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ITU-T  RECOMMENDATION  G.722.2 

 

WIDEBAND CODING OF SPEECH AT AROUND 16 KBIT/S USING  
ADAPTIVE MULTI-RATE WIDEBAND (AMR-WB) 

 

Summary 

This Recommendation describes the high quality Adaptive Multi-Rate Wideband (AMR-WB) encoder and decoder that 
is primarily intended for 7 kHz bandwidth speech signals. AMR-WB operates at a multitude of bit rates ranging from 
6.6 kbit/s to 23.85 kbit/s. The bit rate may be changed at any 20 ms frame boundary. 

Annex C of this Recommendation includes an integrated C source code software package which contains the 
implementation of the G.722.2 encoder and decoder and its Annexes A and B and Appendix I. A set of digital test 
vectors for developers is provided in Annex D/G.722.2. These test vectors are a verification tool providing an indication 
of success in implementing this codec.   

G.722.2 AMR-WB is the same codec as the 3GPP AMR-WB. The corresponding  3GPP specifications are TS 26.190 for 
the speech codec and TS 26.194 for the Voice Activity Detector.  

 

 

Source 

ITU-T Recommendation G.722.2 was prepared by ITU-T Study Group 16 (2001-2004) and was approved under the 
WTSC Resolution No. 1 procedure on 13 January 2002. 
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Recommendation G.722.2 

WIDEBAND CODING OF SPEECH AT AROUND 16 KBIT/S USING  
ADAPTIVE MULTI-RATE WIDEBAND (AMR-WB) 

(Geneva, 2002) 

1 Scope 
 

This Recommendation describes the detailed mapping from input blocks of 320 speech samples in 16-bit uniform PCM 
format to encoded blocks of 132, 177, 253, 285, 317, 365, 397, 461 and 477 bits and from encoded blocks of 132, 177, 
253, 285, 317, 365, 397, 461 and 477 bits to output blocks of 320 reconstructed speech samples. The sampling rate is 
16 000 samples/s leading to a bit rate for the encoded bit stream of 6.60, 8.85, 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 
or 23.85 kbit/s. The coding scheme for the multi-rate coding modes is the so-called Algebraic Code Excited Linear 
Prediction Coder, hereafter referred to as ACELP. The multi-rate wideband ACELP coder is referred to as AMR-WB. 
The codec described in this Recommendation also utilizes an integrated Voice Activity Detector (VAD). 

The foreseen applications for this Recommendation are the following: Voice over IP (VoIP) and Internet applications, 
Mobile Communications, PSTN applications, ISDN wideband telephony, ISDN videotelephony and video-
conferencing. 

In addition to the algorithm specified in the main body of Recommendation G.722.2, Annexes A and B and Appendix I 
provide supplemental functionalities allowing interoperability with GSM and 3GPP wireless systems. These 
functionalities have originally been developed for these systems, but their use is not limited to mobile applications. Two 
other Annexes D and E describe test vectors and frame structure respectively. These Annexes may be implemented 
independently of this main body specification according to the different requirements of systems deploying the AMR-
WB algorithm: 

• Annex A describes comfort noise aspects for use of the AMR-WB algorithm in source controlled rate operation. 
The implementation of this Annex is essential for interoperability with GSM and 3GPP wireless systems. 

• Annex B describes the source controlled rate operation for the AMR-WB algorithm. The implementation of this 
Annex is essential for interoperability with GSM and 3GPP wireless systems. 

• Annex D describes the digital test sequences, which are a verification tool providing an indication of success in 
implementing the AMR-WB codec. 

• Annex E describes the recommended frame structure for use with the different modes of operation for the AMR-
WB algorithm. 

• Appendix I describes an example solution for error concealment of erroneous or lost AMR-WB frames. 

For better usability, the ANSI-C code with the low-level description of all these functionalities have been grouped in a 
single Annex, Annex C. Should there be any discrepancy between the descriptions in any of the different parts of 
G.722.2 and the implementation of such descriptions in Annex C, the descriptions in Annex C shall prevail. 

In Section 8 a specific reset procedure, called codec homing, is described. This is a useful feature for bringing the codec 
into a known initial state (e.g. for testing purposes).  Section 9 specifies the Voice Activity Detector (VAD) used in this 
codec as well as in the source controlled rate operation (DTX) specified in Annex B. 

2 Normative references 
The following ITU-T Recommendations and other references contain provisions which, through reference in this text, 
constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All 
Recommendations and other references are subject to revision; all users of this Recommendation are therefore 
encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other 
references listed below. A list of the currently valid ITU-T Recommendations is regularly published. 

 [1] ITU-T Recommendation G.711 (1988): "Coding of analogue signals by pulse code modulation 
Pulse code modulation (PCM) of voice frequencies". 
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3 Definitions, symbols and abbreviations 

3.1 Definitions 
For the purposes of this Recommendation, the following definitions apply: 

adaptive codebook: The adaptive codebook contains excitation vectors that are adapted for every subframe. The 
adaptive codebook is derived from the long-term filter state. The lag value can be viewed as an 
index into the adaptive codebook.  

algebraic codebook: A fixed codebook where algebraic code is used to populate the excitation vectors 
(innovation vectors). The excitation contains a small number of nonzero pulses with  predefined 
interlaced sets of potential positions. The amplitudes and positions of the pulses of the kth 
excitation codevector can be derived from its index k through a rule requiring no or minimal 
physical storage, in contrast with stochastic codebooks whereby the path from the index to the 
associated codevector involves look-up tables. 

anti-sparseness processing: An adaptive post-processing procedure applied to the fixed codebook vector in order 
to reduce perceptual artifacts from a sparse fixed codebook vector. 

closed-loop pitch analysis: This is the adaptive codebook search, i.e., a process of estimating the pitch (lag) value 
from the weighted input speech and the long term filter state. In the closed-loop search, the lag is 
searched using error minimization loop (analysis-by-synthesis). In the adaptive multi-rate 
wideband codec, closed-loop pitch search is performed for every subframe.  

direct form coefficients: One of the formats for storing the short term filter parameters. In the adaptive multi-rate 
wideband codec, all filters which are used to modify speech samples use direct form coefficients. 

fixed codebook: The fixed codebook contains excitation vectors for speech synthesis filters. The contents of the 
codebook are non-adaptive (i.e., fixed). In the adaptive multi-rate wideband codec, the fixed 
codebook is implemented using an algebraic codebook. 

fractional lags: A set of lag values having sub-sample resolution. In the adaptive multi-rate wideband codec a 
sub-sample resolution of 1/4th or 1/2nd of a sample is used. 

frame: A time interval equal to 20 ms (320 samples at an 16 kHz sampling rate). 

Immittance Spectral Frequencies: (see Immittance Spectral Pair) 

Immittance Spectral Pair: Transformation of LPC parameters. Immittance Spectral Pairs are obtained by 
decomposing the inverse filter transfer function A(z) to a set of two transfer functions, one having 
even symmetry and the other having odd symmetry. The Immittance Spectral Pairs (also called as 
Immittance Spectral Frequencies) are the roots of these polynomials on the z-unit circle. 

integer lags: A set of lag values having whole sample resolution. 

interpolating filter: An FIR filter used to produce an estimate of sub-sample resolution samples, given an input 
sampled with integer sample resolution. In this implementation, the interpolating filter has low 
pass filter characteristics. Thus the adaptive codebook consists of the low-pass filtered interpolated 
past excitation. 

inverse filter: This filter removes the short term correlation from the speech signal. The filter models an inverse 
frequency response of the vocal tract. 

lag: The long term filter delay. This is typically the true pitch period, or its multiple or sub-multiple. 

LP analysis window: For each frame, the short term filter coefficients are computed using the high pass filtered 
speech samples within the analysis window. In the adaptive multi-rate wideband codec, the length 
of the analysis window is always 384 samples. For all the modes, a single asymmetric window is 
used to generate a single set of LP coefficients. The 5 ms look-ahead is used in the analysis. 
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LP coefficients: Linear Prediction (LP) coefficients (also referred as Linear Predictive Coding (LPC) coefficients) 
is a generic descriptive term for the short term filter coefficients. 

mode: When used alone, refers to the source codec mode, i.e., to one of the source codecs employed in 
the AMR-WB codec.  

open-loop pitch search: A process of estimating the near optimal lag directly from the weighted speech input. This 
is done to simplify the pitch analysis and confine the closed-loop pitch search to a small number of 
lags around the open-loop estimated lags. In the adaptive multi-rate wideband codec, an open-loop 
pitch search is performed in every other subframe. 

residual: The output signal resulting from an inverse filtering operation. 

short term synthesis filter: This filter introduces, into the excitation signal, short term correlation which models the 
impulse response of the vocal tract.  

perceptual weighting filter: This filter is employed in the analysis-by-synthesis search of the codebooks. The filter 
exploits the noise masking properties of the formants (vocal tract resonances) by weighting the 
error less in regions near the formant frequencies and more in regions away from them. 

subframe: A time interval equal to 5 ms (80 samples at 16 kHz sampling rate). 

vector quantization: A method of grouping several parameters into a vector and quantizing them simultaneously. 

zero input response: The output of a filter due to past inputs, i.e. due to the present state of the filter, given that an 
input of zeros is applied. 

zero state response: The output of a filter due to the present input, given that no past inputs have been applied, i.e., 
given that the state information in the filter is all zeroes. 

3.2 Symbols 
For the purposes of this TS, the following symbols apply: 

( )A z  The inverse filter with unquantized coefficients 

( )$A z  The inverse filter with quantized coefficients 

( )
( )

H z
A z

=
1

$  The speech synthesis filter with quantized coefficients 

ai  The unquantized linear prediction parameters (direct form coefficients) 

$ai  The quantified linear prediction parameters 

m  The order of the LP model 

( )W z  The perceptual weighting filter (unquantized coefficients) 

1γ  The perceptual weighting factor 

T  The integer pitch lag nearest to the closed-loop fractional pitch lag of the subframe 

β  The adaptive pre-filter coefficient (the quantified pitch gain) 

( )H zh1  Pre-processing high-pass filter 

)(nw  LP analysis window 

1L  Length of the first part of the LP analysis window )(nw  
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2L  Length of the second part of the LP analysis window )(nw  

)(kr  The auto-correlations of the windowed speech s n' ( )  

( )w ilag  Lag window for the auto-correlations (60 Hz bandwidth expansion) 

f0  The bandwidth expansion in Hz 

f s  The sampling frequency in Hz 

)(' kr  The modified (bandwidth expanded) auto-correlations 

( )iE  The prediction error in the ith iteration of the Levinson algorithm 

ki  The ith reflection coefficient 

a j
i( )  The jth direct form coefficient in the ith iteration of the Levinson algorithm 

( )′F z1  Symmetric ISF polynomial 

( )′F z2  Antisymmetric ISF polynomial 

( )F z1  Polynomial ( )′F z1   

( )F z2  Polynomial ( )′F z2  with roots z = 1and 1−=z  eliminated 

qi  The immittance spectral pairs (ISPs) in the cosine domain 

q  An ISP vector in the cosine domain 

$ ( )qi
n  The quantified ISP vector at the ith subframe of the frame n 

ω i  The immittance spectral frequencies (ISFs) 

T xm ( )  A mth order Chebyshev polynomial 

f i f i1 2( ), ( )  The coefficients of the polynomials F z1( ) and F z2 ( )  

f i f i1 2
' '( ), ( )  The coefficients of the polynomials ( )′F z1  and ( )′F z2  

f i( )  The coefficients of either ( )F z1  or ( )F z2  

( )C x  Sum polynomial of the Chebyshev polynomials 

x  Cosine of angular frequency ω  

λ k  Recursion coefficients for the Chebyshev polynomial evaluation  

fi  The immittance spectral frequencies (ISFs) in Hz 

[ ]1621 ffft K=f  The vector representation of the ISFs in Hz  

( )nz  The mean-removed ISF vector at frame n 
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( )nr  The ISF prediction residual vector at frame n 

p( )n  The predicted ISF vector at frame n 

( )1ˆ −nr  The quantified residual vector at the past frame 

k
ir̂  The quantified ISF subvector i  at quantization index k 

di  The distance between the immittance spectral frequencies fi+1  and fi−1  

( )h n  The impulse response of the weighted synthesis filter 

)()( zWzH  The weighted synthesis filter 

T1  The integer nearest to the fractional pitch lag of the previous (1st or 3rd) subframe 

s n' ( )  The windowed speech signal 

( )s nw  The weighted speech signal 

( )$s n  Reconstructed speech signal 

( )x n  The target signal for adaptive codebook search 

( )x n2 , x2
t

 The target signal for algebraic codebook search 

res nLP ( )  The LP residual signal 

( )c n  The fixed codebook vector 

( )v n  The adaptive codebook vector 

y n v n h n( ) = ( ) ( )∗  The filtered adaptive codebook vector 

( )y nk  The past filtered excitation 

( )u n  The excitation signal 

$' ( )u n  The gain-scaled emphasized excitation signal 

Top  The best open-loop lag 

tmin  Minimum lag search value 

tmax  Maximum lag search value 

( )R k  Correlation term to be maximized in the adaptive codebook search 

( )R k t  The interpolated value of ( )R k  for the integer delay k and fraction t 

Ak  Correlation term to be maximized in the algebraic codebook search at index k 

Ck  The correlation in the numerator of Ak  at index k 

EDk  The energy in the denominator of Ak  at index k 
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d H x= t
2  The correlation between the target signal ( )nx2  and the impulse response ( )nh , i.e., backward 

filtered target 

H  The lower triangular Toepliz convolution matrix with diagonal ( )0h  and lower diagonals 
( ) ( )63,,1 hh K  

HHF t=  The matrix of correlations of ( )h n  

d n( )  The elements of the vector d 

φ( , )i j  The elements of the symmetric matrix Φ  

ck  The innovation vector 

C  The correlation in the numerator of Ak  

mi  The position of the ith pulse 

ϑ i  The amplitude of the ith pulse 

N p  The number of pulses in the fixed codebook excitation 

ED  The energy in the denominator of Ak  

( )res nLTP  The normalized long-term prediction residual 

( )b n  The signal used for presetting the signs in algebraic codebook search 

( )s nb  The sign signal for the algebraic codebook search 

( )′d n  Sign extended backward filtered target 

φ ' ( , )i j  The modified elements of the matrix Φ , including sign information 

zt , ( )z n  The fixed codebook vector convolved with ( )h n  

( )E n  The mean-removed innovation energy (in dB) 

E  The mean of the innovation energy 

( )~E n  The predicted energy 

[ ]b b b b1 2 3 4    The MA prediction coefficients 

( )$R k  The quantified prediction error at subframe k 

EI  The mean innovation energy 

R n( )  The prediction error of the fixed-codebook gain quantization 

EQ  The quantization error of the fixed-codebook gain quantization 

e n( )  The states of the synthesis filter ( )1 $A z  
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( )e nw  The perceptually weighted error of the analysis-by-synthesis search 

η  The gain scaling factor for the emphasized excitation 

gc  The fixed-codebook gain 

′gc  The predicted fixed-codebook gain 

$gc  The quantified fixed codebook gain 

g p  The adaptive codebook gain 

$g p  The quantified adaptive codebook gain 

γ gc c cg g= ′  A correction factor between the gain gc  and the estimated one ′gc  

$γ gc  The optimum value for γ gc  

γ sc  Gain scaling factor 

3.3 Abbreviations 
For the purposes of this Recommendation, the following abbreviations apply. 

ACELP Algebraic Code Excited Linear Prediction 

AGC Adaptive Gain Control 

AMR Adaptive Multi-Rate 

AMR-WB Adaptive Multi-Rate Wideband 

CELP Code Excited Linear Prediction 

FIR Finite Impulse Response 

ISF Immittance Spectral Frequency 

ISP Immittance Spectral Pair 

ISPP Interleaved Single-Pulse Permutation 

LP Linear Prediction 

LPC Linear Predictive Coding 

LTP Long Term Predictor (or Long Term Prediction) 

MA Moving Average 

S-MSVQ Split-MultiStage Vector Quantization 

WB Wideband 

4 Outline description 
This Recommendation is structured as follows: 

Section 4.1 contains a functional description of the audio parts including the A/D and D/A functions. Section 4.2 
describes input format for the AMR-WB encoder and the output format for the AMR-WB decoder. Sections 4.3 and 4.4 
present a simplified description of the principles of the AMR-WB codec encoding and decoding process respectively. In 
subclause 4.5, the sequence and subjective importance of encoded parameters are given. 
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Section 5 presents the functional description of the AMR-WB codec encoding, whereas clause 6 describes the decoding 
procedures. In section 7, the detailed bit allocation of the AMR-WB codec is tabulated. Section 8 describes the homing 
operation. 

4.1 Functional description of audio parts 
The analogue-to-digital and digital-to-analogue conversion will in principle comprise the following elements: 

1) Analogue to uniform digital PCM [1] 

− microphone; 

− input level adjustment device; 

− input anti-aliasing filter; 

− sample-hold device sampling at 16 kHz; 

− analogue−to−uniform digital conversion to 14−bit representation. 

 The uniform format shall be represented in two's complement. 

2) Uniform digital PCM to analogue [1] 

− conversion from 14−bit/16 kHz uniform PCM to analogue; 

− a hold device; 

− reconstruction filter including x/sin( x ) correction; 

− output level adjustment device; 

− earphone or loudspeaker. 

In the terminal equipment, the A/D function may be achieved 

− by direct conversion to 14-bit uniform PCM format; 

For the D/A operation, the inverse operations take place. 

4.2 Preparation of speech samples 
The encoder is fed with data comprising of samples with a resolution of 14 bits left justified in a 16-bit word. The 
decoder outputs data in the same format. Outside the speech codec further processing must be applied if the traffic data 
occurs in a different representation. 

4.3 Principles of the adaptive multi-rate wideband speech encoder 
The AMR-WB codec consists of nine source codecs with bit-rates of 23.85 23.05, 19.85, 18.25, 15.85, 14.25, 12.65, 
8.85 and 6.60 kbit/s. 

The codec is based on the code-excited linear predictive (CELP) coding model. The input signal is pre-emphasized 
using the filter Hpre-emph(z)=1−µz−1. The CELP model is then applied to the pre-emphasized signal. A 16th order linear 
prediction (LP), or short-term, synthesis filter is used which is given by: 

 ( )
( )H z

A z a zi
i

i
m= =

+ −
=∑

1 1

1
1

$ $
, ( 1 ) 

where âi,i=1,…,m are the (quantized) linear prediction (LP) parameters, and m = 16 is the predictor order. The 
long-term, or pitch, synthesis filter is usually given by: 
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 ( )
1 1

1B z g zp
T=

− − , ( 2 ) 

where T is the pitch delay and gp is the pitch gain. The pitch synthesis filter is implemented using the so-called adaptive 
codebook approach.  

The CELP speech synthesis model is shown in Figure 1. In this model, the excitation signal at the input of the 
short-term LP synthesis filter is constructed by adding two excitation vectors from adaptive and fixed (innovative) 
codebooks. The speech is synthesized by feeding the two properly chosen vectors from these codebooks through the 
short-term synthesis filter. The optimum excitation sequence in a codebook is chosen using an analysis-by-synthesis 
search procedure in which the error between the original and synthesized speech is minimized according to a 
perceptually weighted distortion measure. 

The perceptual weighting filter used in the analysis-by-synthesis search technique is given by: 

 )()/()( 1 zHzAzW emphde−= γ , ( 3 ) 

where A(z) is the unquantized LP filter, 168.01

1
−−

−
=

z
H emphde , and γ1=0.92 is the perceptual weighting factor. The 

weighting filter uses the unquantized LP parameters. 

The encoder performs the analysis of the LPC, LTP and fixed codebook parameters at 12.8 kHz sampling rate. The 
coder operates on speech frames of 20 ms. At each frame, the speech signal is analysed to extract the parameters of the 
CELP model (LP filter coefficients, adaptive and fixed codebooks' indices and gains). In addition to these parameters, 
high-band gain indices are computed in 23.85 kbit/s mode. These parameters are encoded and transmitted. At the 
decoder, these parameters are decoded and speech is synthesized by filtering the reconstructed excitation signal through 
the LP synthesis filter. 

The signal flow at the encoder is shown in Figure 2. After decimation, high-pass and pre-emphasis filtering is 
performed. LP analysis is performed once per frame. The set of LP parameters is converted to immittance spectrum 
pairs (ISP) and vector quantized using split-multistage vector quantization (S-MSVQ). The speech frame is divided into 
4 subframes of 5 ms each (64 samples at 12.8 kHz sampling rate). The adaptive and fixed codebook parameters are 
transmitted every subframe. The quantized and unquantized LP parameters or their interpolated versions are used 
depending on the subframe. An open-loop pitch lag is estimated in every other subframe or once per frame based on the 
perceptually weighted speech signal. 

Then the following operations are repeated for each subframe: 

• The target signal x(n) is computed by filtering the LP residual through the weighted synthesis filter ( ) ( )zHzW  with 
the initial states of the filters having been updated by filtering the error between LP residual and excitation (this is 
equivalent to the common approach of subtracting the zero input response of the weighted synthesis filter from the 
weighted speech signal). 

• The impulse response, h(n) of the weighted synthesis filter is computed. 

• Closed-loop pitch analysis is then performed (to find the pitch lag and gain), using the target x(n) and impulse 
response h(n), by searching around the open-loop pitch lag. Fractional pitch with 1/4th or 1/2nd of a sample 
resolution (depending on the mode and the pitch lag value) is used. The interpolating filter in fractional pitch search 
has low pass frequency response. Further, there are two potential low-pass characteristics in the the adaptive 
codebook and this information is encoded with 1 bit. 

