21 315 20 562 19 836 19 135

0.059722900 0.119262695 0.178375244 0.236816406 0.294433594

0.351013184 0.406311035 0.460174561 0.512390137 0.562774658

0.611145020 0.657348633 0.701171875 0.742523193 0.781219482

0.817108154 0.850097656 0.880035400 0.906829834 0.930389404

0.950622559 0.967468262 0.980865479 0.990722656 0.997070313

0.999847412 0.999084473 0.994720459 0.986816406 0.975372314

0.960449219 0.943939209 0.927734375 0.911804199 0.896148682

0.880737305 0.865600586 0.850738525 0.836120605 0.821746826

0.807647705 0.793762207 0.780120850 0.766723633 0.753570557

0.740600586 0.727874756 0.715393066 0.703094482 0.691009521

0.679138184 0.667480469 0.656005859 0.644744873 0.633666992

0.622772217 0.612091064 0.601562500 0.591217041 0.581085205

1 957 3 908 5 845 7 760 9 648

11 502 13 314 15 079 16 790 18 441

20 026 21 540 22 976 24 331 25 599

26 775 27 856 28 837 29 715 30 487

31 150 31 702 32 141 32 464 32 672

32 763 32 738 32 595 32 336 31 961

31 472 30 931 30 400 29 878 29 365

28 860 28 364 27 877 27 398 26 927

26 465 26 010 25 563 25 124 24 693

24 268 23 851 23 442 23 039 22 643

22 254 21 872 21 496 21 127 20 764

20 407 20 057 19 712 19 373 19 041

Page 57 of 65

56 Recommendation G.728 (09/92)

ANNEX B

(to Recommendation G.728)

Excitation shape and gain codebook tables

This annex first gives the 7-bit excitation VQ shape codebook table. Each row in the table specifies one of the
128 shape codevectors. The first column is the channel index associated with each shape codevector (obtained by a
Gray-code index assignment algorithm). The second through the sixth columns are the first through the fifth
components of the 128 shape codevectors as represented in the 16-bit fixed point. To obtain the floating point value
from the integer value, divide the integer value by 2 048. This is equivalent to multiplication by 2—11 or shifting the
binary point 11 bits to the left.

