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Speech Coding: A Thtorial Review 
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The past decade has witnessed substantial progress towards 
the application of low-rate speech coders to civilian and military 
communications as well as computer-related voice applications. 
Central to this progress has been the development of new speech 
coders capable of producing high-quality speech at low data 
rates. Most of these coders incorporate mechanisms to: represent 
the spectral properties of speech. provide for speech waveform 
matching, and "optimize" the coder's performance for the human 
ear. A number of these coders have already been adopted in 
national and international cellular telephony standards. 

The objective of this paper is to provide a tutorial overview of 
speech coding methodologies with emphasis on those algorithms 
that are part of the recent low-rate standards for cellular commu­
nications. Although the emphasis is on the new low-rate coders, we 
attempt to provide a comprehensive survey by covering some of the 
traditional methodologies as well. We feel that this approach will 
not only point out key references but will also provide valuable 
background to the beginner. The paper starts with a historical 
perspective and continues with a brief discussion on the speech 
properties and performance measures. We then proceed with de­
scriptions of waveform coders, sinusoidal transform coders, linear 
predictive vocoders, and analysis-by-synthesis linear predictive 
coders. Finally, we present concluding remarks followed by a 
discussion of opportunities for future research. 

I. INTRODUCTION 

Although with the emergence of optical fibers bandwidth 
in wired communications has become inexpensive, there is 
a growing need for bandwidth conservation and enhanced 
privacy in wireless cellular and satellite communications. 
In particular, cellular communications have been enjoying 
a tremendous worldwide growth and there is a great deal of 
R&D activity geared towards establishing global portable 
communications through wireless personal communication 
networks (PCN's). On the other hand, there is a trend 
toward integrating voice-related applications (e.g., voice­
mail) on desktop and portable personal computers-often 
in the context of multimedia communications. Most of these 
applications require that the speech signal is in digital 
format so that it can be processed, stored, or transmitted 
under software control. Although digital speech brings 
flexibility and opportunities for encryption, it is also as­
sociated (when uncompressed) with a high data rate and 
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hence high requirements of transmission bandwidth and 
storage. Speech Coding or Speech Compression is the field 
concerned with obtaining compact digital representations 
of voice signals for the purpose of efficient transmission or 
storage. Speech coding involves sampling and amplitude 
quantization. While the sampling is almost invariably done 
at a rate equal to or greater than twice the bandwidth of 
analog speech, there has been a great deal of variability 
among the proposed methods in the representation of the 
sampled waveform. The objective in speech coding is to 
represent speech with a minimum number of bits while 
maintaining its perceptual quality. The quantization or 
binary representation can be direct or parametric. Direct 
quantization implies binary representation of the speech 
samples themselves while parametric quantization involves 
binary representation of speech model and/or spectral pa­
rameters. 

With very few exceptions, the coding methods discussed 
in this paper are those intended for digital speech communi­
cations. In this application, speech is generally bandlimited 
to 4 kHz (or 3.2 kHz) and sampled at 8 kHz. The simplest 
nonparametric coding technique is Pulse-Code Modulation 
(PCM) which is simply a quantizer of sampled amplitudes. 
Speech coded at 64 kbits/s using logarithmic PCM is 
considered as "noncompressed" and is often used as a 
reference for comparisons. In this paper, we shall use the 
term medium rate for coding in the range of 8-16 kbits/s, 
low rate for systems working below 8 kbits/s and down to 
2.4 kbits/s, and very luw rate for coders operating below 
2.4 kbits/s. 

Speech coding at medium-rates and below is achieved 
using an analysis-synthesis process. In the analysis stage, 
speech is represented by a compact set of parameters which 
are encoded efficiently. In the synthesis stage, these param­
eters are decoded and used in conjunction with a reconstruc­
tion mechanism to form speech. Analysis can be open-loop 
or closed-loop. In closed-loop analysis, the parameters are 
extracted and encoded by minimizing explicitly a measure 
(usually the mean square) of the difference between the 
original and the reconstructed speech. Therefore, closed­
loop analysis incorporates synthesis and hence this process 
is also called analysis by synthesis. Parametric representa­
tions can be speech- or non-speech-specific. Non-speech­
specific coders or waveform coders are concerned with the 
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faithful reconstruction of the time-domain waveform and 
generally operate at medium rates. Speech-specific coders 
or voice coders (vocoders) rely on speech models and are 
focussed upon producing perceptually intelligible speech 
without necessarily matching the waveform. Vocoders are 
capable of operating at very-low rates but also tend to 
produce speech of synthetic quality. Although this is the 
generally accepted classification in speech coding, there 
are coders that combine features from both categories. 
For example, there are speech-specific waveform coders 
such as the Adaptive Transform Coder [303] and also 
hybrid coders which rely on analysis-by-synthesis linear 
prediction. Hybrid coders combine the coding efficiency 
of vocoders with the high-quality potential of waveform 
coders by modeling the spectral properties of speech (much 
like vocoders) and exploiting the perceptual properties of 
the ear, while at the same time providing for waveform 
matching (much like waveform coders). Modem hybrid 
coders can achieve communications quality speech at 8 
kbitsls and below at the expense of increased complexity. 
At this time there are at least four such coders that have 
been adopted in telephony standards. 

A. Scope and Organization 

In this paper, we provide a survey of the different 
methodologies for speech coding with emphasis on those 
methods and algorithms that are part of recent communica­
tions standards. The paper is intended both as a survey and 
a tutorial and has been motivated by advances in speech 
coding which have enabled the standardization of low­
rate coding algorithms for civilian cellular communications. 
The standardizations are results of more than fifty years of 
speech coding research. Until recently, low-rate algorithms 
were of interest only to researchers in the field. Speech 
coding is now of interest to many engineers who are 
confronted with the difficult task of learning the essentials 
of voice compression in order to solve implementation 
problems, such as fitting an algorithm to an existing fixed­
point signal processor or developing low-power single-chip 
solutions for portable cellular telephones. Modem speech­
coding algorithms are associated with numerical methods 
that are computationally intensive and often sensitive to ma­
chine precision. In addition, these algorithms employ math­
ematical, statistical, and heuristic methodologies. While 
the mathematical and statistical techniques are associated 
with the theory of signal processing, communications, and 
information theory, many of the heuristic methods were 
established through years of experimental work. Therefore, 
the beginner not only has to get a grasp of the theory 
but also needs to review the algorithms that preceded the 
standards. In this paper we attempt to sort through the 
literature and highlight the key theoretical and heuristic 
techniques employed in classical and modem speech-coding 
algorithms. For each method we give the key references 
and, when possible, we refer first to the article that the 
novice will find more accessible. 

The general notation adopted in this paper is as follows. 
The discrete-time speech signal is denoted as s( n ), where 
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n is an integer indexing the sample number. Discrete­
time speech is related to analog speech, sa(t), by s(n) = 
Sa ( nT) = sa ( t) lt=nT, where T is the sampling period. 
Unless otherwise stated, lower case symbols denote time­
domain signals and upper case symbols denote transform­
domain signals. Bold characters are used for matrices and 
vectors. The rest of the notation is introduced in subsequent 
sections as necessary. 

The organization of the paper is as follows. The first 
section gives a brief description of the properties of speech 
signals and continues with a historical perspective and 
a review of performance measures. In Section II, we 
discuss waveform coding methods. In particular, we start 
with a general description of scalar [55], [82], [152] and 
vector quantization [81], [98], [115], [192] methods and we 
continue with a discussion of waveform coders [48], [52]. 
Section III presents sinusoidal analysis-synthesis meth­
ods [205] for voice compression and Section IV presents 
vocoder methods [11], [162], [163]. Finally, in Section V 
we discuss analysis-by-synthesis linear predictive coders 
[96], [100], [123], [272] and in Section VI we present 
concluding remarks. Low-rate coders, and particularly those 
adopted in the recent standards, are discussed in more detail. 
The scope of the paper is wide and although our literature 
review is thorough is by no means exhaustive. Papers with 
similar scope [12], [23], [82], [83], [96], [104], [109], [150], 
[154], [155], [157], [191], [270], [279]; special journal and 
magazine editions on voice coding [18], [19], [131], [132], 
[134]-[136], [138], [139]; and books on speech processing 
[62], [86], [90], [91], [99], [113], [152], [199], [232], [234], 
[236], [251], [275] can provide additional information. 
There are also six excellent collections of papers edited 
by Jayant [156], Davidson and Gray [61], Schafer and 
Markel [269], Abut [1], and Atal, Cuperman, and Gersho 
[9], [10]. For the reader, who wants to keep up with the 
developments in this field, articles appear frequently in 
IEEE TRANSACTIONS and symposia associated with the areas 
of signal processing and communications (see references 
section) and also in specialized conferences, workshops, 
and journals, e.g., [133] [137], [140], [291]. 

B. Speech Properties 

Before we begin our presentation of the speech coding 
methods, it would be useful if we briefly discussed some 
of the important speech properties. First, speech signals are 
nonstationary and at best they can be considered as quasi­
stationary over short segments, typically 5-20 ms. The 
statistical and spectral properties of speech are thus defined 
over short segments. Speech can generally be classified as 
voiced (e.g., Ia!, Iii, etc), unvoiced (e.g., Ish!), or mixed. 
Time- and frequency-domain plots for sample voiced and 
unvoiced segments are shown in Fig. l. Voiced speech 
is quasi-periodic in the time domain and harmonically 
structured in the frequency domain while unvoiced speech 
is random-like and broadband. In addition, the energy of 
voiced segments is generally higher than the energy of 
unvoiced segments. 
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Fig. 1. Voiced and unvoiced segments and their short-time spectra. 

The short-time spectrum1 of voiced speech is character­
ized by its fine and formant structure. The fine harmonic 
structure is a consequence of the quasi-periodicity of speech 
and may be attributed to the vibrating vocal chords. The 
formant structure (spectral envelope) is due to the inter­
action of the source and the vocal tract. The vocal tract 
consists of the pharynx and the mouth cavity. The shape 
of the spectral envelope that "fits" the short-time spectrum 
of voiced speech, Fig. 1, is associated with the transfer 
characteristics of the vocal tract and the spectral tilt (6 
dB/octave) due to the glottal pulse [261]. The spectral 
envelope is characterized by a set of peaks which are called 
formants. The formants are the resonant modes of the vocal 
tract. For the average vocal tract there are three to five 
formants below 5 kHz. The amplitudes and locations of 
the first three formants, usually occurring below 3 kHz, are 
quite important both in speech synthesis and perception. 
Higher formants are also important for wideband and 
unvoiced speech representations. The properties of speech 
are related to the physical speech production system as 
follows. Voiced speech is produced by exciting the vocal 
tract with quasi-periodic glottal air pulses generated by 
the vibrating vocal chords. The frequency of the periodic 
pulses is referred to as the fundamental frequency or pitch. 
Unvoiced speech is produced by forcing air through a 
constriction in the vocal tract. Nasal sounds (e.g., In!) are 
due to the acoustical coupling of the nasal tract to the vocal 
tract, and plosive sounds (e.g., /p/) are produced by abruptly 
releasing air pressure which was built up behind a closure 
in the tract. 

1 Unless otherwise stated the term spectrum implies power spectrum 
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More information on the acoustic theory of speech pro­
duction is given by Pant [75] while information on the 
physical modeling of the speech production process is given 
in the classic book by Flanagan [86]. 

C. Historical Perspective 

Speech coding research started over fifty years ago with 
the pioneering work of Homer Dudley [66], [67] of the 
Bell Telephone Laboratories. The motivation for speech 
coding research at that time was to develop systems for 
transmission of speech over low-bandwidth telegraph ca­
bles. Dudley practically demonstrated the redundancy in 
the speech signal and provided the first analysis-synthesis 
method for speech coding. The basic idea behind Dudley's 
voice coder or vocoder (Fig. 2) was to analyze speech in 
terms of its pitch and spectrum and synthesize it by exciting 
a bank of ten analog band-pass filters (representing the 
vocal tract) with periodic (buzz) or random (hiss) excitation 
(for voiced and unvoiced sounds, respectively). The channel 
vocoder received a great deal of attention during World 
War II because of its potential for efficient transmission of 
encrypted speech. Formant [223] and pattern matching [68] 
vocoders along with improved analog implementations of 
channel vocoders [221], [292] were reported through the 
1950's and 1960's. In the formant vocoder, the resonant 
characteristics of the filter bank track the movements of the 
formants. In the pattern-matching vocoder the best match 
between the short-time spectrum of speech and a set of 
stored frequency response patterns is determined and speech 
is produced by exciting the channel filter associated with 
the selected pattern. The pattern-matching vocoder was 
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Fig. 2. Dudley's channel vocoder [67]. 

essentially the first analysis-synthesis system to implicitly 
employ vector quantization. 

Although early vocoder implementations were based on 
analog speech representations, digital representations were 
rapidly gaining interest due to their promise for encryption 
and high-fidelity transmission and storage. In particular, 
there had been a great deal of activity in Pulse-Code 
Modulation (PCM) in the 1940's (see [156] and the ref­
erences therein). PCM [228] is a straightforward method 
for discrete-time, discrete-amplitude approximation of ana­
log waveforms and does not have any mechanism for 
redundancy removal. Quantization methods that exploit 
the signal correlation, such as Differential PCM (DPCM), 
Delta Modulation (DM) [153], and Adaptive DPCM were 
proposed later and speech coding with PCM at 64 kbits/s 
and with ADPCM at 32 kbits/s eventually became CCITT2 

standards [32]. 
With the flexibility offered by digital computers, there 

was a natural tendency to experiment with more sophisti­
cated digital representations of speech [266]. Initial efforts 
concentrated on the digital implementation of the vocoder 
[112]. A great deal of activity, however, concentrated on the 
linear speech source-system production model developed by 
Fant [75] in the late 1950's. This model later evolved into 
the familiar speech production system shown in Fig. 3. This 
model consists of a linear slowly time-varying system (for 
the vocal tract and the glottal model) excited by periodic 
impulse train excitation (for voiced speech) and random 
excitation (for unvoiced speech). 

The source-system model became associated with Au­
toregressive (AR) time-series methods where the vocal tract 
filter is all-pole and its parameters are obtained by Linear 
Prediction analysis [189]; a process where the present 
speech sample is predicted by the linear combination of pre­
vious samples. Itakura and Saito [143], [264] and Atal and 
Schroeder [ 14] were the first to apply Linear Prediction (LP) 
techniques to speech. A tal and Hanauer [II] later reported 

2 International Consultative Committee for Telephone and Tele­
graph currently called International Telecommunications Union-Tele­
communication Standardization Sector (ITU-TSS) 
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Fig. 3. The engineering model for speech synthesis. 

an analysis-synthesis system based on LP. Theoretical and 
practical aspects of linear predictive coding (LPC) were 
examined by Markel and Gray [199] and the problem 
of spectral analysis of speech using linear prediction was 
addressed by Makhoul and Wolf [190]. 

LP is not the only method for source-system analysis. 
Homomorphic analysis, a method that can be used. for 
separating signals that have been combined by convolution, 
has also been used for speech analysis. Oppenheim and 
Schafer were strong proponents of this method [229], [230]. 
One of the inherent advantages of homomorphic speech 
analysis is the availability of pitch information from the 
cepstrum [41], [227]. 

The emergence of VLSI technologies along with ad­
vances in the theory of digital signal processing during 
the 1960's and 1970's provided even more incentives for 
getting new and improved solutions to the . speech coding 
problem. Analysis-synthesis of speech usmg the Short­
Time Fourier Transform (STFT) was proposed by Flanagan 
and Golden in a paper entitled "Phase Vocoder" [87]. In 
addition, Schafer and Rabiner designed and simulated an 
analysis-synthesis system based on the STFT [26?], [268), 
and Portnoff [240], [242], [243] provided a theoretical basis 
for the time-frequency analysis of speech using the STFT. 
In the mid- to late 1970's there was also a continued activity 
in linear prediction [304], [310], transform coding [303], 
and sub-band coding [52]. An excellent review of this work 
is given by Flanagan et al. [82], and a unified analysis of 
transform and sub-band coders is given by Tribolet and 
Crochiere [303]. During the 1970's, there were also parallel 
efforts for the application of linear prediction in military 
secure communications (see the NRL reports by Kang et al. 
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[162]-[166]. A federal standard (FS-1015) which is based 
on the LPC-10 algorithm, was developed in the early 1980's 
(see the paper by Tremain [301]). 

Research efforts in the 1980's and 1990's have been 
focused upon developing robust low-rate speech coders ca­
pable of producing high-quality speech for communications 
applications. Much of this work was driven by the need 
for narrow-band and secure transmission in cellular and 
military communications. Competing methodologies pro­
moted in the 1980's included: sinusoidal analysis-synthesis 
of speech proposed by McAulay and Quatieri [205], [206], 
multiband excitation vocoders proposed by Griffin and Lim 
[ 117], multipulse and vector excitation schemes for LPC 
proposed by Atal et al. [13], [272], and vector quantization 
(VQ) promoted by Gersho and Gray [98], [99], [115], 
and others [47] [192]. Vector quantization [1] proved to 
be very useful in encoding LPC parameters. In partic­
ular, Atal and Schroeder [17], [272] proposed a linear­
prediction algorithm with stochastic vector excitation which 
they called "Code Excited Linear Prediction" (CELP). 
The stochastic excitation in CELP is determined using a 
perceptually weighted closed-loop (analysis-by -synthesis) 
optimization. CELP coders are also called hybrid coders 
because they combine the features of traditional vocoders 
with the waveform-matching features of waveform coders. 
Although the first paper [ 17] on CELP addressed the 
feasibility of vector excitation coding, follow-up work [37], 
[100], [170], [171], [176], [177], [276], [315] essentially 
demonstrated that CELP coders were capable of produc­
ing medium-rate and even low-rate speech adequate for 
communications applications. Real-time implementation of 
hybrid coders became feasible with the development of 
highly structured codebooks. 

Progress in speech coding, particularly in the late 1980's, 
enabled recent adoptions of low-rate algorithms for mo­
bile telephony. An 8-kbit/s hybrid coder has already been 
selected for the North American digital cellular standard 
[ 1 00], and a similar algorithm has been selected for the 
6.7-kbit/s Japanese digital cellular standard [102], [103], 
[217], [314]. In Europe, a standard that uses a 13-kbit/s 
regular pulse excitation algorithm [307] has been completed 
and partially deployed by the "Group Speciale Mobile" 
(GSM). Parallel standardization efforts for secure military 
communications [ 169] have resulted in the adoption of a 
4.8-kbit/s hybrid algorithm for the Federal Standard 1016 
[9]. In addition, a 6.4-kbit/s improved multiband excitation 
coder [121] has been adopted for the International Maritime 
Satellite (INMARSAT-M) system [322] and the Australian 
Satellite (AUSSAT) system. Finally, we note that there 
are plans to increase the capacity of cellular networks by 
introducing half-rate algorithms in the GSM, the Japanese, 
and the North American standards. 

D. Performance 

A speech-coding algorithm is evaluated based on the 
bit rate, the quality of reconstructed ("coded") speech, 
the complexity of the algorithm, the delay introduced, 
and the robustness of the algorithm to channel errors 
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and acoustic interference. In general, high-quality speech 
coding at low rates is achieved using high-complexity 
algorithms. For example, real-time implementation of a 
low-rate hybrid algorithm must be typically done on a 
digital signal processor capable of executing 12 or more 
million instructions per second (MIPS). The one-way delay 
(coding plus decoding delay only) introduced by such 
algorithms is usually between 50 to 60 ms. Robust speech 
coding systems incorporate error correction algorithms to 
protect the perceptually important information against chan­
nel errors. Moreover, in some applications coders must 
perform reasonably well with speech corrupted by back­
ground noise, nonspeech signals (such as DTMF tones, 
voiceband data, modem signals, etc), and a variety of 
languages and accents. 

