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This paper addresses the problem of reconstructing wideband speech signals from observed narrowband speech signals. The goal
of this work is to improve the perceived quality of speech signals which have been transmitted through narrowband channels
or degraded during acquisition. We describe a system, based on linear predictive coding, for estimating wideband speech from
narrowband. This system employs both previously identified and novel techniques. Experimental results are provided in order to
illustrate the system’s ability to improve speech quality. Both objective and subjective criteria are used to evaluate the quality of the
processed speech signals.
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1. INTRODUCTION

In voice communications, the quality of received speech sig-
nals is highly dependent on the received signal bandwidth. If
the communications channel restricts the bandwidth of the
received signal, the perceived quality of the output speech
is degraded. In many voice transmission or storage applica-
tions the high-frequency portions of the input speech signal
are eliminated due to the physical properties of the channel
or to reduce the bandwidth required. The resulting lowpass
speech often sounds muffled or “far away” compared to the
original, due to the lack of high frequency content.

One way to compensate for these effects is to efficiently
encode the speech at the transmitter so that less channel band-
width is required to transmit the same amount of informa-
tion. Of course, this requires that the receiver have an appro-
priate decoder to recover the original signal. Because of this
burden on both the receiver and transmitter, the use of wide-
band vocoding techniques is difficult to apply to systems that
have already been standardized (e.g., analog telephone com-
munications). It would be more convenient to devise a system

at the receiver that could regenerate the lost high-frequency
content.

Some work has already been done in the area of wideband
speech regeneration [1, 2, 3, 4, 5, 6, 7, 8]. These works have
primarily used linear predictive (LP) techniques. By using
these techniques, the reconstruction problem is divided into
two separate tasks. The first task is forming a wideband resid-
ual error signal, while the second is recreating a set of wide-
band linear predictive coefficients (LPCs). Once these two
components have been generated, the wideband residual is
fed into the wideband LP synthesis filter resulting in a regen-
erated wideband speech signal.

This paper provides a brief review of LP techniques used
in wideband speech regeneration and proposes a new LP tech-
nique with several novel aspects. In particular, a new method
for the creation of a wideband residual is proposed which
overcomes difficulties encountered using many methods pre-
viously employed. Furthermore, a relatively new distortion
measure is investigated for use in codebook generation and
in mapping narrowband LPCs to wideband LPCs. To the best

IPR2016-00705
SAINT LAWRENCE COMMUNICATIONS LLC
Exhibit 2002

mailto:fuemmeja@hotmail.com
mailto:rhardie@udayton.edu
mailto:wgardner@qualcomm.com


2 EURASIP Journal on Applied Signal Processing

Channel A/D D/A
regeneration

speech
WidebandxW(t)

Hc(f )

xN(t) xN(n)
x̂W (n)

x̂W (t)

Figure 1: Context of the wideband speech regeneration system.

of the authors’ knowledge, this new metric has not previously
been applied to the speech regeneration problem. Finally,
a new method for calculating optimal gain coefficients for
application to the wideband LPCs is described.

The organization of the rest of this paper is as follows. In
Section 2, an overview of the wideband speech regeneration
system is provided. Since the proposed technique is based
on LP coding, Section 3 provides a brief review of LP analysis
and synthesis. Section 4 describes the wideband residual error
regeneration and Section 5 describes the codebook mapping
of the LPCs. Experimental results are presented in Section 6,
and conclusions and areas for future work are presented in
Section 7.

2. OVERVIEWOF THEWIDEBAND SPEECH
REGENERATION SYSTEM

The context in which the wideband speech regeneration sys-
tem may be employed is shown in Figure 1. Here, a nar-
rowband continuous-time speech signal,xN(t), is formed by
passing its wideband counterpart,xW(t), through a bandlim-
ited channel. The channel, with frequency responseHc(f), is
assumed to be a continuous-time lowpass filter with cutoff
frequency fc . This lowpass filter need not be ideal. However,
if the sampling frequency of the analog-to-digital (A/D) and
digital-to-analog (D/A) converters is denoted as fs , the fol-
lowing restriction is assumed:

∣∣Hc(f)∣∣ ≈ 0 for |f | > fs
2K
, (1)

where K is a positive integer greater than one. In other words,
the channel transfer function is such that the digital signal
entering the wideband speech regeneration system is over-
sampled by a factor of at least K. Furthermore, this oversam-
pling will in turn allow the wideband speech regeneration
system to increase the bandwidth of the received signal by a
factor of at least K. Examples of system parameters for ap-
plication to analog telephone speech might be fc = 3.3 kHz,
fs = 16 kHz, and K = 2.