• The target signal x(n) is updated by removing the adaptive codebook contribution (filtered adaptive codevector), 
and this new target, x2(n), is used in the fixed algebraic codebook search (to find the optimum innovation). 

• The gains of the adaptive and fixed codebook are vector quantified with 6 or 7 bits (with moving average (MA) 
prediction applied to the fixed codebook gain). 

• Finally, the filter memories are updated (using the determined excitation signal) for finding the target signal in the 
next subframe. 

The bit allocation of the AMR-WB codec modes is shown in Table 1. In each 20 ms speech frame, 132, 177, 253, 285, 
317, 365, 397, 461 and 477 bits are produced, corresponding to a bit-rate of 6.60, 8.85 ,12.65, 14.25, 15.85, 18.25, 
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19.85, 23.05 or 23.85 kbit/s. More detailed bit allocation among the codec parameters is given in tables 12a-12i. Note 
that the most significant bits (MSB) are always sent first.  

Table 1: Bit allocation of the AMR-WB coding algorithm for 20 ms frame 

Mode Parameter 1st subframe 2nd subframe 3rd subframe 4th subframe total per frame 
 

 VAD-flag     1 
23.85 kbit/s ISP     46 

 LTP-filtering 1 1 1 1 4 
 Pitch delay 9 6 9 6 30 
 Algebraic code 88 88 88 88 352 
 Codebook gain 7 7 7 7 28 
 HB-energy 4 4 4 4 16 
 Total     477 
 VAD-flag     1 

23.05 kbit/s ISP     46 
 LTP-filtering 1 1 1 1 4 
 Pitch delay 9 6 9 6 30 
 Algebraic code 88 88 88 88 352 
 Gains 7 7 7 7 28 
 Total     461 
 VAD-flag     1 

19.85 kbit/s ISP     46 
 LTP-filtering 1 1 1 1 4 
 Pitch delay 9 6 9 6 30 
 Algebraic code 72 72 72 72 288 
 Codebook gain 7 7 7 7 28 
 Total     397 
 VAD-flag     1 

18.25 kbit/s ISP     46 
 LTP-filtering 1 1 1 1 4 
 Pitch delay 9 6 9 6 30 
 Algebraic code 64 64 64 64 256 
 Gains 7 7 7 7 28 
 Total     365 
 VAD-flag     1 

15.85 kbit/s ISP     46 
 LTP-filtering 1 1 1 1 4 
 Pitch delay 9 6 9 6 30 
 Algebraic code 52 52 52 52 208 
 Gains 7 7 7 7 28 
 Total     317 
 VAD-flag     1 

14.25 kbit/s ISP     46 
 LTP-filtering 1 1 1 1 4 
 Pitch delay 9 6 9 6 30 
 Algebraic code 44 44 44 44 176 
 Gains 7 7 7 7 28 
 Total     285 
 VAD-flag     1 

12.65 kbit/s ISP     46 
 LTP-filtering 1 1 1 1 4 
 Pitch delay 9 6 9 6 30 
 Algebraic code 36 36 36 36 144 
 Gains 7 7 7 7 28 
 Total     253 
 VAD-flag     1 

8.85 kbit/s ISP     46 
 Pitch delay 8 5 8 5 26 
 Algebraic code 20 20 20 20 80 
 Gains 6 6 6 6 24 
 Total     177 
 VAD-flag     1 

6.60 kbit/s ISP     36 
 Pitch delay 8 5 5 5 23 
 Algebraic code 12 12 12 12 48 
 Gains 6 6 6 6 24 
 Total     132 
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4.4 Principles of the adaptive multi-rate speech decoder 
The signal flow at the decoder is shown in Figure 3. At the decoder, the transmitted indices are extracted from the 
received bitstream. The indices are decoded to obtain the coder parameters at each transmission frame. These 
parameters are the ISP vector, the 4 fractional pitch lags, the 4 LTP filtering parameters, the 4 innovative codevectors, 
and the 4 sets of vector quantized pitch and innovative gains. In 23.85 kbit/s mode, also high-band gain index is 
decoded. The ISP vector is converted to the LP filter coefficients and interpolated to obtain LP filters at each subframe. 
Then, at each 64-sample subframe: 

• The excitation is constructed by adding the adaptive and innovative codevectors scaled by their respective gains. 

• The 12.8 kHz speech is reconstructed by filtering the excitation through the LP synthesis filter. 

• The reconstructed speech is de-emphasized. 

Finally, the reconstructed speech is upsampled to 16 kHz and high-band speech signal is added to the frequency band 
from 6 kHz to 7 kHz.  

4.5 Sequence and subjective importance of encoded parameters 
The encoder will produce the output information in a unique sequence and format, and the decoder must receive the 
same information in the same way. In table 12a-12i, the sequence of output bits and the bit allocation for each 
parameter is shown. 

The different parameters of the encoded speech and their individual bits have unequal importance with respect to 
subjective quality. 

5 Functional description of the encoder 
In this clause, the different functions of the encoder represented in Figure 2 are described. 

5.1 Pre-processing 
The encoder performs the analysis of the LPC, LTP and fixed codebook parameters at 12.8 kHz sampling rate. 
Therefore, the input signal has to be decimated from 16 kHz to 12.8 kHz. The decimation is performed by first 
upsampling by 4, then filtering the output through lowpass FIR filter Hdecim(z) that has the cut off frequency at 6.4 kHz. 
Then, the signal is downsampled by 5. The filtering delay is compensated by adding zeroes into the end of the input 
vector. 

After the decimation, two pre-processing functions are applied to the signal prior to the encoding process: high-pass 
filtering and pre-emphasizing (and signal down-scaling). 

(Down-scaling consists of dividing the input by a factor of 2 to reduce the possibility of overflows in the fixed-point 
implementation.) 

The high-pass filter serves as a precaution against undesired low frequency components. A filter at a cut off frequency 
of 50 Hz is used, and it is given by 

 .
0.9791261.9788821

0.9895021.9790040.989502
)( 21

21

1 −−

−−

+−
+−

=
zz

zz
zHh  ( 4 ) 

(Both down-scaling and high-pass filtering are combined by dividing the coefficients at the numerator of Hh1(z) by 2.) 

In the pre-emphasis, a first order high-pass filter is used to emphasize higher frequencies, and it is given by 

 ( ) 168.01 −
− −= zzH emphpre  ( 5 ) 
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5.2 Linear prediction analysis and quantization 
Short-term prediction, or LP, analysis is performed once per speech frame using the autocorrelation approach with 30 
ms asymmetric windows.  An overhead of 5 ms is used in the autocorrelation computation. The frame structure is 
depicted below. 

 

 

 

 

 

The autocorrelations of windowed speech are converted to the LP coefficients using the Levinson-Durbin algorithm.  
Then the LP coefficients are transformed to the ISP domain for quantization and interpolation purposes. The 
interpolated quantized and unquantized filters are converted back to the LP filter coefficients (to construct the synthesis 
and weighting filters at each subframe). 

5.2.1 Windowing and auto-correlation computation 
LP analysis is performed once per frame using an asymmetric window. The window has its weight concentrated at the 
fourth subframe and it consists of two parts: the first part is a half of a Hamming window and the second part is a 
quarter of a Hamming-cosine function cycle.  The window is given by: 
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where the values L1=256 and L2=128 are used. 

The autocorrelations of the windowed speech s'(n),n=0,…,383 are computed by 
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and a 60 Hz bandwidth expansion is used by lag windowing the autocorrelations using the window [3] 
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where f0=60 Hz is the bandwidth expansion and fs=12800 Hz is the sampling frequency. Further, r(0) is multiplied by 
the white noise correction factor 1.0001 which is equivalent to adding a noise floor at -40 dB. 

5.2.2 Levinson-Durbin algorithm 
The modified autocorrelations )0( 0001.1)0(' rr =  and ,16,1 ),()()(' K== kklagwkrkr  are used to obtain the LP filter 

coefficients ak,k=1,…,16 by solving the set of equations. 

 ( ) .16,,1      , )(''
16

1

K=−=−∑
=

iirkira
k

k  ( 9 ) 

The set of equations in (9) is solved using the Levinson-Durbin algorithm [3].  This algorithm uses the following 
recursion: 

windowing frame n 

windowing frame n-1 

frame n 
(4 x 5 ms) 
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The final solution is given as )16(
jj aa = ,j=1,…,16. 

The LP filter coefficients are converted to the ISP representation [5] for quantization and interpolation purposes. The 
conversions to the ISP domain and back to the LP filter domain are described in the next two sections. 

5.2.3 LP to ISP conversion 
The LP filter coefficients ak, k=1,…,16, are converted to the ISP representation for quantization and interpolation 
purposes. For a 16th order LP filter, the ISPs are defined as the roots of the sum and difference polynomials 

 )()()( 116'
1

−−+= zAzzAzf  ( 10 ) 

and 

 )()()( 116'
2

−−−= zAzzAzf  ( 11 ) 

respectively. (The polynomials f'1(z) and f'2(z) are symmetric and antisymmetric, respectively). It can be proven that all 
roots of these polynomials are on the unit circle and they alternate each other [6]. f'2(z) has two roots at z = 1 (ω=0) and 
z = -1 (ω = π). To eliminate these two roots, we define the new polynomials 

 )()( '
11 zfzf =  ( 12 ) 

and 

 .)1/()()( 2'
22

−−= zzfzf  ( 13 ) 

Polynomials f1(z) and f2(z) have 8 and 7 conjugate roots on the unit circle ( )e j i± ω , respectively. Therefore, the 

polynomials can be written as 
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where qi=cos(ωi) with ωi being the immittance spectral frequencies (ISF) and a[16] is the last predictor coefficient. ISFs 
satisfy the ordering property πωωω <<<<< 16210 K .  We refer to qi  as the ISPs in the cosine domain.  

Since both polynomials f1(z) and f2(z) are symmetric only the first 8 and 7 coefficients of each polynomial, respectively, 
and the last predictor coefficient need to be computed.  

The coefficients of these polynomials are found by the recursive relations  

for i=0 to 7 
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where m=16 is the predictor order, and  0)1()2( 22 =−=− ff . 

The ISPs are found by evaluating the polynomials F1(z) and F2(z) at 100 points equally spaced between 0 and π  and 
checking for sign changes.  A sign change signifies the existence of  a root and the sign change interval is then divided 
4 times to better track the root.  The Chebyshev polynomials are used to evaluate F1(z) and F2(z) [7]. In this method the 
roots are found directly in the cosine domain {qi}. The polynomials F1(z) and F2(z) evaluated at z e j= ω  can be written 
as 
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where Tm=cos(mω) is the mth order Chebyshev polynomial, f(i) are the coefficients of either F1(z) or F2(z), computed 
using the equations in (16). The polynomial C(x) is evaluated at a certain value of x = cos(ω) using the recursive 
relation: 
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where nf=8 in case of C1(x) and nf=7 in case of C2(x), with initial values bnf=f(0) and bnf+1=0. The details of the 
Chebyshev polynomial evaluation method are found in [7]. 

5.2.4 ISP to LP conversion 
Once the ISPs are quantized and interpolated, they are converted back to the LP coefficient domain { }ak . The 
conversion to the LP domain is done as follows.  The coefficients of F1(z) and F2(z) are found by expanding Equations 
(14) and (15) knowing the quantized and interpolated ISPs qi=,i=0,…,m-1, where m=16.  The following recursive 
relation is used to compute f1(z) 
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with initial values f1(0)=1 and f1(1)=-2q0. The coefficients f2(i) are computed similarly by replacing q2i-2 by q2i-1 and m/2 
by m/2-1, and with intial conditions f2(0)=1 and f2(1)=-2q1. 

Once the coefficients f1(z) and f2(z) are found, F2(z) is multiplied by 1-z-2, to obtain F'2(z); that is 
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Then F'1(z) and F'2(z) are multiplied by 1+qm-1 and 1-qm-1, respectively. That is 
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Finally the LP coefficients are found by 

 
m. iq

,m imf

mmiifif

miififa

m

i

=
=

−+=−

−=+=

−                                   ,       
2/                      ),2/(0.5       

,1,,12/             , )(5.0)(5.0       

,12/,,1             , )(5.0)(5.0

1

'
1

'
2

'
1

'
2

'
1

K

K

 
( 20 ) 

This is directly derived from the relation 2/))()(()( '
2

'
1 zFzFzA += , and considering the fact that F'1(z) and F'2(z) are 

symmetric and antisymmetric polynomials, respectively. 

5.2.5 Quantization of the ISP coefficients 
The LP filter coefficients are quantized using the ISP representation in the frequency domain; that is 
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where fi are the ISFs in Hz [0,6400] and fs=12800 is the sampling frequency. The ISF vector is given by tf = 
[f0f1,…,f15], with t denoting transpose. 

A 1st order MA prediction is applied, and the residual ISF vector is quantified using a combination of split vector 
quantization (SVQ) and multi-stage vector quantization (MSVQ). The prediction and quantization are performed as 
follows. Let ( )nz  denote the mean-removed ISF vector at frame n . The prediction residual vector r(n) is given by: 

 ( ) ( ) ( )nnn pzr −=  ( 22 ) 

where p(n) is the predicted LSF vector at frame n. First order moving-average (MA) prediction is used where: 

 ( ) ( )1ˆ
3
1

−= nn rp , ( 23 ) 

where ( )1ˆ −nr  is the quantized residual vector at the past frame. 

The ISF residual vector r is quantized using split-multistage vector quantization S-MSVQ. The vector is split into 2 
subvectors r1(n) and r2(n) of dimensions 9 and 7, respectively. The 2 subvectors are quantized in two stages. In  the first 
stage r1(n) is quantized with 8 bits and r2(n) with 8 bits.  

For 8.85 ,12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, the quantization error vectors 

2,1,ˆ)2( =−= iiii rrr  are split in the next stage into 3 and 2 subvectors, respectively. The subvectors are quantized 

using the bit-rates described in Table 2. 

Table 2. Quantization of ISP vector for the 8.85 ,12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes 
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1. UNQUANTIZED 16-ELEMENT-LONG ISP VECTOR 

2. STAGE 1 ( 1r ) 8 bits 2. STAGE 1 ( 2r ) 8 bits 

3. STAGE 2  

( 20,1
)2(

−r )  

6 bits 

3. STAGE 2  

( 53,1
)2(

−r )  

7 bits 

3. STAGE 2  

( 86,1
)2(

−r )  

7 bits 

3. STAGE 2 

( 20,2
)2(

−r )  

5 bits 

3. STAGE 2  

( 63,2
)2(

−r )  

5 bits 

For 6.60 kbit/s mode, the quantization error vectors 2,1,ˆ)2( =−= iiii rrr  are split in the next stage into 2 and 1 

subvectors, respectively. The subvectors are quantized using the bit-rates described in Table 3. 

Table 3. Quantization of ISP vector for the 6.60 kbit/s mode 

1. UNQUANTIZED 16-ELEMENT-LONG ISP VECTOR 

2. STAGE 1 ( 1r ) 8 bits 2. STAGE 1 ( 2r ) 8 bits 

3. STAGE 2  

( 40,1
)2(

−r )  

7 bits 

3. STAGE 2 

( 85,1
)2(

−r )  

7 bits 

3. STAGE 2  

( 60,2
)2(

−r )  

6 bits 
 

A squared error ISP distortion measure is used in the quantization process. In general, for an input ISP or error residual 
subvector ri,i=1,2 and a quantized vector at index k, k

ir̂ , the quantization is performed by finding the index k which 
minimizes 
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where m and n are the first and last elements of the subvector. 

5.2.6 Interpolation of the ISPs 
The set of quantized (and unquantized) LP parameters is used for the fourth subframe whereas the first, second, and 
third subframes use a linear interpolation of the parameters in the adjacent frames. The interpolation is performed on the 
ISPs in the q  domain.  Let )(

4ˆ nq  be the ISP vector at the 4th subframe of the frame, and )1(
4ˆ −nq  the ISP vector at the 4th 

subframe of the past frame n-1. The interpolated ISP vectors at the 1st, 2nd, and 3rd subframes are given by 
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The same formula is used for interpolation of the unquantized ISPs. The interpolated ISP vectors are used to compute a 
different LP filter at each subframe (both quantized and unquantized) using the ISP to LP conversion method described 
in Section 5.2.4. 

 

5.3 Perceptual weighting 
The traditional perceptual weighting filter )/(/)/()( 21 γγ zAzAzW = has inherent limitations in modelling the 
formant structure and the required spectral tilt concurrently.  The spectral tilt is more pronounced in wideband signals 
due to the wide dynamic range between low and high frequencies. A solution to this problem is to introduce the 
preemphasis filter at the input, compute the LP filter A(z) based on the preemphasized speech s(n), and use a modified 
filter W(z) by fixing its denominator. This structure substantially decouples the formant weighting from the tilt. 
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A weighting filter of the form )()/()( 1 zHzAzW emphde−= γ  is used, where 1
11

1
−−

−
=

z
H emphde

β
 and β1=0.68. 

Because A(z) is computed based on the preemphasized speech signal s(n), the tilt of the filter 1/A(z/γ1) is less 
pronounced compared to the case when A(z) is computed based on the original speech.  Since deemphasis is performed 
at the decoder end, it can be shown that the quantization error spectrum is shaped by a filter having a transfer function 
W -1(z)Hde-emph(z)=1/A(z/γ1).  Thus, the spectrum of the quantization error is shaped by a filter whose transfer function is 
1/A(z/γ1), with A(z) computed based on the preemphasized speech signal. 

 

5.4 Open-loop pitch analysis 
Depending on the mode, open-loop pitch analysis is performed once per frame (each 10 ms) or twice per frame (each 10 
ms) to find two estimates of the pitch lag in each frame. This is done in order to simplify the pitch analysis and confine 
the closed loop pitch search to a small number of lags around the open-loop estimated lags. 

Open-loop pitch estimation is based on the weighted speech signal s nw ( )  which is obtained by filtering the input 

speech signal through the weighting filter )()/()( 1 zHzAzW emphde−= γ , where 1
11

1
−−

−
=

z
H emphde

β
 and β1=0.68. That 

is, in a subframe of size L, the weighted speech is given by  
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The open-loop pitch analysis is performed to a signal decimated by two. The decimated signal is obtained by filtering 
s nw ( )  through a fourth order FIR filter )(Hdecim2 z  and then downsampling the output by two to obtain the signal 

)(nswd . 

5.4.1 6.60 kbit/s mode 
Open-loop pitch analysis is performed once per frame (every 20 ms) to find an estimate of the pitch lag in each frame. 

The open-loop pitch analysis is performed as follows. First, the correlation of decimated weighted speech is determined 
for each pitch lag value d by: 

 ( ) ( ) ( ) ( ) 115,,17,
128

0

K=−= ∑
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ddwdnsnsdC
n

wdwd , ( 26 ) 

where w(d) is a weighting function. The estimated pitch-lag is the delay that maximises the weighted correlation 
function C(d). The weighting emphasises lower pitch lag values reducing the likelihood of selecting a multiple of the 
correct delay. The weighting function consists of two parts: a low pitch lag emphasis function, wl(d), and a previous 
frame lag neighbouring emphasis function, wn(d): 

 ( ) ( ) ( )dwdwdw nl= . ( 27 ) 

The low pitch lag emphasis function is a given by: 

 ( ) ( )dcwdwl =  ( 28 ) 

where cw(d) is defined by a table in the fixed point computational description. The previous frame lag neighbouring 
emphasis function depends on the pitch lag of previous speech frames: 

 ( ) ( )


 >+−

=
otherwise,,0.1

,8.0,98 vdTcw
dw old

n  ( 29 ) 
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where Told is the median filtered pitch lag of 5 previous voiced speech half-frames and v is an adaptive parameter. If the 
frame is classified as voiced by having the open-loop gain g>0.6, then the v-value is set to 1.0 for the next frame. 
Otherwise, the v-value is updated by v=0.9v. The open loop gain is given by: 
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where dmax is the pitch delay that maximizes C(d). The median filter is updated only during voiced speech frames. The 
weighting depends on the reliability of the old pitch lags. If previous frames have contained unvoiced speech or silence, 
the weighting is attenuated through the parameter v. 

5.4.2 8.85, 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 and 23.85 kbit/s modes 
Open-loop pitch analysis is performed twice per frame (every 10 ms) to find two estimates of the pitch lag in each 
frame. 

The open-loop pitch analysis is performed as follows. First, the correlation of decimated weighted speech is determined 
for each pitch lag value d by: 

 ( ) ( ) ( ) ( ) 115,,17,
63
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ddwdnsnsdC
n

wdwd , ( 31 ) 

where w(d) is a weighting function. The estimated pitch-lag is the delay that maximises the weighted correlation 
function C(d). The weighting emphasises lower pitch lag values reducing the likelihood of selecting a multiple of the 
correct delay. The weighting function consists of two parts: a low pitch lag emphasis function, wl(d), and a previous 
frame lag neighbouring emphasis function, wn(d): 

 ( ) ( ) ( )dwdwdw nl= . ( 32 ) 

The low pitch lag emphasis function is given by: 

 ( ) ( )dcwdwl =  ( 33 ) 

where cw(d) is defined by a table in the fixed point computational description. The previous frame lag neighbouring 
emphasis function depends on the pitch lag of previous speech frames: 

 ( ) ( )
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where Told is the median filtered pitch lag of 5 previous voiced speech half-frames and v is an adaptive parameter. If the 
frame is classified as voiced by having the open-loop gain g>0.6, then the v-value is set to 1.0 for the next frame. 
Otherwise, the v-value is updated by v=0.9v. The open loop gain is given by: 
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where dmax is the pitch delay that maximizes C(d). The median filter is updated only during voiced speech frames. The 
weighting depends on the reliability of the old pitch lags. If previous frames have contained unvoiced speech or silence, 
the weighting is attenuated through the parameter v. 
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5.5 Impulse response computation 
The impulse response, h(n), of the weighted synthesis filter ( ) )(ˆ/)/()()( 1 zAzHzAzWzH emphde−= γ  is computed each 

subframe.  This impulse response is needed for the search of adaptive and fixed codebooks.  The impulse response h(n) 
is computed by filtering the vector of coefficients of the filter A(z/γ1) extended by zeros through the two filters 

)(ˆ/1 zA and ( )zH emphde− . 