In digital communications, speech quality is classified 
into four general categories, namely: broadcast, network or 
toll, communications, and synthetic. Broadcast wideband 
speech refers to high-quality "commentary" speech that can 
generally be achieved at rates above 64 kbits/s. Toll or 
network quality refers to quality comparable to the classical 
analog speech (200-3200 Hz) and can be achieved at rates 
above 16 kbits/s. Communications quality implies some­
what degraded speech quality which is nevertheless natural, 
highly intelligible, and adequate for telecommunications. 
Synthetic speech is usually intelligible but can be unnat­
ural and associated with a loss of speaker recognizability. 
Communications speech can be achieved at rates above 4.8 
kbits/s and the current goal in speech coding is to achieve 
communications quality at 4.0 kbits/s. Currently, speech 
coders operating well below 4.0 kbits/s tend to produce 
speech of synthetic quality. 

Gauging the speech quality is an important but also very 
difficult task. The signal-to-noise ratio (SNR) is one of 
the most common objective measures for evaluating the 
performance of a compression algorithm. This is given by 

{ 
"'I: 1 

82(n) } 
SNR = 10log10 -::-:M~--1 n_==_O __ _ 

n~O (s(n) - s(n) )2 

(1) 

where s( n) is the original speech data while s( n) is the 
coded speech data. The SNR is a long-term measure for 
the accuracy of speech reconstruction and as such it tends 
to "hide" temporal reconstruction noise particularly for low­
level signals. Temporal variations of the performance can be 
better detected and evaluated using a short-time signal-to­
noise ratio, i.e., by computing the SNR for each N-point 
segment of speech. A performance measure that exposes 
weak signal performance, is the segmental SNR (SEGSNR) 
which is given by 

SEGSNR 

{ 

N-1 } L-1 L s2 (iN + n) 
10 """ n==O = L ~ log1o JV-1 . 

i=O n~o (s(iN + n)- s(iN + n))2 

(2) 
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Since the averaging operation in (2) occurs after the log­
arithm, the SEGSNR penalizes more the coders whose 
performance is variant. Other objective measures often 
mentioned in the literature include the articulation index, 
the log spectral distance, and the Euclidean distance (see 
[244] for definitions). Objective measures are often sensi­
tive to both gain variations and delays. More importantly, 
they typically do not account for the perceptual properties of 
the ear [222]. Therefore, subjective evaluations [59], [224] 
using phonetically balanced speech records [93], [142] are 
required since the design of most low-rate algorithms is 
based on perceptual criteria. Subjective test procedures such 
as the Diagnostic Rhyme Test (DRT), the Diagnostic Ac­
ceptability Measure (DAM) [312], and the Mean Opinion 
Score (MOS) are based on listener ratings. The DRT is 
an intelligibility measure where the subject's task is to 
recognize one of two possible words in a set of rhyming 
pairs (e.g., meat-heat). The rhyme test was originally intro­
duced by Fairbanks [74] and the modified rhyme test was 
developed later by House [129]. Details on the evaluation 
of speech using the DRT can be found in an article by 
Voiers [313]. The DAM scores are based on results of test 
methods evaluating the quality of a communication system 
based on the acceptability of speech as perceived by a 
trained normative listener. The MOS is a measure which 
is widely used to quantify coded speech quality. The MOS 
usually involves 12 to 24 listeners [ 180] (formal CCITT 
and TIA tests typically involve 32-64 listeners) who are 
instructed to rate phonetically balanced records according 
to a five-level quality scale, Table 1. Excellent speech 
quality implies that coded speech is indistinguishable from 
the original and without perceptible noise. On the other 
hand, bad (unacceptable) quality implies the presence of 
extremely annoying noise and artifacts in the coded speech. 

In MOS tests listeners are "calibrated" in the sense that 
they are familiarized with the listening conditions and the 
range of speech quality they will encounter. Ratings are ob­
tained by averaging numerical scores over several hundreds 
of speech records. The MOS range relates to speech quality 
as follows: aMOS of 4-4.5 implies network quality, scores 
between 3.5 and 4 imply communications quality, and a 
MOS between 2.5 and 3.5 implies synthetic quality. We 
note here that MOS ratings may differ significantly from 
test to test and hence they are not absolute measures for 
the comparison of different coders. 

Formal subjective evaluations, such as the ones described 
above, can be lengthy and very costly. Recent efforts in 
speech quality assessment are focussed upon developing 
automatic test evaluation procedures [ 180] and objective 
measures that are capable of predicting the subjective 
quality of speech [316]. More information on objective and 
subjective measures can be found in [152], [244], [312]. 

II. WAVEFORM CODERS 

Waveform coders focus upon representing the speech 
waveform as such without necessarily exploiting the under­
lying speech model. Waveform coders are generally more 
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Table 1 The MOS Scale 

MOS Scale 

4 
5 

Speech Quality 

bad 
poor 
fair 

good 
excellent 

robust than vocoders, in the sense that they work well with a 
wider class of signals, however, they also generally operate 
at higher data rates relative to vocoders. Our discussion 
on waveform coders includes descriptions of some of the 
fundamental scalar and vector quantization schemes. In 
addition, we present the fundamental concepts associated 
with sub-band coders and transform coders. Selected well­
known algorithms are also presented. 

A. Scalar and Vector Quantization 

Signal coding can be nonparametric or parametric de­
pending upon whether the actual signal, or its parametric 
representation, is quantized. Parametric representations are 
generally based on signal transformations (often unitary), 
or on signal models (often linear source system). Quan­
tization can be memoryless or with memory depending 
upon whether the encoding rules depend on past inputs 
or outputs. In this section, we describe time-domain quan­
tization methods. We classify quantization methods into 
two general classes, namely, scalar and vector quantization. 
More emphasis is placed on vector quantization which has 
been studied intensively the last fifteen years and exhibited 
enormous potential for high-quality speech coding at low 
rates. 

1) Scalar Quantization Methods: Scalar quantization 
[149], [153] methods include Pulse-Code Modulation 
(PCM), Differential PCM (DPCM), and Delta Modulation 
(DM). Uniform PCM is a memoryless process that 
quantizes amplitudes by rounding off each sample to 
one of a set of discrete values. The difference between 
adjacent quantization levels, i.e., the step size, is constant 
in nonadaptive uniform PCM. Although uniform PCM is 
the simplest method' for digital encoding, it is also the 
most expensive in terms of data rates since it has no 
mechanism for exploiting signal redundancy (correlation). 
Its performance, in terms of the signal-to-noise ratio (SNR), 
can be predicted by the expression [ 152] 

(dB) (3) 

where B is the number of bits per sample and K 1 is a 
step size-dependent parameter. Nonuniform PCM, as the 
name implies, uses a nonuniform step size. Nonuniform 
quantizers generally employ a fine quantizing step size for 
frequently occurring amplitudes and a coarse step size for 
rarely occurring amplitudes. The step sizes may also be 
optimally designed by exploiting the shape of the signal's 
probability density function (PDF) [274]. Another class 
of nonuniform PCM relies on log quantizers, so called 
p,-law and A-law. These are quite common in speech 
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Fig. 4. A DPCM system. (a) Transmitter. (b) Receiver. 

applications and are described well in [152] and [274]. A 
7-bit log quantizer for speech achieves the performance of 
a 12-bit uniform quantizer. Dynamic range variations in 
uniform or nonuniform PCM can be handled by using an 
adaptive step size. A PCM system with an adaptive step 
size is called Adaptive PCM (APCM). The step size in a 
feedforward system is transmitted as side information while 
in a feedback system the step size is estimated from past 
coded speech samples. 

A more efficient scalar quantizer is the Differential PCM 
(DPCM) which utilizes the redundancy in the speech wave­
form by exploiting the correlation between adjacent sam­
ples. In its simplest form a DPCM transmitter encodes only 
the difference between successive samples and the receiver 
recovers the signal by integration. Practical DPCM schemes 
incorporate a time-invariant short-term prediction process, 
A(z), where 

p 

A(z) = 2::: aiz-i (4) 
i=l 

and z is the complex variable of the z transform. This 
DPCM scheme is also called predictive differential coding 
(Fig. 4) and reduces the quantization error variance by 
reducing the variance of the quantizer input. The DPCM 
system works as follows. The sample s' ( n) is the estimate 
of the current speech sample s( n) and is obtained from past 
sample values. The prediction error e( n) is then quantized 
( eq ( n)) and transmitted to the receiver. The quantized 
prediction error is also added to s' ( n) to reconstruct the 
speech sample s' ( n). In the absence of channel errors 
s'(n) = s(n). In the simplest case A(z) is a first-order 
polynomial. 

Two other types of scalar coders are the Delta Modulation 
(DM) and the Adaptive DPCM (ADPCM) [55], [105], 
[106], [324] coders. DM is a sub-class of DPCM where 
the difference (prediction error) is encoded only with 1 bit. 
DM typically operates at sampling rates much higher than 
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Fig. 5. The ADPCM G.721 encoder. 

the rates commonly used with DPCM. The step size in 
DM may also be adaptive (ADM). The DM and DPCM are 
low- to medium-complexity coders and perform better than 
ordinary PCM for rates at and below 32 kbits/s. In ADPCM 
the step size and the predictor are allowed to adapt and 
track the time-varying statistics of speech. The predictor 
can be forward-adaptive or backward-adaptive. In forward 
adaptation, the prediction parameters are estimated from the 
current speech data which are not available at the receiver. 
Therefore, the prediction parameters must be encoded and 
transmitted separately in order to reconstruct the signal at 
the receiver. 

In backward adaptation, the parameters are estimated 
from past speech data (eq(n)) or (s(n)), which is also 
available at the receiver. Therefore, the prediction param­
eters can be estimated locally at the receiver. Backward 
predictor adaptation is amenable to low-delay coding [38], 
[107]. ADPCM encoders with pole-zero decoder filters 
have proved to be particularly versatile in speech applica­
tions. In fact, the ADPCM 32-kbit/s algorithm adopted for 
the G. 721 CCITT standard (1988) [32] uses a pole-zero 
adaptive predictor. A block diagram of the G.721 CCITT 
encoder [22] is shown in Fig. 5. 

The algorithm consists of an adaptive quantizer and 
an adaptive pole-zero predictor. As it is seen in Fig. 5 
the decoder is embedded in the encoder. The pole-zero 
predictor (2 poles, 6 zeros) estimates the input signal 
and hence it reduces the variance of e(n). The quantizer 
encodes the sequence e(n) into a sequence of 4-bit words. 
The prediction coefficients are estimated using a gradient 
algorithm and the stability of the decoder is checked by 
testing the two roots of A ( z). The performance of the 
coder, in terms of the MOS scale, is above 4 but it 
degrades as the number of asynchronous tandem codings 
increases. The G.721 ADPCM algorithm was also modified 
to accommodate 24 and 40 kbits/s in the G.723 standard 
[34]. More details on the algorithm and its performance 
are given in [22] and the references therein. The perfor­
mance of ADPCM degrades quickly for rates below 24 
kbits/s. 

The use of adaptive long-term prediction in addition to 
short-term prediction (Fig. 6) provides additional coding 
gain (at the expense of higher complexity) and high-
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(b) 

Fig. 6. The adaptive predictive coder with short- and long-term 
predictors. (a) Transmitter. (b) Receiver. 

quality speech at 16 kbits/s [7]. The long-term (long-delay) 
predictor 

provides for the pitch (fine) structure of the short-time 
voiced spectrum. The index T is the pitch period in samples 
and j is a small integer. The long-term predictor (ideally) 
removes the periodicity and thereby redundancy. At the 
receiver the synthesis filter (1/(1 - AL(z))) introduces 
periodicity while the synthesis filter associated with the 
short-term prediction polynomial represents the vocal tract. 
The parameters of the short-term predictors are computed 
for every frame (typically 10 to 30 ms). The long-term 
prediction parameters are computed more often. Although 
the adaptive predictive coder is now of limited interest, the 
work on adaptive predictive coders by Atal [7] in 1978 
provided several ideas such as the application of short­
and long- term prediction and perceptual error weight­
ing in analysis-by-synthesis predictive coders. The issues 
associated with adaptive short- and long-term prediction 
algorithms will be discussed in more detail in Section V. 

Our description of scalar quantizers was brief, and space 
precluded in-depth analysis of this family of coders. The 
book by Jayant and Noll [152] presents a comprehensive 
treatment of the subject with an in-depth analysis of per­
formance and complexity. In addition, an excellent tutorial 
review of adaptive prediction as applied to DPCM systems 
is given by Gibson [104]. 

2) Vector Quantization Methods: Data compression via 
Vector Quantization (VQ) is achieved by encoding a data set 
in block or vector form. Although Shannon's rate distortion 
theory [273] essentially stated that better performance can 
be achieved by coding vectors instead of scalars, significant 
results in VQ-based speech coding were not reported until 
the late 1970's. This is mainly due to the inherent complex­
ity of VQ. Recently, however, with the emergence of new 
and efficient methods for encoding high-dimensionality data 
blocks, VQ became associated with high-quality speech 
coding at low rates. In the following, we describe the basic 
methodologies for VQ. 
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Fig. 7. Vector quantization scheme. (a) Block diagram. (b) Cells 
for two-dimensional VQ. 

Figure 7(a) shows a VQ scheme which consists of an 
N -dimensional quantizer and a code book. The incoming 
vectors are formed from consecutive data samples or from 
model parameters. The quantizer maps the ith incoming 
N x 1 vector, s; = [s;(O)s;(1) · · · s;(N -1)jT, to a channel 
symbol { Un, n = 1, 2, · · · , L}. For practical reasons we 
assume that the channel is noiseless, that is ( Un = Un). 
The codebook consists of L codevectors 

n= 1,2,···,£} 

which reside in the memory of the transmitter and the 
receiver. 

The memory less full search vector quantizer works as fol­
lows: incoming vectors, s;, are compared to each codeword 
and the address of the closest codeword, with respect to a 
distortion measure or fidelity criterion E (s;, sn), determines 
the channel symbol to be transmitted. The simplest and 
most commonly used distortion measure is the sum of 
squared errors which is given by 

N-1 

E(s;,sn) = L (s(k)- s(k)) 2
• (5) 

k=O 

The L entries of the codebook, i.e., the L N x 1 real valued 
vectors, are designed by dividing the vector space into 
L nonoverlapping cells, Cn, Fig. 7(b). Each cell Cn is 
associated with a template vector sn. The quantizer assigns 
the channel symbol un to the vectors;, if s; belongs to Cn. 
This means that if s; belongs to Cn it will be represented by 
sn which is the centroid of the cell. The channel symbol Un 
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is usually the binary representation of the index or address 
of sn. 

The simplest form of a vector quantizer can be considered 
as a generalization of the scalar PCM and in [98] is called 
Vector PCM (VPCM). In VPCM, the codebook is fully 
searched (full search VQ or F-VQ) for each incoming 
vector. The number of bits per sample in VPCM is given by 

B = log2 L (6) 
N 

and the signal-to-noise ratio for VPCM is given by 

SNRN = 6B+KN (dB). (7) 

Note that for N = 1 VPCM defaults to scalar PCM and 
therefore (3) is a special case of (7). Although the two 
equations are quite similar, VPCM yields improved SNR 
(reflected in K N) since it exploits the correlation within the 
vectors. In the case of speech coding, Gersho and Cuperman 
[98] reported that K2 is larger than K 1 by more than 3 dB 
while K 8 is larger than K 1 by more than 8 dB. 

Even though VQ offers significant coding gain by in­
creasing N and L, its memory and computational com­
plexity grows exponentially with N for a given rate. More 
specifically, the number of computations required for F­
VQ is of the order of 2BN while the number of memory 
locations required is N2 8 N. In general, the benefits of VQ 
are realized at rates of l bit per sample or less. 

The codebook design process, also known as the training 
or populating process, can be fixed or adaptive. Fixed 
codebooks are designed a priori and the basic design 
procedure involves an initial guess for the codebook and 
then iterative improvement by using a large number of 
training vectors. An iterative codebook design algorithm 
that works for a large class of distortion measures was 
given by Linde, Buzo, and Gray [183]. This i~ essentially 
an extension of Lloyd's [185] scalar quantizer design and 
is often referred to as the LBG algorithm. In general, the 
number of training vectors per code vector must be at least 
10 and preferably 50 [192]. The computational complexity 
for the design process is quite high. In particular, the 
design complexity grows exponentially with the dimension 
of the codevectors and linearly with the number of training 
vectors. The robustness of the codebook, the efficiency in 
the codebook search process, and the choice of distortion 
measure [143], [318] are central issues in codebook design. 

The complexity in high-dimensionality VQ can be re­
duced significantly with the use of structured codebooks 
which allow for efficient search. Tree-structured [28] and 
multistep [ 160] vector quantizers are associated with lower 
encoding complexity at the expense of loss of performance 
and in some cases increased memory requirements. Gray 
and Abut [ 116] compared the performance of F-VQ and 
binary tree search VQ for speech coding and reported 
a degradation of 1 dB in the SNR for tree-structured 
VQ. Multistep vector quantizers consist of a cascade of 
two or more quantizers, each one encoding the error or 
residual of the previous quantizer. Gersho and Cuperman 
[98] compared the performance of full-search (dimension 4) 
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and multistep vector quantizers (dimension 12) for encoding 
speech waveforms at 1 bit per sample and reported a gain 
of 1 dB in the SNR in the case of multistep VQ. 

The complexity of VQ can also be reduced by normal­
izing the vectors of the codebook and encoding the gain 
separately. The technique is called Gain/Shape VQ (GS­
VQ) and has been introduced by Buzo et al. [28] and later 
studied by Sabin and Gray [263]. The waveform shape 
is represented by a codevector from the shape codebook 
while the gain can be encoded from the gain codebook, 
Fig. 8. Comparisons of GS-VQ with F-VQ in the case 
of speech coding at 1 bit per sample revealed that GS­
VQ yields about 0.7-dB improvement at the same level 
of complexity. The idea of encoding the gain separately 
allows for the encoding of vectors of high dimensionality 
with manageable complexity and is being widely used 
in encoding the excitation signal in code excited linear 
predictive coders [9], [100]. 

An alternative method for building highly structured 
codebooks consists of forming the codevectors by linearly 
combining a small set of basis vectors. This approach was 
proposed by Gerson and Jasiuk [ 100] and is called vector 
sum quantization. This method not only leads to efficient 
full search but is also associated with robustness to channel 
errors. Vector sum quantization will be discussed in more 
detail in a subsequent section. 

The VQ methods discussed thus far are associated with 
time-invariant (fixed) codebooks. Since speech is a non­
stationary process, one would like to adapt the code­
books ("codebook design on the fly") to its changing 
statistics. VQ with adaptive codebooks is called adaptive 
VQ (A-VQ) and applications to speech coding have been 
reported in [56] and [238]. There are two types of A-
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Fig. 10. The AT&T sub-band coder. (a) Coder. (b) Decoder. 

