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Abstract

Existing and future Internet information services will provide large, rapidly evolv-
ing, highly accessed, yet autonomously managed information spaces. Internet news,
perhaps, is the closest existing precursor to such services. It permits asynchronous
updates, is replicated at thousands of autonomously managed sites, manages a large
database, yet presents adequate response time. It gets its performance through mas-
sive replication. Other Internet services, such as archie, and WWW /Mosaic must
massively replicate their data to deliver reasonable performance.

The problem of replicating information that can be partitioned into autonomously
managed subspaces has well-known solutions. Naming services such as the Domain
Name Service (DNS) and Grapevine use administrative boundaries to partition their
hierarchical name space into domains. These domains need only be replicated in a
handful of services for adequate performance.

On the other hand, efficient massive replication of wide-area, flat, yet autonomously
managed data is yet to be demonstrated, since existing replication algorithms do not
address the scale and autonomy of today’s internetworks. They either ignore net-
work topology issues entirely, or rely on system administrators to hand-configure
replica topologies over which updates travel. Lampson’s widely cited Global Name
Service (GNS) propagates updates over manually configured topologies. However,
the complexity of manually configuring fault-tolerant update topologies that use the
underlying physical network efficiently increases with the scale of today’s internet-
works.

Furthermore, GNS-like replication mechanisms also manage single, flat groups of
replicas. While this is appropriate for applications with 20 to 30 replicas that operate
within single administrative boundaries, it is unrealistic for wide-area, massively
replicated services whose replicas spread throughout the Internet’s thousands of

administrative domains.

X111
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This research investigates scalable replication mechanisms for wide-area, au-
tonomously managed services. We propose a new architecture that extends existing
replication mechanisms to explicitly address scalability and autonomy. We target
replication degrees of thousands or even tens of thousands of weakly-consistent repli-
cas.

Imitating the Internet’s administrative domain routing hierarchy, the proposed
architecture organizes replicas into multiple replication groups. Organizing replicas
into multiple groups limits the size of the consistency state each replica keeps. It
also preserves autonomy, since it insulates replication groups from other groups’
administrative decisions.

We argue that efficient replication algorithms keep replicas weakly consistent
by flooding data between them. Our architecture automatically builds a logical
update flooding topology over which replicas propagate updates to other replicas in
their group. Replicas in a group estimate the underlying physical topology. Using
the estimated network topology, we compute a logical update topology that is k-
connected for resilience, tries to use the physical network efficiently, and yet restricts
update propagation delays. Replication groups compute and adopt a new update
topology every time they detect changes in group membership and network topology.

We describe our architecture in detail and its implementation as a hierarchical,
network cognizant replication tool, which we implemented as part of the Harvest
resource discovery system. Through simulations, we investigate the benefits of us-
ing hierarchical replication groups and distributing updates over the logical update
topologies our architecture computes. We present the results from the wide-area
experiments we conducted to evaluate our network topology estimation strategy.
We also present our logical topology calculation algorithm in detail, and the results
obtained when running our algorithm over randomly generated topologies. Finally,
we explore the use of internet multicast as the underlying update propagation mech-
anism. We argue that since having a single multicast group with all replicas of a
service will not scale, each replication group can be mapped to a multicast group.
Through corner replicas, updates in one group make their way to all groups.

Lampson’s Global Name Service has been widely accepted as the solution to
the problem of replicating wide-area, distributed, weakly-consistent applications.

«

However, almost 10 years ago, when Lampson wrote “... The system I have in mind

X1v
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is a large one, large enough to encompass all the computers in the world and all the
people that use them...”, he did not anticipate that the Internet would grow as fast
as it did. The main contribution of this dissertation is to make GNS-like services

work in today’s exponentially-growing, autonomously-managed internetworks.
P g g, y g

Xv
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Chapter 1

Introduction and Motivation

Existing and future Internet information services will provide large, rapidly evolving,
highly accessed, yet autonomously managed information spaces. Achieving adequate
performance demands that these services and their data be replicated in hundreds
or thousands of autonomous networks.

Take the Internet news distribution system [31] as an example: it manages a
highly dynamic, weakly comnsistent, gigabyte database replicated at thousands of
autonomous administrative domains, yet responds to queries in seconds. In contrast,
archie [22], a directory service for Internet FTP archives, can take fifteen minutes
to answer queries against a much smaller, 150 megabyte database. The difference
between archie’s and network news’ performance is massive replication; there are
only about 30 replicas of archie. As WWW /Mosaic [2], archie and other upcoming
applications [45] become more popular, their databases must be massively replicated
for adequate performance.

Below, we examine existing solutions to replicating data. We argue that, al-
though they are correct and keep replicas consistent, they do not address the scale
and autonomy of today’s internetworks. We start with an overview of the data con-
sistency problem. We also describe a recently proposed replication mechanism that
solves some of the previous replication algorithms’ problems, but still does not scale
to replication degrees of thousands of replicas. Then, we present a brief overview
of multicast communication and relate it to the problem of massive data replica-
tion. Finally, we briefly describe the architecture we propose for efficient massive
replication of data in wide-area internetworks. We end the chapter by outlining the

contents of this dissertation.
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Figure 1.1: Data Consistency Spectrum.

1.1 Data Consistency

Replicas of a service must keep mutually consistent copies of the replicated data.
Different applications require different degrees of consistency. Figure 1.1 represents
the consistency spectrum as a 3 dimensional space consisting of a message ordering
axis, and a message delivery plane. The axes on this plane are message reliability
and delivery latency. The closer they are to the origin, the weaker their consistency
guarantees are. The sample coordinates were extracted from [24].

The message reliability axis specifies what subset of the participating replicas
are guaranteed to receive a copy of the message. Atomic delivery guarantees that a
message is either delivered to every group member or to none; delivery is aborted

if any replica fails. Reliable delivery ensures that a message is delivered to every
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functioning replica; if the sender fails, delivery is not guaranteed. In contrast, quo-
rum delivery guarantees that some fraction of the replicas are guaranteed to get a
message.

The latency axis specifies how long replicas may have to wait to receive a message.
It depends on when the delivery process begins and ends. Synchronous delivery
starts immediately and completes within a bounded time. Bounded delivery may
queue or delay messages, but completes within a bounded time. Both interactive
and eventual delivery may take a finite but unbounded time to complete. Delivery
begins immediately in the first case, while messages may be delayed in the second
case.

Finally, the message ordering axis represents the order messages are delivered to
the application. In total causal ordering, messages are delivered in the same order
to every replica and causal relations between messages are preserved. Total non-
causal ordering guarantees the same message ordering at every replica, but does not
guarantee that causality is preserved. In Causal delivery, messages are delivered in
an order that preserves potential causal relations. FIFO ordering guarantees that
only messages from the same source are delivered in order. Unordered delivery does
not make any ordering guarantees.

Many existing group communication mechanisms populate the consistency spec-
trum. Their consistency guarantees range from atomic, synchronous, tdtally ordered
delivery to best-effort, eventual delivery. Strong consistency protocols are expensive
and do not scale in unreliable, long-haul communication networks. Since they gen-
erate considerable latency and overhead traffic and block replicas while propagating
updates, they are adequate for services with a small number of replicas or services
that need strong consistency guarantees. In contrast, wide-area, massively repli-
cated services should not trade availability and response time for strong consistency
guarantees. On the one hand, these services still need to ensure that replicas eventu-
ally converge to a consistent, updated state during both normal operation and when
recovering from network partition and server or link failures. On the other hand,
they need not compromise their availability and response time and incur the extra
overhead of strong consistency protocols.

In fact, for availability and robustness, Xerox’s Grapevine [59, 60], its commercial

successor, the Clearinghouse [46], the Global Name Service [33], and network news
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[31] use weak consistency replication mechanisms. When link or node failures result
in network partitions, replicas are allowed to diverge and continue to provide service.
Once the partition is mended, replicas eventually converge to a consistent state.

Weak consistency replication is also adequate for mobile computing environ-
ments. If replicas reside on mobile computers, these replicas will provide service
even during disconnection. When reconnected, mobile replicas will exchange up-
dates with the other replicas.

For these reasons, the architecture we propose extends weak consistency protocols

to massively replicate data efficiently.

1.2 What Current Algorithms Lack

As existing naming services and distributed file systems have demonstrated, the
problem of replicating data that can be partitioned into autonomously managed
subspaces has well-known solutions. Naming services such as the Domain Name
Service (DNS) [39, 40] and Grapevine organize their name space hierarchically ac-
cording to well-defined administrative boundaries. They also use these adminis-
trative boundaries to partition their name space into several domains, which only
need to be replicated in a handful of servers to meet adequate performance. In
fact, according to the study presented in [17], over 85% of second level domains in
the DNS hierarchy are replicated at most three times, while 100% of these domains
use at most 7 replicas. The same study also shows that more than 90% of DNS’s
second-level domains store less than 1,000 entries. Because of the limited domain
sizes and small number of replicas, DNS’s primary-copy replication scheme performs
quite adequately. ‘
Similarly, distributed file systems organize their file space hierarchically, where in-
termediate nodes are directories and leaf nodes are files. Like LOCUS [51], Andrew-
AFS ! [42, 27], and Coda [58], distributed file systems use locality of reference to

partition their file space into directory subtrees. File servers replicate a subset of

! Andrew is the name of the research project at Carnegie-Mellon University. AFS is based on
Andrew, and has become a product marketed and supported by Transarc Corporation.
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files in a directory subtree. Both LOCUS and Andrew provide read-only file replica-
tion, while Coda uses distributed updates to keep its read-write file replicas weakly
consistent.

On the other hand, efficient massive replication of wide-area, flat, yet autonomously
managed data is yet to be demonstrated, since existing replication algorithms do not
address the scalability and autonomy of today’s internetworks. Like Grapevine, the
Clearinghouse, and the Global Name Service, existing replication solutions do not
scale because they manage a single, flat group of replicas. While this is appropri-
ate for applications with 20 to 30 replicas that operate within single administrative
boundaries, it is unrealistic for wide-area, massively replicated services whose repli-
cas spread throughout the Internet’s thousands of administrative domains.

We also argue that efficient replication algorithms flood data between replicas.
In fact, Internet news employs flooding to distribute updates among its thousands of
replicas. Note that the flooding scheme that we propose differs from network-level
flooding as used by routing algorithms: flooding at the network level simply follows
the network’s physical topology and floods updates throughout all physical links of
the network. Instead, replicas flood data to their logical neighbors or peer replicas.
Although the word “flooding” sounds inefficient, we claim that the application-level
flooding scheme we propose does use network bandwidth efficiently.

Because layered network protocols hide the network topology details from appli-
cation protocols, in existing replication algorithms replicas cannot select their peers
to optimize their use of the underlying physical network. Most existing distributed
replication mechanisms ignore network topology: they treat all physical links as
having equal delay and bandwidth, and thus do not try to use the network effi-
ciently, deliver timely updates, and adapt to network partition and temporary or
permanent site failures. For instance, both Grapevine and the Clearinghouse ignore
network and update topology. The Global Name Service assumes the existence of
a single administrator who hand-configures the topology over which updates travel.
The Global Name Service administrator places replicas in a Hamiltonian cycle, and
reconfigures the ring when replicas are added or removed. As the number of repli-
cas grows and replicas spread beyond single administrative boundaries, frequently
reconfiguring the ring gets prohibitively expensive. Like the Global Name Service,

Internet news site administrators hand-configure the flooding topology over which
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their updates travel. Since obtaining current physical topology information is diffi-
cult in today’s Internet, system administrators frequently confer with one another to
plan changes in the logical flooding topology. They try to keep up with the dynamics
of the underlying physical topology: a task that becomes increasingly hard as the

Internet’s scale and complexity increase.

1.3 Timestamped, Anti-Entropy Replication

In [24], Golding proposes a weak consistency group communication mechanism. In-
spired by Xerox Clearinghouse’s anti-entropy protocol, Golding’s message delivery
component uses the timestamped anti-entropy (TSAE) protocol which provides re-
liable, eventual delivery of client data. The basic idea behind anti-entropy protocols
1s that each replica periodically starts an anti-entropy session, in which it selects a
peer to exchange updates.

In the TSAE protocol, when a replica has a message to send, it timestamps the
.message and writes it to a log. During anti-entropy sessions, replicas exchange the
contents of their message logs. This message log organizes messages according to
their originating replica. To make the anti-entropy update exchange more efficient,
each replica keeps a summary vector containing the latest message timestamps it has
received from each replica in the group. Replicas exchange their summary vectors
and then exchange the missing messages. At the end of an anti-entropy session, both
replicas have the same continuous sequence of messages sent by each group member.
Each replica uses the smallest timestamp in its summary vector as its acknowledg-
ment timestamp and keeps an acknowledgment timestamp for each replica in the
group. Replicas also exchange their acknowledgment vectors and use them to purge
outstanding messages from their message logs.

Through its anti-entropy sessions, the TSAE protocol ensures that replicas even-
tually converge to a consistent state during normal operation or when recovering
from link and node failures, and network partitions. The TSAE protocol combined
with a message ordering mechanism provides specific message ordering guarantees.
For instance, the Refdbms replicated bibliographic database [24] uses the TSAE

protocol combined with a total, non-causal ordering mechanism.
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Golding’s group communication system also includes a group membership compo-
nent which allows the group of communicating replicas to be dynamic. The proposed
weak consistency group membership mechanism guarantees that each participating
replica’s view of the group eventually converges. It provides the following opera-
tions. Initialization allows a replica to create a new group. It assumes the existence
of a location service with which it registers newly created groups. Replicas join a
group by querying the location service to find at least one current group member.
To maintain k-resilience, a joining replica must obtain k£ + 1 sponsov;s before be-
coming a member. It gets its first sponsor, who sends it a copy of the entire group
state. It then gets additional sponsors. The new member and sponsors propagate
the updated group membership to the rest of the group in anti-entropy sessions. A
replica that wants to leave the group must first declare its intention to leave and
perform anti entropy with at least one member. It must also wait until all current
members know it is leaving. A failed replica is ejected from the group to avoid that
upon recovery, the replica re-injects old messages.

We argue that like other replication mechanisms, which do not try to use the
underlying network efficiently and that manage a single, flat replication group, Gold-
ing’s group communication system will not scale to thousands of replicas spread

throughout the Internet’s autonomous administrative domains.

1.4 Internet Multicast and Multicast Transport

Protocols

Multicast communication is the delivery of data from a source to a group of recipients
identified by a single destination address. In particular, Internet multicast [18, 19]
delivers best-effort datagrams to a group of hosts sharing a single IP multicast
address. Internet multicast architectures build a shortest-path tree to transmit a
datagram packet to a group of hosts sharing a single IP multicast address. Multicast
sources need only transmit a single copy of a packet, which gets replicated as needed
at each branching point of the multicast tree.

Because it minimizes the number of packets sent from a source to its destinations,

Internet multicast and reliable multicast transport protocols are often considered to
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provide a good foundation on which to build massive replication protocols. Further,
since the network itself supports Internet multicast, it has access to the network
routing database, and therefore can make routing decisions so that the underlying
network is efficiently used.

Like the IP protocol [53], Internet multicast provides best-effort delivery, and
leaves reliability up to transport-level protocols. By providing only a minimum
functionality delivery service, applications such as real-time voice and video telecon-
ferencing, which can live with data losses, do not have to incur the extra overhead
of reliable delivery.

However, contrary to real-time applications, information services, which are the
focus of this research, need reliable message delivery. We argue that a reliable mul-
tipoint transport protocol does not provide the required reliability. In particular, a
reliable multipoint transport protocol does not solve the consistency problem in the
case of a replica being temporarily removed from service, losing state used in consis-
tency maintenance. In this case, only the application can re-establish consistency.

The end-to-end argument in layered system design [57] recommends that if a
function can only be completely and correctly implemented by the application, that
function should be moved upward to the application that uses it. Since replicas of
an information service need to perform application-level consistency checks anyway,
we argue that replication tools do not have to rely on a reliable multicast transport

protocol, although, for efficiency, they can exploit such protocols where available.

1.5 Dissertation Overview and Outline

In the previous sections, we argued that efficient replication algorithms keep replicas
weakly consistent by flooding updates between them and don’t necessarily have to
rely on existing multicast transport protocols. We also argued that although existing
replication mechanisms use weak consistency, flooding-based protocols, they will
not scale to thousands of replicas spread throughout the Internet’s autonomous
administrative domains. Existing weak consistency replication algorithms manage
single replication groups, and do not try to use the underlying physical network

efficiently.
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This dissertation proposes an architecture for efficient massive replication of wide-
area, autonomously managed services. We target replication degrees of thousands
or even tens of thousands of weakly consistent replicas scattered throughout the
Internet’s thousands of administrative domains. Our architecture extends existing
replication mechanisms to address the scale and autonomy of today’s internetworks
explicitly.

Since distributed systems that scale well are organized hierarchically, the pro-
posed architecture groups replicas into multiple hierarchical replication groups anal-
ogous to the way the Internet partitions itself into autonomous routing domains.
This hierarchical organization limits the size of the consistency state each replica
needs to keep to perform periodic end-to-end consistency checks. It also insulates
groups against administrative decisions from neighboring, autonomously managed
groups, and from most of the network traffic associated with group membership.
Replication groups overlap with one another, so that an update that originates in a
group makes its way to all groups.

Using client updates as probe messages, group replicas estimate the underly-
ing physical topology. Based on the estimated physical topology, our architecture
automatically builds an update flooding topology between the group members. The
resulting update topology uses the physical network efficiently, is k-connected for re-
silience, and has limited diameter to restrict update propagation delays. Whenever
the probing mechanism detects a significant change in the physical topology con-
necting members of a replication group, it spawns a topology computation process,
which modifies the current topology accordingly.

Over the past 5 years, several information discovery services have been help-
ing users locate and retrieve information available on the Internet. However, the
combined growth in data volume, data diversity, and user base created perfor-
mance bottlenecks early information discovery tools cannot overcome. Through
a set of customizable information gathering tools, topic-specific indexes, efficient in-
dex searching mechanisms, and massive object replication and caching, Harvest [11]
was designed to become the National Information Infrastructure’s resource discov-
ery service. Qur hierarchical, network-cognizant replication tool supports Harvest’s

massive object replication.

ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1010, p. 26 of 140



This dissertation is organized as follows. In the next chapter, we present our
hierarchical, network-cognizant replication tool’s architecture in detail. We also de-
scribe its implementation as flood-d, one of the components of the Harvest resource
discovery system. Chapter 3 describes the wide-area experiments we conducted to
evaluate our network topology estimation strategy, and compares flood-d’s com-
munication latency and available bandwidth estimates with measurements obtained
from available networking tools. In Chapter 4, we present our topology computation
dlgorithm and the results the algorithm produces using randomly generated topolo-
gies as input. Through simulations, we investigate the benefits of using multiple
replication groups and distributing updates over the logical topologies our architec-
ture computes, and present the results in Chapter 5. Chapter 6 explores the use of
internet multicast as the underlying update propagation mechanism, and proposes
a reliable multipoint transport protocol well suited for weak consistent applications.
Finally, Chapter 7 summarizes this work, discusses topics for future research, and

presents some concluding remarks.

10
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Chapter 2

A Hierarchical, Network-Cognizant Replication

Architecture

In this chapter, we present our hierarchical, network cognizant architecture in
detail. We describe our network topology estimation strategy and contrast it with
topology discovery. We also describe the implementation of our architecture as flood-
d, a tool that supports mirror-d, a weakly-consistent file archiver used to replicate

Harvest’s [11] indexing databases.
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2.1 Overview

The architecture we propose extends weak consistency, flooding-based replication
protocols, such as Golding’s TSAE protocol, to address scale and autonomy ex-
plicitly. It clusters replicas of a service into multiple, autonomously administered
replication groups imitating the Internet’s administrative domain hierarchy. Orga;
nizing replicas into groups limits the size of the consistency state that each replica
keeps and reduces the time to reach consistency among replicas of a service. Having
multiple replication groups also preserves autonomy, since administrative decisions
of one group, such as its connectivity or when it should be split in two, do not
affect other groups. Also, it insulates groups from topological rearrangements of
their neighboring groups and from most of the network traffic associated with group
membership.

Unlike Lampson’s Global Name Service, the logical update topologies that inter-
connect members of a replication group are not restricted to a Hamiltonian cycle.
We build k-connected topologies for resilience. Recall that in a k-connected network
[5], at least k—1 nodes must break before the network is partitioned. The ring topol-
ogy connecting Global Name Service replicas corresponds to a 2-connected topology
where all edges have equal cost. The resulting k-connected topologies also try to use
the underlying network efficiently, while limiting update propagation delays.

Our architecture, which automatically builds logical update topologies that have
the properties described above, consists of a network topology estimator ! and a
logical topology calculator. Every group replica measures available bandwidth and
propagation delay to the other group members. Based on these estimates, the logical
topology calculator builds a high bandwidth, limited diameter, k-connected update
topology for the group. The topology’s diameter corresponds to the maximum num-
ber of hops that updates need to travel.

By automating the process of building update topologies among replicas of a
service, the proposed architecture offloads logical topology decisions from system

administrators.

1 An alternative strategy for network topology information acquisition is discussed later in this
chapter.
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Figure 2.1: Replication groups showing logical versus physical topologies.

2.1.1 Groups and Network Topology

Figure 2.1 illustrates the relationship between logical topologies and the underlying
physical network. The left-hand figure shows three replication groups and their
logical update topologies. The right-hand figure shows the physical network topology
and the logical update topology built on top of it for the three replication groups in
the left-hand figure.

We should point out that using logical update topologies does not circumvent
Internet routing. On the contrary, network routing can work around occasional bad

choices made by the update topology.

2.1.2 Flooding and Peer Selection

Besides organizing replicas into multiple groups, our architecture incorporates the
notion of network and logical update topologies into existing weak-consistency,

flooding-based replication mechanisms.
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For instance, in the original TSAE protocol, every replica randomly selects an-
other replica to exchange missing updates during an anti-entropy session. By using
the k-connected, high-bandwidth, limited-diameter logical update topologies our ar-
chitecture builds, TSAE replicas make efficient use of the physical network, while
limiting delays when propagating updates. Furthermore, our logical update topolo-

gies adapt to group membership and physical topology changes.

2.1.3 Consistency Between Groups

The TSAE protocol maintains consistency between replication groups as easily as it
does between members of a group. Between replication groups, it simply communi-
cates with representative individual replicas, or corner replicas. Since replicas flood
updates to their neighbors in the logical topology, updates in one group make their
way to all groups.

Although network node and link failures may result in network partitions, and
permanent node failures and group membership changes may introduce temporary
inconsistencies, TSAE eventually resolves them as long as our architecture keeps the

nodes connected.

2.1.4 Consistency State Size

Organizing replicas into multiple groups limits the amount of consistency state each
replica needs to keep. Each replica running the TSAE protocol must store all object
updates from other participating replicas in its group. This requires O(rn) space,
where r is the the group size and n is the number of UN-purged update log entries.
During anti-entropy sessions, a replica exchanges its consistency state with other
replicas. When it realizes that all group members have received an update, the
replica purges the corresponding update log entry.

By splitting a group into g smaller groups, the size of a replica’s consistency state
decreases to O((r/g)n). In other words, replicas only keep state for replicas within
their own group. Corner replicas also need to keep an aggregate state for each group

to which they belong and hence maintain O((r/g + g)n) state.
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Multiple replication groups preserve autonomy by insula’cihg groups against ad-
ministrative decisions from neighboring, autonomously administered groups. They

also limit network traffic associated with group membership.

2.1.5 Updating Logical Topologies

Network nodes and links may fail temporarily, or may be permanently removed from
service. Replicas may also join and leave a flooding group. The group membership
protocol and physical topology estimation will eventually detect these changes, which
will be reflected in the new k-connected graph the group computes.

Our architecture also uses flooding to propagate topology updates to all members
of a replication group. Topology update messages carry a sequence number corre-
sponding to the topology identifier, which replicas use to order topology updates,
and detect duplicates. Topology update messages also contain the new group mem-
bership set. When a replica receives a topology update, it floods the new topology
according to the current topology before committing the new topology.

Topology changes may occur while an application-level update is being propa-
gated. In this case, the update propagates according to the current topology, and
when it gets to replicas that already committed the new topology, the update prop-
agates following the new topology. Since the new topology is also a k-connected
graph, all replicas will eventually get the application-level update. However, more
duplicates may be generated since replicas that have already received updates, may
receive them again after the topology change.

The topology update process generates additional traffic associated with propa-
gating topology update messages to the participating replicas. The resulting over-
head in terms of the total number of messages generated is proportional to the num-
ber of participating replicas, and the frequency in which topology updates occur. In
a highly replicated service whose copies are spread throughout large internets, the
topology update overhead may become prohibitively high as the number of replicas,
and the frequency of physical topology and flooding group membership changes can
get considerably high. Our hierarchical approach helps limit this overhead. Group-

ing replicas located physically close to one another restricts the scope of the changes
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that trigger topology updates. It also limits the scope of the resulting topology up-
dates to the local group, and therefore restricts topology update traffic on the more

expensive, long-haul physical links.

2.2 Physical Topology

We claim that, analogously to the fact that database applications need to have access
to raw disks for efficiency while the underlying operating system exports file system
abstractions, existing and future network applications will benefit from exposed
physical network topology information. In particular, our replication architecture
builds logical update topologies that try to make efficient use of the underlying
network, while limiting update propagation delays. It builds these logical topologies
based on information about the current state of the network.

Because of its size, complexity, and autonomy, the Internet’s physical topology is
neither well known nor stable. While our current strategy is to probe the underlying
physical network to estimate its characteristics, in the next section, we present some
topology discovery approaches. In Section 2.2.2, we describe our topology estimation

strategy.

2.2.1 Topology Discovery

The topology discovery approach relies on getting topological information indirectly
through some existing lower-level mechanism, such as routing protocols. We briefly
examine some existing internetwork routing protocols and topology discovery tools.

Today’s Internet connects thousands of autonomous Administrative Domains
(ADs). An AD is a set of hosts, networks, and gateways administered by a single
authority [7]. Roughly speaking, the current inter-AD topology can be described as
a hierarchy consisting of long-haul backbone, regional, metropolitan and local-area
networks. This hierarchy is augmented with bypass links connecting non-adjacent

levels.
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Interior gateway protocols (IGPs) are routing protocols used within an AD. Sev-
eral IGPs are currently in use on the Internet. The Routing Information Proto-
col(RIP) [25], the HELLO protocol [38] are examples of IGPs that use distance-
vector algorithms [66], whereas the OSPF protocol [43] exemplifies link-state based
[66] IGPs. Because IGPs are limited to operate within single ADs, each one of them
may use a different cost metric.

Exterior Gateway Protocols have been used in inter-AD routing. They support
heterogeneity by interconnecting ADs that run different IGPs. EGP [55] is a distance
vector exterior gateway protocol. Because there is no universally accepted measure of
distance between two networks in two different autonomous domains, EGP gateways
exchange reachability information using the number of intermediate EGP gateways
along the path from source to destination as the hop count metric. The Border
Gateway Protocol (BGP) [35] has been proposed as a successor to EGP. BGP is
also a distance vector protocol that uses hop count as the routing metric. As an
enhancement to KGP, BGP avoids loops by including full path information in its
routing updates.

Due to the complexity and heterogeneity of today’s large internets, topology
discovery based on inter-domain routing does not provide complete topology infor-
mation. By using Exterior Gateway Protocol routing data, we can find out about
the participating ADs, and the corresponding reachability information. However, it
does not provide real link costs.

A number of automated topology discovery tools have been developed as part
of network management systems. These tools employ one or more of the following
methods to discover topology. The first approach relies on sending ICMP [52] echo
requests to a range of addresses, and then adding the addresses that respond to a list
of nodes. This approach finds all nodes on the network that respond to an ICMP,
but can be very time consuming. The second method uses the Simple Network
Management Protocol (SNMP) [8] to collect topology and routing information from
the Management Information Base (MIB) [37] kept in SNMP-reachable nodes. Using
this method, more complete information can be collected, but only SNMP-reachable
nodes will be discovered. The third approach discovers nodes by monitoring local
Ethernet segments. Based on addresses in the headers of the observed packets, it

creates a list of nodes. This method does not discover nodes on remote segments.
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In [64], Schwartz et. al. present an architecture for discovering the characteristics
of large internets, including topology, congestion, routing, and protocol usage. The
proposed tool uses a wide range of existing protocols such as SNMP, ICMP, ARP
[50], and available information sources such as DNS [41, 39], and routing protocols.
It employs passive monitoring, and active probing of various internet segments,
and caches relevant information at various points around the network. Although
this tool can generate more complete and detailed internet maps than traditional
network management systems, it still does not discover link costs.

Rouvellou et. al. [56] propose a method for discovering the topology of a network
based on partial or corrupted neighbor information provided by participating nodes.
The proposed method accomplishes topology identification through a combinatorial
optimization technique that minimizes cost. Costs are assigned to measure how
well a graph fits the data provided by the participating nodes given that a set of
corruptions might have occurred. Because it has been designed to locate nodes of
mobile networks, which have dynamically changing topology, this technique only

helps in assessing node reachability. It does not estimate real link costs.

2.2.2 Estimating Physical Topology

Our current strategy is to estimate the characteristics of the underlying physical
topology. Physical topology estimation relies on probing the physical network to
estimate relevant cost parameters and computing a cost matrix based of a pre-
defined cost function.

Making communication cost a function of hop count accounts for the utilization
of network resources when propagating data; the higher the hop count, the more
expensive it is to propagate data. However, using hop count as the cost metric
makes all communication links look the same.

Specifying the cost function only in terms of the available bandwidth can be
misleading. It would make higher bandwidth paths look better than lower bandwidth
ones, even if the higher bandwidth paths traverse longer geographical distances. For
analogous reasons, defining cost only in terms of latency would result in not getting

any benefit from higher bandwidth paths.
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We are currently using a cost function that combines latency and available band-
width between a given source-destination pair. Latency accounts for propagation and
queuing delays incurred at the intermediate nodes and links. We should point out
that for shorter distances, which is the case of sites in a local-area network, band-
width is the dominating factor in communication cost. On the other hand, for longer

distances, like in long-haul networks, propagation delays are no longer negligible.

2.3 Implementation

As a result of the Internet Resource Discovery Task Force (IRTF) efforts [63, 6],
the Harvest resource discovery system [11] has been designed and implemented to
solve the scalability and efficiency problems of early resource discovery services. For
availability and response time, Harvest relies on massive replication of its indexing
databases, or brokers. such as its directory service. In particular, Harvest’s directory,
which stores information about all available brokers, is expected to be highly accessed
and must be massively replicated for adequate performance.

Our hierarchical, network-cognizant replication architecture, which we call flood-
d, supports Harvest broker replication. Flood-d currently provides a flooding-based,
group communication layer, which information systems can use to propagate data
among their replicas. These applications use flood-d as their underlying data prop-
agation mechanism and perform periodic end-to-end consistency checks to detect
missing updates.

Flood-d provides the data distribution mechanism which mirror-d, a weakly-
consistent, replicated file archiver, uses to replicate files. Harvest brokers use mirror-

d to replicate their data.

2.3.1 Flood-d

When a replica receives data to propagate, it floods an update message to replicas
that are its logical neighbors, according to the current logical topology. Flood-d es-
timates available peer-to-peer bandwidth when a replica sends an update to another

replica. To measure available bandwidth to non-neighbors, a replica occasionally
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exchanges updates with one or more non-neighbor replicas within its replication
group.

Since flood-d uses TCP for point-to-point update transmission, it estimates the
effective, flow-controlled bandwidth between two replicas. If updates are small, then
propagation delay and TCP slow start dominate link speed in this estimation, yield-
ing higher bandwidths to closer peers.

Flood-d also measures communication delays between pairs of replicas. Each
replica periodically sends short UDP messages to other group members. We use UDP
to avoid that the connection setup overhead of TCP interfere with our measurements.
Probe messages are short so that each probe fits in a single packet.

Any flood-d replica can perform topology calculations. Currently, a replica in
a group is designated as the group master and is responsible for computing logical
update topologies for the group. From time to time, the current group master
collects cost estimates from replicas in its group and then computes the all-pairs
shortest-paths between group members, generating a fully-connected cost matrix.
Using this cost matrix and the group’s desired connectivity (typically 2 or 3), it
computes a new logical update topology and, if the new topology is significantly
better than the old, distributes it to all the group members.

Topology update messages carry a sequence number corresponding to the topol-

"ogy identifier, which replicas use to order topology updates and detect duplicates.

Topology update messages also contain the new group membership set. When a
replica receives a topology update, it floods the update according to the current
topology before committing the new topology.

Replica update messages also carry a topology sequence number. If a replica
learns of an update from one of its peers, but the update now carries a higher topol-
ogy sequence number, the replica must re-flood the update as if it hadn’t received
it before.

Replicas may join or leave a replication group at any time. To join a group, a
new replica copies a neighbor’s database, and floods its existence to the rest of the
group. When a new member joins the group, a topology calculation is spawned.

The resulting topology includes the new replica and is distributed to the group.
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; Confiquration for site v, ; Confiquration for the group of which site v 15 a mexber,

.
i

: Define site ‘v’ (saroup-define

(:site-define ; What ve are defining, :romp-name gray) ; Tdentify the group by nare.

(:site-nane v} ;& comventent name for the sites, (:s1te 4] ; This site i In the growp,

(hostname ] ; The hostnane vhere this site 15 located, [:site x) s and so o,

(:client-port 2000] ; Where a client can talk to e, (:site §] ; GATRYAT* £ black grou,

(:data-port  2001) ; Where other Flood daenons talk to ne (:ste 7)

(:longitude -118.0)  ; The phystical coordinates of (:site p) ; {GATEIAY® to slash qroup,

[lattitude 3.0) ; asite, (:bandwidth-period 3600.0) ; Bstinate handvidth to another site every hour,

(:topology-period 86400]) ; Generate & new tooology every day. (:estinates-period Y00.0)  ; Send estinates out every 15 minutes,
(:master-site v]) ; Who 13 responsible for generating topology.

Figure 2.2: Example flood-d site and group configuration.

Sites leave a replication group silently; if members of a group have not heard
from a site in a specified period of time, they assume the silent site has left the
group, and is excluded from the group membership set and topology computations.

Several configuration parameters can be set to modify flood-d’s operation. The
left-hand side of Figure 2.2 illustrates a sample configuration for a flood-d replica. In
particular, this is the configuration for Figure 2.1’s replica w. In the right-hand side
of Figure 2.2, we show the configuration for the replication group of which replica
W is a member.

Figure 2.3 illustrates flood-d’s group monitoring tool. Using this graphical in-
terface to flood-d, group managers can view the current membership list, as well
as information about individual sites. This tool also displays the current logical

topology of a group from a specific site’s perspective.

2.3.2 Mirror-d

Mirror-d is a weakly-consistent, replicated file archiver that uses flood-d as its under-

lying update propagation mechanism. As shown in Figure 2.4, mirror-d is designed
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Figure 2.3: Flood-d’s group monitoring tool.

as a collection of master copies that update a common archive. Every replica in the
common archive has a copy of everything that is being replicated. In the context
of Harvest for example, master copies represent brokers’ databases; this means that
the same pool of replicas may replicate different brokers.

Whenever a file is added or deleted, the corresponding master copy sends out
an update to the common archive. The master copy sends the update to one of
the replicas which propagates it to the other replicas using flood-d. Notice that in
Figure 2.4, the archive replicas use a 2-connected update logical topology.

Periodically, master copies generate a state message with their current file lists.
State messages propagate to all replicas, who check whether their copies are up-
to-date. If a replica detects it is missing a file, it requests that file from one of
its neighbors. In case a replica detects it has a file which is no longer present in
the master copy’s list, the replica deletes that file. Therefore, any file additions or
deletions in a master copy eventually propagate to all replicas. We should point
out that only updates to the master copies propagate to the archive. Therefore,
if a replica adds a file to its copy, it will not get propagated to the other replicas.
Furthermore, eventually, that file will get deleted when the replica receives a state

message from the master copy.
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Figure 2.4: Mirror-d master and slave copies.
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Chapter 3

Evaluating Network Topology Estimation

In the previous chapter, we presented our hierarchical, network-cognizant repli-
cation architecture. We also described its implementation as flood-d, a multi-point
communication tool, which service replicas use as their data propagation mechanism.
Flood-d propagates data according to a pre-computed logical topology, which tries
to use the underlying physical network efficiently, while limiting update propagation
time. To compute these logical update topologies, replicas running flood-d probe
the network, and estimate latency and available bandwidth.

