

A pitch analysis device for	The accused products comprise a pitch analysis device for producing a set of pitch codebook parameters.				
producing a set of pitch codebook parameters, comprising:	For example, the accused products practice the Adaptive Multi-Rate – Wideband (AMR-WB) speech codec standard. See 3GPP TS26.190 v10.0.0 (2011-03). Under this standard, the accused products comprise a pitch analysis device for producing a set of pitch codebook parameters.				
	4.3 Principles of the adaptive multi-rate wideband speech encoder				
	The AMR-WB codec consists of nine source codecs with bit-rates of 23.85 23.05, 19.85, 18.25, 15.85, 14.25, 12.65, 8.85 and 6.60 kbit/s.				
	The codec is based on the code-excited linear predictive (CELP) coding model. The input signal is pre-emphasized				
	The CELP speech synthesis model is shown in Figure 1. In this model, the excitation signal at the input of the short-term LP synthesis filter is constructed by adding two excitation vectors from adaptive and fixed (innovative) codebooks. The speech is synthesized by feeding the two properly chosen vectors from these codebooks through the short-term synthesis filter. The optimum excitation sequence in a codebook is chosen using an analysis-by-synthesis search procedure in which the error between the original and synthesized speech is minimized according to a perceptually weighted distortion measure.				
	5.7 Adaptive codebook				
	Adaptive codebook search is performed on a subframe basis. It consists of performing closed loop pitch search, and then computing the adaptive codevector by interpolating the past excitation at the selected fractional pitch lag.				
	The adaptive codebook parameters (or pitch parameters) are the delay and gain of the pitch filter. In the search stage, the excitation is extended by the LP residual to simplify the closed-loop search.				
a pitch codebook search device configured to generate a pitch	The accused products comprise a pitch codebook search device configured to generate a pitch code vector based on a digitized input audio data, wherein said digitized input audio data represents an input audio signal that has been sampled and digitized.				
code vector based on a digitized input audio data, wherein said	For example, the accused devices comprise a pitch codebook search device that is configured to generate a pitch code vector based on a digitized input audio data.				

digitized input audio data	5.7 Adaptive codebook
represents an input audio signal that has been	Adaptive codebook search is performed on a subframe basis. It consists of performing closed loop pitch search, and then computing the adaptive codevector by interpolating the past excitation at the selected fractional pitch lag.
sampled and digitized;	The adaptive codebook parameters (or pitch parameters) are the delay and gain of the pitch filter. In the search stage, the excitation is extended by the LP residual to simplify the closed-loop search.
	The digitized input audio signal represents an input audio signal that has been sampled and digitized.
	4.1 Functional description of audio parts
	The analogue-to-digital and digital-to-analogue conversion will in principle comprise the following elements:
	1) Analogue to uniform digital PCM
	- microphone:
	- input level adjustment device:
	- input anti-aliasing filter:
	 sample-hold device sampling at 16 kHz;
	- analogue-to-uniform digital conversion to 14-bit representation.
	The uniform format shall be represented in two's complement.
	4.2 Preparation of speech samples
	The encoder is fed with data comprising of samples with a resolution of 14 bits left justified in a 16-bit word. The decoder outputs data in the same format. Outside the speech codec further processing must be applied if the traffic data occurs in a different representation.
a) at least two signal paths associated to respective sets of	The accused products comprise at least two signal paths associated to respective sets of pitch codebook parameters representative of said digitized input audio data.

pitch codebook parameters representative of said digitized input audio data, wherein:	5.7 Adaptive codebook In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is used. This is important in wideband signals since the periodicity doesn't necessarily extend over the whole spectrum. In this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch codevector from a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the lowest calculated pitch prediction error is selected, along with the associated pitch gain. The low pass filter used in the second path is in the form $B_{LP}(z)=0.18z+0.64+0.18z^{-1}$. Note that 1 bit is used to encode the chosen path.
	Thus, for 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, there are two possibilities to generate the adaptive codebook $v(n)$, $v(n) = v'(n)$ in the first path, or $v(n) = \sum_{n=-1}^{1} b_{LP}(i+1)v'(n+i)$ in the second path, where \mathbf{b}_{LP} =[0.18,0.64,0.18]. The path which results in minimum energy of the target signal $x_2(n)$ defined in Equation (40) is selected for the filtered adaptive codebook vector. For 6.60 and 8.85 kbit/s modes, $v(n)$ is always $v(n) = \sum_{n=-1}^{1} b_{LP}(i+1)v'(n+i)$.
i) each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of said pitch codevector from said pitch codebook search device; and	For example, the accused products must support at a minimum the AMR-WB codec set, including the 6.6, 8.85. and 12.65 Kbit/s codes under the HD Voice Logo License Agreement. See Annex C for minimum HD Voice requirements. For the accused products, each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of said pitch codevector from said pitch codebook search device.

5.7	Adaptive codebook	

In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is used. This is important in wideband signals since the periodicity doesn't necessarily extend over the whole spectrum. In this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch codevector from a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the lowest calculated pitch prediction error is selected, along with the associated pitch gain.

The low pass filter used in the second path is in the form $B_{LP}(z)=0.18z+0.64+0.18z^{-1}$. Note that 1 bit is used to encode the chosen path.

Thus, for 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, there are two possibilities to generate the adaptive codebook v(n), v(n) = v'(n) in the first path, or $v(n) = \sum_{i=1}^{n} b_{LP}(i+1)v'(n+i)$ in the second path, where

 $b_{LP} = [0.18, 0.64, 0.18]$. The path which results in minimum energy of the target signal $x_2(n)$ defined in Equation (40) is selected for the filtered adaptive codebook vector. For 6.60 and 8.85 kbit/s modes, v(n) is always

$$v(n) = \sum_{i=-1}^{1} b_{L^{p}}(i+1)v'(n+i).$$

For the accused products, at least one of said at least two signal paths comprises a filter for filtering the pitch codevector

	······································
said at least two	before supplying said pitch codevector to the pitch prediction error calculating device of said at least one signal path.
signal paths	
comprises a filter	
for filtering the	
pitch codevector	
before supplying	
said pitch	
codevector to the	
pitch prediction	
error calculating	
0	
device of said at	

ii) at least one of

least one signal path; and	5.7 Adaptive codebook
	In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is used. This is important in wideband signals since the periodicity doesn't necessarily extend over the whole spectrum. In this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the lowest calculated pitch prediction error is selected, along with the associated pitch gain.
	The low pass filter used in the second path is in the form $B_{LP}(z)=0.18z+0.64+0.18z^{-1}$. Note that 1 bit is used to encode the chosen path.
	Thus, for 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, there are two possibilities to generate the adaptive codebook $v(n)$, $v(n) = v'(n)$ in the first path, or $v(n) = \sum_{l=-1}^{1} b_{LP}(i+1)v'(n+i)$ in the second path, where b_{LP} =[0.18,0.64,0.18]. The path which results in minimum energy of the target signal $x_2(n)$ defined in Equation (40) is selected for the filtered adaptive codebook vector. For 6.60 and 8.85 kbit/s modes, $v(n)$ is always $v(n) = \sum_{l=-1}^{1} b_{LP}(i+1)v'(n+i).$
b) a selector for comparing the pitch prediction errors calculated in said at least two signal paths, for choosing the signal path having the lowest calculated pitch prediction error and for selecting the set of pitch codebook	The accused products include a selector for comparing the pitch prediction errors calculated in said at least two signal paths, for choosing the signal path having the lowest calculated pitch prediction error and for selecting the set of pitch codebook parameters associated to the chosen signal path.

parameters associated to the chosen signal path.	5.7 Adaptive codebook In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is used. This is important in wideband signals since the periodicity doesn't necessarily extend over the whole spectrum. In this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch codevector from a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the lowest calculated pitch prediction error is selected, along with the associated pitch gain. The low pass filter used in the second path is in the form $B_{LF}(z)=0.18z+0.64+0.18z^{-1}$. Note that 1 bit is used to encode the chosen path. Thus, for 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, there are two possibilities to generate the adaptive codebook $v(n)$, $v(n) = v'(n)$ in the first path, or $v(n) = \sum_{\mu=-1}^{1} b_{LP}(i+1)v'(n+i)$ in the second path, where $b_{LF}=[0.18, 0.64, 0.18]$. The path which results in minimum energy of the target signal $x_2(n)$ defined in Equation (40) is selected for the filtered adaptive codebook vector. For 6.60 and 8.85 kbit/s modes, $v(n)$ is always $v(n) = \sum_{\mu=-1}^{1} b_{LP}(i+1)v'(n+i)$.
	Claim 2
A pitch analysis device as defined in claim 1, wherein one of said at least two signal paths comprises no filter for filtering the pitch codevector before supplying said pitch codevector to the pitch prediction error	For the accused products, one of said at least two signal paths comprises no filter for filtering the pitch codevector before supplying said pitch codevector to the pitch prediction error calculating device.