In many speech applications, the input speech waveform
is already filtered and sampled at a lower frequency (e.g.,
8 kHz typically in many wireline and wireless communication
systems). In this case, the speech signal can be upsampled
and filtered to provide a higher frequency sampling rate (e.g.,
16 kHz as in this work) with no high frequency content above
fc .

The structure of the wideband speech recovery system is
shown in Figure 2. The system begins by performing a stan-
dard LP analysis of the downsampled, narrowband speech
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Figure 2: The wideband speech regeneration system.

signal. For each speech frame, this produces a narrowband
residual or error signal,eN(n), and a set of narrowband LPCs,
denoted aN = [a1, a2, . . . , ap]T . To regenerate the wideband
speech, both of these components must be converted into
their wideband counterparts.

The process for creating a wideband residual, êW (n), from
a narrowband residual is referred to herein as high frequency
regeneration (HFR). The process for generating wideband
LPCs, âW , from the narrowband LPCs is referred to as code-
book mapping. Having regenerated these two critical speech
components, it is then possible to construct wideband speech
through LP synthesis (the inverse process of LP analysis).
It is important to realize that, although no upsampling is
explicitly shown in Figure 2, the HFR block outputs a signal
at K times the sampling rate of its input. Finally, the regener-
ated wideband speech is passed through a highpass filter and
added to the input narrowband speech signal to create the
final speech waveform. This is done in order to preserve the
accurate low frequency information contained in the origi-
nal input speech signal. Thus, the proposed processing will
not alter the low frequency content of the input signal but
will simply add high frequency components. The following
three sections describe in detail the LP, HFR, and codebook
mapping blocks, respectively.

3. LINEAR PREDICTIVE TECHNIQUES

LP analysis determines the coefficients of a linear prediction
filter designed to predict each speech sample as a weighted
sum of previous samples. The prediction filter output can be
written as

x̂(n) =
P∑
k=1

akx(n− k), (2)

wherea1, a2, . . . , aP are the LPCs. The prediction error signal
(also known as a residual or residual error signal) is defined
as the difference between the actual and predicted signals as
follows:

e(n) = x(n)−
P∑
k=1

akx(n− k). (3)

This expression simply defines a finite impulse response
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filter with impulse response

a(n) = δ(n)−
P∑
k=1

akδ(n− k), (4)

and discrete-time frequency response

A(ω) = 1−
P∑
k=1

akejkω. (5)

This filter is known as the LP analysis filter and is used to
generate the residual from the original discrete-time signal.

To perform optimal linear prediction, the LPCs are chosen
such that the power in the residual is minimized. The LPCs are
typically also chosen to be gain normalized and such that the
LP analysis filter is minimum phase. Such LPCs can be found
efficiently through the application of the Levinson-Durbin
algorithm. Because the LP analysis filter is minimum phase,
it has a stable inverse known as the LP synthesis filter. This
synthesis filter is an all-pole, infinite impulse response filter.
While the LP analysis filter is used to generate the residual, the
LP synthesis filter creates the original signal from the residual.
The system difference equation for the LP synthesis filter can
be found by rewriting (3) as

x(n) = e(n)+
P∑
k=1

akx(n− k). (6)

LP techniques are especially useful in speech processing.
Because of the error minimization used to find the LPCs, the
residual error signal tends to be spectrally flat. This means
that the shape of the speech signal’s spectral envelope is repre-
sented in the LPCs. The residual then contains the amplitude,
voicing, and pitch information. The speech signal’s spectral
envelope can be approximately written in the frequency do-
main as

S(ω) = σ
|A(ω)| , (7)

where σ is the square root of the residual power. In speech
processing systems, LP analysis is typically performed on
frames of about 10–20 ms, since speech characteristics are
relatively constant over this time interval.

4. HIGH FREQUENCY REGENERATION

In this section, methods for regenerating wideband resid-
ual errors from narrow band errors are described. Previously
defined techniques are described, motivation for exploring
alternative methods is presented, and a novel method, re-
ferred to here as “spectral shifting,” is developed.