This chapter describes the wide-area experiments we conducted to evaluate our
network estimation strategy. We present flood-d’s latency and bandwidth estimates,

and compare them with measurements obtained from other tools, such as traceroute

[28].
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3.1 Wide-Area Experiments

For our wide-area experiments, we used a single replication group, whose size fluc-
tuated around 10 replicas. Participating replicas were located at different internet
sites: some replicas were run locally at the USC Networking and Distributed Sys-
tems Laboratory; at least one replica was located outside of the US, more specifically
in Sidney, Australia; the remaining replicas were located throughout the continental
US.

The experiments consisted of collecting latency and bandwidth estimates from
participating replicas during a period of time. They were conducted at different times
of the day and on different days of the week to capture the variation in network load.

Currently, replicas running flood-d periodically send probe messages to other
group members to measure communication latency. When it is time for a replica to
estimate latency, the replica sends a probe message to a randomly selected replica
in its group. Probe messages carry only header information, so that they fit in a
single UDP packet. Before sending a probe, a replica timestamps it. The probed
replica sends back a response, which carries the probe’s original timestamp. Latency

is computed as

latency = timestampy — timestamp,

where timestamp, is the probe’s original timestamp and ftmestamp, is the time
when the replica that originated the probe received its reply. Notice that the value
of timestamp, accounts for the load at the replica being probed.

The frequency at which replicas probe one another is one of flood-d’s group con-
figuration parameters. Replication group administrators adjust latency estimation
frequency depending on how fast they want their group to adapt to membership or
network topology changes.

Replicas estimate available bandwidth during update propagation: when a replica
sends an update to its neighbors, it also measures available bandwidth to them. The
replica that is being updated records the time it receives the update’s first and last

bytes. Available bandwidth is estimated as
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bandwidth = update_size/(timejqast byte — 11ME first_byte)

where update_size is the size of the update message, and temefir st pyte and temegse_pyte

are the times the replica being updated received the update’s first and last bytes,
respectively.

To find out whether there are currently better alternate logical links, replicas
also measure available bandwidth to non-neighbor replicas. Periodically, a replica
randomly selects a non-neighbor replica in its group, sends it a fixed-size, dummy
update, and estimates the corresponding available bandwidth. The frequency at
which replicas perform bandwidth estimation to non-neighbors is another one of
flood-d’s group configuration parameters, which group administrators can adjust
according to how adaptive to network topology and group membership changes they
want their group to be. However, besides generating additional overhead traffic,
high latency and bandwidth estimation frequencies may also cause groups to adapt

to transients.

3.2 Latency Estimates

Below, we present the latency estimates we collected during our wide-area experi-
ments. While collecting flood-d latency estimates, we also collected round-trip time
values from traceroute probes to serve as a basis for comparison.

Traceroute [28] is a network management tool used to track routes IP packets take
between a given source-destination pair. It uses UDP probe packets, and increments
the packet’s TP protocol’s time-to-live value by 1 each time, so that the packet
goes 1 hop further until it reaches the destination or the maximum time-to-live (30
hops by default). For each time-to-live value, traceroute issues 3 probes by default,
and besides the route, it also reports the round-trip time of each probe. In our
experiments, we periodically invoke traceroute from the replica that is collecting
flood-d estimates to the other group members, and record the average round-trip

time among the values reported by the 3 traceroute probes. The time between
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Figure 3.1: Flood-d’s latency estimates and traceroute’s round-trip time measure-

ments.

consecutive traceroute invocations is configured to be the same as flood-d’s latency
estimation interval.

The graphs in Figure 3.1 show 3 sets of latency estimates and traceroute round-
trip times collected at different times of day on different days of the week from a USC
site, warthog.usc.edu, to 2 remote sites: sunws0.cse.psu.edu located at Pennsylvania
State University, and burton.cs.colorado.edu located at the University of Colorado
in Boulder. The graphs in the first, second, and third columns plot values collected
Saturday, June 4 1994, from 3:30 pm to 3:30 pm, Monday, June 6 from 2:30 pm to
2:30 am, and Tuesday, June 7 from 5:30 pm and 5:30 am, respectively. Data was
collected every 30 minutes.

The top and bottom graphs show measurements from  warthog.usc.edu to
sunwsl.cse.psu.edu and burton.cs.colorado.edu, respectively. The values plotted in
the first column graphs were collected Saturday, June 4 1994, from 3:30 pm to 3:30
am. The second and third column graphs contain values collected between 2:30 pm

and 2:30 am on Monday, June 6, and 5:30 pm and 5:30 am on Tuesday, June 7,

respectively.
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We observe that flood-d estimates do not capture as much oscillation in commu-
nication latency as traceroute round-trip times, which means that flood-d estimates
tend not to capture short-lived changes in network topology. This is due to the way
flood-d estimates are computed: to dampen the effects of transients, flood-d takes
into account previous history, by combining the current estimate with the previous
one. In fact, as the values in the first-row graphs show, flood-d latency estimates av-
erage out the transients traceroute detects. We should also point out that because
flood-d’s latency estimates are user-level measurements, they are typically higher
than traceroute round-trip times. Therefore, latency estimates to local sites are
dominated by the protocol stack overhead.

The results reported in the second-row graphs show how machine load can affect
flood-d’s latency estimates. Flood-d’s estimates taken on June 7 (right-most graph)
present a big discrepancy in relation to the values collected on June 4, and June
6. Furthermore, the June 7 values also report a large discrepancy between flood-d
estimates and traceroute round-trip times. This is due to the fact that the target
machine, burton.cs.colorado.edu, was probably overloaded at the time. Notice that
towards the end of the measurement period, flood-d latency measurements became
considerably lower.

Application-level estimates of the underlying physical topology capture both net-
work and machine load. This means that distributed applications that are network
cognizant are able not only to use the underlying network efficiently, but also to
improve performance. For instance, suppose that the user interface of a resource
discovery service is trying to decide to which directory service replica it should sub-
mit the user query, so that it gets a reasonable response time without incurring
unnecessary network load. Using traceroute round-trip times will not help in this
case, since the client also wants to avoid going to highly loaded servers.

The graphs in Figure 3.2 compare latency data collected at replicas running on
2 different internet sites: aloe.cs.arizona.edu at University of Arizona in Tucson,
and sunws0.cse.psu.edu at PennState University. These replicas measure latency
between themselves and to other group members, namely burton.cs.colorado.edu,
casino.cchs.su.edu.au, condesa.usc.edu, and warthog.usc.edu, respectively. Data was

collected every 30 minutes between 3 pm and 3 am, Friday, June 10 1994.
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Figure 3.2: Flood-d’s latency estimates and traceroute’s round-trip time measure-
ments.

The graphs in the first row show latency estimates from aloe.cs.arizona.edu to
sunws(.cse.psu.edu, and vice-versa. Notice that although traceroute round-trip time
values in both graphs are similar, the actual physical paths are asymmetric. The
difference between flood-d’s estimates in the 2 graphs shows logical link asymmetry:
yet another phenomenon that could only be captured by end-to-end measurements.

The graphs in the 2 bottom-most rows show measurements to the 2 USC replicas.
Since they are on the same local-area network, the traceroute round-trip times from
both aloe.cs.arizona.edu and sunws(.cse.psu.edu to these 2 machines are similar.
Notice that flood-d estimates to warthog.usc.edu were higher than to condesa.usc.edu
probably because warthog had a bigger load at the time of the measurements.

Figure 3.3 shows latency measurements taken from alameda.usc.edu and  hi-
dalgo.usc.edu, both at USC, to the other members in the group, namely  bur-
ton.cs.colorado.edu, casino.cchs.su.edu.au, and sunws(.cse.psu.edu. Data was col-

lected every 30 minutes between 4:30 pm to 4:30 am, Thursday, June 16 1994.
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Figure 3.3: Flood-d’s latency estimates and traceroute’s round-trip time measure-
ments.

The graphs in the first row plot flood-d estimates and traceroute round-trip
times from alameda to hidalgo, and vice-versa. Notice that although the average
traceroute round-trip times in both graphs are very similar, the latency estimates
from flood-d are considerably different. This is because hidalgo, which is one of
the machines that has the biggest memory in the USC Networking and Distributed
Systems Laboratory, is usually running big simulations, and had the additional load
of being the group master during this experiment.

Most of flood-d’s estimates in the remaining graphs reflect hidalgo’s higher load;
even though hidalgo and alameda are on the same local-area network, hidalgo’s la-
tency estimates to a given machine are higher than alameda’s. This is due to the
way latency measurements are being computed. Since the replica that originated
the probing message timestamps it upon receipt, this timestamp accounts for the
probe originator’s load. An alternative is to have the probed replica issue the receipt

timestamp, and then the originator computes the round-trip latency as 2 times the
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Figure 3.4: Flood-d’s bandwidth estimates.

difference between the originator’s and receiver’s timestamps. The disadvantage of

this approach is that we do not account for logical link asymmetry.

3.3 Bandwidth Estimates

Recall that besides measuring available bandwidth when updating neighbors, flood-d
replicas periodically estimate bandwidth to members of their group. This way repli-
cas also estimate bandwidth to non-neighbors and keep fresh bandwidth estimates
even when there are no updates to propagate.

The first set of bandwidth estimates were collected by periodically sending fixed-
size, dummy update messages among group replicas. Figure 3.4 shows measure-
ments collected at the University of Arizona and PennState University replicas,
namely aloe.cs.arizona.edu, and sunws0.cse.psu.edu to the other group members,
burton.cs.colorado.edu, casino.cchs.su.edu.au, condesa.usc.edu, and warthog.usc.edu.

Data was collected every 30 minutes between 3 pm and 3 am, Thursday, June 9

1994.

31

ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1010, p. 48 of 140



In all graphs, we observe the effects of slow-start, TCP’s flow control mecha-
nism, which gradually opens up the sender’s transmission window as it receives ac-
knowledgments from the receiver. However, because the periodic bandwidth prob-
ing messages are currently 32 KBytes long, in some cases they are too small to
stretch the transmission window to its maximum. Take for example the bandwidth
measured to condesa.usc.edu and warthog.usc.edu from both aloe.cs.arizona.edu and
sunwsl.cse.psu.edu (graphs in the fourth row): each probing message detects a
higher bandwidth. This is not the case for the bandwidth measurements to
casino.cchs.su.edu.au, the replica in Australia (graphs in the third row): messages
from aloe.cs.arizona.edu detect a gradual decrease in ’available bandwidth, while
the bandwidth on the logical link from sunws0.cse.psu.edu stays constant around 1
KBytes/sec through most part of the experiment.

The graphs in the first row show the asymmetry between the logical links con-
necting PennState to University of Arizona and vice versa. While the link from
Arizona to PennState started with almost 10 KBytes/sec and gradually saturated,
the bandwidth from PennState to Arizona stayed around 5 KBytes/sec.

The set of graphs in Figure 3.5 plot bandwidth estimates between 2 USC replicas,
alameda.usc.edu and hidalgo.usc.edu, and from them to the other members of their
group: burton.cs.colorado.edu, casino.cchs.su.edu.au, and sunws0.cse.psu.edu. Data
was collected every 5 minutes between 12:30 pm and 10:30 pm, Wednesday, August
10 1994.

Notice that both alameda and hidalgo detect high bandwidths between themselves
since they are connected to each other through a local-area network. The slightly
lower bandwidth that alameda measures to hidalgo is due to hidalgo’s higher load
during the experiments. Because alameda and hidalgo are located on the same local-
area network, we observe that their bandwidth estimates to other group replicas are
very similar.

The graphs in Figure 3.6 plot bandwidth estimates collected from replicas while
files were being replicated. More specifically, we replicate 331 files in the gcc-2.5.8
software distribution with a total size of 17.5 MBytes (largest file is 430,000 bytes
and the smallest 16 bytes). After the first hour of data collection, we started the file
replicator on hidalgo.usc.edu. We collected measurements between hidalgo.usc.edu

and madero.usc.edu, and from them to the other members of the group, namely,
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Figure 3.5: Flood-d’s bandwidth estimates.

burton.cs.colorado.edu, casino.cchs.su.edu.au, and sunws0.cse.psu.edu. Data was col-
lected every 30 minutes between 3:30 pm and 3:30 am, Thursday, June 16 1994.

When real data is being flooded, sites measure bandwidth when updating their
neighbors according to the current logical topology. To measure bandwidth estimates
to the other group members, replicas periodically send 32-KByte probing messages.
Since we wanted to collect bandwidth estimates generated when propagating real
data propagation, we forced the topology calculator to compute a fully-connected
logical topology during this experiment. This way every replica tries to update every
other replica in its group.

We observe that hidalgo’s bandwidth estimates to both burton.cs.colorado.edu
and sunws(.cse.psu.edu are higher than madero’s. Since hidalgo is the one running
the file replicator, it receives the data first, and updates the other group members.
Flood-d’s duplicate detection mechanism prevents madero from sending the same
data to the other replicas. Therefore, madero estimates bandwidth by sending pe-

riodic 32-Kbyte messages. In fact, if we compare madero’s bandwidth estimates to
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Figure 3.6: Flood-d’s bandwidth estimates.

burton and sunws( in Figure 3.6 to the values in Figure 3.5, we notice that they are
similar.

As in the previous bandwidth estimation experiments, we observe that
madero.usc.edu and hidalgo.usc.edu detect high bandwidth between themselves since
they are in the same local-area network. Notice that madero’s bandwidth estimates
to hidalgo are higher than hidalgo’s estimates to madero. We would expect the
opposite, since hidalgo is the one updating madero. However, because they are
on a local-area network, and madero estimates bandwidth to hidalgo by sending
periodic 32-KByte messages, these messages get to hidalgo almost instantaneously.
Furthermore, since hidalgo 1s the group master and is updating everybody else, it
has a high load, and probably saw the first and last bytes of the bandwidth probing
message back-to-back. This means that the time interval between when it sees the
first and the last bytes is very small, which results in the high bandwidth value
madero detects.

Alternatively, we could have senders measure bandwidth. The sender timestamps

the first and last bytes sent, and the receiver acknowledges when it receives them.
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This way senders can tell whether high bandwidths resulted from receivers being
overloaded.

Notice that hidalgo’s and madero’s estimates to casino.cchs.su.edu.au are very
similar. This is due to physical bandwidth limitations on the connection between

the continental US and Australia.

3.4 Summary

To compute logical topologies that use the underlying network efficiently, flood-d
replicas probe the physical network and estimate communication latency and avail-
able bandwidth. In this chapter, we presented the results of the wide-area experi-
ments we conducted to evaluate flood-d’s network topology estimation strategy.

We showed that when compared to network-level monitoring tools such as tracer-
oute, flood-d’s estimates tend not to capture short-lived changes in network topology.
We also showed that because they are performed at the application level, flood-d’s
estimates account for both network and machine load.

Like flood-d, distributed applications that are network cognizant are able not
only to use the network efficiently, but also provide better response time, availability,
and data convergence time. Based on the end-to-end information they have about
the underlying network topology, network-cognizant applications can decide what is
the best way to service a client’s request, or the most efficient way of making their
replicas converge to a consistent state. Because they periodically collect these end-
to-end estimates, network-cognizant applications can adapt to changes in network

and machine load.
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Chapter 4

Logical Topologies

Using the estimated network topology, our architecture builds logical update
topologies that are k-connected for resilience, use the physical network efficiently,
and restrict update propagation delays.

We start this chapter by stating our topology computation problem as a graph
theory problem. Then, we review existing solutions to similar problems, and describe
in detail our topology calculation algorithm. We present the results obtained from
running our algorithm using randomly generated topologies as input. At the end
of the chapter, we present alternate approaches to computing our logical update

topologies.
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4.1 Definitions

Below, we provide the definitions [5] of the graph theory terms we use throughout
the chapter.

e k-Connected: A graph G 1s said to be k-connected if no removal of any £ — 1

vertices together with all their incident edges disconnects G.

e k-Connected Regular Graph: A graph G is said to be a k-connected regular

graph if all its vertices are exactly k-connected.

e Diameter: The diameter of a graph G is defined as the maximum shortest

path between any two of G’s vertices.

e Degree: The degree of a vertex v in G is the number of edges of G incident

with v.

4.2 Statement of the Problem

We represent the underlying physical topology by a graph G(V, E), where V is a set
of vertices of GG representing network nodes and F is a set of edges of G representing
network links.

Our problem can be stated as follows. Given a graph G(V, E) and a cost matrix
with cost values for all the edges, construct a graph G’(V, E’) with the following

properties.

o (&' is k-connected.
e (G’ has minimum diameter.

e G’ has minimum total edge cost.

This type of optimization problem is NP-complete, but the literature records
several approximations for similar problems. Below, we review several of them, and

describe our approximation algorithm.
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4.3 Related Work

Plesnik [49] proves that any algorithm that generates a minimum spanning subgraph
of G, say G'(V, E’), by selecting E’ as subset of F with a given budget constraint
and minimum diameter is NP-complete.

Johnson [30] states that constructing a subgraph which connects all vertices, and
minimizes shortest path cost between all vertex pairs subject to a budget constraint
on the sum of its edge costs is also NP-complete.

Schumacher [62] provides an algorithm for generating topologies which have min-
imum number of edges, are k-connected and have minimum diameter. However, his
method assumes that all the edges have equal weights. We cannot make that as-

sumption since our problem'is to build logical topologies on top of real networks.

4.3.1 Steiglitz’s Algorithm

Steiglitz et al. [65] propose a heuristic solution to a problem similar to ours. The

problem consists of finding an undirected graph with the following properties.

e Feasibility : The redundancy between any two nodes ¢ and j is at least R, ;.

e Optimality: No network which satisfies the first property has lower cost.

When we map the above onto our problem, the redundancy matrix R, ;, the
number of disjoint paths between 2 and j, represents our connectivity requirement.
Therefore, Steiglitz’s algorithm [65] not only fulfills our connectivity requirements
but also provides the option of having different connectivity for each pair of nodes. As
stated above, trying to satisfy the redundancy and the minimum cost requirements
results in NP-complete problems. Steiglitz’s algorithm provides a heuristic method
which leads to satisfactory low costs solutions.