calculating device.	
	5.7 Adaptive codebook
	In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is used. This is important in wideband signals since the periodicity doesn't necessarily extend over the whole spectrum. In this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the lowest calculated pitch prediction error is selected, along with the associated pitch gain.
	The low pass filter used in the second path is in the form $B_{LP}(z)=0.18z+0.64+0.18z^{-1}$. Note that 1 bit is used to encode the chosen path.
	Thus, for 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, there are two possibilities to generate the adaptive codebook $v(n)$, $v(n) = v'(n)$ in the first path, or $v(n) = \sum_{l=-1}^{1} b_{LP}(i+1)v'(n+i)$ in the second path, where \mathbf{b}_{LP} =[0.18,0.64,0.18]. The path which results in minimum energy of the target signal $x_2(n)$ defined in Equation (40) is selected for the filtered adaptive codebook vector. For 6.60 and 8.85 kbit/s modes, $v(n)$ is always $v(n) = \sum_{l=-1}^{1} b_{LP}(i+1)v'(n+i)$.
	Claim 5
A pitch analysis device as defined in claim 1, wherein each pitch prediction error calculating device comprises: a) a convolution unit for convolving the pitch codevector with a weighted synthesis filter	For the accused products, each pitch prediction error calculating device comprises a convolution unit for convolving the pitch codevector with a weighted synthesis filter impulse response signal and therefore calculating a convolved pitch codevector. For example, as defined in the technical specification for the AMR-WB speech codec, v(n) corresponds to the pitch codebook vector and h(n) corresponds to the impulse response of the weighted synthesis filter. The pitch codebook vector is convolved with the weighted synthesis impulse response to calculate y(n), a convolved pitch code vector.

impulse response signal and	Release 10		10	3GPP TS 26.190 V10.0.0 (2011-03)	
therefore calculating a convolved pitch	$res_{LP}(n)$	The LP residual signal			
codevector;	c(n)	The fixed codebook vector			
	v(n)	The adaptive codebook vector			
	y(n) = v(n)*	h(n) The filtered adaptive code	ebook vector		
	d			f. f.	
	d _i	The distance between the	mmittance spectral freque	encies J_{i+1} and J_{i-1}	
	h(n)	The impulse response of the	ne weighted synthesis filte	r	
	H(z)W(z)) The weighted synthesis fil	ter		
b) a pitch gain calculator for calculating a pitch		oducts, each pitch prediction error nse to the convolved pitch codeve		rises a pitch gain calculator for calculating a rget vector.	
gain in response to the convolved	Release 10		26	3GPP TS 26.190 V10.0.0 (2011-03)	
pitch codevector and a pitch search target vector;	The adaptive codebook gain is then found by				
		$g_p = \frac{\sum_{n=0}^{63} x(n) v(n)}{\sum_{n=0}^{63} y(n) y(n)},$	bounded by $0 \le g_p \le 1$.2, (39)	
	where $y(n) = v(n)$) $*h(n)$ is the filtered adaptive code	ebook vector (zero-state res	ponse of $H(z)W(z)$ to $v_i(n)$). To insure	
		tive codebook gain g_p is bounded by nd the LP filters of the previous sub		book gains of the previous subframes being unstable.	

	Then the following operations are repeated for each subframe: - The target signal $x(n)$ is computed by filtering the LP residual through the weighted synthesis filter $W(z)H(z)$ with the initial states of the filters having been updated by filtering the error between LP residual and excitation (this is equivalent to the common approach of subtracting the zero input response of the weighted synthesis filter from the weighted speech signal).		
c) an amplifier for multiplying the convolved pitch codevector by the pitch gain to thereby produce an amplified convolved pitch codevector; and	For the accused products, each pitch prediction error calculating device comprises an amplifier for multiplying the convolved pitch codevector by the pitch gain to thereby produce an amplified convolved pitch codevector. 5.8.3 Codebook search The algebraic codebook is searched by minimizing the mean square error between the weighted input speech and the weighted synthesis speech. The target signal used in the closed-loop pitch search is updated by subtracting the adaptive codebook contribution. That is $x_2(n) = x(n) - g_p y(n), n = 0, \dots, 63, (40)$		
d) a combiner circuit for combining the amplified convolved pitch codevector with the pitch search target vector to thereby produce the pitch prediction error.	For the accused products, each pitch prediction error calculating device comprises a combiner circuit for combining the amplified convolved pitch codevector with the pitch search target vector to thereby produce the pitch prediction error. 5.8.3 Codebook search The algebraic codebook is searched by minimizing the mean square error between the weighted input speech and the weighted synthesis speech. The target signal used in the closed-loop pitch search is updated by subtracting the adaptive codebook contribution. That is $x_2(n) = x(n) - g_p y(n), n = 0,,63, (40)$		

	Then the following operations are repeated for each subframe:				
	 The target signal x(n) is computed by filtering the LP residual through the weighted synthesis filter W(z)H(z) with the initial states of the filters having been updated by filtering the error between LP residual and excitation (this is equivalent to the common approach of subtracting the zero input response of the weighted synthesis filter from the weighted speech signal). 				
	- The impulse response, $h(n)$ of the weighted synthesis filter is computed.				
	 Closed-loop pitch analysis is then performed (to find the pitch lag and gain), using the target x(n) and impulse response h(n), by searching around the open-loop pitch lag. Fractional pitch with 1/4th or 1/2nd of a sample resolution (depending on the mode and the pitch lag value) is used. The interpolating filter in fractional pitch search has low pass frequency response. Further, there are two potential low-pass characteristics in the the adaptive codebook and this information is encoded with 1 bit. The target signal x(n) is updated by removing the adaptive codebook contribution (filtered adaptive codevector), and this new target, x₂(n), is used in the fixed algebraic codebook search (to find the optimum innovation). 				
	Claim 6				
A pitch analysis device as defined n claim 5, wherein said pitch gain calculator comprises a means for calculating said bitch gain $b^{(i)}$ using the relation: $b^{(i)}=x^ty^{(i)}/ y^{(i)} ^2$ where j=0, 1, 2, , K, and K corresponds to a number of signal baths, and where	The accused products comprise a pitch analysis device as defined in claim 5, wherein said pitch gain calculator comprises a means for calculating said pitch gain $b^{(j)}$ using the relation: $b^{(j)} = x^{\dagger} y^{(j)} / y^{(j)} ^2$ Additionally, j=0, 1, 2,, K, and K corresponds to a number of signal paths, and where x is said pitch search target vector and $y^{(j)}$ is said convolved pitch codevector.				

vector and y ^{//} is said convolved	Release 10	26	3GPP TS 26.190 V10.0.0 (2011-03)
pitch codevector.	The adaptive codebook gain is ther	n found by	
	g_p = where $y(n) = v(n) * h(n)$ is the filt stability, the adaptive codebook gas	$= \underbrace{\sum_{n=0}^{63} x(n) y(n)}_{n=1} $ bounded by $0 \le g$ tered adaptive codebook vector (zero-stat	e response of $H(z)W(z)$ to $v_i(n)$). To insure codebook gains of the previous subframes
		Claim 7	
A pitch analysis device as defined in claim 5, wherein: a) each of said filters of the plurality of signal paths is identified by a filter index;	Claim 7For the accused products, each of the filters of the plurality of signal paths is identified by a filter index.6.1 Decoding and speech synthesisThe decoding process is performed in the following order:Decoding of LP filter parameters: The received indices of ISP quantization are used to reconstruct the quantized ISP vector. The interpolation described in Section 5.2.6 is performed to obtain 4 interpolated ISP vectors (corresponding to 4 subframes). For each subframe, the interpolated ISP vector is converted to LP filter coefficient domain a_k , which is used for synthesizing the reconstructed speech in the subframe.The following steps are repeated for each subframe:1. Decoding of the adaptive codebook vector: The received pitch index (adaptive codebook index) is used to find the integer and fractional parts of the pitch lag. The adaptive codebook vector $v(n)$ is found by interpolating the past excitation $u(n)$ (at the pitch delay) using the FIR filter described in Section 5.7. The received adaptive filter index is used to find out whether the filtered adaptive codebook is $v_1(n) = v(n)$ or $v_2(n) = 0.18v(n) + 0.64v(n-1) + 0.18v(n-2)$.		

b) said pitch codevector is identified by a pitch codebook index; and	 For the accused products, the pitch codevector is identified by a pitch codebook index. 6.1 Decoding and speech synthesis The decoding process is performed in the following order: Decoding of LP filter parameters: The received indices of ISP quantization are used to reconstruct the quantized ISP vector. The interpolation described in Section 5.2.6 is performed to obtain 4 interpolated ISP vectors (corresponding to 4 subframes). For each subframe, the interpolated ISP vector is converted to LP filter coefficient domain a_b, which is used for synthesizing the reconstructed speech in the subframe. The following steps are repeated for each subframe: Decoding of the adaptive codebook vector: The received pitch index (adaptive codebook index) is used to find the integer and fractional parts of the pitch lag. The adaptive codebook vector v(n) is found by interpolating the past excitation u(n) (at the pitch delay) using the FIR filter described in Section 5.7. The received adaptive filter index is used to find out whether the filtered adaptive codebook is v₁(n)= v(n) or v₂(n) = 0.18v(n)+0.64v(n-1)+0.18v(n-2). 5.7 Adaptive codebook Adaptive codebook search is performed on a subframe basis. It consists of performing closed loop pitch search, and then computing the adaptive codevector by interpolating the past excitation at the selected fractional pitch lag.
c) said pitch codebook parameters comprise the filter index, the pitch codebook index and the pitch gain.	For the accused products, the pitch codebook parameters comprise the filter index, the pitch codebook index and the pitch gain.

In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is used. This is important in wideband signals since the periodicity doesn't necessarily extend over the whole spectrum. In this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch codevector from a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the lowest calculated pitch prediction error is selected, along with the associated pitch gain.

The low pass filter used in the second path is in the form $B_{LP}(z)=0.18z+0.64+0.18z^{-1}$. Note that 1 bit is used to encode the chosen path.

