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PREFACE 

In 1968 the Advanced Research Projects Agency (ARPA) of the 
U.S. Department of Defense began implementation of a computer
communication network which permits the interconnection of heter
ogeneous computers at geographically distributed centres through
out the United States. This network has come to be known as the 
ARPANEI' and has grown !'rom the initial four node configura. tion in 
1969 to almost forty nodes (including satellite nodes in Hawaii, 
Norway, and London ) in late 1973 .. The major goal oi' ARPANEI' is 
to achieve resource sharing among the network users. The resources 
to be shared include not only programs, but also unique facilities 
such as the powerful ILLIAC IV computer and large global weather 
data bases that are economically feasible when widely shared. 

The ARPANET employs a distributed store-and-forward packet
switching approach that is much better suited for compute:t'
communications networks than the more conventional circuit-switch
ing approach. Reasons favouring packet switching include lower 
cost, higher capacity, greater reliability and minimal delay. All 
of these factors are discussed in these Proceedings. 

Since the initial ARPA experiment and success, a number of 
packet-switched networks have been planned and designed and some 
a.re well on their way towards tully operational status. These 
networks include: COST-11 being developed by a multinational 
European effort, which when completed in 1975, would link together 
major computer science centres in England, France, S witzerland, 
and Italy; CYCLAJ)ES, a French network linking centres in Paris, 
Rennes, Toulouse and Grenoble, planned for initial operation in 
early 1974; the Experimental Packet Sw:i:tching System (EPSS) of the 
British Post Office which has reached the advanced design stage, 
and which when completed will represent the first major packet
sw itched service offered by a common carrier; and SITA, a !'ully 
operational, special purpose network for European airlines, devel
oped and operated by Societe Internationale de Telecommunications 
Aeronautique. 

With so m� diverse networks being designed, we, the organiz
ers of the Institute, felt that it was important to bring together 
most of the networks groups for the purpose of learning each other's 
design approaches and philosophies and to evaluate each other's 
methods to determine their advantages and drawbacks. Thus the pro

gramme of the Institute focussed upon the major problem areas in 
the design and ope�ation of these networks. Topics included: 
Software and Hardware Design, Analytical Techniques, Network Design, 
Satellite Transmission, Economic Considerations, and Descriptions 
of Existing and Planned Networks. 
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In designing a computer-communication network, a large 

number of constraints must be considered so as to produce a 

reasonable network topology. Time delays, throughputs, cost, and 

reliability are some of the major factors connected with 

producing an optimum design. Each of these factors encompasses 

a large amount of detailed analysis which must be completed in 

order to check a network design. 

Since network design is such a complex task, it is important 

to provide the designer with simple criteria for evaluation. 

Such criteria permit the network designer to develop an intuitive 

feeling for his designs, and to be aware of the effects of 

modifications on its parameters. 

This paper uses a linear graph model of computer

communications networks to establish a lower bound on delay and 

vulnerability! for such networks. The networks which are 

analyzed have the property that their graphs are regular. The 

lower bound on delay is characterized by measu.ring the average 

minimum path length in these regular graphs. The vulnerability 

of these same networks is shown to be equal to the valence of one 
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of the vertices for the trivalent graphs, and it is conjectured 
that this is true for higher valences. 

Both these criteria would appear to be useful in that 
designers may measure their network against these so..called 
"ideal" networks. This paper will only describe the bounds. 
Subsequent papers will provide algorithms for construction of 
graphs which satisfy these bounds and proofs of the vulnerability 
criteria. 

BACKGROUND 

Many factors can influence the design of computer
communication networks. Constraints such as acceptable upper 
bounds on cost and delay and lower bounds on throughput and 
reliability can strongly influence the final design. In packet
switched store-and-forward networks2,3, topology can play R major 
role in satisfying the delay and reliability constraints. 

Packets leaving a source node are routed to intermediate 
nodes until they finally arrive at their destination node. At 
each node, a packet undergoes several forms of delay. These 
include processing delay, queueing delay (if other packets are 
also routed over the same channel), transmission delay, and 
propagation delay on the channel. Typically, a packet carries a 
checksum with it; thus, a packet arriving at a node cannot be 
forwarded until the last bit of the packet has arrived and the 
checksum has been verified. It seems apparent that minimizing 
the average number of nodes and communication lines a packet has 
to pass through to reach its destination can reduce delay; of 
course, an alternative routing strategy which is sensitive to 
local congest�on may not always route the packet along the 
shortest path . 