Steiglitz’s algorithm has two parts: the starting and the optimizing routines.
The starting routine generates a random feasible solution. The optimizing routine
iteratively applies heuristics to generate lower cost topologies. It uses a local trans-
formation called z-change, which randomly selects four nodes connected pairwise
and swaps the edges connecting them (see Figure 4.3). It then records the lowest

cost feasible topology generated by these local transformations.
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The algorithm uses hill climbing heuristics to generate local optimal solutions
from different starting configurations. It terminates with a set of feasible solutions,
from which it chooses the one with the lowest cost.

We extended Steiglitz’s algorithm to fulfill all our topology requirements. Below,

we describe our topology computation algorithm in detail.

4.4 Topology Calculation Algorithm

Steiglitz’s redundancy matrix, R;;, can represent our topology’s connectivity re-
quirements. Notice that specifying the node connectivity imposes a lower bound on
the degree of each node.

Instead of optimizing with hill climbing, we employed simulated annealing which
has been successfully used to approximate solutions to the traveling-salesman prob-
lem. Simulated annealing is an analogy with thermodynamics annealing, in which
metals arrive at a low energy state by slowly decreasing the temperature [32].

The Metropolis algorithm written in 1953 was one of the first to incorporate this
concept into numerical calculations. It simulates a thermodynamic system which
changes its configuration from energy state E) to energy state Fy with probability

given by

P(AE) = exp(—AE/KT) (4.1)

where AF = Ey — FEq, T is the temperature, and k& is a constant.

Notice that if By < By, P(AFE) is actually greater than unity, and is assigned the
value of 1. This means that the algorithm always accepts a downhill configuration,
and sometimes accepts an uphill one. Thus, one of the distinguished features of sim-
ulated annealing is that it can escape from local minima by accepting intermediate
solutions that not always decrease the objective function.

In [54], Rose uses simulated annealing to find network topologies with small mean
distances between nodes, and shows that annealing helps in equalizing the initially
uneven distribution of mean distances.

When applying simulated annealing to our problem, we need to specify an objec-

tive function. We present the objective functions we investigated in Section 4.4.3.1.
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4.4.1 Generating a Starting Topology

We feed our logical topology calculator with the participating nodes’ redundancy
requirements and the estimated communication cost matrix. Notice that this cost
matrix contains estimates of the underlying physical topology, and is not necessarily
fully connected. To obtain a fully-connected cost matrix, we compute Dijkstra’s
all-pairs shortest-paths [14] over the estimated cost matrix, and generate the costs
for the logical links connecting every node pair.

Using the fully-connected, logical-link cost matrix, the algorithm starts by gen-
erating random topologies until it finds one that is feasible. Recall that a topology
is feasible if it satisfies the specified connectivity requirement. Figure 4.1 presents
the algorithm for generating a feasible starting topology.

Because the nodes’ redundancy requirements are typically uniform, most of the
randomness in generating a starting solution comes from the initial labeling of the
nodes. Thus, whenever it needs another initial topology, the algorithm re-labels the
nodes. For a topology with n nodes, there are n* (n — 1) * (n — 2) *...x 1 = n!
possible starting configurations.

Topologies whose connectivity requirement is k£ are considered feasible if there are
at least k disjoint paths between every pair of nodes. However, one of the theorems
stated in [65] demonstrates that to check topology feasibility, it is not necessary to
calculate the redundancy between all possible node pairs. In particular, when all
nodes have the same redundancy requirement k, then we only need to perform the
following redundancy checks: between any node m; and all remaining nodes; then,
between any node mg, different than m;, and the remaining nodes, except m; and,
so on up to node my. Therefore, instead of having to perform n(n — 1)/2 feasibility

checks, whose time complexity is O(n?), we only need

n—1)4+n—=2)+...4+(n—Fk)=kn—k(k+1)/2 (4.2)

where n is the number of nodes, and & the redundancy requirement. Notice that

since n >> k, and k is a constant ', we need to perform O(n) feasibility checks.

In practice, topologies typically are either 2- or 3-connected.
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feasible_start(redundancy matrix, cost matrix)
{
do {
randomly label all nodes.
do {
using the labeling order,
pick first node with highest redundancy
requirement (node A).
decrement its redundancy requirement by 1.
pick another node with highest redundancy
requirement (node B).
if there is more than 1 node with highest redundancy
then pick the one that has the cheapest link to A.
if there are 2 or more nodes with
same link cost to A
then pick the one with the lowest label.
decrement the selected node’s redundancy
requirement by 1.
} until all nodes have redundancy requirement = O.
feasible = check_feasibility().
} until feasible.

Figure 4.1: Generating a feasible starting topology.

The feasibility check algorithm, which we present in Figure 4.2, employs the Ford-
Fulkerson method for solving the maximum flow problem in flow networks [14], which
produces the number of disjoint paths between the flow network’s source and sink
when all edges have flow capacity of 1.

After generating a feasible starting topology, our algorithm computes the starting
topology’s cost by calculating its total edge cost and diameter. The total edge cost
computation takes time O(e), where e is the number of edges. To calculate the
topology’s diameter, we use Dijkstra’s all-pairs shortest-path algorithm [14]. Our
current implementation of Dijkstra’s all-pairs shortest-path algorithm uses a binary

heap to implement the priority queue the algorithm uses to keep all vertices whose
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int check_feasibility(topology)
{
for nodes A_i, 1 <= 1 <=k {
for every other node B {
if ( disjoint_paths(A_i, B) < k )
then return(FALSE).
+
}
return(TRUE) .
+

disjoint_paths(G, s, t)
{

initialize residual network R to graph G.

while there exists a flow f from s to t in R {
extract £ from R.
paths++.

}

return paths.

Figure 4.2: Checking topology feasibility.

ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1010, p. 59 of 140

42



shortest paths have not yet been computed. The time complexity of the resulting

algorithm is O(nelogn).

4.4.2 Applying Local Transformations

The next step is to apply transformations to the initial configuration. These trans-
formations consist of some combination of the basic add- and delete-edge operations.
For instance, one of the transformations we use is Steiglitz’s z-change operation. It
randomly selects a pair of connected nodes a and b. Then it selects another pair of
connected nodes ¢ and d, such that ¢ is not connected to a, and d is not connected
to b, or vice-versa. X-change then deletes edges a-b and c-d, and adds edges a-c
and b-d (see Figure 4.3). The 2-change operation has the property of not changing
the degree of any node.

We also use the split, delete, and add transformations. Split randomly selects a
pair of connected nodes, breaks the edge connecting them and connects each of them
to another node. Delete randomly chooses a pair of connected nodes with degree
greater than the required connectivity and deletes the edge connecting them. Add
selects a pair of nodes that are not connected and adds an edge connecting them.
Figure 4.3 illustrates these transformations.

Each transformation is assigned some probability of being selected as the next
operation the topology calculation algorithm will apply to the current topology. One
of our experiments consisted of using different combinations of these probabilities.
The results of these experiments are presented in Section 4.5.

After each transformation, the resulting topology is checked for feasibility. If the
feasibility check fails, the algorithm rejects the resulting topology, and restores the
previous one.

Steiglitz [65] proves that in the case that the connectivity requirement is the
same for all nodes, after a 2-change operation, the resulting topology’s feasibility can
be checked just by verifying whether the connectivity between the 2 pair of nodes
that got disconnected is still greater than or equal to the connectivity requirement.
Therefore, the feasibility check after a z-change just needs to compute the number

of disjoint paths between the 2 node pairs involved in the z-change operation.
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Figure 4.3: Possible Transformations.

The split operation deletes 1 edge, and then adds 2 new ones. Steiglitz’s theorem
reduces the feasibility test after a split to the pair of nodes that had their connecting
edge removed. No feasibility check is needed after add since it does not remove any
edges, while a full check (the same that is performed when generating a starting

configuration) needs to be executed after a delete.

4.4.3 Annealing

The annealing schedule decides whether a feasible topology that is generated after
each transformation should be accepted or not. It checks whether the new configu-
ration improves cost. In this case, it accepts the new configuration, and goes back
to the transformation step. If cost increases, the new configuration is accepted or re-
jected dccording to the Boltzmann probability distribution given by expression 4.1 in
Section 4.4, where AFE is the difference in cost between the new and old topologies.

Figure 4.4 shows our annealing algorithm. Analogously to thermodynamics an-

nealing, we decrease the temperature T at a specified rate D after a certain number
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of transformations have been applied. We discuss the tuning of these annealing

parameters in Section 4.4.3.2.

4.4.3.1 Objective Functions

Recall that our goal is to generate logical topologies that try to use the underlying
physical network efficiently and, at the same time, reduce the time to propagate
updates. In other words, we want logical topologies with low total edge cost and
small diameter. Thus, one of our objective functions combines both edge cost and

diameter. In this case, we compute the difference AFE as

edge_cost e, — edge_costyy — diameter,., — diameter,y,

AE =

edge_costyg diameter,

where edge_cost g, edge_cost e, ditameter,y and diameter,.,, are, respectively,
the total edge cost and diameter of the topologies before and after a transformation
is applied. We use edge_cost, 4 and diameter,, as normalization factors for the edge
cost and diameter, respectively.

Clearly, the choice of the objective function depends on the requirements of the
problem being solved. If we just want to minimize the maximum number of links
an update needs to travel when being propagated to all group members, then in the
objective function, we compute diameter as the maximum number of hops between
any pair of nodes, instead of the maximum edge cost sum.

Now suppose our problem is to find a k-connected topology that minimizes the
amount of wiring needed to connect nodes in a network. In this case, the corre-
sponding objective function just needs to take into account edge cost. This means
that after a transformation, if the new topology’s total edge cost is less than the old

topology’s total edge cost, the new topology is accepted. Thus, AE is computed as

AFE = edge_cost e, — edge_cost,ig

On the other hand, if we just want to minimize the delay in propagating updates,
then the objective function should only depend on diameter. In this case AFE is

computed as
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anneal()
{
for i=1 to ITERATIONS {
old_cost = current_cost.
select local_transformation.
new_topology = local_transformation(current_topology) .
feasible = check_feasibility(new_topology)
if ( !feasible ) continue.
current_cost = cost(new_topology).
delta_cost = current_cost - old_cost.
p = exp(-obj_function(delta_cost)/temperature).
r = random(0,1).
if (r < p) {
accept new_topology.
success++.
}
else
undo transformation.
operation++.
if ( (success == SUCCESS_OPS) or (operations == TOTAL_0OPS) ) {
temperature = temperature * (l-decrease_rate).
success = 0,
operations = 0.
ks
}
}

Figure 4.4: The annealing algorithm.
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AE = diameter,, — diameter,y

We should point out that diameter reduction is usually achieved with the addi-
tion of edges, which usually increases edge cost. Conversely, reducing edge cost by
deleting extra edges ? tends to increase diameter.

We have experimented with all previously described objective functions and we

present the results in Section 4.5.

4.4.3.2 Annealing Parameters

According to expression 4.1, the probability of accepting a new topology is a function
of AE, the difference in cost between the new and old topologies, and the current
temperature I'. Notice that the higher the temperature, the higher the probability
of accepting a new topology in case its cost is greater than the old topology’s cost.
As we lower T, the probability of accepting a higher cost topology decreases.

The decrease rate D determines how fast T decreases. The lower D, the slower
T decreases, and the more higher-cost topologies get accepted. Lower decrease rates
also mean that the annealing process takes longer to get to a low-energy state.

We studied how 7"’s initial value and the decrease rate D affect the annealing
algorithm. Section 4.5 below starts by presenting the results of running our algorithm

with different initial values of T' and D.

4.5 Results

In this section, we present the results of the several experiments we conducted with
our topology calculation algorithm. Recall that besides the connectivity require-
ment, we need to feed our algorithm with the cost matrix resulting from estimating
the underlying physical topology. For our simulations, we use NTG [26] to generate
random physical topologies. Using number of nodes, average node degree, and link

speed as parameters, NTG places nodes in a plane and randomly connects pairs

2Extra edges are the ones that can be deleted without making the resulting topology infeasible.
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of vertices. The communication cost between each directly-connected pair of nodes
is a function of the link bandwidth and the physical distance between the nodes.
Section 4.6 discusses the impact of the randomly-generated link cost distributions

in our logical topology calculation algorithm.

4.5.1 Setting the Annealing Parameters

We conducted some preliminary experiments to select the initial value of 7. For
each objective function, we ran the algorithm to determine the range of AFE values
resulting after each transformation. Using the highest AFE found, we set 7"s initial
value, Tp, so that the probability of accepting higher cost topologies starts at 50%.

To study the effects of T"”s initial value on the annealing process, we ran our
algorithm for Ty, T5/10 and Tp * 10. Figure 4.5 plots edge cost and diameter values
for the different values of Ty. These runs used edge cost and diameter as objective
function to generate 2-connected topologies.

We observe that the higher the temperature, the higher the bump in the edge cost
curve, since at high temperatures, the probability of accepting higher cost topologies
increases. We should also point out that because our initial random topologies
already have low edge cost, it is hard to eliminate edges without making the resulting
topology infeasible. Therefore, in the beginning of the annealing process, most
operations add edges, which reduces diameter 3, but increases edge cost. Also notice
that higher temperatures allow more oscillation in diameter.

According to Figure 4.6, generating 3-connected graphs presents similar behavior:
higher initial temperatures allow higher total edge cost topologies to be accepted and
consequently, more oscillation in diameter in edge cost. We also observe that since
we are generating 3-connected graphs, the resulting topologies have more edges,
which explains why the total edge cost values are higher, and both diameter in edge
cost and hop count are lower than in the 2-connected graphs.

Figures 4.7 and 4.8 show the results of running the same set of experiments using
only edge cost as the objective function. Although it is controlled by total edge cost
only, the topology calculator initially accepts topologies with higher total edge cost.

3The path that corresponds to the diameter in edge cost may not be the same as the one
corresponding to diameter in hop count.
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Figure 4.5: The effects of the initial temperature 7Ty in the annealing process. For
To = .08, Ty = .8, and Ty = 8, we plot total edge cost, diameter, and diameter in
hop count when generating 2-connected graphs using the combination of edge cost
and diameter as objective function.
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Figure 4.6: The effects of the initial temperature 7, in the annealing process. For
To = .08, Ty = .8, and Ty = 8, we plot total edge cost, diameter, and diameter in
hop count when generating 3-connected graphs using the combination of edge cost
and diameter as objective function.
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Figure 4.7: The effects of the initial temperature Ty in the annealing process. For
To = .08, Tp = .8, and T, = 8, we plot total edge cost, diameter, and diameter
in hop count when generating 2-connected graphs using only edge cost as objective
function.

Again, this is because the random topologies the annealing process uses as input
already have low edge cost. We notice however that edge cost values do not go
as high as those in Figures 4.5 and 4.6. Since the cost function does not control
diameter, we notice higher fluctuations in diameter if compared to Figures 4.5 and
4.6.

Besides the fact that the bump in the edge cost curve increases as Tp increases,
we also observe that the lower the initial temperature, the lower the probability of
accepting higher-cost topologies. This explains the gaps in the first and second-row
graphs, and the fact that the gaps in the first-row graphs are bigger than in the
second-row graphs.

Again, we notice that in the 3-connected topologies the edge costs are higher
than in the 2-connected topologies, but diameter values are lower.

We also studied how the temperature decrease rate D affects the annealing pro-

cess. Figure 4.9 shows edge cost and diameter curves for different decrease rates
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Figure 4.8: The effects of initial temperature T in the annealing process. For 1" = .08,
T = .8, and T' = 8, we plot total edge cost, diameter, and diameter in hop count

when generating 3-connected graphs using only edge cost as objective function.
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Figure 4.9: The effects of temperature decrease rate D in the annealing process. For
D = .4, D =.1,and D = .01, we plot total edge cost, diameter, and diameter in
hop count when generating 2-connected graphs using the combination of edge cost
and diameter as objective function.

using edge cost and diameter as objective function. Lower decrease rates make the
temperature decrease slower, which allows higher-cost topologies to get accepted.
This explains why the edge cost curves have higher bumps that get shifted to the
right as D decreases. Notice that lower decrease rates also cause more diameter
fluctuation. However, we observe that on average %, lower decrease rates result in
topologies with lower diameter and consequently, higher edge cost.

We also conducted the temperature decrease rate experiment using edge cost as
the objective function, and show the results in Figure 4.10. The edge cost curves
are similar to those in Figure 4.9, but the edge cost objective function does not
allow edge costs to go as high. Consequently, diameter values are higher than the

ones in Figure 4.10. In fact, as expected, when using only edge cost in the objective

4We conducted 3 runs for each value of D.
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Figure 4.10: The effects of temperature decrease rate D in the annealing process.
For D = .4, D = .1, and D = .01, we plot total edge cost, diameter, and diameter
in hop count when generating 2-connected graphs using only edge cost as objective
function.

function, we get topologies with lower total edge cost and higher diameter than the

ones obtained when using both edge cost and diameter in the objective function.

4.5.2 Objective Functions and Transformation Probabilities

Besides experimenting with different objective functions, we also varied the prob-
ability with which the annealing process selects among the add, delete, z-change,
and split transformations. For these experiments, we fixed the initial topology the
annealing process uses, so that we can compare the resulting topologies’ costs.
Figure 4.11 and Table 4.1 show the results of running the topology computa-
tion algorithm using edge cost and diameter in the objective function to generate
2-connected graphs. Besides different transformation probabilities, we also used

different decrease rates.

