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2.2 DISCRETE-TIME SYSTEMS 

A discrete-time system is defined mathematically as a transformation or operator that 
maps an input sequence with values x[n] into an output sequence with values 
y[n]. This can be denoted as 

y[n] = T{x[n]} (2.2D 

and is indicated pictorially in Fig. 2.6. Equation (2.21) represents a rule or formula for 
computing the output sequence values from the input sequ,ence valu~s. It .should be 
emphasized that the value of the output sequence at each value of the index n may be a 
function ofx[n] at all vall!e~ of n. The following examples illustrate some simple ah9 
useful ~ystems. · 

Example 2.1 The Ideal Pelay Sys!em 

The ideal de!ay sy~tem is defined by the equation 

- oo < n < oo, (2.22) 

where n4 is a fixed positive integer called the delay of the system. In words, the ideal delay 
system simply shifts the input sequence to the right by 114 samples to form the output. If 
in Eq: (2.22) n4 is ·a. fixed negative integer, then the system would shift the input to the left 
by n4 samples ~rresponding to a time adv.ance. · 

In Example 2.1 only one sample of the input sequence is involved in determining 
a certain· output sample. In the following example, this is not the case. 

Examvle 2.2 Moving Average 

The general m.oving average system is defined by the equation 

1 M, 

y[n] = M M 1 L x[n - k] 
I + 2 + A•-Mt 

1 . 
= 

1 
{x[n + M tJ + x[n + M 1 - 1] + · · · + x[n] 

Ml +M2 + 
+ x[n- 1] + ·· · + x(n - M 2]}. (2.23) 

This system computes the nth sample of the output sequence as the average of 
(M 1 + M 2 + 1) samples of the input sequence around the nth sample. Figure 2.7 shows 
an input sequence plotted as a function of a dummy index k and the samples involved 
in the computation of the output sample y[n] for 11 = 7, M 1 = 0, anci M 2 = 5. The 
?Utput sample y[7] is equal to ! times the sum of all the ~amples between the 
vertical dotted lines. To compute y[8], both dotted lines would move one sample to 
the right. . . · . 

~ 
~ 

Figure 2.6 Representation of a discrete­
time system, i.e., a transformation that 
maps an input sequenCQ x[n] into a 
unique output sequence y[n). 
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x(kl 

0 k 

Figure 2.7 Sequence values involved in computing a causal moving average. 

Classes of systems are defined by placing constraints on the properties of the 
transformation T{·}. Doing so often leads to very general mathematical representa­
tions, as we will see. Of particular importance to consider are the system constraints 
and properties, discussed in Sections 2.2.1-2.2.5. 

2.2. 1 Memoryfess Systems 

A system is referred to as memoryless if the output y[n] at eyery value of n depends 
only on the input x[n] at the same value of n. 

Example 2.3 

An example of a memoryless system is one for which x[n) and y(nJ are related by 

y[n) = (x(nJ)2 for each value of n. (2.24) 

The system in Example 2.1 is not memoryless unless n4 = 0. In particular it is referred 
to as having "memory" whether n4 is positive (time delay) or negative (time advance). 
The system in Example 2.2 is not memorylcss unless M1 = M 2 = 0. 

2.2.2 Linear Systems 

The class of linear systems is defined by the principle of superposition. If y 1[n] and 
y2 [n] are the responses of a system when x 1[n] and x 2[n] are the respective inputs, 
then the system is linear if and only if 

and 

T{x 1 [n] + x2[n]} = T{x 1[n]} + T{x2[n]} = y1 [n] + y2[n] 

T{ax[n]} = aT{x[n]} = ay[n]. 