VQ, namely, forward-adaptive and backward-adaptive. In 
backward-adaptive VQ, codebook updating is based on past 
data which are also available at the decoder. Forward A­
VQ updates the codebooks based on current (or sometimes 
future) data and as such additional information must be 
encoded. The principles of forward and backward A-VQ 
are similar to those of scalar adaptive quantization [104], 
[152]. Practical A-VQ systems are backward-adaptive and 
they can be classified into vector-predictive quantizers [57] 
and finite-state quantizers [88]. Vector-predictive coders are 
essentially an extension of scalar-predictive DPCM coders. 
A class of coders that are related to predictive VQ are the 
trellis tree coders [ 196], [311]. 

Under certain conditions [171], the long-term predictor 
in CELP coders can be interpreted as a special case of a 
backward-adaptive vector quantization process. For exam­
ple, in VSELP [ 100] past excitation forms and updates the 
codebook, and the long-term prediction lag is viewed as 
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the codebook index. More details on the use of adaptive 
codebooks in CELP coders will be given in Section V. 

Concluding our discussion we note that the advances 
in structured high-dimensionality VQ have been one of 
the main reasons for the dramatic progress in low-rate 
speech coding. Adaptive, and highly structured stochastic 
codebooks are used to encode the excitation in the hy­
brid analysis-by-synthesis speech coder which is currently 
regarded by many as one of the leading approaches to low­
rate speech coding. For further reading on VQ we refer 
the reader to the excellent tutorial papers of Gersho et al. 
[98], Gray [115], and Makhoul et al. [192]. There is also a 
collection of papers edited by Abut [ 1], and a new textbook 
on VQ by Gersho and Gray [99]. 

B. Sub-Band and Transform Coders 

The sub-band coders [21], [52], [63], [73], [257], [265], 
[281] and transform coders [20], [36], [277], [303] exploit 
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the redundancy of the signal in the transform domain. Most 
of these coders rely on frequency-domain representations of 
the signal obtained through filter bank representations (sub­
band coders) or by using discrete-time unitary transforms 
(transform coders). The opportunity to reduce the bit rate in 
both cases lies both in the structure of the short-time power 
spectrum of speech and also in the perceptual properties of 
the human ear. 

1) Sub-Band Coders: In the sub-band coder [49], 
[51]-[53], [257], Fig. 9, the signal band is divided into 
frequency sub-bands using a bank of bandpass filters. The 
output of each filter is then sampled (or down-sampled) 
and encoded. At the receiver, the signals are demultiplexed, 
decoded, demodulated, and then summed to reconstruct the 
signal. This system lends itself to both analog and digital 
implementations depending upon the way the filter bank is 
implemented. The encoding process introduces quantization 
noise while the sampling/demodulation processes introduce 
aliasing distortion due to the overlapping nature of the 
sub-bands. The sub-band coder (SBC) exploits the statistics 
of the signal and/or perceptual criteria to encode the signal 
in each band using a different number of bits. For example, 
in speech the lower frequency bands are usually allotted 
more bits than higher bands in order to preserve critical 
pitch and formant information. In one of the earliest papers 
on sub-band coding, Crochiere et al. [52] presented a 
four-band SBC operating at 16, 9.6, and 7.2 kbits/s. The 
four sub-bands are associated with the following frequency 
ranges: 200-700, 700-1310, 1310-2020, and 2020-3200 
Hz. Low-pass translation and decimation is done prior to 
coding. The 16-kbit/s SBC compared favorably against 
16-kbit/s ADPCM, and the 9.6-kbit/s SBC compared 
favorably against 10.3- and 12.9-kbit/s ADM [149]. 

The design of the filter bank is a very important consid­
eration in the design of an SBC. The filter bandwidth may 
be equal or unequal. For example, the low-band filters in 
speech-specific implementations are usually associated with 
narrower widths so that they can resolve more accurately 
the low-frequency narrowband formants. In the absence of 
quantization noise, perfect reconstruction can be achieved 
using Quadrature-Mirror Filter (QMF) banks [72], [281 ], 
[305], [308]. Information on the filter bank design can be 
found in the book by Crochiere and Rabiner [51]. We also 
note that the filter bank design has recently been associated 
with the theory of wavelet series expansions [258]. 

In the following, we describe briefly two coding standards 
that are based on sub-band coding algorithms, namely, 
the AT&T voice store-and-forward standard [159], and the 
CCITT 0.722 standard [33], [155]. The AT&T SBC was 
used for voice storage at 16 or 24 kbits/s and consists of 
a five-band nonuniform tree-structured QMF bank in con­
junction with APCM coders, Fig. 10. A silence compression 
algorithm is also part of the standard. The frequency ranges 
for each band are: 0-0.5, 0.5-1, 1-2, 2-3, and 3-4 kHz. 
For the 16-kbit/s implementation the bit allocations are 
{4/4/2/2/0} and for the 24 kbits/s the bit assignments 
are {5/5/4/3/0}. The one-way delay of this coder is less 
than 18 ms. It must be noted that although this coder was 
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the workhorse for the older AT&T voice store-and-forward 
machines, the most recent AT&T audix machines use the 
new 16-kbit/s Low-Delay CELP algorithm which will be 
described in Section V. 

The CCITT standard (0.722) for 7-kHz audio at 64 
kbits/s for ISDN teleconferencing is based on a two-band 
sub-band/ADPCM coder, Fig. 11. The low-frequency sub­
band is quantized at 48 kbits/s while the high-frequency 
sub-band is coded at 16 kbits/s. The 0.722 coder includes 
an adaptive bit allocation scheme and an auxiliary data 
channel. Provisions for lower rates have been made by 
quantizing the low-frequency sub-band at 40 or at 32 
kbits/s. The MOS at 64 kbits/s is greater than four for 
speech and slightly less than four for music signals [155], 
and the analysis-synthesis QMF banks introduce a delay of 
less than 3 ms. Details on the real-time implementation of 
this coder are given in [297]. 

Before we close our discussion on SBC, we note that a 
low-delay 16-kbit/s sub-band coder which employs gain­
shape VQ for the coding of sub-band signals was proposed 
by Cox et al. [49]. The VQ-SBC was implemented in 
real time on a floating-point processor and achieved an 
SEOSNR of about 20 dB with a coding delay of about 
15 ms. 

2) Transform Coders: In transform coders [20], [36], 
[48], [76], [188], [285], [303], Fig. 12, the transform 
components of a unitary transform [3] are quantized at 
the transmitter and decoded and inverse-transformed at the 
receiver. The potential for bit-rate reduction in transform 
coding (TC) lies in the fact that unitary transforms tend 
to generate near-uncorrelated transform components which 
can be coded independently. 

Furthermore, the variances of these components often 
exhibit consistent or slowly time-varying patterns which can 
be exploited for redundancy removal using fixed or adaptive 
bit-allocation rules. The signal in TC is processed frame 
by frame and each frame is transformed using a discrete 
unitary transform. This operation can be represented by a 
matrix multiplication, i.e. 

S(O) 
S(l) 
(S(2) 

S(N- 1) 
tl,l 

t2,1 

t[3,1 

tN,l 

t1,2 t1,3 t1,N 

t2,2 t2,3 t2,N 

t3,2 t3,3 t3,N 

tN,2 tN,3 tN,N 

or in a more compact form 

S=Ts. 

s(O) 
s(l) 
s(2) 

(8) 

s(N- 1) 

(9) 
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Fig. 11. The CCITT G.722 sub-band coder. (a) Coder. (b) 
Decoder. 

The inverse transform is applied for signal synthesis 

s = T- 1s. (10) 

Equation (8) is known as the analysis expression while (10) 
is the synthesis formula. For unitary transforms T- 1 = TH, 
where H in the superscript denotes the Hermitian (complex­
conjugate transpose) operator. The column vectors of TH 
are known as the basis vectors of the transformation and 
the signal vector in (10) is essentially reconstructed by 
a linear combination of the basis vectors. In the absence 
of quantization and channel errors the synthesis expres­
sion (10) yields exact reconstruction. When the trans­
form components are quantized, however, reconstruction 
is no longer exact and depends on the quantization noise 
and the type of the transform. There are several discrete 
transforms [3], [71] that can be used for TC, e.g., the 
Discrete Cosine Transform (DCT), the Discrete Fourier 
Transform (DFT), the Walsh-Hadamard Transform (WHT), 
the Karhunen-Loeve Transform (KLT), etc. The KLT is 
the optimal [29], [326] unitary transform in the sense that 
the transform components are "maximally" decorrelated for 
any given signal. An analytical proof for the optimality of 
the KLT in TC is given in [326]. The basis vectors of the 
KLT are the normalized eigenvectors of the autocorrelation 
matrix of the signal. Therefore, the KLT is data-dependent 
and in many cases impractical because of the large number 
of computations required to determine the eigenvectors. The 
DFT and the DCT are associated with sinusoidal basis 
vectors and can be computed efficiently using the Fast 
Fourier Transform (FFT) [46], [193]. For a normalized 
DFT, the transform matrix consists of sampled complex 
exponentials, i.e., t;,j = e-i2"'(i-l)(j-l)/N j,fN. The DCT 
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on the other hand is given by 

N-1 

Receiver 

S(k) = 2:: s(n)>.(k) cos [(2n + 1)7fk/2N] (11) 
n=O 

where >. ( k) is equal to one for k = 0 and equal to ,J2 for 
k = 1, 2, ... , N- 1. The inverse DCT is defined as 

1 
N-1 

s(n) = N 2:: S(k)>.(k) cos [(2n + 1)7fk/2N]. (12) 
k=O 

The transform matrix for the WHT consists of ones and 
minus ones, i.e., the basis vectors for the WHT are essen­
tially sampled pulse functions which take the value of one 
or minus one. These pulse functions are characterized by 
their sequency, i.e., the number of zero crossings per unit 
time. An N -point WHT can be computed efficiently using 
an algorithm which requires arithmetic operations of order 
O(N log2 N) [3]. 

The performance of the DCT, DFT, and WHT is sub­
optimal. The performance of the DCT, however, is near 
optimal. This is because the DCT vectors are eigenvectors 
of a large class of Toeplitz matrices [3]. The performance 
of the DFT approaches that of the DCT and KLT for very 
large block lengths [326]. Early results on TC reported 
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Fig. 13. The Adaptive Transform Coder (ATC) [326]. (a) Coder. 
(b) Decoder. 

by Campanella and Robinson [29], Gethoffer [92], and 
Zelinski and Noll [326] claimed gains over PCM of the 
order of 9-10 dB for the KLT, 5 dB for the DFf, and 3 
dB for the WHT. 

A transform coder, that employs the DCT and encodes the 
transform components using adaptive quantization and bit 
assignment rules, was proposed by Zelinski and Noll [326]. 
The bit assignment in this adaptive transform coder (ATC) 
depends on the short-term spectrum which is determined 
from the transform components, Fig. 13. In particular, a 
coarse description of the short-term spectrum is formed at 
the encoder and transmitted (as side information) to the 
decoder on a frame-by-frame basis. An estimate of the 
short-term spectrum is then formed using linear interpo­
lation in the log domain, and optimal bit assignments are 
determined using the estimated spectrum. It was shown 
in [326], that for rates between 16-32 kbits/s the ATC 
outperformed the log-PCM by about 17-23 dB (SNR). In 
addition, the ATC outperformed ADPCM by about 6 dB 
at 16 kbits/s. Perceptual distortion tends to be small for 
rates down to 12 kbits/s. At lower rates, however, the ATC 
suffers from the "low-pass filtering" effect [327] which is a 
consequence of the fact that only high-energy components 
are coded. Solutions to the low-pass filtering effect and 
complexity reductions for the ATC were proposed in [327]. 
Also a "speech-specific" or "vocoder-driven" ATC was 
proposed by Tribolet and Crochiere [303]. This coder 
derives its adaptation strategy from the pitch and the 
formant structure of speech and uses an LPC model for 
the side information. A speech-specific ATC, which uses a 
homomorphic model for the side information, was proposed 
by Cox and Crochiere [48]. This algorithm is quite efficient, 
in terms of pipelining, and its performance was shown to 
be at least as good as the LPC-driven ATC. 

The DCT not only is near-optimal, but it also has a 
transform spectrum which exposes the formant and pitch 
structure of speech [303], much like the DFf spectrum. 
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In addition, a filter bank interpretation for the DCT is 
available and provides additional insight and possibilities 
for redundancy removal. For a unified treatment of the 
transform and sub-band coders we refer the reader to the 
excellent paper on frequency-domain coding by Tribolet 
and Crochiere [303]. 

Before we close this section, we note that a transform 
coder that is based on the WHT was developed in the early 
1970's by Shum et al. Additionally, analysis-synthesis of 
speech using mixed Walsh and Fourier transforms was 
reported by Mikhael and Spanias in [220]. The mixed 
Walsh and Fourier analysis-synthesis system is based on 
the notion that narrowband components of speech are 
represented by a set of narrowband Fourier functions, while 
broadband components are represented by broadband Walsh 
functions. Mixed Fourier/Walsh transform coding at 16, 9.6, 
and 4 kbits/s is given in [284] and [288]. 

III. SPEECH CODING USING SINUSOIDAL 

ANALYSIS-SYNTHESIS MODELS 

In this section we present another class of speech coders 
which relies on sinusoidal representations of the speech 
waveform. Our presentation starts with a description of 
some of the early digital speech analysis-synthesis methods 
which employed the Short-time Fourier Transform (STFf) 
[84], [85], [240], [245], [268]. We then continue with 
descriptions of the sinusoidal transform coders (STC's) 
[205]-[212] and the multiband excitation (MBE) coders 
[117], [118], [121] which were proposed in the 1980's. 
Although sinusoidal and MBE coders rely heavily on 
speech properties (i.e., they are speech-specific much like 
vocoders), they tend to be more robust than the traditional 
two-state voiced/unvoiced linear-predictive vocoders in the 
sense that they work well with a wider class of signals. 

A. Speech Analysis-Synthesis Using the 
Short-Time Fourier Transform 

The basic assumption in transform-based speech anal­
ysis-synthesis is that the signal is slowly time-varying 
(quasi-stationary) and can be modeled by its short-time 
spectrum. The spectral analysis of speech cannot be accom­
modated by the classical Fourier transform since the signal 
has time-varying characteristics. Instead, a time-frequency 
transformation is required. Time-varying spectral analysis 
[5], [240], [278] can be performed using the short-time 
Fourier transform (STFf). The analysis expression for the 
STFT is given by 

S(n, 0) = L s(m)h(n- m)e-j~m 

= h(n) * s(n)e-j~n (13) 

where 0 = wT = 21r fT is the normalized frequency 
in radians, and h( n) is the sliding analysis window. The 
synthesis expression (inverse transform) is given by 

1 Jrr ·~ h(n- m)s(m) = - S(n. O)e1 m dO. 
21f -rr (14) 
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Fig. 14. The kth channel of the analysis-synthesis filterbank 
[251]. 

Note that if n = m and h(O) = 1 [242], [251], then 
s(n) can be obtained from (14). The temporal and spectral 
resolutions of the STFT are controlled by the length and 
shape of the analysis window. For speech, the length of 
the window is often constrained to be about 5-20 ms 
and hence spectral resolution is sacrificed. The sequence 
h( n) can also be viewed as the impulse response of a 
linear time-invariant filter which is excited by a frequency­
shifted signal (see (13)). The latter leads to the filter-bank 
interpretation of the STFT, i.e., for a discrete-frequency 
variable nk = ~Ok{k = 0,1,-··,N -1} and ~nand 
N chosen such that the speech band is covered, then the 
analysis expression is written as 

and the synthesis expression is 

N-1 

(15) 

SSTFT(n) = L S(n, nk)e10kn (16) 
k=O 

where ssTFT ( n) is the signal reconstructed within the 
band of interest. If h( n ), ~n, and N are chosen carefully 
(see [266]) the reconstruction by (16) can be exact, i.e., 
(ssTFT(n) = s(n)). The kth channel analysis-synthesis 
scheme is depicted in Fig. 14(a), where hk(n) 
h(n)e1°kn, t(kn) = eJ0kn, and t(-kn) = e-jrhn_ Figure 
14(b) shows the analysis-synthesis including coding for a 
single channel. 

The phase vocoder proposed by Flanagan and Golden 
[87] was perhaps the first attempt to represent speech 
explicitly in terms of its short-time magnitude and phase 
spectra. In the actual vocoder, the derivative of the phase 
is coded and at the receiver the actual phase is retrieved 
by integration. Synthesis at the kth channel is performed 
according to 

.s~h(n) = IS(n, nk)l cos ( nkn + ~ ~¢(0k, i)) (17) 
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where 

represents the numerical integration of the phase deriva­
tives. The phase vocoder was simulated [87] using a 
sixth-order Bessel sequence, h(n), and 30 channels (k = 
1, 2, ... , 30) uniformly covering a 50-to-3050-Hz band­
width. One of the shortcomings of the approach is that 
(17) assumes a zero initial phase which often gives rise 
to reverberant speech quality. In a paper that appeared 
in 1973, Rabiner and Schafer [268] presented theoretical, 
as well as design considerations for STFT-based speech 
analysis-synthesis systems. In addition, the paper described 
an FFT-based method for computing the channel signals. 
Coding results were given for bit rates down to 14 kbits/s. 
Refinements of this STFT system were later proposed 
by Portnoff [243] and a weighted overlap-add method 
for analysis-synthesis was presented by Crochiere [50]. 
Speech coders using the STFT in conjunction with VQ were 
reported by Chang et al. [36] and Loizou and Spanias in 
[187], [188]. An in-depth treatment of the STFT and its 
application to time-frequency representation of speech is 
given in the papers of Portnoff [240]-[243]. 

B. Sinusoidal Transform Coding 

Speech modeling using unitary sinusoidal transforms 
implies that the speech waveform is represented by a set of 
narrowband functions. The phase vocoder [87] was perhaps 
the first attempt to represent speech as a combination of nar­
rowband components. Sinusoidal representations are also 
implied in a number of transform-based analysis-synthesis 
systems such as [84], [85], [195], [225], [240], [243]. 
Explicit sinusoidal models for speech were used in [6], 
[124], [202], [203], [205], [245]. Hedelin proposed [124] a 
pitch-independent sinusoidal model for coding the baseband 
signal for speech coding. The amplitudes and phases in 
Hedelin's coder are determined using a Kalman estimator. 
Almeida and Silva proposed [6] a pitch-dependent speech 
compression system that encodes a set of harmonically 
related sine waves along with a residual waveform. George 
and Smith [94], [95] also used the sinusoidal model for 
coding at 4.8 kbits/s and proposed a perceptually weighted 
closed-loop analysis-by-synthesis method for estimating 
the sinusoidal parameters. Another approach that uses a 
harmonic sinusoidal model to represent the narrowband 
speech components and a subset of Walsh functions to 
reproduce the broadband components was proposed by 
Spanias and Loizou [288]. The magnitudes and phases of 
the harmonic components and the amplitudes of the Walsh 
components were vector-quantized at 4 kbits/s. 