54

ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1010, p. 71 of 140



50%,20%,15%,15% ... D=0.01 D=0.4

10° 10000 50
5000 _\—J\KL__‘_\*
10— o N OM"\\,{\-‘J\N
10° t0° 10° 10° 10° 10°
30%,40%,15%,15%
10° 10000 5 50
7] (&3
w $ a
S > 8
@ A & =
=) N < —
o, 4 LN a %
10 £
10° 10° a

20%,50%,15%,15%

10° 10000 50

a § e \&“\A\“
10 ' e o o
10° 10° 10° 10° 10° 10°
Cost function: SP Connectivity 2 TO0=0.08

Figure 4.11: The effects of different transformation probabilities in the annealing
process. We plot total edge cost (log scale), diameter, and diameter in hop count
using different transformation probabilities for D = 0.01 and D = 0.4. T} is set at
0.08, and as cost function, we use total edge cost and diameter in edge cost.
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Probabilities D | Total Edge | Diameter in | Diameter in
(%) Cost Edge Cost | Hop Count

Add, Del, Swp, Spt BA | AA | BA AA | BA AA

50, 20, 15, 15 0.01 | 9517 | 13158 | 4755 | 1336 25 7

0.4 | 9517 | 9495 | 4755 | 1664 25 13

30, 40, 15, 15 0.01 | 9517 | 9322 | 4755 | 1578 25 11

0.4 | 9517 | 9398 | 4755 | 1572 25 10

20, 50, 15, 15 0.01 | 9517 | 8872 | 4755 | 1594 25 11

0.4 | 9517 | 8660 | 4755 | 1580 25 11

Table 4.1: Logical topology costs before (BA) and after (AA) annealing. The initial
temperature is set at 0.08, and as cost function, we use total edge cost and diameter
in edge cost.

Because the initial topology already has low total edge cost, we observe that with
total edge cost and diameter in the objective function, the annealing process cannot
improve the total edge cost considerably, but produces topologies with diameter up
to 3.5 times lower. As expected, the values in Table 4.1 show that as the probability
of delete increases and the probability of add decreases, we get lower total edge cost
topologies with higher diameter °.

For the highest delete probability, D = 0.4 generates a lower total edge cost
topology with lower diameter than the one generated for D = 0.01. This is because
the higher decrease rate causes the probability of accepting higher cost topologies
to decrease faster. In fact, the graphs in Figure 4.11 show that the lower decrease
rate, D = 0.01, generates more cost oscillation during the annealing process.

We should point out that even though we report the total edge cost for a given
logical topology, it does not mean that this is the cost flood-d incurs when propa-
gating updates over that logical topology. Flood-d’s duplicate detection mechanism
avoids sending updates to replicas that already received them. Similarly to internet
multicast, flood-d ends up propagating updates according to a spanning tree that
tries to minimize cost. The same way as some adaptive routing mechanisms keep

alternate routes, flood-d keeps alternate logical paths for resilience.

SNotice that since all starting topologies are rings, they have 25 hops as their hop-count
diameter.
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Figure 4.12: The effects of different transformation probabilities in the annealing
process. We plot total edge cost (log scale), diameter, and diameter in hop count
using different transformation probabilities for D = 0.01 and D = 0.4. Tjp is set at
200, and we use total edge cost as objective function.

In the next set of simulations, we use only total edge cost in the objective func-
tion. Figure 4.12 plots the cost curves corresponding to the intermediate topologies
our algorithm generates, and Table 4.2 shows the starting and final topologies’ costs.

Since the annealing process tries to optimize the total edge cost only, it favors
the runs with higher delete probability. In fact, according to Table 4.2, when the
delete probability is 50%, the resulting topology’s total edge cost is approximately
25% lower than the initial topology’s total edge cost. Notice that we also get a
reduction in diameter. The highest diameter reduction is approximately 50% and
as expected, happens when the add probability is 50% and the delete probability is
only 20%. However, we should point out that except for the cases where the add
probability is 50%, the diameter in hop count does not go down significantly. This
means that annealing generated topologies with almost the same number of edges

than the initial topology, but the selected edges have lower cost.
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Probabilities D | Total Edge | Diameter in | Diameter in
(%) Cost Edge Cost | Hop Count

Add, Del, Swp, Spt BA | AA | BA | AA |BA| AA

50, 20, 15, 15 0.01 | 9517 | 7980 | 4755 | 2540 25 17

0.4 | 9517 | 7736 | 4755 | 3144 25 20

30, 40, 15, 15 0.01 | 9517 | 7528 | 4755 | 3683 25 25

0.4 | 9517 | 7527 | 4755 | 3323 25 23

20, 50, 15, 15 0.01 | 9517 | 7464 | 4755 | 2944 25 21

0.4 | 9517 | 7418 | 4755 | 3289 25 21

Table 4.2: Logical topology costs before (BA) and after (AA) annealing. The initial
temperature is set at 200, and we use total edge cost as objective function.

Probabilities D | Total Edge | Diameter in | Diameter in
(%) Cost Edge Cost | Hop Count
Add, Del, Swp, Spt BA | AA | BA | AA |BA| AA

50, 20, 15, 15 0.01 | 9517 | 111364 | 4755 1364 25 2

0.4 | 9517 | 13378 | 4755 1953 25 7

30, 40, 15, 15 0.01 | 9517 | 12303 | 4755 | 2156 25 8

0.4 | 9517 | 11783 | 4755 | 2307 25 8

20, 50, 15, 15 0.01 | 9517 | 11254 | 4755 | 2088 25 8

0.4 [ 9517 | 11155 | 4755 1973 25 8

Table 4.3: Logical topology costs before (BA) and after (AA) annealing. The initial
temperature is set at 0.08, and we use total edge cost and diameter in hop count as
objective function.

From the graphs in Figure 4.12, we observe that the lower decrease rate, D =
0.01, generates more cost oscillation than D = 0.4. Again, this is due to the fact
that the lower D causes the temperature to decrease slower, and consequently allows
more higher-cost topologies to be accepted by the annealing process.

The last cost function with which we experimented combines total edge cost and
diameter in hop count. For networks where physical link costs are roughly uniform,
it makes more sense to improve diameter in hop count than diameter in edge cost.
Figure 4.13 plots the intermediate topologies’ cost curves, while Table 4.3 shows the
initial and final topologies’ costs.

From the results in Table 4.3, we observe that all of the resulting topologies have
higher total edge costs, but show considerable reductions in diameter. However,

with 50% as the probability of adding edges, we ended up with a very high edge
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Figure 4.13: The effects of different transformation probabilities in the annealing
process. We plot total edge cost (log scale), diameter, and diameter in hop count
using different transformation probabilities for D = 0.01 and D = 0.4. T} is set at
0.08, and we use total edge cost and diameter in hop count as objective function.
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cost topology which has very low diameter ¢. While this is not a practical solution,
it gives us a sense of edge cost upper bounds 7. Notice that the resulting topologies
present lower diameter in hop count than the topologies obtained when diameter in
edge cost is used in the objective function (Table 4.1).

For the same transformation probability combination, the 0.4 decrease rate gen-
erates a more reasonable topology. As the curves in Figure 4.13 show, the lower
decrease rate does not allow total edge costs to go very high, since the probabil-
ity of accepting higher-cost topologies decrease faster. We also observe that the

discrepancy between the different decrease rates decreases as the add probability

decreases.

4.5.3 Other Approaches

In this section, we examine other, more practical, approaches to solving the logi-
cal topology graph problem. The first alternative consists of applying our annealing
schedule to a fully connected topology. The other approaches consist of using heuris-
tics to select edges to be added to or deleted from a given topology. Below, we explain

these approaches further and report their results.

4.5.3.1 Fully-Connected Initial Topology

Since fully connected topologies have minimum diameter and maximum total edge
cost, in this experiment we use only total edge cost in the objective function. Table
4.4 shows the costs before and after annealing. Notice that since we start with
a fully-connected topology, the total edge cost is maximum and the diameter is
minimum.

If we compare the results of these experiments with the values in Table 4.2,
which used the same objective function but started with a randomly generated,

feasible topology, we notice that for the higher probability of adding edges, the

6The minimum diameter is 1 hop, which happens when the topology is fully connected. The
minimum diameter in edge cost is 1048.

"In fact, the fully-connected topology corresponding to this link cost distribution has total edge
cost of 740,762,
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Probabilities D Total Edge | Diameter in | Diameter in
(%) Cost Edge Cost | Hop Count

Add, Del, Swp, Spt BA AA | BA AA |BA | AA

50, 20, 15, 15 0.01 | 740,762 | 7343 | 1048 | 3489 1 23

0.4 | 740,762 | 7561 | 1048 | 3270 1 21

30, 40, 15, 15 0.01 | 740,762 | 7736 | 1048 | 3423 | 1 23

0.4 | 740,762 | 7514 | 1048 | 2983 1 20

20, 50, 15, 15 0.01 | 740,762 | 7331 | 1048 | 3411 1 24

0.4 | 740,762 | 7936 | 1048 | 3696 1 23

Table 4.4: Logical topology costs before (BA) and after (AA) annealing. The initial
topology is fully-connected, and we use total edge cost as objective function. The
initial temperature is set at 200

fully-connected approach generates lower total edge cost, higher diameter topolo-
gies. Since the initial topology is fully-connected, even with higher probabilities of
selecting the add transformation, the only possible transformation is delete. As the
delete probability increases, we observe the opposite, that is, the fully-connected
approach generates higher total edge cost, lower diameter topologies.

Because it allows more delete operations, the fully-connected approach has the
disadvantage of taking longer to finish. The delete operation is more expensive than

the others because it requires a full-connectivity check.

4.5.3.2 Adding Selected Edges

In these experiments, we started with a random feasible initial topology generated
by the algorithm described in Section 4.4.1. Recall that these initial topologies tend
to have a low total edge cost since they do not include many extra edges. Therefore,
the next step is to add a number of extra edges so that we can reduce the diameter.

We used different edge selection heuristics. In the first experiment, we add direct
edges connecting node pairs whose distance in edge cost is maximum. In other words,
we inspect the current topology’s adjacency matrix, and add an edge connecting the
first pair of nodes, whose distance is equal to the diameter in edge cost. The first
entry in Table 4.5 shows the starting solution’s costs. The remaining entries show

the costs after a new link is added to the previous topology.
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Total Edge | Diameter in | Diameter in
Cost Edge Cost | Hop Count
9376 4687 25
10294 4684 25
11035 3216 17
11411 3099 17
12042 3038 17
12882 2761 14
13632 2675 12
14364 2530 11
15159 2358 11
15706 2328 10
16094 1985 10

Table 4.5: Logical topology costs after adding 10 extra edges to the initial topology.
Links are added according to diameter in edge cost.

As expected, total edge cost goes up as we add new links, and diameter goes
down. Notice that after adding the second link, both diameter in edge cost and hop
count decrease more than 30% with an increase of less than 15% in total edge cost.
We also observe that as diameter in edge cost decreases, so does diameter in hop
count. However, every time a new link is added diameter in edge cost decreases, but
diameter in hop count may stay the same.

In the next experiment, instead of using diameter in edge cost, we based our
selection criteria in diameter in hop count; when adding an edge, we inspect the
current adjacency matrix, and add a link connecting the first pair of nodes, whose
distance is equal to diameter in hop count. Each entry in Table 4.6 below shows
total edge cost, diameter in edge cost, and diameter in hop count every time a new
link is added.

Again, as we add new links both diameter in edge cost and hop count go down.
Notice that after adding the second link, diameter in hop count decreases almost
50%, while total edge cost increases less than 20%.

Finally, in the last experiment, we tried to minimize the increase in total edge
cost each time a new edge is added. So, we use the same edge selection criteria as
before, except that we choose the cheapest edge connecting nodes whose distance in

hop count is equal to the diameter in hop count.
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Total Edge | Diameter in | Diameter in
Cost Edge Cost | Hop Count
9376 4687 25
10290 4635 25
11184 3774 14
12141 3774 14
12786 3774 13
13676 3328 13
14344 3068 11
14734 2936 10
15352 2936 10
15870 2936 9
16543 2936 9

Table 4.6: Logical topology costs after adding 10 extra edges to the initial topology.
Links are added according to diameter in hop count.

When we compare these results with the values in Table 4.6, we notice that for
the same diameter decrease, the total edge cost increase is lower. For example, after
we add the second link we get the same reduction in diameter in hop count, but
only a 10% increase in total edge cost. We also observe that because we select the
cheapest link every time, the reduction in diameter in edge cost is higher than in
the previous experiment.

Instead of using the regular add transformation in the simulated annealing ap-
proach, we can add selected edges according to one of the criteria presented above.
The disadvantage of using the selected add operation is that it is more expensive

than the regular add.

4.5.3.3 Deleting Selected Edges

The same way as we use heuristics to choose edges to add, we can select good edges
to delete. When choosing an edge to delete, the goal is to lower the topology’s total
edge cost, yet keeping the diameter constant. Recall that diameter is the maximum
shortest path between any pair of nodes. If we want to keep diameter in edge cost
constant, then we should find a directly connected pair of nodes whose connecting

edge cost is equal or higher than the diameter. Another possibility is to find all pair
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Total Edge | Diameter in | Diameter in
Cost Edge Cost | Hop Count
9376 4687 25
9751 4626 25
10508 3254 14
11103 3132 14
11895 2908 13
12527 2642 13
13222 2555 11
14046 2553 11
14921 2553 10
15559 2553 9
15874 2390 9

Table 4.7: Logical topology costs after adding 10 extra edges to the initial topology.
Links are added according to diameter in hop count. The cheapest link is selected
every time.

of nodes that satisfy the above requirements, and choose the most expensive link to
delete.

Similarly to selected add, we can use the selected delete operation instead of the
normal delete operation in the simulated annealing approach. Like selected add,

selected delete is also more expensive than the regular delete.

4.6 Summary and Discussion

We presented our topology calculation algorithm and the results obtained when
feeding our algorithm with randomly generated topologies for different objective
functions controlling the annealing process. Choosing the objective function de-
pends on the type of optimization problem being solved. For instance, in building
logical topologies that use the network efficiently, yet limiting update propagation
delays, we use total edge cost and diameter in the objective function. Because the
initial topologies our algorithm generates already have low total edge cost, the re-
sulting topologies show total edge cost reductions of up to 10%. However, we achieve
diameter reductions of more than 30% in edge cost and more than 50% in hop count.

If we want to optimize propagation delays in terms of number of hops, we use

an objective function that combines total edge cost and diameter in hop count. The
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corresponding simulation results showed reductions of 70% in diameter in hop count
at the expense of total edge cost increase of approximately 15%. This is because
reductions in diameter in hop count can only be achieved by adding more edges,
while swapping more expensive edges with cheaper ones can result in reductions in
diameter in edge cost.

We also used total edge cost as objective function, and the resulting topologies
showed a 25% reduction in total edge cost. All topologies also showed diameter
reductions.

We argued that even though we report logical topologies’ total edge costs, it does
not mean that these are the costs flood-d incurs when propagating updates. Flood-
d’s duplicate detection mechanism avoids sending updates to replicas that already
received them. Similarly to internet multicast, flood-d ends up propagating updates
according to a spanning tree that tries to minimize cost. The same way as some
adaptive routing mechanisms keep alternate routes, flood-d keeps alternate logical
paths for resilience.

Finally, we presented some alternate approaches to solving our logical update
topology problem. In particular, the selected add and selected delete schemes consist
of using heuristics to select edges to be added to or deleted from a given topology.
For example, if we want to reduce a topology’s diameter, we can add some extra
edges. Our simulation results show that depending on the edge selection criteria,
we can get diameter reductions of almost 50% with a total edge cost increase of less
than 20%.

The selected add and selected delete approaches can also be combined with our
simulated annealing algorithm. One way of doing this is to replace the regular add
and delete edge operations with the selected add and selected delete. Alternatively,
we can run simulated annealing on a feasible starting topology, and then use the
selected add or selected delete schemes. For instance, suppose we use total edge cost
as objective function to generate a low edge cost topology. Then, we can throw in
a couple of cheap edges that will reduce diameter, but will not increase total edge
cost considerably.

Our simulations showed that heuristic approaches like selected add are a practical
way of solving our logical topology calculation problem. However, this only became

visible after we used our optimization algorithm and inspected its solution space.
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By doing so, we could verify that adding selected edges to the initial topologies our
algorithm generates did indeed generate acceptable topologies.

While the simulations we ran helped us understand the behavior of our algorithm
for different parameters, they used artificially generated physical topology maps. In
particular, the topology maps used presented roughly uniform link cost distributions
8, Having uniform link cost distributions have several implications. For instance,
when selecting an edge to add or delete, choosing the cheapest or the most expensive
ones does not have as big of an impact as when link cost distributions have higher

variation. In our future work, we will use the physical topology estimates collected

during larger, live experiments to further tune our topology computation algorithm.

8As previously mentioned, we used NTG [26], a random topology generator, to generate the
maps we feed to our topology calculation algorithm.

66

ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1010, p. 83 of 140



Chapter 5

Replication Groups and Logical Update
Topologies

Chapter 2 presented flood-d, our replication tool that keeps replicas weakly con-
sistent by propagating updates according to a logical topology. Flood-d organizes
replicas into hierarchical replication groups, and for each group determines a logical
update topology that attempts to use the physical network efficiently and minimize
the time to propagate updates.

In the first part of this chapter, we investigate via simulation how replication
group size, the percentage of time replicas are down, and the parameters of the con-
sistency protocol affect the size of flood-d’s consistency state, the time to propagate
updates to all members of a group, and the time to learn that all group members
have received an update. This study models pure end-to-end TSAE algorithm, not
update propagation via flood-d’s logical update topology.

The simulations in the second part of the chapter incorporate the notion of a
logical topology for propagating updates. Recall that a TSAE replica periodically
chooses another replica to compare consistency state, and exchange the missing
updates. We assign communication costs to the logical links between each pair of
replicas, and contrast random and cost-based partner selection policies. The results
show how these partner selection policies impact the cost and the time to propagate

updates for different replication group sizes.
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5.1 Consistency State Size and Propagation Time

Figure 5.1 demonstrates the benefits of aggregating replicas into multiple replication
groups. The top graph shows how the average consistency state size for different
sized replication groups varied during a simulation run. The anti-entropy rate is the
frequency that replicas poll each other, looking for inconsistency. Let’s assume that
an information service’s database is replicated in 200 sites. If replicas are configured
in a single, flat replication group, they need to keep state for each individual replica.
Decomposing the original flat group into two groups of 100 replicas each results
in smaller consistency state sizes. And, as groups get smaller, so does the replica
consistency state size. Clearly, as replication degrees reach thousands or tens of
thousands of replicas, having a single, flat replication group becomes prohibitively
expensive. We should point out that the consistency state grows as replicas generate
new updates, and as these updates propagate to the group. The consistency state
shrinks as replicas purge updates that have been received by all other replicas in the
group. This explains the oscillation in the average consistency state size over time.