Thus, for 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, there are two possibilities to generate the adaptive codebook v(n), v(n) = v'(n) in the first path, or $v(n) = \sum_{i=1}^{1} b_{LP}(i+1)v'(n+i)$ in the second path, where

 b_{LP} =[0.18,0.64,0.18]. The path which results in minimum energy of the target signal $x_2(n)$ defined in Equation (40) is selected for the filtered adaptive codebook vector. For 6.60 and 8.85 kbit/s modes, v(n) is always

$$v(n) = \sum_{i=-1}^{1} b_{LP}(i+1)v'(n+i).$$

6.1 Decoding and speech synthesis

The decoding process is performed in the following order:

Decoding of LP filter parameters: The received indices of ISP quantization are used to reconstruct the quantized ISP vector. The interpolation described in Section 5.2.6 is performed to obtain 4 interpolated ISP vectors (corresponding to 4 subframes). For each subframe, the interpolated ISP vector is converted to LP filter coefficient domain a_k , which is used for synthesizing the reconstructed speech in the subframe.

The following steps are repeated for each subframe:

1. Decoding of the adaptive codebook vector: The received pitch index (adaptive codebook index) is used to find the integer and fractional parts of the pitch lag. The adaptive codebook vector v(n) is found by interpolating the past excitation u(n) (at the pitch delay) using the FIR filter described in Section 5.7. The received adaptive filter index is used to find out whether the filtered adaptive codebook is $v_1(n) = v(n)$ or $v_2(n) = 0.18v(n) + 0.64v(n-1) + 0.18v(n-2)$.

	5.7 Adaptive codebook	
	Adaptive codebook search is performed on a subframe basis. It consists of performing closed loop pitch search, and then computing the adaptive codevector by interpolating the past excitation at the selected fractional pitch lag.	
	The adaptive codebook parameters (or pitch parameters) are the delay and gain of the pitch filter. In the search stage, the excitation is extended by the LP residual to simplify the closed-loop search.	
The adaptive codebook gain is then found by		
	$\sum_{n=0}^{y(n)y(n)}$ Claim 8	
A pitch analysis device as defined in claim 1, wherein said pitch prediction error calculating device of each signal path comprises means for calculating an energy of the corresponding pitch prediction error, and wherein said selector comprises means for comparing the energies of said pitch prediction	For the accused products, the pitch prediction error calculating device of each signal path comprises means for calculating an energy of the corresponding pitch prediction error, and wherein said selector comprises means for comparing the energies of said pitch prediction errors of the different signal paths and for choosing as the signal path having the lowest calculated pitch prediction error the signal path having the lowest calculated energy of the pitch prediction error.	

signal path having the lowest calculated pitch prediction error the signal path having the lowest calculated energy of the pitch prediction error.	5.7 Adaptive codebook In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is used. This is important in wideband signals since the periodicity doesn't necessarily extend over the whole spectrum. In this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch codevector from a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the lowest calculated pitch prediction error is selected, along with the associated pitch gain. The low pass filter used in the second path is in the form $B_{LP}(z)=0.18z+0.64+0.18z^{-1}$. Note that 1 bit is used to encode the chosen path. Thus, for 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, there are two possibilities to generate the adaptive codebook $v(n)$, $v(n) = v'(n)$ in the first path, or $v(n) = \sum_{n=1}^{1} b_{LP}(i+1)v'(n+i)$ in the second path, where $b_{LP}=[0.18,0.64,0.18]$. The path which results in minimum energy of the target signal $x_2(n)$ defined in Equation (40) is selected for the filtered adaptive codebook vector. For 6.60 and 8.85 kbit/s modes, $v(n)$ is always $v(n) = \sum_{n=1}^{1} b_{LP}(i+1)v'(n+i)$.	
	Claim 10	
An encoder having a pitch analysis device as in claim 1 for encoding a wideband input signal, said encoder comprising: a) a linear prediction synthesis filter calculator responsive to the wideband signal	The accused products comprise a linear prediction synthesis filter calculator responsive to the wideband signal for producing linear prediction synthesis filter coefficients.	

for producing linear prediction synthesis filter coefficients;	 4.3 Principles of the adaptive multi-rate wideband speech encoder The AMR-WB codec consists of nine source codecs with bit-rates of 23.85 23.05, 19.85, 18.25, 15.85, 14.25, 12.65, 8.85 and 6.60 kbit/s. The codec is based on the code-excited linear predictive (CELP) coding model. The input signal is pre-emphasized using the filter H_{pre-emph}(z)=1-µz⁻¹. The CELP model is then applied to the pre-emphasized signal. A 16th order linear prediction (LP), or short-term, synthesis filter is used which is given by: 	
	$H(z) = \frac{1}{\hat{A}(z)} = \frac{1}{1 + \sum_{i=1}^{m} \hat{a}_i z^{-i}},$ (1)	
	where $\hat{a}_{h}i=1,,m$ are the (quantized) linear prediction (LP) parameters, and $m = 16$ is the predictor order. The long-term, or pitch, synthesis filter is usually given by:	
	$\frac{1}{B(z)} = \frac{1}{1 - g_p z^{-T}},$ (2)	
	where T is the pitch delay and g_p is the pitch gain. The pitch synthesis filter is implemented using the so-called adaptive codebook approach.	
	The encoder performs the analysis of the LPC, LTP and fixed codebook parameters at 12.8 kHz sampling rate. The coder operates on speech frames of 20 ms. At each frame, the speech signal is analysed to extract the parameters of the CELP model (LP filter coefficients, adaptive and fixed codebooks' indices and gains). In addition to these parameters, high-band gain indices are computed in 23.85 kbit/s mode. These parameters are encoded and transmitted. At the decoder, these parameters are decoded and speech is synthesized by filtering the reconstructed excitation signal through the LP synthesis filter.	
b) a perceptual weighting filter, responsive to the wideband signal and the linear	The accused products comprise a perceptual weighting filter, responsive to the wideband signal and the linear prediction synthesis filter coefficients, for producing a perceptually weighted signal.	

prediction synthesis filter coefficients, for producing a perceptually weighted signal;	4.3 Principles of the adaptive multi-rate wideband speech encoder The perceptual weighting filter used in the analysis-by-synthesis search technique is given by:
c) an impulse response generator responsive to said linear prediction synthesis filter	The accused products comprise an impulse response generator responsive to said linear prediction synthesis filter coefficients for producing a weighted synthesis filter impulse response signal.

coefficients for producing a weighted	d_i	The distance between the immittance spectral frequencies f_{i+1} and f_{i-1}
synthesis filter impulse response	h(n)	The impulse response of the weighted synthesis filter
signal;	H(z)W(z)	The weighted synthesis filter
	5.5 Impul	lse response computation
	The impulse response, l	$h(n)$, of the weighted synthesis filter $H(z)W(z) = A(z/\gamma_1)H_{de-emph}(z)/\hat{A}(z)$ is computed each
	-	e response is needed for the search of adaptive and fixed codebooks. The impulse response $h(n)$ g the vector of coefficients of the filter $A(z/\gamma)$ extended by zeros through the two filters).
d) a pitch search unit for producing pitch codebook parameters, said	comprises the pitch cod	comprise a pitch search unit for producing pitch codebook parameters. The pitch search unit lebook search device responsive to the perceptually weighted signal and the linear prediction nts for producing the pitch codevector and an innovative search target vector.
pitch search unit comprising:	5.7 Ada	ptive codebook
i) said pitch codebook search		earch is performed on a subframe basis. It consists of performing closed loop pitch search, and laptive codevector by interpolating the past excitation at the selected fractional pitch lag.
device responsive to the perceptually weighted signal and the linear prediction		ok parameters (or pitch parameters) are the delay and gain of the pitch filter. In the search stage, ded by the LP residual to simplify the closed-loop search.
synthesis filter coefficients for producing the		
pitch codevector and an innovative search target vector; and		

5.6 Target signal computation The target signal for adaptive codebook search is usually computed by subtracting the zero-input response weighted synthesis filter $H(z)W(z) = A(z/\gamma_1)H_{de-emph}(z)/\hat{A}(z)$ from the weighted speech signal $s_w(n)$ performed on a subframe basis. An equivalent procedure for computing the target signal, which is used in this codec, is the filtering of the signal $r(n)$ through the combination of synthesis filter $1/\hat{A}(z)$ and the weighting filter $A(z/\gamma_1)H_{de-emph}(z)/\hat{A}(z)$ from the weighting filter $A(z/\gamma_1)H_{de-emph}(z)/\hat{A}(z)$ and the vector is also used in the adaptive codebook extend the LP residual and excitation. The memory update of these filters is explained in Section 5.10. The residual signal $r(n)$ which is needed for finding the target vector is also used in the adaptive codebook extend the past excitation buffer. This simplifies the adaptive codebook search procedure for delays less subframe size of 64 as will be explained in the next section. The LP residual is given by $r(n) = s(n) + \sum_{i=1}^{16} \hat{a}_i s(n-i), n = 0, \dots, 63.$ - The target signal $x(n)$ is updated by removing the adaptive codebook contribution (filtered adaptive and this new target, $x_2(n)$, is used in the fixed algebraic codebook search (to find the optimum interval of the sequence of the optimum interval of the secuence of t	
ii) said pitch analysis device responsive to the pitch codevector for selecting, from said sets of pitch codebook parameters, the set of pitch codebook parameters associated to the	The accused products comprise a pitch analysis device responsive to the pitch codevector for selecting, from said sets of pitch codebook parameters, the set of pitch codebook parameters associated to the signal path having the lowest calculated pitch prediction error.

signal path having the lowest calculated pitch prediction error;	5.7 Adaptive codebook In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is used. This is important in wideband signals since the periodicity doesn't necessarily extend over the whole spectrum. In this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch codevector from a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the lowest calculated pitch prediction error is selected, along with the associated pitch gain.
	The low pass filter used in the second path is in the form $B_{LP}(z)=0.18z+0.64+0.18z^{-1}$. Note that 1 bit is used to encode the chosen path. Thus, for 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, there are two possibilities to generate the adaptive codebook $v(n)$, $v(n) = v'(n)$ in the first path, or $v(n) = \sum_{l=-1}^{1} b_{LP}(i+1)v'(n+i)$ in the second path, where $b_{LP}=[0.18, 0.64, 0.18]$. The path which results in minimum energy of the target signal $x_2(n)$ defined in Equation (40) is selected for the filtered adaptive codebook vector. For 6.60 and 8.85 kbit/s modes, $v(n)$ is always $v(n) = \sum_{l=-1}^{1} b_{LP}(i+1)v'(n+i)$.
e) an innovative codebook search device, responsive to a weighted synthesis filter impulse response signal, and the innovative search target vector, for producing innovative codebook parameters; and	The accused products comprise an innovative codebook search device, responsive to a weighted synthesis filter impulse response signal, and the innovative search target vector, for producing innovative codebook parameters. 5.5 Impulse response computation The impulse response, $h(n)$, of the weighted synthesis filter $H(z)W(z) = A(z/\gamma_1)H_{de-emph}(z)/\hat{A}(z)$ is computed each subframe. This impulse response is needed for the search of adaptive and fixed codebooks. The impulse response $h(n)$ is computed by filtering the vector of coefficients of the filter $A(z/\gamma_1)$ extended by zeros through the two filters $1/\hat{A}(z)$ and $H_{de-emph}(z)$.