(2.25a) 

(2.25b) 

where a is an arbitrary constant. The first property is called the additivity property and the 
second is called the homogeneity or scaling property. These two properties can be combined 
into the principle of superposition, stated as 

(2.26) 
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for arbitrary constants a and b. This can be generalized to the superposition of many 
inputs. Specifically, if 

then 

x[n] = L;akxk[n], 
k 

y[n] = L;akyk[n], 
k 

(2.27a) 

(2.27b) 

where yk[n] is the system response to the input xk[n]. 
By using the definition of the principle of superposition, we can easily show that 

the systems of Examples 2.1 and 2.2 .are linear system,s. (See Problem 2.2.) An 
example of a nonlinear system is the system in Example 2.3. 

Example 2.4 

The system referred to as an accumulator and defined by the relation 

" y[n] = l: x[k] (2.28) 
A:•- oo 

is a linear system. The output at each sample instant n is equal to the accumulated sum of 
the value at nand all previous values of the input. Comparing Eq. (2.28) and Eq. (2.8), we 
note that if the input x[n] is a unit impulse 8[n], then the output y[n] is a unit step u[n]. 

2.2.3 Time-Invariant Systems 

A time-invariant system (equivalently often referred to as a shift-invariant system) is 
one for which a time shift or delay of the input sequepce causes a corresponding shift 
in the output sequence. Specifically, suppose that a system transforms the input 
sequence with values x[n] into the output sequence with values y[n]. The system is 
said to be time-invariant if for all n0 the input sequence with values x 1[n] = x[n - n0] 
produces the output sequence with values y 1[n] = y[n- n0]. 

All of the systems in Examples 2.1-2.4 are time-invariant. The following 
example illustrates a system that is not time-invariant. 

Example 2.S 

The system defined by the relation 

y[n] = x[Mn], -oo < n < oo, (2.29) 

with M a positive integer, is called a compressor. Specifically, it discards (M - 1) 
samples out of M; i.e., it creates the output sequence by selecting every Mth sample. It 
should be clear simply from the description of its operation that this system is not time­
invariant. We can see this mathematically by considering the response y 1 [n] to the input 
x 1[n] defined as x1[n] = x[n - n0 ]. Then 

y1[n] = x 1[Mn] = x[Mn - n0]. (2.30) 

But 
y[n- n0 ] = x[M(n - n0 )] ~ y1[n]. (2.31) 

With x1[11] equal to x[n] shifted by n0 , y 1[n] is not y[n] shift~ by n0 , so the 
downsampler is not time-invariant, unless of course M = 1. 

Page 5 of 19



ZTE EXHIBIT 1035Page 6 of 19



ZTE EXHIBIT 1035

/Stems Chap. 2 

lue at index n = 
; implies that if 
is, the system is 
and is noncausal 
'2 ~ 0; otherwise 
liator of Example 
ICe y[l) = x[M). 

(2.32) 

Jsal. However, the 

(2.33) 

:nse if and only if 
:. The input x[n] 

(2.34) 

ositive finite value 

(2.35) 

of Example 2.4 is 
put for which the 
ounded. For this 

(2.36) 

nded, i.e., there is 
n. 
ed in this section 
•e may be able to 

Sec. 2.3 Unear Time-Invariant Systems 21 

find inputs for which the properties hold, but the existence of the property for some 
inputs does not mean that the system has the property. For the system to have the 
property, it must hold' for all inputs. For example, an unstable system may have some 
bounded inputs for which the output is bounded, but for the system to have the 
property of stability, it must be true that for all bounded inputs the output is 
bounded. If, as we were able to do with the accumulator system of Example 2.4, we 
can find just one input for which the system property does not hold, then we have 
shown that the system does not have that property. 

' ·. , ,; ·~-· :· .. ' .. 