The middle and bottom graphs in Figure 5.1 show the cumulative distribution
of the time required to propagate an update consistently to all replicas and the
time required for all replicas to purge their consistency state. As expected, as the
group gets bigger, it takes longer for an update to get to all replicas in the group.
This explains the large difference in the consistency state size. When replicas are
organized in multiple, smaller groups, once the update reaches a group, it propagates
faster to the rest of the group members, and the nodes in this group can purge their
consistency state. Of course, this does not change the total time to propagate the
message to every node in every group. Furthermore, for bigger groups, the slopes
of these distributions also get smoother. This means that smaller groups achieve a

consistent state sooner.

5.1.1 Anti-Entropy Rate

This next set of results show how the consistency state size and the time to propagate
updates and acknowledgments scale with the anti-entropy rate. In this first set of

graphs, we made the group update generation and failure rates constant, and varied
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Figure 5.1: Average consistency state size (in number of update messages), time to
propagate updates and acknowledgments for different group sizes. In all 3 graphs,
the x-axis is the simulation time scale in multiples of when updates are generated.
The global update, anti-entropy, and failure rates were kept constant.
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the group anti-entropy rate. Notice that the anti-entropy rate was kept constant for
different group sizes '.

In Figures 5.2, 5.3, and 5.4, anti-entropy rates are twice and equal to the update
rate in the top and bottom graphs, respectively. In all graphs, replicas stay up 99.9%
of the time. We use such high availability because at the same time that we want to
minimize the influence of failures in this set of simulations, we also want to introduce
some degree of unavailability. We study the effects of lower availability in Section
5.1.2 below. Figure 5.2 shows the average consistency state size for different anti-
entropy rates and group sizes. We notice that as state exchanges get less frequent,
which saves network resources, consistency state sizes get bigger.

The anti-entropy rate also impacts the time it takes for updates and acknowl-
edgments to propagate to all replicas. Figures 5.3 and 5.4 show that less frequent
state exchanges cause updates and acknowledgments to propagate slower. Because
we did not model message exchange using flood-d’s logical topology, these are worst
case assessments. Note how it takes 2 to 3 times more time to purge state than it
does to reach consistency.

Should each replica’s anti-entropy rate decrease as the group size increases so that
the group’s global anti-entropy rate remains a constant? If not, for approximately
the same number of updates, bigger groups will generate more anti-entropy sessions.
Figures 5.5, 5.6, 5.7 plot consistency state size, time to reach global consistency,
and time to purge all logs for three replica anti-entropy rates. The higher the anti-
entropy rate, the smaller the consistency state size, the faster consistency is obtained

and state purged.

5.1.2 Replica Availability

Lower replica availability increases the consistency state size and the time to prop-
agate updates and acknowledgments. In Figures 5.8, 5.9, and 5.10, replicas stay up
99% and 90% of the time in the top and bottom graphs, respectively. The lower the

1For instance, to generate the same group anti-entropy rate, the replica anti-entropy rate needs
to be 2 times higher in a group of 100 replicas than in a group of 200 replicas.
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Figure 5.2: Average consistency state size sample paths (in number of update mes-
sages) for different group sizes. In both graphs, the x-axis is the simulation time
scale in multiples of when updates are generated. The upper graph employs a faster

anti-entropy rate (ae rate).
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all replicas. In all three graphs, the x-axis is the simulation time scale in multiples of
when updates are generated.In the middle and bottom plots, the global anti-entropy
rate (ae rate) is 2 and 4 times the rate of the top plot.
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Figure 5.8: Average consistency state size (in number of update messages). In both
graphs, the x-axis is the simulation time scale in multiples of when updates are
generated. In the bottom graph, replicas stay down longer than in the upper graph.
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replica availability, the larger the consistency state gets. Consequently, the argu-
ment for having smaller replication groups becomes even stronger in an environment
like the Internet, where site and link failures are reasonably frequent.

Figures 5.9 and 5.10 show the times to propagate updates and purge state for
lower replica availability. As expected, lower availability cause longer delays in
propagating items to all members of a group. However, a difference of less than 10%
in availability has a huge impact on the time to propagate an update to all replicas
in a group and the group convergence time. This is specially true for bigger groups,
and it means that not only replicas will take longer to converge to a consistent state,
but also that they will take longer to purge their message logs. Clustering replicas

into smaller groups reduces the effect of higher site or link failure rates.

5.2 Cost

Besides organizing replicas into multiple replication groups, flood-d also suggests
good logical topologies that replicas can use to propagate updates. These logical
update topologies attempt to use the underlying network efficiently and at the same
time, reduce update propagation time. In this section, we show the effects of us-
ing topological information on the overall cost of propagating updates in replication
groups of different sizes. We compare two different partner selection policies: ran-
dom, in which a replica randomly chooses another replica to exchange consistency
state, and cost-based, in which the peer with the minimum cost link is selected.

To assign communication costs to links, we use NTG [26], a random topology
generator, to generate logical topologies for replication groups of different sizes.
We feed the topology generator with the group size, average node degree, and link
bandwidths. The topology generator randomly places nodes on a plane, and con-
nects them with links whose costs are a combination of link bandwidth and physical
distance between nodes. The resulting logical topology which is represented by a

2

fully-connected, symmetric cost matrix #, serves as input to our simulator. For these

2We should point out that in the real world the cost matrix will not be symmetric since logical
links can use asymmetric paths.

80

ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1010, p. 97 of 140



___cost-based ... random 50 replicas

1 T T ‘,‘ T T T T T T T

1 P | L | 1 1 | 1 L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

100 replicas

1 T T T T T T T T T

Cumulative Probability Distribution
o
=
1

o) | L 1 | ] ] ) ! !
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
200 replicas
1 T T T L T T ¥ T - = T
0.5+ i
0 1 L 1 1 1 Lz 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Cost

Figure 5.11: Cumulative probability distributions for the total cost of propagating
updates to all replicas using cost-based and random partner selection policies for
different group sizes.

cost simulations, we set the anti-entropy rate equal to the update rate, and replica
availability at 99%.

The top graph in Figure 5.11 plots the cumulative probability distribution for the
total communication cost for propagating updates to all members in a group of 50
replicas using random and cost-based partner selection policies. These distributions
show that it costs at least 3 times less to propagate updates when replicas choose
their peers based on the communication cost to get to them instead of randomly
selecting them. For these simulations, each replica chooses its 3 lowest-cost peers,
and each time the replica performs an anti-entropy session, it randomly chooses
among its 3 previously selected peers. In other words, we generate a logical update
topology in which replicas have connectivity degree of 3.

As replication groups get bigger, the discrepancy between cost-based and random

peer selection policies increases. The middle and bottom graphs of Figure 5.11 show
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the cost distributions for 100- and 200-replica groups. Notice that for a group with
200 replicas, the cost-based approach is approximately 7 times cheaper than choosing
peers at random.

To evaluate how partner selection policies affect the time to propagate items to all
replicas, Figure 5.12 presents the cumulative probability distributions for propagat-
ing updates to all replicas for different group sizes. We notice that items take longer
to propagate to all replicas when the cost-based partner selection policy is used. This
can be explained by the following arguments. First, since link costs remain constant
during the whole simulation, the set of partners that a replica chooses using cost-
based selection is always the same. In the random selection approach, however, each
replica can select any other replica in its group with whom to exchange consistency
state. Thus, each replica has connectivity degree of n — 1, where n is the group
size. The other argument is that the logical topology generated in the cost-based
approach does not take diameter into account.

In the next set of simulations, we increase the replica’s logical connectivity and
observe what happens to the total cost and the time to propagate updates. The
connectivity is set to 10% of the group size, which means that every time a replica
performs an anti-entropy session, it randomly chooses one among its 0.1n lowest-cost
peers, where n is the replication group size. Figures 5.13 and 5.14 show the total
cost and the time to propagate updates to all replicas in groups of different sizes.
There is a slight increase in cost for groups of 50 replicas when compared to the
3-connected case (Figure 5.11). For bigger groups, the difference in cost between
the 0.1n- and the 3-connected cases increases, since more expensive logical links are
being used. On the other hand, because of the higher connectivity, the difference
in time to propagate updates to all replicas using cost-based and random selection

policies decreases when compared to the 3-connected case (Figure 5.12).

5.3 Summary

Our simulation results demonstrate the benefits of splitting a single, flat replication
group into multiple smaller groups. We observe that the smaller the replication

group, the smaller the size of the consistency state each replica in the group needs
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Figure 5.12: Cumulative probability distributions for the time to propagate updates
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group sizes.
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to keep. This difference in consistency state size is amplified because in smaller
groups, replicas can purge their consistency state sooner.

We also show how anti-entropy and failure rates impact the size of the replica
consistency state, and that smaller replication groups attenuate the effect of less
frequent state exchanges and lower replica availability.

Finally, we assigned communication costs to logical links, and compared 2 dif-
ferent anti-entropy partner selection policies: random and cost-based. We observed
that while for a 50-replica group, propagating updates with a cost-based partner
selection policy is about 3 times less expensive than using a random selection policy,
this cost ratio jumps to 7 for 200-replica groups.

We also noticed that due to the lower logical connectivity and the fact that
the logical topology generated in the cost-based approach does not take diameter
into account, items take longer to propagate to all replicas when the cost-based
partner selection policy is used. As proof of concept, we increased the replica’s
logical connectivity and observed that the difference in time to propagate items to
all replicas using cost-based and random selection policies decreases when compared
to the less connected case. As expected, the higher connected topology resulted in
slightly higher propagation costs.

However, as described in previous chapters, flood-d uses its delay and bandwidth
estimates to compute logical update topologies. Flood-d’s logical topologies optimize
not only network utilization costs by restricting total edge cost, but also propagation
delays by limiting diameter. Therefore, when updates propagate using flood-d’s
network-cognizant logical topologies, they use the network efficiently, yet reducing

their propagation delays.
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Chapter 6

Exploiting Internet Multicast

Internet multicast and reliable multicast transport protocols are often thought
as good foundations on which to build a massive data replication protocol. This
chapter presents the state-of-the-art of internet multicast architectures and multi-
point transport protocols. We discuss the applicability of existing multipoint trans-
port protocols for weakly consistent applications, and propose a reliable multipoint
transport service specially tailored for this kind of applications.

Through simulations, we evaluate how the use of IP multicast can influence
the performance of flood-d, our weakly-consistent replication tool. We discuss the
assumptions we use in these simulations, and speculate on how to improve our

simulation model.
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6.1 Internet Multicast

IP multicasting delivers best-effort datagrams to a group of hosts sharing a single IP
multicast address. Current Internet multicast routing protocols, such as DVMRP
[20] and MOSPF [44] are extensions to traditional unicast routing mechanisms.

Because MOSPF is a link-state protocol, MOSPF routers compute source-rooted
shortest-path delivery trees based on their global view of group membership and
network topology. Broadcasting group membership information about all existing
groups to all MOSPF routers is expensive, and severely limits the scalability of
MOSPF and other link-state multicast protocols. The shortest-path delivery tree
computation is another factor that limits the scalability of link-state multicast pro-
tocols.

DVMRP is a distance-vector multicast routing protocol that builds source-rooted
shortest-path distribution trees as follows. A DVMRP router forwards data pack-
ets destined to unknown groups out all interfaces except the one through which it
received the packet. When a leaf router receives a packet for a group that has no
members on its attached subnetworks, the router sends a prune message upstream
towards the source of the packet. Since prune messages cause the tree branches with
no group members to be removed from the multicast tree, the resulting tree is a
source-specific shortest-path tree where all leaves are attached to group members.
Pruned branches will timeout, grow back, and be pruned again if they still don’t have
any attached group member. Distance-vector multicast protocols incur the overhead
of having sources periodically broadcast data packets which trigger routers that are
not on the delivery tree to process these messages and generate the corresponding
prunes.

DVMRP has been in use on hundreds of routing domains that form the MBONE
[9], a semi-permanent, hand-configured virtual network that was originally engi-
neered to carry audio and video transmissions from IETF meetings to destinations
around the world. The MBONE uses virtual point-to-point links, or tunnels, to
transmit multicast packets between DVMRP routers in different routing domains.
Before transmitting multicast packets through a tunnel, the source DVMRP router
encapsulates them, so that they look like ordinary datagrams to intermediate routers

and subnets.
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With the argument that traditional IP multicasting presents scalability and ef-
ficiency limitations, alternative multicast routing architectures have been proposed.
Instead of building multiple source-based trees, the Core Based Tree (CBT) archi-
tecture [4] employs a single delivery tree shared by all the members of a multicast
group. The shared tree has a core router (or a set of cores for robustness). Non-
core routers are the intermediate nodes in the shortest paths between the core and
routers directly attached to group members. Data packets are forwarded using uni-
cast until they reach a CBT router. From then on they are multicast using the
shared tree !. CBT trades source-specific shortest-path delivery trees for scalability:
rather than having to keep an entry per [source, group| pair, CBT routers need only
keep forwarding information for each multicast group. However, shared trees may
impose unacceptable bandwidth limitations for high bandwidth, concurrent-sender
applications, such as audio and video multiparty conferencing.

The Protocol Independent Multicast (PIM) architecture [21] supports both shared
and shortest-path delivery trees. While high bandwidth applications may choose to
use PIM’s dense mode source-specific shortest-path trees, shared trees may be ade-
quate for low data data rate applications or sparse multicast groups. By using shared
delivery trees, or PIM’s sparse mode, sparsely populated groups avoid the overhead
incurred by protocols such as DVMRP, where sources occasioﬁally have to broadcast
data packets, and routers with no attached group members have to respond with
prune messages. Furthermore, sparse-mode routers need only keep state for each

multicast group.

6.2 Multipoint Transport Protocols

IP multicast relies on transport-level protocols for reliability and sequencing. For in-
stance, real-time applications like voice and video teleconferencing, which are delay-
sensitive but can live with data losses, are layered on top of UDP and Internet
multicast. A transport protocol for multiparticipant real-time applications (RTP)

[61] provides end-to-end delivery for one or more real-time data flows. It assumes an

! Actually, according to [4], each non-core router uses unicast to forward data packets out all
branches of the shared tree.
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unreliable datagram service and does not provide reliable, ordered delivery. RTP can
transfer data to multiple destinations if the underlying network provides a multicast
service.

Traditional reliable unicast transport protocols, such as TCP, use positive ac-
knowledgments to recover from packet loss. This approach to achieving reliability
is often referred to as sender-initiated, since it is the responsibility of the sender
to detect packet losses. In a multicast environment, as group sizes increase, the
sender-initiated scheme may cause acknowledgment implosion [16] since each deliv-
ered packet triggers an acknowledgment from every receiver in the group.

Alternatively, in the receiver-initiated approach to reliability, receivers detect
packet losses and request its retransmission by generating a negative acknowledg-
ment. Placing the responsibility of recovering from packet losses on the receiver
alleviates the acknowledgment implosion problem. The performance comparison
study presented in [48] confirms that receiver-initiated multicast transport protocols
deliver better performance than their sender-initiated counterparts.

Most reliable multipoint transport protocols are either pure receiver-initiated or
use a hybrid approach by combining receiver- and sender-initiated reliability. Below,

we overview some of these protocols.

6.2.1 Reliable Broadcast Protocol

The Reliable Broadcast Protocol (RBP) [10] provides multipoint communication be-
tween sites connected by a local-area broadcast network. RBP combines negative
and positive acknowledgments to achieve reliability, ordering, and resilience to fail-
ures. Messages are multicast to the group through the token site. In other words,
the token site is responsible for multicasting an acknowledgment for each message
it receives. These positive acknowledgments inform the sender that the token site
received a message. Since acknowledgments carry a global timestamp, receivers use
them to order and detect lost messages.

When a receiver detects a lost message, it unicasts a negative acknowledgment
to the current token site, which replies with the missing message. For resilience and
to limit the amount of state each site needs to keep, the role of the token site rotates

among all group members. A member accepts to be the next token site only if it
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has all the messages earlier than the timestamp of the token passing message. Thus,
after a message is generated and the token site is rotated K times, K sites can fail
and the message will still be delivered to the sites that are active. Furthermore, the
current token site can purge all messages whose timestamps are earlier than the last

time this site had the token.

6.2.2 Multicast Transport Protocol

Influenced by RBP, the Multicast Transport Protocol (MTP) [3] provides reliable
and globally ordered delivery of client data among a group of communicating pro-
cesses. MTP is built on top of IP multicasting, and provides strong consistency by
multicasting messages atomically under centralized control. One of the participating
processes is assigned to be the master of the group. The group master ensures that
data is delivered reliably and in order by giving out transmit tokens and controlling
the status of tokens and data messages. It implements an implicit congestion control
mechanism by not granting tokens if a certain number of messages are still in the
pending state. A message is pending until the master sees all of its packets.

The master is also responsible for supervising group membership. If a group
member that is holding a token becomes disconnected, the master removes it from
the group and rejects that member’s outstanding messages. A process that wants
to join the group sends a request to the master, who may accept or reject it. If
the request is accepted, the master must be in possession of all the transmit tokens
before sending an acceptance message. This way, the master ensures that the new
member sees only complete messages. The master may notify its client application
about the new member, and it is up to the application to send client state to the
new member.

MTP is a negative acknowledgment protocol. When a group member detects
a lost message, it sends a negative acknowledgment to the message producer, who
multicasts the requested message to the entire group. However, if the producer has
discarded the requested message, it informs the source of the negative acknowledg-
ment. It is up to the application to recover or decide to withdraw from the group.

MTP’s flow control mechanism is based on a fixed-size transmission window. Every
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group member agrees on the current window size upon joining a group. This win-
dow specifies the maximum number of data packets that a member can send to the
group within a specified period of time, and is shared between new and retransmit-
ted packets. Thus, the more retransmissions, the less new packets are injected into

the group.

6.2.3 Reliable Multicast Protocol

The Reliable Multicast Protocol (RMP) [67] provides a totally ordered, reliable,
atomic multipoint transport protocol on top of an unreliable multicast service. Like
the Multicast Transport Protocol (MTP), RMP evolved from the Reliable Broadcast
Protocol (RBP).

