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path length and vulnerability for "ideal" networks against which network
designers may measure their networks. For this reason, we too,
determine the lower bounds on these performance measures for regular
graphs. In addition, the analysis provides a uniform basis by which to

compare the various algorithms.

Section 4.2 proposes a set of performance measures, and section 4.3
reviews and extends some properties of regular graphs. Sections 4.4 to
4.8 determine the performance of the various broadcast routing
algorithms. Section 4.9 compares the various algorithms, and 4.10

determines average values of the performance measures for the ARPANET

topology.
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4.2 Performance Measures

This section develops some performance measures for broadcast
communication in store-and-forward networks. We develop the performance
measures by considering the overhead imposed on the communication subnet

by a broadcast, and the delays in performing the broadcast.

An important measure of the amount of bandwidth used in performing
a broadcast, and of the processing overhead in the switching

(store-and-forward) nodes of the subnet is the Number of Packets

Transmitted, NPT(i), in broadcasting a message initiated from node i in

the subnet. NPT(i) is in units of packet-hops per broadcast.

The Broadcast Delay, BD(i,j), is the delay before node j receives a

broadcast message initiated from i. BD(i,j) is in appropriate units for

delay, e.g. seconds or hops. The average Broadcast Delay, BDav(i), from

a node i that initiates the broadcast is an estimate of the delay before
a receiver hears the message. BDav(i) is therefore a measure of the
ability of the broadcast routing scheme to deliver messages quickly when

initiated from i. In a communication subnet with N nodes

N
BDav(i) = _1 * 5 BD(i,j). (4.1)
N-1 j=1

Analogously, BDmax(i) 1is the maximum Broadcast Delay from a

broadcaster i, and therefore 1is an indication of the maximum delay
before all receilvers have heard the message. BDmax(i) 1s, therefore,

also a measure of the cost of broadcast from node i.
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BDmax(i) = max {BD(1,j) V 1<j<N, j#i}. (4.2)

These measures are useful in the design of timeouts for the reinitiation
of the broadcast, or recovery techniques in distributed operating
systems that use the broadcast routing feature of the communication

subnet to locate resources.

The Broadcast Cost, BC, in a communication network is the sum of

the cost of broadcast with each node as the initiator, It 1is assumed
that each node has equal probability of initiating a broadcast.
BDmax(i) 1is the cost of broadcast when initiated from node 1. Hence, if
there are N nodes in the network, tﬁen
N
BC =  BDmax(i). (4.3)
i=1
These measures of performance can easily be determined for a
particular network using a particular broadcast routing technique. The
performance measures are a function of the topology of the network. In
order to determine lower bounds on these measures, we examine regular

graphs.
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4.3 Regular Graphs

In this section we review and extend some of the definitions and
properties of regular graphs, Moore graphs, and generalized Moore

graphs.

We assume that the number of nodes in the graph is N, and that all
edge costs are the same and equal to one. The degree of a node in a
graph is the number of edges incident to that node. If the degree of
all the nodes is same and equal to D, then the graph is called'regular
with degree D. Figure 4.1 shows some regular graphs. A theorem and two
corollaries may be stated concerniné the relationship between N and D in

regular graphs. These are simple, and stated without proof.

Theorem 4.1t The sum of the degrees of the nodes of any graph is twice

the number of edges in the graph.

Corollary 4.1.1: In any graph the number of nodes of odd degree is

even.

Corollary 4.1.2: A regular graph with degree D and N nodes can always

be constructed if N%D is even.