2.3 LINEAR TIME-INVARIANT SYSTEMS 

A particularly important class of systems consists of those that are linear and time­
invariant. These two properties in combination lead to especially convenient repre­
sentations for these systems. Most important, this class of systems has significant 
signal processing applications. The class of linear systems is defined by the principle 
of superposition in Eq. (2.26). If the linearity property is combined wit)l the 
representation of a general sequence as a linear combination of delayed impulses as in 
Eq. (2.6), it follows that a linear system can be completely characterized by its impulse 
response. Specifically, let hk[n] be the response of the system to o[n - k], an impulse 
occurring at n = k. Then from Eq. (2.6), 

y[n] = T L-~ oo x[k]o[n - k] }- (2.37) 

From the principle of superposition in Eq. (2.26), we can write 

a) 00 

y[n] = I x[k]T{o[n- k]} = I x[k]hk[n]. (2.38) 
k = -oo k = - oo 

According to Eq. (2.38), the system response to any input can be expressed in terms of 
the response of the system to o[n - k]. If only linearity is imposed, hk[n] will depend 
on both n and k, in which case the computational usefulness of Eq. (2.38) is 
limited. We obtain a more useful result if we impose the additional constraint of time 
in variance. 

The property of time invariance implies that if h[n] is the response to o[n], then 
the response to o[n - k] is h[n - k]. With this additional constraint, Eq. (2.38) 
becomes 

a) 

y[n] = L x[k]h[n - k]. (2.39) 
k • - oo 

As a consequence of Eq. (2.39), a linear time-invariant system (which we will 
sometimes abbreviate as LTI) is completely characterized by its impulse response, 
h[n], in the sense that, given h[n], it is possible to use Eq. (2.39) to compute the output 
y[n] due to any input x[n]. 
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Equation (2.39) is commonly called the convolution sum. If y[n] is a sequence 
whose values are related to the values of two sequences IJ[n] and x[n] as in Eq. (2.39), 
we say that y[n] is the convolution of x[n] with h[n] and represent this by the 
notation 

y[n] = x[n] • h[n]. (2.40) 

The operation of discrete-time convolution takes two sequences x [n] and IJ[n] and 
produces a third sequence y[n]. Equation (2.39) expresses each sample of the output 
sequence in terms all of the samples of the input and tpe impulse response sequences. 

The derivation ofEq. (2.39) suggests the interpretation that the input sample at 
n = k, represented as x[k]<5[n - k], is transformed by the system into an output 
sequence x[k]IJ[n - k], - oo < n < oo and that these sequences for each k are 
superimposed to form the overall output sequence. This interpretation is illustrated 
in Fig. 2.8, which shows an impulse response, a simple input sequence having three 
nonzero samples, the individual outputs due to each sample, and the composite 
output due to all the samples in the input sequences. Specifically, x[n] can be 
decomposed as the sum of the three sequences x[ - 2]<5[n + 2], x[0]<5[n], and 
x[3]o[n - 3] representing the three nonzero values in the sequence x[n]. The 
sequences x[ - 2]h[n + 2], x[O]h[n], and x[3]h[n - 3] are the system responses to 
x[ -2]o[n + 2], x[O]o[n], and x[3]<5[n - 3], respectively. The response to x[n] is 
then the sum of these three individual responses. 

Although the convolution-sum expression is analogous to the convolution 
integral of continuous-time linear system theory, the convolution sum should not be 
thought of as an approximation to the convolution integral. The convolution integral 
plays mainly a theoretical role in continuous-time linear system theory; we will see 
that the convolution sum, in addition to its theoretical importance, often serves as an 
explicit realization of a discrete-time linear system. Thus it is important to gain some 
insight into the properties of the convolution sum in actual calculations. 

The preceding interpretation of Eq. (2.39) emphasizes that the convolution sum 
is a direct result of linearity and time in variance. However, a slightly different way of 
looking at Eq. (2.39) leads to a particularly useful computational interpretation. 
When viewed as a formula for computing a single value of the output sequence, Eq. 
(2.39) dictates that y[n] (i.e., the nth value of the output) is obtained by multiplying 
the input sequence (expressed as a function of k) by the sequence whose values are 
h[n - k], - oo < k < oo, and then, for any fixed value of n, summing all the values of 
the products x[k]h[n - k], with k a counting index in the summation process. The 
operation of convolving two sequences thus involves doing the computation for all 
values of n, thus generating the complete output sequence y[n], - oo < 11 < oo. 
The key to carrying out the computations of Eq. (2.39) to obtain y[n] is under­
standing how to form the sequence h[n - k], - oo < k < oo, for all values of n that are 
of interest. To this end, it is useful to note that 

h[11 - k] = h[ - (k- n)]. (2.41) 

