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Pitch Prediction Filters in Speech Coding 
RAVI P. RAMACHANDRAN AND PETER KABAL 

Abstract-Prediction error filters which combine short-time predic­
tion (formant prediction) with long-time prediction (pitch prediction) 
in a cascade connection are examined. A number of different solution 
methods (autocorrelation, covariance, Burg) and implementations 
(transversal and lattice) are considered. It is found that the F -P cas­
cade (formant filter before the pitch filter) outperforms the P-F cas­
cade for both transversal- and lattice-structured predictors. The per­
formances of the transversal and lattice forms are similar. The solution 
method that yields a transversal structure requires a stability test and, 
if necessary, a consequent stabilization. The lattice form allows for a 
solution method which ensures a stable synthesis filter. Simplified so­
lution methods are shown to be applicable for the pitch filter (multitap 
case) in an F-P cascade. Furthermore, new methods to estimate the 
appropriate pitch lag for a pitch filter are proposed for both transver­
sal and lattice structures. These methods perform essentially as well as 
an exhaustive search in an F -P cascade. Finally, the two cascade forms 
are implemented as part of an APC coder to evaluate their relative 
subjective performance. 

I. INTRODUCTION 

I N this paper, speech coder configurations which use two 
nonrecursive prediction error filters to process the in­

coming speech signal are examined. Conventionally, the 
prediction is carried out as a cascade of two separate fil­
tering operations. The first filter, referred to here as the 
formant filter, removes near-sample redundancies. The 
second is termed the pitch filter and acts on distant-sample 
waveform similarities. The resulting residual signal is 
quantized and coded for transmission. In an adaptive pre­
dictive coder (APC), these predictors are placed in a feed­
back loop around the quantizer. An additional quantiza­
tion noise shaping filter can be employed to reduce the 
perceived distortion in the decoded speech [ 1], [2]. An 
alternative description of an APC coder uses an open-loop 
predictor configuration and a noise feedback filter [3]. A 
block diagram of such a configuration is shown in Fig. 1. 
This type of open-loop arrangement is also used in code­
excited linear prediction (CELP) [4]. In CELP, the cod­
ing is accomplished by selecting a waveform from a given 
repertoire of waveforms. The selection process uses an 
analysis-by-synthesis strategy. Conceptually, each can­
didate waveform is passed through the synthesis filters to 
find that one which produces the best quality speech. 
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Fig. I. Block diagram of an APC coder with noise feedback. (a) Analysis 
phase. (b) Synthesis phase. 

Noise shaping is accomplished by including a frequency 
weighting in the error criterion which is used to choose 
the best waveform. 

In both APC and CELP, the residual signal or the se­
lected codeword (after scaling by the gain factor) is passed 
through a pitch synthesis and a formant synthesis filter to 
reproduce the decoded speech. The filtering in the syn­
thesis phase can be viewed in the frequency domain as 
first inserting the fine pitch structure and then shaping the 
spectral envelope (formant structure). 

The analysis to determine the predictor coefficients is 
carried out frame by frame. The filter coefficients are then 
coded for transmission. The quantization of these coeffi­
cients is outside the scope of the present study. These pa­
rameters, along with the quantized excitation informa­
tion, are used by the decoder to reconstruct the speech. 
The frame update rate is chosen to be slow enough to keep 
the transmission rate required small, yet fast enough to 
allow the speech segment under analysis to be adequately 
described by a set of constant parameters. Depending on 
the application, the effective frame size usually corre­
sponds to time intervals between 5 and 20 ms. 

The aim of this paper is to study predictors which in­
corporate both short-time and long-time prediction. The 
effect of the ordering of the prediction filters in the cas­
cade connection is considered. The filters will be imple­
mented in both lattice and transversal forms. In addition, 
methods to determine the lag used for the pitch filter will 
be derived. The two predictor configurations incorporat­
ing the transversal and lattice solutions are tested as part 
of an APC coder that is equivalent to the one shown in 
Fig. 1. This allows us to access the relative perceptual 
quality of the decoded speech that results from the use of 
different configurations and solutions. 

The next section will introduce the different configura­
tions for formant and pitch filters. This is followed by an 
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analysis of a prediction error filter which uses general de­
lays. This general structure subsumes both formant and 
pitch filters and allows for both autocorrelation and co­
variance analyses. The following section makes the anal­
ysis specific to pitch filters. A comparison of the tech­
niques is given in Section V. Then, the stability properties 
of the synthesis filters are examined for different config­
urations. Section VII examines means to determine an ap­
propriate lag for the pitch filter. Finally, Section VIII dis­
cusses the relative performance of the different options 
when implemented as part of a speech coder. 

II. FORMANT AND PITCH PREDICTORS 

The conventional formant predictor has a transfer func­
tion 

Nf 

F(z) = ~ akz -k 
k~l 

( 1 ) 

The order Nf is typically between 8 and 16. The system 
function of the noise feedback filter is usually related to 
that of the formant predictor. One choice is to let N ( z) = 

F ( z /ex) where 0 < ex < I. This reduces the perceptual 
distortion of the output speech by improving the signal­
to-noise ratio (SNR) in regions where the spectral level is 
low. However, this improvement comes at the expense of 
decreased SNR in the formant regions [ 1]. At the re­
ceiver, the formant synthesis filter has a transfer function 
HF(z) = 1/(1- F(z)). 

The pitch predictor has a small number of taps NP. The 
delays associated with these taps are bunched around the 
pitch lag value. The system function for a transversal form 
pitch predictor is 

1 tap 

2 taps 

3 taps. 

(2) 

The pitch lag M is usually updated along with the coeffi­
cients. The pitch synthesis filter has a system function 
Hp(Z) = 1/(1 - P(z)). 

The conventional predictor configuration uses a cas­
cade of a formant predictor and a pitch predictor, referred 
to here as an F-P cascade. This structure can be moti­
vated from a standard speech production model, which 
decouples the quasi-periodic source (the vocal folds) from 
the vocal tract filter. 

In the context of speech coding, pitch predictors are 
most useful during voiced speech since voiced speech is 
characterized as a quasi-periodic signal with considerable 
correlation between samples separated by a pitch period. 
In the F-P cascade, the formant predictor removes the 
near-sample correlations to a large extent. The resulting 
formant predicted signal is a low-density quasi-periodic 
signal consisting mainly of pitch spikes. The pitch pre-

dictor acts on this residual signal. If the pitch period is an 
integral number of samples, a one-tap pitch predictor can 
remove pitch period correlations. For nonintegral pitch 
periods, a multitap pitch predictor serves somewhat as an 
interpolating filter for the removal of these distant-sample 
correlations. 