Consider a regular graph with degree D. The maximum number of

nodes at distance one from any node is D, at distance two D(D-1), at

distance three D(D-l)2 and so on. Moore graphs are those regular graphs
that have exactly D(D—l)j"1 nodes at distance j, for any node
considered. Figure 4.2a illustrates such a tree as seen from one node

X, where the graph has 10 nodes and is of degree 3. Such a picture can
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Figure 4.1. SOME REGULAR GRAPHS,
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be drawn for all nodes in the graph. Thus one must join all nodes at
the highest numbered level together 1in such a way to meet this
constraint. This creates a sort of "spaghetti junction'" at the highest
level. Figure 4.2b illustrates how the tree.of figure 4.2a can be
converted into a Moore graph. Figure 4.2c 1is a more aesthetic
representation of figure 4.2b. This 1is the Petersen Graph. Moore

graphs satisfy the following relation:

m
N=1+D3 (p-1)371, (4.4)
i=1
where j 1is the level number and m the highest level. Conditions wunder
which a given graph can be a Moore graph have been derived in

[Hoffman60, Cerf73].

Of course, not all graphs have a number of nodes that satisfy
equation (4.4). 1In this case the extra nodes are placed at the highest
numbered level, m, and one must then join the nodes at level m and m-1
such that the constraints are satisfied. Such graphs are called

generalized Moore graphs and have been studied in detail by Cerf, Cowan,

Mullin and Stanton [Cerf73, Cerf74d, Cerf74e]. A generalized Moore

graph having 16 nodes and of degree 3 is illustrated in figure 4.3.

We now introduce a new term. A pseudo generalized Moore graph is a

regular graph such that for at least one node, the number of nodes at
distance 3} is D(D-l)J'1 for all j>1 except possibly the highest numbered
level which may be incompletely filled. 1In other words, from the point

of view of that node, the graph looks like a filled tree except for the
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LEVEL O 1

LEVEL 1 4 3 2

LEVEL 2 10 9 8 i 6 5
Figuré 4,2a

2\

5 10

Figure 4.2b

- Figure 4.2c

Figure 4.2. A MOORE GRAPH.
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—_—— R e

10

Figure 4.3. A GENERALIZED MOORE GRAPH HAV-
ING 16 NODES AND DEGREE 3.

Figure 4.4. A PSEUDO GENERALIZED MOORE GRAPH
HAVING 22 NODES AND OF DEGREE 3.
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spaghetti junction at the last two levels. Figure 4.4 1llustrates a
pseudo generalized Moore graph of degree 3 having 22 nodes. A Moore
graph does not exist for such a regular graph [Cerf73], even though its
highest numbered 1level 1is completely filled, and so neither does a

generalized Moore graph.

Theorem 4.2: For a given N and D such that a regular graph exists, a

pseudo generalized Moore graph also exists.

Proof: The theorem is proved by showing that a pseudo generalized

Moore graph can always be constructed if a regular graph can.

Take any node and connect it to D other nodes. Take each of
these D nodes and connect each to D-1 other nodes that have not
already been connected to, so as to form a tree. Continue
connecting the 1leaves of the tree to D-1 other nodes until all N
nodes have been used. The result is a minimum height tree with the

starting node as the root. The highest level m may be incompletely

filled, where m>l.

We now show that if N*D is even then the nodes at level m and
m=1 that do not have degree D can be connected to one another so as

to produce a regular graph.

Let U be the number of nodes by which the mth level is
unfilled. If the mt! level was completely. filled then it would
have D(D-l.)'“'1 nodes that would give rise to D(D-1)™ branches.
However, there are U less nodes at the mth level and therefore the

mth level gives rise to U(D-~1) less branches, but the (m—l)th level
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gives rise to an additional U. Therefore the total number of

branches that must be connected to one another
D(D-1)™ + U - U(D-1)
= D(D-1)™ - U(D-2). -

If this number 1s always even, then the branches can be
appropriately paired off producing a regular graph, The first
term, D(D-1)™ is always even for any D since m>l. When D is even,
the second term is also even. We now show that when D is odd, U is
even causing the second term.also to be even, thereby proving the
theorem. We now determine U. It is equal to the total number of

nodes 1f the mth level was full minus the actual number of nodes.