The interpretation of Eq. (2.41) is best done with an example . . 
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... .'II 
x[n) h[n) 

t • • • 0 0 -2 n n 

I 
x _2 [n) • x[-2) 6(n + 2) 

I I 
y_2 [n) = x[ - 2)h[n + 2) 

• • • • • • • • • • • • t • • • • • • - 2 0 n 0 n 

x0<.(nl • x[0)6[n) Yo[n) = x[O)h[n) 

0 n • • • n 

x3 [n) = x(3)6[n - 3) y3 (n) • x(3]h[n- 3) 

3 • • • • • ... I .. • • • • • • • 0 n. 0 

x [n) • x _2 [n) + x0 (n) + x3 (n) y[n) = y _2 (n) +Yo [n) + y3 (n) 

3 
- 2 0 n n 

Figure 2.8 Representation of the output of a linear time-invariant system as the 
superposition of responses to individual samples of the input. 

Page 9 of 19



ZTE EXHIBIT 1035

24 Discrete-Time Signals and Systems 

I I I I h(k) 

.. • • • I I I I I t • • - 3 0 6 

(a) 

I I I I 
hl-k!• h(O - k) 

• ' t I I I t • • • • • -6 0 3 

(b) 

h(n - k!• h(- (k - nil 

I I I I • • • • • t I I I I t • n - 6 0 n n+3 

(c) 

Figure 2.9 Forming the sequence h[n - k]. (a) The sequence h[k] as a function of 
k. (b) The sequence h( -k] as a function of k. (c) The sequence h( 11 - k] as a funet.ion 
of k for n = 4. · · · 

Example 2.7 

Chap. 2 

k 

k 

k 

SupP,Ose h[k] is the s~quence shown in Fig. 2.9(a). First consider h[ - k] plotted against 
k; h[ -k] is simply h[k] reflected or "flipped" about k = 0, as shown in Fig. 2.9(b). Re­
placing k by k - n_, where n is a fixed integer, leads to a shift of the origin of'the sequence 
h[ ....: k] to k = n, as shown in Fig. 2.9(c) for the case n = 4. 

Generalizing E~ample 2.7, it should be clear that in general the sequence h[n - k], 
- oo < k ~· oo, is obtained by 

1. reflecting h[k] about the origin to obtain h[ - k]; 
2. shifting the origin of the reflected sequence to k = n. 

To implement discrete-time convolution, the two sequences x[k] and h[n - k] are 
multiplied together for - oo < k < oo and the products are summed to compute the 
output sampl~ y[n]. To obtain another output sample, the origin of ~he sequence 
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Ji[ - k] is shifted to the new. sample position and . the process is repeated. This 
computational procedure applies whether the computations are carried out numeri~ 
cally on sampled data or analytically with sequences for which the sample values have 
simple formulas. The following example illustrates discrete-time convolution for the 
latter case. 

Example 2.8 

Consider a system with impulse response 

The input is 

lz[n] = u[iz] - u[n - N] 

= {1, 
0, 

0 ~ n ~ N -1, 
otherwise. 

x[n] = a"u[11]. 

To find the output at a p;trticuhir index 11, we must form the sums over all k of the product 
x[k]h[11 - k]. . . In· this case, we can find formulas for y[11] for different. sets of values of 
11. For ex!lmple, Fig. 2.iO(a) shows the sequences x[k] and h[11- k] plot~ed for n.a 
negatiye integer. Clearly, all negative vaiues of 11 give a similar picture; i.e., the nonzero 
portions of the sequences x[k] and h[11 - k] do not overlap, so 

y[11] = 0, II < 0. 