Reliability of networks can be characterized in several 
different ways depending upon the degree of refinement one 
requires in an analysis. Once a network has been designed, there 
are a variety of computational approaches to analyzing reliability 
which are neatly summarized in Frank and Chou2. According to 
Frank and Chou, present analytical approaches are computationally 
intractable for large networks and a combination of analysis and 
simulation is required to obtain estimates of parameters which 
characterize the reliability of a network and its components. 
Very little is known, a priori, about the reliability of networks 
except that duplication of components and selected over-connection 
seem to improve it. 

There are several possible strategies for reducing delay and 
increasing reliability of a network, but in this paper we 
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concentrate on the effects of topology. Specifically, we examine 
the relationship between average path length and the number of 
nodes connected directly to a node (valence of the node}. 

This paper presents a study of networks which are represented 
as linear graphs, and it is assumed the reader is familiar with 
elementary notions of graph theory5. The analysis will be 
directed to packet-switching networks, but most of the work 
presented should be applicable to networks which use other 
mechanisms for routing and switching data. The nodes or vertices 
of the graph will be the packet-switching computers, and the 
edges or links will represent the transmission lines. 

It is possible for networks of arbitrary size to maintain a 
maximum and average path length of either one or two. If every 
node in an N-node network is connected to every other node, then 
we have a network where each node has valence N-1 and the shortest 
and average shortest path lengths are one. Figure 1 shows an 
example for N=6. The reliability of this network is very high, 
since every node is connected to every other node; however, the 
number of edges is N(N-1), and thus the cost of transmission lines 

2 
would increase with the square of the number of nodes. such a 
scheme is completely impractical for even moderate values of N. 

Fully connected 6 node graph 
Figure 1 

To keep th� maximal shortest path length constant at two, one 
can join all nodes through a central node as shown in the star 
network of Figure 2. Here transmission line costs increase 
linearly with N, but reliability and capacity of the central node 
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pose serious problems. 

9 Node star net 
Figure 2 

Such extreme cases are impractical, and hence intermediate 
schemes with average valence between 2 and N-1 are of prime 
interest. The next portion of this paper examines the relation
ship between valence, averag.e path length, and reliability. This 
relationship will allow an examination of the trade-off between 
average path length and number of transmission lines in the 
network; thus, we will develop a measure of the cost of a network 
as a function of its size under a suitable delay constraint. Some 
comments will also be made on the relationship of reliability and 
valence. 

AVERAGE PATH LENGTH IN A ClASS OF GRAPHS 

This section examines the network topology which produces 
minimum average path length, and presents an expression which is a 

lower bound on average path length under reasonable constraints. 
There is a short discussion of graphs which satisfy this lower 
bound, but the actual construction techniques are discussed in 
another paper6. 

The analysis is started by considering a tree with 

m-1 
1 + v I: (v-l)j 

j=O 
(1) 

nodes in which each node has either valence V or valence 1. A 
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tree with 10 nodes and V=3 is illustrated in Figure 3· One node 
is chosen as the root node and is labelled R in Figure 3· The 
root node R is considered to be at distance zero from itself in 
the tree, the V nodes adjacent to R are at distance one from R, 

the V(V-1) nodes adjacent to those at distance one are at distance 
2, etc. For ease of expression nodes at distance m from R will be 
referred to as "nodes at level m". The levels are shown on the 
1·igh t side of Figure 3. A tree such as the one just described is 
called a complete tree since new nodes can only be added by 
starting a new level. In order to find the average path length 
from R to all nodes in the tree, it is necessary to sum all paths 
and then divide by N-1. Since �here are V paths of length 1, 
v(v-1) paths of length 2, V(V-1)2 paths of length 3, etc., the 
average path length of a complete tree with m levels is 

1 
N-1 

[ m-1 ] V i: (V-l)j (.i+l) • 
j=O 

R 

Complete 3-level Tree 
Figure 3 

(2) 

0 

2 

By removing monovalent nodes at the highest numbered level 
and their associated edges in the complete tree it is possible to 
arrive at a formula for average path length in a more general tree 
of th�s type. If the number of vertices in this tree is N, then 
the number of vertices removed is 

m-1 
1 + V i: (V-1 )j - N. 