Besides using multicast where available, RMP extended RBP with a name ser-
vice that advertises the existence of multicast groups, and a flow and congestion
control mechanism. RMP’s name service uses the RMP protocol to manage its dis-
tributed database. Each existing group has at least one global name server that is
registered with the name service group. The global name server’s database consists
of entries mapping a group’s address to the group name. Name servers in each group
keep the mappings between group address and the membership set and group name.
RMP’s group membership protocol allows sites to join or leave a group. This proto-
col updates the members’ group membership view accordingly, and guarantees the
resilience requirements. When messages updating the group membership reach a site
that is running a local name server, the local mappings are updated. Updating the
global mappings once a membership update message reaches a global name server
is a strong consistency, atomic transaction across the global name service group.

RMP’s flow and congestion control mechanism uses the algorithms Van Jacob-
son developed for TCP. Each sender in a group keeps a sliding window regulated
by retransmission timers, negative acknowledgments (NACKs) from receivers, and
positive acknowledgments (ACKs) from the token site. A sender uses slow-start
to increase its window size by 1 packet every time an ACK is received. When a
retransmission timer expires signaling congestion, the sender exponentially reduces
its window size. To implement flow control, a RMP receiver multicasts a NACK to

the group (instead of unicasting it to the token site) when it detects a lost packet.
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When a sender receives a NACK, it treats it just like an expired timer and backs off

exponentially.

6.2.4 Uniform Reliable Group Communication Protocol

The Uniform Reliable Group Communication (URGC) protocol [1] also provides
atomic and ordered communication among the members of a group. To achieve or-
dering and decide when to purge old messages, URGC uses centralized control, which
rotates among all members of the group. All sites keep a history of all processed
messages which allows other sites to recover missing messages. Besides broadcast-
ing its message ordering decisions, the current coordinator also informs the group
which is the most up-to-date member. Through unicast communication, other group

members can recover missing messages from the most up-to-date site.

6.2.5 Propagation Graph Algorithm

Garcia-Molina’s Propagation Graph algorithm [23] guarantees ordered delivery in a
multicast environment. The Propagation Graph algorithm was inspired by RBP and
also attempts to reduce the overhead of fully distributed solutions. However, instead
of ordering all messages at a single central site, it uses a collection of sites structured
into a message propagation graph. These intermediary nodes are in the intersections
of the existing multicast groups. Instead of sending messages to the destinations and
then ordering them, messages follow the propagation graph and are ordered along the
way. The Propagation Graph method is basically an ordering protocol and needs
additional mechanisms to recover from site failure, network partition, and group

membership changes.

6.2.6 Muse

Muse [34] has been developed to multicast news articles on the MBONE. Muse sends
news articles as UDP packets to the multicast group consisting of participating news
servers. Because Muse is not a reliable news propagation protocol, it must be used
in conjunction with another mechanism that performs reliability checks, such as

NNTP.
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According to its authors, making Muse a reliable news transport protocol would
result in greatly limiting its scalability because of retransmissions requests from

clients that lost or received corrupted articles.

6.2.7 Imm

Satellite receivers use the tmm protocol [15] to multicast earth observing data files
to users on the MBONE. Contrary to some replicated database applications, there
is no need to provide an ordered, atomic multicast service for distributing satellite
data files.

The imm protocol uses UDP on top of IP multicasting, but unlike Muse, it
allows its clients to request selective retransmission of loss packets from imm servers.
Servers may also request explicit acknowledgments from members of a group. New
members join a group by multicasting a join message to that group. However, imm
does not provide any explicit mechanisms for a member to leave a -group or for a

group to eject a member that has permanently failed.

6.2.8 A Transport Service for a Distributed Whiteboard

The distributed whiteboard tool presented in [36] uses a multipoint transport proto-
col to reliably distribute data among all participating sites. These sites use negative
acknowledgments to request retransmission of lost data, which can be answered
by any member that has the information. To avoid generating multiple copies of
NACKs and retransmitted data, they are multicast to the group. To further reduce
the multiple copy problem, a site waits a random period of time before sending a
NACK or retransmitting data.

A new site joins an ongoing whiteboard conference by announcing its presence
with a join message. Current members update their view with the new site. The
new site’s view of the group is gradually updated through periodic status messages
generated by current members when the group stays quiet for a certain period of

time.
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6.2.9 Adaptive File Distribution Protocol

The Adaptive File Distribution Protocol (AFDP) [13] provides a reliable file distri-
bution service on top of UDP. To achieve reliability, AFDP uses a selective negative
acknowledgment scheme, in which receivers explicitly request senders to retransmit
lost packets. AFDP’s rate-based flow mechanism uses negative acknowledgments to
slow down senders, who decrease their transmitting rate every time they receive a
negative acknowledgment. Senders gradually increase their transmitting rate after
successful transmissions. Using multicast as its preferred transmission mode, AFDP
packets can also be transmitted using broadcast, or unicast, whenever multicast is
not available.

AFDP allows sites to join and leave a distribution group, but does not provide
a recovery mode to deal with site failures or network partitions. AFDP has been
implemented and tested on a cluster of workstations connected by an ethernet, and

has proven to deliver better performance than existing file distribution mechanisms.

6.3 A Multicast Transport Protocol for Weakly

Consistent Applications

In contrast to sending real-time audio and video, updating the database of an in-
formation service requires reliable message delivery, crash recovery, and eventual
database consistency. A reliable multipoint transport protocol based on IP multi-
casting cannot meet these requirements. In particular, it cannot solve the consis-
tency problem raised when replicas temporarily crash or when IP routers crash and
lose state crucial to reliable, multipoint delivery. In such cases, the application itself
must re-establish consistency.

Recall the end-to-end argument in layered design [57]: functions that can only be
completely and correctly implemented by the application should be moved into the
application. In our case, since each replica must keep its database consistent, we let
the replica manage reliable multipoint delivery. For these reasons, our hierarchical
replication group consistency tool, flood-d, does not rely on a reliable, multicast

transport protocol, although, for efficiency, it can exploit it where available.
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In this section, we examine the transport service requirements of weakly con-
sistent applications, and contrast them to the needs of other types of applications,
such as real-time and strong consistency services. Based on these requirements,
we propose a multipoint transport protocol specially tailored for weakly consistent
services. Below, we describe the mechanisms needed to implement the proposed

transport protocol’s functionality.

6.3.1 Transport-Level Reliability

At one extreme of the consistency spectrum lie strong consistency multicast trans-
port protocols such as MTP and RMP. Because of their inherent latency and over-
head, strong consistency protocols are not adequate for massively replicating weakly
consistent applications. These protocols offer a reliable and ordered delivery service
to the application. Both protocols achieve reliability and ordering through central-
ized control. MTP, for example, relies on a group master to oversee group commu-
nication and membership. This centralized control compromises MTP’s scalability
and fault tolerance. That is probably why MTP has not yet been implemented.

Although RMP solves many of MTP’s problems by rotating the master’s role
among all group members, its latency and overhead are still very high for large
groups. In fact, the implementation reported in [67] uses a local-area Ethernet, and
the performance results refer to groups of less than 10 sites.

Since the ultimate consistency check must be done at the application layer, a
multipoint transport protocol for propagating updates in a replicated information
service could be totally unreliable. The resulting multicast transport service could
use UDP on top of IP multicasting, and would be analogous to the unicast ser-
vice provided by the UDP/IP protocol suite. In this case, reliability and group
membership management are completely implemented at the application using a
weak-consistency, hierarchical group communication tool such as flood-d.

For efficiency, weakly consistent applications could benefit from early detection
and retransmission of lost packets. While these applications would still need to
recover from inconsistencies due to site failures, they could use a reliable multipoint
transport service such as the one provided by the imm protocol and the one used by

the distributed whiteboard tool.
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In the proposed reliable multipoint transport protocol, whenever a replica wants
to propagate an update to the rest of the group, it passes the update to the transport
layer, which assigns monotonically increasing sequence numbers to each packet, and
multicasts them to the group. The transport protocol at the receiver’s side detects
lost packets from holes in the sequence number space. These holes are detected when
a source sends subsequent data. Notice that if the last packet in a burst is dropped,
receivers will only detect the loss when they receive the next burst. An alternative is
to have sites periodically announce their current state, so that the group can detect
losses earlier. This can get expensive, and may not be needed since the application
will perform periodic consistency checks.

When a receiver detects a missing packet, it sends a negative acknowledgment
requesting the retransmission of that packet. When receiving the NACK, the sender
replies by retransmitting the requested packet. If the NACK or the retransmitted
packet gets lost, the receiver times out and retransmits the NACK. Since it is possible
that other group members are missing the same packet, having the receiver multicast
the NACK and the sender reply by multicasting the missing packet i1s a way to
avoid having the group generate multiple NACKs and copies of the same packet.
Furthermore, since NACKs are multicast to the group, any member that has the
requested packet could retransmit it. A site that is close to the requester is likely
to be the one that retransmits the packet. However, if several receivers detect a
packet loss simultaneously, they will generate multiple NACKs for the same packet.
Similarly, multiple copies of the missing packet may be generated since any member
may answer requests. Using randomization to schedule the transmission of NACKs
and retransmission of missing packets alleviates this multiple copy problem.

One problem with a pure negative acknowledgment protocol is that the state
senders need to keep can grow indefinetly, since there is no explicit mechanism
to inform senders that all receivers have received a given message. To solve this
problem, besides issuing NACKs to recover from missing packets, protocols like RBP
and RMP have a central site generate positive acknowledgments for every message
they receive, and have the role of the central site rotate among group members.

The imm protocol uses a more optimistic approach: servers assume that the
transmission of a packet was successful if they don’t receive any negative acknowl-

edgments within a pre-defined time interval. Since they currently store a week’s
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worth of data, imm servers appear as virtually infinite data repositories, and clients
can later retrieve missing data.

A transport protocol for weakly consistent applications should use imm’s low-
overhead approach to reliability. Senders retransmit on demand and keep previously
transmitted messages for some pre-defined period of time. Since the application per-
forms periodic consistency checks, it will eventually fix inconsistencies left unresolved
by the transport service.

Besides update messages, the multipoint transport protocol also propagates group
membership messages. For instance, when a replica running flood-d joins a group,
it copies another replica’s database and current group membership view. The new
replica then sends a join message to all replicas in that replication group. The un-
derlying multipoint transport protocol reliably multicasts the join message to the
corresponding multicast group. The joining of a new member spawns a topology
calculation, whose result is multicast to the group along with the new membership
set. Notice that once the new replica is added to the underlying multicast group
(see Section 6.3.4), it starts receiving messages multicast to the group. However, the
new replica only starts getting application-level state exchanges from other replicas,
when it gets added to the other replicas’ group membership view.

When a replica gets disconnected temporarily, its transport entity will request
missing updates once the replica gets reconnected to the group. However, if the
replica fails and looses its state, only the application can re-establish consistency.
Flood-d’s periodic probe messages will detect that a replica has failed. In case the
failure persists for some time, the failed replica may be deleted from the group
membership set and the next topology map. Once the replica comes back up, by

re-joining the group, it will re-establish consistency.

6.3.2 Flow and Congestion Control

Like RMP, the proposed transport protocol employs a window-based flow-control
mechanism regulated by slow-start and negative acknowledgments. Senders start
transmitting with a pre-defined window size and linearly increase it. Upon receiving
a negative acknowledgment, senders backoff by exponentially reducing their trans-

mission window size.
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Because there are no positive acknowledgments, negative acknowledgments also
act as a sign of congestion, and cause senders to exponentially backoff. Recall that in
the original TCP slow-start approach, the initial window size is set to 1 packet and
gradually stretches as transmitted packets arrive at their destinations and senders
have more data to transmit. Since distributed information services source traffic
patterns are likely to be bursty, instead of using an initial window size of 1 packet,
senders could be more aggressive and use a bigger initial window based on the
expected update message size and frequency. When joining a group, a new member
agrees to use the current transmission window size.

Besides reducing the number of copies of NACKs and retransmitted packets,
broadcasting negative acknowledgments to the group instead of only unicasting them
to the sender can also improve the effectiveness of the congestion control mechanism.
When the group receives a negative acknowledgment, all its members will adapt by

reducing their transmission windows.

6.3.3 Resource Reservation

The Internet’s original best-effort service model is inadequate to support the diverse
set of existing and future wide-area applications that range from traditional data
communication services like electronic mail and remote file transfer to real-time mul-
timedia applications such as audio and video conferencing, and shared whiteboard
tools. Since several of these tools are very sensitive to the quality of service the net-
work offers to their packets, the network should allow these applications to request
enough resources for their data flows.

There has been considerable research focused on extending the current Internet
architecture to support other service models. Besides traditional best-effort, new
models include guaranteed, and predictive services. Guaranteed service provides
an absolute upper bound on the delay of every packet. However, some real-time
applications do not need absolute delay bounds, and only require that some (high)
fraction of their packets obey a predictive bound. This type of service called predic-
tive service offers a fairly reliable but not absolute delay bound.

To support different service models, new components need to be added to the

current Internet architecture. Data sources need a pre-defined flow specification
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language, that enables them to specify to the network the traffic characteristics of
their data flows. An example of a flow specification language is described in [47].
For the network to decide whether to grant or deny a reservation request, it needs
some kind of admission control mechanism. One of the proposed admission control
algorithms is presented in [29]. Once the network accepts a data flow, it needs to set
aside the required resources, such as a portion of the available bandwidth or buffer
space in the routers. RSVP [68] is one of the resource reservation protocols being
proposed. It allows the network to create and maintain resource reservations on each
link along multipoint transport connections. The network also needs an accounting
and billing infrastructure to produce monetary incentives [12] so that end users can
select the service model that best suits their needs at a price they are willing to pay.

Keeping the database of a distributed information service weakly consistent im-
plies that updates must eventually propagate to all replicas, and that every replica
is a potential source of updates. However, unlike high data rate applications, source
traffic patterns are likely to be bursty, with senders going through shorter active
periods followed by longer silent intervals. Furthermore, eventual consistency appli-
cations are very sensitive to packet losses but not as sensitive to delay as real-time
applications. On one hand, they can live with the network’s best-effort service model,
and don’t need to explicitly reserve resources. In this case, flood-d’s estimates of the
underlying physical network and the resulting logical topology help in propagating
updates efficiently.

On the other hand, some weakly consistent applications may want to have an
upper bound on the time updates take to propagate. If they are willing to pay for
a more expensive service, they could request predictive bandwidth. In this case,
flood-d should probably based its logical topology on propagation delay, rather than
available bandwidth.

6.3.4 Application-Level Functionality

From time to time, the application running at each replica needs to perform consis-
tency checks to catch inconsistencies from which the underlying transport protocol
could not recover. In particular, every replica running flood-d periodically chooses

another replica, with whom it compares its consistency state. Replicas recover from
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inconsistencies by getting missing updates from their peers through reliable point-
to-point communication. When a replica finds out that all the other replicas have
received a specific message, it can then purge that message from its consistency
state.

Since the application needs to perform periodic consistency checks, it needs to
know the set of members in the group. However, weakly consistent replicas only
need to keep weakly consistent views of the group, which will eventually converge to
a single consistent view once group membership reaches steady state. In flood-d for
example, to join a replication group, a new replica copies another replica’s database,
which is more efficient than relying on the reliability mechanisms of the underlying
multipoint transport service. The new replica also floods its existence to the rest
of the group. The joining of a new member spawns a topology calculation, which
propagates the updated group membership set along with the new topology.

Internet multicast architectures use the Internet Group Management Protocol
(IGMP) [18] to manage multicast groups. Therefore, local application-level joins are
mapped to IGMP joins, which inform multicast routers about new group members.
Notice that only the application and the underlying internet multicasting protocol
need to keep group membership information. The multipoint transport protocol
only translates the application’s group name to the corresponding multicast group
address.

Because different applications have different message ordering requirements, the
ordering mechanism should be implemented at the application. This way appli-
cations that have looser ordering constraints do not have to pay the performance

penalties of more strict ordering requirements.

6.4 Multicast and Replication Groups

Similarly to having a single replication group, having a single multicast group with
all service replicas as members will not scale. Since flood-d organizes replicas into
multiple groups, replicas within a group can run flood-d on top of a multipoint
transport service. In this scenario, each replication group corresponds to a multi-
cast group. Through representative individual replicas in each replication group, or

corner replicas, flood-d maintains consistency between groups, as well as recovers
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from inconsistencies within a group. This scheme fits well with the way IP multicas-
ting is currently deployed on the Internet, where there are regions that can directly
support multicast routing connected by point-to-point tunnels.

Alternatively, multicasting can also be used as the primary inter-group propaga-
tion mechanism. Each replication group will still be mapped to a multicast group,
and each corner replica will be a member of as many multicast groups as replication
groups the corner replica interconnects. Another possibility is tb set up a multicast
group with all the corner replicas, and also have each corner replica be a member of
the multicast group corresponding to one of the replication groups the corner replica
interconnects. Flood-d will still be responsible for recovering from inconsistencies
which the underlying transport service cannot detect.

In the context of the underlying multicast architecture, we can speculate that
since updating the replicated database of an information service has low bandwidth
requirements when compared to audio and video applications, each replication group
could use a shared delivery tree to distribute updates. However, one can argue that
since replication groups may densely populate Internet routing domains, intra-group
source-specific delivery trees may be more adequate. On the other hand, inter-
group communication can be done over a shared delivery tree, since it will likely use

backbone links, which are shared anyway.

6.5 Simulations

To evaluate the use of IP multicast as the underlying update propagation mechanism
for a weak-consistency replication tool such as flood-d, we modify the simulator
described in Chapter 5 so that it multicasts updates to all replicas in a group.

The goal of these simulations is to answer the following question: assuming that
IP multicasting is the primary update propagation mechanism, what are the benefits
of performing the end-to-end consistency state exchanges over a logical topology that
tries to use the underlying physical network efficiently, and, at the same time, reduce
update propagation time? Application-level state exchanges with randomly selected
peers serve as a basis for comparison.

We use a very simple simulation model, which we discuss in more detail in Section

6.5.2 below. When a replica generates an update, this update will get propagated
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to the other replicas via multicast subject to some drop rate. In other words, the
multicast drop rate which we use as one of the simulation parameters, determines
whether a given update will be dropped or received by all members of a replication
group. Periodic application-level state exchanges will fix inconsistencies which the

underlying propagation mechanism could not resolve.