Channel index Codevector components

0 668 —2 950 —1 254 —1 790 —2 553

1 —5 032 —4 577 —1 045 2 908 3 318

2 —2 819 —2 677 —948 —2 825 —4 450

3 —6 679 —340 1 482 —1 276 1 262

4 —562 —6 757 1 281 179 —1 274

5 —2 512 —7 130 —4 925 6 913 2 411

6 —2 478 —156 4 683 —3 873 0

7 —8 208 2 140 —478 —2 785 533

8 1 889 2 759 1 381 —6 955 —5 913

9 5 082 —2 460 —5 778 1 797 568

10 —2 208 —3 309 —4 523 —6 236 —7 505

11 —2 719 4 358 —2 988 —1 149 2 664

12 1 259 995 2 711 —2 464 —10 390

13 1 722 —7 569 —2 742 2 171 —2 329

14 1 032 747 —858 —7 946 —12 843

15 3 106 4 856 —4 193 —2 541 1 035

16 1 862 —960 —6 628 410 5 882

17 —2 493 —2 628 —4 000 —60 7 202

18 —2 672 1 446 1 536 —3 831 1 233

19 —5 302 6 912 1 589 —4 187 3 665

20 —3 456 —8 170 —7 709 1 384 4 698

21 —4 699 —6 209 —11 176 8 104 16 830

22 930 7 004 1 269 —8 977 2 567

23 4 649 11 804 3 441 —5 657 1 199

24 2 542 —183 —8 859 —7 976 3 230

25 —2 872 —2 011 —9 713 —8 385 12 983

26 3 086 2 140 —3 680 —9 643 —2 896

27 —7 609 6 515 —2 283 —2 522 6 332

28 —3 333 —5 620 —9 130 —11 131 5 543

29 —407 —6 721 —17 466 —2 889 11 568

30 3 692 6 796 —262 —10 846 —1 856

31 7 275 13 404 —2 989 —10 595 4 936

32 244 —2 219 2 656 3 776 —5 412

33 —4 043 —5 934 2 131 863 —2 866

34 —3 302 1 743 —2 006 —128 —2 052

35 —6 361 3 342 —1 583 —21 1 142

36 —3 837 —1 831 6 397 2 545 —2 848

Page 58 of 65

Recommendation G.728 (09/92) 57

Channel index Codevector components

37 —9 332 —6 528 5 309 1 986 —2 245

38 —4 490 748 1 935 —3 027 —493

39 —9 255 5 366 3 193 —4 493 1 784

40 4 784 —370 1 866 1 057 —1 889

41 7 342 —2 690 —2 577 676 —611

42 —502 2 235 —1 850 —1 777 —2 049

43 1 011 3 880 —2 465 2 209 —152

44 2 592 2 829 5 588 2 839 —7 306

45 —3 049 —4 918 5 955 9 201 —4 447

46 697 3 908 5 798 —4 451 —4 644

47 —2 121 5 444 —2 570 321 —1 202

48 2 846 —2 086 3 532 566 —708

49 —4 279 950 4 980 3 749 452

50 —2 484 3 502 1 719 —170 238

51 —3 435 263 2 114 —2 005 2 361

52 —7 338 —1 208 9 347 —1 216 —4 013

53 —13 498 —439 8 028 —4 232 361

54 —3 729 5 433 2 004 —4 727 —1 259

55 —3 986 7 743 8 429 —3 691 —987

56 5 198 —423 1 150 —1 281 816

57 7 409 4 109 —3 949 2 690 30

58 1 246 3 055 —35 —1 370 —246

59 —1 489 5 635 —678 —2 627 3 170

60 4 830 —4 585 2 008 —1 062 799

61 —129 717 4 594 14 937 10 706

62 417 2 759 1 850 —5 057 —1 153

63 —3 887 7 361 —5 768 4 285 666

64 1 443 —938 20 —2 119 —1 697

65 —3 712 —3 402 —2 212 110 2 136

66 —2 952 12 —1 568 —3 500 —1 855

67 —1 315 —1 731 1 160 —558 1 709

68 88 —4 569 194 —454 —2 957

69 —2 839 —1 666 —273 2 084 —155

70 —189 —2 376 1 663 —1 040 —2 449

71 —2 842 —1 369 636 —248 —2 677

72 1 517 79 —3 013 —3 669 —973

73 1 913 —2 493 —5 312 —749 1 271

74 —2 903 —3 324 —3 756 —3 690 —1 829

75 —2 913 —1 547 —2 760 —1 406 1 124

76 1 844 —1 834 456 706 —4 272

77 467 —4 256 —1 909 1 521 1 134

78 —127 —994 —637 —1 491 —6 494

79 873 —2 045 —3 828 —2 792 —578

80 2 311 —1 817 2 632 —3 052 1 968

81 641 1 194 1 893 4 107 6 342

82 —45 1 198 2 160 —1 449 2 203

Page 59 of 65

58 Recommendation G.728 (09/92)

Channel index Codevector components

83 —2 004 1 713 3 518 2 652 4 251

84 2 936 —3 968 1 280 131 —1 476

85 2 827 8 —1 928 2 658 3 513

86 3 199 —816 2 687 —1 741 —1 407

87 2 948 4 029 394 —253 1 298

88 4 286 51 —4 507 —32 —659

89 3 903 5 646 —5 588 —2 592 5 707

90 —606 1 234 —1 607 —5 187 664

91 —525 3 620 —2 192 —2 527 1 707

92 4 297 —3 251 —2 283 812 —2 264

93 5 765 528 —3 287 1 352 1 672

94 2 735 1 241 —1 103 —3 273 —3 407

95 4 033 1 648 —2 965 —1 174 1 444

96 74 918 1 999 915 —1 026