4.1. Previous techniques

The HFR methods employed in previous systems can ba-
sically be divided into two classes. These two approaches
are illustrated in Figure 3. For simplicity, the discussion is
restricted to the case where K = 2. The first class of HFR uses
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Figure 3: (a) HFR using rectification and filtering, (b) HFR using
spectral folding.

rectification of the upsampled narrowband residual to gener-
ate high-frequency spectral content. The signal is then filtered
with an LP analysis filter to generate a spectrally flat residual.
An appropriate variable gain factor must also be applied to
this new wideband residual so that its signal power will not be
too large or small when compared with the original narrow-
band version. This approach is illustrated in Figure 3a. The
main drawback to this method is that the spectral compo-
nents generated by the rectification (a nonlinear operation)
are largely unpredictable. As a result, it often generates noisy
or rough high frequency components, especially when the
speech is voiced.

The second class of HFR techniques, shown in Figure 3b,
is termed spectral folding and involves expansion of the nar-
rowband residual through insertion of zeros between adjacent
samples. Although simple, this method has several potential
problems when applied to voiced speech.

(1) First, it is unlikely that the new high frequency har-
monics will reside at integer multiples of the voiced speech’s
fundamental frequency. Often, this does not result in a large
perceptual effect as long as the low frequency content has the
harmonics spaced correctly and as long as the energy in the
low frequency components is significantly greater than that
in the higher frequencies.

(2) Second, as the pitch of the narrowband residual moves
higher or lower in frequency, the high-frequency portions of
the new wideband residual move in the opposite direction.
This will be seen later in Section 6. Because of this effect, the
resultant speech can sound somewhat garbled—especially if
there are wide variations in fundamental frequency.

(3) Finally, a greater problem occurs when the cutoff fre-
quency of the bandlimiting process is lower than half the nar-
rowband sampling frequency. Although LP analysis tends to
produce spectrally flat residuals, this is generally not possible
when a portion of the input spectrum has been eliminated. In
these regions, the narrowband residual therefore exhibits lit-
tle spectral energy. When spectral folding is applied to such a
residual, the resultant wideband speech exhibits a band gap in
the middle of the spectrum. This will also be seen in Section 6.
This partial lack of spectral content can degrade perceptual
speech quality.
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Figure 4: Proposed spectral shifting high frequency regeneration
algorithm.

4.2. The spectral shiftingmethod

A new method of HFR is proposed, which is illustrated in
Figure 4. This method relies on spectral shifting rather than
on spectral folding. If used to its full extent, it is capable of
overcoming the three problems associated with the spectral
folding method listed above.

The first step in the spectral shifting method involves up-
sampling the input narrowband residual. The lowpass filter
used has cutoff frequency of ωc = 2πfc/fs radians/sample
and a gain of K = 2. A pitch detector then assumes that the
speech is voiced and finds the fundamental pitch period, Tf ,
of the resultant signal. If the speech is in fact unvoiced, the
pitch period computed is of little importance and the output
of the pitch detector can still be used. The upsampled residual
is then multiplied (mixed) with a cosine of amplitude 2 at a
radian frequency ωg , where ωg is a multiple of the funda-
mental frequency that is close to (but does not exceed) the
cutoff frequency ωc . One expression that calculates such a
radian frequency is

ωg = 2π
Tf

floor
(Tfωc

2π

)
, (8)

where floor(·) computes the maximum integer less than or
equal to its argument.

The multiplication by a cosine results in a shift of the
original spectrum. If the discrete-time Fourier transform of
the upsampled and filtered narrowband residual is denoted
as EN(ω), it is easily shown that the resultant wideband spec-
trum is given by

EW(ω) = EN
(
ω−ωg

)+ EN(ω+ωg
)

≈ EN
(
ω−ωc

)+ EN(ω+ωc
)
.

(9)

This expression clearly reveals the reason this method is
referred to as a “spectral shifting” method. Unlike the spec-
tral folding method, this method does not preserve the origi-
nal narrowband residual information. However, this is not
a problem because a highpass filter will subsequently be
applied to the output of the LP synthesis filter, eliminating
the narrowband portion of the regenerated signal anyway.
Since ωg ≈ ωc , the bandwidth of the wideband residual is
approximately twice that of the narrowband residual. How-
ever, if more bandwidth is desired, the narrowband resid-
ual can be multiplied with cosines at higher multiples of the
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Figure 5: Simplest form of the spectral shifting method.

fundamental frequency and the results added with one an-
other (after appropriate filtering to prevent overlap). This
will further increase the signal bandwidth.