The formulation used for the pitch filter is such that it 
removes long-term correlations, whether due to actual 
pitch excitation or not. The use of the term ''pitch filter'' 
is somewhat misleading in describing the action of this 
filter for unvoiced speech and even to some extent for 
voiced speech. However, for ease of reference and to keep 
with past nomenclature, in this paper the long delay filter 
will be referred to as the pitch filter, and the correspond­
ing lag value will be referred to as the pitch lag. 

The cascade connection of the predictors can also have 
the pitch predictor precede the formant predictor (referred 
to as a P-F cascade). In the P-F cascade, the pitch filter 
is chosen to reduce long-term correlations such as those 
due to quasi-periodic input signals. The remaining near­
sample correlations are handled by the formant predictor. 
The filter coefficients for the two filters in the cascade are 
determined in a sequential fashion. The coefficients of the 
first filter are found, and then the coefficients of the sec­
ond filter are determined. The sequential solution process 
gives different results for the F-P cascade and the P-F 
cascade connections. In addition, the initial conditions at 
the time of coefficient update are different for the F-P and 
P-F connections. This would account for differences even 
when the two forms use the same coefficients for their 
constituent parts. 

The individual filters can be implemented in either 
transversal or lattice form. As shown later, the various 
implementations and solution methods give rise to sys­
tems with differing performance and differing stability 
properties. 

III. PREDICTORS WITH GENERAL DELAYS 

In this section, general formulations for determining the 
predictor coefficients for both formant and pitch predic­
tors in transversal or lattice form are developed. Later, 
these formulations are made more specific for the case of 
pitch filters. 

A. Transversal Implementation 

A model for calculating the predictor coefficients for a 
transversal implementation is shown in Fig. 2. The input 
signal x ( n) is multiplied by a data window w d ( n) to give 
xw ( n). The signal xw (n) is predicted from a set of its pre­
vious samples to form an error signal 

L 

e(n) = xw(n)- ~ ckxw(n- Mk)· (3) 
k~I 

The values Mk are arbitrary but distinct integers corre­
sponding to delays of the signal xw ( n). The final step is 
to multiply the error signal by an error window we ( n) to 
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Fig. 2. Analysis model for transversal predictors. 

obtain a windowed error signal ew ( n) where 

ew(n) = we(n) e(n) 

L 

we(n) xw(n) - we(n) ~ ckxw(n- Mk). 
k= l 

(4) 

The squared error is defined by 

E
2 = ~ e~,.(n). (5) 

n = ~oo 

The coefficients ck are computed by minimizing E 
2

• This 
leads to a linear system of equations that can be written 
in matrix form ( <Pc = a): 

¢(Mb MJ) cf>(Mb M2 ) ¢(Mb ML) Cl 

¢(M2, M1) ¢(M2, M2) ¢(M2, ML) c2 

cf>(ML, M1) cf>(ML, M2) cf>(ML, ML) CL 

¢(0, MJ) 

¢(0, M2 ) 

(6) 

¢(0, ML) 

where 

cf>(i,j) ~ w;(n) xw(n- i) xw(n- j). (7) 
n = -oo 

For both formant and pitch predictors, the delays Mk 
are grouped. A formant predictor has a set of delays Mk 
= k fork = I to N1. A pitch predictor has a small number 
of delays Mk = M + k for k = 0 to NP - 1. Grouping the 
pitch taps reduces the amount of side information (which 
is sent to the decoder) needed to specify the delay values. 

1) Autocorrelation Method: The autocorrelation meth­
od results if we ( n) = I for all n. The data window w" ( n) 
is typically time-limited (rectangular, Hamming, or 
other). An important consideration is the minimum-phase 
property of the prediction error filter A ( z) = I - E f = 1 

ckz -M>. If A ( z) is minimum phase, the corresponding 
synthesis filter I/ A ( z) used at the decoder is stable. The 
autocorrelation method can be shown to give a minimum­
phase formant filter [5]. In the case of pitch filters, the 
minimum-phase property does not hold in general. An ex-

469 

ception occurs if the delays corresponding to the coeffi­
cients are uniformly spaced, i.e., M, = k M

1
• This point 

is discussed further in Appendix A. 
The matrix <Pis always symmetric and positive definite. 

It is also Toeplitz if the intercoefficient delays are equal. 
Depending on whether <P is Toeplitz or not, either the 
Levinson recursion 1 or the Cholesky decomposition can 
be used to solve the autocorrelation equations. 

2) Covariance Method: The covariance method results 
if w d ( n) = 1 for all n and the error window is rectangu­
lar, we(n) =I forO:$ n :$ N- I. More general error 
windows in a covariance approach have been suggested 
by Singhal and Atal [6]. The covariance method does not 
guarantee that A ( z) is minimum phase, but it does mini­
mize the error energy for each frame. The resulting sys­
tem of equations (6) has the entries in <P and a defined 
with no window applied to the input signal, 

N-l 

¢(i,j) = ~ x(n- i)x(n -j) (8) 
n=O 

where N is the frame length. 
An alternative method is the modified covariance tech­

nique, which does guarantee a minimum-phase filter [ 1]. 
This technique works well for formant predictors and is 
used in many of the experiments described later. A dis­
cussion of the modified covariance approach and its rel­
evance to the pitch prediction problem appears in Appen­
dix B. 

B. Lattice Implementation 

Lattice methods have been employed in linear predic­
tion and are useful in implementing a lattice-structured 
formant preditor [7]. 2 Here, we consider more general lat­
tice forms with only a subset of the stages actually per­
forming a filtering operation. A lattice-structured predic­
tor consisting of a total of P stages is an all-zero filter, as 
depicted in Fig. 3. The input signal is x ( n), and the final 
error signal is e ( n) = fp ( n). Stage i has a reflection coef­
ficient Ki and forms both the forward residual f ( n) and 
backward residual bi ( n). Reflection coefficients will be 
calculated for stages corresponding to one of the delay 
values Mk. Other stages will have zero-valued reflection 
coefficients. For these null stages, the forward error term 
propagates unaltered, and the backward error term is 
merely delayed. A lattice form filter will be minimum 
phase if all of the reflection coefficients have magnitudes 
which are smaller than one [7]. 

For those stages for which a reflection coefficient is cal­
culated, the aim, in terms of maximizing the prediction 

1A distinction is made between the general form of the Levinson recur­
sion, which allows an arbitrary right-hand-side vector, and the Levinson­
Durbin recursion, which applies if the elements of o. appear in the first row 
of <1>. 

2For formant predictors, one can convert between transversal and lattice 
implementations with identical impulse responses. However. in a time­
varying environment, they are not equivalent due to their different initial 
conditions at frame boundaries. 
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Fig. 3. Analysis model for lattice predictors. 

gain alone, is to minimize the mean-square value of the 
forward residual. However, this criterion does not ensure 
that the magnitude of the resulting reflection coefficients 
is bounded by one and therefore does not ensure the sta­
bility of the corresponding synthesis filter. The Burg al­
gorithm minimizes the sum of the mean-square values of 
the forward and backward residuals and ensures the sta­
bility of the synthesis filter. It also has the desirable prop­
erty of guaranteeing that the mean-square value of the for­
ward residual is nonincreasing across each stage of the 
lattice. 