97 —2 496 —1 605 2 034 2 950 229

98 —2 168 2 037 15 —1 264 —208

99 —3 552 1 530 581 1 491 962

100 —2 613 —2 338 3 621 —1 488 —2 185

101 —1 747 81 5 538 1 432 —2 257

102 —1 019 867 214 —2 284 —1 510

103 —1 684 2 816 —229 2 551 —1 389

104 2 707 504 479 2 783 —1 009

105 2 517 —1 487 —1 596 621 1 929

106 —148 2 206 —4 288 1 292 —1 401

107 —527 1 243 —2 731 1 909 1 280

108 2 149 —1 501 3 688 610 —4 591

109 3 306 —3 369 1 875 3 636 —1 217

110 2 574 2 513 1 449 —3 074 —4 979

111 814 1 826 —2 497 4 234 —4 077

112 1 664 —220 3 418 1 002 1 115

113 781 1 658 3 919 6 130 3 140

114 1 148 4 065 1 516 815 199

115 1 191 2 489 2 561 2 421 2 443

116 770 —5 915 5 515 —368 —3 199

117 1 190 1 047 3 742 6 927 —2 089

118 292 3 099 4 308 —758 —2 455

119 523 3 921 4 044 1 386 85

120 4 367 1 006 —1 252 —1 466 —1 383

121 3 852 1 579 —77 2 064 868

122 5 109 2 919 —202 359 —509

123 3 650 3 206 2 303 1 693 1 296

124 2 905 —3 907 229 —1 196 —2 332

125 5 977 —3 585 805 3 825 —3 138

126 3 746 —606 53 —269 —3 301

127 606 2 018 —1 316 4 064 398

Page 60 of 65

Recommendation G.728 (09/92) 59

Next we give the values for the gain codebook. This table not only includes the values for GQ, but also the
values for GB, G2 and GSQ as well. Both GQ and GB can be represented exactly in 16-bit arithmetic using Q13
format. The fixed point representation of G2 is just the same as GQ, except the format is now Q12. An approximate
representation of GSQ to the nearest integer in fixed point Q12 format will suffice.

ANNEX C

(to Recommendation G.728)

Values for bandwidth broadcasting

The following table gives the integer values for the pole control, zero control and bandwidth broadening
vectors listed in Table 2/G.728. To obtain the floating point value, divide the integer value by 16 384. The values in
this table represent these floating point values in the Q14 format, the most commonly used format to represent numbers
less than 2 in 16-bit fixed point arithmetic.

Values of gain codebook related arrays

Array index 1 2 3 4 5 6 7 8

GQ b) 0.515625 0.90234375 1.579101563 2.763427734 — GQ(1) — GQ(2) — GQ(3) — GQ(4)

GB 0.708984375 1.240722656 2.171264649 a) — GB(1) — GB(2) — GB(3) a)

G2 1.03125 1.8046875 3.158203126 5.526855468 — G2(1) — G2(2) — G2(3) — G2(4)

GSQ 0.26586914 0.814224243 2.493561746 7.636532841 GSQ(1) GSQ(2) GSQ(3) GSQ(4)

a) Can be any arbitrary value (not used).
b) Note that GQ(1) = 33/64, and GQ(i) = (7/4) GQ(i — 1) for i = 2, 3, 4.

i FACV FACGPV WPCFV WZCFV SPFPCFV SPFZCFV

1 16 384 16 384 16 384 16 384 16 384 16 384

2 16 192 14 848 9 830 14 746 12 288 10 650

3 16 002 13 456 5 898 13 271 9 216 6 922

4 15 815 12 195 3 539 11 944 6 912 4 499

5 15 629 11 051 2 123 10 750 5 184 2 925

6 15 446 10 015 1 274 9 675 3 888 1 901

7 15 265 9 076 764 8 707 2 916 1 236

8 15 086 8 225 459 7 836 2 187 803

9 14 910 7 454 275 7 053 1 640 522

10 14 735 6 755 165 6 347 1 230 339

11 14 562 6 122 99 5 713 923 221

12 14 391

13 14 223

14 14 056

15 13 891

Page 61 of 65

60 Recommendation G.728 (09/92)

i FACV FACGPV WPCFV WZCFV SPFPCFV SPFZCFV

16 13 729

17 13 568

18 13 409

19 13 252

20 13 096

21 12 943

22 12 791

23 12 641

24 12 493

25 12 347

26 12 202

27 12 059

28 11 918

29 11 778

30 11 640

31 11 504

32 11 369

33 11 236

34 11 104

35 10 974

36 10 845

37 10 718

38 10 593

39 10 468

40 10 346

41 10 225

42 10 105

43 9 986

44 9 869

45 9 754

46 9 639

47 9 526

48 9 415

49 9 304

50 9 195

51 9 088

Page 62 of 65

Recommendation G.728 (09/92) 61

ANNEX D

(to Recommendation G.728)