5.6 Target signal computation 
The target signal for adaptive codebook search is usually computed by subtracting the zero-input response of the 
weighted synthesis filter ( ) )(ˆ/)/()()( 1 zAzHzAzWzH emphde−= γ  from the weighted speech signal )(nsw . This is 

performed on a subframe basis. 

An equivalent procedure for computing the target signal, which is used in this codec, is the filtering of the LP residual 
signal r(n) through the combination of synthesis filter )(ˆ/1 zA  and the weighting filter )()/( 1 zHzA emphde−γ . After 

determining the excitation for the subframe, the initial states of these filters are updated by filtering the difference 
between the LP residual and excitation.  The memory update of these filters is explained in Section 5.10. 

The residual signal r(n) which is needed for finding the target vector is also used in the adaptive codebook search to 
extend the past excitation buffer. This simplifies the adaptive codebook search procedure for delays less than the 
subframe size of 64 as will be explained in the next section.  The LP residual is given by 

 .63...,,0,)(ˆ)()(
16

1

=−+= ∑
=

ninsansnr
i

i  ( 36 ) 

5.7 Adaptive codebook 
Adaptive codebook search is performed on a subframe basis.  It consists of performing closed loop pitch search, and 
then computing the adaptive codevector by interpolating the past excitation at the selected fractional pitch lag. 

The adaptive codebook parameters (or pitch parameters) are the delay and gain of the pitch filter. In the search stage, 
the excitation is extended by the LP residual to simplify the closed-loop search. 

In 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, in the first and third subframes, a fractional pitch 

delay is used with resolutions 1/4 in the range[34, 127
4
3

], resolutions 1/2 in the range [128, 159
2
1

], and integers only 

in the range [160,  231]. For the second and fourth subframes, a pitch resolution of 1/4 is always used in the range [T1-8, 

T1+7
4
3

], where T1 is nearest integer to the fractional pitch lag of the previous (1st or 3rd) subframe. 

In 8.85 kbit/s mode, in the first and third subframes, a fractional pitch delay is used with resolutions 1/2 in the range 

[34, 91
2
1

], and integers only in the range [92,  231]. For the second and fourth subframes, a pitch resolution of 1/2 is 

always used in the range [T1-8, T1+7
2
1

], where 1T  is nearest integer to the fractional pitch lag of the previous (1st or 

3rd) subframe. 

In 6.60 kbit/s mode, in the first subframe, a fractional pitch delay is used with resolutions 1/2 in the range [34,91
2
1

], 

and integers only in the range [92, 231]. For the second, third and fourth subframes, a pitch resolution of 1/2 is always 

used in the range [T1-8, T1+7
2
1

], where 1T  is nearest integer to the fractional pitch lag of the first subframe. 

Closed-loop pitch analysis is performed around the open-loop pitch estimates on a subframe basis. In 8.85, 12.65, 
14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, in the first (and third) subframe the range Top±7, bounded by 
34...231, is searched. In 6.60 kbit/s mode, in the first subframe the range Top±7, bounded by 34...231, is searched. For 
all the modes, for the other subframes, closed-loop pitch analysis is performed around the integer pitch selected in the 
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previous subframe, as described above. In 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, the pitch 
delay is encoded with 9  bits in the first and third subframes and the relative delay of the other subframes is encoded 
with 6 bits. In 8.85 kbit/s mode, the pitch delay is encoded with 8 bits in the first and third subframes and the relative 
delay of the other subframes is encoded with 5 bits. In 6.60 kbit/s mode, the pitch delay is encoded with 8 bits in the 
first subframe and the relative delay of the other subframes is encoded with 5 bits. 

The closed loop pitch search is performed by minimizing the mean-square weighted error between the original and 
synthesized speech.  This is achieved by maximizing the term 

 , 
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where x(n) is the target signal and yk(n) is the past filtered excitation at delay k  (past excitation convolved with h(n)).  
Note that the search range is limited around the open-loop pitch as explained earlier. 

The convolution yk(n) is computed for the first delay in the searched range, and for the other delays, it is updated using 
the recursive relation 

 )()()1()( 1 nhkunyny kk −+−= −  ( 38 ) 

where u(n),n=–(231+17),…,63, is the excitation buffer. Note that in search stage, the samples 63,,0 ),( K=nnu  , are 
not known, and they are needed for pitch delays less than 64. To simplify the search, the LP residual is copied to u(n) in 
order to make the relation in Equation (38) valid for all delays. 

Once the optimum integer pitch delay is determined, the fractions from 4
3−  to 4

3  with a step of 4
1  around that integer 

are tested.  The fractional pitch search is performed by interpolating the normalized correlation in Equation (37) and 
searching for its maximum. Once the fractional pitch lag is determined, v'(n) is computed by interpolating the past 
excitation signal u(n) at the given phase (fraction). (The interpolation is performed using two FIR filters (Hamming 
windowed sinc functions); one for interpolating the term in Equation (34) with the sinc truncated at ±17 and the other 
for interpolating the past excitation with the sinc truncated at ±63). The filters have their cut-off frequency (-3 dB) at 
6000 Hz in the oversampled domain, which means that the interpolation filters exhibit low-pass frequency response 
Thus, even when the pitch delay is an integer value, the adaptive codebook excitation consists of a low-pass filtered 
version of the past excitation at the given delay and not a direct copy thereof. Further, for delays smaller than the 
subframe size, the adaptive codebook excitation is completed based on the low-pass filtered interpolated past excitation 
and not by repeating the past excitation. 

In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is 
used. This is important in wideband signals since the periodicity doesn’t necessarily extend over the whole spectrum. In 
this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each 
signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch 
codevector from a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the 
pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the 
lowest calculated pitch prediction error is selected, along with the associated pitch gain.  

The low pass filter used in the second path is in the form BLP(z)=0.18z+0.64+0.18z-1. Note that 1 bit is used to encode 
the chosen path. 

Thus, for 8.85, 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, there are two possibilities to generate the 

adaptive codebook v(n), (n)vnv ′=)(  in the first path, or ∑
−=

+′+=
1

1

)()1()(
i

LP invibnv in the second path, where 

bLP=[0.18,0.64,0.18]. The path which results in  minimum energy of the target signal x2(n) defined in Equation (40) is 
selected for the filtered adaptive codebook vector. For 6.60 kbit/s mode, v(n) is always 

∑
−=

+′+=
1

1

)()1()(
i

LP invibnv . 

The adaptive codebook gain is then found by 
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where )()()( nhnvny ∗=  is the filtered adaptive codebook vector (zero-state response of )()( zWzH  to vi(n)). To insure 
stability, the adaptive codebook gain gp is bounded by 0.95, if the adaptive codebook gains of the previous subframes 
have been small and the LP filters of the previous subframes have been close to being unstable. 

5.8 Algebraic codebook 

5.8.1 Codebook structure 
The codebook structure is based on interleaved single-pulse permutation (ISPP) design. The 64 positions in the 
codevector are divided into 4 tracks of interleaved positions, with 16 positions in each track. The different codebooks at 
the different rates are constructed by placing a certain  number of signed pulses in the tracks (from 1 to 6 pulses per 
track). The codebook index, or codeword, represents the pulse positions and signs in each track. Thus, no codebook 
storage is needed, since the excitation vector at the decoder can be constructed through the information contained in the 
index itself (no lookup tables).  

An important feature of the used codebook is that it is a dynamic codebook consisting of an algebraic codebook 
followed by an adaptive prefilter F(z) which enhances special spectral components in order to improve the synthesis 
speech quality. A prefilter relevant to wideband signals is used whereby F(z) consists of two parts: a periodicity 
enhancement part 1/(1-0.85z-T) and a tilt part (1 – β1 z

-1), where T is the integer part of the pitch lag and β1 is related to 
the voicing of the previous subframe and is bounded by [0.0,0.5]. The codebook search is performed in the algebraic 
domain by combining the filter F(z) with the weighed synthesis filter prior to the coddedbook search. Thus, the impulse 
response h(n) must be modified to include the prefilter F(z). That is, )(*)()( nfnhnh ← . 

The codebook structures of different bit rates are given below. 

5.8.1.1 23.85 and 23.05 kbit/s mode 
In this codebook, the innovation vector contains 24 non-zero pulses. All pulses can have the amplitudes +1 or -1. The 
64 positions in a subframe are divided into 4 tracks, where each track contains six pulses, as shown in Table 4. 

Table 4. Potential positions of individual pulses in the algebraic codebook, 23.85 and 23.05 kbit/s. 

Track Pulse Positions 
1 i0, i4, i8, i12, i16, i20 0, 4, 8, 12, 16, 20, 24, 28, 32 36, 40, 44, 48, 52, 56, 60 
2 i1, i5, i9, i13, i17, i21 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61 
3 i2, i6, i10, i14, i18, i22 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62 
4 i3, i7, i11, i15, i19, i23 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63 

 

The six pulses in one track are encoded with 22 bits.  

This gives a total of 88 bits (22+22+22+22) for the algebraic code. 

5.8.1.2 19.85 kbit/s mode 
In this codebook, the innovation vector contains 18 non-zero pulses. All pulses can have the amplitudes +1 or -1. The 
64 positions in a subframe are divided into 4 tracks, where each of the first two tracks contains five pulses and each of 
the other tracks contains four pulses, as shown in Table 5. 
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Table 5. Potential positions of individual pulses in the algebraic codebook, 19.85 kbit/s. 

Track Pulse Positions 
1 i0, i4, i8, i12, i16 0, 4, 8, 12, 16, 20, 24, 28, 32 36, 40, 44, 48, 52, 56, 60 
2 i1, i5, i9, i13, i17 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61 
3 i2, i6, i10, i14 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62 
4 i3, i7, i11, i15 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63 

 

The five pulses in one track are encoded with 20 bits. The four pulses in one track is encoded with 16 bits.  

This gives a total of 72 bits (20+20+16+16) for the algebraic code. 

5.8.1.3  18.25 kbit/s mode 
In this codebook, the innovation vector contains 16 non-zero pulses. All pulses can have the amplitudes +1 or -1. The 
64 positions in a subframe are divided into 4 tracks, where each track contains four pulses, as shown in Table 6. 

Table6. Potential positions of individual pulses in the algebraic codebook, 18.25 kbit/s. 

Track Pulse Positions 
1 i0, i4, i8, i12 0, 4, 8, 12, 16, 20, 24, 28, 32 36, 40, 44, 48, 52, 56, 60 
2 i1, i5, i9, i13 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61 
3 i2, i6, i10, i14 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62 
4 i3, i7, i11, i15 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63 

 

The four pulses in one track are encoded with 16 bits. 

This gives a total of 64 bits (16+16+16+16) for the algebraic code. 

5.8.1.4 15.85 kbit/s mode 
In this codebook, the innovation vector contains 12 non-zero pulses. All pulses can have the amplitudes +1 or -1. The 
64 positions in a subframe are divided into 4 tracks, where each track contains three pulses, as shown in Table 7. 

Table 7. Potential positions of individual pulses in the algebraic codebook, 15.85 kbit/s. 

Track Pulse Positions 
1 i0, i4, i8  0, 4, 8, 12, 16, 20, 24, 28, 32 36, 40, 44, 48, 52, 56, 60 
2 i1, i5, i9 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61 
3 i2, i6, i10 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62 
4 i3, i7, i11 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63 

 

The three pulses in one track are encoded with 13 bits. 

This gives a total of 52 bits (13+13+13+13) for the algebraic code. 

5.8.1.5 14.25 kbit/s mode 
In this codebook, the innovation vector contains 10 non-zero pulses. All pulses can have the amplitudes +1 or -1. The 
64 positions in a subframe are divided into 4 tracks, where each track contains two or three pulses, as shown in Table 8. 

Table 8. Potential positions of individual pulses in the algebraic codebook, 14.25 kbit/s. 

Track Pulse Positions 
1 i0, i4, i8  0, 4, 8, 12, 16, 20, 24, 28, 32 36, 40, 44, 48, 52, 56, 60 
2 i1, i5, i9 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61 
3 i2, i6 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62 
4 i3, i7 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63 
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Each two pulse positions in one track are encoded with 8 bits (4 bits for the position of every pulse), and the sign of the 
first pulse in the track is encoded with 1 bit. 

The  three pulse in one track are encoded with 13 bits. 

This gives a total of 44 bits (13+13+9+9) for the algebraic code. 

5.8.1.6 12.65 kbit/s mode 
In this codebook, the innovation vector contains 8 non-zero pulses. All pulses can have the amplitudes +1 or -1. The 64 
positions in a subframe are divided into 4 tracks, where each track contains two pulses, as shown in Table 9. 

Table 9. Potential positions of individual pulses in the algebraic codebook, 12.65 kbit/s. 

Track Pulse Positions 
1 i0, i4 0, 4, 8, 12, 16, 20, 24, 28, 32 36, 40, 44, 48, 52, 56, 60 
2 i1, i5 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61 
3 i2, i6 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62 
4 i3, i7 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63 

 

Each two pulse positions in one track are encoded with 8 bits (total of 32 bits, 4 bits for the position of every pulse), and 
the sign of the first pulse in the track is encoded with 1 bit (total of 4 bits). This gives a total of 36 bits for the algebraic 
code. 

5.8.1.7 8.85 kbit/s mode 
In this codebook, the innovation vector contains 4 non-zero pulses. All pulses can have the amplitudes +1 or -1. The 64 
positions in a subframe are divided into 4 tracks, where each track contains one pulse, as shown in Table 10. 

Table 10. Potential positions of individual pulses in the algebraic codebook, 8.85 kbit/s. 

Track Pulse Positions 
1 i0 0, 4, 8, 12, 16, 20, 24, 28, 32 36, 40, 44, 48, 52, 56, 60 
2 i1 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61 
3 i2 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62 
4 i3 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63 

 

Each pulse position in one track are encoded with 4 bits and the sign of the pulse in the track is encoded with 1 bit. This 
gives a total of 20 bits for the algebraic code. 

5.8.1.8 6.60 kbit/s mode 
In this codebook, the innovation vector contains 2 non-zero pulses. All pulses can have the amplitudes +1 or -1. The 64 
positions in a subframe are divided into 2 tracks, where each track contains one pulse, as shown in Table 11. 

Table 11. Potential positions of individual pulses in the algebraic codebook, 6.60 kbit/s. 

Track Pulse Positions 
1 i0 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 

34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62 
2 i1 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 

35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63 
 

Each pulse position in one track are encoded with 5 bits and the sign of the pulse in the track is encoded with 1 bit. This 
gives a total of 12 bits for the algebraic code. 

5.8.2 Pulse indexing 
In the above section, the number of bits needed to encode a number of pulses in a track was given. In this section, the 
procedures used for encoding from 1 to 6 pulses per track will be described. The description will be given for the case 
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of 4 tracks per subframe, with 16 positions per track and pulse spacing of 4 (which is the case for all modes except the 
6.6 kbit/s mode). 

Encoding 1 signed pulse per track 

The pulse position index is encoded with 4 bits and the sign index with 1 bit. The position index is given by the pulse 
position in the subframe divided by the pulse spacing (integer division). The division remainder gives the track index. 
For example, a pulse at position 31 has a position index of 31/4 = 7 and it belong to the track with index 3 (4th track).  

The sign index here is set to 0 for positive signs and 1 for negative signs. 

The index of the signed pulse is given by 

 I1p= p +s×2M 

where p is the position index, s is the sign index, and M=4 is the number of bits per track. 

Encoding 2 signed pulses per track 

In case of two pulses per track of K=2M potential positions (here M=4), each pulse needs 1 bit for the sign and M bits for 
the position, which gives a total of 2M+2 bits. However, some redundancy exists due to the unimportance of the pulse 
ordering. For example, placing the first pulse at position p and the second pulse at position q is equivalent to placing the 
first pulse at position q and the second pulse at position p. One bit can be saved by encoding only one sign and deducing 
the second sign from the ordering of the positions in the index. Here the index is given by 

  I2p = p1 + p0×2M + s×22M 

where s is the sign index of the pulse at position index p0. If the two signs are equal then the smaller position is set to p0 
and the larger position is set to p1. On the other hand, of the two signs are not equal then the larger position is set to p0 
and the smaller position is set to p1. At the decoder, the sign of the pulse at position p0 is readily available. The second 
sign is deduced from the pulse ordering. If p0 is larger than p1 then the sign of the pulse at position p1 is opposite to that 
at position p0. If this is not the case then the two signs are set equal 

Encoding 3 signed pulses per track 

In case of three pulses per track, similar logic can be used as in the case of two pulses. For a track with 2M positions, 
3M+1 bits are needed instead of 3M+3 bits. A simple way of indexing the pulses is to divide the track positions in two 
sections (or halves) and identify a section that contains at least two pulses. The number of positions in the section is K/2 
= 2M/2 = 2M-1, which can be represented with M-1 bits. The two pulses in the section containing at least two pulses are 
encoded with the procedure for encoding 2 signed pulses which requires 2(M-1)+1 bits and the remaining pulse which 
can be anywhere in the track (in either section) is encoded with the M+1 bits. Finally, the index of the section that 
contains the two pulses is encoded with 1 bit. Thus the total number of required bits is 2(M-1)+1 + M+1 + 1 = 3M+1. 

A simple way of checking if two pulses are positioned in the same section is done by checking whether the most 
significant bits (MSB) of their position indices are equal or not. Note that a MSB of 0 means that the position belongs to 
the lower half of the track (0-7) and MSB of 1 means it belongs to the upper half (8-15). If the two pulses belong to the 
upper half, they need to be shifted to the range (0-7) before encoding them using 2×3+1 bits. This can be done by 
masking the M-1 least significant bits (LSB) with a mask consisting of M-1 ones (which corresponds to the number 7 in 
this case). 

The index of the 3 signed pulses is given by 

I3p = I2p +k×22M-1+ I1p×22M 

where I2p is the index of the two pulses in the same section, k is the section index (0 or 1), and I1p is the index of the 
third pulse in the track. 

Encoding 4 signed pulses per track 

The 4 signed pulses in a track of length K=2M can be encoded using 4M bits. Similar to the case of 3 pulses, the K 
positions in the track are divided into 2 sections (two halves) where each section contains K/2=8 positions. Here we 
denote the sections as Section A with positions 0 to K/2-1 and Section B with positions K/2 to K-1. Each section can 
contain from 0 to 4 pulses. The table below shows the 5 cases representing the possible number of pulses in each 
section: 
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case Pulses in Section A Pulses in Section B Bits needed 
0 0 4 4M-3 
1 1 3 4M-2 
2 2 2 4M-2 
3 3 1 4M-2 
4 4 0 4M-3 

 

In cases 0 or 4, the 4 pulses in a section of length K/2=2M-1 can be encoded using 4(M-1)+1=4M-3 bits (this will be 
explained later on). 

In cases 1 or 3, the 1 pulse in a section of length K/2=2M-1 can be encoded with M-1+1 = M bits and the 3 pulses in the 
other section can be encoded with 3(M-1)+1 = 3M-2 bits. This gives a total of M+3M-2 = 4M-2 bits. 

In case 2, the pulses in a section of length K/2=2M-1 can be encoded with 2(M-1)+1 = 2M–1 bits. Thus for both sections, 
2(2M–1) = 4M–2 bits are required. 

Now the case index can be encoded with 2 bits (4 possible cases) assuming cases 0 and 4 are combined. Then for cases 
1, 2, or 3, the number of needed bits is 4M-2. This gives a total of 4M-2 + 2 = 4M bits. For cases 0 or 4, one bit is 
needed for identifying either case, and 4M-3 bits are needed for encoding the 4 pulses in the section. Adding the 2 bits 
needed for the general case, this gives a total of  1+4M-3+2= 4M bits. 

The index of the 4 signed pulses is given by  

I4p = IAB + k×24M-2 

where k is the case index (2 bits), and IAB is the index of the pulses in both sections for each individual case.  

For cases 0 and 1, IAB is given by 

IAB_0,4 = I4p_section + j×24M-3 

where j is a 1-bit index identifying the section with 4 pulses and I4p_section is the index of the 4 pulses in that section 
(which requires 4M-3 bits). 

For case 1, IAB is given by 

IAB_1 = I3p_B + I1p_A ×23(M-1)+1 

where I3p_B is the index of the 3 pulses in Section B (3(M-1)+1 bits) and I1p_A is the index of the pulse in Section A ((M-
1)+1 bits). 

For case 2, IAB is given by 

IAB_2 = I2p_B + I2p_A ×22(M-1)+1 

where I2p_B is the index of the 2 pulses in Section B (2(M-1)+1 bits) and I2p_A is the index of the two pulses in Section A 
(2(M-1)+1 bits). 