In practice, the pitch detection algorithm is applied to
each frame (10–20 ms) of speech. However, instantaneously
updating the frequency of the cosine at each frame boundary
results in undesired frequency components and noisy speech.
Applying linear interpolation to the values of ωg between
adjacent frames has been found to sufficiently eliminate this
effect.

If reduction in computational complexity is desired, cer-
tain modifications can be made to the spectral shifting
method. One such modification is to eliminate the pitch
detector and always use a cosine of frequency ωc . If this is
done, the spectral shifting method will eliminate only prob-
lems (2) and (3) described in Section 4.1. However, as noted
in Section 4.1, problem (1) is generally not significant, and
thus, this simplification may have little impact on speech
quality.

An additional simplification can be made by using a
cosine at frequency π/2 rather than at ωc (if ωc = π/2,
system quality is not additionally compromised). In this case,
no lowpass filter is necessary for interpolation because every
other cosine value will be zero—eliminating all interpolated
values. In this case, the spectral shifting method reduces to
the system shown in Figure 5. Note that this system will solve
only problem (2) (assumingωc ≠ π/2). Problem (3) is only
somewhat alleviated since the size of the band gap in the spec-
trum will be cut in half. However, the performance is still an
improvement over the spectral folding method with the only
additional computational complexity being a sign change of
every other sample.

5. CODEBOOKMAPPING

In this section, the mapping of the narrowband LPCs to wide-
band LPCs is addressed. The use of a dual codebook in a
vector quantization scheme is discussed, and solutions to the
problem of applying an appropriate gain to the wideband
LPCs are presented.

5.1. Narrowband towideband LPC conversion

In a vector quantization system, codebook generation is
most commonly performed through training using the Linde,
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Buzo, Gray (LBG) algorithm [9]. In the case of a narrowband
to wideband mapping, it is necessary to generate a dual code-
book. Part of the codebook contains narrowband codewords
and the other part contains the corresponding wideband
codewords. These codewords contain representative LPCs in
some form.

Generation of the dual codebook requires training data
sampled at the desired higher rate of fs with the full low
and high frequency content intact. These data are artificially
degraded and downsampled to match the bandwidth of the
actual signals to be processed. The LBG algorithm is then
applied to the speech frames in the narrowband version of the
training data. While the LBG algorithm operates on the nar-
rowband data, each operation is mimicked on the wideband
version of the training data to form the wideband portion
of the dual codebook. In this way, the dual codebook will
contain a set of representative narrowband codewords and
the corresponding codewords based on the wideband data.
This dual codebook now contains the a priori information
needed to allow the wideband speech regeneration algorithm
to extend the bandwidth of a speech signal.

During wideband speech regeneration, narrowband
codewords are computed from the input speech frames and
the best match in the narrowband portion of the codebook
is found. The corresponding wideband codeword from the
wideband portion of the codebook is then used to generate
the output speech. The assumption underlying the use of the
dual codebook is that there is correlation between the low
frequency spectral envelope of a speech frame and its high
frequency envelope for a given speaker or class of speakers.
That is, when the algorithm recognizes the narrowband spec-
tral envelope of a speech frame (provided by the narrowband
LPCs), the training data will allow us to predict what the
spectral envelope should be for the full broadband version
(contained in the wideband LPCs). Performance will clearly
depend on the level of correlation between the low and high
frequencies, and on how representative the training data is of
the actual data. It is worth mentioning that improved perfor-
mance was reported by Epps and Holmes [8] when separate
codebooks were used for voiced and unvoiced speech frames.
However, this method was not employed here.

The operation of the LBG algorithm and the codebook
mapping requires some quantitative measure of closeness for
sets of LPCs. The only requirement is a distance (or distor-
tion) measure for which a centroid calculation exists. The
centroid of a bin or group is defined as the codeword that
minimizes the total distortion over that bin. The quality of
the resultant codebook is greatly affected by the correlation
between the quantitative distance metric and human percep-
tion of difference in the reconstructed speech frames.