Coefficients of the 1 kHz lowpass elliptic filter used in
pitch period extraction module (block 82)

The 1 kHz lowpass filter used in the pitch lag extraction and encoding module (block 82) is a third-order
pole-zero filter with a transfer function of

L(z) =

∑
i=0

3
 bi z–i

 1 + ∑
i=1

3
 ai z–i

where the coefficients ai and bi are given in the following tables.

ANNEX E

(to Recommendation G.728)

Time scheduling the sequence of computations

All of the computation in the encoder and decoder can be divided up into two classes. Included in the first
class are those computations which take place once per vector. Sections 3 through § 5.14 note which computations
these are. Generally they are the ones which involve or lead to the actual quantization of the excitation signal and the
synthesis of the output signal. Referring specifically to the block numbers in Figure 2/G.728, this class includes blocks
1, 2, 4, 9, 10, 11, 13, 16, 17, 18, 21 and 22. In Figure 3/G.728, this class includes blocks 28, 29, 31, 32 and 34. In
Figure 6/G.728, this class includes blocks 39, 40, 41, 42, 46, 47, 48 and 67. (Note that Figure 6/G.728 is applicable to
both block 20 in Figure 2/G.728 and block 30 in Figure 3/G.728. Blocks 43, 44 and 45 of Figure 6/G.728 are not part
of this class. Thus, blocks 20 and 30 are part of both classes.

In the other class are those computations which are only done once for every four vectors. Once more
referring to Figures 2/G.728 through 8/G.728, this class includes blocks 3, 12, 14, 15, 23, 33, 35, 36, 37, 38, 43, 44, 45,
49, 50, 51, 81, 82, 83, 84 and 85. All of the computations in this second class are associated with updating one or more
of the adaptive filters or predictors in the coder. In the encoder there are three such adaptive structures, the 50th order
LPC synthesis filter, the vector gain predictor, and the perceptual weighting filter. In the decoder there are four such
structures, the synthesis filter, the gain predictor, and the long-term and short-term adaptive postfilters. Included in the
descriptions of § 3 through § 5.14 are the times and input signals for each of these five adaptive structures. Although it
is redundant, this annex explicitly lists all of this timing information in one place for the convenience of the reader.
Table E-1/G.728 summarizes the five adaptive structures, their input signals, their times of computation and the time at
which the updated values are first used. For reference, the fourth column in Table E-1/G.728 refers to the block
numbers used in the figures and in §§ 3 to 5 as a cross reference to these computations.

i ai bi

0 — 0.0357081667

1 –2.34036589 –0.0069956244

2 2.01190019 –0.0069956244

3 –0.614109218 0.0357081667

Page 63 of 65

62 Recommendation G.728 (09/92)

By far, the largest amount of computation is expended in updating the 50th order synthesis filter. The input
signal required is the synthesis filter output speech (ST). As soon as the fourth vector in the previous cycle has been
decoded, the hybrid window method for computing the autocorrelation coefficients can commence (block 49). When it
is completed, Durbin’s recursion to obtain the prediction coefficients can begin (block 50). In practice we found it
necessary to stretch this computation over more than one vector cycle. We begin the hybrid window computation
before vector 1 has been fully received. Before Durbin’s recursion can be fully completed, we must interrupt it to
encode vector 1. Durbin’s recursion is not completed until vector 2. Finally bandwidth expansion (block 51) is applied
to the predictor coefficients. The results of this calculation are not used until the encoding or decoding of vector 3
because in the encoder we need to combine these updated values with the update of the perceptual weighting filter and
codevector energies. These updates are not available until vector 3.