Figure :i.10(b) illustrates the two sequences when 0 ~ 11 and n - N + 1 ~ 0. T~ese two 
conditions can be combined into the single condition b ~ 11 ~ N - 1. By considering 
Fig. 2.10(b), we see that since 

x[k]h[n - k] = a1
, 

then 

for 0 ::;; n ::;; N - 1. (2.42) 

The limits oti. tlie suin are determined directly from Fig. 2.10(1>). Equation (2.42) shows 
that y[n] is the sum of n + 1 terins of a geometric secles where the ratio of terms is a. This 
sum cim be expressed in closed form using the general formula 

N2 ri.Hs _ (XN1 + l 

L;ak=----
t • N, 1 - a 

Applying trus to Eq. (2.42), we obtain 

1 - a•+ 1 

y[n] = 1 , 
- a 

(2.43) 

(2.44) 

Finally, Fig. 2.10(c) shows the two sequences when 0 < n - N + 1 or N - 1 < n. As 
before, 

x[k]h[n - k] = al, n -N + 1 <k ~ n, 
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(a) 

n 

0 h(n - k) 

X x(k) 

X 

n-(N - 11 (b) 

(c) n- (N - 1) 

• • • • • • • • • • • 

ll I ,,,, 
1 I I I_ I I I·r r r 1 
0 

(d) N - 1 

k 

k 

k 

n 

Figure 2.10 Sequences involved in computing a discrete convolution. (a)- ( c) The 
sequences x[k] and lt[n - k] as a function of k for different values or n. (Only nonuro 
samples arc shown.) {d) Corresponding output sequence as a function of n. 

but now the lower limit on the sum is n - N + 1, as seen in Fig. 2.10(c). Thus 

" y[n] = L ak for N - 1 < 11. 

Using Eq. (2.43) we obtain 

lt • • - N+ 1 

a"- 11+ 1 -a"+l 
y[n] = - --:-1- -­- a 

Chap. 2 

(2.45) 
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or 

y[n] = a•- N+t -- . 
(
1- aN) 
1 - a 

(2.46) 

Thus, because of the piecewise-exponential nature of both the input and the unit sample 
response, we have been able to obtain the following closed-form expression for y[n] as a 
function of the index n: 

0, II <0, 

l - a•+ 1 

y[n] = 1 - a ' 
0 ~II~ N - I, 

(2.47) 

n·N+I(l - aN) 
a 1- a ' N - 1 <n. 

This sequence is shown in Fig. 2.10(d). 

Example 2.8 illustrates how the convolution sum can be computed analytically 
when the input and the impulse response are given by simple formulas. In such cases, 
the sums may have a compact form that may be derived using the formula for the sum 
of a geometric series or other "closed-form" formulas.t When no simple form is 
available, the convolution sum can still be evaluated numerically using the technique 
illustrated in Example 2.8 whenever the sums are finite, which will be the case if either 
the input sequence or the impulse response is of finite length, i.e., has a finite number 
of nonzero samples. We cannot overemphasize that neatly drawn and labeled 
sketches such as those in Fig. 2.10 are invaluable to ensure that the limits on the sum 
are correctly determined. 

2.4 PROPERTIES OF LIN EAR TIME-INVARIANT SYSTEMS 

Since all linear time-invariant systems are described by the convolution sum of Eq. 
(2.39), the properties of this class of systems are defined by the properties of discrete­
time convolution. Therefore the impulse response is a complete characterization of 
the properties of a specific linear time-invariant system. 