The most comprehensive study on sinusoidal modeling 
of speech, which also included successful low-rate repre­
sentations, was presented in a series of papers by McAulay 
and Quatieri [203]-[212]. The sinusoidal model proposed 
by McAulay and Quatieri represents speech by a linear 
combination of L sinusoids with time-varying amplitudes, 
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Fig. 15. Magnitudes and phases of harmonic components of the 
DFf for a voiced segment. (a) Magnitudes. (b) Phases. 

phases, and frequencies, i.e., 

L 

ssR(n) = L Ak cos (Okn +<h) (18) 
k=l 

where the subscript sR stands for sinusoidal representation. 
Note that the number of sinusoids L is time-varying. 
The opportunity to reduce the bit rate using this model 
stems from the fact that voiced speech is typically highly 
periodic and hence it can be represented by a constrained 
set of sinusoids. In addition, the statistical structure (short­
time spectrum) of unvoiced speech can be preserved by a 
sinusoidal model with appropriately defined random phases 
[212]. The sinusoidal model can be related to the source­
system model (Fig. 3) by replacing the simplified two-state 
(impulse-train and random) excitation by a more general ex­
citation model which consists of L sinusoidal components 
of arbitrary amplitudes, frequencies, and phases. The output 
of the vocal tract filter (synthetic speech) at steady state can 
then be written as per (18). The basic assumption here is 
that the parameters of the sinusoidal model are slowly time­
varying relative to the duration of the vocal-tract impulse 
response. 

McAulay and Quatieri have shown that high-quality 
reconstruction can be achieved by using sinusoids with 
amplitudes, frequencies, and phases corresponding to the 
peaks of the STFf. A Hamming window width that is 2.5 
times the average pitch is adequate and ensures that the sine 
waves are well resolved. Moreover, the sinusoidal model is 
weakly dependent on pitch and voicing since the average 
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Fig. 16. Signal reconstruction from a harmonic set of sinusoidal 
components. (a) Original. (b) Reconstructed. 

pitch is used only to determine the length of the analysis 
window. 

The sinusoidal model was presented above in its most 
general form. The main contributions in the work of 
McAulay and Quatieri lie in the analysis of a minimal 
parameter sinusoidal model and also in the development of 
algorithms for tracking the sinusoidal parameters from 
frame to frame. First, since the number of sinusoids 
changes with the pitch, the concept of "birth" and "death" 
of sinusoidal components was established to allow for 
dynamic parameter matching. In addition, novel amplitude 
and phase interpolation algorithms were developed to 
match these parameters from one frame to the next. 
These algorithms are described in [205]. Experiments 
with the sinusoidal model revealed that as many as eighty 
sinusoids can be used for synthesis. These experiments 
were performed using an adaptive Hamming window, 
having width 2.5 times the average pitch, and a 1024-
point FFf which was updated every 10 ms. The sinusoidal 
analysis-synthesis system performed very well with a 
large class of signals (multiple speakers, music, biological 
sounds, etc), as well as with speech in the presence of 
background noise. 

For low-rate coding applications the frequencies of the 
sine waves can be restricted to be integer multiples of the 
fundamental (pitch) frequency, i.e., 

L(flo) 

SHR(n) = L Ak cos (kOon + ¢k) (19) 
k=l 
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Fig. 17. (a) Sinusoidal analysis [205]. (b) Sinusoidal synthesis [205]. 

where the subscript HR stands for harmonic representation, 
no is the fundamental frequency, and L(!J0 ) is the number 
of harmonics within the speech bandwidth of interest (usu­
ally within 4 kHz). The harmonic representation provides 
an "optimal" set of frequencies only for perfectly voiced 
segments. The underlying assumption for voiced speech 
is that the pitch period is constant over the duration of 
the analysis frame [205]. For unvoiced speech, a set of 
sinusoids which are equidistant in frequency will gener­
ally preserve the statistics (short-time spectral density) of 
unvoiced segments [306]. The assumption for unvoiced 
speech is that the frequencies of the sinusoids are close 
enough [204] such that they follow the changes of the 
measured short-time spectral density. The fact that an 
equidistant set of sinusoids is used is advantageous in 
two ways, namely, a) the sinusoidal parameters can be 
conveniently estimated by sampling a high-resolution DFT 
(Fig. 15(a)), and b) the frequencies of the sinusoids can be 
encoded efficiently. 

A simple example of the reconstruction of a voiced 
speech segment by a linear combination of harmonically 
related sinusoids is shown in Fig. 16. The speech segment 
was formed using a 32-ms rectangular window and the 
amplitudes and phases of the sine waves were estimated 
from the peaks of the DFT of the segment (Fig. 15). 

Sinusoidal models have been applied successfully to 
low-rate speech coding. In one of their early attempts to 
demonstrate low-rate sinusoidal representations, McAulay 
and Quatieri developed a sinusoidal coder operating at 8 
kbits/s [204]. This is based on the basic sinusoidal analy­
sis-synthesis system [205] shown in Fig. 17. The frame rate 
in the 8-kbit/s sinusoidal coder was 50 Hz and 3.6 kbits/s 
were used to code the amplitudes and 4.4 kbits/s were used 
to code the phases and the fundamental frequency. For 
voiced speech the frequencies of the sinusoids were forced 
to be harmonic of the pitch fundamental. For unvoiced 
speech the frequencies were equidistant but closely spaced 
(distance less than 100Hz). Pitch and voicing information 
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(b) 
Ampl~udes 

were derived using a sinusoidal pitch estimator [208]. 
The amplitudes of the sinusoids were coded using delta­
modulation techniques across the frequency [126]. The 
bit-allocation rules were pitch-adaptive, i.e., for high-pitch 
speakers more bits per amplitude were used. Phases were 
coded using 4-5 bits and for low-pitch speakers phase 
regeneration techniques were used. The sinusoidal coder 
produced high-quality speech even in the presence of 
background noise. 

In 1987, a multirate sinusoidal coder operating from 
1.8 to 8 kbits/s was also developed at MIT Lincoln Lab­
oratories [206]. The multirate coder employed a coding 
strategy similar to that of the JSRU vocoder [126]. At rates 
lower than 4.8 kbits/s, phase information was not coded 
explicitly. Instead, a synthetic phase model was used which 
consisted of phase-locking all the component phases to 
the fundamental, adding voicing-dependent random phase, 
and using quadratic pitch-dependent phase dispersion tech­
niques [206]. 

Although the aforementioned early coding efforts have 
demonstrated the utility of the sinusoidal model in speech 
coding, the coded parameter set used was found to be 
sensitive to both quantization noise and channel errors 
particularly at the lower rates. A new robust parametric 
representation of the sinusoidal analysis-synthesis model 
was developed more recently and was shown [212] to 
be amenable to high-quality low-rate speech coding. The 
parametric model used in the low-rate sinusoidal transform 
coder (STC) uses a harmonic model for the frequencies, 
a pitch-adaptive amplitude envelope for the sine-wave 
amplitudes, and a voicing-dependent model for the sine­
wave phases. 

The envelope used for the amplitudes is similar to the 
envelope used in Paul's Spectral Envelope Estimation 
Vocoder (SEEVOC) [237]. The SEEVOC envelope, A(!J), 
is constructed by applying linear interpolation between the 
STFT peaks which are at the frequencies (!J1, !J2, · · ·). 
These peaks are determined as follows. The first peak 
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and its frequency, fh, are determined by searching the 
interval [Do/2, 3D0 /2] where 00 denotes the average pitch. 
The rest of the peaks are determined by searching the 
intervals [Ok- 1 + D0/2, nk- 1 + 3D0/2] until the edge of 
the bandwidth. The SEEVOC peak-picking algorithm has 
two inherent advantages over other peak-picking methods; 
namely, a) it is only weakly dependent on the pitch (since 
it uses D0 ), and b) it avoids low-level peaks (which are 
often due to spectral leakage). 

A truncated cepstral representation is obtained for the 
spectral envelope A(O), i.e., 

log (A(O)) =Ceo+ 2 L Gem cos (rnO) (20) 
m=1 

where Gem is the cepstral sequence given by 

117[ 
Gem = - log (A(O)) cos (rnO) dO. 

7r 0 
(21) 

The cepstral representation is used because a) when used 
along with frequency warping (MEL scale) it provides a 
basis for exploiting the perceptual properties of the ear, b) it 
provides sinusoidal phase information under the assumption 
that the system function (composite vocal tract and glottal 
pulse functions) is minimum-phase, and c) transformed cep­
stral coefficients can be encoded efficiently. The perceptual 
properties of the human ear are exploited by applying a 
frequency-warping function of the amplitude envelope. The 
warping function is linear in the low-frequency region and 
exponential in the high-frequency region. Details on the 
design and utility of the warping function are given in [212]. 

The phase model used in the STC assumes a source­
system representation of speech and considers the phase 
components due to the excitation, the glottis, and the vocal 
tract. The phase model includes the system (composite 
glottal and vocal tract) phase and a linear phase component 
which ensures that the excitation sine waves are in-phase 
with the pitch pulse. The system phase can be estimated, 
under the assumption of minimum phase, from the cepstral 
sequence, i.e., 

<Ps(O) = -2 L Gem sin (rnO). (22) 
m=1 

Notice that the same system amplitude and phase is identi­
cal for either s(n) or -s(n). Therefore, the system phase 
is generalized, i.e., it is written as <Ps(O) + (31r, where (3 
can take the value of zero or one. Comparisons of the 
measured phase with estimates obtained from the phase 
model revealed that the phase residual is essentially zero 
for voiced speech (up to a certain frequency) and random 
on [ -1r, 1r] for unvoiced speech. Based on the above the 
following voicing-dependent phase model was adopted for 
the STC: 

where no is the estimate of the pitch onset time and 
e<P ( nk) is the voicing-dependent residual phase introduced. 
The process for estimating no and (3 are given in [212]. 
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Fig. 18. The STC [210]. 

The residual phase is defined such that the sinusoidal 
excitation model operates as a mixed-excitation model, 
e.g., of the type proposed by Makhoul et al. [194]. The 
voicing-dependent residual phase is formed by 

e<~>(O) = {d[-1r.1r], (24) 

where U[-1r, 1r] stands for uniformly random phase on 
[ -1r, 1r], Oc(Pv) is a voicing-dependent cutoff frequency, 
and Pv represents the probability that speech is voiced. 
The voicing probability Pv depends on the pitch estimator 
and empirical expressions for Pv are given in [212]. 

The low-rate STC, Fig. 18, is based on a harmonic 
representation and the amplitudes of the sinusoids are 
obtained by sampling the SEEVOC envelope. The harmonic 
model is "optimal" only for perfectly voiced speech and in 
order to accommodate unvoiced or mixed voiced-unvoiced 
speech the sinusoidal frequencies are determined using the 
following rule: 

n {kno, 
k = k'Oo + (k- k')Ou, 

where flu = 21rlOOT , Oc(Pv) is constrained to be no 
smaller than (27rl500T), and k' is the largest value of 
k for which k'Oo ::; Oc(Pv). Note that if Oo < Ou 
then nk = k00 for all the frequencies. Therefore, the 
frequencies of the sinusoids are harmonic for perfectly 
voiced speech and also when the pitch is less than 100 
Hz. Otherwise, the frequencies are harmonic up to a cutoff 
frequency Oc(Pv) and aharmonic (but equidistant) above 
the cutoff frequency. 

The STC, Fig. 18, encodes the pitch, voicing probability, 
and a transform representation of the cepstral coefficients. 
Because the cepstral sequency is largely uncorrelated and 
characterized by a large dynamic range, a DCT representa­
tion of the cepstral sequence is coded. The DCT coefficients 
can be encoded using DPCM techniques similar to those 
used in the JSRU vocoder [126] and the SEEVOC. In 
one of the most recent implementations of the STC [210], 
[211], it was shown that robustness to channel errors can 
be improved by using vector quantization schemes similar 
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to those suggested by Cox et al. [49] in sub-band coders. 
Additional coding gain is realized using postfiltering [212] 
which reduces the quantization noise in the formant nulls. 
In addition, frame fill [216] techniques are used to reduce 
further the bit rate. Fixed-point real-time implementations, 
on Analog Devices DSP chips, of a harmonic zero-phase 
(<l>s(S1) = 0) STC were described in [212]. More re­
cently, full-duplex STC's were implemented on the TI 
TMS3020C30 chip and the complexity reported was 13 
MIPS while the MOS scores were 3.52 (4.8 kbits/s) and 
2.9 (2.4 kbits/s) [213]. The STC has been included in 
Comtech's secure videophone. 

Before we close this section we note that sinusoidal trans­
form coding is currently one of the leading approaches to 
low-rate coding. We also note that the sinusoidal model was 
used to develop speech-processing algorithms for time-scale 
modification, pitch estimation, and cochannel interference 
attenuation [208], [246]-[248]. 

C. The Multiband Excitation Coder 

The Multiband Excitation (MBE) coder, proposed by 
Griffin and Lim [ 117], relies on a model that treats the 
short-time speech spectrum as the product of an excitation 
spectrum and a vocal tract envelope. Although this type 
of spectral representation is implied in the classical two­
state source-system model (Fig. 3), the difference here is 
that the excitation spectrum is modeled by a combination 
of harmonic and random-like contributions (i.e., voicing 
is frequency-dependent). This mixed modeling approach 
is based on the fact that the spectra of mixed sounds or 
noisy speech contain both voiced (harmonic) and unvoiced 
(random-like) regions. Consequently, the spectrum is di­
vided into sub-bands and each sub-band is declared voiced 
or unvoiced. The number of sub-bands is much higher than 
the traditional sub-band coders [52] and can be chosen to be 
equal to the number of harmonics. The spectrum model in 
the MBE is essentially a generalization of the mixed-source 
model suggested by Makhoul et al. [ 194]. 

The synthetic speech spectrum is the product of a spectral 
envelope and an excitation magnitude spectrum, i.e., 

S(Sl) = H(S1)IX(S1)1 (26) 

where H(Sl) is the vocal-tract envelope and IX(S1)1 is 
the magnitude of the excitation spectrum. The vocal-tract 
envelope H(Sl) is a smoothed version of the short-time 
speech spectrum and can be obtained by linearly interpo­
lating between the harmonic samples of the spectrum. The 
short-time spectra of the speech, the vocal-tract envelope, 
and the excitation spectra are shown in Fig. 19. 

The synthetic short-time spectrum S(Sl) is given by the 
product of the spectral envelope (Fig. 19(b)) and the MBE 
excitation spectrum (Fig. 19(d)). The parameters used in 
the MBE model are the fundamental frequency, the spec­
tral envelope, voicing information per each harmonic, and 
phase information only for voiced harmonics. A least mean 
squares (LMS) analysis-by-synthesis approach is used to 
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Fig. 19. The short-time spectra of the speech, vocal tract, andex­
citation. (a) Unvoiced regions of the speech spectrum. (b) Spectral 
envelope obtained by interpolation. (c) Harmonic voiced excitation 
spectrum. (d) MBE voiced/unvoiced excitation spectrum. 

estimate S(Sl), i.e., the excitation and envelope parameters 
are estimated simultaneously by minimizing the error (in the 
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LMS sense) between the original and the synthetic spectra 

EMB = 2::= fMB(m) (27) 
m 

where the subscript MB stands for MBE 

(28) 

and (h,m and ¢z,m are the boundaries of the mth sub-band. 
If only magnitude information is desired then 

The MBE model was described above in most general 
form. In practice, the voiced portion of the signal is 
generated in the time domain and the unvoiced signal is 
generated in the frequency domain, Fig. 20. 

The analysis process consists of determining a) the pitch 
period, b) the voiced and unvoiced envelope parameters, c) 
the voicing information for each sub-band, and d) selecting 
the voiced and unvoiced envelope parameters for each sub­
band. An integer pitch period is first estimated using an 
autocorrelation-like method and a pitch tracker is used 
to smooth the estimate for interframe continuity. This is 
then followed by a frequency-domain pitch refinement 
process. The details of the pitch-estimation process are 
described in [117]. The spectral envelope is described by 
samples located at the harmonics of the fundamental. For 
voiced harmonics the magnitude and phases of the envelope 
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samples are determined using a least squares process. For 
unvoiced harmonics, only the magnitudes are determined. 
The sub-bands are centered around the pitch-harmonic 
frequencies and voicing is determined by comparing the 
normalized error 

E':vm(m) 
EMB(m) = -----

¢2,m 

J IS(D)I2 dD 

(30) 

to a threshold. When EMB ( m) is below a threshold then the 
associated harmonic is marked voiced. A threshold value of 
0.2 was suggested in [117]. It must be noted that in more 
efficient implementations voicing is typically determined 
for groups of three harmonics [118]. 

The synthesis process is shown in Fig. 20(b). The voiced 
portion of speech is synthesized in the time domain using 
a bank of harmonic sinusoids. The amplitudes of the 
sinusoids are obtained from the voiced envelope samples. 
Linear interpolation techniques, similar to the ones used 
in the STC, are used for the amplitudes. The amplitudes 
of the sinusoids associated with unvoiced harmonics are 
set to zero. The phases of the sinusoids (voiced bands) 
are determined using a phase-prediction algorithm which 
is similar to the STC phase-interpolation algorithm. The 
unvoiced portion of speech segments is determined by 
applying the FFT on a windowed segment of white noise. 
The normalized transform samples are then multiplied by 
the spectral envelope and unvoiced synthesis is performed 
using the weighted overlap/add method. 
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Initial results from coding the MBE parameters at 8 
kbits/s are given in [ 117]. The frame rate in this imple­
mentation is 50 Hz and the harmonic magnitudes are coded 
using DPCM techniques similar to those used in the JSRU 
vocoder [126]. The difference between the estimated and 
predicted phases is coded only for voiced harmonics. When 
all the harmonics are unvoiced then no phase information 
is coded and the extra bits are allotted to the magnitudes. 
Voicing information is coded at one bit per sub-band. The 
average DRT scores for this implementation were: 96.2 for 
noiseless speech and 58 for speech corrupted by wideband 
noise [117]. 

A more efficient 4.8-kbit/s MBE coder was developed 
by Hardwick and Lim [120]. The MBE parameters, in this 
coder, were generated and quantized at a frame rate of 50 
Hz. The voiced/unvoiced decision was encoded in groups 
of three harmonics each and a total of 12 voiced/unvoiced 
decisions per frame were encoded at 1 bit per group. 
For frames with more than 36 harmonics the rest of the 
harmonics are declared unvoiced. The pitch is encoded 
using a variable differential coding scheme with an average 
of 6 bits per frame. Phase is quantized only for the first 12 
voiced harmonics using a phase-prediction algorithm. The 
phase-prediction residual is block-quantized (in groups of 
3 phases) at 2 bits-per-phase component. The rest of the 
phases, associated with voiced harmonics, are not coded 
and are chosen randomly using a uniform distribution. 
The phases of unvoiced harmonics are not needed for 
synthesis and hence they are not coded. The quantization of 
harmonic magnitudes is based on a hybrid time-frequency 
framework [ 120]. The differential magnitudes (across time 
on a decibell scale) are formed and organized into 8-point 
blocks. Each block is then transformed using an 8-point 
DCT transform and the DCT coefficients are encoded using 
uniform quantizers. The 4.8-kbit/s coder was one of the 
candidates for the DOD FS1016 standard. The DRT/DAM 
scores reported [169] for the 4.8-kbit/s MBE were 92.7/60.4 
and its complexity was estimated at 7 MIPS. 