Finally, for case 3, IAB is given by 

IAB_3 = I1p_B + I3p_A ×2M 

where I1p_B is the index of the pulse in Section B ((M-1)+1 bits) and I3p_A is the index of the 3 pulses in Section A (3(M-
1)+1 bits). 

For cases 0 and 4, it was mentioned that the 4 pulses in one section are encoded using 4(M-1)+1 bits. This is done by 
further dividing the section into 2 subsections of length K/4=2M-2 (=4 in this case); identifying a subsection that contains 
at least 2 pulses; coding the 2 pulses in that subsection using 2(M-2)+1=2M-3 bits; coding the index of the subsection 
that contains at least 2 pulses using 1 bit; and coding the remaining 2 pulses, assuming that they can be anywhere in the 
section, using 2(M-1)+1=2M-1 bits. This gives a total of (2M-3)+(1)+(2M-1) = 4M-3 bits 

Encoding 5 signed pulses per track 

The 5 signed pulses in a track of length K=2M can be encoded using 5M bits. Similar to the case of 4 pulses, the K 
positions in the track are divided into 2 sections A and B. Each section can contain from 0 to 5 pulses. A simple 
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approach to encode the 5 pulses is to identify a section that contains at least 3 pulses and to encode the 3 pulses in that 
section using 3(M-1)+1= 3M-2 bits, and to encode the remaining 2 pulses in the whole track using 2M+1 bits. This 
gives 5M-1 bits. An extra bit is needed to identify the section that contains at least 3 pulses. Thus a total of 5M bits are 
needed to encode the 5 signed pulses. 

The index of the 5 signed pulses is given by 

I5p = I2p + I3p×22M + k×25M-1 

Where k is the index of the section that contains at least 3 pulses, I3p is the index of the 3 pulses in that section (3(M-
1)+1 bits), and I2p is the index of the remaining 2 pulses in the track (2M+1 bits). 

Encoding 6 signed pulses per track 

The 6 signed pulses in a track of length K=2M are encoded using 6M-2 bits. Similar to the case of 5 pulses, the K 
positions in the track are divided into 2 sections A and B. Each section can contain from 0 to 6 pulses. The table below 
shows the 7 cases representing the possible number of pulses in each sections: 

case Pulses in Section A Pulses in Section B Bits needed 
0 0 6 6M-5 
1 1 5 6M-5 
2 2 4 6M-5 
3 3 3 6M-4 
4 4 2 6M-5 
5 5 1 6M-5 
6 6 0 6M-5 

 

Note that cases 0 and 6 are similar except that the 6 pulses are in different section. Similarly, cases 1 and 5 as well as 
cases 2 and 4 differ only in the section that contains more pulses. Therefore these cases can be coupled and an extra bit 
can be assigned to identify the section that contains more pulses. Since these cases initially need 6M-5 bits, the coupled 
cases need 6M-4 bits taking into account the Section bit. Thus, we have now 4 states of coupled cases, that is (0,6), 
(1,5), (2,4), and (3),with 2 extra bits needed for the state. This gives a total of 6M-4+2=6M-2 bits for the 6 signed 
pulses.  

In cases 0 and 6, 1 bit is needed to identify the section which contains 6 pulses. 5 pulses in that section are encoded 
using 5(M-1) bits (since the pulses are confined to that section), and the remaining pulse is encoded using (M-1)+1 bits. 
Thus a total of 1+5(M-1)+M=6M-4 bits are needed for this coupled case. Extra 2 bits are needed to encode the state of 
the coupled case, giving a total of 6M-2 bits. For this coupled case, the index of the 6 pulses is given by 

I6p = I1p + I5p×2M+ j×26M-5 + k×26M-4 

where k is the index of the coupled case (2 bits), j is the index of the section containing 6 pulses (1 bit), I5p is the index 
of 5 pulses in that section (5(M-1) bits), and I1p is the index of the remaining pulse in that section ((M-1)+1 bits). 

In cases 1 and 5, 1 bit is needed to identify the section which contains 5 pulses. The 5 pulses in that section are encoded 
using 5(M-1) bits and the pulse in the other section is encoded using (M-1)+1 bits. For this coupled case, the index of 
the 6 pulses is given by 

I6p = I1p + I5p×2M+ j×26M-5 + k×26M-4 

where k is the index of the coupled case (2 bits), j is the index of the section containing 5 pulses (1 bit), I5p is the index 
of the 5 pulses in that section (5(M-1) bits), and I1p is the index of the pulse in the other section ((M-1)+1 bits). 

In cases 2 or 4, 1 bit is needed to identify the section which contains 4 pulses. The 4 pulses in that section are encoded 
using 4(M-1) bits and the 2 pulses in the other section are encoded using 2(M-1)+1 bits. For this coupled case, the index 
of the 6 pulses is given by 

I6p = I2p + I4p×22(M-1)+1 + j×26M-5 + k×26M-4 

where k is the index of the coupled case (2 bits), j is the index of the section containing 4 pulses (1 bit), I4p is the index 
of 4 pulses in that section (4(M-1) bits), and I2p is the index of the 2 pulses in the other section (2(M-1)+1 bits). 

In case 3, the 3 pulses in each section are encoded using 3(M-1)+1 bits in each Section. For this case, the index of the 6 
pulses is given by 
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I6p = I3pB + I3pA×23(M-1)+1 + k×26M-4 

where k is the index of the coupled case (2 bits), I3pB is the index of 3 pulses Section B (3(M-1)+1 bits), and I3pA is the 
index of the 3 pulses in Section A (3(M-1)+1 bits). 

5.8.3 Codebook search 
The algebraic codebook is searched by minimizing the mean square error between the weighted input speech and the 
weighted synthesis speech.  The target signal used in the closed-loop pitch search is updated by subtracting the adaptive 
codebook contribution. That is 

 ,63,,0      , )()()(2 K=−= nnygnxnx p  ( 40 ) 

where y n v n h n( ) = ( ) ( )∗  is the filtered adaptive codebook vector and gp is the unquantized adaptive codebook gain. 

The matrix H is defined as the lower triangular Toeplitz convolution matrix with diagonal h(0) and lower diagonals 

h(1),…,h(63), and 2xHd t=  is the correlation between the target signal x2(n) and the impulse response h(n) (also 

known as the backward filtered target vector), and HHt=Φ  is the matrix of correlations of h(n). 

The elements of the vector d are computed by 
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and the elements of the symmetric matrix Φ  are computed by 

 ∑
=

==−−=
63

.63...,,       ,63...,,0      ),()(),(
jn

ijijnhinhjiφ  ( 42 ) 

If ck is the algebraic codevector at index k, then the algebraic codebook is searched by maximizing the search criterion 
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The vector d and the matrix  Φ are usually computed prior to the codebook search. 

The algebraic structure of the codebooks allows for very fast search procedures since the innovation vector ck contains 
only a few nonzero pulses.  The correlation in the numerator of Equation (43) is given by 
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where mi is the position of the ith pulse, ai is its amplitude, and Np is the number of pulses. The energy in the 
denominator of Equation (43) is given by 
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To simplify the search procedure, the pulse amplitudes are predetermined based on a certain reference signal b(n). In 
this so-called signal-selected pulse amplitude approach, the sign of a pulse at position i is set equal to the sign of the 
reference signal at that position. Here, the reference signal b(n) is given by 

 )()()( ndnr
E
E

nb LTP
r

d α+=   (46) 
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where dd t
dE = is the energy of the signal d(n) and LTP

t
LTPrE rr=  is the energy of the signal )(nrLTP

 which is the residual 

signal after long term prediction. The scaling factor α controls the amount of dependence of the reference signal on 
d(n), and it is lowered as the bit rate is increased. Here α =2 for 6.6 and 8.85 modes; α =1 for 12.65, 14.25, and 15.85 
modes; α =0.8 for 18.25 mode; α =0.75 for 19.85 mode; and α =0.5 for 23.05 and 23.85 modes. 

To simplify the search the signal d(n) and matrix Φ are modified to incorporate the pre-selected signs. Let sb(n) denote 
the vector containing the signs of b(n). The modified signal d’(n) is given by 

 )()()(' ndnsnd b=  n=0,…,N-1  

and the modified autocorrelation matrix Φ’ is given by 

 ),()()(),( jijsisji bb φφ =′ ,     i=0,…,N-1;   j=i,…,N-1.  

The correlation at the numerator of the search criterion Qk is now given by 
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and the energy at the denominator of the search criterion Qk is given by 
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The goal of the search now is to determine the codevector with the best set of Np pulse positions assuming amplitudes of 
the pulses have been selected as described above.  The basic selection criterion is the maximization of the above 
mentioned ratio Qk. 

In order to reduce the search complexity, a fast search procedure known as depth-first tree search procedure is used, 
whereby the pulse positions are determined Nm pulses at a time. More precisely, the Np available pulses are partitioned 
into M non-empty subsets of Nm pulses respectively such that N1+N2...+Nm...+NM = Np.  A particular choice of positions 
for the first J = N1+N2...+Nm-1 pulses considered is called a level-m path or a path of length J.  The basic criterion for a 
path of J pulse positions is the ratio Qk(J) when only the J relevant pulses are considered. 

The search begins with subset #1 and proceeds with subsequent subsets according to a tree structure whereby subset m 
is searched at the mth level of the tree. The purpose of the search at level 1 is to consider the N1 pulses of subset #1 and 
their valid positions in order to determine one, or a number of, candidate path(s) of length N1 which are the tree nodes at 
level l. The path at each terminating node of level m-1 is extended to length N1+N2...+Nm at level m by considering Nm 
new pulses and their valid positions.  One, or a number of, candidate extended path(s) are determined to constitute 
level-m nodes. The best codevector corresponds to that path of length Np which maximizes the criterion Qk(Np) with 
respect to all level-M nodes. 

A special form of the depth-first tree search procedure is used here, in which two pulses are searched at a time, that is, 
Nm=2, and these 2 pulses belong to two consecutive tracks. Further, instead of assuming that the matrix Φ is 
precomputed and stored, which requires a memory of N×N words (64×64= 4k words), a memory-efficient approach is 
used which reduces the memory requirement. In this approach, the search procedure is performed in such a way that 
only a part of the needed elements of the correlation matrix are precomputed and stored. This part corresponds to the 
correlations of the impulse response corresponding to potential pulse positions in consecutive tracks, as well as the 
correlations corresponding to φ(j,j), j=0,…,N-1 (that is the elements of the main diagonal of matrix Φ).  

In order to reduce complexity, while testing possible combinations of two pulses, a limited number of potential 
positions of the first pulse are tested. Further, in case of large number of pulses, some pulses in the higher levels of the 
search tree are fixed. In order to guess intelligently which potential pulse positions are considered for the first pulse or 
in order to fix some pulse positions, a "pulse-position likelihood-estimate vector" b is used, which is based on speech-
related signals.  The pth component b(p) of this estimate vector b characterizes the probability of a pulse occupying 
position p (p = 0, 1, ... N-1) in the best codevector we are searching for. Here the estimate vector b is the same vector 
used for preselecting the amplitudes and given in Equation (46). 

The search procedures for all bit rate modes are similar. Two pulses are searched at a time, and these two pulses always 
correspond to consecutive tracks. That is the two searched pulses are in tracks T0-T1, T1-T2, T2-T3, or T3-T0.  
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Before searching the positions, the sign of at pulse a potential position n is set the sign of b(n) at that position. Then the 
modified signal d’(n) is computed as described above by including the predetermined signs. 

For the first 2 pulses (1st tree level), the correlation at the numerator of the search criterion is given by 

 )(')(' 10 mdmdR += . 

and the energy at the denominator of the search criterion Qk is given by 

 
),(' 2),(' ),(' 101100 mmmmmmE φφφ ++=

  
where the correlations ),(' ji mmφ  has been modified to include the preselected signs at positions mi and mj. 

For subsequent levels, the numerator and denominator are updated by adding the contribution of two new pulses. 
Assuming that two new pulses at a certain tree level with positions mk and  mk+1 from two consecutive tracks are 
searched, then the updated value of R is given by 

 )(')(' 1+++= kk mdmdRR   (47) 

and the updated energy is given by 

)(2)(2),(' 2),(' ),(' 1111 ++++ +++++= khvkhvkkkkkk mRmRmmmmmmEE φφφ          (48) 

where Rhv(m) is the correlation between the impulse response h(n) and a vector vh(n) containing the addition of delayed 
versions of impulse response at the previously determined positions. That is, 
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At each tree level, the values of Rhv(m) are computed online for all possible positions in each of the two tracks being 
tested. It can be seen from Equation (48) that only the correlations ),(' 1+kk mmφ   corresponding to pulse positions in 

two consecutive tracks need to be stored (4×16×16 words), along with the correlations ),(' kk mmφ corresponding to 

the diagonal of the matrix Φ (64 words). Thus the memory requirement in the present algebraic structure is 1088 words 
instead of 64×64=4096 words. 

The search procedures at the different bit rates modes are similar. The difference is in the number of pulses, and 
accordingly, the number of levels in the tree search. In order to keep a comparable search complexity across the 
different codebooks, the number of tested positions is kept similar.  

The search in the 12.65 kbit/s mode will be described as an example. In this mode, 2 pulses are placed in each track 
giving a total of 8 pulses per subframe of length 64. Two pulses are searched at a time, and these two pulses always 
correspond to consecutive tracks. That is the two searched pulses are in tracks T0-T1, T1-T2, T2-T3, or T3-T0. The tree 
has 4 levels in this case. At the first level, pulse P0 is assigned to track T0 and pulse P1 to track T1. In this level, no 
search is performed and the two pulse positions are set to the maximum of b(n) in each track. In the second level, pulse 
P2 is assigned to track T2 and pulse P3 to track T3. 4 positions for pulse P2 are tested against all 16 positions of pulse P3. 
The 4 tested positions of P2 are determined based on the maxima of b(n) in the track. In the third level, pulse P4 is 
assigned to track T1 and pulse P5 to track T2. 8 positions for pulse P4 are tested against all 16 positions of pulse P5. 
Similar to the previous search level, the 8 tested positions of P4 are determined based on the maxima of b(n) in the track. 
In the fourth level, pulse P6 is assigned to track T3 and pulse P7 to track T0. 8 positions for pulse P6 are tested against all 
16 positions of pulse P7. Thus the total number of tested combination is 4×16+8×16+8×16=320. The whole process is 
repeated 4 times (4 iterations) by assigning the pulses to different tracks. For example, in the 2nd iteration, pulses P0 to 
P7 are assigned to tracks T1, T2, T3, T0, T2, T3, T0, and T1, respectively. Thus the total number of tested position 
combinations is 4×320=1280. 
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As another search example, in the 15.85 kbit/s mode, 3 pulses are placed in each track giving a total of 12 pulses. There 
are 6 levels in the tree search whereby two pulses are searched in each level. In the first two levels, 4 pulses are set to 
the maxima of b(n). In the subsequent 4 levels, the number of tested combinations are 4×16, 6×16, 8×16, and 8×16, 
respectively. 4 iterations are used giving a total of 4×26×16=1664 combinations. 

5.9 Quantization of the adaptive and fixed codebook gains 
The adaptive codebook gain (pitch gain) and the fixed (algebraic) codebook gain are vector quantized using a 6-bit 
codebook for modes 8.85 and 6.60 kbit/s and using a 7-bit codebook for all the other modes. 

The fixed codebook gain quantization is performed using MA prediction with fixed coefficients. The 4th order MA 
prediction is performed on the innovation energy as follows. Let E(n) be the mean-removed innovation energy (in dB) 
at subframe n, and given by 

 Eicg
N

nE
N

i
c −










= ∑

−

=

)(
1

 log 10)( 2
1

0

2  ( 49) 

where N=64 is the subframe size, c(i) is the fixed codebook excitation, and 30=E  dB is the mean of the innovation 
energy. The predicted energy is given by 
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where [b1 b2 b3 b4]=[05.,0.4,0.3,0.2] are the MA prediction coefficients, and $( )R k  is the quantized energy prediction 
error at subframe k. The predicted energy is used to compute a predicted fixed-codebook gain g'c as in Equation (49) (by 
substituting E(n) by 

~
( )E n  and gc by g'c).  This is done as follows. First, the mean innovation energy is found by 
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and then the predicted gain g'c is found by 

 gc
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A correction factor between the gain gc and the estimated one g'c is given by 

 γ = g gc c/ .'  ( 53) 

Note that the prediction error is given by 
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The pitch gain, gp, and correction factor γ are jointly vector quantized using a 6-bit codebook for modes 8.85 and 6.60 
kbit/s, and 7-bit codebook for other modes.  The gain codebook search is performed by minimizing the mean-square of 
the weighted error between original and reconstructed speech which is given 
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where the x is the target vector, y is the filtered adaptive codebook vector, and z is the filtered fixed codebook vector. 
(Each gain vector in the codebook also has an element representing the quantized energy prediction error.) The 
quantized energy prediction error associated with the chosen gains is used to update ( )$R n . In the search, only the 64 
codevectors that are closest to the unquantized pitch gain, gp, are taken into account. 
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5.10 Memory update 
An update of the states of the synthesis and weighting filters is needed in order to compute the target signal in the next 
subframe. 

After the two gains have been quantized, the excitation signal, u(n), in the present subframe is found by 

 ,63,,0      ),(ˆ)(ˆ)( K=+= nncgnvgnu cp  ( 56) 

where $gp  and $gc  are the quantized adaptive and fixed codebook gains, respectively, vi(n) the adaptive codebook vector 

(interpolated past excitation), and c(n) is the fixed codebook vector (algebraic code including pitch sharpening). The 
states of the filters can be updated by filtering the signal r(n)−u(n) (difference between residual and excitation) through 
the filters 1 / $( )A z  and )()/( 1 zHzA emphde−γ  for the 64 sample subframe and saving the states of the filters.  This would 

require 3 filterings. A simpler approach which requires only one filtering is as follows.  The local synthesis speech, 
$( )s n , is computed by filtering the excitation signal through 1 / $( )A z .  The output of the filter due to the input r(n)−u(n) 

is equivalent to e n s n s n( ) ( ) $( )= − .  So the states of the synthesis filter 1 / $( )A z  are given by e(n),n=48,…,63. Updating 
the states of the filter )()/( 1 zHzA emphde−γ  can be done by filtering the error signal e(n) through this filter to find the 

perceptually weighted error ew(n). However, the signal ew(n) can be equivalently found by 

 e n x n g y n g z nw p c( ) ( ) $ ( ) $ ( ).= − −  ( 57) 

Since the signals x(n), y(n), and z(n) are available, the states of the weighting filter are updated by computing ew(n) as in 
Equation (54) for 63,,48 K=n .  This saves two filterings. 

5.11 High-band gain generation 
In order to compute the high band gain for 23.85 kbit/s mode, 16 kHz input speech is filtered through a band-pass FIR 
filter HHB(z) which has the passband from 6.4 to 7 kHz. The high band gain gHB is obtained by  
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where sHB(i) is band-pass filtered input speech and sHB2(i) is high-band speech synthesis obtained from high-band 
excitation uHB2(i) filtered through high-band synthesis filter AHB(z) described in Section 6.3.2.2. 

6 Functional description of the decoder 
The function of the decoder consists of decoding the transmitted parameters (LP parameters, adaptive codebook vector, 
adaptive codebook gain, fixed codebook vector, fixed codebook gain and high-band gain) and performing synthesis to 
obtain the reconstructed speech.  The reconstructed speech is then postprocessed and upsampled  (and upscaled). 
Finally high-band signal is generated to the frequency band from 6 to 7 kHz. The signal flow at the decoder is shown in 
Figure 3. 

6.1 Decoding and speech synthesis 
The decoding process is performed in the following order: 

Decoding of LP filter parameters:  The received indices of ISP quantization are used to reconstruct the quantized ISP 
vector.  The interpolation described in Section 5.2.6 is performed to obtain 4 interpolated ISP vectors (corresponding to 
4 subframes). For each subframe, the interpolated ISP vector is converted to LP filter coefficient domain ak, which is 
used for synthesizing the reconstructed speech in the subframe. 

The following steps are repeated for each subframe: 
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1. Decoding of the adaptive codebook vector:  The received pitch index (adaptive codebook 
index) is used to find the integer and fractional parts of the pitch lag.  The adaptive codebook 
vector v(n) is found by interpolating the past excitation u(n) (at the pitch delay) using the FIR 
filter described in Section 5.6. The received adaptive filter index is used to find out whether the 
filtered adaptive codebook is v1(n)= v(n) or )v(n)v(nv(n)nv 218.0164.018.0)(2 −+−+= . 

2. Decoding of the innovative vector:  The received algebraic codebook index is used to extract 
the positions and amplitudes (signs) of the excitation pulses and to find the algebraic codevector 
c(n). If the integer part of the pitch lag is less than the subframe size 64, the pitch sharpening 
procedure is applied which translates into modifying c(n) by filtering it through the adaptive 
prefilter F(z) which consists of two parts: a periodicity enhancement part 1/(1-0.85z−T) and a tilt 
part (1 – β1 z−1), where T is the integer part of the pitch lag and β1(n) is related to the voicing of 
the previous subframe and is bounded by [0.0,0.5]. 