Some general properties of the class of linear time-invariant systems can be 
found by considering properties of the convolution operation. For example, the 
convolution operation is commutative: 

x[n] * h[n] = h[n] * x[n]. (2.48) 

This can be shown by applying a substitution of variables to Eq. (2.39). Specifically, 
with m = n- k, 

00 

y[n] = L x[n - m]h[m], (2.49) 
m=- oo 

t Such results are discussed, for example, in Grossman (1982). A very useful 11ook of sums is Jolley 
(1961). 
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x[n)•l ~W•h2W I y(~) Figure 2.11 Three linear time-invariant 
systems with identical impulse responses. 

so the roles of x[n] and h[rt] in the summation are interchanged. That is, the order of 
the sequences in a convolution is unimportant, and hence the system output is the 
same if the roles of the input and impulse response are reversed. A linear time­
invariant system with input x[n] and impulse response h[n] will have the same output 
as a linear time-invariant system with input lt[n] and impulse response x[n]. The 
convolution operation also distributes over addition, i.e., 

x[n] • (h 1[n] + h2(n]) = x[n] • h1 [n] + x[n] •1t2[n]. 

This follows in a straightforward way from Eq. (2.39). 
In a cascade connection of systems, the output of the first system is the input to 

the second, the output of the second is the input to the third, etc. The output of the 
last system is the overall output. Two linear time-invariant systems in cascade 
correspond to a linear time-invariant system with an impulse response that is the 
convolution of the impulse responses of the two systems. This is illustrated in Fig. 
2.11. In the upper block diagram, the output of the first system will be h1[n] if 
x[n] = b[n]. Thus the output of the second system (and the overall impulse response 
of the system) will be 

(2.50) 

As a consequence of the commutative property of convolution, it follows that the 
impulse response of a cascade combination of linear time-invariant systems is 
independent of the order in which they are cascaded. This result is summarized in Fig. 
2.11, where the three systems all have the same impulse response. 

In a parallel connection, the systems have the same input and their outputs are 
summed to produce an overall output. It follows from the distributive property of 
convolution that two linear time-invariant systems in parallel are equivalent to a 
single system whose impulse response is the sum of the individual impulse responses, 
i.e., 

(2.51) 

This is depicted in Fig. 2.12. 
The constraints of linearity and time in. variance define a class of systems with 

very special properties. Stability and causality represent additional properties, and it 
is often important to know whether a linear time-invariant system is stable and 
whether it is causal. Recall from Section 2.2.5 that a stable system is one for which 
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Figure 2.12 (a) Parallel combination of 
linear time-invariant systems. (b) An 
equivalent system. 

every bounded input produces a bounded ouput. Linear time-invariant systems are 
stable if and only if the impulse response is absolutely summable, i.e., if 

00 

s = I lh[kJI < oo. (2.52) 
k • - oo 

This can be shown as follows. From Eq. (2.49), 

ly[n]l = lk ~~}[k]x[n- k] I :s:; k ~~ «>lh[k]llx[n - k] l. (2:53) 

If x[n] is bounded so that 

then 

«> 

ly[n]l :s:; Bx L lh[k]l. (2.54) 
Jc •- a) 

Thus y[n] is bounded if Eq. (2.52) holds; i.e., Eq. (2.52) is a sufficient condition for 
stability. To show that it is also a necessary condition, we must show that if S = oo, 
then a bounded input can be found that will cause an unbounded·output. Such an 
input'is the sequence with values 

{

h•[ - n] 

x[n] = lh[- n] l ' 

0, 

h[n]. :f. 0, 

h[n] = 0, 

(2.55) 

where h• [n] is the complex conjugate of h[n]. The sequence x[n] is clearly bounded 
by unity. However, the value of the output at n = 0 is 

(2.56) 

Thus if S = oo, it is possible for a bounded input sequence to produc~ an unbounded 
output sequence. 
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The class of causal systems was defined in Section 2.2.4 as those systems for 
which the output y[n0] depends only on the input samples x[n], for n ~ n0 . It follows 
from Eq. (2.39) or Eq. (2.49) that this definition implies the condition 

h[n] = 0, n < 0, (2.57) 

for causality of linear time-invariant systems. (See Problem 2.12.) For this reason it is 
sometimes convenient to refer to a sequence that is zero for n < 0 as a causal sequence, 
meaning that it could be the impulse response of a causal system. 