An improved MBE (IMBE) was proposed more recently 
by Hardwick and Lim [121]. Although the IMBE is based 
on the MBE analysis-synthesis model, the IMBE employs 
more efficient methods for quantizing the MBE model 
parameters. In addition, the IMBE coding scheme is more 
robust to channel impairments. A real-time implementation 
of a multirate (8, 4.8, 2.4 kbits/s) IMBE coder on the 
AT&T DSP32C signal processor was presented in [26]. An 
IMBE that operates at 6.4 kbits/s recently became part of 
the Australian (AUSSAT) mobile satellite standard and the 
International Mobile Satellite (lnmarsat-M) [121], [141], 
[322] standard. The 2250 bits/s of the Inmarsat-M IMBE are 
used for forward error correction. The remaining 4150 bits/s 
are used for coding the IMBE parameters. The pitch period 
in the IMBE is quantized with one half sample accuracy at 
8 bits. A maximum of 12 voiced/unvoiced decisions were 
encoded; 1 bit per group of three harmonics. Differential 
(in time) log amplitudes of the harmonics are divided into 
six blocks and each block is transformed using the DCT. 
The DC coefficients from each block are combined into 
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a 6-element Prediction Residual Block Average (PRBA). 
The mean of the PRBA vector is subtracted from the 
vector and encoded using a 6-bit nonuniform quantizer. 
The zero-mean PRBA vector is vector-quantized using 10-
bit VQ. The rest of the DCT coefficients are quantized 
using scalar uniform quantizers. The phases of the harmonic 
components in IMBE are obtained using a phase-prediction 
algorithm. The details of this algorithm, as well as the entire 
IMBE analysis-synthesis process are given in the Inmarsat­
M standard documentation [141]. The 6.4-kbit/s IMBE was 
implemented on the AT&T DSP32C with an algorithmic 
delay of 78.75 ms and subjective evaluations revealed a 
MOS of 3.4. 

IV. VOCODER METHODS 

This section deals with speech-specific coders or 
vocoders. Unlike the waveform coders presented in the 
previous section, the performance of vocoders generally 
degrades for nonspeech signals. Vocoders rely on speech­
specific analysis-synthesis which is mostly based on the 
source-system model. Before we start our discussion on 
source-system models, however, we note that articulatory 
or physiological models have also been proposed for 
voice analysis-synthesis. Articulatory models represent 
the human speech production mechanism directly, i.e., 
distinct human voice-production organs are modeled 
explicitly. A time-frequency articulatory model for speech 
analysis-synthesis was proposed by Sondhi and Schroeter 
[282]. Even though the articulatory system exhibited 
potential for natural low-rate speech production, its 
practicality is limited because there are no efficient 
procedures for the extraction of articulatory parameters 
from the speech sequence. An excellent review of 
physiological models as applied to speech coding is given 
in [91, ch 8]. 

The source-system representation has been utilized in 
most of the well-known low-rate vocoders. Interestingly, 
many of the concepts associated with modem source­
system vocoders have been around since Dudley's vocoder 
[66], [67] (Fig. 2). In particular, two-state excitation 
(pulse/noise), voicing and pitch detection, and filter-bank 
spectral representation were implemented using analog 
components in Dudley's channel vocoder. Even though 
such basic concepts were introduced as early as 1939, it was 
also recognized early that the perceptual quality of speech 
depended a great deal on the estimation of the parameters 
associated with the spectral envelope and the excitation 
model. Reliable envelope estimators, based on linear 
prediction [190] and homomorphic signal processing [229], 
were proposed during the late 1960's and early 1970's. The 
estimation of the excitation parameters, however, proved 
to be more challenging and also more critical [270] for 
speech synthesis. Many of the low-rate channel and linear­
predictive vocoders employ the simple two-state excitation 
(pulse/noise). Although this simple excitation model is 
associated with attractive low information rates, it is also 
responsible for the synthetic ("buzzy") quality of speech. 
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More sophisticated excitation models, proposed in the 
1970's and 1980's, provided improved quality at the cost 
of increased complexity. In the following, we describe 
four types of vocoders, namely, the channel and formant 
vocoders, the homomorphic vocoder, and linear predictive 
coders. Since most of the successful vocoders and hybrid 
coders make extensive use of linear prediction, the concepts 
associated with linear prediction will be presented in more 
detail. 

A. The Channel and the Formant Vocoder 

Dudley's vocoder [66], [67] is the oldest method for 
speech analysis-synthesis. The channel vocoder relies on 
representing the speech spectrum as the product of vocal 
tract and excitation spectra. A vocal-tract envelope repre­
sentation is obtained using a bank of band-pass filters, Fig. 
2. The number of channels is typically between 16 and 
19 and the spectral representation becomes more accurate 
as the number of channels increases. The bandwidth of the 
channels is generally chosen to increase with the frequency. 
The fine structure of the voiced spectrum is represented 
using pitch-periodic pulse-like waves. Unvoiced speech 
is reproduced using noise-like excitation. An excellent 
description of the research on channel vocoders during the 
1960's is given in the classical paper by Gold and Rader 
[108]. 

Improvements in the channel vocoder were reported by 
Gold et al. [ 110]. In particular, improvements in low-rate 
channel vocoders were realized by increasing the number 
of channels, introducing spectral flattening techniques on 
the excitation signal, and exploiting the correlation of the 
channel signals in the time and frequency domain using 
DPCM techniques. Gold et al. also introduced a number 
of new applications of channel vocoders, such as, channel 
vocoding of the LP residual and noise suppression. 

Perhaps one of the most comprehensive studies on chan­
nel vocoders was performed by the Joint Speech Research 
Unit (JSRU) of the U.K. In particular, JSRU produced a 
2.4-kbit/s channel vocoder which was also evaluated by 
the US DOD. The JSRU vocoder used a 19-channel filter 
bank and employed DPCM techniques across the frequency 
band to encode the channels. This coding technique was 
indeed very efficient and was later used in STC and in 
MBE coders. The 2.4-kbit/s JSRU vocoder scored a DRT 
of 87. It was also remarkable that the same coder scored a 
DRT of 81 in the presence of 5% transmission errors. An 
excellent description of the JSRU channel vocoder is given 
by Holmes [126]. 

The main difference between the channel vocoder and 
early formant vocoders is that the resonant characteristics 
of the filter bank in formant vocoders adapt to the trajec­
tories of the formants. More recent implementations of the 
formant vocoders employ cascade and parallel resonator 
configurations [127], [234], [252]. A general-purpose cas­
cade configuration of a formant vocoder is shown in Fig. 
21. 

The transfer function H v ( z) for voiced-speech synthesis 
consists of a cascade of three (or generally L) second-order 
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Fig. 21. A typical formant vocoder. 

all-pole resonators, i.e., 

L 
Hv(z) = II H;(z) 

i=l 
(31) 

where 

1- 2e-!1a(i) cos (0;) + e-!1a(i) 
H;(z) = 1- 2e-!1a(i) cos (O;)z- 1 + e-!!a(i)z-2 (

32) 

and 0; and OB(i) denote the ith formant frequency and 
bandwidth, respectively. For unvoiced speech Hu(z) con­
sists of a cascade of a second-order all-zero function (zero 
at Oz) and a second-order all-pole function (pole at Op). 
The fixed spectral compensation function accommodates 
the effects of the glottal pulse and the lip radiation. The 
major difficulty in formant vocoders lies in the computation 
of the formants and their bandwidths. 

Before we close our discussion on channel and formant 
vocoders, we note that although research on the channel 
and formant vocoders in the late 1980's and early 1990's 
has been (relatively) minimal, the work done earlier con­
tinues to provide valuable insight in the design of modem 
vocoders. 

B. Homomorphic Vocoders 

Homomorphic signal processing methods [251], such as 
homomorphic deconvolution, can be used both for vocal­
tract characterization [230], as well as, for extraction of 
information relating to excitation [227]. The basic idea in 
homomorphic vocoders is that the vocal tract and the ex­
citation log-magnitude spectra can be combined additively 
to produce the speech log-magnitude spectrum. 

A speech analysis-synthesis system that uses the cep­
strum is shown in Fig. 22. The inverse Fourier transform 
of the log-magnitude spectrum of speech produces the 
cepstral sequence Ce(n). It can be shown that the ("que­
frency") samples of the cepstrum that are near the origin 
are associated with the vocal tract [41], [229], [230]. These 
coefficients can be extracted using a cepstral window, Fig. 
22. The length of the cepstral window must generally be 
shorter than the shortest possible pitch period. It can be also 
shown that for voiced speech the cepstral sequence has large 
samples at the pitch period. Therefore, the fundamental 
frequency can be estimated from the cepstrum [227]. 
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Fig. 22. A homomorphic speech analysis-synthesis system. (a) 
Analysis. (b) Synthesis. 

The synthesizer takes the FFT of the cepstrum and the re­
sulting frequency components are exponentiated. The IFFT 
of these components gives the impulse response of the vocal 
tract which is convolved with the excitation to produce 
synthetic speech. Although the cepstral vocoder did not find 
many applications at the time it was proposed, cepstrum­
based methods for pitch and vocal-tract estimation found 
many other speech-processing applications. In addition, in 
recent contributions by Chung and Schafer [44], [45] it 
was reported that good-quality speech at 4.8 kbits/s can be 
produced by combining homomorphic deconvolution with 
analysis-by-synthesis excitation modeling. 

C. Linear-Predictive Vocoders 

Linear predictive vocoders have been the most widely 
researched techniques for speech coding in the last twenty 
years. This section describes the concepts associated with 
linear-predictive coders. The section starts with a descrip­
tion of the source-system model and continues with a dis­
cussion on linear-prediction algorithms. Finally, we present 
three excitation models for open-loop linear-predictive cod­
ing, namely, the two-state excitation model, the mixed 
excitation model, and the residual excitation model. 

A linear speech production system has been developed 
and analyzed by Fant [75], Fig. 23(a). This system assumes 
a two-state excitation (impulse-train for voiced and random­
noise for unvoiced speech). The vocal tract is modeled as 
an all-pole transfer function which is formed by a cascade 
of a small number of two-pole resonators representing the 
formants. The glottal model is represented as a two-pole 
low-pass filter and the lip-radiation model is represented 
by L(z) = 1 - z- 1 . Finally, a spectral correction factor 
is included to compensate for the low-frequency effects 
of the higher poles. In digital speech representations, the 
spectral correction is omitted [249] and the zero of the 
lip-radiation function is essentially canceled by one of the 
glottal poles [ 199]. Hence the system can be reduced to an 
all-pole model, Fig. 23(b). 

The source-system synthesis model can be represented 
using z-domain functions, i.e., 

S(z) = 1 _ ·~(z) X(z) (33) 

where g represents the gain and A(z) is given in (4). Figure 
23(c) and (d) gives a graphical time-domain description 
of voiced and unvoiced speech synthesis using the linear 
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Fig. 23. Linear speech models and voiced/unvoiced speech rep­
resentations. (a) Fant's speech production model. (b) All-pole 
source-system model. (c) Graphical representation of voiced speech 
production. (d) Graphical representation of unvoiced speech pro­
duction. 

time 

source-system model. The system and excitation parameters 
in (33) are unknown and must be determined from a finite 
set of speech samples. The coefficients of A( z) are obtained 
using Linear Prediction (LP) [189], [199]. In a pth-order 
forward linear predictor the present sample of the speech 
sequence is predicted from a linear combination of p past 
samples (Fig. 24(a)), i.e., 

p 

sf(n) = 'L,a{s(n-i) (34) 
i=l 

where sf ( n) is the predicted sample of the process. The 
superscript f denotes a forward-prediction process. The 
prediction parameters are obtained by minimizing the mean 
square of the forward prediction error Ef, i.e., 

fori=1,2,···,p (35) 

where 

and E[·] is the statistical expectation operator. This min­
imization yields a set of Toeplitz equations, that is, for 
m=1,2,···,p 

p 

rss(m)- La{ rss(m- i) = 0 (37) 
i=l 

where 

rss(m) = E[s(n + m)s(n)] (38) 

is the autocorrelation sequence of the speech segment. The 
autocorrelation sequence { r ss ( m)} can be estimated from 
N samples of speech { s(n), n = 0, 1, 2, · · ·. N- 1} using 
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Fig. 24. Linear prediction realizations. (a) Direct forward LP analysis. (b) Backward LP. (c) 
Lattice forward-backward predictor. 

the unbiased estimator 

N-lml-1 

Tss(m) = N ~ JmJ L s(n + JmJ)s(n). 
i=O 

Alternatively, one may use a biased estimator 

N-lml-1 

i'ss(m) = ~ L s(n + Jmi)s(n). 
i=O 

(39a) 

(39b) 

Biased estimators are often desirable (particularly for short 
records) because they tend to yield minimum phase poly­
nomials when used in conjunction with (37). 

It must be noted that for real-valued data and coefficients, 
the minimization of the mean square of the backward 
prediction error (Fig. 24(b)) 

p 

eb(n) = s(n- p)- L a~s(n- p + i) (40) 
i=1 

yields a Toeplitz set of equations similar to (37) with 
backward-prediction parameters { ar' i = 1, 2, ... 'p }. It 
can be shown (under the assumption of stationarity) that 
Ef = Eb and ar = a{ = ai. The term "backward" here does 
not imply backward adaptation (as presented in Section II­
A). It simply means that the oldest sample in the predictor 
memory is predicted from samples that are indexed later in 
the predictor memory (40). These samples are in the same 
analysis frame. 

The system of equations given in (37) is Toeplitz and 
symmetric and can be solved efficiently using an order­
recursive algorithm. A general order-recursive Toeplitz 
matrix inversion algorithm was developed by Levinson 
[181]. Durbin [69] developed a more efficient algorithm 
that exploits even further the structure of the equations (37). 
The Durbin recursive coefficient update for the mth order 
predictor {m = 1,2,···,p} is given by 

Ef(o) = r •• (O) (41a) 
m-1 

Tss(m)- L a;(m- 1)r88 (m- i) 
am(m) = i=1 

Ef(m- 1) 
(41b) 
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a;(m) = a;(m- 1)- am(m)am-i(m- 1), 

1 :S i :S m- 1 (41c) 

Ef(m) = (1- (am(m)) 2 )Ef(m- 1) (41d) 

where the integer ( m) in the parenthesis denotes the order 
of prediction during the order recursion. A detailed descrip­
tion of the Durbin algorithm is given in [162] and [201]. 
The coefficients 

km=am(m), m=1,2,···,p (42) 

are known as the reflection coefficients due to their interpre­
tation as physical parameters of the acoustical tube model 
for speech [189]. 

The negated reflection coefficient, -km, is also called 
the partial correlation (PARCOR) coefficient because it 
represents the normalized correlation between s ( n) and 
s(n-m+ 1) with the correlation of s(n-1), · · ·, s(n-m+ 
1) removed [24]. The reflection coefficients are used in the 
lattice realization (Fig. 24(c)) of the forward and backward 
predictor. The lattice filter has implementation advantages 
over the direct realization in that it is less sensitive to 
round-off noise and coefficient quantization [144], [309]. 
In addition, the condition {lkml < 1, m = 1, 2, · · · ,p} 
implies that the polynomial (1- A(z)) is minimum-phase 
(all its zeros are inside the unit circle) and hence stability 
in the all-pole synthesis filter can be checked by inspecting 
the reflection coefficients of the lattice predictor. Lattice 
parameters can be also determined using the harmonic 
algorithm of Burg [27], [114], i.e., 

(43) 

It can be shown that {lkml :S 1 m = 1, 2, · · · ,p} 
which is desirable for speech synthesis. Reflection to direct 
parameter transformations can be performed using ( 41 c) 
and (42). 

Notice that (43) computes the reflection coefficients di­
rectly from the lattice forward- and backward-error data. 
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Algorithms that compute direct-predictor parameters di­
rectly from short data records are also available (e.g., 
covariance and modified covariance methods [201], [286]. 
In particular, the covariance method has been used in 
the government LPC-10 standard [301]. The covariance 
equations are given in the following: 

ih v1,1 V1,2 v1,3 v1,p a1 

v2 v2,1 V2,2 V2,3 V2,p a2 

V3 V3,1 v3,2 v3,3 v3,p a3 

(44) 

Vp Vp,1 Vp,2 Vp,3 Vp,p aP 

where 

N 

Vi,j = 2:: s(n- i)s(n- j) (45) 
n=p+1 

and 

N 

v; = 2:: s(n)s(n- i). (46) 
n=p+1 

Notice that the matrix in (44) is symmetric but not Toeplitz 
and therefore the Levinson algorithm cannot be used for its 
inversion. The covariance matrix, however, can be inverted 
using the Cholesky decomposition [294]. The reflection 
coefficients are a by-product of the decomposition process 
[301]. 

One of the major issues in LPC is the quantization 
of the LP parameters [144], [145], [162], [235], [309]. 
In general, 8-14 LP parameters are sufficient for vocal 
tract representation. Quantization of direct form coefficients 
is generally avoided since quantization error can lead 
to instability of the synthesis filter. On the other hand, 
quantization of the zeros of (1 - A(z)) may be done such 
that the stability of the synthesis filter is ensured. The zeros, 
however, are more difficult to compute and they do not 
form an ordered set of parameters and hence it is difficult 
to develop statistical patterns for efficient quantization. The 
reflection coefficients are an ordered set of parameters and 
when coded at discrete levels within the range of -1 and 
1 stability is ensured. In addition, their ordering can be 
exploited by encoding the first few reflection coefficients 
with higher precision. Transformation of the reflection 
coefficients can also lead to a set of parameters that are 
less sensitive to quantization. In particular, the log area 
ratios (LAR's), given by 

{ 1 + km} LAR(m) =log 
1 

_ km (47) 

have been used in many coding applications. In addition, 
the inverse sine transformation, i.e., Si (m) =arcsin (km), 
has also been used in some predictive coding applications. 
An attractive feature of the inverse sine transformation is 
that the transformed parameters are bounded between -1r /2 
and 1r /2. 
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Another representation of LP parameters that has been 
widely used is the Line Spectrum Pairs (LSP's) [54], [161], 
[164], [166], [296]. The LSP representation of a typical 
1Oth order polynomial 

A10(z) = 1 + a1z- 1 + · · · + a10z- 10 (48) 

can be explained by considering two polynomials A10, (z) 
and A 1o2 (z) such that 

A 10, (z) = A1o(z) + z- 11 A1o(z- 1) 

A 102 (z) = A10(z)- z- 11 AIO(z- 1). 

(49a) 

(49b) 

Each of A 10 ,(z) and A102 (z) has a set of five complex 
conjugate pairs of zeros that lie on the unit circle. Hence 
each polynomial can be represented by the five frequencies 
of the zeros (the other five frequencies are their negatives). 
These frequencies are the LSP's. The polynomial A1o(z) 
is minimum phase if the roots of A1o, ( z) and A102 ( z) 
alternate on the unit circle [296]. The polynomial A10(z) 
can be obtained using the LSP's and the relation 

A1o(z) = A10, (z) + A1o2(z). (SO) 
2 

The major advantage of the LSP's is that they can be 
coded using perceptual quantization rules. This is due 
to their relationship to the speech formants. The main 
drawback of LSP's lies in the complexity associated with 
their computation. 

In linear predictive coding the analysis window is typi­
cally 20-30 ms long and parameters are generally updated 
every 10-30 ms. Since lower frame rates imply a large 
change in the LP parameters the frame is usually divided 
into subframes (typically 5 ms long) and subframe param­
eters are obtained by linear interpolation [8] of adjacent 
frame parameters. It has been shown that the interpolation 
of prediction coefficients [8] and LAR' s [307] results in 
improved speech quality. 