For the Burg method, the reflection coefficient K; is cal­
culated as 

K; 
2C;-I 

F;-1 + B;-1 
(9) 

where 

N-1 N-1 

C; = ~ jj(n) b;(n- 1), F; = ~ ff(n), 
n=O n=O 

N-1 

B; = ~ b~(n - 1 ), 
n=O 

( 10) 

and N is the frame length. The mean-square value of the 
forward residual is reduced by the factor ( 1 - Kf) across 
stage i. A computationally efficient procedure, termed the 
covariance-lattice method [7], calculates the reflection 
coefficients using (9), but expresses them in terms of the 
covariance of the input signal. With this rearrangement, 

prediction error filters. Assume for the moment that the 
value of the pitch filter lag M is chosen so as to maximize 
the prediction gain. A discussion of the problem of esti­
mating M is postponed until a later section. The input to 
the pitch filter is d(n) for an F-P cascade and s(n) for a 
P-F cascade. 

A. Transversal Pitch Filters 

The autocorrelation and covariance methods can be used 
to determine the coefficients for a transversal-structured 
prediction error filter 1 - P(z). For the autocorrelation 
method, the input signal must be windowed. Convention­
ally, the window is of finite duration, and all the samples 
outside the range of the window are set to zero. The 
method is effective for formant predictors since the largest 
filter delay is usually small compared to the length of the 
window used. This ensures that the frame edge effects due 
to the zero-valued analysis samples preceding and follow­
ing the window are small. In contrast to the formant pre­
dictor, the delays used for a pitch predictor are compa­
rable to, or even larger than, the frame and window 
lengths. For a pitch filter, frame edge effects are no longer 
negligible. The problem is not solved by using windows 
that are longer than the largest delay of the pitch predictor 
since too much time-averaging greatly reduces the per­
formance and, in addition, changes in the pitch lag are 
not adequately tracked. Experiments involving various 
window shapes (including windows dynamically adapted 
to the pitch lag) confirm that the performance of the re­
sulting pitch predictors is poor. Furthermore, there is no 
guarantee that the synthesis filter Hp(Z) derived using the 
autocorrelation method is stable if the filter has more than 
a single tap. 3 

The covariance method yields high prediction gains, but 
may give unstable pitch synthesis filters. Specifically, for 
three-tap pitch predictors in an F-P cascade, the system 
of equations is 

l¢(0,M) ] 
¢(0,M+1) 

¢(0, M + 2) l

¢(M, M) ¢(M, M + 1) ¢(M, M + 2) ] l{3 1 ] 

¢(M + 1, M) ¢(M + 1, M + 1) ¢(M + 1, M + 2) {3 2 

¢(M + 2, M) ¢(M + 2, M + 1) ¢(M + 2, M + 2) {3 3 

( 11 ) 

the computational complexity becomes comparable to the 
conventional covariance method. 

When applying the Burg formula, the lattice-structured 
prediction error filter (as in Fig. 3) is minimum phase even 
if some of the reflection coefficients are constrained to be 
zero. Note also that the lattice coefficients can be trans­
formed to direct form (impulse response) coefficients, al­
lowing for an alternative implementation of the filter in 
transversal form. 

IV. PITCH FILTER ANALYSIS METHOD 

This section discusses the analysis methods that are used 
to implement both transversal- and lattice-structured pitch 

where 
N-1 

<t>(i,j) = ~ d(n- i) d(n- j) (12) 
n=O 

and d ( n) is the input signal to the pitch predictor. The 
matrix ci> is not Toeplitz in general, and the Cholesky de­
composition can be used to solve the system of equations. 
For reasonable frame sizes and the small number of taps 
used for pitch filters, ci> can be modified to become Toe­
plitz with little loss in prediction gain. Then, the general 

3In our limited experiments with pitch filters derived using an autocor­
relation formulation, no instability was observed. 
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form of the Levinson recursion can be used to determine 
the predictor coefficients. Note that the Toeplitz nature of 
<I> does not guarantee that Hp(Z) is stable, but does allow 
for a more efficient solution of the system of equations. 
Stabilization schemes can be employed whenever H P ( z) 
is found to be unstable. Stabilization of the pitch filter is 
simple to implement and is derived from a computation­
ally efficient stability test [8]. The degradation in average 
pitch prediction gain due to stabilization has been found 
to be small for an F-P cascade [8]. 

B. Lattice Pitch Filters 

The Burg method works well for a formant predictor. 
Here, the technique is used to develop a lattice imple­
mentation for a pitch predictor that is used in cascade con­
nections. The basic motivation for using the Burg ap­
proach is that the corresponding synthesis filter is stable. 
Hence, no stability test or fix-up is necessary. Even 
though a lattice filter involves more computations per 
sample than its transversal counterpart, computational 
convenience is provided in the above context. The com­
putation required for a stability test and the consequent 
stabilization is saved. 

Given the value of M, the reflection coefficients K; for 
i = 1 to M - 1 are set to zero. The first nonzero coeffi­
cient in the pitch filter is KM. In the case of formant filters 
and one-coefficient pitch filters, the impulse response of 
a lattice prediction error filter has the same form as that 
for a transversal filter. However, two- and three-coeffi­
cient lattice pitch prediction error filters do not have the 
same transfer functions as the transversal structured fil­
ters. The transfer functions of lattice prediction error fil­
ters are given by 
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ples to allow a "warm-up" period before generating ac­
tual output samples. 4 This resets the memory in the filter 
to be the same as if the filter had been used for the infinite 
past. This strategy will be used in the implementations. 

V. COMPARISON OF TECHNIQUES 

The various predictor configurations were tested using 
the analysis phase of a general speech coder, such as 
shown in Fig. l(a), as a test bed. In comparing different 
configurations and algorithms involving a pitch filter, pre­
diction gain will be used as the performance measure. The 
prediction gain is used to avoid tying down the results to 
a specific type of coder. The aim is to assess the extent to 
which the predictors remove redundancies by measuring 
the energy of the resulting residual. For a general predic­
tor, the prediction gain is the ratio of the average energy 
at the input to that predictor to the average energy of the 
prediction residual. For the system shown in Fig. l(a), 
the formant gain is 

~ s2 (n) 
GF = .,n,-----;c-_ 

~d2 (n). 
( 14) 

n 

A similar formula applies to the pitch gain. The overall 
prediction gain is the prediction gain for the cascade of 
the filters. 

For the present results, the value of pitch lag M is cho­
sen to be the one that gives the highest prediction gain. 
Although an exhaustive search for the best M is not com­
putationally practical, this approach will provide some in­
sight into the relative performance of the various config­
urations. Also, for the present, the pitch filter is not 
stabilized. The issue of stability is deferred to Section VI. 