To illustrate how the properties of linear time-invariant systems are reflected in 
the impulse response, let us reconsider some of tlie systems defined in Examples 
2.1-2.6. First note that only the systems of Examples 2.1, 2.2, 2.4, and 2.6 are linear 
and time-invariant. Although the impulse response of nonlinear or time-varying 
systems can be found, it is generally of limited interest since the convolution-sum 
formula and Eqs. (2.52) and (2.57), expressing stability and causality, do not apply to 
such systems. 

First, let us find the impulse responses of the systems in Examples 2.1, 2.2, 2.4, 
and 2.6. We can do this by simply computing the response of each system to <5[n] 
using the defining relationship for the system. The resulting impulse responses are as 
follows: · 

Jdeal Delay (Exafl'!ple 2.1) 

h[n] = <5[n - n4], n4 a positive fixed integer 

Moving Average (Example 2.2) 

1 M2 

h[nJ = L: o[n - kJ 
Mt + M2 + 1 k = -M, 

= {M1 + ~2 + 1' 
0, otherwise · 

Accumulator (Example 2.4) 

" 
h[nJ = L: o[kJ 

k • - co 

= {1, 
0, 

= u[n] 

Forward Difference (Example 2.6) 

n~O 

n<O 

h[n] = o[n + 1] - <5[n] 

(2.58) 

(2.59) 

(2.60) 

(2.61) 
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Backward Difference (Example 2.6) 

la[n] = <5[n] - <5[n - 1] (2.62) 

Next let us test the stability of each system by computing the sum 

GO 

S = L lh[n)l. 
,. . - co 

For the ideal delay, moving average, forward difference, and backward difference 
examples, it is clear that S < oo since the impulse response has only a finite number of 
nonzero samples. Such systems are called finite-duration impulse response (FIR) 
systems. Clearly FIR systems will always be stable as long as each of the impulse 
response values is finite in magnitude. The accumulator, however, is unstable because 

00 

S = L u[n] = <X>. 
• • 0 

In Section 2.2.5 we also demonstrated the instability of the accumulator by giving an 
example of a bounded input (the unit step) for which the output is unbounded. 

The impulse response of the accumulator is infinite in duration. This is an 
example of the class of systems referred to as infinite-duration impulse response (IIR) 
systems. An example of an IIR system that is stable is one having the impulse 
response h[n] = a"u[n] with lal < 1. In this case 

00 

S = L Ia I". (2.63) 
• • 0 

If Ia I < 1, the formula for the sum of the terms of an infinite geometric series gives 

1 
S = 1 - lal < oo. (2.64) 

If, on the other hand, Ia I ~ 1, the sum is infinite and the system is unstable. 
To test causality of the linear time-invariant systems in Examples 2.1, 2.2, 2.4, 

and 2.6, we can check to see if h[n] = 0 for n < 0. As discussed in Section 2.2.4, the 
ideal delay (n4 ~ 0 in Eq. 2.22) is causal. If n4 < 0, the system is noncausal. For the 
moving average, causality requires that - M 1 ~ 0 and M 2 ~ 0. The accumulator and 
backward difference systems are causal, and the forward difference system is noncau­
sal. 

The property of convolution can be used to describe and analyze interconnec­
tions of linear time-invariant systems. Consider the system of Fig. 2.13(a), which 
consists of a forward difference system cascaded with an ideal delay of one sam­
ple. According to the commutative property of convolution, the order in which 
systems are cascaded does not matter as long as they are linear and time-invariant. 
Therefore we obtain the same result when we compute the forward difference of a 
sequence and delay the result (Fig. 2.13a) as when we delay the sequence first and then 
compute the forward difference (Fig. 2.13b). Also, it follows from Eq. (2.50) that the 
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Figure 2.13 Equivalent systems round 
by using the commutative property of 
convoluiion. 

overall impulse response of each cascade system is the convolution of the individual 
impulse responses. Therefore 

h[n] = (o[n + 1] - o[n]) * o[n - 1] 

. = o[n - 1] * (o[n + 1] .:.:. o[n]) 

= o[n] - o[n - 1]. (2.65) 

Thus h[n] is identical to the impulse response .of the backward difference system, i.e., 
the cascaded systems of Figs. 2.13(a) and 2.13(b) can be replaced by a backward 
difference system, as shown in Fig. 2.13(c). 