	 The target signal x(n) is updated by removing the adaptive codebook contribution (filtered adaptive codevector), and this new target, x₂(n), is used in the fixed algebraic codebook search (to find the optimum innovation). 5.8 Algebraic codebook 5.8.3 Codebook search 	
	The algebraic codebook is searched by minimizing the mean square error between the weighted input speech and the	
	weighted synthesis speech. The target signal used in the closed-loop pitch search is updated by subtracting the adaptive codebook contribution. That is	
	$x_2(n) = x(n) - g_p y(n), n = 0,,63,$ (40)	
	where $y(n) = v(n) * h(n)$ is the filtered adaptive codebook vector and g_p is the unquantized adaptive codebook gain.	
	The matrix H is defined as the lower triangular Toeplitz convolution matrix with diagonal $h(0)$ and lower diagonals	
	$h(1), \dots, h(63)$, and $\mathbf{d} = \mathbf{H}^t \mathbf{x}_2$ is the correlation between the target signal $x_2(n)$ and the impulse response $h(n)$ (also known as the backward filtered target vector), and $\Phi = \mathbf{H}^t \mathbf{H}$ is the matrix of correlations of $h(n)$.	
f) a signal forming device for producing an encoded wideband signal comprising the set of pitch codebook parameters associated to the signal path having the lowest pitch prediction error, said innovative codebook parameters, and said linear prediction	The accused products comprise a signal forming device for producing an encoded wideband signal comprising the set of pitch codebook parameters associated to the signal path having the lowest pitch prediction error, said innovative codebook parameters, and said linear prediction synthesis filter coefficients.	

synthesis filter coefficients.	4.3 Principles of the adaptive multi-rate wideband speech encoder
	The CELP speech synthesis model is shown in Figure 1. In this model, the excitation signal at the input of the short-term LP synthesis filter is constructed by adding two excitation vectors from adaptive and fixed (innovative) codebooks. The speech is synthesized by feeding the two properly chosen vectors from these codebooks through the short-term synthesis filter. The optimum excitation sequence in a codebook is chosen using an analysis-by-synthesis search procedure in which the error between the original and synthesized speech is minimized according to a perceptually weighted distortion measure.
	The perceptual weighting filter used in the analysis-by-synthesis search technique is given by:
	$W(z) = A(z/\gamma_1)H_{de-emph}(z), \qquad (3)$
	where $A(z)$ is the unquantized LP filter, $H_{de-emph} = \frac{1}{1 - 0.68z^{-1}}$, and $\gamma_1 = 0.92$ is the perceptual weighting factor. The weighting filter uses the unquantized LP parameters.
	The encoder performs the analysis of the LPC, LTP and fixed codebook parameters at 12.8 kHz sampling rate. The coder operates on speech frames of 20 ms. At each frame, the speech signal is analysed to extract the parameters of the CELP model (LP filter coefficients, adaptive and fixed codebooks' indices and gains). In addition to these parameters, high-band gain indices are computed in 23.85 kbit/s mode. These parameters are encoded and transmitted. At the decoder, these parameters are decoded and speech is synthesized by filtering the reconstructed excitation signal through the LP synthesis filter.

5.7	Adaptive codebook
5.7	Adaptive codebook

In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is used. This is important in wideband signals since the periodicity doesn't necessarily extend over the whole spectrum. In this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the lowest calculated pitch prediction error is selected, along with the associated pitch gain.

The low pass filter used in the second path is in the form $B_{LP}(z)=0.18z+0.64+0.18z^{-1}$. Note that 1 bit is used to encode the chosen path.

Thus, for 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, there are two possibilities to generate the

adaptive codebook v(n), v(n) = v'(n) in the first path, or $v(n) = \sum_{i=-1} b_{LP}(i+1)v'(n+i)$ in the second path, where

 $\mathbf{b}_{LP} = [0.18, 0.64, 0.18]$. The path which results in minimum energy of the target signal $x_2(n)$ defined in Equation (40) is selected for the filtered adaptive codebook vector. For 6.60 and 8.85 kbit/s modes, v(n) is always

$$v(n) = \sum_{l=-1}^{1} b_{LP}(i+1)v'(n+i).$$

Claim 11

An encoder as defined in claim supplying said pitch codevector to the pitch prediction error calculating device.

said at least two signal paths comprises no filter for filtering the pitch codevector before supplying said pitch

codevector to the pitch prediction error calculating

device.	
	5.7 Adaptive codebook
	In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is used. This is important in wideband signals since the periodicity doesn't necessarily extend over the whole spectrum. In this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch codevector from a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the lowest calculated pitch prediction error is selected, along with the associated pitch gain.
	The low pass filter used in the second path is in the form $B_{LP}(z)=0.18z+0.64+0.18z^{-1}$. Note that 1 bit is used to encode the chosen path.
	Thus, for 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes. there are two possibilities to generate the adaptive codebook $v(n)$. $v(n) = v'(n)$ in the first path, or $v(n) = \sum_{l=-1}^{1} b_{LP}(i+1)v'(n+i)$ in the second path, where \mathbf{b}_{LP} =[0.18,0.64,0.18]. The path which results in minimum energy of the target signal $x_2(n)$ defined in Equation (40) is selected for the filtered adaptive codebook vector. For 6.60 and 8.85 kbit/s modes, $v(n)$ is always $v(n) = \sum_{l=-1}^{1} b_{LP}(i+1)v'(n+i)$.
	Claim 14
An encoder as defined in claim 10, wherein each pitch prediction error calculating device comprises: a) a convolution unit for convolving the pitch codevector with a weighted synthesis filter impulse response signal and	For the accused products, each pitch prediction error calculating device comprises a convolution unit for convolving the pitch codevector with a weighted synthesis filter impulse response signal and therefore calculating a convolved pitch codevector. For example, as defined in the technical specification for the AMR-WB speech codec, v(n) corresponds to the pitch codebook vector and h(n) corresponds to the impulse response of the weighted synthesis filter. The pitch codebook vector is convolved with the weighted synthesis impulse response to calculate y(n), a convolved pitch code vector.

therefore calculating a	Release 10		10	3GPP TS 26.190 V10.0.0 (2011-03)	
convolved pitch codevector;	$res_{LP}(n)$	The LP residual signal			
	c(n)	The fixed codebook vector			
	v(n)	The adaptive codebook vector			
	y(n) = v(n)*i	h(n) The filtered adaptive code	ebook vector		
	d_i	The distance between the i	mmittance spectral frequen	cies f_{i+1} and f_{i-1}	
	h(n)	son man in the	ne weighted synthesis filter		
	H(z)W(z)	The weighted synthesis fil	ter		
) a pitch gain alculator for alculating a pitch	For the accused products, each pitch prediction error calculating device comprises a pitch gain calculator for calculating a pitch gain in response to the convolved pitch codevector and a pitch search target vector.				
ain in response the convolved	Release 10		26	3GPP TS 26.190 V10.0.0 (2011-03)	
pitch codevector and a pitch search target vector;	The adaptive codel	book gain is then found by			
		$g_p = \frac{\sum_{n=0}^{63} x(n) v(n)}{\sum_{n=0}^{63} y(n) y(n)},$	bounded by $0 \le g_p \le 1.2$	(39)	
		*h(n) is the filtered adaptive code		onse of $H(z)W(z)$ to $v_i(n)$). To insure	
	stability the adapti	ve codebook gain a is hounded by	0.95 if the adaptive codebo	ook gains of the previous subframes	

	Then the following operations are repeated for each subframe: - The target signal $x(n)$ is computed by filtering the LP residual through the weighted synthesis filter $W(z)H(z)$ with the initial states of the filters having been updated by filtering the error between LP residual and excitation (this is equivalent to the common approach of subtracting the zero input response of the weighted synthesis filter from the weighted speech signal).				
c) an amplifier for multiplying the convolved pitch codevector by the pitch gain to thereby produce an amplified convolved pitch codevector; and	For the accused products, each pitch prediction error calculating device comprises an amplifier for multiplying the convolved pitch codevector by the pitch gain to thereby produce an amplified convolved pitch codevector. 5.8.3 Codebook search The algebraic codebook is searched by minimizing the mean square error between the weighted input speech and the weighted synthesis speech. The target signal used in the closed-loop pitch search is updated by subtracting the adaptive codebook contribution. That is $x_2(n) = x(n) - g_p y(n), n = 0, \dots, 63, (40)$				
d) a combiner circuit for combining the amplified convolved pitch codevector with the pitch search target vector to thereby produce the pitch prediction error.	For the accused products, each pitch prediction error calculating device comprises a combiner circuit for combining the amplified convolved pitch codevector with the pitch search target vector to thereby produce the pitch prediction error. 5.8.3 Codebook search The algebraic codebook is searched by minimizing the mean square error between the weighted input speech and the weighted synthesis speech. The target signal used in the closed-loop pitch search is updated by subtracting the adaptive codebook contribution. That is $x_2(n) = x(n) - g_p y(n), n = 0, \dots, 63, (40)$				