A(z) 
+ KMKM+lz- 1

- KMz-M- KM+lz-(M+l) N, = 2 
( 13) 

+ (KMKM+I + KM+lKM+2)z-
1 + KMKM+Iz- 2 - KMz-M 

- (KM+ I + KMKM+ I KM+2) z -(M+ I) - KM+2Z -(M+l) N, = 3. 

The two- and three-coefficient lattice filters have terms in 
z -I and z -z which are absent in the corresponding trans­
versal filters. Note, however, that in the case of the three­
coefficient lattice filter, the reflection coefficients control 
the five nontrivial impulse response values, hence giving 
a configuration with only three degrees of freedom. 

In a pitch filter, the pitch lag changes from frame to 
frame. This variation of the position of the nonzero lattice 
coefficients can be detrimental to the performance. Con­
sider the case when the pitch lag increases from one frame 
to another. In the new frame, the backward residual in the 
lattice will have been filtered by both the old coefficients 
and the new coefficients. A remedy for this problem is to 
reset the backward residual to the delayed filter input sig­
nal at each frame boundary. In addition, it is beneficial to 
back up the filter at each frame boundary by NP - 1 sam-

The conditions common to all experiments involve the 
use of a formant predictor with ten coefficients and a pitch 
predictor with one, two, or three coefficients. The input 
speech samples comprise six utterances, three spoken by 
a male and three spoken by a female. The speech database 
consists of high-quality recordings (low-pass filtered to 
just below 4kHz) at a sampling frequency of 8kHz. The 
relevant average prediction gains for each sentence were 
computed and converted to decibels. Since the relative 
ordering of the methods is more or less preserved for each 
sentence, the tables present averages across the sentences 
of these decibel values. 

4This strategy is equivalent to converting the reflection coefficients to 
direct form coefficients [see (13)] and then implementing the predictor in 
transversal form. 
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A. Cascade Configurations 

In comparing the F-P and P-F configurations, analysis 
is carried out for 80-sample frames (corresponding to 10 
ms intervals). This somewhat rapid update allows for a 
higher prediction gain and tends to illustrate the differ­
ences between schemes more clearly. The range of pitch 
lags is set to cover the range for both male and female 
speakers. Minimum and maximum values forM of 20 and 
120 are used. 

Table I shows a comparison of several techniques for 
one-, two-, and three-tap pitch filters. The formant pre­
dictor is implemented in transversal form with the coef­
ficients determined by using the modified convariance 
method. The pitch filter is implemented in transversal 
form (covariance method) or lattice form (Burg method). 

In the case of the F-P cascade, the pitch lag is that which 
maximizes the pitch prediction gain and hence also the 
overall prediction gain. Only a single figure appears for 
the formant prediction gain since the formant filter is un­
affected by the choice of pitch coefficients and pitch lag. 

For the P-F cascade, there is more of an interaction 
between the pitch predictor and the formant predictor. 
Values are given for the case in which the pitch lag is 
chosen to maximize the prediction gain for the pitch filter 
alone and the case in which the pitch lag is chosen to 
maximize the overall prediction gain. The myopic view 
of choosing the pitch lag to maximize only the pitch pre­
diction gain gives the situation in which the pitch predic­
tor has a higher prediction gain than the formant predic­
tor. This phenomenon has also been observed in [9]. The 
situation reverses when the pitch lag is chosen to maxi­
mize the overall prediction gain. It should be noted here 
that the search for the best lag to maximize the overall 
prediction gain is impractically complex. Note also that 
as the number of taps in the pitch predictor is increased, 
there is an increase in the pitch prediction gain at the ex­
pense of a decrease in the formant prediction gain. 

Note that the F-P cascade consistently outperforms the 
P-F cascade in average overall prediction gain, and even 
more so for the myopic choice of pitch lag. 5 

There is only a small difference between the lattice im­
plementation of a pitch predictor and a transversal imple­
mentation, in spite of these forms having different im­
pulse responses. In fact, the lattice form for two and three­
tap filters in the F-P cascade slightly outperforms the 
transversal form for the utterances spoken by females. 
Examination of the final residual formed after formant and 
pitch prediction verifies that the pitch pulses are effec­
tively removed by a lattice pitch filter. 

For the previous experiments, a modified covariance 
approach guarantees a minimum-phase formant prediction 
error filter. Ancillary experiments were conducted to 
compare different options for the formant filter in an F-P 

5Th is ordering is also true for each utterance. except for one utterance 
in which the P-F cascade (transversal pitch filter) with pitch lag, chosen 
to maximize overall gain, slightly outperforms the F-P cascade (transversal 
pitch filter). 

TABLE I 
PREDICTION GAINS FOR FORMANT/PITCH PREDICTORS ( 80-SAMPLE 

FRAMES). THREE NUMBERS IN AN ENTRY REFER TO 0NE-.TWO-, 

AND THREE-TAP PITCH FILTERS 

metlwfl formant pitch oYer all 
gain dB gain dB gain dB 

F-P t rans\'ersal P 
16.1 4.'2 S.3 0.8 20.3 214 219 

lattice P i 4.0 5.2 0.' 20.1 21.3 218 

transYf'rsai p(ll 8.4 8.2 7.6! 10.1 11.4 11.9' 18.5 19.6 19.5 
P-F transversal P 121 13.7 1L:i 112 I 6.1 8.9 9A 19.8 20.4 20.6 

i:::~~: ~:~: , o.r 7.3 6.5 9.5 u.s 13.::> rs.6 r9.r 2o.o 1 

13.6 12.0 110 6.2 7.9 9.4 19.8 19.9 20.4 

:'\ot('s: p( 11 pitch lag dwst>u to maximize pitch prediction gain 
P{ 21 pitch lag chosen to maximizf' oYerall prNliction gain 

cascade. A lattice implementation of the formant filter 
using the reflection coefficients determined by a modified 
covariance method results in essentially no change in pre­
diction gain. Using a covariance formulation (imple­
mented in transversal form) for the formant filter im­
proves the prediction gain by only 0.1 dB, but introduces 
nonminimum-phase formant filters in about 4 percent of 
the frames. 

B. Formant-Pitch Interaction: Effects of Frame Size 

The success of the pitch predictor depends on the for­
mant residual having adjacent pitch pulses which are sim­
ilar in shape. Yet if the formant predictor varies signifi­
cantly from frame to frame, the pitch pulses may differ in 
detail. For short frames, the formant predictor coefficients 
may change significantly from frame to frame just due to 
the asynchronism between the frames and the positions of 
the pitch pulses. An investigation was made of the vari­
ation in prediction gain with changes in the sizes of the 
analysis frames for the formant and pitch filters. We re­
turn to the F-P cascade with the modified covariance 
method used to determine the coefficients of the transver­
sal formant predictor. Also, the covariance approach de­
termines the coefficients of a transversal pitch predictor. 
The results for different combinations of frame sizes are 
shown in Table II. 