One commonly used distortion metric is the Itakura-
Saito measure defined as

dIS

(
σ

A(ω)
,
σ̂

Â(ω)

)

=
∫ π
−π

(
σ2
∣∣Â(ω)∣∣2

σ̂2
∣∣Â(ω)∣∣2 − ln

σ2
∣∣Â(ω)∣∣2

σ̂2
∣∣Â(ω)∣∣2 − 1

)
dω.

(10)

An efficient method for calculating this exists which uses the
estimated autocorrelation for each speech frame. The use of
this distortion measure for codebook generation was first
described in [10]. Another common metric is log spectral
distortion (LSD), given by

dLSD

(
σ

A(ω)
,
σ̂

Â(ω)

)

=
∫ π
−π

(
ln

σ2∣∣A(ω)∣∣2 − ln
σ̂2∣∣Â(ω)∣∣2

)2

dω.
(11)

With respect to wideband speech regeneration, this distance
measure has been previously applied by sampling the loga-
rithm of the Fourier transform of the LPCs [1, 8].

It has been shown by Gardner and Rao [11] that a dis-
tortion measure, using a weighted mean squared error of the
line spectral pair frequencies, is equivalent to LSD and to the
Itakura-Saito measure for high rate vector quantizers. It is
thought that this measure may offer the performance of the
LSD metric in the current application, yet be more computa-
tionally efficient. The computational savings comes primarily
from the fact that Fourier transforms and logarithms need not
be computed.

5.2. Optimal gain constant calculation

In addition to the generation of the wideband LPCs discussed
above, the gain applied to each wideband LP synthesis filter
must also be determined such that the new wideband infor-
mation has the appropriate energy. The optimal gain constant
is defined here as that which minimizes the distance between
the reconstructed and original wideband spectral envelopes
in the narrowband region.

To derive the optimum gain, we first trace a wideband
spectral envelope through the system. Represent the spec-
tral envelope of the original wideband speech signal as
a real, positive, symmetric function in the frequency do-
main. After the bandlimiting filter and subsequent downsam-
pling, the narrowband spectral envelope can be represented
as

SN(ω) = SW
(
ω
K

)∣∣∣∣H
(
ω
K

)∣∣∣∣, (12)

where H(ω) is the impulse-invariant discrete-time system
frequency response used to model the continuous channel,
Hc(f). After LP analysis, the spectral envelope of the nar-
rowband residual is

SE(ω) = SN(ω)
∣∣AN(ω)∣∣

= SW
(
ω
K

)∣∣∣∣H
(
ω
K

)∣∣∣∣∣∣AN(ω)∣∣. (13)

The high-frequency regeneration technique does not alter the
basic shape of the residual spectral envelope. However, it does
create a signal sampled at a higher rate. Thus, the wideband
residual spectral envelope can be approximated as SE(Kω).
The wideband LP synthesis filter transforms the wideband
residual spectral envelope into the reconstructed wideband
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speech signal spectral envelope as

ŜW (ω) = SE(Kω) σ∣∣ÂW (ω)∣∣
= SW(ω)

∣∣H(ω)∣∣∣∣AN(Kω)∣∣ σ∣∣ÂW (ω)∣∣ .
(14)

Note the presence of the gain constant σ . Using (14), we
are able to relate the original and reconstructed spectral
envelopes in the narrowband region.

One approach to finding the optimal gain constant is to
store a calculated gain constant for each training frame in
a given bin [1]. This constant can be computed using the
relative powers of the narrowband and wideband residuals
for each frame. At the end of training, a centroid of these
gains is found for each bin using the gain values for each
frame, the narrowband training codewords for each frame,
and the newly computed representative wideband codeword
for the bin.

However, it is assumed that the representative narrow-
band codeword is indeed representative of all the narrowband
training codewords in that bin. Thus, an alternative approach
is to use only the representative narrowband codeword, the
representative wideband codeword, and an estimate of the
bandlimiting transfer function to compute the optimal gain
for each bin. This eliminates the need to store the gain con-
stants during training and also the need to use multiple nar-
rowband codewords in the optimal gain calculation. With this
approach, the gain constant can be computed by minimizing

d
(
SW(ω), ŜW (ω)

)
=
(
SW(ω), SW (ω)

∣∣H(ω)∣∣∣∣ÂN(Kω)∣∣ σ∣∣ÂW (ω)∣∣
)
,

(15)

with respect toσ over a selected narrowband frequency range,
where d(·, ·) is the relevant distance metric. If the LSD dis-
tance measure is being used, the optimal gain constant is given
by

σ = exp
(

1
4ωn

∫ωn

−ωn

ln
(∣∣ÂW (ω)∣∣2

)

− ln
(∣∣H(ω)∣∣2

)
− ln

(∣∣ÂN(Kω)∣∣2
)
dω

)
.