Although linear prediction has been by far the dominant 
method for extracting all-pole models for the vocal tract, 
there have also been many studies on pole-zero representa­
tions [15], [218], [219], [293]. These studies were motivated 
by the fact that nasalities must be characterized by zeros 
in addition to poles. Atal and Schroeder [15] compared the 
pole-zero representation against the all-pole representation 
and reported improvements in the perceptual quality of 
speech for nasalized sounds. They also reported, however, 
that similar improvements were realized by increasing the 
order of the all-pole model. The latter is in agreement with 
the fact that spectral zeros can be represented by a large 
number of poles. 

For a comprehensive treatment of linear-prediction algo­
rithms and their application to speech we refer the reader 
to the tutorial paper by Makhoul [189] and the book by 
Markel and Gray [199]. 

1) Open-Loop Excitation Modeling: The ideal excita­
tion for LPC synthesis is the prediction residual x(n) = 
ef ( n). In the classical LPC this excitation is modeled by 
a pitch-periodic impulse sequence for voiced speech and a 
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random noise sequence for unvoiced speech. Mixed exci­
tation schemes in conjunction with LPC were proposed by 
Makhoul et al. [ 194] and more recently revisited by McCree 
and Barnwell [214], [215]. A different approach is taken in 
Residual Excited LP (RELP) where the baseband of the 
prediction residual ef ( n) is encoded. In the following, we 
describe these excitation models and we also review some 
of the well-known LPC and RELP algorithms. Analysis-by­
synthesis excitation models such as those used in Multipulse 
LP and in Code Excited LP will be described in Section V. 

a) The classical two-state excitation model and the 
LPC-10 algorithm: The two-state excitation parameters 
consist of the gain, the pitch period, and the binary voicing 
parameter. The gain of voiced and unvoiced segments is 
typically determined such that the energy of the synthetic­
speech segment matches that of the analysis segment. For 
unvoiced speech the excitation is produced by a random 
number generator. Since unvoiced segments are associated 
with small energy and large number of zero crossings, 
voicing can be determined by energy and zero-crossing 
measurements. In many cases voicing information is also 
provided by the pitch-detection algorithm. The estimation 
of the fundamental (pitch) frequency presented a chal­
lenge in the early years, because it had to be determined 
by suppressing the higher harmonics using analog filters. 
Although this problem was partially solved using digital 
techniques [65], [Ill], [130], [186], [200], [227], [250], 
[283], the estimation of the pitch period of noisy and non­
perfectly-periodic speech segments is still, to some extent, 
a difficult problem. Most of the well-known algorithms 
for pitch detection appeared in the late 1960,s and in 
the 1970's. In particular, we note the time-domain pitch 
tracker by Gold and Rabiner [Ill], the SIFT algorithm 
proposed by Markel [200], the cepstrum-based algorithm 
by Noll [227], and the Average Magnitude Difference 
Pitch Extractor which is used in the LPC-10 algorithm. 
These algorithms are described in an IEEE collection of 
papers on speech analysis [269] and also in the book by 
Hess [ 125]. In very simple terms, the most straightforward 
approach to pitch detection is based on peak-picking the 
autocorrelation sequence of center-clipped speech. A more 
expensive but also very robust pitch detector relies on peak­
picking (within a range; see Section IV-B) the cepstrum. 
The SIFT algorithm is based on peak-picking the autocor­
relation sequence of the prediction residual associated with 
down-sampled speech. Post-processing algorithms [125] for 
pitch smoothing are also used to provide for frame-to­
frame pitch continuity. An excellent comparative study 
on these and other successful algorithms was presented 
by Rabiner et al. [250]. Current pitch-detection algorithms 
yield high-resolution (sub-sample) estimates for the pitch 
period and are often specific to the analysis-synthesis 
system. For example, in the STC and the IMBE coder 
the pitch estimation process is an integral part of the 
analysis-by-synthesis process. In addition, in most analysis­
by-synthesis linear predictive coders the pitch is measured 
by a closed-loop process which accounts for the impact of 
the pitch on the overall quality of the reconstructed speech. 
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Fig. 25. The Federal Standard FSIOIS. (a) LPC-10 transmitter. 
(b) LPC-10 receiver. 

Real-time linear predictive coders were demonstrated in 
the early 1970's. A 4.8-kbit/s LPC was implemented by 
ltakura and Saito [144] and tests revealed an average DRT 
score of 87.3. A real-time 3.6-kbit/s LPC was presented by 
Kang [162] in 1974 with a reported average DRT score of 
87 .6. In addition, a 600-bit/s linear predictive formant coder 
was presented by Kang and Coulter [163]. 

In 1976, a consortium established by the Department of 
Defense (DoD) recommended an LPC algorithm for secure 
communications at 2.4 kbits/s. The algorithm, known as the 
LPC-10, eventually became the Federal Standard FS-1015 
[77]. The LPC-1 0 uses a 1Oth-order predictor to estimate 
the vocal-tract parameters. The prediction parameters are 
estimated by solving the covariance matrix equations (44). 
A block diagram for the transmitter and the receiver of the 
LPC-10 is shown in Fig. 25. 

In order to reduce the effects of fixed-point arithmetic, 
speech (100-3600 Hz) is pre-emphasized using a first-order 
FIR high-pass filter. Segmentation and frame processing 
depends on voicing. For voiced speech, the spacing between 
successive analysis intervals is a multiple of the pitch 
period and during unvoiced periods the frame is centered at 
22.5-ms intervals. The entries of the covariance matrix are 
computed recursively prior to the Cholesky decomposition. 
Voicing and pitch information are estimated by operating 
on speech which was filtered by a low-pass filter with a 
cutoff frequency of 800 Hz. A second-order inverse filter 
is used to enhance the pitch estimator for input signals 
whose frequency content is low for frequencies below 300 
Hz. Pitch extraction is based on the average magnitude 
difference function (AMDF) of the filtered waveform. The 
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AMDF is given by 

130,4 

AMDF(7) = L ls(n)- s(n + 7)1. (51) 
n=1 

The pitch resolution is 1 for values of 7 between 20 and 
39, 2 for 40 ::;; 7 ::;; 78, and 4 for 80 ::;; 7 ::;; 156. Voic­
ing is estimated using energy measurements, zero-crossing 
measurements, and the maximum-to-minimum ratio of the 
AMDF. 

Pitch and voicing are smoothed using a dynamic pro­
gramming algorithm and encoded at 7 bits. The excitation 
signal for voiced speech in the LPC-10 consists of a 
sequence that resembles a sampled glottal pulse. This 
sequence is defined in the standard [77] and periodicity 
is created by a pitch-synchronous pulse-repetition process. 
Gain information is transmitted by encoding a root mean 
square (rms) parameter (obtained from v0 ) at 5 bits per 
frame. The coding of the reflection coefficients depends on 
voicing. For voiced speech segments, ten reflection coeffi­
cients are encoded while for unvoiced segments only four 
reflection coefficients are coded. The first two reflection 
coefficients are encoded as LAR's at 5 bits each. The DRT 
and DAM score for the LPC-10 were found to be 90 and 48, 
respectively, for noiseless speech. The DRT score under the 
presence of typical airborne command post noise was 82. 

An enhanced LPC-10 algorithm, the LPC-1 Oe was pro­
posed in the mid-1980's [31]. This incorporates some of 
the LPC analysis and synthesis enhancements proposed by 
Kang et al. [167]. The DRT score associated with the LPC-
10e is 89.9. Creating better sounding vocoders operating 
at 2400 bits/s is still a challenging problem and the U.S. 
Government is seeking a new and improved algorithm 
[320] to replace the LPC-1 0. In addition, a great deal of 
effort is directed towards developing vocoders operating 
at very-low rates [42], [80], [128], [184], [239], [262], 
[302], [321]. In particular, current research efforts in mili­
tary secure communications are focussed upon developing 
vocoders operating at rates between 400--800 bits/s with 
speech quality comparable to the FS1015 LPC-10. These 
vocoders target applications that require increased tolerance 
to bit errors, low probability of intercept, and narrowband 
voice/data integration by using very-low-rate algorithms 
with existing 2.4-kbit/s channels. Excellent overviews on 
very-low-rate secure military communications are given 
by Kang and Fransen [166], Jaskie and Fette [148], and 
Weinstein [319]. 

b) Mixed excitation models: The development of 
mixed excitation models in LPC was motivated largely 
by voicing errors in the two-state excitation model which 
degrade the speech quality and intelligibility and also by 
the inadequacy of the two-state excitation model in cases 
of voicing transitions (mixed voiced-unvoiced speech) or 
weakly voiced speech. The problem of mixed excitation 
in channel vocoders was examined by Fujimora [89] and 
later studied by Makhoul et al. [ 194] for the case of 
linear predictive coders. Makhoul et al. proposed a mixed 
source model, Fig. 26(a), where the impulse train (buzz) 
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(a) 
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Fig. 26. (a) Mixed excitation model proposed by Makhoul et 
al. [194]. (b) Mixed excitation model proposed by McCree and 
Barnwell [215]. 

LP Analysis LP Synthesis 

Fig. 27. Analysis-synthesis using the prediction residual. 

excites the low-frequency region of the LPC synthesis 
filter and the noise excites the high-frequency region of 
the synthesis filter. The excitation filters and gains are 
chosen such that the overall excitation spectrum is flat. 
The same time-varying cutoff frequency Cfc) is used for 
both excitation shaping filters. This is estimated using a 
peak-picking algorithm that determines the region of the 
spectrum associated with strong periodicity. Makhoul et 
al. reported that mixed excitation lead to reduction of 
buzziness and raspiness (breathiness) in synthetic speech. 

A more elaborate mixed-excitation model was proposed 
by McCree and Barnwell [214], [215]. The excitation 
shaping is done using first -order FIR filters ( H 1 ( z) and 
H 2(z )) with time-varying parameters. The mixed-source 
model also uses (selectively) pulse position jitter for the 
synthesis of weakly periodic or aperiodic voiced speech. 
An adaptive pole-zero spectral enhancer is used to boost 
the formant frequencies. Finally, a dispersion filter is used 
after the LPC synthesis filter to improve the matching of 
natural and synthetic speech away from the formants. 

A 2400-bit/s mixed excitation LPC vocoder was imple­
mented in real time on TMS320C30 DSP series chips. 
The mixed-excitation LPC vocoder achieved a DAM score 
of 58.9 with clean speech and 41 with noisy speech. A 
4800-bit/s implementation was also reported in [215] and 
achieved a DAM score of 61.6 with clean speech and 44 
with noisy speech. 

c) Residual excited linear prediction: From our previ­
ous discussion it is apparent that the linear prediction filter 
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Fig. 28. The RELP vocoder [304]. (a) Transmitter. (b) Receiver. 

acts as a short-term "decorrelator." Therefore (ideally) the 
prediction residual has a relatively fiat power spectrum. The 
residual is the perfect excitation for the all-pole synthesis 
filter, Fig. 27, and a class of linear-predictive vocoders 
[2], [43], [79], [122], [304]. [328] relies on encoding this 
signal efficiently. The residual excitation signal essentially 
carries all the information that has not been captured by 
LP analysis, e.g., phase and pitch information, zeros due 
to nasal sounds, etc. Although the concept of coding the 
prediction residual is also utilized in ADPCM and in 
Adaptive Predictive Coders, RELP is different in that the 
residual encoding is based on spectral rather than waveform 
matching. In addition, RELP coders rely on the fact that 
the low-frequency components of speech are perceptually 
important. 

A RELP vocoder operating between 6 and 9.6 kbits/s 
was proposed in the mid-1970's by Un and Magill [304], 
Fig. 28. This RELP vocoder compresses the bandwidth of 
the residual to 800 Hz thereby coding only the baseband of 
the residual at 5 kbits/s. The residual is down-sampled and 
coded using ADM techniques. At the receiver, the baseband 
residual is processed by a nonlinear spectral flattener whose 
function is to regenerate the high-frequency harmonics. The 
excitation of the synthesis filter is derived by combining 
the flattened residual with an appropriate amount of white 
random noise. 

High-frequency regeneration can also be achieved by 
operating directly on the frequency components of the 
residual. The block diagram of a RELP vocoder which 
encodes the residual in the frequency domain using the 
FFT is shown in Fig. 29. In this system, the FFT of the 
residual is computed and the magnitudes and phases of 
the frequency components within the baseband (typically 
below 1 kHz) are encoded and transmitted. At the receiver 
a pitch-dependent high frequency "copy-up" procedure is 
performed to generate the high-frequency residual [165]. 
Notice that the quantization noise in the coded residual 
is spectrally shaped by the synthesis filter and therefore 
is masked (to a certain extent) by the speech. A RELP 
vocoder that employs long-term prediction and adaptive bit 
allocation was proposed by Fette et al. [79]. This coder 
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(b) 

was also one of the candidates for the 4.8-kbit/s federal 
standard 1016. The DRT score obtained for this RELP was 
91.7 [169]. We also note that a RELP coder that uses VQ 
for the encoding of the residual and LP parameters was 
proposed by Adoul et al. [2]. 

In general, the speech quality of the RELP coder at 
rates above 4.8 kbits/s is higher than the analogous two­
state excited LPC mainly because of the emphasis in the 
coding of the perceptually important residual components. 
The speech quality of RELP coders, however, is also 
limited by the information lost in the residual baseband 
filtering. The analysis-by-synthesis linear predictive coders 
presented in the next section avoid this problem by using 
efficient excitation models which can be optimized both for 
waveform matching and perception. 

V. ANALYSIS-BY-SYNTHESIS LINEAR PREDICTIVE CODERS 

This section describes a class of source-system coders 
in which the system parameters are determined by lin­
ear prediction and the excitation sequence is determined 
by closed-loop or analysis-by-synthesis optimization. The 
optimization process determines an excitation sequence 
which minimizes a measure of the weighted difference 
between the input speech and the coded speech. The 
weighting or filtering function is chosen such that the coder 
is "optimized" for the human ear. The block diagram of a 
typical analysis-by-synthesis coder is shown in Fig. 30. The 
system consists of a short-term LP synthesis filter which 
represents the formant structure of speech, a long-term LP 
synthesis filter which represents the pitch (fine) structure of 
speech, a perceptual weighting filter W ( z) which shapes the 
error such that the quantization noise is masked by the high­
energy formants, and the excitation generator which forms 
or selects an excitation sequence such that the weighted 
Mean Squared Error (MSE) is minimized. The short-term 
predictor is typically updated at rates between 30 to 100 
times per second while the long-term predictor is updated at 
higher rates, typically between 60 to 200 times per second 
[ 179]. Although the analysis-by-synthesis scheme shown 
in Fig. 30 is fairly common, some of the proposed coders 
employ closed-loop configurations without the long-term 
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Fig. 29. The FFf-based RELP vocoder. (a) Transmitter. (b) Receiver. 
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Fig. 30. A typical analysis-by-synthesis linear predictive coder. 
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Fig. 31. Simplified synthesis scheme for the self-excited vocoder 
(SEV). 

predictor, or with the short-term predictor preceding the 
long-term predictor [39]. It must be noted, however, that 
the use of a closed-loop long-term predictor (originally 
proposed in [280]) was a major milestone in speech coding 
and provided a big quality improvement. 

The three most common excitation models for analysis­
by-synthesis linear predictive coding are: the multipulse 
model which was proposed by Atal and Remde [13], the 
regular pulse excitation model proposed by Kroon et al. 
[ 178], and the vector or code excitation model which 
was originally proposed by Atal and Schroeder [272]. The 
excitation model in the Self-Excited Vocoder (SEV), which 
was proposed by Rose and Barnwell [259], [260], also 
received a lot of attention. In the latter, the excitation is 
derived from a feedback loop by including explicitly the 
long-term predictor (LTP) in the excitation model. One of 
the drawbacks of this approach, however, is that it relies 
totally on feedback to form the excitation and hence it is 
sensitive to channel errors. Channel error effects may be 
reduced by resetting the LTP. 

Note that the analysis-by-synthesis linear predictive coder 
is essentially a hybrid coder in the sense that it combines 
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the features of model-based vocoders, by representing the 
formant and the pitch structure of speech, and the properties 
of waveform coders by providing for the matching of 
the input speech waveform. In addition, the properties of 
the human auditory system are exploited by incorporating 
perceptual weighting. In the following, we will describe 
speech coders based on multipulse-excited linear prediction 
(MPLP), regular pulse excitation (RPE), and code-excited 
linear prediction (CELP). In addition, we discuss the hy­
brid algorithms associated with the recent communications 
standards. 

A. Multipulse-Excited Linear Prediction 

The MPLP algorithm forms an excitation sequence which 
consists of multiple nonuniformly spaced pulses, Fig. 32. 
During analysis both the amplitude and locations of the 
pulses are determined (sequentially) one pulse at a time 
such that the weighted mean squared error is minimized. 
The MPLP algorithm typically uses 4-6 pulses every 5 ms. 
The weighted error can be written as 

eM(n) = (s(n)- sM(n)) * w(n) (52) 

where the subscript M stands for multipulse, and w(n) is 
the impulse response corresponding to the transfer function 

W(z) = 1- A(z) 
1- A(zh) 

p 

1- L a;z-i 
i=l 
p 

1 - L 'Yia;z-i 
i=l 

(53) 
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Fig. 32. MPLP analysis. 

The role of the 'I is to de-emphasize the error energy in 
the formant regions. This de-emphasis strategy is based on 
the fact that in the formant regions quantization noise is 
partially masked by speech [16], [271]. 

The parameter {'I, 0 :=:; 'I :=:; 1} affects the bandwidth !:l.f 
of the peaks (poles) of W(z) as follows: 

1 
!:l.f =-1rT ln('l) (Hz). (54) 

A typical value for 'I is 0.8. The original MPLP proposed by 
Atal and Remde [13] considers only the short-term predictor 
and each pulse is obtained by minimizing 

N-l 

EM(k) = L (s(n)- xM(k)h,(n- k)) 2 (55) 
n=O 

where XM(k) is the amplitude of the pulse at location k, 
h1 ( n) is the impulse response associated with the transfer 
function 

H(zh) = 1- ;(zh) (56) 

N is the number of samples per frame, and s( n) is the 
output of the filter with transfer function H(zh) when the 
residual is the input. By setting 

we get 

8EM(k) = O 
8xM(k) 

(57) 

(58) 

where f:sh ( k) is the cross-correlation estimate between s( n) 
and h1 (n), and fhh(O) is an energy estimate of h1 (n). 
Substituting (58) in (55) we get 

EM(k) = ('I:1 

s2 (n)) - (f!h(k))
2

. (59) 
n=O Thh(O) 

The location k is obtained, in a suboptimal but efficient 
manner, by maximizing ((f:sh(k)) 2 /fhh(O)). One pulse is 
computed per iteration and at each iteration s( n) is updated 
by subtracting the pulse determined in the previous cycle 
from the residual. Note that the initial residual is ef ( n) 
and every time a new pulse is determined the residual is 
updated. 
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Fig. 33. MPLP for the 9.6-kbits/s skyphone. 

Excitation coding in the MPLP algorithm is more expen­
sive than in the classical linear predictive vocoder because 
MPLP codes both the amplitudes and the locations of the 
pulses. The MPLP algorithm produced good-quality speech 
at rates as low as 10 kbits/s [ 13], [ 14 7]. One of the problems 
reported with MPLP, however, is that its performance gen­
erally deteriorates with high-pitch speakers. This problem 
was later addressed [280] using pitch prediction (A L( z)) 
which yielded SNR improvements of about 6 to 10 dB. In 
particular, an SNR of 17 dB was reported at 10 kbits/s. 
Finally, we note that a 9.6-kbit/s MPLP algorithm is used 
in Skyphone airline applications [25]. 