Consider the performance of the pitch filter with a 40-
sample analysis frame. The pitch gain increases as the 
length of the analysis frame for the formant predictor in­
creases from 40 to 80 and then levels off for a 160-sample 
formant analysis frame. At the same time, since the for­
mant prediction gain does not change significantly with 
the frame size, the overall prediction initially rises and 
then levels off. 6 For the 80-sample pitch analysis frame, 
the performance is again essentially constant with a 
change of the formant frame size from 80 to 160. Since 
the prediction gain remains high at the slow formant up­
date rates, the slow formant update rates are to be pre­
ferred since they involve less computation and require a 
smaller bandwidth for transmission. The number of frames 
with unstable pitch synthesis filters also depends on the 
frame size combination chosen. But as shown in the next 

60ne would expect the formant prediction gain to increase with decreas­
ing frame size. This is so for a covariance approach. but not necessarily so 
for the modified covariance approach, especially for short frames. 
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TABLE II 

PREDICTION GAINS FOR AN F-P CASCADE FOR VARIOUS COMBINATIONS OF 

FRAME SIZES. THREE NUMBERS IN AN ENTRY REFER TO 0NE-,TWO-, AND 

THREE-TAP PITCH FILTERS 

formant pit\h OVf'ral} 

frame size gain dB fram(> size [ gain dB gain dB 

40 15.8 40 1 3.8 4.8 5.4 19.6 20.6 21.2 

80 16.1 40 I 5.2 6.8 ~.~ I ~~.~ ~i ~ ~~.~ 80 I 4.2 5.3 

40 

I 

5.2 6.8 1./ 21.2 22.8 23. i 
160 16.0 80 4.2 5.4 5.8 20.2 21.4 21.8 

160 3.0 3.9 4.1 19.0 19.9 20.1 

section, the loss in prediction gain due to stabilization of 
the pitch filter is small anyway. 

C. Simplified Pitch Filter Computation 

The computation of the pitch predictor coefficients can 
be simplified in two ways for the multitap case. First, the 
matrix of covariance terms can be forced to be Toeplitz 
[see ( 11)] and hence allow for the use of a generalized 
Levinson recursion. For the three-tap case, the predictor 
gain decreases by an average of only 0.02 dB with this 
change (SO-sample frames). 

The second, more radical, change involves assuming 
that the off-diagonal terms in the covariance matrix are 
negligible. These terms are correlation terms with small 
lags. This approximation is justified by the observation 
that in an F-P cascade the formant filter tends to remove 
the short-time correlations. With this change, the matrix 
becomes diagonal. For a three-tap pitch filter, the coeffi­
cients are given by 

l {3 1 J l ¢(0, M)/<t>(M, M) l 
{3 2 = ¢(0, M + 1)/<t>(M + 1, M + I) 

{3 3 ¢(0, M + 2)/<t>(M + 2, M + 2) 

(15) 

where <t> ( i, j ) is the correlation function for the interme­
diate residual signal d(n) as in (12). The average predic­
tion gain of this simplified solution in an F-P cascade is 
only about 0.2 dB less than the full complexity solution 
(SO-sample frames). 

VI. STABILITY OF PITCH SYNTHESIS FILTERS 

For the configurations considered until now, the pitch 
filter derived by the transversal formulation can give rise 
to a nonminimum-phase prediction error filter with a cor­
responding unstable pitch synthesis filter. In a one-tap 
transversal filter in an F-P cascade, the coefficient is ob­
tained by minimizing the energy of the residual over a 
frame of N samples and is given by 

N-1 

2:: d(n) d(n- M) 
n=O 

{3, (16) 

An unstable pitch synthesis filter arises when the absolute 
value of the numerator is greater than the denominator 
(I {3 I > l ). This usually arises when a transition from an 
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unvoiced to a voiced segment takes place. Such a transi­
tion is marked by an increase in the signal energy. When 
processing a voiced frame that occurs just after an un­
voiced frame, the denominator quantity ~ d\ n - M) in­
volves the sum of the squares of amplitudes in the un­
voiced segment and does not reach a very large value. On 
the other hand, the numerator quantity ~ d ( n) d ( n - M) 
involves the sum of the products of the higher amplitudes 
from the voiced frame and the lower amplitudes from the 
unvoiced frame. Under these circumstances, the numer­
ator can often be larger in magnitude than the denomina­
tor, giving I /3 1 I > 1. From these considerations, one can 
conclude that unstable pitch synthesis filters can arise 
when the signal energy shows a sudden increase. This 
concept carries over to two- and three-tap pitch filters. 
Highly unstable pitch synthesis filters can introduce pops 
and clicks into the reconstructed speech [S]. These are a 
result of the amplification of coding noise for frames with 
unstable synthesis filters. 

A. Stability of the F-P and P-F Cascade Configurations 

For an F-P cascade, the degree of instability of Hp(Z) 
depends on the frame size. Figures are shown for different 
combinations of frame sizes in Table III. The stability of 
the pitch filter is checked using the test given in [S]. If 
found to be unstable, the coefficients are scaled downward 
in magnitude to the point at which they satisfy the stabil­
ity test (for further details, see [S]). 

For a fixed formant frame size, the number of frames 
with unstable pitch filters increases with decreasing pitch 
frame size. For fixed frame sizes, the number of unstable 
frames also generally increases as the number of pitch taps 
is increased. The loss in pitch gain due to stabilization is 
small enough that the relative ordering of the systems 
with different frame size combinations is not altered. One 
can also note that the loss in prediction gain due to sta­
bilization of the pitch filter is highly correlated with the 
percentage of unstable frames for a given number of pitch 
coefficients. 

The synthesis filter Hp(Z) is more susceptible to insta­
bility in a P-F cascade than in an F-P arrangement. This 
is because the original speech waveform (input to the pitch 
predictor in a P-F cascade) has a higher input energy that 
shows greater variations from frame to frame than the re­
sidual after formant prediction (input to the pitch predic­
tor in an F-P cascade). Experiments show that when using 
an F-P cascade (SO-sample frames), an average of 23 
percent of the frames have unstable three-tap pitch syn­
thesis filters. In a P-F cascade, the number increases by 
more than a factor of 2, to almost half of the total number 
of frames processed. Due to this phenomenon, stabiliza­
tion sacrifices more prediction gain in a P-F cascade than 
in an F-P cascade. Even though some of the loss in gain 
can be retrieved by calculating the formant coefficients 
based on the output from the stabilized pitch filter, an ex­
amination of the residual shows that the pitch pulses are 
not effectively removed by the stabilized pitch filter. 
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TABLE III 
PITCH FILTER STABILITY FOR VARIOUS COMBINATIONS OF FRAME SIZES (F-P 