(16)

If the Itakura-Saito distance measure is being used, the opti-
mal gain constant is given by

σ =
√√√√ 1

2ωn

∫ωn

−ωn

∣∣ÂW (ω)∣∣2∣∣H(ω)∣∣2∣∣ÂN(Kω)∣∣2 dω. (17)

In both expressions, ωn, is a radian frequency in the range
(0, π/K). This frequency should be selected to include only
those portions of the narrowband spectrum in whichH(ω) is
invertible. In the simplest case, whereH(ω) is assumed to be
an ideal lowpass filter, it is most appropriate to useωn =ωc .
In practice, the various spectra are generated and numerically
integrated by summing fast Fourier transform (FFT) results.

Table 1: Parameters used in system testing.

Bandlimiting filter type High-order Butterworth

Bandlimiting filter cutoff 3.3 kHz

Narrowband sampling rate 8 kHz

Wideband sampling rate 16 kHz

Frame size 30 ms

Frame rate 100 Hz

Codebook size 512

Narrowband LPCs (Itakura-Saito) 7

Wideband LPCs (Itakura-Saito) 15

Narrowband LPCs (Gardner-Rao) 8

Wideband LPCs (Gardner-Rao) 14

This calculation does not slow system performance because it
is performed only once—after training and before the system
actually operates.

6. EXPERIMENTAL RESULTS

Testing of the wideband speech recovery system has been
performed in MATLAB using speech samples obtained from
the TIMIT speech corpus.1 For simplicity, codebook training
was performed using 30 randomly selected female utterances
from dialect region 3 (North Midland region). These utter-
ances comprised approximately 90 seconds of speech data.
Testing of the resultant system was performed using 2 utter-
ances not in the training data, but from the same gender and
dialect region.

The parameters used in both the training and testing
phases are shown in Table 1. As stated earlier, speech wave-
form characteristics are relatively stationary over a 10 ms
interval. Thus, computations are performed for frames taken
at a 100 Hz rate. The frames, however, are 30 ms soft-
windowed overlapping frames. This allows for smooth tran-
sitions between adjacent frames. The numbers of LPCs used
for the Itakura-Saito distortion measure have been selected
to make FFT computations more convenient. However, the
Gardner-Rao method requires that the numbers of LPCs be
even, explaining why slightly different numbers were used for
this distortion measure.

Additionally, it should be noted that frames with energies
below an empirically determined threshold were considered
silence, and were thus excluded from training and testing.
The spectral shifting method was implemented by multiply-
ing the narrowband residual by two cosine functions: one
at 3.3 kHz and one at 4.7 kHz. These results were added to-
gether after appropriate filtering to prevent overlap. Note that
pitch-detection was not employed in these tests.

Sample results from these tests are shown in Figure 6.
Figure 6a shows an original wideband speech signal spectro-

1Texas Instruments/Massachusetts Institute of Technology Acoustic-
Phonetic Countinuous Speech Corpus October 1990 (www.ntis.gov/fcpc/
cpn4129.htm).

file:www.ntis.gov/fcpc/cpn4129.htm
file:www.ntis.gov/fcpc/cpn4129.htm
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Figure 6: Spectrograms for the (a) original signal, (b) bandlimited/narrowband signal, (c) reconstructed signal using spectral folding, and
(d) reconstructed signal using spectral shifting.

gram, while Figure 6b shows this same signal bandlimited
to approximately 3.3 kHz. The spectrogram of the recon-
structed signal using the Itakura-Saito distortion measure and
spectral folding is shown in Figure 6c. The spectrogram of the
reconstructed signal using the Itakura-Saito distortion mea-
sure and spectral shifting is shown in Figure 6d. The result
using the spectral folding method contains a gap in the mid-
dle of the frequency spectrum. Also, the pitch contours in the
high-frequency portion of the spectrum run counter to those
in the true wideband signal and in the low-frequency por-
tion. This is especially evident in the 0.5–0.7 sec time range.
In contrast, the spectral shifting method eliminates both of
these problems. A comparison of Figures 6a and 6d reveals
that the high-frequency portion of the original spectrum is
approximated reasonably well in the high-frequency portion
of the reconstructed spectrum.