1) The 9.6-kbit/s MPLP for the Skyphone Service: British 
Telecom International (BTl) introduced an aeronautical 
telephone service, known as Skyphone, to accommodate 
passenger conversations and also provide additional com­
munication capabilities between airlines and their aircraft. 
The service relies on digital transmission between aircraft 
and the BTl international exchanges and requires a speech 
coder in order to utilize the limited satellite power effi­
ciently. The speech coder selected for this application is 
based on a 9.6-kbit/s MPLP algorithm developed by British 
Telecom Research Laboratories. 

The MPLP algorithm for the Skyphone includes both 
short- and long-term prediction, Fig. 33. The parameters for 
the lOth-order short-term predictor are obtained using the 
autocorrelation method and the Levinson-Durbin recursion. 
The analysis window is formed using a 32-ms Hamming 
window and the prediction parameters are updated every 
20 ms. The short-term prediction parameters are coded in 
an ordered manner as inverse sine coefficients. 

The long-term prediction parameters are determined from 
the short-term prediction residual using an open-loop con­
figuration. The prediction residual ef (n) is formed by 
filtering speech using the inverse filter (1 - A(z)). The 
long-term prediction (LTP) synthesis equation is given by 

The LTP lag T is determined by finding the maximum 
of the autocorrelation sequence ( 1~ee ( rn)) of the prediction 
residual. The autocorrelation sequence is searched for 64 
possible values (6 bits). The LTP gain ar is determined 
using the expression 

(61) 
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Fig. 34. RPE analysis. 

and is coded using a nonlinear quantizer. The pulse loca­
tions and amplitudes of the MPLP are determined using 
(58) and (59) and the minimization procedure described in 
Section V-A. The impulse response, in this case, is the 
combined impulse response of the short- and the long­
term predictors with "'( = 1 (i.e., no perceptual weighting, 
W(z) = 1) . 

The Skyphone MPLP algorithm was implemented on an 
AT&T WE DSP32C signal processor and consumed about 
75% of the available processing. Listening tests revealed 
an average MOS (for noiseless speech) of about 3.4 and a 
one-way delay that is less than 40 ms. Additional tests have 
shown that the coder is capable of passing DTMF signaling 
tones and low-rate modem data. 

B. Regular Pulse Excitation Coders 

RPE coders [178] also employ an excitation sequence 
which consists of multiple pulses. The basic difference of 
the RPE algorithm from the MPLP algorithm is that the 
pulses in the RPE coder are uniformly spaced and therefore 
their positions are determined by specifying the location k 
of the first pulse within the frame and the spacing between 
nonzero pulses. A typical spacing factor for RPE is 3 to 
4 and the location of the first pulse is generally updated 
every 5 ms. The number of pulses in RPE is typically 
between I 0 and 13 per 5-ms segment and their amplitudes 
are determined by solving a set of linear equations. Note 
that pulse spacing does not need to be coded since the 
number of pulses per frame is usually fixed. 

The analysis-by-synthesis optimization in RPE algo­
rithms considers an inverse filtering scheme where the 
residual is formed by exciting the short-term prediction 
filter (1 - A(z)) with the input speech. The residual is 
then represented by a regular pulse sequence which is 
determined by weighted error minimization, Fig. 34. 

The minimization process can be described compactly 
using vector notation. For an N -sample speech frame the 
excitation vector corresponding to the kth N x 1 excitation 
vector, xn(k), is written as 

xn(k) = M(k)xn(k) (62) 

where the subscript n stands for regular pulse, x n ( k) is a 
J x 1 vector containing the amplitudes of the J ( J < N) 
nonzero pulses of the kth excitation vector, and M(k) is 
an N x J location matrix which consists of ones or zeros 
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and signifies the location of the J nonzero pulses in the 
kth excitation vector. The N x 1 vector of excitation errors 
can be written as 

en(k) = e0 + He1 - HM(k)xn(k) (63) 

where eo is the N x 1 vector containing the output of 
H ( z j "Y) due to the initial filter state, ef is the N x 1 vector 
containing the original prediction residual, and H is the 
N x N matrix that contains the impulse response samples 
corresponding to H(zh), i.e., 

H= 

0 
0 
0 

The minimization of 

(65) 

with respect to the vector x n ( k) gives 

N 
k = 1,2,··· ,-

] 

(66) 

where H(k) = HM(k) and ef = e0 + Hef. Substituting 
(66) in (65) we obtain an expression for En(k) which is a 
function of x R ( k). The x n ( k) that minimizes En ( k) over 
all k is the one selected. 

Although the number of computations required for the 
selection of an excitation sequence seems to be fairly large, 
the matrices involved are quite structured and therefore 
computational complexity can be reduced considerably. In 
addition, under certain assumptions matrix inversion can be 
avoided [ 178] and the minimization problem can be written 
as 

min { En(k)} ~max {x~(k )xn(k )}. (67) 

Equation (67) simplifies the minimization problem a great 
deal and it has been shown [178] that the loss of per­
formance is perceptually insignificant. The RPE selection 
process presented above included only the short-term pre­
dictor. The RPE coder that uses a one-tap pitch predictor 
was also described in [178] and was shown to improve 
significantly the performance of the RPE coder, particularly 
for female (high-pitch) speakers. The pitch synthesis filter is 
driven by the input xn(n) and its output x 7 (n) is given by 

x 7 (n) = xn(n) + a7 X7 (n- T). (68) 

For zero input { x n ( n), n ;::: 0} the prediction gain aT and 
the pitch period T are determined in a closed-loop manner 
by minimizing 
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Fig. 35. The RPE-LTP scheme of the GSM standard. 

where the subscript L stands for long-term prediction, and 
xr(n) represents the output of H(zh) due to the input 
xr(n). The minimization approach consists of finding aT 
for all possible { T, 16 ~ T ~ 80} and then selecting the 
prediction gain and the pitch period for which E£( T, aT) is 
minimal. Searches for T between the range 20 to 147 (7 
bits) have also been suggested [179]. 

Modified RPE coders have been proposed by Kang and 
Fischer [168]. In particular, Kang and Fischer proposed two 
new coding schemes for the excitation sequence in RPE 
coders, namely, a Pyramid Vector Quantizer (PVQ) [81] 
and a Trellis Coded Quantizer (TCQ) [ 197]. Improvements 
in terms of SEGSNR of the order of 1 dB were reported 
for the PVQ and 1.3 dB for the TCQ. 

1) The GSM RPE-LTP: A sophisticated 13-kbit/s coding 
scheme that uses RPE and LTP was adopted for the full-rate 
GSM Pan-European digital mobile standard. The RPE­
LTP algorithm [307], Fig. 35, is briefly described in the 
following. Speech is sampled at 8 kHz and quantized at 
13 bits/sample. The RPE-LTP processes speech in 20-ms 
frames (160 samples) which are in tum segmented into 
subframes of 5 ms. The preprocessing stage in RPE-LTP 
involves pre-emphasis and DC offset compensation. The 
second stage involves an eighth-order short-term prediction 
analysis which is performed every 20 ms. In order to 
allow for efficient quantization, the prediction parameters 
are encoded as LAR's. The eight LAR's are quantized 
in an ordered manner, i.e., the number of bits allotted 
from LAR(J) to LAR(8) are {6/6/5/5/4/4/3/3}. After 
decoding, subframe LAR's are generated by interpolating 
(linearly) LAR's from one frame to the next. The subframe 
LAR's are converted back to reflection coefficients which 
are used to generate the prediction residual. The lag and 
gain parameters of the LTP are computed in every subframe 
and encoded at 7 and 2 bits, respectively. The LTP operates 
on the LP residual and generates the LTP residual which is 
then filtered by a block FIR weighting filter. The filtered 
LTP residual is then downsampled by a ratio of three. Four 
13-sample subsequences are formed per subframe and the 
subsequence with the maximum energy is quantized using 
block-adaptive PCM. 

The RPE-LTP algorithm described above can also be 
viewed as a generalization of the decimation process in 
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baseband RELP coders. The performance of the GSM 
codec in terms of MOS's was reported to be between 3.47 
(min) and 3.9 (max) and its complexity is 5 to 6 MIPS. 
More details on the algorithm can be found in the ETSI 
standard [119] and information on the testing procedures 
for the selection of the algorithm is given in [307]. In 
addition, some of the issues associated with the real-time 
implementation of the speech and the channel coder for the 
GSM are examined in [289] and [290]. 

C. Code Excited Linear Prediction 

The two analysis-by-synthesis multipulse excitation 
schemes described in the previous Sections (V-A and -B) 
achieve high-quality speech at medium rates. For low-rate 
high-quality speech coding a more efficient representation 
of the excitation sequence is required. This problem 
was addressed in a paper by Atal [7] in which it was 
suggested that high-quality speech at low rates may be 
produced by using noninstantaneous (delayed-decision) 
coding of Gaussian excitation sequences in conjunction 
with analysis-by-synthesis linear prediction and perceptual 
weighting. A novel vector excitation scheme for analysis­
by-synthesis linear predictive coding was proposed in the 
mid-1980's by Atal and Schroeder [17], [272]. The vector 
or code-excited linear prediction (CELP) algorithm, Fig. 
36, produced low-rate coded speech comparable to that 
of medium-rate waveform coders thereby bridging the 
gap between waveform coders and vocoders. The CELP 
algorithm encodes the excitation using a codebook of 
Gaussian sequences. The codebook used in [272] contains 
1024 vectors and each vector is 40 samples (5 ms) long. A 
gain factor scales the excitation vector and the excitation 
samples are filtered by the long- and short-term synthesis 
filters. The "optimum" vector is selected such that the 
perceptually weighted MSE is minimized. 

The search process in CELP can be explained by consid­
ering the analysis-by-synthesis scheme shown in Fig. 36. 
Notice that in order to facilitate the analysis that follows, 
the perceptual weighting is applied directly on the input 
and synthetic speech. The N x 1 error vector in this case 
is written as 

(70) 
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Fig. 36. Analysis-by-synthesis CELP. 

where the subscript c stands for CELP, sw is the N x 1 
vector that contains the filtered speech samples, s~ is the 
vector that contains the output due to the initial filter state, 
sw ( k) is the filtered synthetic speech vector, and gk is the 
gain factor. Minimizing 

ec(k) = e~(k)ec(k) 
with respect to gk we get 

where Sw 

written as 

s~sw(k) 
gk = s~(k)sw(k) (71) 

Sw - s~,- Considering (71), ec(k) can be 

(k) _ -T- _ (s~sw(k)? 
fC - SwSw ,T , . (72) 

sw(k)sw(k) 

The kth excitation vector, xc(k), that minimizes (72) is 
selected and its gain is obtained from (71). 

Although long-term prediction parameters can be deter­
mined using an open-loop configuration, the closed-loop 
approach yields by far superior speech quality. In the 
closed-loop lag ( T) search the LTP parameters ar and T are 
determined before the stochastic excitation parameters. The 
range of values for T are typically within the integers 20 to 
147. The search for an integer lag in CELP is generally 
similar to that described in Section V-B (see [179] for 
details). Note that if the pitch period is larger than the 
subframe length, then LTP filtering can be interpreted as 
an adaptive codebook (a terminology introduced in [171]). 
Other issues associated with LTP were examined by Ra­
machandran and Kabal [254], [255], Kroon and Atal [176], 
and Shoham [276]. Ramachandran and Kabal examined the 
LTP parameter estimation problem [255] and the issues 
associated with the stability [254] of the pitch prediction 
filter. Kroon and Atal proposed an efficient pitch predictor 
with subsample resolution (i.e., noninteger lags) which 
was shown to achieve similar or better performance than 
higher order integer-delay predictors. In addition, Shoham 
examined the efficiency of the LTP and the relationship 
between the prediction gain and the gain of the stochastic 
excitation. Shoham argued that the gain of the stochastic 
excitation must be constrained because it often contributes 
noise components that cannot be removed by the synthesis 
filters. The constrained excitation algorithm proposed by 
Shoham was shown to perform better than the conventional 
CELP algorithm at the same rate. 
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Speech quality in CELP coders can be enhanced by 
applying post-filtering on the speech sequence. Post-filters 
[256] are used to emphasize the formant and the pitch 
structure of speech and a typical post-filtering configuration 
consists of a cascade of long- and short-term weighting 
filters with appropriate gains and bandwidth expansion 
parameters ( 1). 

One of the disadvantages of the original CELP algo­
rithm is the large computational effort required for the 
codebook search. In fact, many of the CELP algorithms 
require processors capable of executing more than 20 MIPS 
and codebook storage of the order of 40 kbytes. This 
problem motivated a great deal of work focussed upon 
developing structured codebooks [4], [60], [100], [170] and 
fast search procedures [300]. In particular, Davidson and 
Gersho [60] proposed sparse codebooks and Kleijn et al. 
[ 170] proposed a fast algorithm for searching stochastic 
codebooks with overlapping vectors. In addition, Gerson 
and Jasiuk [100], [101] proposed a vector sum excited linear 
predictive coder which is associated with fast codebook 
search and robustness to channel errors. The vector sum 
scheme will be discussed in more detail in Section V­
C2. Other implementation issues associated with CELP 
include the quantization of the CELP parameters, the effects 
of channel errors on CELP coders, and the operation of 
the algorithm on finite-precision and fixed-point machines. 
A study on the effects of parameter quantization on the 
performance of CELP was presented in [ 176], and the issues 
associated with the channel coding of the CELP parameters 
were discussed by Kleijn in [172]. Some of the problems 
associated with the fixed-point implementation of CELP 
algorithms were presented in [287]. 

CELP coding achieves communications quality at 8 
kbits/s and significant progress has been made towards 
achieving high quality at 4 kbits/s for the half-rate North 
American Cellular Telephone Standard. Several papers have 
appeared in the literature suggesting new techniques and 
strategies aimed at producing high-quality CELP coders 
operating below 4.8 kbits/s. Many approaches concentrated 
on dynamic bit allocation among the excitation and the LP 
parameters. Taniguchi et al. [298] proposed a multimode 
coding scheme in which the speech parameters are coded 
using several coders with different bit allocations and 
the optimum coder is selected by minimizing a fidelity 
criterion. Similar ideas were proposed independently by 
Yong and Gersho [325] and Jayant and Chen [151]. 
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Taniguchi et at. [298] reported SEGSNR improvements 
of the order of 2 dB. A novel method for dynamic coding 
of the CELP parameters, based on phonetic segmentation, 
was proposed by Wang and Gersho [315]. This is called 
phonetically segmented vector excitation coder (PS­
VXC) and classifies speech into three general phonetic 
categories, namely, voiced, unvoiced, and onset (rapid 
transitions from unvoiced to voiced). The voiced category 
is further divided into four subcategories, namely, full-band 
steady-state, full-band transient, low-pass steady-state, and 
low-pass transient. The PS-VXC partitions input speech 
into contiguous segments and each segment contains an 
integer number of frames. Each segment is phonetically 
classified into one of the six categories and each frame is 
coded by a coder which has been tailored for a specific 
phonetic category. The coding strategy in PS-VXC not 
only controls the bit allocation for each category but it also 
determines the frame size, LP order, the LTP (on/off), etc. 
Speech coded with a 3.6-kbit/s PS-VXC was reported to 
be comparable to that of the conventional 4.8-kbit/s CELP 
coder. 

Kleijn et al. promoted [173] interpolative coding strate­
gies as a means for reducing further the bit rate in analysis­
by-synthesis linear predictive coders. The basic idea is 
to allow interpolation not only of short-term prediction 
parameters, which is customary in CELP coders, but also 
in excitation parameters such as the LTP parameters. For 
example, in CELP the LTP lag ( T) is updated every sub­
frame. Since the pitch period in natural speech varies slowly 
it would seem that an intelligent interpolation scheme on 
the LTP lag may lead to coding efficiencies. Although 
interpolative coding approaches lead to coding gains they 
are associated with some loss of waveform matching. The 
notion of relaxing the strict requirements for matching the 
original speech waveform was exploited in an approach 
called generalized analysis-by-synthesis [174]. In gener­
alized analysis-by-synthesis instead of using the original 
speech signal as a reference for waveform matching, the 
performance of the speech coder is evaluated over a mul­
titude of modified speech waveforms that are perceptually 
similar to the original signal. The modified speech wave­
form that yields the best coding gain is selected and the 
parameters corresponding to this signal are transmitted. The 
potential for improved coding gain lies in using a set of 
model parameters, such as interpolated LTP parameters, 
to match the modified speech waveform. In that sense, 
generalized analysis-by-synthesis bridges the gap between 
waveform matching and interpolative coding. A 5.85-kbit/s 
relaxation CELP (RCELP) algorithm that is based on the 
concept of generalized analysis-by-synthesis was proposed 
in [175]. RCELP was implemented real-time on a single 
AT&T DSP32 chip and MOS tests revealed that RCELP 
coded speech was very similar to that of the 13-kbit/s GSM 
algorithm. 

To summarize, CELP essentially broke the 9600-bit/s 
"barrier" which was considered for years as the lower 
boundary for communications quality speech. There are 
at least four CELP type of algorithms that are part of 
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Fig. 37. FS1016 CELP synthesis. 

national and international communications standards. In the 
following, we describe briefly three CELP algorithms that 
have been standardized. 

1) The Federal Standard 1016 CELP: A 4.8-kbit/s CELP 
algorithm [9], [30] has been adopted by the Department 
of Defense for possible use in the third-generation secure 
telephone unit (STU-III). This algorithm is described in 
the Federal Standard 1016 [78] (FS1016) and was jointly 
developed by the DOD and AT&T Bell Labs. The candidate 
algorithms and the selection process for the standard are 
described in [169]. The synthesis configuration for the 
FS1016 CELP is shown in Fig. 37. Speech in the FS1016 
CELP is sampled at 8 kHz and segmented in frames of 30 
ms. Each frame is segmented in subframes of 7.5 ms. The 
excitation in this CELP is formed by combining vectors 
from an adaptive and a stochastic codebook with gains 
ga and g8 , respectively (gain-shape VQ). The excitation 
vectors are selected in every subframe by minimizing the 
perceptually weighted error measure. The codebooks are 
searched sequentially starting with the adaptive codebook. 
The term "adaptive codebook" is used because the LTP lag 
search can be viewed as an adaptive codebook search where 
the codebook is defined by previous excitation sequences 
(LTP state) and the lag T determines the specific vector. The 
adaptive codebook contains the history of past excitation 
signals and the LTP lag search is carried over 128 integer 
(20 to 147) and 128 noninteger delays. A subset of lags 
is searched in even subframes to reduce the computational 
complexity. The stochastic codebook contains 512 sparse 
and overlapping code vectors [ 170]. Each code vector 
consists of 60 samples and each sample is ternary valued 
(1,0, -1) [182] to allow for fast convolution. 

Ten short-term prediction parameters are encoded as 
LSP's on a frame-by-frame basis. Subframe LSP's are 
obtained by applying linear interpolation of frame LSP's. 
A short-term pole-zero postfilter (similar to that proposed 
in [ 40] is also part of the standard. 

The details on the bit allocations are given in the standard. 
The computational complexity of the FS1016 CELP was 
estimated at 16 MIPS (for partially searched codebooks) 
and the DRT and MOS scores were reported to be 91.5 and 
3.2, respectively. 