- 1
v= Som-13"t - n+1
1=k

D[(D-1)"-1] = N + 1
D-2

D(D-1)"-D4+D-2 - N
D-2

D(D-1)"-2 - N.

D=2

Since D is odd, N must be even (Corollary 4.1.2). D(D-1)™ is even
for all m>l. Since D-2 is odd and U is an integer, the first term

is even. Therefore U is even.

Q.E.D.
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From the definitions just introduced we see that Moore graphs are
generalized Moore graphs, which in turn are pseudo generalized Moore
graphs which themselves are regular graphs. We now determine lower

bounds for the diameter and average path length in regular graphs.

4.3.1 Some Lower Bounds in Regular Graphs

Cerf, et al, [Cerf74b, Cerf74c] have derived expressions for the
lower bound on the diameter and average path length in regular graphs.
They do so by analyzing the tree of a pseudo generalized Moore graph of
degree D with N nodes.' Note that for some D and N, regular graphs may

not exist, but a minimum height tree does and so the analysis is valid.

The lower bound on the diameter of regular graphs, DIA(N,D) 1is
determined by finding the height of a minimum height tree connecting the

N nodes of degree D.

DIA(N,D) = m = |1ogD_1 N (D-2) +‘z_] for D>2. (4.5)
D

A plot of DIA(N,D) is shown in figure 4.5.

The sum of the shortest path lengths from the root of the tree to
all the other nodes can easily be determined. We first assume that the
mth level is completely filled and then subtract the contribution by the
nodes that are absent. The lower bound on the -sum of the shortest path
lengths for a regular graph, SPLsum, is equal to the sum of the shortest

path lengths from the root. Therefore
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Figure 4.5. LOWER BOUND ON THE DIAMETER OF REGULAR GRAPHS.
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m m .
SPLsum(N,D) = D* ¥ j*(D-1)3"1 = (1 + p* T (0-1)3"1 - my*m. (4.6)
J=i 1=1

The dependence of SPLsum on N, and D is illustrated in figure 4.6.

The lower bound on the average shortest path length in regular '
graphs, SPLav, is analogously equal to the average shortest path length
from the root of the tree, and is:

SPLav(N,D) = SPLsum(N,D). (4.7)
N1

Figure 4.7 illustrates this relation.

These bounds are met by generalized Moore graphs, since for every
node, the shortest path lengths look like the tree just described. In

general these bounds will not be met by all regular graphs.
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Figure 4.7. LOWER BOUND ON THE AVERAGE PATH LENGTH IN RE™™TAD mDADHS
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4.4 Separately Addressed Packets (SAP)

In this section we determine lower bounds* for NPT, BDav, BDmax and
BC for regular graphs when the broadcast routing strategy is to transmit
separately addressed packets from the source to each destination. We
assume that. the routing of the packets is along the shortest path (in

the graph theoretical sense) from the broadcaster to the destinations.

4.4,1 Number of Packets Transmitted

Assume that each broadcast message consists of a single packet.
Hence the number of packetdhops. from a broadcaster to a receiver is
equal to the path 1length from the broadcaster to the receiver.
Therefore a lower bound on the number of packets transmitted to achieve

the broadcast is equal to the lower >bound on the sum of the path

lengths. Therefore

NPT(N;D)gpp = SPLsum(N,D). (4.8)

The dependence of NPTgyp on N and D is illustrated in figure 4.6.

4.4.2 Broadcast Delay

In order to determine the lower bound on the various broadcast
delays when transmitting separately addressed packets, we must determine

the order in which messages (packets) are transmitted from  the

*Since lower bounds are being determined, i, will be dropped from
NPT(1), BDav(i) and BDmax(i).
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broadcaster to the various receivers so that the maximum broadcast delay
is miﬁimized. Since .the lower bounds are being determined by
considering the root node of a pseudo generalized Moore graph, the
optimal paths 1lie along the branches of the tree connecting the root
node to the various other nodes. TFigure 4.8a illustrates such a minimum

height tree for a node X. The subtrees of X form the primary subtrees

of this tree. We assume that X can be transmitting packets to all
primary subtrees at once, and hence we must consider the delays for a
particular primary subtree - the longest one. Also assume that no other

traffic is present to interfere with the broadcast packets.