	Then the following operations are repeated for each subframe:			
	- The target signal $x(n)$ is computed by filtering the LP residual through the weighted synthesis filter $W(z)H(z)$			
	with the initial states of the filters having been updated by filtering the error between LP residual and excitation (this is equivalent to the common approach of subtracting the zero input response of the weighted synthesis filter from the weighted speech signal).			
	- The impulse response, $h(n)$ of the weighted synthesis filter is computed.			
	 Closed-loop pitch analysis is then performed (to find the pitch lag and gain), using the target x(n) and impulse response h(n), by searching around the open-loop pitch lag. Fractional pitch with 1/4th or 1/2nd of a sample resolution (depending on the mode and the pitch lag value) is used. The interpolating filter in fractional pitch search has low pass frequency response. Further, there are two potential low-pass characteristics in the the adaptive codebook and this information is encoded with 1 bit. 			
- The target signal $x(n)$ is updated by removing the adaptive codebook contribution (filtered adaptive and this new target, $x_2(n)$, is used in the fixed algebraic codebook search (to find the optimum innot				
And the second se	Claim 15			
An encoder as defined in claim 10, wherein said pitch gain calculator comprises a means for calculating said pitch gain $b^{(i)}$ using the relation: $b^{(i)}=x^ty^{(i)} y^{(i)} ^2$ where j=0, 1, 2, . , K, and K corresponds to a number of signal paths, and where	The accused products comprise a pitch analysis device as defined in claim 5, wherein said pitch gain calculator comprises a means for calculating said pitch gain $b^{(j)}$ using the relation: $b^{(j)} = x^{t} y^{(j)} / y^{(j)} ^{2}$ Additionally, j=0, 1, 2,, K, and K corresponds to a number of signal paths, and where x is said pitch search target vector and $y^{(j)}$ is said convolved pitch codevector.			
x is said pitch search target vector and y ^{j)} is				

said convolved pitch codevector.	Release 10	26	3GPP TS 26.190 V10.0.0 (2011-03)
	stability, the adaptive codebook ga	$= \frac{\sum_{n=0}^{63} x(n) y(n)}{\sum_{n=0}^{63} y(n) y(n)}$ bounded by $0 \le g$ Itered adaptive codebook vector (zero-sta	ate response of $H(z)W(z)$ to $v_i(n)$). To insure codebook gains of the previous subframes
		Claim 17	
An encoder as defined in claim 10, wherein said pitch prediction error calculating device of each signal path comprises means for calculating an energy of the corresponding pitch prediction error, and wherein said selector comprises means for comparing the energies of said pitch prediction errors of the different signal paths and for choosing as the signal path having the lowest	an energy of the corresponding pite energies of said pitch prediction en	ch prediction error, and wherein said se rors of the different signal paths and fo	each signal path comprises means for calculating elector comprises means for comparing the r choosing as the signal path having the lowest and energy of the pitch prediction error.

calculated pitch prediction error the signal path having the lowest calculated energy of the pitch prediction error.	5.7 Adaptive codebook In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is used. This is important in wideband signals since the periodicity doesn't necessarily extend over the whole spectrum. In this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch codevector from a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the lowest calculated pitch prediction error is selected, along with the associated pitch gain. The low pass filter used in the second path is in the form $B_{LP}(z)=0.18z+0.64+0.18z^{-1}$. Note that 1 bit is used to encode the chosen path. Thus, for 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, there are two possibilities to generate the adaptive codebook $v(n)$, $v(n) = v'(n)$ in the first path, or $v(n) = \sum_{l=-1}^{1} b_{LP}(l+1)v'(n+i)$ in the second path, where $b_{LP}=[0.18.0.64,0.18]$. The path which results in minimum energy of the target signal $v_2(n)$ defined in Equation (40) is selected for the filtered adaptive codebook vector. For 6.60 and 8.85 kbit/s modes, $v(n)$ is always $v(n) = \sum_{l=0}^{1} b_{LP}(l+1)v'(n+i)$.		
	Claim 28		
A cellular mobile transmitter/receive r unit, comprising: a) a transmitter including an encoder for encoding a wideband signal as recited in claim 10 and a transmission circuit for	The accused products comprise a cellular mobile transmitter/receiver unit, comprising: a) a transmitter including an encoder for encoding a wideband signal as recited in claim 10 and a transmission circuit for transmitting the encoded wideband signal; and b) a receiver including a receiving circuit for receiving a transmitted encoded wideband signal and a decoder for decoding the received encoded wideband signal.		

transmitting the encoded wideband signal; and b) a receiver including a receiving circuit for receiving a transmitted encoded wideband signal and a decoder for decoding the received encoded wideband signal.	4.3 Principles of the adaptive multi-rate wideband speech encoder The encoder performs the analysis of the LPC, LTP and fixed codebook parameters at 12.8 kHz sampling rate. The coder operates on speech frames of 20 ms. At each frame, the speech signal is analysed to extract the parameters of the CELP model (LP filter coefficients, adaptive and fixed codebooks' indices and gains). In addition to these parameters, high-band gain indices are computed in 23.85 kbit/s mode. These parameters are encoded and transmitted. At the decoder, these parameters are decoded and speech is synthesized by filtering the reconstructed excitation signal through the LP synthesis filter.
maobarra orginal.	Claim 29
29. A cellular mobile transmitter/receive r unit as defined in claim 28, wherein one of said at least two signal paths comprises no filter for filtering the pitch codevector before supplying said pitch codevector to the pitch prediction error calculating device.	For the accused products, one of said at least two signal paths comprises no filter for filtering the pitch codevector before supplying said pitch codevector to the pitch prediction error calculating device.

5.7 Adaptive codeboo	ok
----------------------	----

In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is used. This is important in wideband signals since the periodicity doesn't necessarily extend over the whole spectrum. In this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch codevector from a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the lowest calculated pitch prediction error is selected, along with the associated pitch gain.

The low pass filter used in the second path is in the form $B_{LP}(z)=0.18z+0.64+0.18z^{-1}$. Note that 1 bit is used to encode the chosen path.

Thus, for 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, there are two possibilities to generate the

<u>adaptive codebook v(n), v(n) = v'(n) in the first path</u>, or $v(n) = \sum_{l=-1}^{\infty} b_{LP}(i+1)v'(n+i)$ in the second path, where

b_{LP}=[0.18,0.64,0.18]. The path which results in minimum energy of the target signal x₂(n) defined in Equation (40) is selected for the filtered adaptive codebook vector. For 6.60 and 8.85 kbit/s modes, v(n) is always

$$v(n) = \sum_{i=-1}^{1} b_{LP}(i+1)v'(n+i).$$

Claim 32 A cellular mobile For the accused products, each pitch prediction error calculating device comprises a convolution unit for convolving the pitch transmitter/receive codevector with a weighted synthesis filter impulse response signal and therefore calculating a convolved pitch codevector. r unit as defined in claim 28. For example, as defined in the technical specification for the AMR-WB speech codec, v(n) corresponds to the pitch codebook wherein each pitch vector and h(n) corresponds to the impulse response of the weighted synthesis filter. The pitch codebook vector is convolved with the weighted synthesis impulse response to calculate y(n), a convolved pitch code vector. prediction error calculating device comprises: a) a convolution unit for convolving the pitch codevector with a weighted

synthesis filter

2	The LP residual signal		
1. 2			
c(n)	The fixed codebook vector		
v(n)	The adaptive codebook vector		
y(n) = v(n) * h	(n) The filtered adaptive code	ebook vector	
d_i	The diamon harmon day		$f_{i+1} = f_{i+1}$
h(n)	son	and the second second	les did te
H(z)W(z)	The weighted synthesis fil	ter	
Release 10		26	3GPP TS 26.190 V10.0.0 (2011-03)
The adaptive codeb	ook gain is then found by		
	$g_p = \frac{\sum_{n=0}^{63} x(n) v(n)}{\sum_{n=0}^{63} y(n) y(n)},$	bounded by $0 \le g_p \le 1.2$,	(39)
where $y(n) = v(n)$	h(n) is the filtered adaptive code	book vector (zero-state respo	unse of $H(z)W(z)$ to $v_i(n)$). To insure
	$y(n) = v(n) * h$ d_i $h(n)$ $H(z)W(z)$ For the accused proceeding proceeding proceeding of the pro	y(n) = v(n) * h(n) The filtered adaptive code d_i The distance between the integral int	y(n) = v(n) * h(n) The filtered adaptive codebook vector d_i The distance between the immittance spectral frequence h(n) The impulse response of the weighted synthesis filter H(z)W(z) The weighted synthesis filter For the accused products, each pitch prediction error calculating device comprises pitch gain in response to the convolved pitch codevector and a pitch search target Release 10 26 The adaptive codebook gain is then found by $\sum_{i=1}^{63} v(n)v(n)$