3. Decoding of the adaptive and innovative codebook gains:  The received index gives the fixed 
codebook gain correction factor $γ .  The estimated fixed codebook gain g'c is found as described 
in  Section 5.8. First, the predicted energy for every subframe n is found by 
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 and then the mean innovation energy is found by 
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 The predicted gain gc
'  is found by 

 gc
E n E Ei' (
~

( ) )= + −100 05  ( 61) 

 The quantized fixed codebook gain is given by 

 $ $ .'g gc c= γ  ( 62) 

4.  Computing the reconstructed speech:   The following steps are for n = 0, ..., 63. The total 
excitation is constructed by: 

 u n g v n g c np c( ) $ ( ) $ ( ), .= +  ( 63) 

Before the speech synthesis, a post-processing of excitation elements is performed  

 

5. Anti-sparseness processing (6.60 and 8.85 kbit/s modes): An adaptive anti-sparseness post-
processing procedure is applied to the fixed codebook vector c(n) in order to reduce perceptual 
artifacts arising from the sparseness of the algebraic fixed codebook vectors with only a few non-
zero samples per subframe. The anti-sparseness processing consists of circular convolution of the 
fixed codebook vector with an impulse response. Three pre-stored impulse responses are used 
and a number impNr=0,1,2 is set to select one of them. A value of 2 corresponds to no 
modification, a value of 1 corresponds to medium modification, while a value of 0 corresponds 
to strong modification. The selection of the impulse response is performed adaptively from the 
adaptive and fixed codebook gains. The following procedure is employed: 
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Detect onset by comparing the fixed codebook gain to the previous fixed codebook gain. If the 
current value is more than three times the previous value an onset is detected. 

If not onset and impNr=0, the median filtered value of the current and the previous 4 adaptive 
codebook gains are computed. If this value is less than 0.6, impNr=0. 

If not onset, the impNr-value is restricted to increase by one step from the previous subframe. 

If an onset is declared, the impNr -value is increased by one if it is less than 2. 

In case of 8.85 kbit/s mode, the impNr -value is increased by one. 

6. Noise enhancer: A nonlinear gain smoothing technique  is applied to the fixed codebook gain 
cĝ in order to enhance excitation in noise. Based on the stability and voicing of the speech 

segment, the gain of the fixed codebook is smoothed in order to reduce fluctuation in the energy 
of the excitation in case of stationary signals. This improves the performance in case of stationary 
background noise.  

The voicing factor is given by λ=0.5(1-rv) with rv=(Ev-Ec)/(Ev+Ec), where Ev and Ec are the 
energies of the scaled pitch codevector and scaled innovation codevector, respectively. Note that 
since the value of rv is between –1 and 1, the value of λ is between 0 and 1. Note that the factor λ 
is related to the amount of unvoicing with a value of 0 for purely voiced segments and a value of 
1 for purely unvoiced segments. 

A stability factor θ is computed based on a distance measure between the adjacent LP filters. 
Here, the factor θ is related to the ISP distance measure and it is bounded by 0≤θ≤1, with larger 
values of θ corresponding to more stable signals. 

Finally, a gain smoothing factor Sm is given by 

 Sm = λθ. (64) 

The value of Sm approaches 1 for unvoiced and stable signals, which is the case of stationary 
background noise signals. For purely voiced signals or for unstable signals, the value of Sm 
approaches 0. 

An initial modified gain g0 is computed by comparing the fixed codebook gain cĝ to a threshold 

given by the initial modified gain from the previous subframe, g-1. If cĝ  is larger or equal to g-1, 

then g0 is computed by decrementing cĝ  by 1.5 dB bounded by g0≥ g-1. If cĝ  is smaller than g-1, 

then g0 is computed by incrementing cĝ  by 1.5 dB bounded by g0≤ g-1. 

Finally, the gain is update with the value of the smoothed gain as follows  

 cc ggg ˆ)1(ˆ 0 θθ −+= ,             ( 65) 

7. Pitch enhancer: A pitch enhancer procedure modifies the total excitation )(nu by filtering the 
fixed codebook excitation through an innovation filter whose frequency response emphasizes the 
higher frequencies more than lower frequencies, and whose coefficients are related to the 
periodicity in the signal. A filter of the form  

 
11)( −−+−= zczczF pepeinno , ( 66) 

where cpe=0.125(1− rv), with rv=(Ev-Ec)/(Ev+Ec) as described above. The filtered fixed codevector 
is given by 

 ( ).)1()1()()(' −++−= ncnccncnc pe  ( 67) 

and the updated excitation is given by  

 
).('ˆ)(ˆ)( ncgnvgnu cp +=

 ( 68) 

The above procedure can be done in one step by updating the excitation as follows 
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 ( ).)1()1(ˆ)()( −++−= ncnccgnunu pec  ( 69) 

 

8. Post-processing of excitation elements (6.60 kbit/s mode): A post-processing of excitation 
elements procedure is applied to the total excitation )(nu by emphasizing the contribution of the 
adaptive codebook vector: 
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 Adaptive gain control (AGC) is used to compensate for the gain difference between the 
non-emphasized excitation u(n) and emphasized excitation )(ˆ nu  The gain scaling factor η for 
the emphasized excitation is computed by: 
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The gain-scaled emphasized excitation signal ( )nu′ˆ  is given by: 

  ( ) ( )ηnunu ˆˆ =′ .  ( 72) 

 The reconstructed speech for the subframe of size 64 is given by 

 

 .63,,0        ,)(ˆˆ)(ˆ)(ˆ
16

1

K=−−= ∑
=

ninsanuns
i

i  (73) 

 where $ai  are the interpolated LP filter coefficients. 

The synthesis speech $( )s n  is then passed through an adaptive postprocessing which is described in the following 
section. 

6.2 High-pass filtering, up-scaling and interpolation 
The high-pass filter serves as a precaution against undesired low frequency components. The signal is filtered through 
the high-pass filter Hh1(z) and de-emphasis filter Hde_emph(z). 

Finally, the signal is upsampled to 16 kHz to obtain the lower band synthesis signal ( )ns k16ˆ . ( )ns k16ˆ  is produced by 
first upsampling the lower band synthesis ( )ns k812ˆ  at 12.8 kHz by 5, then filtering the output through Hdecim(z), and 
finally downsampling it by 4. 

(Up-scaling consists of multiplying the output from the high-pass filtering by a factor of 2 in order to compensate the 
down-scaling at the pre-processing stage.) 

6.3 High frequency band 
For the higher frequency band (6.4 – 7.0 kHz), excitation is generated to model the highest frequencies. The high 
frequency content is generated by filling the upper part of the spectrum with a white noise properly scaled in the 
excitation domain, then converted to the speech domain by shaping it with a filter derived from the same LP synthesis 
filter used for synthesizing the down-sampled signal. 
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6.3.1 Generation of high-band excitation 
The high-band excitation is obtained by first generating white noise uHB1(n). The power of the high-band excitation is 
set equal to the power of the lower band excitation u2(n) which means that 

 ∑∑
==

=
63

0

2
1

63

0

2
212 )()()()(

k
HB

k
HBHB kukununu .  ( 74) 

Finally the high-band excitation is found by  

 )(ˆ)( 2 nugnu HBHBHB = , (75 )  

where HBĝ is a gain factor. 

In the 23.85 kbit/s mode, HBĝ is decoded from the received gain index. 

In 6.60, 8.85, 12.65, 14.25, 15.85, 18.25, 19.85 and 23.05 kbit/s modes, gHB is estimated using voicing information 
bounded by [0.1,1.0]. First, tilt of synthesis etilt is found  

 ∑∑
==

−=
63

0

2
63

1

)(ˆ)1(ˆ)(ˆ
n

hp
n

hphptilt nsnsnse  (76 ) 

where ( )nshpˆ  is high-pass filtered lower band speech synthesis ( )ns k812ˆ  with cut-off frequency of 400 Hz. The HBĝ  is 

then found by 

 BGSPSPSPHB gwgwg )1( −+= , ( 77 ) 

where gSP = 1 - etilt is gain for speech signal, gBG = 1.25gSP is gain for background noise signal, and wSP is a weighting 
function set to 1, when VAD is ON, and 0 when VAD is OFF. gHB is bounded between [0.1, 1.0]. In case of voiced 
segments where less energy is present at high frequencies, etilt approaches 1 resulting in a lower gain gHB. This reduces 
the energy of the generated noise in case of voiced segments. 

6.3.2 LP filter for the high frequency band 

6.3.2.1 6.60 kbit/s mode 
The high-band LP synthesis filter AHB(z) is found by extrapolating the quantized ISF vector f into 20th order ISF vector 
fe. First, maximum of the autocorrelation Cmax(i) of ISF vector difference vector 14,...,1),()1()( =−+=∆ iififif  is 
obtained. Then new 16kHz ISF vector fe'(i) is computed by 
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An approximation of the last element of new ISF vector 19ef is updated based on lower frequency coefficients. New 
extrapolated ISF vector difference vector )(ife∆′  is  

 ( ) 19,...,16,)1()()( =−′−′=′∆ iififcif eescalee , (79 ) 

where cscale scales )(ife∆′  so that fe(19) will be equal to fe19. In order to insure stability, )(ife∆′  is bounded by 

 19,...,17,500)1()( =>−′+′ ∆∆ iifif ee . (80) 

Finally, the extrapolated ISF vector ef is obtained by  
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fe is converted to cosine domain to obtain eq with 16000 Hz sampling rate. The high-band LP synthesis filter AHB(z) is 
obtained by converting eq  to LP filter as described in 5.2.4 with m=20. 

6.3.2.2 8.85, 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes 
The high-band LP synthesis filter AHB(z) is weighted low-band LP synthesis filter  

 )8.0(ˆ)( zAzAHB = , (82) 

where Â(z) is the interpolated LP synthesis filter. )(ˆ zA  has been computed analysing signal with the sampling rate of 
12.8 kHz but it is now used for a 16 kHz signal. Effectively, this means that the frequency response FR16(f) of AHB(z) is 
obtained by 

 ),
16

8.12
()( 81216 fFRfFR =  ( 83) 

where FR12 8(f) is the frequency response of A(z). This means that the band 5.1 – 5.6 kHz in 12.8 kHz domain will be 
mapped to 6.4 – 7.0 kHz in 16 kHz domain.  

6.3.3 High band synthesis 
uHB(n) is filtered through AHB(z). The output of this high-band synthesis sHB(n) is filtered through a band-pass FIR filter 
HHB(z) which has the passband from 6 to 7 kHz. Finally, sHB is added to synthesized speech ( )ns k16ˆ  to produce the 
synthesized output speech signal ( )nsoutputˆ . 

7 Detailed bit allocation of the adaptive multi-rate wideband codec 
The detailed allocation of the bits in the adaptive multi-rate wideband speech encoder is shown for each mode in table 
12a-12i. These tables show the order of the bits produced by the speech encoder. Note that the most significant bit 
(MSB) of each codec parameter is always sent first. 
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Table 12a: Source encoder output parameters in order of occurrence and bit allocation within the 
speech frame of 477 bits/20 ms, 23.85 kbit/s mode. 

Bits (MSB-LSB) Description 
s1 VAD-flag 

s2 – s9 index of 1st ISP subvector 
s10 – s17 index of 2nd ISP subvector 
s18 – s23 index of 3rd ISP subvector 
s24 – s30 index of 4th ISP subvector 
s31 – s37 index of 5th ISP subvector 
s38 – s42 index of 6th ISP subvector 
s43 – s47 index of 7th ISP subvector 

subframe 1 
s48 – s56 adaptive codebook index 

s57 LTP-filtering-flag 
s58 – s68 Codebook Index1 for track 1 
s69 – s79 Codebook Index1 for track 2 
ss80 –s90 Codebook Index1 for track 3 
s91–s101 Codebook Index1 for track 4 
s102–s112 Codebook Index2 for track 1 
s113–s123 Codebook Index2 for track 2 

s124 – s134 Codebook Index2 for track 3 
s135 – s145 Codebook Index2 for track 4 
s146 – s152 codebook gains 
s153 – s156 High-band energy 

subframe 2 
s157 – s162 adaptive codebook index (relative) 
s163 – s262 same description as s57 – s156 

subframe 3 
s263 – s371 same description as s48 – s156 

subframe 4 
s372 – s477 same description as s157 – s262 
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Table 12b: Source encoder output parameters in order of occurrence and bit allocation within the 
speech frame of 461 bits/20 ms, 23.05 kbit/s mode. 

Bits (MSB-LSB) Description 
s1 VAD-flag 

s2 – s9 index of 1st ISP subvector 
s10 – s17 index of 2nd ISP subvector 
s18 – s23 index of 3rd ISP subvector 
s24 – s30 index of 4th ISP subvector 
s31 – s37 index of 5th ISP subvector 
s38 – s42 index of 6th ISP subvector 
s43 – s47 index of 7th ISP subvector 

subframe 1 
s48 – s56 adaptive codebook index 

s57 LTP-filtering-flag 
s58 – s68 Codebook Index1 for track 1 
s69 – s79 Codebook Index1 for track 2 
ss80 –s90 Codebook Index1 for track 3 
s91–s101 Codebook Index1 for track 4 
s102–s112 Codebook Index2 for track 1 
s113–s123 Codebook Index2 for track 2 

s124 – s134 Codebook Index2 for track 3 
s135 – s145 Codebook Index2 for track 4 
s146 – s152 codebook gains 

subframe 2 
s153 – s158 adaptive codebook index (relative) 
s159 – s254 same description as s57 – s152 

subframe 3 
s255 – s359 same description as s48 – s152 

subframe 4 
s360 – s461 same description as s153 – s254 
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Table 12c: Source encoder output parameters in order of occurrence and bit allocation within the 
speech frame of 397 bits/20 ms, 19.85 kbit/s mode. 

Bits (MSB-LSB) Description 
s1 VAD-flag 

s2 – s9 index of 1st ISP subvector 
s10 – s17 index of 2nd ISP subvector 
s18 – s23 index of 3rd ISP subvector 
s24 – s30 index of 4th ISP subvector 
s31 – s37 index of 5th ISP subvector 
s38 – s42 index of 6th ISP subvector 
s43 – s47 index of 7th ISP subvector 

subframe 1 
s48 – s56 adaptive codebook index 

s57 LTP-filtering-flag 
s58 – s67 Codebook Index1 for track 1 
s68 – s77 Codebook Index1 for track 2 
s78 – s79 Pulse Selector for track 3 
s80 – s81 Pulse Selector for track 4 
s82 – s91 Codebook index2 for track 1 
s92 – s101 Codebook index2 for track 2 

s102 – s115 Codebook index for track 3 
s116 – s129 Codebook index for track 4 
s130 – s136 VQ gain 

subframe 2 
s137 – s142 adaptive codebook index (relative) 
s143 – s222 same description as s57 – s136 

subframe 3 
s223 – s311 same description as s48 – s136 

subframe 4 
s312 – s397 same description as s137 – s222 
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Table 12d: Source encoder output parameters in order of occurrence and bit allocation within the 
speech frame of 365 bits/20 ms, 18.25 kbit/s mode. 

Bits (MSB-LSB) Description 
s1 VAD-flag 

s2 – s9 index of 1st ISP subvector 
s10 – s17 index of 2nd ISP subvector 
s18 – s23 index of 3rd ISP subvector 
s24 – s30 index of 4th ISP subvector 
s31 – s37 index of 5th ISP subvector 
s38 – s42 index of 6th ISP subvector 
s43 – s47 index of 7th ISP subvector 

subframe 1 
s48 – s56 adaptive codebook index 

s57 LTP-filtering-flag 
s58 – s59 Pulse Selector for track 1 
s60 – s61 Pulse Selector for track 2 
s62 – s63 Pulse Selector for track 3 
s64 – s65 Pulse Selector for track 4 
s66 – s79 Codebook index for track 1 
s80 – s93 Codebook index for track 2 
s94 – s107 Codebook index for track 3 

s108 – s121 Codebook index for track 4 
s122 – s128 VQ gain 

subframe 2 
s129 – s134 adaptive codebook index (relative) 
s135 – s206 same description as s57 – s128 

subframe 3 
s207 – s287 same description as s48 – s128 

subframe 4 
s288 – s365 same description as s129 – s206 

 

Table 12e: Source encoder output parameters in order of occurrence and bit allocation within the 
speech frame of 317 bits/20 ms, 15.85 kbit/s mode. 

Bits (MSB-LSB) Description 
s1 VAD-flag 

s2 – s9 index of 1st ISP subvector 
s10 – s17 index of 2nd ISP subvector 
s18 – s23 index of 3rd ISP subvector 
s24 – s30 index of 4th ISP subvector 
s31 – s37 index of 5th ISP subvector 
s38 – s42 index of 6th ISP subvector 
s43 – s47 index of 7th ISP subvector 

subframe 1 
s48 – s56 adaptive codebook index 

s57 LTP-filtering-flag 
s58 – s70 Codebook index for track 1 
s71 – s83 Codebook index for track 2 
s84 – s96 Codebook index for track 3 
s97 – s109 Codebook index for track 4 

s110 – s116 VQ gain 
subframe 2 

s117 – s122 adaptive codebook index (relative) 
s123 – s182 same description as s57 – s116 

subframe 3 
s183 – s251 same description as s48 – s116 

subframe 4 
s252 – s317 same description as s117 – s182 
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Table 12f: Source encoder output parameters in order of occurrence and bit allocation within the 
speech frame of 285 bits/20 ms, 14.25 kbit/s mode. 

Bits (MSB-LSB) Description 
s1 VAD-flag 

s2 – s9 index of 1st ISP subvector 
s10 – s17 index of 2nd ISP subvector 
s18 – s23 index of 3rd ISP subvector 
s24 – s30 index of 4th ISP subvector 
s31 – s37 index of 5th ISP subvector 
s38 – s42 index of 6th ISP subvector 
s43 – s47 index of 7th ISP subvector 

subframe 1 
s48 – s56 adaptive codebook index 

s57 LTP-filtering-flag 
s58 – s70 Codebook index for track 1 
s71 – s83 Codebook index for track 2 
s84 – s92 Codebook index for track 3 
s93 – s101 Codebook index for track 4 

s102 – s108 VQ gain 
subframe 2 

s109 – s114 adaptive codebook index (relative) 
s115 – s166 same description as s57 – s108 

subframe 3 
s167 – s227 same description as s48 – s108 

subframe 4 
s228 – s285 same description as s109 – s166 

 

Table 12g: Source encoder output parameters in order of occurrence and bit allocation within the 
speech frame of 253 bits/20 ms, 12.65 kbit/s mode. 

Bits (MSB-LSB) Description 
s1 VAD-flag 

s2 – s9 index of 1st ISP subvector 
s10 – s17 index of 2nd ISP subvector 
s18 – s23 index of 3rd ISP subvector 
s24 – s30 index of 4th ISP subvector 
s31 – s37 index of 5th ISP subvector 
s38 – s42 index of 6th ISP subvector 
s43 – s47 index of 7th ISP subvector 

subframe 1 
s48 – s56 adaptive codebook index 

s57 LTP-filtering-flag 
s58 – s66 Codebook index for track 1 
s67 – s75 Codebook index for track 2 
s76 – s84 Codebook index for track 3 
s85 – s93 Codebook index for track 4 
s94 – s100 VQ gain 

subframe 2 
s101 – s106 adaptive codebook index (relative) 
s107 – s150 same description as s57 – s100 

subframe 3 
s151 – s203 same description as s48 – s100 

subframe 4 
s204 – s253 same description as s101 – s150 
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Table 12h: Source encoder output parameters in order of occurrence and bit allocation within the 
speech frame of 177 bits/20 ms, 8.85 kbit/s mode. 

Bits (MSB-LSB) Description 
s1 VAD-flag 

s2 – s9 index of 1st ISP subvector 
s10 – s17 index of 2nd ISP subvector 
s18 – s23 index of 3rd ISP subvector 
s24 – s30 index of 4th ISP subvector 
s31 – s37 index of 5th ISP subvector 
s38 – s42 index of 6th ISP subvector 
s43 – s47 index of 7th ISP subvector 

subframe 1 
s48 – s55 adaptive codebook index 
s56 – s60 Codebook index for track 1 
s61 – s65 Codebook index for track 2 
s66 – s70 Codebook index for track 3 
s71 – s75 Codebook index for track 4 
s76 – s81 VQ gain 

subframe 2 
s82 – s86 adaptive codebook index (relative) 
s87 – s112 same description as s56 – s81 

subframe 3 
s113 – s146 same description as s48 – s81 

subframe 4 
s147 – s177 same description as s82 – s112 

 

Table 12i: Source encoder output parameters in order of occurrence and bit allocation within the 
speech frame of 132 bits/20 ms, 6.60 kbit/s mode. 

Bits (MSB-LSB) Description 
s1 VAD-flag 

s2 – s9 index of 1st ISP subvector 
s10 – s17 index of 2nd ISP subvector 
s18 – s24 index of 3rd ISP subvector 
s25 – s31 index of 4th ISP subvector 
s32 – s37 index of 5th ISP subvector 

subframe 1 
s38 – s45 adaptive codebook index 
s46 –57 Codebook Index 

s58 – s63 VQ gain 
subframe 2 

s64 – s68 adaptive codebook index (relative) 
s69 – s86 same description as s46 – s63 

subframe 3 
s87 – s109 same description as s64 – s86 

subframe 4 
s110 – s132 same description as s64 – s86 

 

8 Homing sequences 

8.1 Functional description 
The adaptive multi-rate wideband speech codec is described in a bit-exact arithmetic to allow easy type approval as well 
as general testing of correct operation of the adaptive multi-rate wideband speech codec. 