2) Vector-Sum Excited Linear Prediction (VSELP): The 
Vector-Sum Excited Linear Prediction (VSELP) algorithm 
was proposed by Gerson and Jasiuk [100] for use in digital 
cellular and mobile communications. An 8-kbit/s VSELP 

1573 

Page 33 of 44



VQ..11ndex I 

~ ~Index~ ' 

Fig. 38. VSELP synthesis [100]. 

algorithm was adopted for the North American Digital 
Cellular System. The 8-kbit/s VSELP algorithm uses highly 
structured codebooks which are tailored for reduced com­
putational complexity and increased robustness to channel 
errors. The VSELP excitation is derived by combining 
excitation vectors from three codebooks, namely, a pitch­
adaptive codebook and two highly structured stochastic 
codebooks, Fig. 38. 

Speech sampled at 8 kHz is first pre-processed using 
a fourth-order high-pass Chebyshev filter. The frame in 
the VSELP algorithm is 20 ms long and each frame is 
divided into four 5-ms subframes. A lOth-order short-term 
synthesis filter is used and its coefficients are encoded as 
reflection coefficients once per frame with bit allocation 
{6/5/5/4/4/3/3/3/3/2}. Subframe LPC parameters are 
obtained through linear interpolation. The excitation pa­
rameters are updated every 5 ms. The excitation is coded 
using gain-shape vector quantizers. The codebooks are 
searched sequentially and the codevectors are determined 
using closed-loop perceptually weighted MSE minimiza­
tion. The long-term prediction lag (adaptive codebook) 
is searched first; assuming no input from the stochastic 
codebooks. The adaptive codebook is fully searched for 
lags of 20 to 146 (127 codes) and the 128th code for T 

is used to indicate that the LTP is not used. The 128 40-
sample vectors in each stochastic codebook are formed by 
linearly combining seven basis vectors b1 ( k, m ), i.e., 

7 

Xv1 (k,i) = L B;,mbl(k,m). (73) 
m=l 

The coefficients Bi,m are allowed to take the values of one 
or minus one. The value of Bi,m is 1 if the mth bit of 
the codeword is 1, or -1 if the mth bit of the codeword 
is 0. Note also that for every code vector its negative is 
also a code vector. Clearly, the effect of changing one 
bit in the codeword, possibly due to a channel error, is 
not catastrophic since the code vectors corresponding to 
adjacent (gray-code-wise) codewords are different only by 
one basis vector. The search of the codebook is also greatly 
simplified since the response of the short-term synthesis 
filter, to code vectors from the stochastic codebook, can 
be formed by combining filtered basis vectors. In addition, 
the codebook structure lends itself to an efficient recursive 
search process. 
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The sequential search of the codebooks also incorporates 
an orthogonalization process in which the filtered basis vec­
tors of the first stochastic codebook are made orthogonal to 
the filtered LTP vector. Similarly, the filtered basis vectors 
of the second stochastic codebook are made orthogonal 
to the previous set of filtered vectors. The orthogonal­
ization essentially relies on a Gram-Schmidt approach 
[294]. The codebook gains, which are also determined 
from this process, are parameterized and jointly quantized 
using a vector quantizer. The implementation details of the 
algorithm, including codebook information, post-filtering, 
etc., are presented in the IS-54 standard [70]. Fixed-point 
implementations of VSELP were reported in [287] and 
[295]. The complexity of the 8-kbit/s VSELP was reported 
to be more than 13.5 MIPS (typical 20 MIPS) and the 
MOS's reported were 3.45 (low) and 3.9 (high). 

Improvements on VSELP, in terms of complexity, were 
reported in [101]. In particular, it was shown that the 
computational effort in the lag search can be significantly 
reduced by using a two-step estimation process. In the first 
step an initial estimate of the lag is obtained by searching 
the autocorrelation sequence. The final estimate is obtained 
by carrying a constrained closed-loop search around the 
neighborhood of the initial estimate. 

VSELP algorithms operating at lower rates have also 
been proposed. In fact, a 6.7-kbit/s VSELP algorithm [102], 
[103] was adopted for the Japanese digital cellular standard 
and VSELP algorithms are candidates for the half-rate 
North American and the GSM cellular standards. 

3) The 16-kbit/s Low-Delay CELP: One of the problems 
in speech compression methods which utilize delayed­
decision coders is that coding gain is achieved at the 
expense of coding delay. The one-way delay is basically 
the time elapsed from the instant a speech sample arrived 
at the encoder to the instant that this sample appears at the 
output of the decoder [38]. This definition of one-way delay 
does not include channel- or modem-related delays. The 
delay is basically attributed to data buffering, processing, 
and generation of coding bits (channel symbols). Roughly 
speaking, the one-way delay is generally between two and 
four frames. For example, a typical CELP algorithm with 
20-ms frames is associated with a delay of about 60 ms [38]. 
Fast processing and encoders that transmit coding bits as 
they become available (on the fly) can reduce this delay. 

In 1988, CCITT launched an investigation on low-delay 
speech coding algorithms operating at 16 kbits/s for pos­
sible standardization as a G. series recommendation for 
universal applications. This standardization effort motivated 
a great deal of research [38], [58], [64], [107], [146], [198], 
[299] on low-delay coding. Of all the available coders the 
low-delay CELP (LD-CELP) coder, proposed by Chen et 
al. [38], was selected [35], Fig. 39. 

The low-delay CELP coder achieves low one-way de­
lay by: a) using a backward-adaptive predictor, and b) 
short-excitation vectors (5 samples). In backward-adaptive 
prediction, the LP parameters are determined by operating 
on previously quantized speech samples which are also 
available at the decoder. The LD-CELP algorithm does not 

PROCEEDINGS OF THE IEEE, VOL. 82, NO. 10, OCTOBER 1994 

Page 34 of 44



s(n) ,, rL} 
+ T(z),O- __ _/ 

p=SO / _l__ 
Backward LP I 

p=10 Analys1s 

~ 

(a) 

(b) 

Fig. 39. (a) Low-delay CELP (G.728) encoder [38]. (b) 
Low-delay CELP (G.728) decoder [38]. 

utilize LTP. Instead, the order of the short-term predictor is 
increased to fifty (p = 50) to compensate for the lack of 
a pitch loop. The autocorrelation analysis for LP is based 
on a novel hybrid window which consists of recursive and 
nonrecursive portions. The hybrid window is described in 
[38] and allows for efficient computation of the autocor­
relation sequence using single-precision integer arithmetic. 
The frame-size in LD-CELP is 2.5 ms and the subframes are 
0.625 ms long. The parameters of the 50th-order predictor 
are updated every 2.5 ms. The LD-CELP uses gain-shape 
VQ for the excitation. The codebook consists of a 3-bit gain 
and 7-bit shape codebooks. A backward-adaptive excitation 
gain is also used. The gain information is obtained from 
previously quantized excitation using a lOth-order predictor 
which operates on logarithmic gains. The gain is updated 
for every vector (0.625 ms) and the coefficients of the log­
gain predictor are updated every 2.5 ms. The perceptual 
weighting filter is based on lOth-order LP operating directly 
on unquantized speech and is updated every 2.5 ms. The 
transfer function of the weighting filter is more general than 
the one introduced (see (53)) for conventional analysis-by­
synthesis linear predictive coders, i.e., 

W(z) = 1- A(zhl) 
1- A(zh2 )' 

0 < 'Y2 < 'Yl ::::: 1. (74) 

Improvements in the perceptual quality were realized for 
'Yl = 0.9 and 'Yz = 0.6. In order to limit the buffering delay 
in LD-CELP only 0.625 ms of speech data are buffered at 
a time. Finally, the LD-CELP utilizes adaptive short- and 
long-term postfilters to emphasize the pitch and formant 
structures of speech. The single-tap long-term postfilter 
requires knowledge of the pitch which is estimated at the 
decoder from the decoded speech. The short-term postfilter 
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is of the form 

1- A(zh1 ) _ 1 Hp(z) = A( / ) (1 + b1z ). (75) 
1 - z 'Y2 

The lOth-order rational polynomial emphasizes the formant 
structure of speech while the first-order all-zero term com­
pensates for the spectral tilt. The parameters of the rational 
polynomial are obtained as a by-product of the 50th-order 
recursive analysis process. These parameters are updated 
every 2.5 ms. The parameters 'Yl, 'Yz ,, f-l as well as the LTP 
parameters were tuned to satisfy the requirements of the 
standard and their values are given in [38]. 

A two-phase testing procedure for the standardization of 
the LD-CELP was completed in 1991. CCITT required that 
the selected coder has a coding delay of less than 5 ms and 
speech quality that is not worse than the 0.721 32-kbit/s 
ADPCM coder. In addition, it was required that the selected 
coder is capable of transmitting signaling information such 
as DTMF tones. The one-way delay of the LD-CELP is 
less than 2 ms and MOS's as high as 3.93 and 4.1 were 
obtained. The speech quality of the LD-CELP was judged 
to be equivalent or better than the 0.721 standard even 
after three asynchronous tandem encodings. The coder was 
also shown to be capable of handling voice-band modem 
signals at rates as high as 2400 Bd (provided that perceptual 
weighting is not used). The coder was implemented on the 
AT&T DSP32C processor and the complexity and memory 
requirements were found to be: 10.6 MIPS and 12.4 kbytes 
for the encoder and 8.06 MIPS and 13.8 kbytes for the 
decoder. More details on the performance of the LD-CELP 
and the standardization process are given in [38] which is 
the source of the information presented in this section. 

VI. CONCLUDING REMARKS 

A. Summary 

Speech coding has enjoyed a very successful period 
during the past decade. Advances in analysis-by-synthesis 
linear predictive coding and in transform coding provided a 
new generation of coders capable of producing communica­
tions quality speech at rates at and below 8 kbits/s. Several 
types of medium- and low-rate analysis-by-synthesis linear 
predictive coders have been adopted in national and in­
ternational telephony standards. Similarly, low-rate speech­
specific transform-based coders, such as the IMBE coder 
and the sinusoidal transform coder, were standardized or are 
strong candidates for standards under development. Table 
2 summarizes the performance and complexity of several 
well-known algorithms. We note that the performance is 
given in terms of Mean Opinion, DRT, and DAM scores, 
which were obtained from individual subjective tests (re­
ported in the references cited in the table) and not from 
exhaustive comparative tests. Given that MOS tests may 
vary by as much as 0.4 from one test to another (DAM 
scores have a similar problem), the differences in these 
scores do not always constitute an absolute measure for 
comparison. Similarly, the complexity figures, which are 
expressed in terms of the number of MIPS, were obtained 
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Table 2 Performance and Complexity of Selected Algorithms 

Algorithm Bit Rate MOS/DRT/DAM MIPS* References 
(bits/s) 

PCM (G.711) 64k 4.3/95/73 0.01 [150], [152] 

ADPCM (G.721) 32k 4.1194/68 ~2 [22], [32]. [150] 

LD-CELP (G.728) 16k 4.0+!-1- ~19 [35]. [38] 

RPE-LTP (GSM) 13k 3.47+ /-/- 6 [119], [307] 

Skyphone-MPLP 9.6k 3.4/-/- II [25] 

VSELP-(IS-54) 8k 3.45+ 1-1- 13.5 [70], [100] 

CELP (FS1016) 4.8k 3.2/93.7/62.2 16 [30], [78] 

STC-1 4.8k 3.52/92.7/63 13 [210], [212]. [213] 

IMBE 4.1k 3.4/-/- [26]. [121], [141] 

STC-2 2.4k 2.9/90.1/56 13 [210], [212]. [213] 

LPC-10e (FS 1015) 2.4k 2.3/89.9/52.3 ~7 [77], [301] 

LPC-LSP 800 -/91.2/- ~ 20 [166] 

~estimated 

+ low score reported 
* processor-dependent 

Note: The above complexity and performance figures were obtained from different sources and correspond 
to different implementation platforms and test environments. Therefore, the performance and complexity 
figures do not always constitute an absolute measure for comparison. 

from different sources and are processor-dependent. There­
fore, the number of MIPS reported for an implementation 
on a floating-point signal processor could increase by a 
factor of two or three when implementation is attempted on 
a fixed-point processor. In addition, in some of the real-time 
CELP implementations codebook searches are restricted at 
the expense of speech quality. 

B. Current and Future Research 

Digital cellular standards that use 13-, 8-, and 6.7-
kbit/s speech coding algorithms were established and sig­
nificant progress has been made in getting high-quality 
speech coders for the future half-rate standards. In addition, 
high-quality low-delay coding at 16 kbits/s has also been 
achieved but low-delay coding at lower rates is still a 
challenging problem. Current research is now focussed 
upon achieving high-quality speech at and below 4.0 kbits/s. 
Improving the performance of low-rate coders operating 
in noisy channels is also an open problem. Additionally, 
there is a demand for robust low-rate coders that will 
accommodate signals other than speech such as music. 
Finally, military-oriented coding research is geared towards 
obtaining improved 2.4-kbit/s coders, and also very-low­
rate coders for applications that require increased tolerance 
to channel errors and low probability of intercept. 

Although some opportunities to reduce the bit rate lie in 
efficient parameter quantization techniques [233], [323] and 
new signal analysis methods, such as nonlinear prediction 
[97], [317], multiresolution time-frequency representation 

1576 

(wavelets) [308], and higher order statistics [158], [226], 
most of the work still concentrates on exploiting further 
the perceptual properties of the ear. Improvements in low­
rate speech coding are likely to come by optimizing further 
the speech coder to the "human receiver." This will require 
better understanding of the properties of the human auditory 
system and also development of automatic subjective tests. 
An excellent article on opportunities for future research 
in speech coding, by exploiting human perception, was 
published recently by Jayant [157]. 

From the implementation standpoint, high-quality speech 
at lower information rates will come at the expense of in­
creased algorithmic complexity. Although the development 
of faster and highly integrated signal processing devices 
may partially solve this problem, low complexity and low 
sensitivity to machine precision will still be important for 
low-power single-chip implementations. 
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Prolog to 

Speech Coding: A Tutorial Review 
A tutorial introduction to the paper by Spanias 

If the subtle sounds of human speech are to travel 
the information highways of the future, digitized speech 
will have to be more efficiently transmitted and stored. 
Designers of cellular communications systems, wireless 
personal computer networks, and multimedia systems are 
all searching for improved techniques for handling speech. 

Since its awkward beginnings in the 1930's, speech 
coding has developed to become an essential feature of ev­
eryday telephone system operations. Speech coding is now 
finding applications in cellular communications, computer 
systems, automation, military communications, biomedical 
systems, and almost everywhere that digital communication 
takes hold. 

Speech coding involves sampling and amplitude quanti­
zation of the speech signal. The aim is to use a minimum 
number of bits, while preserving the quality of the recon­
structed speech at the receiving end. Coding research is now 
taking aim at low-rate (8 to 2.4 kbits/s) and very-low-rate 
(below 2.4 kbits/s) techniques. 

The entire gamut of speech coding research is covered in 
this paper. An extensive list of references gives the reader 
access to the speech coding literature. The paper has tutorial 
information to orient applications engineers, and it nicely 
summarizes coder developments for research experts. 

The meaning of the words we speak often changes with 
the smallest inflection of our voices, so better speech quality 
is an essential goal for coding research. The paper lays out 
the quality levels of reconstructed speech, ranging from 
the highest quality broadcast, wide-band speech produced 
by coders at 64 kbits/s, to the lowest quality, synthetic 
speech, currently produced by coders that operate well 
below 4 kbits/s. A section on speech quality points out 
that subjective testing can be lengthy and costly. Speech 
quality has been gauged by objective measures, beginning 
with the signal-to-noise ratio, but these measures do not 
account for human perception. 

The bulk of this paper is devoted to explaining and 
reviewing a wide variety of speech coders. First of all, 
the paper discusses waveform coders. Waveform coders, as 
opposed to vocoders, compress speech waveforms without 
making use of the underlying speech models. 

Scalar quantization techniques include familiar classical 
methods such as pulse-code modulation (PCM), differential 
PCM, and delta modulation. 

Vector quantization techniques make use of codebooks 
that reside in both the transmitter and receiver. The paper 
attributes much of the progress recently achieved in low­
rate speech coding to the introduction of vector quantization 
techniques in linear predictive coding. Highly structured 
codebooks allow significant reduction in the complexity of 
high-dimensional vector quantization. 

Sub-band and transform coders rely on transform-domain 
representations of the voice signal. In sub-band coders, 
these representations are obtained through filter banks. Sub­
band encoding is used in medium-rate coding. Fourier 
transform coders obtain frequency-domain representations 
by using unitary transforms. Perhaps the most successful of 
the early transform coders is the adaptive transform coder 
was developed at Bell Laboratories. 

The paper describes analysis-synthes~ methods that use 
the short-time Fourier transform, and also various methods 
that use sinusoidal representations of speech. Multiple 
sine waves have been successfully used in many different 
speech coding systems. For example, one sinusoidal analy­
sis-synthesis system performed very well with a variety of 
signals, including those from multiple speakers, music, and 
biological sounds, and this system also performed well in 
the presence of background noise. Sinusoidal coders have 
been used for low-rate speech coding, and have produced 
high-quality speech in the presence of background noise. 
Another coder that belongs to this class is the multiband ex­
citation coder which recently became part of the Australian 
mobile satellite and International Mobile Satellite standards. 

Since 1939, vocoder systems have tried to produce in­
telligible human speech without necessarily matching the 
speech waveform. Initially, simple models were used to 
produce low-rate coding. The result was synthetic, buzzy­
sounding reconstructed speech. More recently, sophisticated 
vocoders have provided improved quality at the cost of 
increased complexity. The paper briefly describes channel 
and formant vocoders, and the homomorphic vocoder, but 
focuses mostly on linear predictive vocoders. 
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Linear predictive coders use algorithms to predict the 
present speech sample from past samples of speech. Usually 
8 to 14 linear predictive parameters are required to model 
the human vocal tract. The analysis window is typically 
20-30 ms long and parameters are generally updated every 
10-30 ms. Real-time predictive coders were first demon­
strated in the early 1970's. The paper describes a linear 
predictive coding algorithm that has become a U.S. federal 
standard for secure communications at 2.4 kbits/s. The U.S. 
Government is currently seeking an improved algorithm to 
replace that standard. 

In analysis-by-synthesis methods, the reconstructed and 
original speech are compared, and the excitation parameters 
are adjusted to minimize the difference before the code is 
transmitted. 

Hybrid coders determine speech spectral parameters by 
linear prediction and optimize excitation using analysis­
by-synthesis techniques. These hybrid coders combine the 

1540 

features of modem vococ.lers with an ability to exploit 
the properties of the human auditory system. The pa­
per describes several analysis-by-synthesis linear predic­
tive coding algorithms. The coder used in the British 
Telecom International skyphone satellite-based system is 
based on one of these algorithms (MPLP). Another of 
these algorithms (RPE-LTP) has been adopted for the 
full-rate GSM Pan-European digital mobile standard. The 
U.S. Department of Defense has adopted another algorithm 
(CELP) described in the paper, for possible use in a new 
secure telephone unit. The 8-kbits/s algorithm (VSELP) 
adopted for the North American Cellular Digital System 
is also described, as is the LD-CELP coder selected by the 
CCITT as its recommendation for low-delay speech coding. 

-Howard Falk 
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