j=O 
(3) 

Then the average path length P( N, V) in this "pruned 11 tree is 
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1 [ m-1 j P(N, V) = N-l V E (V-1) (j+l) 
j=O 

- (1 + V n-;1 
(V-l)j - N) m ] , 

j=O 

which can be written as 

One might note that 

m-1 
1 + V E (V-1 )

j - N > 0. 
j=O 

(4) 

(5) 

(6) 

and that m is the smallest integer which satisfies this inequality. 
Since 

then 

(V-l)m - 1 
V-2 

1 + v�2 [<v-l)m - 1 J - N? o. 

Also, if we use (y) to denote the least integer? y, then 

m = � logV-1 N(V-�) + 2 �' for V > 2. 

(7) 

( 8) 

(9) 

If we substitute for m, it is possible to obtain a more explicit 
relation between the average path length P(N,v), the number of 
nodes N, and the valence v. 
It can easily be seen that 

V rr;l 
(V-l)j(j+l) = V 

2 [m(V-l)m+l 
j=O (V-2) 

- (m+l)(V-l)m + 1] (10) 

and, using (7) and (10), the average path length can be written as 
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P(N,V) = _1_ [v( m{V-l)m+l - (m+1)(V-lt + 1) 
N-1 (V-2)2 

_ mv ((v-l�=2- ') + (N-l)m] 
V [ 1 - (V-l)m + m(V-2) ] + m 

(V-2 )2 ( N-1) 

= .3_[1- (V-l)
m + m(V-2) ] + m N-1 (v-2) 

Expression (11) can be rewritten, using (9), as 

P( N, V) {logV-l N(V�2) + 2} 

+ V [l _ (V-l) j logV-l N(V-2) + 2 l 

(N-l)(V-2)2 l V � 
+ (V-2) 1logV-l N(V�2) + 2 � 1 
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( 11) 

(12) 

This expression is dominated, for reasonably large N, by the 
leading logarithmic term. Therefore, the average path length 
from R to all nodes of the tree in Figure 3 is primarily 
logarithmic in N except for the case V=2 in which it is linear. 
Curves fox· P( N, V) for 2 < V < 6 and V+l < N < 1000 are shown in 
Figure 4, and these graphically illustrate the logarithmic nature 
of the average path length (and hence the delay) as a function of 
the number of nodes in the network. Table I p1·esents a few values 
of average path length for different N and V. The reader should 
note the drastic reduction in average path length between the 
cases V=2 and V:3· But an increase to v�6 for N=900 only reduces 
the average path length by a factor of approximately 21 while it 
increases the number of edges in the graph from 1350 for V=3 to 
2700 for V=6. 

This analysis presents a derivation of the average path 
length for trees similar to the tree of Figure 3· It is certainly 
the minimum for a tree joining N nodes, since any method of 
connecting the nodes would either produce the same configuration 
or would violate the valence constraint. An important related 
question is whether it is possible to construct a graph which has 
valence V and for which expression (12) is also the minimum average 
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Figure 4 Plot of P(N,v) 
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path length. Such a graph could possibly be constructed if the 
nodes of valence unity of a tree such as the one iri Figure 3 could 
be joined to make a V-valent graph such that, by choosing every 
node in turn as the root node, we could redraw the graph as a tree 
having a complete set of nodes at each of levels O,l,2, ... ,m-l. 
Since all distance sets would be identical for each root node, the 
minimum average path length from each node would be the same, and 
therefore the minimum average path length for the entire graph 
would be expression ( 12 ) . The maximum path length in such graphs 
is just m; so equation (9) shows that this quantity also grows 
logarithmically. Even if graphs with this property cannot be 
constructed for particular N and V, expression ( 12) still repre
sents a desirable lower bound on average path length, and thus 
presents information about the behaviour of average path length, 
and hence delay, as a :function of valence. 

v 

2 3 4 5 6 

8 2.29 1. 57 1.43 1.29 1.14 
20 5.26 2.37 1.95 1. 74 1. 68 

N 50 12.76 3.41 2.59 2.39 2.14 
100 25.25 4.27 3· 27 2.70 2. 58 
250 62.75 5·55 4.07 3·45 3.08 
500 125.25 6.52 4.57 3.88 3.54 
900 225.25 7.32 .5.20 4.38 3·75 