The response of the codec to a predefined input sequence can only be foreseen if the internal state variables of the codec 
are in a predefined state at the beginning of the experiment. Therefore, the codec has to be put in a so called home state 
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before a bit-exact test can be performed. This is usually done by a reset (a procedure in which the internal state variables 
of the codec are set to their defined initial values). The codec mode of the speech encoder and speech decoder shall be 
set to the tested codec mode by external means at reset. 

To allow a reset of the codec in remote locations, special homing frames have been defined for the encoder and the 
decoder, thus enabling a codec homing by inband signalling. 

The codec homing procedure is defined in such a way, that in either direction (encoder or decoder) the homing 
functions are called after the processing of the homing frame. The output corresponding to the first homing frame is 
therefore dependent on the used codec mode and the codec state when receiving that frame and hence usually not 
known. The response of the encoder to any further homing frame is by definition the corresponding decoder homing 
frame for the used codec mode. The response of the decoder to any further homing frame is by definition the encoder 
homing frame. This procedure allows homing of both the encoder and decoder from either side, if a loop back 
configuration is implemented, taking proper framing into account. 

8.2 Definitions 
Encoder homing frame: The encoder homing frame consists of 320 identical samples, each 13 bits long, with the least 
significant bit set to "one" and all other bits set to "zero". When written to 16-bit words with left justification, the 
samples have a value of 0008 hex. The speech decoder has to produce this frame as a response to the second and any 
further decoder homing frame if at least two decoder homing frames were input to the decoder consecutively. The 
encoder homing frame is identical for all codec modes. 

Decoder homing frame: There exist nine different decoder homing frames, which correspond to the nine AMR-WB 
codec modes. Using one of these codec modes, the corresponding decoder homing frame is the natural response of the 
speech encoder to the second and any further encoder homing frame if at least two encoder homing frames were input to 
the encoder consecutively. In Annex C/G.722.2, for each decoder homing frame the parameter values are given. 

8.3 Encoder homing 
Whenever the adaptive multi-rate wideband speech encoder receives at its input an encoder homing frame exactly 
aligned with its internal speech frame segmentation, the following events take place: 

Step 1: The speech encoder performs its normal operation including VAD and SCR and produces in 
accordance with the used codec mode a speech parameter frame at its output which is in general 
unknown. But if the speech encoder was in its home state at the beginning of that frame, then the 
resulting speech parameter frame is identical to that decoder homing frame, which corresponds to 
the used codec mode (this is the way how the decoder homing frames  were constructed). 

 
Step 2: After successful termination of that operation the speech encoder provokes the homing functions 

for all sub-modules including VAD and SCR and sets all state variables into their home state. On 
the reception of the next input frame, the speech encoder will start from its home state. 

 
NOTE: Applying a sequence of N encoder homing frames will cause at least N-1 decoder homing frames at the 

output of the speech encoder. 

8.4 Decoder homing 
Whenever the speech decoder receives at its input a decoder homing frame, which corresponds to the used codec mode, 
then the following events take place: 

Step 1: The speech decoder performs its normal operation and produces a speech frame at its output which 
is in general unknown. But if the speech decoder was in its home state at the beginning of that 
frame, then the resulting speech frame is replaced by the encoder homing frame. This would not 
naturally be the case but is forced by this definition here. 

 
Step 2: After successful termination of that operation the speech decoder provokes the homing functions 

for all sub-modules including the comfort noise generator and sets all state variables into their 
home state. On the reception of the next input frame, the speech decoder will start from its home 
state. 
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NOTE 1: Applying a sequence of N decoder homing frames will cause at least N-1 encoder homing frames at the 
output of the speech decoder. 

NOTE 2: By definition the first frame of each decoder test sequence must differ from the decoder homing frame at 
least in one bit position within the parameters for LPC and first subframe. Therefore, if the decoder is in its home state, 
it is sufficient to check only these parameters to detect a subsequent decoder homing frame. This definition is made to 
support a delay-optimized implementation. 
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Figure 3 Detailed block diagram of the ACELP decoder 
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9 Voice Activity Detector (VAD) 
The function of the VAD algorithm is to indicate whether each 20 ms frame contains signals that should be transmitted, 
e.g. speech, music or information tones. The output of the VAD algorithm is a Boolean flag (VAD_flag) indicating 
presence of such signals.  This flag is used in the AMR-WB speech coder and Annex B/G.722.2. 

9.1 VAD Symbols 
For the purposes of this Section, the following symbols apply. 

9.1.1 VAD Variables 
bckr_est[n] background noise estimate at the frequency band "n" 

burst_count counts length of a speech burst, used by VAD hangover addition 

hang_count hangover counter, used by VAD hangover addition 

level[n] signal level at the frequency band "n" 

new_speech pointer of the speech encoder, points a buffer containing last received samples of a speech frame  

noise_level estimated noise level 

pow_sum input power 

s(i) samples of the input frame 

snr_sum measure between input frame and noise estimate 

speech_level estimated speech level 

stat_count stationary counter 

stat_rat measure indicating stationary of the input frame 

tone_flag flag indicating the presence of a tone 

vad_thr VAD threshold 

VAD_flag Boolean VAD flag 

vadreg intermediate VAD decision 

9.1.2 VAD Constants 
ALPHA_UP1      constant for updating noise estimate  

ALPHA_DOWN1    constant for updating noise estimate  

ALPHA_UP2      constant for updating noise estimate  

ALPHA_DOWN2    constant for updating noise estimate  

ALPHA3      constant for updating noise estimate  

ALPHA4      constant for updating average signal level 

ALPHA5      constant for updating average signal level  

BURST_HIGH      constant for controlling VAD hangover addition  

BURST_P1      constant for controlling VAD hangover addition  

BURST_SLOPE    constant for controlling VAD hangover addition  
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COEFF3      coefficient for the filter bank  

COEFF5_1      coefficient for the filter bank  

COEFF5_2      coefficient for the filter bank  

HANG_HIGH      constant for controlling VAD hangover addition  

HANG_LOW      constant for controlling VAD hangover addition  

HANG_P1      constant for controlling VAD hangover addition  

HANG_SLOPE      constant for controlling VAD hangover addition  

FRAME_LEN      size of a speech frame, 256 samples (20 ms) 

MIN_SPEECH_LEVEL1  constant for speech estimation  

MIN_SPEECH_LEVEL2  constant for speech estimation  

MIN_SPEECH_SNR   constant for VAD threshold adaptation  

NO_P1      constant for VAD threshold adaptation  

NO_SLOPE      constant for VAD threshold adaptation  

NOISE_MAX      maximum value for noise estimate 

NOISE_MIN      minimum value for noise estimate  

POW_TONE_THR    threshold for tone detection  

SP_ACTIVITY_COUNT  constant for speech estimation  

SP_ALPHA_DOWN   constant for speech estimation  

SP_ALPHA_UP    constant for speech estimation  

SP_CH_MAX      constant for VAD threshold adaptation  

SP_CH_MIN      constant for VAD threshold adaptation  

SP_EST_COUNT    constant for speech estimation  

SP_P1      constant for VAD threshold adaptation  

SP_SLOPE      constant for VAD threshold adaptation  

STAT_COUNT      threshold for stationary detection  

STAT_THR      threshold for stationary detection  

STAT_THR_LEVEL   threshold for stationary detection  

THR_HIGH      constant for VAD threshold adaptation  

TONE_THR      threshold for tone detection  

VAD_POW_LOW    constant for controlling VAD hangover addition  

9.1.3 Functions 
+ Addition 

- Subtraction 

* Multiplication 

/ Division 
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| x | absolute value of x 

AND Boolean AND 

OR Boolean OR 

x n
n a

b
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9.2 Functional description 
The block diagram of the VAD algorithm is depicted in Figure 4. The VAD algorithm uses parameters of the speech 
encoder to compute the Boolean VAD flag (VAD_flag). This input frame for VAD is sampled at the 12.8 kHz 
frequency and thus it contains 256 samples. Samples of the input frame (s(i)) are divided into sub-bands and level of the 
signal (level[n]) in each band is calculated. The normalized open-loop pitch gains are the input for the tone detection 
function, gains which are calculated by open-loop pitch analysis of the speech encoder. The tone detection function 
computes a flag (tone_flag) which indicates presence of a signalling tone, voiced speech, or other strongly periodic 
signal. Background noise level (bckr_est[n]) is estimated in each band based on the VAD decision, signal stationarity 
and the tone-flag. Intermediate VAD decision is calculated by comparing input SNR (level[n]/bckr_est[n]) to an 
adaptive threshold. The threshold is adapted based on noise and long term speech estimates. Finally, the VAD flag is 
calculated by adding hangover to the intermediate VAD decision. 

 

Filter bank
and
computation
of sub-band
levels

VAD
decision

Tone
detection

ol_gain
VAD_flag

level[n]

tone_flag

s(i)

 

Figure 4. Simplified block diagram of the VAD algorithm 

9.2.1 Filter bank and computation of sub-band levels 
The input signal is divided into frequency bands using a 12-band filter bank (Figure 5). Cut-off frequencies for the filter 
bank are shown in Table 13.  
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Table 13. Cut-off frequencies for the filter bank 

Band number Frequencies 

1 0 – 200 Hz 

2 200 – 400 Hz 

3 400 – 600 Hz 

4 600 – 800 Hz 

5 800 – 1200 Hz 

6 1200 – 1600 Hz 

7 1600 – 2000 Hz 

8 2000 – 2400 Hz 

9 2400 - 3200 Hz 

10 3200 – 4000 Hz 

11 4000 – 4800 Hz 

12 4800 – 6400 Hz 

 

Input for the filter bank is a speech frame pointed by the new_speech pointer of the G.722.2 speech encoder. Input 
values for the filter bank are scaled down by one bit. This ensures safe scaling, i.e. saturation can not occur during 
calculation of the filter bank. 

5th order
filter block

5th order
filter block

5th order
filter block

3rd order
filter block

5th order
filter block

5th order
filter block

3rd order
filter block

4.8 - 6.4 kHz
4.0 - 4.8 kHz

3.2 - 4.0 kHz

2.4 - 3.2 kHz

2.0 - 2.4 kHz
1.6 - 2.0 kHz

3rd order
filter block

3rd order
filter block

1.2 - 1.6 kHz

0.8 - 1.2 kHz

3rd order
filter block

3rd order
filter block

0.6 - 0.8 kHz

0.4 - 0.6 kHz

0.2 - 0.4 kHz

0.0 - 0.2 kHz

 

Figure 5. Filter bank 
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The filter bank consists of 5th and 3rd order filter blocks. Each filter block divides the input into high-pass and low-pass 
parts and decimates the sampling frequency by 2. The 5th order filter block is calculated as follows: 

 
)))1*2(())*2(((*5.0)( 21 ++= ixAixAixlp  (84a) 

 
)))1*2(())*2(((*5.0)( 21 +−= ixAixAixhp  (84b) 

where 

x(i)   input signal for a filter block 

)(ixlp  low-pass component 

)(ixhp  high-pass component 

The 3rd order filter block is calculated as follows: 

 
)))*2(()1*2((*5.0)( 3 ixAixixlp ++=  (85a) 

 
)))*2(()1*2((*5.0)( 3 ixAixixhp −+=  (85b) 

The filters ()1A , ()2A , and ()3A are first order direct form all-pass filters, whose transfer function is given by: 

 
1

1

*1
)( −

−

+
+

=
zC

zC
zA , (86) 

where C is the filter coefficient. 

Coefficients for the all-pass filters ()1A , ()2A , and ()3A  are COEFF5_1, COEFF5_2, and COEFF3, respectively. 

Signal level is calculated at the output of the filter bank at each frequency band as follows: 

 
∑

=

=
n

n

END
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where: 

n    index for the frequency band 

)(ixn   sample i at the output of the filter bank at frequency band n 
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Negative indices of )(ixn  refer to the previous frame. 
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9.2.2 Tone detection 
The purpose of the tone detection fimction is to detect infonuation tones, vowel sounds and other periodic signals. The 
tone detection uses nonualized open-loop pitch gains (ol_gain), which are received from the speech encoder. If the 
pitch gain is higher than the constant TONE_ THR, tone is detected and the tone flag is set: 

if (ol_gain >TONE_ THR) 

tone_flag = 1 

The open-loop pitch search and CO!Tespondingly the tone flag is computed twice in each frame, except for mode 6.60 
kbit/s, where it is computed only once. 

9.2.3 VAD decision 
The block diagram of the VAD decision algoritlun is shown in Figure 6. 

level[n) 

tone_~g 
r 1 

SNR bckr_est[n) Background Speech 
Computation Noise Estimation ~ 

Estimation 

~ 
snr stun noise le •el s eech level 

1J 1 

Comparison 
vad thr 

Threshold ... Adaptation 

vadreP 

Hangover 
Addition .... .... 

_flag ~ VAD 

Figu re 6. Simplified block diagram of the V AD decision algorithm 

Power of the input frame is calculated as follows: 

FRAME LEN 

frame - pow = r s(i) * s(i) . 
i=O 

(88) 

where samples s(i) of the input fr·ame are pointed by the new_speech pointer of the speech encoder. Variable 
pow _sum is stun of the powers of the ctuTent and previous frames. If pow _sum is lower than the constant 
POW_ TONE_ THR, tone-flag is set to zero. 

The difference between the signal levels of the input frame and the backgrotmd noise estimate is calculated as follows: 

12 level[n] 2 snr sum = L:MAX(l.O, [ ]) . 
- n=l bckr- est n 

(89) 

where: 
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level[n]   signal level at band n 

bckr_est[n] level of background noise estimate at band n 

 

VAD decision is made by comparing the variable snr_sum to a threshold. The threshold (vad_thr) is adapted to get 
desired sensitivity depending on estimated speech and background noise levels.  

Average background noise level is calculated by adding noise estimates at each band except the lowest band: 

 
[ ]∑

=

=
12

2

__
n

nestbckrlevelnoise
 (90) 

If SNR is lower that the threshold (MIN_SPEECH_SNR), speech level is increased as follows:  

If (speech_level/noise_level < MIN_SPEECH_SNR) 

  Speech_level = MIN_SPEECH_SNR * noise_level 

 

Logarithmic value for noise estimate is calculated as follows: 

 el)(noise_level_noise_levi 2log2log =  (91) 

Before logarithmic value from the speech estimate is calculated, MIN_SPEECH_SNR*noise_level is subtracted from 
the speech level to correct its value in low SNR situations. 

 level)noiseSNRSPEECHMINvel(speech_level_speech_lei _*__log2log 2 −=  (92) 

Threshold for VAD decision is calculated as follows: 

 Vad_thr = NO_SLOPE * (ilog2_noise_level - NO_P1) + THR_HIGH + MIN(SP_CH_MAX,  
MAX(SP_CH_MIN, SP_CH_MIN + SP_SLOPE * (ilog2_speech_level – SP_P1))),  (93) 

where NO_SLOPE, SP_SLOPE, NO_P1, SP_P1, THR_HIGH, SP_CH_MAX and SP_CH_MIN are constants. 

The variable vadreg indicates intermediate VAD decision and it is calculated as follows: 

if (snr_sum > vad_thr) 
     vadreg = 1 
else 
     vadreg = 0 

9.2.3.1 Hangover addition 
Before the final VAD flag is given, a hangover is added. The hangover addition helps to detect low power endings of 
speech bursts, which are subjectively important but difficult to detect.  

VAD flag is set to “1” if less that hang_len frames with “0” decision have been elapsed since burst_len consecutive 
“1” decisions have been detected. The variables hang_len and burst_len are computed using vad_thr as follows: 

 hang_len = MAX(HANG_LOW, (HANG_SLOPE * (vad_thr – HANG_P1) + HANG_HIGH)) (94) 

 burst_len = BURST_SLOPE * (vad_thr – BURST_P1) + BURST_HIGH) (95) 

The power of the input frame is compared to a threshold (VAD_POW_LOW). If the power is lower, the VAD flag is 
set to “0” and no hangover is added. The VAD_flag is calculated as follows: 

Vad_flag = 0; 
if (pow_sum < VAD_POW_LOW) 

burst_count = 0 
hang_count = 0 

else 
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if (vadreg = 1) 
burst_count = burst_count + 1 
if (burst_count >= burst_len) 

hang_count = hang_len 
VAD_flag = 1 

else 
burst_count = 0 
if (hang_count > 0) 

hang_count = hang_count - 1 
VAD_flag=1 

9.2.3.2 Background noise estimation 
Background noise estimate (bckr_est[n]) is updated using amplitude levels of the previous frame. Thus, the update is 
delayed by one frame to avoid undetected start of speech bursts to corrupt the noise estimate. The update speed for the 
current frame is selected using intermediate VAD decisions (vadreg) and stationarity counter (stat_count) as follows: 

if (vadreg for the last 4 frames has been zero) 
alpha_up = ALPHA_UP1 
alpha_down = ALPHA_DOWN1 

else if (stat_count = 0) 
alpha_up = ALPHA_UP2 
alpha_down = ALPHA_DOWN2 

else 
alpha_up = 0 
alpha_down = ALPHA3 

 

The variable stat_count indicates stationary and its purpose is explained later in this subclause. The variables 
alpha_up and alpha_down define the update speed for upwards and downwards, respectively. The update speed for 
each band "n" is selected as follows: 

if ( [ ]nestbckr m_  < [ ]nlevelm 1− ) 
alpha[n] = alpha_up 

else 
alpha[n] = alpha_down 
 

Finally, noise estimate is updated as follows: 

[ ] [ ] [ ] [ ] [ ]nlevelnalphanestbckrnalphanestbckr mmm 11 *_*)0.1(_ −+ +−= , (96) 

where: 

 n  index of the frequency band 

m  index of the frame 

Level of the background estimate (bckr_est[n]) is limited between constants NOISE_MIN and NOISE_MAX. 

If level of background noise increases suddenly, vadreg will be set to "1" and background noise is not normally 
updated upwards. To recover from this situation, update of the background noise estimate is enabled if the intermediate 
VAD decision (vadreg) is “1” for long enough time and spectrum is stationary. Stationary (stat_rat) is estimated using 
following equation: 

 

[ ] [ ]
[ ] [ ]∑
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,
 (97) 

where: 

 STAT_THR_LEVEL a constant 
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 n        index of the frequency band 

m        index of the frame 

ave_level     average level of the input signal 

If the stationary estimate (stat_rat) is higher than a threshold, the stationary counter (stat_count) is set to the initial 
value defined by constant STAT_COUNT. If the signal is not stationary but speech has been detected (VAD decision is 
“1”), stat_count is decreased by one in each frame until it is zero. 

if (5 last tone flags have been one) 
stat_count = STAT_COUNT 

else 
if (8 last internal VAD decisions have been zero) OR (stat_rat > STAT_THR) 

stat_count = STAT_COUNT 
else  

if (vadreg) AND (stat_count ≠ 0) 
stat_count = stat_count – 1 

 
The average signal levels (ave_level[n]) are calculated as follows: 

 [ ] [ ] [ ]nlevelalphanlevelavealphanlevelave mmm *_*)0.1(_ 1 +−=+  (98) 

The update speed (alpha) for the previous equation is selected as follows: 

if (stat_count = STAT_COUNT) 
alpha = 1.0 

else if (vadreg = 1)  
alpha=ALPHA5 

else 
alpha = ALPHA4 

9.2.3.3 Speech level estimation 
First, full-band input level is calculated by summing input levels in each band except the lowest band as follows: 

 [ ]∑
=

=
12

2

_
n

nlevellevelin  (99) 

A frame is assumed to contain speech if its level if high enough (MIN_SPEECH_LEVEL1), and the intermediate VAD 
flag (vadreg) is set or the input level is higher than the current speech level estimate. Maximum level (sp_max) from 
SP_EST_COUNT frames is searched. If the SP_ACTIVITY_COUNT number of speech frames is located in within 
SP_EST_COUNT number of frames, speech level estimate is updated by the maximum signal level (sp_max). The 
pseudocode for the speech level estimation is as follows: 

If  (SP_ACTIVITY_COUNT > SP_EST_COUNT – sp_est_cnt + sp_max_cnt) 
 sp_est_cnt  = 0 
 sp_max_cnt = 0 
 sp_max = 0 
sp_est_cnt = sp_est_cnt + 1 
if (in_level > MIN_SPEECH_LEVEL1) AND ((vadreg = 1) OR (in_level > speech_level)) 
 sp_max_cnt = sp_max_cnt + 1 
 sp_max = MAX(sp_max, in_level) 
 if (sp_max_cnt > SP_ACTIVITY_COUNT) 
  if (sp_max > MIN_SPEECH_LEVEL2) 
   if (sp_max > speech_level) 
    speech_level = speech_level + SP_ALPHA_UP * (sp_max – speech_level) 
   else 
    speech_level = speech_level + SP_ALPHA_DOWN * (sp_max – speech_level) 
  sp_max_cnt = 0 
  sp_max = 0 
  sp_est_cnt = 0 
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ITU-T  RECOMMENDATION  G.722.2 

WIDEBAND CODING OF SPEECH AT AROUND 16 KBIT/S USING 
ADAPTIVE MULTI-RATE WIDEBAND (AMR-WB) 

APPENDIX I 

ERROR CONCEALMENT OF ERRONEOUS OR LOST FRAMES 

 

 

Summary 

This document specifies a non-normative example solution for concealment of erroneous or lost frames for the G.722.2 
AMR-WB codec. 

The concealment operations described here were also adopted by 3GPP in 3GPP specification TS 26.191. 