The rate at which packets may be transmitted to nodes in a primary
subtree is determined by the transmission delays of the communication
1link. Let wus assume that this is a constant and that all times are
relative to this quantity. 1In order to minimize the time taken to
broadcast the packets to all nodes of the primary subtree, the root X
must transmit packets to the node farthest away first and so on. This
ensures that there will be as many packets as possible in transit at the
same time, thus minimizing the total broadcast delay. If node X started
transmitting a packet at time zero, and then one more at every time
interval, then the laét packet would be transmitted at time equal to the
number of nodes in the primary subtree minus on&. = This packet would
arrive atniﬁs destination in one time unit, since its destination is the
closest node =~ the root of the primary subtree. Hence the time taken
for all nodes in the primary subtree to get the broadcast message is

equal to the number of nodes in the primary subtree. Figure 4.8b
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Figure 4.8a. SHORTEST PATH TREE FOR ROUTING.

Figure 4.8b. ORDER IN WHICH PACKETS ARE TRANSMITTE
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illustrates the order in which the packets are transmitted for the

largest primary subtree of the tree in figure 4.8a.

We now proceed to find the number of nodes in the largest primary

subtree of a pseudo generalized Moore graph.

Let R be the number of nodes remaining in the wunfilled 1level,

should there be one, and let h be the highest numbered completely filled

level.
h = m-1 if U#0
= m if U=0
h
and R = N-1 - Y p(p-1)3-L.
j=1

If R is equal to zero, then the number of nodes in each primary subtree
is the same and equal to
m
3 (0-1)371,
i=1
However, R may not be equal to zero, and since we want to find the lower
bound on delay, we want to determine the minimum number of nodes in the
Jlargest priﬁary subtree. Hence the R remaining nodes (and hence, the U
unfilled places) must be distributed as equally as possible among the
primary subtrees. The minimum number of unfilled places any primary

subtree can have is |U/D]. Therefore the minimum number of nodes in the

largest primary subtree, and hence BDmaxsAP is
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< 1
BDmax(N,D)g,, = ¥ (D-1)371 - |u/p] (4.9)
j=1

and
BC(N,D)gpp = N*BDmax(N,D)gap- (4.10)

These relationships are illustrated in  figures 4.9, and 4.10

respectively.

In order to find the average broadcast delay we must find the delay
to all nodes and then divide by the number of receivers. For the moment
assume that all primary subtrees ére completely filled, (lgter we will
remove this assumption). It was shown that packets were transmitted
from the root at times 0,1,2,....( }u'l:(D—l)J'1 - 1) if the highest level
is completely filled. These packet;F:;e first destined for nodes in
level m, then m-l,.... and finally level 1. Hence the time taken for a
packet to reach its déstination is given by the time at which it was

transmifted plus the level number in which the destination lies. Let

NPS be the number of nodes in a completely filled primary subtree.

o i
: Nes = 5 (o-1)31L
=1

The sum of delays for all D completely filled primary subtrees 1is:

m UB
D*5° D (3§ + NPS - 1),
j=1 1=LB
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Figure 4.9. LOWER EOUND ON MAXIMUM BROADCAST DELAY FOR SEPARATELY
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where
j=-1 .
LB =1+ 3 (p-1)k1
k=1
and

UB = jz (p-1)k-1,
k=1
Thg outer summation cycles through each of the levels, while the inner
summation cycles through the nodes within a level. The 1limits of the
inner summation are themselves summations dependent on j since the
number of nodes 1in a ‘level depends on the level number. The

simplification of the summation can be found in Appendix D, and we just

.-
.-

state the result here:

D*NPS#* (NPS—1+2m) - D*(NPS-m).
2 D-2

» CR T T2 Y R W B
A RN
In general, however, U will not be equal to =zero, and so the
reduction in delay owing to these U unfilled places must be determined.
Each unfilled place causes the reduction of one unit of delay from all
nodes 1in its primary subtree except those at its own level. This is
readily apparent since the root is able to transmit all the packets in a
shorter time, This reduction amounts to:
m~-1
ux 5 (p-1)37L,
j=1
The reduction in total delay owing to the U unfilled places themselves

must now be determined. These unfilled positions were equally
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distributed among the primary subtrees. Therefore we must cyéle through

the primary subtrees removing the node with the largest delay each time.
The largest delay a node in a primary subtree can have 1is:
m+ (D-1)™1 - 1.

Therefore the reduction in total delay is

U-1
Y (m+ -1 -1 - |4/D))
i=0
U-1
: = U%{ (m-1) + (D-1)™ 1} - T |i/D).
i=0

The number of complete cycles through the D primary subtrees is
[U/Q]. During each one of these cycles, D nodes are removed; finally

leaving U~D*|U/D| nodes.

U-1 v/
& 2, |li/p) = ¥ D(i-1) + |U/DJ*{U - D*|u/D|}
i=0 j=1

(D/2)*|U/D) *{ [U/D) -1} + U* [u/D| - D*|u/D|?

\u/D] *{ (D/2)*|U/D] ~(D/2)+U-D* |U/D| }

|u/pj #{u-(p/2)*|U/D| -(D/2)}.

* g
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.. Total Delay = D*NPS*(NPS~14+2m)/2 - D*(NPS-m)/(D-2)

m=-1
- ux Y (0-1)3"1 - ux((m-1)+(D-1)7"1)
j=1

- |u/D) #{U-(D/2)* [u/D} ~(D/2)}.
L BDav(N,D)SAP = Total Delay/(N-1). (4.11)

This relation is shown in figure 4.11.
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Figure 4,11, LOWER BOUND ON AVERAGE BROADCAST DELAY FOR SEPARATELY
ADDRESSED PACKETS. '
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4.5 Multi-Destination Addressing (MDA) and Source Based Forwarding

(SBF)

This section determines the performance measures when the broadcast
routing technique is either multi-destination addressing or source based
forwarding. The two techniques have the same performance since they
both forward the packets along the optimal paths from the broadcaster to

the receivers.

The number of packets transmitted is equal to the minimum number of
edges by which the broadcaster 1s connected to the all the destinations.

This 1is N-1. Therefore

From the view point of the node initiating the broadcast the rest
of the network looks like a minimum height tree. This tree is similar

to the tree of a pseudo generalized Moore graph. Therefore we have:

BDmax(N,D)yp, = BDmax(N,D)ggp = DIA(N,D) (4.14)
BC(N,D)yps = BC(N,D)gpp = N¥BDmax(N,D)yp, - (4.15)

These relationships are 1llustrated in figures 4.7, 4.5, and 4.12

respectively.

We have not determined the number of packet copies transmitted and

the various delays if a restricted multi-destination addressing scheme
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BC(N,D)MDA = BC[N,D)SBF
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Figure 4,12, LOWER BOUND ON BROADCAST COST FOR MULTI-DESTINATION
ADDRESSING AND SOURCE BASED FORWARDING,
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were to be used. This is a subject for future research. The analysis
parallels that used to determine the performance measures if separately
addressed packets were transmitted (cf. section 4.4). One must
determine the optimal order in which destinations are assigned, to the
restricte& multi-destination address field in the header, and the
optimal order in which the packets are transmitted. This formulation
would then include the analysis for separately addressed packets and
multi-destination addressing as special cases, where the 1length of

address field is one, or as long as desired, respectively.
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