	Then the following operations are repeated for each subframe: - The target signal $x(n)$ is computed by filtering the LP residual through the weighted synthesis filter $W(z)H(z)$ with the initial states of the filters having been updated by filtering the error between LP residual and excitation (this is equivalent to the common approach of subtracting the zero input response of the weighted synthesis filter from the weighted speech signal).				
c) an amplifier for multiplying the convolved pitch codevector by the pitch gain to thereby produce an amplified convolved pitch codevector; and	For the accused products, each pitch prediction error calculating device comprises an amplifier for multiplying the convolved pitch codevector by the pitch gain to thereby produce an amplified convolved pitch codevector. 5.8.3 Codebook search The algebraic codebook is searched by minimizing the mean square error between the weighted input speech and the weighted synthesis speech. The target signal used in the closed-loop pitch search is updated by subtracting the adaptive codebook contribution. That is $x_2(n) = x(n) - g_p y(n), n = 0, \dots, 63, (40)$				
d) a combiner circuit for combining the amplified convolved pitch codevector with the pitch search target vector to thereby produce the pitch prediction error.	For the accused products, each pitch prediction error calculating device comprises a combiner circuit for combining the amplified convolved pitch codevector with the pitch search target vector to thereby produce the pitch prediction error. 5.8.3 Codebook search The algebraic codebook is searched by minimizing the mean square error between the weighted input speech and the weighted synthesis speech. The target signal used in the closed-loop pitch search is updated by subtracting the adaptive codebook contribution. That is $x_2(n) = x(n) - g_p y(n), n = 0, \dots, 63, (40)$				

	Then the following operations are repeated for each subframe:
	- The target signal $x(n)$ is computed by filtering the LP residual through the weighted synthesis filter $W(z)H(z)$ with the initial states of the filters having been updated by filtering the error between LP residual and excitation (this is equivalent to the common approach of subtracting the zero input response of the weighted synthesis filter from the weighted speech signal).
	- The impulse response, $h(n)$ of the weighted synthesis filter is computed.
	Closed-loop pitch analysis is then performed (to find the pitch lag and gain), using the target x(n) and impulse response h(n), by searching around the open-loop pitch lag. Fractional pitch with 1/4th or 1/2nd of a sample resolution (depending on the mode and the pitch lag value) is used. The interpolating filter in fractional pitch search has low pass frequency response. Further, there are two potential low-pass characteristics in the the adaptive codebook and this information is encoded with 1 bit.
	- The target signal <i>x</i> (<i>n</i>) is updated by removing the adaptive codebook contribution (filtered adaptive codevector), and this new target, <i>x</i> ₂ (<i>n</i>), is used in the fixed algebraic codebook search (to find the optimum innovation).
	Claim 33
A cellular mobile transmitter/receive r unit as defined in claim 32, wherein said pitch gain calculator comprises a means for calculating said pitch gain $b^{(i)}$ using the relation: $b^{(i)}=x^ty^{(i)}/ y^{(i)} ^2$ where j=0, 1, 2, , K, and K corresponds to a	The accused products comprise a pitch analysis device as defined in claim 5, wherein said pitch gain calculator comprises a means for calculating said pitch gain $b^{(i)}$ using the relation: $b^{(i)} = x^{t} y^{(i)} / y^{(i)} ^{2}$ Additionally, j=0, 1, 2, , K, and K corresponds to a number of signal paths, and where x is said pitch search target vector and $y^{(i)}$ is said convolved pitch codevector.

vector and y ^{l)} is said convolved pitch codevector.	Release 10	26	3GPP TS 26.190 V10.0.0 (2011-03)
	stability, the adaptive codebook ga	$= \frac{\sum_{n=0}^{63} x(n) y(n)}{\sum_{n=0}^{63} y(n) y(n)}$ bounded by $0 \le g$ Itered adaptive codebook vector (zero-state	te response of $H(z)W(z)$ to $v_i(n)$). To insure codebook gains of the previous subframes
		Claim 35	
A cellular mobile transmitter/receive r unit as defined in claim 28, wherein said pitch prediction error calculating device of each signal path comprises means for calculating an energy of the corresponding pitch prediction error, and wherein said selector comprises means for comparing the energies of said pitch prediction errors of the different signal paths and for choosing as the	an energy of the corresponding pite energies of said pitch prediction en	ch prediction error, and wherein said se	each signal path comprises means for calculating elector comprises means for comparing the choosing as the signal path having the lowest ed energy of the pitch prediction error.
signal path having the lowest calculated pitch prediction error the signal path having the lowest calculated energy of the pitch prediction error.	5.7 Adaptive codebook In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is used. This is important in wideband signals since the periodicity doesn't necessarily extend over the whole spectrum. In this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch codevector from a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the lowest calculated pitch prediction error is selected, along with the associated pitch gain. The low pass filter used in the second path is in the form $B_{LP}(z)=0.18z+0.64+0.18z^{-1}$. Note that 1 bit is used to encode the chosen path. Thus, for 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, there are two possibilities to generate the adaptive codebook $v(n)$, $v(n) = v'(n)$ in the first path, or $v(n) = \sum_{k=1}^{1} b_{LP}(i+1)v'(n+i)$ in the second path, where $b_{LP}=[0.18.0.64, 0.18]$. The path which results in minimum energy of the target signal $x_2(n)$ defined in Equation (40) is selected for the filtered adaptive codebook vector. For 6.60 and 8.85 kbit/s modes, $v(n)$ is always $v(n) = \sum_{k=1}^{1} b_{LP}(i+1)v'(n+i)$.		
---	--		
	Claim 37		
A network element, comprising: a transmitter including an encoder for encoding a wideband signal as recited in claim 10 and a transmission circuit for transmitting the	The accused products comprise a transmitter including an encoder for encoding a wideband signal as recited in claim 10 and a transmission circuit for transmitting the encoded wideband signal.		

encoded wideband signal.	4.3 Principles of the adaptive multi-rate wideband speech encoder
	The encoder performs the analysis of the LPC, LTP and fixed codebook parameters at 12.8 kHz sampling rate. The coder operates on speech frames of 20 ms. At each frame, the speech signal is analysed to extract the parameters of the CELP model (LP filter coefficients, adaptive and fixed codebooks' indices and gains). In addition to these parameters, high-band gain indices are computed in 23.85 kbit/s mode. These parameters are encoded and transmitted. At the decoder, these parameters are decoded and speech is synthesized by filtering the reconstructed excitation signal through the LP synthesis filter.
20 A metricali	Claim 38
 38. A network element as defined in claim 37, wherein one of said at least two 	For the accused products, one of said at least two signal paths comprises no filter for filtering the pitch codevector before supplying said pitch codevector to the pitch prediction error calculating device. 5.7 Adaptive codebook
signal paths	J.7 Adaptive codebook
comprises no filter for filtering the pitch codevector before supplying said pitch codevector to the pitch prediction error calculating	In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is used. This is important in wideband signals since the periodicity doesn't necessarily extend over the whole spectrum. In this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the lowest calculated pitch prediction error is selected, along with the associated pitch gain.
device.	The low pass filter used in the second path is in the form $B_{LP}(z)=0.18z+0.64+0.18z^{-1}$. Note that 1 bit is used to encode the chosen path.
	Thus, for 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, there are two possibilities to generate the adaptive codebook $v(n)$, $v(n) = v'(n)$ in the first path, or $v(n) = \sum_{l=-1}^{1} b_{LP}(i+1)v'(n+i)$ in the second path, where \mathbf{b}_{LP} =[0.18,0.64,0.18]. The path which results in minimum energy of the target signal $x_2(n)$ defined in Equation (40) is selected for the filtered adaptive codebook vector. For 6.60 and 8.85 kbit/s modes, $v(n)$ is always $v(n) = \sum_{l=-1}^{1} b_{LP}(i+1)v'(n+i)$.

		Claim	41	
A network element as defined in claim 37, wherein each pitch prediction error calculating device comprises: a) a convolution unit for convolving	For example, as d vector and h(n) co	weighted synthesis filter impulse re-	sponse signal and theref for the AMR-WB speech of the weighted synthesi	rises a convolution unit for convolving the pitch ore calculating a convolved pitch codevector. codec, v(n) corresponds to the pitch codebook s filter. The pitch codebook vector is onvolved pitch code vector. 3GPP TS 26.190 V10.0.0 (2011-03)
he pitch codevector with a weighted synthesis filter	res _{LP} (n) c(n)	The LP residual signal The fixed codebook vector		
impulse response signal and therefore calculating a convolved pitch codevector;	v(n) $y(n) = v(n)$	The adaptive codebook vector $*h(n)$ The filtered adaptive codel	book vector	
	d _i	The distance between the in	nmittance spectral freque	encies f_{i+1} and f_{i-1}
	h(n)	The impulse response of the	e weighted synthesis filte	r
	H(z)W(z) The weighted synthesis filte	er	
b) a pitch gain calculator for calculating a pitch gain in response to the convolved pitch codevector and a pitch search		products, each pitch prediction error onse to the convolved pitch codevec		rises a pitch gain calculator for calculating a rget vector.