CASCADE). THREE NUMBERS IN AN ENTRY REFER TO 0NE-,TWO-, AND 

THREE-TAP PITCH PREDICTORS. THE PREDICTOR GAIN IS THE GAIN 

BEFORE STABILIZATION. THE Loss FIGURE Is THE LOSS IN PREDICTION 

GAIN DUE TO STABILIZATION OF THE PITCH FILTER 

formant pitch 
frame sizP frame si1.e gain dB %unstable loss dB 

40 40 3.8 4.8 5.4 9 28 32 0.1 0.3 0.5 

80 
40 5.2 6.8 i.i 29 35 0.1 0.6 0.7 
80 4.2 5.3 5.8 26 23 0.0 0.3 0.2 

40 5.2 6.8 7.7 32 39 0.1 0.6 0.7 
160 80 4.2 5.4 5.8 25 27 0.0 0.3 0.2 

160 3.0 3.9 4.1 15 16 0.0 0.1 0.1 

VII. PITCH LAG ESTIMATION 

In the preceding comparisons, the pitch lag M was cho­
sen as that value which maximizes the prediction gain. In 
this section, practical methods to choose Mare discussed. 

A. Transversal Case 

For this section, we consider the covariance method 
used to find the coefficients of the pitch filter in one of the 
cascade configurations. In the general transversal case, 
the system ci>c = a is solved, with the matrix and vectors 
appropriate to the cascade connection. Then, the optimum 
coefficients are given by c = ci> -I a, and the resulting 
mean-square error is E 2 = 1> ( 0, 0) - c T a. Note that ci>, 
c, and a all depend on M. The value of M should be cho­
sen so as to maximize c T a. In general, an exhaustive 
search for the optimal M is not practical for multitap pitch 
filters. 

A one-tap pitch filter leads to a simpler case. Then, {3 1 

= 1> ( 0, M) / 1> ( M, M), and the resulting mean-square 
errorE 2 is 

E
2 

= <f>(O, 0) (17) 

The pitch lag M should be chosen so as to maximize 1> \0, 
M)/<f>(M, M). 

A tal and Schroeder [I] describe a method of estimating 
the pitch lag. They apply this method to a three-tap pitch 
filter. A normalized correlation array T ( m) is first calcu­
lated, where 

r(m) = 1>(0, m) 
.J<t>(O, 0) <f>(m, m) 

(18) 

The correlation array is searched for the maximum value, 
which is in fact the optimal lag for a one-tap pitch filter. 
For a three-tap filter, the lag corresponding to the middle 
tap is set to this value. 

1) A New Method to Determine the Pitch Lag for an 
F-P Cascade: When formant prediction is performed first 
(F-P cascade), the near-sample-based redundancies have 
been removed to a large extent before pitch analysis. 
Therefore, the off-diagonal terms in the matrix ci> [as in 
(11)] are small. Neglecting these terms leads to the sim­
plified formulation for the pitch predictor as in ( 15). With 

the same approximation, c T a becomes 
M+N,- I 2( ) 

T "' 1> 0, m ca::::: L.J 
m~M <f>(m, m) · 

(19) 

The value of M that maximizes this quantity is chosen. 
This is equivalent to maximizing r~:::Z;-I r 2(m). This 
new method applies a sliding rectangular window to the 
normalized correlation array. This need involve little ad­
ditional computation over that for a single-tap filter. The 
denominator term can be calculated efficiently if use is 
made of the recursion 

<P(i + 1, i + 1) 

= <P(i, i) + d 2 
( -i- 1)- d 2(N- 1 - i). (20) 

For a one-tap predictor, the method involves no ap­
proximation. For two- and three-tap predictors, the dif­
ference in pitch prediction gain compared to an exhaus­
tive search is small ( 0. 02 and 0. 07 dB for two and three 
taps, respectively). For the three-tap case, the new 
scheme gives 0.2 dB more prediction gain than using the 
lag found by maximizing T 

2
( m) alone. 

2) Pitch Lag Selection for a P-F Cascade: For the 
P-F cascade, the pitch lag will be chosen to maximize the 
pitch prediction gain alone. Estimating the pitch lag for a 
multitap pitch filter in a P-F cascade cannot be done in 
the same way as for an F-P cascade since the assumption 
that near-sample correlations are small no longer holds. 
For two- and three-tap predictors, a search for the best M 
is computationally burdensome. As an alternative, the 
value of M chosen in the one-tap case can be used as an 
estimate of the pitch lag. For a three-tap predictor, the 
delay associated with the middle coefficient corresponds 
to the value of M for a one-tap filter. Experiments reveal 
that for three-tap pitch predictors, the average difference 
in overall prediction gain between the proposed method 
and an exhaustive search for the pitch lag which maxi­
mizes the pitch gain alone is extremely small. There is a 
loss in pitch prediction gain of 0.5 dB, which is made up 
by an increase in formant prediction gain of almost the 
same amount. 

B. Lattice Case 

The lattice coefficients for a pitch filter are chosen to 
minimize the sum of the mean-square values of the for­
ward and backward residuals at each stage. This strategy 
ensures a minimum-phase filter. However, the real objec­
tive is to minimize the mean-square value of the forward 
residual alone in order to maximize the prediction gain. 

For an NP coefficient lattice form pitch predictor, the 
resulting mean-square error is 

M+N,-1 

E
2 = II 

i~M 

(21) 

The best value of M is that which minimizes the product 
term. The calculation of this quantity as a function of M 
is impractical except in special cases. For a one-coeffi-
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TABLE IV 
METHODS OF CHOOSI~G M II' Two-COEFFICIDIT LATTICE PITCH 

PREDICTORS 

Method Choice of AI :\on-zero Coefficients 

max(p 2 (m)) 1\m, Km+l or 1\m-1• Km 

max(112(M) + J1 2 (M + !)) K.u and KM+l 

cient pitch predictor, the best value of M is that value of 
m which maximizes the value of 11 2( m) where 

2¢(0, m) 
Jl(m) = ¢(0, 0) + <t>(m, m)' (22 ) 

The normalized correlation value 11 ( m) is in fact the re­
flection coefficient for a one-coefficient pitch predictor de­
termined from the Burg formulation. 

1) Pitch Lag Selection for an F-P Cascade: For a one­
coefficient lattice filter, using the value of M that maxi­
mizes 11 2(M) is the best choice. The search for the best 
value of M for the two- and three-coefficient cases in­
volves a great deal of computation. Even for an F-P cas­
cade in which the near-sample redundancies have been 
removed by the formant predictor, the simplifying as­
sumptions used in the transversal case are not useful for 
the lattice form. 

When determining the value of M for two-coefficient 
lattice filters, it is desirable that the overall prediction gain 
be consistently higher than in the one-coefficient case. A 
number of different methods for choosing M were consid­
ered. A subset consisting of the best of these is shown in 
Table IV. 