The gain adaptation precedes in two fashions. The adaptive predictor is updated once every four vectors.
However, the adaptive predictor produces a new gain value once per vector. In this section we are describing the timing
of the update of the predictor. To compute this requires first performing the hybrid window method on the previous log
gains (block 43), then Durbin's recursion (block 44), and bandwidth expansion (block 45). All of this can be completed
during vector 2 using the log gains available up through vector 1. If the result of Durbin’s recursion indicates there is
no singularity, then the new gain predictor is used immediately in the encoding of vector 2.

The perceptual weighting filter update is computed during vector 3. The first part of this update is performing
the LPC analysis on the input speech up through vector 2. We can begin this computation immediately after vector 2
has been encoded, not waiting for vector 3 to be fully received. This consists of performing the hybrid window method
(block 36), Durbin’s recursion (block 37) and the weighting filter coefficient calculations (block 38). Next we need to
combine the perceptual weighting filter with the updated synthesis filter to compute the impulse response vector
calculator (block 12). We also must convolve every shape codevector with this impulse response to find the codevector
energies (blocks 14 and 15). As soon as these computations are completed, we can immediately use all of the updated
values in the encoding of vector 3.

TABLE E-1/G.728

Timing of adapter updates

Adapter Input signal(s) First use of updated parameters Reference blocks

Backward synthesis filter
adapter

Synthesis filter output speech
(ST) through vector 4

Encoding/decoding vector 3 23, 33,
(49,50,51)

Backward vector gain adapter Log gains through vector 1 Encoding/decoding vector 2 20, 30
(43,44,45)

Adapter for perceptual
weighting filter and fast
codebook search

Input speech (S) through
 vector 2

Encoding vector 3 3
(36,37,38)
12, 14, 15

Adapter for long-term adaptive
postfilter

Synthesis filter output speech
(ST) through vector 3

Synthesizing postfiltered vector
3

35
(81 to 84)

Adapter for short-term adaptive
postfilter

Synthesis filter output speech
(ST) through vector 4

Synthesizing postfiltered vector
1

35
(85)

Page 64 of 65

Recommendation G.728 (09/92) 63

Note — Because the computation of codevector energies is fairly intensive, we were unable to complete the
perceptual weighting filter update as part of the computation during the time of vector 2, even if the gain predictor
update were moved elsewhere. This is why it was deferred to vector 3.

The long-term adaptive postfilter is updated on the basis of a fast pitch extraction algorithm which uses the
synthesis filter output speech (ST) for its input. Since the postfilter is only used in the decoder, scheduling time to
perform this computation was based on the other computational loads in the decoder. The decoder does not have to
update the perceptual weighting filter and codevector energies, so the time slot of vector 3 is available. The codeword
for vector 3 is decoded and its synthesis filter output speech is available together with all previous synthesis output
vectors. These are input to the adapter which then produces the new pitch period (blocks 81 and 82) and long-term
postfilter coefficient (blocks 83 and 84). These new values are immediately used in calculating the postfiltered output
for vector 3.

The short-term adaptive postfilter is updated as a by-product of the synthesis filter update. Durbin's recursion
is stopped at order 10 and the prediction coefficients are saved for the postfilter update. Since the Durbin computation
is usually begun during vector 1, the short-term adaptive postfilter update is completed in time for the postfiltering of
output vector 1.

ANNEX F

(to Recommendation G.728)

Alphabetical list of abbreviations used in this Recommendation

CELP Code excited linear prediction

DCME Digital circuit multiplication equipment

DSP Digital signal processing

LD-CELP Low-delay code excited linear prediction

LPC Linear prediction coding

MSE Mean-squared error

PCM Pulse code modulation

RMS Root-mean-square

VQ Vector quantization

WNCF White noise correction factor

APPENDIX 1

(to Recommendation G.728)

Implementation verification

A set of verification tools have been designed in order to facilitate the compliance verification of different
implementations to the algorithm defined in this Recommendation. These verification tools are available from the ITU
on a set of distribution diskettes.

Page 65 of 65