	Release 10	26	3GPP TS 26.190 V	10.0.0 (2011-03)
	The adaptive codebook gain is then for	and by		
	$g_p = \frac{\sum}{\sum}$	$\int_{n=0}^{63} \frac{x(n)v(n)}{v(n)}, \text{ bounded by}$	$0 \le g_p \le 1.2,$	(39)
	where $y(n) = v(n) * h(n)$ is the filtered stability, the adaptive codebook gain <i>g</i> have been small and the LP filters of the	p is bounded by 0.95, if the ada	ptive codebook gains of the previo	
	with the initial states of the filte	ted by filtering the LP residua ers having been updated by filt	l through the weighted synthesis f tering the error between LP residu zero input response of the weight	al and excitation
c) an amplifier for multiplying the convolved pitch	from the weighted speech signal For the accused products, each pitch p pitch codevector by the pitch gain to th	al). prediction error calculating de	vice comprises an amplifier for m	
codevector by the pitch gain to thereby produce an amplified convolved pitch codevector; and	5.8.3 Codebook searched by weighted synthesis speech. The target codebook contribution. That is	minimizing the mean square		
	x	$x_2(n) = x(n) - g_p y(n), n =$	0,,63,	(40)
d) a combiner circuit for combining the amplified convolved pitch codevector with	For the accused products, each pitch p amplified convolved pitch codevector w			

the pitch search target vector to thereby produce	5.8.3 Codebook search				
the pitch prediction error.	The algebraic codebook is searched by minimizing the mean square error between the weighted input speech and the weighted synthesis speech. The target signal used in the closed-loop pitch search is updated by subtracting the adaptive codebook contribution. That is				
	$x_2(n) = x(n) - g_p y(n), n = 0,,63,$	(40)			
	Then the following operations are repeated for each subframe:				
	- The target signal $x(n)$ is computed by filtering the LP residual through the weighted synthesis filter $W(z)H(z)$				
	 with the initial states of the filters having been updated by filtering the error between LP residual and excitation (this is equivalent to the common approach of subtracting the zero input response of the weighted synthesis filter from the weighted speech signal). The impulse response, <i>h(n)</i> of the weighted synthesis filter is computed. 				
					 Closed-loop pitch analysis is then performed (to find the pitch lag and gain), using the target x(n) and impulse response h(n), by searching around the open-loop pitch lag. Fractional pitch with 1/4th or 1/2nd of a sample resolution (depending on the mode and the pitch lag value) is used. The interpolating filter in fractional pitch search has low pass frequency response. Further, there are two potential low-pass characteristics in the the adaptive codebook and this information is encoded with 1 bit.
	 The target signal x(n) is updated by removing the adaptive codebook contribution (fi and this new target, x2(n), is used in the fixed algebraic codebook search (to find the 				
		Claim 42			
A network element as defined in claim 41, wherein said pitch gain calculator comprises a means for calculating said pitch gain b ⁽ⁱ⁾ using the relation:	The accused products comprise a pitch analysis device as defined in claim 5, wherein said pit means for calculating said pitch gain $b^{(j)}$ using the relation: $b^{(j)} = x^{+} y^{(j)} / y^{(j)} ^2$ Additionally, j=0, 1, 2, , K, and K corresponds to a number of signal paths, and where x is and $y^{(j)}$ is said convolved pitch codevector.				

b ⁽ⁱ⁾ =x ^t y ⁽ⁱ⁾ / y ⁽ⁱ⁾ ² where j=0, 1, 2,	Release 10	26	3GPP TS 26.190 V10.0.0 (2011-03)
., K, and K corresponds to a number of signal paths, and where x is said pitch search target vector and y ^j is said convolved pitch codevector.	stability, the adaptive codebo	$g_p = \frac{\sum_{n=0}^{63} x(n) y(n)}{\sum_{n=0}^{63} y(n) y(n)}$ bounded by 0 the filtered adaptive codebook vector (zero-	state response of $H(z)W(z)$ to $v_i(n)$). To insure ve codebook gains of the previous subframes
		Claim 44	
A network element as defined in claim 37, wherein said pitch prediction error calculating device of each signal path comprises means for calculating an energy of the corresponding pitch prediction error, and wherein said selector comprises means for comparing the energies of said pitch prediction errors of the different signal paths and for choosing as the signal path having the lowest	an energy of the correspondin energies of said pitch prediction	g pitch prediction error, and wherein said on errors of the different signal paths and	of each signal path comprises means for calculating selector comprises means for comparing the for choosing as the signal path having the lowest lated energy of the pitch prediction error.

calculated pitch prediction error the signal path having the lowest calculated energy of the pitch prediction error.	5.7 Adaptive codebook In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is used. This is important in wideband signals since the periodicity doesn't necessarily extend over the whole spectrum. In this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch codevector from a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the lowest calculated pitch prediction error is selected, along with the associated pitch gain. The low pass filter used in the second path is in the form $B_{LP}(z)=0.18z+0.64+0.18z^{-1}$. Note that 1 bit is used to encode the chosen path. Thus, for 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, there are two possibilities to generate the adaptive codebook $v(n)$, $v(n) = v'(n)$ in the first path, or $v(n) = \sum_{l=-1}^{1} b_{LP}(l+1)v'(n+i)$ in the second path, where $b_{LP}=[0.18.0.64.0.18]$. The path which results in minimum energy of the target signal $x_2(n)$ defined in Equation (40) is selected for the filtered adaptive codebook vector. For 6.60 and 8.85 kbit/s modes, $v(n)$ is always $v(n) = \sum_{n=-1}^{1} b_{LP}(l+1)v'(n+i)$.
	Claim 55
A pitch analysis method for producing a set of pitch codebook parameters:	The accused products practice a pitch analysis method for producing a set of pitch codebook parameters. For example, the accused products practice the Adaptive Multi-Rate – Wideband (AMR-WB) speech codec standard. See 3GPP TS26.190 v10.0.0 (2011-03). Under this standard, the accused products comprise a pitch analysis device for producing a set of pitch codebook parameters.

	4.3 Principles of the adaptive multi-rate wideband speech encoder
	The AMR-WB codec consists of nine source codecs with bit-rates of 23.85 23.05, 19.85, 18.25, 15.85, 14.25, 12.65, 8.85 and 6.60 kbit/s.
	The codec is based on the code-excited linear predictive (CELP) coding model. The input signal is pre-emphasized
	The CELP speech synthesis model is shown in Figure 1. In this model, the excitation signal at the input of the short-term LP synthesis filter is constructed by adding two excitation vectors from adaptive and fixed (innovative) codebooks. The speech is synthesized by feeding the two properly chosen vectors from these codebooks through the short-term synthesis filter. The optimum excitation sequence in a codebook is chosen using an analysis-by-synthesis search procedure in which the error between the original and synthesized speech is minimized according to a perceptually weighted distortion measure.
	5.7 Adaptive codebook
	Adaptive codebook search is performed on a subframe basis. It consists of performing closed loop pitch search, and then computing the adaptive codevector by interpolating the past excitation at the selected fractional pitch lag.
	The adaptive codebook parameters (or pitch parameters) are the delay and gain of the pitch filter. In the search stage, the excitation is extended by the LP residual to simplify the closed-loop search.
generating a pitch code vector from a pitch codebook	The accused products generate a pitch code vector from a pitch codebook search device based on a digitized input audio data, wherein said digitized input audio data represents an input audio signal that has been sampled and digitized.
search device based on a digitized input	For example, the accused devices comprise a pitch codebook search device that is configured to generate a pitch code vector based on a digitized input audio data.
audio data, wherein said	5.7 Adaptive codebook
digitized input audio data represents an	Adaptive codebook search is performed on a subframe basis. It consists of performing closed loop pitch search, and then computing the adaptive codevector by interpolating the past excitation at the selected fractional pitch lag.
input audio signal that has been sampled and	The adaptive codebook parameters (or pitch parameters) are the delay and gain of the pitch filter. In the search stage, the excitation is extended by the LP residual to simplify the closed-loop search.

digitized;	The digitized input audio signal represents an input audio signal that has been sampled and digitized.
	4.1 Functional description of audio parts
	The analogue-to-digital and digital-to-analogue conversion will in principle comprise the following elements:
	1) Analogue to uniform digital PCM
	- microphone;
	- input level adjustment device:
	- input anti-aliasing filter:
	 sample-hold device sampling at 16 kHz;
	 analogue-to-uniform digital conversion to 14-bit representation.
	The uniform format shall be represented in two's complement. 4.2 Preparation of speech samples The encoder is fed with data comprising of samples with a resolution of 14 bits left justified in a 16-bit word. The decoder outputs data in the same format. Outside the speech codec further processing must be applied if the traffic data
a) in at least two signal paths associated to respective sets of pitch codebook parameters representative of said digitized input audio data, calculating, for each signal path, a pitch prediction	occurs in a different representation. In at least two signal paths associated to respective sets of pitch codebook parameters representative of said digitized input audio data, the accused products calculate, for each signal path, a pitch prediction error of said pitch codevector from said pitch codebook search device.

5.7 Adaptive codebook

In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is used. This is important in wideband signals since the periodicity doesn't necessarily extend over the whole spectrum. In this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the lowest calculated pitch prediction error is selected, along with the associated pitch gain.

The low pass filter used in the second path is in the form $B_{LP}(z)=0.18z+0.64+0.18z^{-1}$. Note that 1 bit is used to encode the chosen path.

Thus, for 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, there are two possibilities to generate the adaptive codebook v(n), v(n) = v'(n) in the first path, or $v(n) = \sum_{i=1}^{1} b_{LP}(i+1)v'(n+i)$ in the second path, where

 \mathbf{b}_{LP} =[0.18,0.64,0.18]. The path which results in minimum energy of the target signal $x_2(n)$ defined in Equation (40) is selected for the filtered adaptive codebook vector. For 6.60 and 8.85 kbit/s modes, v(n) is always

$$v(n) = \sum_{i=-1}^{1} b_{L^{p}}(i+1)v'(n+i).$$

b) in at least one	For the accused products, in at least one of said at least two signal paths, the accused products filter the pitch codevector
of said at least two	before supplying said pitch codevector for calculation of said pitch prediction error of said at least one signal path.
signal paths,	
filtering the pitch	
codevector before	
supplying said	
pitch codevector	
for calculation of	
said pitch	

prediction error of said at least one signal path; and

5.7	Adaptive codebook

In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is used. This is important in wideband signals since the periodicity doesn't necessarily extend over the whole spectrum. In this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch codevector from a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the lowest calculated pitch prediction error is selected, along with the associated pitch gain.