 

 

Source 

Appendix I to ITU-T Recommendation G.722.2 was prepared by ITU-T Study Group 16 (2001-2004) and was approved 
under the WTSC Resolution No. 1 procedure on 13 January 2002. 
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Recommendation G.722.2 

WIDEBAND CODING OF SPEECH AT AROUND 16 KBIT/S USING 
ADAPTIVE MULTI-RATE WIDEBAND (AMR-WB) 

APPENDIX I 

ERROR CONCEALMENT OF ERRONEOUS OR LOST FRAMES 

(Geneva, 2001) 

I.1 Scope 
This specification defines an example procedure for error concealment, also termed frame substitution and muting 
procedure, for use by the AMR-WB speech codec receiving end when one or more erroneous/lost speech or lost Silence 
Descriptor (SID) frames are received. 

The algorithm specified in this Appendix is available as part of the ANSI-C code in Annex C/G.722.2. In case of 
discrepancy between the specification in this Appendix and the fixed point computational description of this algorithm 
contained in Annex C/G.722.2, the description in Annex C/G.722.2 will prevail.  

I.2 Definitions and abbreviations 

I.2.1 Definitions 
For the purposes of this document, the following definition applies: 

N-point median operation: Consists of sorting the N elements belonging to the set for which the median operation is 
to be performed in an ascending order according to their values, and selecting the (int (N/2) + 1) -th  largest value of the 
sorted set as the median value. 
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I.2.2 Abbreviations  
For the purposes of this document, the following abbreviations apply: 

AMR-WB Adaptive Multi Rate - WideBand 

AN Access Network 

BFI Bad Frame Indication from AN 

BSI_netw Bad Sub-block Indication obtained from AN interface CRC checks 

prevBFI Bad Frame Indication of previous frame 

 

RX Receive 

SCR Source  Controlled Rate (operation) 

SID Silence Descriptor frame (Background noise) 

CRC Cyclic Redundancy Check 

ECU Error Concealment Unit 

BFH Bad Frame Handling 

medianN N-point median operation 

I.3 General 
The purpose of the error concealment procedure is to conceal the effect of erroneous/lost AMR-WB speech frames. The 
purpose of muting the output in the case of several erroneous/lost frames is to indicate the breakdown of the channel to 
the user and to avoid generating possible annoying sounds as a result from the error concealment procedure. 

The network shall indicate erroneous/lost speech or lost SID frames by setting the RX_TYPE values [Annex 
B/G.722.2] to SPEECH_BAD, SID_BAD or SPEECH_LOST. If these flags are set, the speech decoder shall perform 
parameter substitution to conceal errors. 

The example solution provided in section I.5 apply only to bad frame handling on a complete speech frame basis. Sub-
frame based error concealment may be derived using similar methods. 

I.4 Requirements 

I.4.1 Error detection 
If the most sensitive bits of the AMR-WB speech data are received in error, the network shall indicate RX_TYPE = 
SPEECH_BAD in which case the BFI flag is set. When the frame is not received, the network shall indicate RX_TYPE 
= RX_SPEECH_LOST in which case the BFI flag is set as well. If a SID frame is received in error, the network shall 
indicate RX_TYPE = SID_BAD..  

I.4.2 Erroneous or lost speech frames 
Normal decoding of erroneous/lost speech frames would result in very unpleasant noise effects. In order to improve the 
subjective quality, erroneous/lost speech frames shall be substituted with either a repetition or an extrapolation of the 
previous good speech frame(s). This substitution is done so that it gradually will decrease the output level, resulting in 
silence at the output. Subclause I.5 provides example solution. 

I.4.3 First lost SID frame 
A  lost SID frame shall be substituted by using the SID information from earlier received valid SID frames and the 
procedure for valid SID frames be applied as described in Annex B/G.722.2. 
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I.4.4 Subsequent lost SID frames  
For many subsequent lost SID frames, a muting technique shall be applied to the comfort noise that will gradually 
decrease the output level. For subsequent lost SID frames, the muting of the output shall be maintained. Subclause I.5 
provides example solutions. 

I.5 Example ECU/BFH Solution  

I.5.1 State Machine 
This example solution for substitution and muting is based on a state machine with seven states (Figure I.1). 

The system starts in state 0. Each time a bad frame is detected, the state counter is incremented by one and is saturated 
when it reaches 6. Each time a good speech frame is detected, the state counter is right-shifted by one. The state 
indicates the quality of the channel: the larger the value of the state counter, the worse the channel quality is. The 
control flow of the state machine can be described by the following C code (BFI = bad frame indicator, State = state 
variable): 

 if(BFI != 0 )  
  State = State + 1; 
  if(State > 6)  
   State = 6; 
 else  
  State = State >> 1; 
  
 
In addition to this state machine, the Bad Frame Flag from the previous frame is checked (prevBFI). The processing 
depends on the value of the State-variable. In states 0 and 6, the processing depends on the BFI flag. 
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The state machine is summarized in Figure I.1. 

STATE = 0
BFI = 0

PrevBFI = 0 or 1

Good frame (BFI=0)

Bad frame (BFI=1)

STATE = 1

(BFI, prevBFI) =
(1,0) or (0,1) or
(0,0)

STATE = 2

(BFI, prevBFI) =
(1,1) or (1,0) or
(0,1)

STATE = 3

(BFI, prevBFI) =
(1,1) or (1,0) or
(0,1)

STATE = 4

BFI = 1
prevBFI = 0 or 1

STATE = 5

BFI = 1
prevBFI = 1

STATE = 6

BFI = 1
prevBFI = 1

 

Figure I.1: State machine for controlling the bad frame substitution 

 

I.5.2 Substitution and muting of erroneous/lost speech frames 

I.5.2.1 BFI = 0, prevBFI = 0, State = 0 or 1 
No error is detected in the received or in the previous received speech frame. The received speech parameters are used 
normally in the speech synthesis. The current frame of speech parameters is saved. 
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I.5.2.2 BFI = 0, prevBFI = 1, State = 0 to 3 
No error is detected in the received speech frame but the previous received speech frame was bad. The LTP gain is used 
normally in the speech synthesis and fixed codebook gain are limited below the values used for the last received good 
subframe: 
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where 

 
c
receivedg  = current decoded fixed codebook-gain 

 )1( −ng c
 = fixed codebook gain used for the last good subframe (BFI = 0) 

 )(ng c  = fixed codebook gain to be used for the current frame. 

The rest of the received speech parameters are used normally in the speech synthesis. The current frame of speech 
parameters is saved. 

I.5.2.3 BFI = 1, prevBFI = 0 or 1, State = 1...6 
An error is detected in the received speech frame and the substitution and muting procedure is started.  

I.5.2.3.1 LTP gain & fixed codebook gain concealment  
when RX_FRAMETYPE = SPEECH_BAD 

The LTP gain pg  and fixed codebook gain cg  are replaced by attenuated values from the previous subframes: 

))5(),...,1((5)( −−∗= ngngmedianstatePg pppp  (2) 
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where: 

 g p
= current decoded LTP gain,  

 cg = current decoded fixed codebook gain,  

 )5(),...,1( −− ngng pp = LTP gains used for the last 5 subframes,  

 )5(),...,1( −− ngng cc = fixed codebook gains used for the last 5 subframes, 
 median5() = 5-point median operation,  

 )(stateP p  = attenuation factor (Pp(1) = 0.98, Pp (2) = 0.96, Pp (3) = 0.75, Pp (4) = 0.23, Pp (5) = 0.05, 
  Pp(6) = 0.01), 

 )(stateP c  = attenuation factor (Pc (1) = 0.98, Pc (2) = 0.98, Pc (3) = 0.98, Pc (4) = 0.98, Pc (5) = 0.98, 
  Pc (6) = 0.70), 
 state = state number {0..6}, 
 VAD_HIST is number of consecutive VAD=0 decisions. 

 

The higher the state value is, the more the gains are attenuated. Also the memory of the predictive fixed codebook gain 
is updated by using the average value of the past four values in the memory: 
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I.5.2.3.2 LTP gain & fixed codebook gain concealment 
when RX_FRAMETYPE = SPEECH_LOST 

The LTP gain pg  and fixed codebook gain cg  are replaced by attenuated values from the previous subframes: 

))5(),...,1((5)( −−∗= ngngmedianstatePg pppp  (5) 
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where: 

 g p
= current decoded LTP gain,  

 cg = current decoded fixed codebook gain,  

 )5(),...,1( −− ngng pp = LTP gains used for the last 5 subframes,  

 )5(),...,1( −− ngng cc = fixed codebook gains used for the last 5 subframes, 
 median5() = 5-point median operation,  

 )(stateP p  = attenuation factor (Pp(1) = 0.95, Pp (2) = 0.90, Pp (3 ) = 0.75, Pp (4) = 0.23, Pp (5) = 0.05, 
  Pp (6) = 0.01),  

 )(stateP c  = attenuation factor (Pc (1) = 0.50, Pc (2) = 0.25, Pc (3) = 0.25, Pc (4) = 0.25, Pc (5) = 0.15, 
  Pc (6) = 0.01),  
 state = state number {0..6}, 
 VAD_HIST is number of consecutive VAD=0 decisions. 

 

The higher the state value is, the more the gains are attenuated. Also the memory of the predictive fixed codebook gain 
is updated by using the average value of the past four values in the memory: 
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I.5.2.3.3 ISF concealment 
The past ISFs are shifted towards their partly adaptive mean: 

)()1()(_)( iISFiISFpastiISF meanqq ∗−+∗= αα   i = 0..16 (8) 

where 

  α  = 0.9,  
  )(iISFq  is ISF-vector for a current frame,  

  )(_ iISFpast q  is ISF-vector from the previous frame,  

  )(iISFmean  vector is combination of adaptive mean and constant mean ISF-vectors in the following manner: 

 )()1()()( __ iISFiISFiISF meanadaptivemeanconstmean ∗−+∗= ββ , i = 0..16  (9) 

  where 
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  β  = 0.75, 

  ∑
=

=
2

0
_ )(_

3
1

)(
i

qmeanadaptive iISFpastiISF  and is updated whenever BFI =0.  

  )(_ iISF meanconst  is a vector containing long time average of ISF-vectors. 

I.5.2.3.4 LTP-lag concealment  
The histories of five last good LTP-lags and LTP-gains are used for finding the best method to update. 

I.5.2.3.4.1 LTP-lag concealment when RX_FRAMETYPE = SPEECH_BAD 
The usability of the received LTP lag ( lagQ ) is defined as follows: (Predicts if the received lag is most probably very 

close to one that was sent and therefore its usage should not introduce any bad artifacts) 

















<<

<<<

<<=−<

+<<>−>−

+<<−<

=

otherwise

TT

TT

Tgngg

Tnn

TT

Q

receivedmean

receiveddif

received
ppp

received

receiveddif

lag

,0

T ,1

T T  and 70,1

T T and )1( and 4.0,1

101)-(nT 10-1)-(nT and 5.0)2(g and 5.0)1(g,1

5T5T and 10,1

max

maxmin

maxminminmin

pp

minmin

(10) 

where: 

  )1( −nT  is LTP lag from the previous good frame,  

  )1( −−= nTTT receiveddif ,  

  )min(min bufferTT = , 

  )max(max bufferTT = ,  

  receivedT is received lag,  

  )min(min
p
buffer

p gg = , 

  pg is LTP gain of the current frame, 

  pg (-1) is LTP gain of the previous good frame,  

  pg (-2) is LTP gain of the frame before previous good frame,  

  )( buffermean TaverageT =  

 

LPT lag value for the current frame is defined as follows: 
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where: 
  )max(max bufferTT = ,  

  1max−T is second largest value in bufferT ,  
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  2max−T is second largest value in bufferT ,  

  )(xRND is random value generated to range 
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2
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I.5.2.3.4.2 LTP-lag concealment when RX_FRAMETYPE = SPEECH_LOST 
The usability of the LTP lag from last good frame ( 1_ −tlagQ ) is defined as follows: (Predicts if the received lag is most 

probably very close to one that was sent and therefore its usage should not  introduce any bad artifacts) 
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where: 

  )min(min
p
buffer

p gg = , 

  pg (n-1) is LTP gain of the previous good frame,  

  pg (n-2) is LTP gain of the frame before previous good frame 

 

LPT lag value for the current frame is defined as follows: 
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where: 

  )1( −nT  is LTP lag from the previous good frame,  

  )max(max bufferTT = ,  

  1max−T is second largest value in bufferT ,  

  2max−T is second largest value in bufferT ,  

  )(xRND is random value generated to range 
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I.5.2.4 Innovation sequence 
When RX_FRAMETYPE = SPEECH_BAD, the received fixed codebook innovation pulses from the erroneous frame 
are used as they are received. 

When RX_FRAMETYPE = SPEECH_LOST, the received fixed codebook innovation pulses from the erroneous frame 
are not used and the fixed codebook innovation vector is filled with random signal (values limited to  
range [-1, +1]). 

I.5.3 Substitution and muting of lost SID frames 
In the speech decoder a single frame classified as SID_BAD shall be substituted by the last valid SID frame information 
and the procedure for valid SID frames be applied. If the  time between SID information updates (updates are specified 
by SID_UPDATE arrivals and occasionally by SID_FIRST arrivals) is greater than one second this shall lead to 
attenuation. 
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Summary 

This document specifies the bit-exact ANSI C-code implementation of the AMR-WB algorithm specified in 
Recommendation G.722.2, its Annexes A and B, and its Appendix I (non-normative).  

The C code specified in this Annex was also adopted by 3GPP in 3GPP specification TS 26.173. 

 

 

Source 

Annex C to ITU-T Recommendation G.722.2 was prepared by ITU-T Study Group 16 (2001-2004) and was approved 
under the WTSC Resolution No. 1 procedure on 13 January 2002. 
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Recommendation G.722.2 

WIDEBAND CODING OF SPEECH AT AROUND 16 KBIT/S USING  
ADAPTIVE MULTI-RATE WIDEBAND (AMR-WB) 

ANNEX C 

Fixed-point C-code 

(Geneva, 2001) 

 

C.1 C code structure 
This Annex gives an overview of the structure of the bit-exact C code for the correct implementation of  the G.722.2 
main body, its Annex A (Comfort noise aspects), Annex B (Source Controlled Rate operation), and Appendix I (Error 
concealment of erroneous or lost frames). Itprovides an overview of the contents and organization of the C code 
attached to this document. In case of discrepancy between the description given in the several parts of Recommendation 
G.722.2 (including its Annexes A, B and Appendix I) and the ANSI C-source code, the algorithm description of the 
ANSI C code shall prevail. 

The C code has been verified on a number of systems (please see the readme.txt file for the complete list). 

ANSI-C was selected as the programming language because portability was desirable. 

C.1.1 Contents of the C source code 
The C code distribution has all files in the root level. 

The distributed files with suffix "c" contain the source code and the files with suffix "h" are the header files. The ROM 
data is contained mostly in files with suffix "tab". 

The C code distribution also contains one speech coder installation verification data file, "spch_dos.inp". The reference 
encoder output file is named "spch_dos.cod", the reference decoder input file is named "spch_dos.dec" and the 
reference decoder output file is named "spch_dos.out". These four files are formatted such that they are correct for an 
IBM PC/AT compatible computer. The same files with reversed byte order of the 16 bit words are named 
"spch_unx.inp", "spch_unx.cod", "spch_unx."dec" and "spch_unx.out", respectively. 

Final verification of bit-exactness is to be performed using the Adaptive Multi-Rate Wideband test sequences described 
in Annex D/G.722.2. 

Makefiles are provided for the platforms in which the C code has been verified (listed above). Once the software is 
installed, this directory will have a compiled version of encoder and decoder (the bit-exact C executables of the speech 
codec) and all the object files. 

C.1.2 Program execution 
The Adaptive Multi-Rate Wideband codec is implemented in two programs: 

- (encoder) speech encoder; 

- (decoder) speech decoder. 

The programs should be called like: 

- encoder [encoder options] <speech input file> <parameter file>; 

- decoder <parameter file> <speech output file>. 
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The speech files contain 16-bit linear encoded PCM speech samples and the parameter files contain encoded speech 
data and some additional flags. 

The encoder and decoder options will be explained by running the applications without input arguments. See the file 
readme.txt for more information on how to run the encoder and decoder programs. 

C.1.3 Code hierarchy 
Tables C.1 to C.3 are call graphs that show the functions used in the speech codec, including the functions of VAD, 
DTX, and comfort noise generation. 

Each column represents a call level and each cell a function. The functions contain calls to the functions in rightwards 
neighbouring cells. The time order in the call graphs is from the top downwards as the processing of a frame advances. 
All standard C functions: printf(), fwrite(), etc. have been omitted. Also, no basic operations (add(), L_add(), mac(), 
etc.) or double precision extended operations (e.g. L_Extract()) appear in the graphs. The initialization of the static 
RAM (i.e. calling the _init functions) is also omitted. 

The basic operations are not counted as extending the depth, therefore the deepest level in this software is level 6.  

The encoder call graph is broken down into two separate call graphs, Table C.1 to C.2. 

Page 80 of 90



 

3 

Table C.1: Speech encoder call structure 

coder Copy     
 Decim_12k8 Down_samp Interpol (function)   
  Copy    
 Set zero     
 HP50_12k8     
 Scale_sig     
 wb_vad Filter_bank Filter5   
   Filter3   
   Level calculation   
  vad_decision Ilog2   
   Noise_estimate_update update_cntrl  
   hangover_addition   
  Estimate_Speech    
 tx_dtx_handler     
 Parm serial     
 Autocorr     
 Lag_window     
 Levinson     
 Az isp Chebps2    
 Int isp Isp Az Get isp pol   
 Isp_isf     
 Gp_clip_test_isf     
 Weight_a     
 Residu     
 Deemph2     
 LP_Decim2     
 Scale_mem_Hp_wsp     
 Pitch_med_ol Hp_wsp    
  Isqrt_n    
 wb vad tone detection     
 Med_olag median5    
 dtx_buffer Copy    
 dtx_enc Find_frame_indices    
  Aver_isf_history    
  Qisf_ns Sub VQ   
   Disf ns Reorder isf  
  Parm_serial    
  Pow2    
  Random    
  Dot product12    
  Isqrt_n    
 Isf_isp     
 Isp_Az Get_isp_pol    
 Synthesis Copy    
  Syn_filt_32    
  Deemph 32    
  HP50_12k8    
  Random    
  Scale_sig    
  Dot product12    
  Isqrt n    
  HP400_12k8    
  Weight_a    
  Syn_filt    
  Filt 6k 7k    
 Reset_encoder Set zero    
  Init_gp_clip    
  Init_Phase_dispersion Set_zero   
 Qpisf_2s_36b VQ_stage1    
  Sub_VQ    
  Dpisf 2s 36b Reorder isf   
 Qpisf_2s_46b VQ_stage1    
  Sub_VQ    
  Dpisf_2s_46b Reorder_isf   
 Syn_filt     
 Preemph2     
 Pitch_fr4 Norm_Corr Convolve   
   Isqrt_n   
  Interpol_4    
 Gp_clip     
 Pred lt4     
 Convolve     
 G_pitch Dot_product12    
 Updt_tar     
 Preemph     
 Pit shrp     
 Cor h x     
 ACELP_2t64_fx Dot_product12    
  Isqrt_n    
 ACELP_4t64_fx See Table 2    
 Q_gain2 Dot product12    
  Pow2    
 Gp_clip_test_gain_pit     
 voice_factor Dot_product12    
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Table C.2: ACELP_4t64_fx call structure 

ACELP_4t64_fx Dot_product12     
 Isqrt n     
 cor h vec     
 search_ixiy     
 quant_1p_N1     
 quant_2p_2N1     
 quant_3p_3N1 quant_2p_2N1    
  quant 1p N1    
 quant_4p_4N quant_4p_4N1 Quant_2p_2N1   
  quant_1p_N1    
  quant_3p_3N1 Quant_2p_2N1   
   Quant_1p_N1   
  quant 2p 2N1    
 quant_5p_5N quant_3p_3N1 Quant 2p 2N1   
   Quant_1p_N1   
  quant_2p_2N1    
 quant_6p_6N_2 quant_5p_5N Quant_3p_3N1 quant_2p_2N1  
    Quant 1p N1  
   quant 2p 2N1   
  quant_1p_N1    
  quant_4p_4N quant_4p_4N1 quant_2p_2N1  
   quant_1p_N1   
   quant_3p_3N1 quant_2p_2N1  
    quant 1p N1  
   quant_2p_2N1   
  quant_2p_2N1    
  quant_3p_3N1 quant_2p_2N1   
   Quant_1p_N1   

 

Page 82 of 90



 

5 

Table C.3: Speech decoder call structure 

decoder Rx_dtx_handler     
 Dtx_dec Copy    
  Disf ns Reorder isf   
  Serial_parm    
  Pow2    
  Random    
  Dot_product12    
  Isqrt n    
 Serial_parm     
 Isf_isp     
 Isp_Az Get_isp_pol    
 Copy     
 Synthesis Copy    
  Syn filt 32    
  Deemph_32    
  HP50_12k8    
  Oversamp_16k Copy   
   Up samp Interpol  
  Random    
  Scale_sig    
  Dot_product12    
  Isqrt_n    
  HP400_12k8    
  Isf Extrapolation Isf isp   
  Isp_Az Get_isp_pol   
  Weight_a    
  Syn_filt    
  Filt 6k 7k Copy   
  Filt 7k Copy   
 Reset_decoder Set_zero    
  Init_Phase_dispersion Set_zero   
 Dpisf_2s_36b Reorder_isf    
 Dpisf_2s_46b Reorder_isf    
 Int isp Isp Az Get isp pol   
 Lagconc insertion_sort Insert   
  Random    
 Pred_lt4     
 Random     
 DEC ACELP 2t64 fx     
 DEC_ACELP_4t64_fx dec_1p_N1    
  add_pulses    
  dec_2p_2N1    
  dec_3p_3N1 Dec_2p_2N1   
   dec 1p N1   
  dec_4p_4N dec 4p 4N1 dec 2p 2N1  
   dec_1p_N1   
   Dec_3p_3N1 Dec_2p_2N1  
    Dec_1p_N1  
   Dec 2p 2N1   
  dec_5p_5N dec_3p_3N1 Dec_2p_2N1  
    Dec_1p_N1  
   Dec_2p_2N1   
  dec_6p_6N_2 Dec_5p_5N dec_3p_3N1 Dec_2p_2N1 
     Dec_1p_N1 
    dec 2p 2N1  
   dec_1p_N1   
   dec_4p_4N dec_4p_4N1 dec_2p_2N1 
    dec_1p_N1  
    Dec_3p_3N1 Dec_2p_2N1 
     Dec 1p N1 
    Dec_2p_2N1  
   dec_2p_2N1   
   dec_3p_3N1 Dec_2p_2N1  
    Dec 1p N1  
 Preemph     
 Pit_shrp     
 D_gain2 Dot_product12    
  Isqrt_n    
  Median5    
  Pow2    
 Scale_sig     
 voice_factor Dot_product12    
 Phase_dispersion Set_zero    
 Agc2 Isqrt Isqrt_n   
 Set zero     
 Dtx_dec_activity_update Copy    

 

C.1.4 Variables, constants and tables 
The data types of variables and tables used in the fixed point implementation are signed integers in 2's complement 
representation, defined by: 

- Word16 16 bit variable; 

- Word32 32 bit variable. 
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C.1.4.1 Description of constants used in the C-code 
This subclause contains a listing of all global constants defined in cnst h. 