6.5.1 Results

These set of simulations record the total communication cost incurred to propa-
gate dropped messages through application-level consistency state exchanges (anti-
entropy). These state exchanges used 2 different policies to select the partner with
whom to exchange state: cost-based and random. To assign communication costs
to links, we use NTG to generate random logical topologies for different group sizes.
While the random selection policy, picks anti-entropy partners at random, the cost-
based policy chooses from a subset containing replicas with minimum link cost to
the replica originating the anti-entropy. The size of the selection set is currently
10% of the replication group size. Note that the bigger this selection set, the higher
the link costs it contains. Consequently, the bigger the selection set, the higher the
overall cost for propagating messages.

The graphs in Figure 6.1 show how the overall cost to propagate updates to all
replicas in a group scales with the multicast drop rate for different group sizes. As
expected, the higher the multicast drop rate, the more evident the benefits of prop-
agating updates using a cost-based partner selection policy as opposed to random
partner selection.

Furthermore, the bigger the replication group, the bigger the discrepancy in cost
between cost-based and random partner selection policies. This is due to the fact
that in bigger groups, updates need to travel more logical hops to get to all replicas.

The set of graphs in Figure 6.2 show how the the overall communication cost
to propagate updates to all replicas using cost-based and random partner selection
policies scale with different update rates. In the middle and bottom graphs, the
update rate is twice and four times higher than the top graph’s update rate. In all
graphs, we plot communication cost as a function of the multicast drop rate and use

a replication group size of 100 replicas.
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Figure 6.1: Total communication cost for propagating messages to all replicas in
a replication group as a function of the multicast drop rate using cost-based and
random partner selection policies. The top, middle, and bottom graphs use 50-,
100-, and 200-replica groups, respectively.
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Figure 6.2: Total communication cost for propagating messages to all replicas in
a replication group as a function of the multicast drop rate using cost-based and
random partner selection policies. The middle and bottom graphs use update rates
2 and 4 times higher than the top graph, respectively.

We observe that for higher update rates the discrepancy in cost between cost-
based and random update propagation increases. This means that the higher the
update rates, the higher the communication cost reduction if, instead of using a ran-

dom propagation policy, updates are propagated over a cost-based logical topology.

6.5.2 Simulation Modeling Considerations

The application-level simulations described in the previous section are based on some
unrealistic assumptions. First, they use pure IP multicasting without any transport-
level reliability. Without a reliable transport service on top of unreliable multicast,
reliability detection and recovery is fully performed at the application level. This

results in a best-case scenario for using flood-d’s logical update topologies since the
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amount of application-level exchanges that needs to be done to fix inconsistencies
left by the lower-level protocols is maximum.

Modeling multicast unreliability by using arbitrary drop rates is an over-simplifying
assumption. We use Bernouilli distributions to determine whether a given update
is to be dropped or successfully multicast. Besides using arbitrary Bernouilli proba-
bilities, we also assume that either all replicas in a group receive an update or none
of them receive it.

We also assume that every update message can be propagated as a single IP
multicast packet. In other words, we simulate update message multicasting and not
packet multicasting. While this is coherent with the fact that we are not using a
transport level protocol, it does not provide a realistic model for the target applica-
tions. For instance, update messages in a replicated file archive service may generate
hundreds of packets.

In the sections below, we speculate on how to build a simulation model that could
more realistically represent weakly consistent applications that use a replication tool
like floodd-d running on top of a reliable multipoint transport service such as the

one described in Section 6.3.

6.5.2.1 Source Traffic

Every participating replica is a potential traffic source, which generates a burst of
packets corresponding to every client update. Burst frequency and duration cor-
respond to the frequency to which client updates are generated and their size in
number of packets, respectively, and are application dependent.

We expect weakly consistent service’ update rates to be relatively low at steady
state. For instance, in the Domain Name Service (DNS) [39, 40], changing host
names and addresses, or adding and deleting new database entries are not likely
to happen more than once a month. Rates of one update per hour seem high
even for applications such as the Internet’s global directory service [6]. Clearly,
the ratio between the application-level state exchange rate and the update rate is
an important parameter: it determines how fast inconsistencies are detected and

patched. The tradeoff is that using higher state exchange rates implies achieving
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eventual consistency sooner at the expense of generating more network traffic and
consuming more network resources.

The duration of the packet burst corresponding to the transmission of an up-
date depends on the update message size. Replicated directory services or indexing
databases will likely generate updates corresponding to bursts of tens of packets.
On the other hand, replicated file archives may transmit whole files as updates. The
contents of the replicated files, which may range from entire software distributions,
textual documents, or even images and sound, determine the size of the updates.
One could then argue that update message sizes can be modeled by a bimodal dis-
tribution, where fixed-size smaller and bigger updates occur with probabilities p and
1 —p. Since directory service records and replicated files can span a whole spectrum

of update sizes, a discrete uniform distribution could be used instead.

6.5.2.2 Multicast Drop Rate

A multicast propagation model should contain information such as the probability
that a message is successfully multicast to a given number of replicas. Furthermore,
instead of being assigned arbitrarily, these probabilities should depend on parameters
such as the underlying physical topology. For instance, if a multicast delivery tree
(either source-specific or shared) uses a given physical link to send packets to a subset
of replicas in a replication group, the probability that these replicas successfully
receive a message multicast over this delivery tree depends on the packet drop rate

of the shared physical link.

6.5.2.3 Transport-Level Mechanisms

Using a reliable, flow-controlled, multipoint transport protocol on top of IP multicas-
ting has several implications. Because the transport protocol provides reliable deliv-
ery, replicas can recover from losses earlier instead of having to wait for application-
level state exchanges. Furthermore, the transport service achieves reliable delivery
through selective negative acknowledgments, which means that individual lost pack-
ets may be recovered, as opposed to transmitting the whole update, which is what
happens at the application level. This is particularly beneficial when client updates

generate a large number of packets.
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The flow and congestion control mechanisms used by the proposed multipoint
transport protocol employ negative acknowledgments and slow start to adjust the
transmission window size. A sender transmits enough packets to fill up the current
window size or until it does not have any packets to send, and sets the retransmission
timer. Because there are no positive acknowledgments, if the sender does not receive
any NACK until the timer expires, it assumes that the transmission was successful,
and increases its window size. This means that different senders may have different
window sizes at a given time. However, if NACKSs are multicast to the whole group,
all members exponentially backoff when a NACK is received, which causes bigger

reductions for senders with bigger windows.

6.5.2.4 Bandwidth

Claiming that as link speed increases, network bandwidth will become abundant is
analogous to the argument stating that as computer memory gets cheap, memory
will become plentiful for computer applications. However, as the complexity of ap-
plications increases, so does their demand for memory and other computer resources.
Similarly, current and future network applications will tend to take advantage of the
available bandwidth.

Suppose that the network supports different classes of service. Some weakly-
consistent application that wants to have an upper bound on the time its updates
take to propagate may request the network to reserve the necessary bandwidth
for its packets. However, even if there is enough bandwidth to handle the packet
bursts produced by every update, packets may still be dropped at the receivers if
they cannot process them fast enough, or if they do not have enough buffer space.
Therefore, slow receivers may slow the whole group down since they will generate
NACKSs as packets get dropped, causing the transmission window size to oscillate
around a value compatible with their service time and buffer size.

Let’s assume that the current Internet is roughly hierarchically structured and
uses links of similar speeds at each hierarchical level: slower links connect nodes at
the lower hierarchical levels, while nodes at the higher levels are connected through

faster links. If Internet services set up their replication groups according to the
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Internet’s hierarchical structure, then we can consider the physical links connecting
replicas within a group to be roughly homogeneous.

However, because link utilization may vary drastically from link to link as well as
over time, the actual available bandwidth at each link can be considerably different.
For instance, suppose that in a multicast delivery tree, there is a subset of replicas
that share the same upstream physical link. If for some reason this link is frequently
congested (it may also be used by other applications’ replication groups), then the
downstream replicas often lose packets and generate negative acknowledgments re-
questing their retransmission. Therefore, in this case, this shared link becomes a
bottleneck, and dictates the group’s maximum transmission window size. Link uti-
lization can get even higher when instead of source-specific trees, replication groups

use shared delivery trees.

6.6 Summary

In this chapter, we overviewed existing and new internet multicasting architectures
and multipoint transport protocols. We argue that most existing multipoint trans-
port protocols are not well-suited for weakly consistent applications. Like the Real-
Time Transport Protocol (RTP), they are either unreliable, or like the Reliable
Broadcast Protocol (RBP), the Multicast Transport Protocol (MTP), and the Re-
liable Multicast Protocol (RMP), they provide strong consistency at the expense of
latency and overhead.

The features and mechanisms of the reliable multipoint transport protocol we
proposed are summarized in Table 6.1. The main idea is that weakly-consistent ap-
plications can use a low overhead, reliable multipoint transport service to reduce the
amount of application-level state exchanges without compromising the application’s
availability and response time.

Finally, we evaluated the use of IP multicasting as flood-d’s primary update
propagation mechanism. As expected, the higher the multicast drop rate, the more
evident the benefits of using flood-d’s logical topology to perform application-level
consistency state exchanges. We also observed that as replication groups get bigger,
so does the discrepancy in cost when propagating updates according to cost-based

logical topologies as opposed to random topologies.
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Features Mechanisms
Transport-Level e Sequence Numbers

Reliability e Selective NACKs
e Selective Retransmissions
e NACKs/retransmitted packets can be
unicast to sender/requesting receiver
or multicast to group. If multicast,
scheduling transmission of NACKs and
retransmitted packets may be randomized.
Flow and Congestion | ¢ Window-Based

Control e Regulated by NACKs and Slow-Start
Service Model e Best Effort
Application-Level e End-to-End Reliability

Functionality e Ordering

e Group Membership

Table 6.1: Reliable multipoint transport protocol for weakly-consistent applications:
features and mechanisms.
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Chapter 7

Summary and Conclusions

Existing and future Internet information services will provide large, rapidly evolving,
highly accessed, yet autonomously managed information spaces. Achieving adequate
performance demands that these services and their data be replicated in hundreds
or thousands of autonomous networks.

Although the problem of replicating data that can be partitioned into autonomously
managed subspaces has well-known solutions, efficient massive replication of wide-
area, flat, yet autonomously managed data has yet to be demonstrated. This dis-
sertation investigated scalable replication mechanisms for wide-area, autonomously
managed services.

We claimed that efficient replication mechanisms keep replicas weakly consistent
by flooding data between them. While existing replication algorithms use flooding to
propagate updates among their replicas, they do not address the scalability and au-
tonomy of today’s internetworks. For instance, Lampson’s widely cited Global Name
Service manages a single, flat group of replicas. While this works for applications
with 20 to 30 replicas operating within single administrative boundaries, it is unre-
alistic for wide-area, massively replicated services whose replicas spread throughout
the Internet’s thousands of administrative domains. Furthermore, like other existing
/ replication mechanisms, Lampson’s Global Name Service ignores network topology
issues. It assumes the existence of a single administrator who hand-configures the
topology over which updates travel. The Global Name Service administrator places
replicas in a logical ring, and reconfigures the ring every time a replica is added
or removed. As the number of replicas grows and replicas spread beyond single

administrative boundaries, reconfiguring the ring gets prohibitively expensive.
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The architecture we proposed extends existing replication algorithms to address
scalability and autonomy explicitly. We target replication degrees of thousands
or even tens of thousands of weakly consistent replicas scattered throughout the
Internet’s thousands of administrative domains.

In the following sections, we summarize our contributions, present our plans for

continuing work, and directions for future research.

7.1 Contributions

Lampson’s Global Name Service (GNS) has been widely-accepted as the solution
to the problem of replicating wide-area, distributed, weakly-consistent applications.
However, almost 10 years ago, when Lampson claimed GNS could “encompass all
the computers and all the people that use them”, he did not anticipate that the
Internet would grow as fast as it did. The main contribution of this dissertation
is to make GNS-like services work in today’s exponentially-growing, autonomously-
managed internetworks.

Our hierarchical, network-cognizant architecture which has been implemented
as a replication tool we called flood-d, provides a flooding-based, group communi-
cation layer information services can use to efficiently propagate data among their
replicas. It organizes replicas into multiple replication groups. This multiple group
organization limits the size of the consistency state each replica needs to keep. It
also preserves autonomy since it insulates groups from other groups’ administrative
decisions, and from most of the network traffic associated with group membership.
Replication groups overlap with each other, so that an update that originates in a
group makes its way to all groups.

Using client updates and probe messages, group replicas estimate the underly-
ing physical topology. Based on the estimated physical topology, our architecture
builds a logical update topology connecting the members of a replication group. The
resulting update topology is k-connected for resilience, uses the physical topology ef-
ficiently, and has limited diameter to restrict update propagation delays. Whenever
the probing mechanism detects a significant change in the underlying physical topol-
ogy or any group membership change, it spawns a topology computation process,

which updates the group’s logical topology accordingly.
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Through simulations, we investigated several points in the design space of replica-
tion algorithms. First, we simulated Golding’s Timestamped Anti-Entropy (TSAE)
algorithm, and studied how group size, replica availability, and the frequency with
which replicas exchange consistency state affect the algorithm’s performance. Our
simulation results demonstrate the benefits of splitting a single, flat replication group
into multiple, smaller groups. The smaller the replication group, the smaller the size
of the consistency state each replica needs to keep. Replicas’ consistency state grows
and shrinks as new updates are generated and old ones are purged. The difference
in consistency state size is amplified because in smaller groups, replicas can purge
their consistency state sooner. Our simulations also showed that smaller replica-
tion groups attenuate the effect of less frequent state exchanges and lower replica
availability.

The other set of points in the design space we investigated consisted of incorpo-
rating the notion of a logical update topology to an existing replication algorithm,
such as Golding’s TSAE, and then using TSAE with topology and multiple replica-
tion groups. We assigned communication costs to the logical links connecting pairs
of replicas, and contrasted random and cost-based update propagation. Our simula-
tions showed that while for a 50-replica group, propagating updates over a low-cost
logical topology is about 3 times less expensive than when a random topology is
used, this cost ratio jumps to 7 for 200-replica groups.

Finally, we studied the use of internet multicast as our replication tool’s primary
update propagation mechanism. We claimed that a reliable multipoint transport
protocol on top of IP multicast cannot provide the reliability information services
need. In particular, a reliable multipoint transport protocol does not solve consis-
tency problems such as the one associated to temporarily removing a replica from
service, and consequently losing its consistency state. In these cases, only the appli-
cation can re-establish consistency. Since service replicas need to perform periodic
application-level consistency checks, our replication tool does not rely on a reliable
multipoint transport protocol, but for efficiency, can exploit it where available.

Since having a single multicast group with all service replicas will not scale, we
argued that each replication group should be mapped to a multicast group. Corner
replicas can use flood-d to propagate updates between groups, or can be members of

a separate multicast group. Using this multicast group, which contains only corner
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replicas, updates from one group are multicast to the other groups through the
corresponding corner replicas. Like group replicas, corner replicas use flood-d to
periodically perform point-to-point consistency checks between themselves.

Using a simple simulation model, we evaluated the use of IP multicasting as
flood-d’s primary update propagation mechanism. We used multicast drop rate and
group size as simulation parameters. As expected, the higher the multicast drop
rate, the more evident the benefits of using flood-d’s logical topology to perform
application-level consistency checks. We also observed that as replication groups
get bigger, so does the discrepancy in cost when propagating updates according to
cost-based logical topologies as opposed to random topologies.

The other contribution of this work is having proposed and solved the graph
theory problem associated with building our logical update topologies. Our algo-
rithm uses as input the required connectivity and the communication cost matrix
containing flood-d’s estimates of the underlying physical topology. The algorithm
computes a random starting topology, and uses simulated annealing as the optimiza-
tion technique in finding a low edge cost, low diameter topology. Our simulations
showed that our algorithm’s initial topologies already have low total edge cost, and
therefore the resulting topologies did not show considerable total edge cost reduc-
tions. However, we achieved diameter reductions of more than 30% in edge cost and
more than 50% in hop count.

We also showed that since the initial topologies our algorithm generates already
have low total edge cost, an alternate approach to producing a low edge cost, low
diameter topology is to select some extra edges and add them to the initial topology.
We investigated different edge selection criteria, and showed that by adding a couple
of edges, we can get significant diameter reductions without incurring a considerable
total edge cost increase. We argued that although this heuristic approach constitutes
a practical way of solving our logical update topology problem, only after having
used our optimization algorithm could we verify that adding selected edges to our
initial topologies did indeed generate acceptable topologies. Furthermore, we showed
that we can use our algorithm with different cost functions to solve other topology

optimization problems.
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7.2 Continuing Work and Future Directions

We have conducted wide-area experiments in which a dozen sites in a single group
replicate a directory tree. In our continuing work, we plan to experiment with multi-
ple, bigger groups, replicating bigger objects such as the contents of Harvest brokers.
We will then measure flood-d’s performance including the overhead it generates.

These wide-area, big group experiments will also allow us to evaluate how well our
network topology estimates reflect the state of the underlying physical network. It
will also allow us to tune our logical topology computation algorithm. So far we have
been feeding it with randomly-generated physical topologies. Once we have Harvest
deployed on the Internet, we will have real data on reasonable sized topologies to
drive our algorithm. We also plan to experiment with different objective functions
to control the annealing schedule. For instance, we plan to use average edge cost, so
that sites that are connected through slow links do not become transit nodes.

Another direction for future work is to incorporate in our replication tool the
option of using internet multicast to propagate updates. This includes the design
and implementation of a streaming, reliable multipoint transport protocol that suits
the needs of weakly consistent applications. Flood-d will use multicast as its pri-
mary update propagation mechanism. Periodically, replicas will perform end-to-end
consistency checks using flood-d’s logical topology to select neighbors with whom to
exchange consistency state.

Other directions for future research include investigating the dynamics of groups.
For example, when a new replica is added to a service, it needs to know to which
group it should join. This is a resource discovery problem in itself. A service
can advertise its existence by registering itself with a directory of services. This
service’s entry in the directory of services’ database could keep a list of the existing
replication groups along with some information about them, such as the group’s
geographic location, and group size. When a new replica wants to join the service,
the replica will query the directory of services, and then based on the information
about that service’s existing groups, can decide where to join.

Other group dynamics issues include how big a group can get before it is split

in two, or when should 2 or more groups be coalesced into one group. By having
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multiple replication groups, the resulting topological rearrangements will be limited

to the groups involved.
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