The low pass filter used in the second path is in the form $B_{IP}(z)=0.18z+0.64+0.18z^{-1}$. Note that 1 bit is used to encode the chosen path.

Thus, for 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, there are two possibilities to generate the

adaptive codebook v(n), v(n) = v'(n) in the first path, or $v(n) = \sum_{i=1}^{n} b_{LP}(i+1)v'(n+i)$ in the second path, where

 $\mathbf{b}_{tp} = [0.18, 0.64, 0.18]$. The path which results in minimum energy of the target signal $x_2(n)$ defined in Equation (40) is selected for the filtered adaptive codebook vector. For 6.60 and 8.85 kbit/s modes, v(n) is always

$$v(n) = \sum_{l=-1}^{1} b_{LP}(i+1)v'(n+i).$$

The accused products compare the pitch prediction errors calculated in said at least two signal paths, choosing the signal c) comparing the path having the lowest calculated pitch prediction error, and selecting the set of pitch codebook parameters associated to the pitch prediction

errors calculated	chosen signal path.
in said at least two	
signal paths,	
choosing the	
signal path having	
the lowest	
calculated pitch	
prediction error,	
and selecting the	
set of pitch	
codebook	
parameters	

associated to the chosen signal path.	5.7 Adaptive codebook				
	In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is used. This is important in wideband signals since the periodicity doesn't necessarily extend over the whole spectrum. In this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the lowest calculated pitch prediction error is selected, along with the associated pitch gain.				
	The low pass filter used in the second path is in the form $B_{LP}(z)=0.18z+0.64+0.18z^{-1}$. Note that 1 bit is used to encode the chosen path.				
	Thus, for 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 or 23.85 kbit/s modes, there are two possibilities to generate the adaptive codebook $v(n)$, $v(n) = v'(n)$ in the first path, or $v(n) = \sum_{l=-1}^{1} b_{LP}(i+1)v'(n+i)$ in the second path, where $\mathbf{b}_{LP} = [0.18, 0.64, 0.18]$. The path which results in minimum energy of the target signal $x_2(n)$ defined in Equation (40) is selected for the filtered adaptive codebook vector. For 6.60 and 8.85 kbit/s modes, $v(n)$ is always $v(n) = \sum_{l=-1}^{1} b_{LP}(i+1)v'(n+i)$.				
	Claim 56				
38. A pitch analysis method as defined in claim 55, wherein, in one of said at least two signal paths, no filtering of the pitch codevector is performed before supplying said pitch codevector to a pitch	For the accused products, one of said at least two signal paths comprises no filter for filtering the pitch codevector before supplying said pitch codevector to the pitch prediction error calculating device.				

prediction error calculating device.					
	5.7 Adaptive codebook				
	In order to enhance the pitch prediction performance in wideband signals, a frequency-dependant pitch predictor is used. This is important in wideband signals since the periodicity doesn't necessarily extend over the whole spectrum. In this algorithm, there are two signal paths associated to respective sets of pitch codebook parameters, wherein each signal path comprises a pitch prediction error calculating device for calculating a pitch prediction error of a pitch codevector from a pitch codebook search device. One of these two paths comprises a low-pass filter for filtering the pitch codevector and the pitch prediction error is calculated for these two signal paths. The signal path having the lowest calculated pitch prediction error is selected, along with the associated pitch gain. The low pass filter used in the second path is in the form $B_{LP}(z)=0.18z+0.64+0.18z^{-1}$. Note that 1 bit is used to encode the chosen path.				
	Claim 59				
A pitch analysis method as defined in claim 55, wherein calculating a pitch prediction error in each signal path comprises: a) convolving the pitch codevector with a weighted synthesis filter impulse response	The accused products convolve the pitch codevector with a weighted synthesis filter impulse response signal and therefore calculate a convolved pitch codevector. For example, as defined in the technical specification for the AMR-WB speech codec, v(n) corresponds to the pitch codebook vector and h(n) corresponds to the impulse response of the weighted synthesis filter. The pitch codebook vector is convolved with the weighted synthesis impulse response to calculate y(n), a convolved pitch code vector.				

signal and therefore	Release 10		10	3GPP TS 26.190 V10.0.0 (2011-03)	
calculating a convolved pitch codevector;	$res_{LP}(n)$	The LP residual signal			
···· ,	c(n)	The fixed codebook vector			
	v(n)	The adaptive codebook vector			
	$y(n) = v(n)^*$	h(n) The filtered adaptive code	ebook vector		
	d_i	The distance between the i	mmittance spectral fi	requencies f_{i+1} and f_{i-1}	
	h(n)	The impulse response of th	and the second second		
	H(z)W(z)) The weighted synthesis file	ter		
b) calculating a pitch gain in	The accused produ	icts calculate a pitch gain in respo	nse to the convolved	pitch codevector and a pitch search target vector.	
response to the convolved pitch	Release 10		26	3GPP TS 26.190 V10.0.0 (2011-03)	
codevector and a pitch search target vector;	The adaptive code	ebook gain is then found by			
		$g_p = \frac{\sum_{n=0}^{63} x(n) v(n)}{\sum_{n=0}^{63} y(n) y(n)},$	bounded by $0 \le g$	$r_p \le 1.2, \tag{39}$	
	where $y(n) = v(n) * h(n)$ is the filtered adaptive codebook vector (zero-state response of $H(z)W(z)$ to $v_i(n)$). To insure				
		tive codebook gain g _p is bounded by nd the LP filters of the previous sub		codebook gains of the previous subframes se to being unstable.	

	Then the following operations are repeated for each subframe: - The target signal $x(n)$ is computed by filtering the LP residual through the weighted synthesis filter $W(z)H(z)$ with the initial states of the filters having been updated by filtering the error between LP residual and excitation (this is equivalent to the common approach of subtracting the zero input response of the weighted synthesis filter from the weighted speech signal).				
c) multiplying the convolved pitch codevector by the pitch gain to thereby produce an amplified convolved pitch codevector; and	The accused products multiply the convolved pitch codevector by the pitch gain to thereby produce an amplified convolved pitch codevector. 5.8.3 Codebook search The algebraic codebook is searched by minimizing the mean square error between the weighted input speech and the weighted synthesis speech. The target signal used in the closed-loop pitch search is updated by subtracting the adaptive codebook contribution. That is $x_2(n) = x(n) - g_p y(n), n = 0,,63, (40)$				
d) combining the amplified convolved pitch codevector with the pitch search target vector to thereby produce the pitch prediction error.	The accused products combine the amplified convolved pitch codevector with the pitch search target vector to thereby produce the pitch prediction error. 5.8.3 Codebook search The algebraic codebook is searched by minimizing the mean square error between the weighted input speech and the weighted synthesis speech. The target signal used in the closed-loop pitch search is updated by subtracting the adaptive codebook contribution. That is $x_2(n) = x(n) - g_p y(n), n = 0,,63, (40)$				

	Then the following operations are repeated for each subframe:				
	- The target signal $x(n)$ is computed by filtering the LP residual through the weighted synthesis filter $W(z)H(z)$ with the initial states of the filters having been updated by filtering the error between LP residual and excitation (this is equivalent to the common approach of subtracting the zero input response of the weighted synthesis filter from the weighted speech signal).				
	- The impulse response, $h(n)$ of the weighted synthesis filter is computed.				
	Closed-loop pitch analysis is then performed (to find the pitch lag and gain), using the target x(n) and impulse response h(n), by searching around the open-loop pitch lag. Fractional pitch with 1/4th or 1/2nd of a sample resolution (depending on the mode and the pitch lag value) is used. The interpolating filter in fractional pitch search has low pass frequency response. Further, there are two potential low-pass characteristics in the the adaptive codebook and this information is encoded with 1 bit.				
	 The target signal x(n) is updated by removing the adaptive codebook contribution (filtered adaptive codevector), and this new target, x₂(n), is used in the fixed algebraic codebook search (to find the optimum innovation). 				
	Claim 60				
A pitch analysis method as defined n claim 59, wherein said pitch gain calculator comprises a means for calculating said pitch gain b ⁽ⁱ⁾ using	The accused products comprise a pitch analysis device as defined in claim 5, wherein said pitch gain calculator comprises a means for calculating said pitch gain b ⁽ⁱ⁾ using the relation: b ⁽ⁱ⁾ =x ^t y ⁽ⁱ⁾ / y ⁽ⁱ⁾ ² Additionally, j=0, 1, 2,, K, and K corresponds to a number of signal paths, and where x is said pitch search target vector and y ⁽ⁱ⁾ is said convolved pitch codevector.				

vector and y ⁱ⁾ is said convolved pitch codevector.	Release 10 The adaptive codebook gain is the	26	3GPP TS 26.190 V10.0.0 (2011-03)
	g_p where $y(n) = v(n) * h(n)$ is the fill stability, the adaptive codebook ga	$= \frac{\sum_{n=0}^{63} x(n) y(n)}{\sum_{n=0}^{63} y(n) y(n)}$ bounded by $0 \le g_p$	e response of $H(z)W(z)$ to $v_i(n)$). To insure odebook gains of the previous subframes
		Claim 62	
A pitch analysis method as defined in claim 55, wherein calculating said pitch prediction error, in each signal path, comprises calculating an energy of the corresponding pitch prediction error, and wherein comparing the pitch prediction errors comprises comparing the energies of said pitch prediction errors of the different signal paths and choosing as the	energy of the corresponding pitch p the energies of said pitch prediction	prediction error, and wherein comparing	h each signal path, comprises calculating an the pitch prediction errors comprises comparing choosing as the signal path having the lowest d energy of the pitch prediction error.