Table C.4: Global constants 

Constant Value Description 
L_TOTAL 384 total size of speech buffer. 
L_WINDOW 384 window size in LP analysis 
L_NEXT 64 Look-ahead size 
L_FRAME 256 frame size in 12.8 kHz 
L_FRAME16k 320 frame size in 16 kHz 
L_SUBFR 64 Subframe size in 12.8 kHz 
L_SUBFR16k 80 Subframe size in 16 kHz 
NB_SUBFR 4 Number of subframes 
M16k 20 order of LP filter in high-band synthesis in 6.60 mode 
M 16 order of LP filter 
L_FILT16k 15 Delay of down-sampling filter in 16 kHz 
L_FILT 12 Delay of down-sampling filter in 12.8 kHz 
GP_CLIP 15565 Pitch gain clipping 
PIT_SHARP 27853 pitch sharpening factor 
PIT_MIN 34 minimum pitch lag (all modes) 
PIT_FR2 128 Minimum pitch lag with resolution ½ 
PIT_FR1_9b 160 Minimum pitch lag with resolution for 9 bit quantization 
PIT_FR1_8b 92 Minimum pitch lag with resolution for 8 bit quantization 
PIT_MAX 231 maximum pitch lag 
L_INTERPOL (16+1) length of filter for interpolation 
OPL_DECIM 2 Decimation in open-loop pitch analysis 
PREEMPH_FAC 22282 preemphasis factor 
GAMMA1 30147 Weighting factor (numerator) 
TILT_FAC 22282 tilt factor (denominator) 
Q_MAX 8 scaling max for signal 
RANDOM_INITSEED 21845 random init value 
L_MEANBUF 3 Size of ISF buffer 
ONE PER MEANBUF 10923 Inverse of L MEANBUF 

 

C.1.4.2 Description of fixed tables used in the C-code 
This section contains a listing of all fixed tables sorted by source file name and table name. All table data is declared as 
Word16. 

Page 84 of 90



 

7 

Table C.5: Fixed tables 

File Table name Length Description 
C4t64fx.c Tipos 36 starting points of iterations 
Cod_main.c HP_gain 16 High band gain table for 23.85 kbit/s mode 
Cod_main.c Interpol_frac 4 LPC interpolation coefficients 
Cod_main.c Isp_init 16 isp tables for initialization 
Cod_main.c Isf_init 16 isf tables for initialization 
D_gain2.c cdown_unusable 7 attenuation factors for codebook gain in lost frames 
D_gain2.c cdown_usable 7 attenuation factors for codebook gain in bad frames 
D_gain2.c pdown_unusable 7 attenuation factors for adaptive codebook gain in lost frames 
D_gain2.c pdown_usable 7 attenuation factors for adaptive codebook gain in bad frames 
D_gain2.c Pred 4 algebraic code book gain MA predictor coefficients 
Dec_main.c HP_gain 16 High band gain table for 23.85 kbit/s mode 
Dec_main.c Interpol_frac 4 LPC interpolation coefficients 
Dec_main.c Isp_init 16 isp tables for initialization 
Dec_main.c Isf_init 16 isf tables for initialization 
Decim54.c fir_down 120 Downsample FIR filter coefficients 
Decim54.c fir_up 120 Upsample FIR filter coefficients 
Dtx.c en_adjust 9 Energy scaling factor for each mode during comfort noise 
Grid100.tab grid 101 grid points at wich Chebyshev polynomials 
Ham_wind.tab Window 384 LP analysis window 
Hp400.c A 3 HP filter coefficients (denominator) in higher band energy estimation 
Hp400.c B 3 HP filter coefficients (numerator) in higher band energy estimation 
Hp50.c A 3 HP filter coefficients (denominator) in pre-filtering 
Hp50.c B 3 HP filter coefficients (numerator) in pre-filtering 
Hp6k.c Fir_6k_7k 31 Bandpass FIR filter coefficients for higher band generation 
Hp7k.c Fir_7k 31 Bandpass FIR filter coefficients for higher band in 23.85 kbit/s mode 
Hp_wsp.c A 3 HP filter coefficients (denominator) in open-loop lag gain computation 
Hp_wsp.c B 3 HP filter coefficients (numerator) in open-loop lag gain computation 
Isp_isf.tab slope 128 table to compute cos(x) in Lsf_lsp() 
Isp_isf.tab Table 129 table to compute acos(x) in Lsp_lsf() 
Lag_wind.tab lag_h 16 high part of the lag window table 
Lag_wind.tab lag_l 16 low part of the lag window table 
Lp_dec2.c h_fir 5 HP FIR filter coefficients in open-loop lag search 
Math_op.c table_isqrt 49 table used in inverse square root computation 
Math_op.c table_pow2 33 table used in power of two computation 
P_med_ol.tab Corrweight 199 weighting of the correlation function in open loop LTP search 
Ph_disp.c ph_imp_low 64 phase dispersion impulse response 
Ph_disp.c ph_imp_mid 64 phase dispersion impulse response 
Pitch_fr4.c inter4_1 32 interpolation filter coefficients 
Pred_lt4.c inter4_2 128 interpolation filter coefficients 
Q_gain2.c pred 4 algebraic code book gain MA predictor coefficients 
Q_gain2.tab t_qua_gain6b 2*64 gain quantization table for 6-bit gain quantization 
Q_gain2.tab t_qua_gain7b 2*128 gain quantization table for 7-bit gain quantization 
Qisf_ns.tab dico1_isf_noise 2*64 1st ISF quantizer for comfort noise 
Qisf_ns.tab dico2_isf_noise 3*64 2nd ISF quantizer for comfort noise 
Qisf_ns.tab Dico3_isf_noise 3*64 3rd LSF quantizer for comfort noise 
Qisf_ns.tab Dico4_isf_noise 4*32 4th LSF quantizer for comfort noise 
Qisf_ns.tab Dico5_isf_noise 4*32 5th LSF quantizer for comfort noise 
Qisf_ns.tab mean_isf_noise 16 ISF mean for comfort noise 
Qpisf_2s.tab dico1_isf 9*256 1st ISF quantizer of the 1st stage 
Qpisf_2s.tab Dico2_isf 7*256 2nd ISF quantizer of the 1st stage 
Qpisf_2s.tab Dico21_isf 3*64 1st ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode) 
Qpisf_2s.tab Dico21_isf_36b 5*128 1st ISF quantizer of the 2nd stage (the 6.60 kbit/s mode) 
Qpisf_2s.tab Dico22_isf 3*128 2nd ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode) 
Qpisf_2s.tab Dico22_isf_36b 4*128 2nd ISF quantizer of the 2nd stage (the 6.60 kbit/s mode) 

(continued) 
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Table C.5 (concluded): Fixed tables 

File Table name Length Description 
Qpisf_2s.tab Dico23_isf 3*128 3rd ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode) 
Qpisf_2s.tab Dico23_isf_36b 7*64 3rd ISF quantizer of the 2nd stage (the 6.60 kbit/s mode) 
Qpisf_2s.tab Dico24_isf 3*32 4th ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode) 
Qpisf_2s.tab Dico25_isf 4*32 5th ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode) 
Qpisf_2s.tab Mean_isf 16 ISF mean 
 

C.1.4.3 Static variables used in the C-code 
In this section two tables that specify the static variables for the speech encoder and decoder respectively are shown. All 
static variables are declared within a C struct. 
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Table C,6: Speech encoder static variables 

Struct name Variable Type[Length] Description 
Coder_State mem_decim Word16[30] Decimation filter memory 
 mem_sig_in Word16[6] Prefilter memory 
 mem_preemph Word16 Preemphasis filter memory 
 old_speech Word16[128] speech buffer 
 old_wsp Word16[115] buffer holding spectral weighted speech 
 old_exc Word16[248] excitation vector 
 mem_levinson Word16[18] Levinson memories 
 Ispold Word16[16] Old ISP vector 
 ispold_q Word16[16] Old quantized ISP vector 
 past_isfq Word16[16] past quantized ISF prediction error 
 mem_wsp Word16 Open-loop LTP deemphasis filter memory 
 mem_decim2 Word16[3] Open-loop LTP decimation filter memory 
 mem_w0 Word16 weighting filter memory (applied to error signal) 
 mem_syn Word16[16] synthesis filter memory 
 tilt_code Word16 Preemhasis filter memory 
 old_wsp_max Word16 Open loop scaling factor 
 old_wsp_shift Word16 Maximum open loop scaling factor 
 Q_old Word16 Old scaling factor 
 Q_max Word16[2] Maximum scaling factor 
 gp_clip Word16[2] memory of pitch clipping 
 qua_gain Word16[4] Gain quantization memory 
 old_T0_med Word16 weighted open loop pitch lag 
 ol_gain Word16 Open-loop gain 
 ada_w Word16 weigthing level depeding on open loop pitch gain 
 ol_wght_flg Word16 switches lag weighting on and off 
 old_ol_lag Word16[5] Open loop lag history 
 hp_wsp_mem Word16[9] Open-loop lag gain filter memory 
 old_hp_wsp Word16[243] Open-loop lag  
 vadSt VadVars* see below in this table 
 dtx_encSt dtx_encState* see below in this table 
 first_frame Word16 First frame indicator 
 Isfold Word16[16] Old ISF vector 
 L_gc_thres Word16 Noise enhancer threshold 
 mem_syn_hi Word16[16] synthesis filter memory (most significant word) 
 mem_syn_lo Word16[16] synthesis filter memory (least significant word) 
 mem_deemph Word16 Deemphasis filter memory 
 mem_sig_out Word16[6] HP filter memory in the synthesis 
 mem_hp400 Word16[6] HP filter memory 
 mem_oversamp Word16[2*12] Oversampling filter memory 
 mem_syn_hf Word16[16] Higher band synthesis filter memory 
 mem_hf Word16[30] Estimated BP filter memory (23.85 kbit/s mode) 
 mem_hf2 Word16[30] Input BP filter memory (23.85 kbit/s mode) 
 mem_hf3 Word16[30] Input LP filter memory (23.85 kbit/s mode) 
 seed2 Word16 Random generation seed 
 disp_mem Word16[8] Phase dispersion memory 
 vad_hist Word16 VAD history 
 Gain_alpha Word16 Higher band gain weighting factor (23.85 kbit/s 

mode) 
dtx_encState Isf_hist Word16[128] LSP history (8 frames) 
 Log_en_hist Word16[8] logarithmic frame energy history (8 frames) 
 Hist_ptr Word16 pointer to the cyclic history vectors 
 Log_en_index Word16 Index for logarithmic energy 
 Cng_seed Word16 Comfort noise excitation seed 
 D Word16[28] ISF history distance matrix 
 sumD Word16[8] Sum of ISF history distances 
 dtxHangoverCount Word16 is decreased in DTX hangover period 
 decAnaElapsedCount Word16 counter for elapsed speech frames in DTX 
vadState1 bckr_est Word16[12] background noise estimate 
 ave_level Word16[12] averaged input components for stationary estimation 
 old_level Word16[12] input levels of the previous frame 
 sub_level Word16[12] input levels calculated at the end of a frame 

(lookahead) 
 a_data5 Word16[5][2] memory for the filter bank 
 a_data3 Word16[6] memory for the filter bank 
 burst_count Word16 counts length of a speech burst 
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Struct name Variable Type[Length] Description 
 Hang_count Word16 hangover counter 
 Stat_count Word16 stationary counter 
 Vadreg Word16 15 flags for intermediate VAD decisions 
 Tone_flag Word16 15 flags for tone detection 
 sp_est_cnt Word16 Speech level estimation counter 
 Sp_max Word16 Maximum signal level 
 sp_max_cnt Word16 Maximum level estimation counter 
 Speech_level Word16 Speech level 
 prev pow sum Word16 Power of previous frame 

 

Table C.7: Speech decoder static variables 

Struct name Variable Type[Length] Description 
Decoder_State old_exc Word16[248] excitation vector 
 ispold Word16[16] Old ISP vector 
 isfold Word16[16] Old ISF vector 
 isf_buf Word16[48] ISF vector history 
 past_isfq Word16[16] past quantized ISF prediction error 
 tilt_code Word16 Preemhasis filter memory 
 Q_old Word16 Old scaling factor 
 Qsubfr Word16 Scaling factor history 
 L_gc_thres Word16 Noise enhancer threshold 
 mem_syn_hi Word16[16] synthesis filter memory (most significant word) 
 mem_syn_lo Word16[16] synthesis filter memory (least significant word) 
 mem_deemph Word16 Deemphasis filter memory 
 mem_sig_out Word16[6] HP filter memory in the synthesis 
 mem_oversamp Word16[24] Oversampling filter memory 
 mem_syn_hf Word16[20] Higher band synthesis filter memory 
 mem_hf Word16[30] Estimated BP filter memory (23.85 kbit/s mode) 
 mem_hf2 Word16[30] Input BP filter memory (23.85 kbit/s mode) 
 mem_hf3 Word16[30] Input LP filter memory (23.85 kbit/s mode) 
 seed Word16 Random code generation seed for bad frames 
 seed2 Word16 Random generation seed for higher band 
 old_T0 Word16 Old LTP lag (integer part) 
 old_T0_frac Word16 Old LTP lag (fraction part) 
 lag_hist Word16[5] LTP lag history 
 dec_gain Word16[23] Gain decoding memory 
 seed3 Word16 Random LTP lag generation seed for bad frames 
 disp_mem Word16[8] Phase dispersion memory 
 mem_hp400 Word16[6] HP filter memory 
 prev_bfi Word16 Previous BFI 
 state Word16 BGH state machine memory 
 first_frame Word16 First frame indicator 
 dtx_decSt dtx_decState* see below in this table 
 Vad hist Word16 VAD history 
dtx_decState Since_last_sid Word16 number of frames since last SID frame 
 true_sid_period_inv Word16 inverse of true SID update rate 
 log_en Word16 logarithmic frame energy 
 old_log_en Word16 previous value of log_en 
 isf Word16[16] ISF vector 
 Isf_old Word16[16] Previous ISF vector 
 Cng_seed Word16 Comfort noise excitation seed 
 Isf_hist Word16[128] ISF vector history (8 frames) 
 Log_en_hist Word16[8] logarithmic frame energy history 
 Hist_ptr Word16 index to beginning of LSF history 
 dtxHangoverCount Word16 counts down in hangover period 
 DecAnaElapsedCount Word16 counts elapsed speech frames after DTX 
 sid_frame Word16 flags SID frames 
 valid_data Word16 flags SID frames containing valid data 
 log_en_adjust Word16 mode-dependent frame energy adjustment 
 dtxHangoverAdded Word16 flags hangover period at end of speech 
 dtxGlobalState Word16 DTX state flags 
 data updated Word16 flags CNI updates 
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C.2 Homing procedure  
The principles of the homing procedures are described in the main body of this Recommendation. This section only 
includes a detailed description of the 9 decoder homing frames. For each AMR-WB codec mode, the corresponding 
decoder homing frame has a fixed set of parameters. The parameters in serial format are packed into parameters in 15-
bit-long format where the first serial bit is inserted into most significant bit in the 15-bit-long format. These 15-bit-long 
parameters do not represent real speech parameters, but they decrease memory consumption compared to the speech 
parameters. Table C.8 shows the homing frame in 15-bit-long format for different modes. In the decoder, the received 
speech parameters in serial format are first converted into 15-bit-long format. Then the obtained parameters are 
compared against the homing frame table values (Table C.8). 

Table C.8: Table values for the decoder homing frame in 15-bit-long format for different modes 

Mode Value (MSB=b0) 
0 25351, 4331, 515, 15620, 20992, 0, 0, 0, 0 

1 25351, 14010, 26489, 30912, 5254, 3459, 0, 0, 0, 0, 0, 0 

2 25351, 14010, 29177, 18070, 19971, 3968, 32492, 8430, 13280, 0, 0, 0, 0, 0, 0, 0, 0 

3 25351, 14010, 1912, 16326, 25140, 16384, 502, 15167, 1772, 11512, 0, 0, 0, 0, 0, 0, 0, 0, 0 

4 25351, 14010, 1912, 30593, 14594, 19990, 864, 4635, 20446, 27456, 21310, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

5 25351, 14010, 19995, 14446, 6159, 7329, 20752, 4228, 19488, 24383, 364, 20124, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0 

6 25351, 14010, 3567, 560, 32536, 20534, 5139, 16384, 26161, 18755, 20444, 22173,12623, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0 

7 25351, 14010, 2912, 28827, 15347, 28610, 9853, 1316, 30720, 786, 32259, 13279,14336, 29152, 23302, 
20352, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0 

8 025351, 14010, 1601, 16734, 7923, 15017, 5450, 5477, 5760, 2187, 1534, 12142, 30894, 13419, 13141, 
2376, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

 

C.3 File formats 
This section describes the file formats used by the encoder and decoder programs. The test sequences also use the file 
formats described here. 

C.3.1 Speech file (encoder input / decoder output) 
Speech files read by the encoder and written by the decoder consist of 16-bit words where each word contains a 14-bit, 
left aligned speech sample. The byte order depends on the host architecture (e.g. MSByte first on SUN workstations, 
LSByte first on PCs etc.). Both the encoder and the decoder program process complete frames (of 320 samples) only. 

This means that the encoder will only process n frames if the length of the input file is n*320 + k words, while the files 
produced by the decoder will always have a length of n*320 words. 

C.3.2 Mode control file (encoder input) 
The encoder program can optionally read in a mode control file which specifies the encoding mode for each frame of 
speech processed. The file is a text file containing one number per speech frame. Each line contains one of the mode 
numbers 0-8. 

C.3.3 Parameter bitstream file (encoder output / decoder input) 
The files produced by the speech encoder/expected by the speech decoder contain an arbitrary number of frames in the 
following format. 
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TYPE_OF_FRAME_TYPE FRAME_TYPE MODE B1 B2 … Bnn 

 

Each box corresponds to one Word16 value in the bitstream file, for a total of 3+nn words or 6+2nn bytes per frame, 
where nn is the number of encoded bits in the frame. The fields have the following meaning: 

TYPE_OF_FRAME_TYPE transmit frame type, which is one of  
TX_TYPE (0x6b21) 
RX_TYPE (0x6b20) 

If TYPE_OF_FRAME_TYPE is TX_TYPE, 

FRAME_TYPE transmit frame type, which is one of  
TX_SPEECH (0x0000) 
TX_SID_FIRST (0x0001) 
TX_SID_UPDATE (0x0002) 
TX_NO_DATA (0x0003) 

If TYPE_OF_FRAME_TYPE is RX_TYPE, 

FRAME_TYPE transmit frame type, which is one of  
RX_SPEECH_GOOD (0x0000) 
RX_SPEECH_PROBABLY_DEGRADED (0x0001) 
RX_SPEECH_LOST (0x0002) 
RX_SPEECH_BAD (0x0003) 
RX_SID_FIRST (0x0004) 
RX_SID_UPDATE (0x0005) 
RX_SID_BAD (0x0006) 
RX_NO_DATA (0x0007) 

B0…B2nn speech encoder parameter bits (i.e. the bitstream itself). Each Bx either has the value 
0x0081 (for bit 0) or 0x007F (for bit 1). 

MODE_INFO encoding mode information, which is one of 
6.60  kbit/s mode (0x0000) 
8.85  kbit/s mode (0x0001) 
12.65 kbit/s mode (0x0002) 
14.25 kbit/s mode (0x0003) 
15.85 kbit/s mode (0x0004) 
18.25 kbit/s mode (0x0005) 
19.85 kbit/s mode (0x0006) 
23.05 kbit/s mode (0x0007) 
23.85 kbit/s mode (0x0008) 

As indicated in section C.3.1 above, the byte order depends on the host architecture. 
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