Method 1 uses the one-coefficient criterion to choose 
the best lag for a two-coefficient lattice. Given the value 
of m chosen by method 1, the reflection coefficients KM 
and KM + 1 are used if 11\ M + 1 ) ~ 11 2

( M); otherwise, 
KM _ 1 and KM are used. Methods 1 and 2 achieve gains 
which are 0.2 and 0.1 dB (respectively) less than that for 
an exhaustive search for the pitch lag. 

A selection of methods considered for three-coefficient 
lattice predictors is shown in Table V. For each of the 
entries, the lattice coefficients can be placed at different 
lags. The entries represent the best of these placements. 
Method 2 adds a lattice stage to its two-coefficient coun­
terpart and hence must have a higher prediction gain than 
the two-coefficient predictor. Methods 1 and 3 give es­
sentially the same performance ( 0.4 dB less than for an 
optimal choice). Method 2 exhibits the highest prediction 
gain, which is 0.3 dB less than for the exhaustive search. 
Note that in any of these methods, if 11 ( m) is replaced by 
T ( m), the results are virtually identical. 

2) Pitch Lag Selection for a P-F Cascade: For a P-F 
cascade with lattice form pitch filters, the value of M is 
determined differently than for its F-P counterpart. A re­
liable algorithm is devised by extending the approach that 
is optimal for maximizing the pitch prediction gain for a 
one-tap pitch filter. Choosing M in this fashion and add­
ing additional lattice stages for two- or three-tap predic­
tors guarantees a higher pitch gain and is comparable to 
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TABLE V 

METHODS OF CHOOSI'-;G M I' THREI·.-COEFFICII·.~ r LATTICI·. PITCH 

PRLDICTORS 

1\lethod j Choice of M ~on-zero Coefficients 

I 
i 

max(/t2(M)) K.l\f-11 K.u and K.u+t 
2 I max(/12(.\f) + 112(M + !)) KAt· KM+l and KM+2 

3 j max(J1 2(M) + 11 2(M + 1) + p 2(A! + 2)) K,u, KM+t and KM+2 

the covariance formulation. The average loss in overall 
prediction gain over that corresponding to the choice of 
M that maximizes pitch gain alone is 0.45 dB for a three­
tap predictor. 

VIII. PERFORMANCE IN AN APC SPEECH CoDER 

To help assess the relative performance of the various 
cascade predictors, an APC speech coder was used as a 
test bed. The APC test bed is modeled after the APC coder 
described in [1] by Atal and Schroeder. For the F-P cas­
cade, the coder is as in [1], with the formant predictor 
placed in an open-loop arrangement and the pitch predic­
tor in a feedback loop around the quantizer. The noise 
shaping filter is N(z) where N(z) = F(z/a.) (see Fig. 
1). Accomplishing the same noise shaping in a P-F cas­
cade results in a more complex system than in the F-P 
case. The P-F cascade version requires two feedback 
loops around the quantizer. 

Some of the experimental conditions reported in [ 1] are 
changed to maintain consistency with the parameters used 
throughout this paper. The speech is sampled at 8 kHz. 
The predictors are updated every 80 samples. The modi­
fied covariance method (with the addition of high-pass fil­
tered white noise as in [ 1]) is used to calculate the coef­
ficients of a tenth-order formant predictor. The pitch 
predictor has three coefficients. Transversal-structured 
pitch predictors are stabilized if necessary. The stabili­
zation was found to be necessary to prevent undesirable 
pops and clicks in the output speech (particularly preva­
lent for the P-F cascade). The pitch lag is computed using 
the practical approaches outlined in Section VII. The 
quantization of the residual is performed by an adaptive 
three-level uniform quantizer. The noise feedback factor 
a is set to 0.75. The noise feedback samples are passed 
through a peak limiter which clips at twice the rms value 
of the final prediction residual. 

The APC coder was run using the same speech database 
used in Section V to calculate the prediction gains. The 
F-P arrangement employing a transversal solution is the 
best of the methods. The F-P lattice and the P-F trans­
versal solutions generate decoded speech of essentially the 
same quality and which is only slightly inferior to that for 
the F-P transversal method. However, the distortions 
present in the F-P lattice and P-F transversal approaches 
are different. The F-P lattice generates output speech that 
suffers from occasional warbles. The output speech re­
sulting from a P-F transversal solution has audible back­
ground noise and occasional clicks. The fourth case, 
namely, the P-F lattice, generates decoded speech which 
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is significantly worse than that of the other methods for 
most of the utterances. 

IX. SuMMARY AND CoNCLUSIONs 

In terms of prediction gain, the F-P cascade stands out 
as being superior to the P-F cascade for both transversal 
and lattice implementations of the pitch filter. In addition, 
the minimum-phase condition can be enforced on a trans­
versal implementation with only a small drop in predic­
tion gain. To achieve minimum-phase prediction error fil­
ters, the formant coefficients are computed using the 
modified covariance method (or autocorrelation method), 
and the pitch coefficients are computed using a covariance 
approach and then modified if the pitch filter is not min­
imum phase. In the lattice case, the minimum-phase con­
dition is guaranteed by the Burg formulation. An addi­
tional advantage of the F-P cascade is that it allows for a 
simplified solution for multitap pitch filters with little loss 
in performance. This solution involves approximating the 
matrix of correlations with a diagonal form. Whether a 
transversal or lattice structure is used to implement the 
formant and pitch filters affects the performance to only a 
small degree. The choice of structure then is dictated by 
ancillary considerations such as computational complex­
ity and parameter coding. 

For the P-F cascade, the pitch lag can be chosen to 
maximize the pitch prediction gain or the overall predic­
tion gain. The latter option is preferable, but impracti­
cally complex and still falls short of the performance of 
an F-P cascade. For a transversal pitch filter in the P-F 
cascade, the incidence of instability is high. The stabili­
zation process sacrifices prediction gain, and in addition, 
the stabilized pitch filter does not adequately remove the 
pitch pulses. 

Experiments for the F-P configuration with different 
frame sizes reveal that a combination of a short analysis 
frame for the pitch predictor and a long analysis frame for 
the formant predictor produces high overall prediction 
gains. The degree of instability of the pitch filter increases 
with decreasing frame size, although the consequent loss 
in prediction gain due to stabilization is not very large. 

Algorithms to determine a suitable value for the pitch 
predictor lag were developed. For the F-P cascade in 
transversal form, a simplified method to determine the 
pitch lag causes little loss in prediction gain compared to 
that from the use of the optimum lag. The computational 
complexity is a fraction of that for an exhaustive search. 

An APC coder was used to evaluate speech quality. 
Of the predictor methods considered, the P-F lattice per­
forms the worst. The F-P cascade employing a transver­
sal solution is the best. The F-P lattice and the P-F trans­
versal solutions also perform well and are only slightly 
inferior to the F-P transversal approach. Note, however, 
that noise shaping in a P-F configuration is more complex 
to implement than in an F-P arrangement. 