Note that the noncausal forward difference systems in Figs. 2.13(a) and (b) have 
been converted to causal systems by cascading them ~ith a delay. In general, any 
noncausal FIR system can be made causal by cascading it with a sufficiently long 
delay. 

Another example of cascaded systems introduces the concept of an inverse 
system. Consider the cascade of systems in Fig. 2.14. The impulse response of the 
cascade system is 

h[n] = u[n] * (o[n] - o[n- 1J) 

= u[n] - u[n - 1] 

= o[n]. (2.66) 

That is, the cascade combination of an accumulator followed by a backward 
difference (or vice versa) yields a system whose overall impulse response is the 
impulse. Thus the output of the cascade system will always be equal to the input since 

x[n) 

Accumulator 
system y[n) 

Backward 
difference 

system x(n] 

Figure 2.14 An accumulator in cascade 
with a backward difference. Since the 
backward difference is the inverse system 
ror the accumulator, the cascade 
combination is equivalent to the identity 
system. · 
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x[n] * o[n] = x[n]. In this case, the backward difference system compensates exactly 
for (or inverts) the effect of the accumulator, i.e., the backward difference system is the 
inverse system for the accumulator. From the commutative property of convolution, 
the accumulator is likewise the inverse system for the backward difference system. 
Also note that this example provides a system interpretation of Eqs. (2.8) and 
(2.10). In general, if a linear time-invariant system has impulse response h[n], then its 
inverse system, if it exists, has impulse response h1[n] defined by the relation 

h[n] * h,[n] = h;[n] * h[n] = o[n]. (2.67) 

Inverse systems are useful in many situations where it is necessary to compen­
sate for the effects of a linear system. In general, it is difficult to solve Eq. (2.67) 
dir~ctiy for h1[n] given h[n]. However, in Chapter 5 we will see that the Fourier 
transform and more generally the z-transform provide a straigl).tforward method of 
finding an inverse system. 

2.5 LINEAR CONSTANT•COEFFICIENT DIFFERENCE 
EQUATIONS . 

An important subclass of linear time-invariant systems consists of those systems for 
which the input x[n] aild the output y[n] satisfy an Nth-order linear constant­
coefficient difference equation of the form 

N M 

I a1 y[n- k] = L bk·X[~- kJ. (2.68) 
R~O k• O 

The properties discussed in Section 2.4 and some of the analysis techniques intro­
duced there can be used to find difference equation representations for some of the 
linear time-invariant systems that we have defined. 

Example 2 .. 9 

An example of the class of linear constant-cOefficient difference equations is the 
accumulator (Example 2.4). To show that its input and output satisfy such a difference 
equation, consider Fig. 2.14 again. If y[n] represents the output of the accumulator, theri 
we have seen that the backward difference of y[n] is equal to x[n] since the backward 
difference system is the inverse of the accumulator; i.e., 

y[n] - y[n - 1] = x[n]. (2.69) 

Thus we have shown that in addition to the defining relationship of Eq. (2.28), which is jn 
the form of a convolution, the input and output also satisfy a linear constant-coefficient 
difference equation of the form of Eq. (2.68), where N = 1, a0 = I, a 1 = - I, M = 0, and 
bo = 1. 

The difference equation in Eq. (2.69) as a representation of the accumulator can be 
better understood by rewriting it as 

y[n] = y[n - 1] + x[n]. (2.70) 

Page 19 of 19