Subjective evaluations have also been obtained using a
survey, to which 18 participants responded. These partici-
pants were asked to compare 5 pairs of speech files and select
one from each pair that they thought had the best overall
sound quality. The choices and the results are summarized in
Table 2. A p-value is also given to indicate a level of confi-
dence in the results. For example, a p-value of 0.05 indicates
that there is a 95% chance that the choice preferred in the sur-
vey would still be preferred if an infinite number of responses
had been received.

It can be concluded from the survey results that it is
indeed possible to enhance the perceived quality of speech
signals. This is seen most clearly in Choice 3. It is believed that
artifacts created by the reconstruction process—especially
around unvoiced consonants—adversely affected the results
for Choice 2. Techniques for eliminating these artifacts need
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Table 2: Survey results for the A/B testing.

Choice 1

(A) Bandlimited signal vs.

(B) Original wideband signal

Preferred: B Proportion: 100% p-value: ∼ 0

Choice 2

(A) Bandlimited signal vs.

(B) Rebuilt signal (Itakura-Saito and spectral shifting)

Preferred: B Proportion: 61% p-value: 0.173

Choice 3

(A) Rebuilt signal (Gardner-Rao and spectral shifting) vs.

(B) Bandlimited signal

Preferred: A Proportion: 78% p-value: 0.009

Choice 4

(A) Rebuilt signal (Itakura-Saito and spectral folding) vs.

(B) Rebuilt signal (Itakura-Saito and spectral shifting)

Preferred: B Proportion: 100% p-value: 0

Choice 5

(A) Rebuilt signal (Itakura-Saito and spectral shifting) vs.

(B) Rebuilt signal (Gardner-Rao and spectral shifting)

Preferred: B Proportion: 56% p-value: 0.319

to be developed in order to ensure consistent perceptual
quality.

The results for Choice 4 clearly indicate that the spectral
shifting method outperforms the spectral folding method as
a method for HFR for these data. Choice 5 appears to indicate
that the Gardner-Rao measure produces results comparable
to those of the more often used Itakura-Saito measure on
these data. For very high rate quantizers, these two measures
should perform comparably to the LSD measure although
there may be some advantage to using the Gardner-Rao mea-
sure over that of the Itakura-Saito measure for lower rate
quantizers.

7. CONCLUSIONS

Wideband speech regeneration techniques enable one to im-
prove perceptual speech quality at the receiving end of voice
communication systems, without using specialized encod-
ing techniques. Because they involve processing only at the
receiver, these systems may be of use in voice communications
systems already in place. However, further work is necessary
before such systems achieve optimal performance.

We have demonstrated that the regeneration of the wide-
band residual from the narrow band can have a dramatic
impact on perceived speech quality. The spectral shifting
method appears very promising, based on the subjective eval-
uation results and examination of the spectrograms. The

other key aspect of the wideband regeneration system is the
codebook generation. The techniques presented here rely on
the fact that correlation exists between the low frequency
spectral envelope of a speech frame and its high frequency
envelope, and that this correlation can be captured in the
dual codebook. The relationship between the low and high
frequency envelopes may vary widely from speaker to speaker.
Thus, speaker-dependent training may be a way to more fully
capture and exploit this.

Future work will involve further testing of the techniques
presented in this paper. Such testing will be applied to a
wide range of speakers and dialects to study the sensitivity of
the algorithm to speaker variations. More subjective testing
using larger numbers of participants, greater amounts of test-
ing data, and more controlled listening environments will
also be helpful in evaluation of the proposed technique. The
robustness of these techniques in the presence of noise,
music,multiple speakers,or other audio distortions is another
important aspect to study.

We have identified the problem of occasional “hissing”
artifacts heard around unvoiced consonants. It is thought
that this arises because such consonants have very similar
low-frequency characteristics and are difficult to distinguish
from one another. Using separate codebooks for voiced and
unvoiced sounds (as in [8]) may aid in eliminating this
problem.
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