The above results show that the F-P transversal ap­
proach is the method of choice from a number of different 
points of view. It has advantages in terms of prediction 

gain, subjective quality, and complexity of implementa­
tion in a noise feedback APC coder. 

APPENDIX A 

AUTOCORRELATION METHOD: MINIMUM-PHASE 

PROPERTIES 

In the case of formant filters, the autocorrelation method 
is well known to lead to minimum-phase prediction error 
filters [5]. A formant filter is distinguished by the fact that 
the prediction is based on data values immediately pre­
ceding the current sample. A more general set of delay 
values leads to a formulation which lacks the structure 
imposed by this special case. A simple example is used 
to show that use of the autocorrelation method by itself 
does not guarantee a minimum-phase predictor. 

Consider a two-tap pitch filter with coefficients corre­
sponding to lags 2 and 3 (M = 2 ). Then, the equations 
to be solved are 

l ¢ ( 0) ¢( 1 ) J l {3, J = l ¢ ( 2) J . (A 1 ) 
¢ ( 1 ) ¢( 0) {3 2 ¢ ( 3) 

Let the autocorrelation values be { ¢ ( 0), ¢ ( 1 ) , ¢ ( 2), 
¢ ( 3)} = { 1, 0, a, a}, with the parameter a being posi­
tive. This sequence of correlations is positive definite for 
a < 0.618. It can easily be shown that the sum of the 
optimal filter coefficients is 2a. For positive pitch filter 
coefficients, a necessary and sufficient condition for a 
minimum-phase filter is that the sum of the filter coeffi­
cients be less than unity [8]. Then, for 0.5 :5 a :5 0.618, 
the pitch filter is not minimum phase. Another example 
of such a case has been given in [ 1 0]. 

Although the autocorrelation method does not give 
minimum-phase predictors for arbitrary spacing of the de­
lays, one special case that does lead to a minimum-phase 
solution warrants discussion. Consider a predictor based 
on uniformly spaced delays of the form Mk = kM1• This 
case can be considered to be an extension of the formant 
filter applied to a subsampled signal. The autocorrelation 
sequence for a subsampled signal is the subsampled ver­
sion of the autocorrelation sequence for the original sig­
nal. The pitch filter with lags as given above can be con­
sidered to be a filter operating on interleaved subsampled 
signals. It can then be argued that the optimal prediction 
error filter with these lags derived using the autocorrela­
tion formulation is minimum phase. This uniformly 
spaced case subsumes a one-tap pitch filter and a formant 
filter. 

APPENDIX B 
MODIFIED CovARIANCE METHOD 

The modified covariance method [ 1], [ 11] is based on 
residual energy ratios and guarantees a minimum-phase 
prediction error filter. This method has been successfully 
applied to formant prediction. Unfortunately, this method 
cannot be derived as minimizing an error criterion. 

The following description of the modified covariance 
method is intimately tied in to the Cholesky decomposi-
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tion for solving a set of positive definite equations, (tile 
= a). The Cholesky decomposition forms a lower/upper 
triangular decomposition of the correlation matrix 

41 = LU (Bl) 

where L is a lower triangular matrix and U is the upper 
triangular matrix formed by transposing L ( LT = U). De­
fine the auxiliary vector 

g = Uc. (B2) 

The solution of the equations proceeds by first solving a 
set of triangular equations by back substitution, 

Lg = a. (B3) 

The solution vector g is substituted into the triangular set 
of equations (B2), which is solved for the coefficients c. 
The error resulting from using this optimal set of coeffi­
cients can be expressed as 

(B4) 

One property of the LU decomposition of a positive def­
inite matrix is a nesting of the solution. Denote 41 (' l as 
the i x i submatrix obtained by keeping only the first i 
rows and first i columns of 41. The lower triangular matrix 
in the LU decomposition of 41 u l is itself a submatrix of 
L. This nesting implies that the vector g also nests. The 
mean-square error for the ith-order solution can be written 
as 

(B5) 

The coefficients found solving the equations using the 
Cholesky decomposition may result in a synthesis filter 
which is not stable. Using an analogy with conventional 
autocorrelation analysis, a stabilization strategy can be 
formulated based on a reflection coefficient parameter­
ization for the filters. The normalized mean-square error 
for an autocorrelation approach can be expressed as 

Er = ct>(o, o) rr (1 - K~) 
n=l 

(B6) 

where Kn is a reflection coefficient. The ith reflection coef­
ficient in the autocorrelation method can be expressed in 
terms of the mean-square error for an ith-order filter and 
that for an ( i - 1 )th-order filter: 

2 
2 1 E' K, = --2-

Ei-t 
(B7) 

The modified covariance strategy uses the ratios of the 
error energies to define reflection coefficients. Using (B5) 
and (B7), the reflection coefficients are obtained from 

2 

K2_L 
i - 2 

Ei-1 
(B8) 

With the autocorrelation method, the sign of the reflection 
coefficient is opposite to that of the predictor coefficient. 
In the modified covariance strategy, gi assumes the role 
of the reflection coefficient in determining the sign. The 
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reflection coefficients, which are bounded in magnitude 
by unity (and hence correspond to stable synthesis filters), 
can be transformed to direct form coefficients [ 12]. 

A. Application to Pitch Filters 

For the general form of the Levinson recursion used to 
solve autocorrelation equations with an arbitrary right­
hand-side vector, the reflection coefficients that corre­
spond to the filter coefficients do not appear naturally in 
the formulation. That means that for the case of an arbi­
trary right-hand-side vector, while the mechanics of the 
modified covariance approach may be used, the method 
is no longer rooted as the analog to the autocorrelation 
approach. 

As part of the study of pitch predictors, attempts were 
made to extend the modified covariance method to pitch 
filters using both transversal and lattice implementations. 
However, the resulting prediction gains were poor. In 
fact, the prediction gain does not necessarily increase 
monotonically as more reflection coefficients are added. 

The stable solution produced by a modified covariance 
approach leads to lower pitch prediction gains than a sta­
bilized covariance solution. Consider a one-tap pitch pre­
dictor. The modified covariance method leads to 

c/>(0, M) 
f3t = ~.J=ct> (=0=, O'=)=ct>=( M=,=M=) (B9) 

In this case, {3 1 is a normalized correlation coefficient. The 
corresponding coefficient for the covariance approach is 

c/>(0, M) 
f3t = ct>(M, M). (BlO) 

Analysis shows that the prediction gain is higher if {3 1 is 
calculated by the covariance approach and the resulting 
pitch synthesis filter is stabilized by setting I {3 1 I = 1 -
E whenever I {3 1 I > 1 (see [8]) than if {3 1 is determined 
by the modified covariance method. 
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