Table I 
Some Typical Values of P( N, v) 

Fortunately, we are able to construct graphs which attain 
this lower bound for many values of Nand V. The analysis of this 
problem in graph construction and the complete enumeration of many 
of the cases is discussed in another paper6. So far, graphs are 
known fol' V=3, and N=:l!, 6, U, 10, 12, ll.J., 16, 18, 20, 211, 26, 28, 
30, 34. It is also lmown that graphs do not exist for certain 
values of �. An example of such a minimllm average path length 
graph is shown in Figure 5. This is the graph for V==3 and N=lO, 
and is the well known Petersen graph. 

RELIABILITY OF NETIVORKS 

This section describes some preliminary results on the 
reliability of networks with minimum average path length. In 
particular, vulnerability of these networks is examined. 

A basic measure of vulnerability! is usually defined to be 
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the number of nodes and/or edges which must be removed from a 
network or connected graph in o;der to separate it into two 
disconnected components. An algorithm has been devised1 which 
will compute the vulnerability of a given network, but there are 
no known results to describe the behaviour of a class of networks. 
The availability of knowledge of the behaviour of such a class 
would provide the network designer with an intuitive feeling for 
what could be achieved. 

Figure 5 
A Minimum Average Path Length Graph 

for N = 10, V = 3, P(N,V) = 5/3 

The class of graphs with minimum average path length has 
many properties which make it amenable to vulnerability analysis. 

It has been shown7 that the class of cubic or trivalent 
graphs satisfying the minimum average path length constraint are 
3 - connected. This means that at least 3 nodes must be removed 
from the network before two disconnected components can be 
realized. 

If we define connectivity or node-connectivity K = K(G) as 
the minimum number of nodes in a graph G whose removal results in 
a trivial graph or a graph of two or more components, define line
connectivity A = t.(G) in an analogous fashion, and define 6 = a(a) 
as the minimum valence in a graph1 then these three quantities 
are re�ated by an inequality due to Whitney 5,8, namely, 

K(G) S f.(G) < 6(G). 
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This inequality implies that, if each node of a graph has uniform 
valence V and if K�v, then A=V also. For the case V=3, then A=3· 

We conjecture that graphs with minimum average path length 
and valence V are V-connected for V > 3· This conjecture seems 
reasonable, since graphs which satisfy the path length condition 
would have vertices "closely coupled" by edges. 

The question of separating a graph into components by 
removing a mixed set of points and lines has been studied5, 9. The 
separation of a graph G is characterized by a connectivity pair 
(a,b) which is an ordered pair of non-negative integers such that 
there is a set of a nodes and b edges whose removal disconnects 
the graph, and there is no set of a-1 nodes and b edges or a nodes 
and b-1 edges with this property. 

For graphs which are V-connected, it has been shown7 that 
there is a unique sequence of connectivity pairs which completely 
characterizes the vulnerability of the graph. The general 
expression for this sequence is 

(V=O), (V-1, 1 ), (V-2, 2) ( 2' v -2)' ( 1' v -1 ) ' ( 0' v) • 

The sum of the two entries in each pair is a constant v, and this 
means that a combination of nodes and edges whose sum is V will 
completely disconnect the graph or reduce it to the trivial graph. 

CONCLUSIONS 

This paper has studied certain properties of linear graphs 
representing computer-communication networks. In particular, an 
expression has been derived which provides a lower bound on the 
average path length of a graph with N nodes and constant valence V 
for each node. Graphs which satisfy this lower bound have been 
constructed for many values of N with particular emphasis on the 
value V=3· These graphs with minimum average path length have 
other properties which make them useful models for networks. 
Since they have nodes of constant valence, they also provide a 
convenient model for reliability analysis, In particular, for 
V=3, it has been shown that the graphs are 3-connected and that 
their complete connectivity, and hence vulnerability, can be 
specified. It is conjectured that such graphs with higher valence 
V are V-connected, If this is the case, their vulnerability can 
also be completely specified. 

This analysis describes an achievable lower bound on both 
path length and vulnerability for constant valence graphs, and 
provides a convenient norm against which the network designer can 
compare his designs. 
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