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Optimality of 2 Two-Phase Strategy for Routing in
Interconnection Networks

L. G. VALIANT

- “stract—It is shown that for d-way shuffle graphs all oblivious algorithms
zalizing permutations in logarithmic time send packets along routes twice
as the diameter of the graph. This confirms the optimality of the strategy
sends packets to random nodes in a first phase and to the correct desti-
s in the second. For the shuffle-exchange graph the corresponding route
is shown to be strictly longer than for the 2-way shuffle.

“mzex Terms—Complexity, interconnection network, parallel computer,
=z, shuffle graph.

I. INTRODUCTION

% 2 consider the problem of realizing routing requests in packet
ching networks that are sparse in connections and yet have to
woort heavy parallel traffic. The relevance of this to the design of
ogeneous highly parallel computers is well known [2], [5], [9],
_[15]. The paradigmatic case is that of realizing arbitrary per-
~ztions, There is one packet initially at every node, each with a
‘mct, but otherwise arbitrary, destination address, and the task
= route every packet to its destination simultaneously. If the net-
« has V nodes we consider it to be sparse if the number of con-
wons at each node is a constant, or proportional to log V. The aim
‘2 have every packet arrive within O(log V) time under the as-
mouons that it takes unit time for a packet to traverse a connection,
= only one packet can traverse any one connection at any time.

Souting algorithms can be distinguished as being either oblivious
sonoblivious depending on whether the path taken by a packet
==cads only on its own source and destination, or whether it depends
“=e rest of the permutation specification also. If the algorithm is
rministic then obliviousness means that for each source-desti-
~on pair there is a unique route which any packet with that
~ce-destination specification must take. If randomization is used

“lanuscript received April 2, 1982; revised August 3, 1982.
Thc author is with the Aiken Computation Laboratory, Harvard University,
woridge, MA 02138.
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by the algorithm then obliviousness means that for each source-des-
tination pair there is a fixed probability distribution (independent of
the rest of the permutation) that specifies for each path from the
source to the destination the probability that that path will be
taken.

An obvious and useful attribute of oblivious algorithms is that they
are suited to fully distributed implementations. Classical routing
methods in permutation networks are nonoblivious, for example, and
no efficient distributed implementation of them is known [3], [5]-[7],
[9]. Batcher’s sorting networks [2] are exceptional in that while being
nonoblivious they are fully distributed. Unfortunately they take
2((log V)?) steps and are not robust, for example, when the permu-
tation is only partial. Recently, Borodin and Hopcroft [4] have shown
that if we insist on obliviousness then we have to pay a heavy price
for determinism, namely a runtime of Q(/V!/2), rather than the de-
sired O(log IV), in the constant degree case.

A class of O(log V) time distributed routing algorithms was pro-
posed in [14], [15]. Analytic proofs were given of this runtime for
graphs of degree about log N. Recently, using a new technique,
Aleliunas [1] and Upfal [13] have obtained similar results for the
more difficult case of constant degree graphs. The algorithms are
oblivious but randomized. They consist essentially of two consecutive
phases. The first phase sends each packet to a random node in the
network, while the second then forwards it to the desired destination.
This method of randomization is perhaps counter-intuitive because
it makes packets travel up to twice the distance necessary. The
question arises as to whether this is merely a technical device for
obtaining analytic proofs, or an unavoidable price to pay for loga-
rithmic runtime.

In this paper we show that if the network has near optimal diameter
(e.g., the d-way shuffle has diameter log; N and indegree and out-
degree d) then any oblivious routing algorithm either takes time
Q(N°) for some € > 0, or makes packets travel at least 2 log; N edges
(i.e., twice the diameter). We deduce that the two phase strategy is
optimal in this sense for oblivious algorithms.

Conclusions can be drawn also for such graphs as the shuffle-
exchange [9], [10] that have nonoptimal diameter. Even if each edge
is interpreted as being bidirectional, giving a directed graph of in-
degree and outdegree three, it can be shown that every oblivious al-
gorithm either takes time (V<) or makes packets travel at lease 2.8
log; N edge lengths. This makes it clearly inferior to the 2-way
shuffle.

1I. PRELIMINARIES

Let G = (V, E,) be a directed graph where ¥ = {1, 2,- -+, N} is the
set of vertices and E = ¥ X V the set of edges. Let R;; be the set of
directed paths (possibly with cycles) starting at vertex i and finishing
at vertex j. If R is one such path then A(R) denotes its length, the
number of edge traversals, in it. An oblivious randomized routing
algorithm associates with each pair (i, j) € ¥V X V a random variable
Xj; that takes values in R;;. For a path R, Pr(X;; = R) is the proba-
bility that the algorithm sends a packet originating at i and destined
for j via the path R. Clearly the sum of Pr(X;; = R) overall R € Ry
is unity. We define the maximum route length of the algorithm to
be

ije
RGR,'J'
Similarly, the mean route length is M/N? where
M=% (MR)Pr(X; = R)).
ijev
ReRy

We suppose that the indegree and outdegree of every vertex in G
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than each individual programs. Each trace in a program mix will have
an equal weight, regardless of the tota] number of instructions in the
programs when they are aggregated to obtain a normalized statistic,
say sequence length, for the mix, Thus, each program is regarded as
a valid sample of programs of its class, The maximum length of a path
was limited to 64 instructions for Programming reasons.

A. Paths

On the average, each trace in the FX/S mix consists of 1.2 thou-
sand unique paths, each of which was repeated 616 times, totaling
720 thousand paths. An Instruction on the System /370 occupies two,
four, or six bytes of memory depending on the instruction format. The
path length in bytes is defined to be the total number of bytes which
instructions in a path occupy. The path length in bytes will be pre-
sented in parentheses in the sequel as well as the path length in in-
structions. 90 percent of al] paths were less than or equal to 15 in-
structions (36 bytes) with a mean of 6.7 instructions (23.8 bytes).
Each of the CX mix had about a thousand unique paths, each of which
was repeated 185 times amounting to 5.8 million paths in totzl. Pathg
of the CX mix were much shorter than those of the FX/S mix; 90
percent of all paths are shorter than or equal to 9 instructions (38
bytes) with the mean of 4.3 instructions (17.3 bytes). Note that these
data can be used as 2 guideline when the size of an instruction buffer
is to be selected.

B. Sequences

There are about 150 nonprivileged instructions which a program
in problem state can issue. Of those only about ten Instructions
(branch instructions, supervisor call instruction, and execute in-
struction) can terminate a sequence when it does not reach the
maximum length of 64 instructions. Bven 80, there still exist 1,400
(=140 X 10, 196,000 (=140 X 140 X 10), and 27 440 000 (=140
X 140 X 140 X 10) possible distinct sequences of two, three, and four
instructions, respectively. However, only a small subset of possible
distinct sequences are actually used. Fig. 1 shows the total number
of distinct sequences in a mix as a function of the sequence length SL.
It reaches a maximum of 272 when SL = 4 for the FX/S mix, 257
when SL = 4 for the CX mix. Then, it decreases gradually as se-
quences become longer. More than half of all sequences are shorter
than 8 and 6 instructions for the FX/S and CX mixes, respec-
tively.

An interesting and Practically useful question is how many distinct
instructions in the distinct sequences or how many distinct sequences
themselves are needed to cover, say 95 percent of all instructions. To
answer this question, distinct sequences were sorted in descending
order of the number of instructions they cover. The cumulative dis-
tributions are shown in Fig. 2. Cumulative distributions of sequences

delays on performance depends on sequences and their execution
frequencies, simulation costs can be significantly reduced by using
(as input) relatively few sequences; these may adequately represent
the entire instruction execution.

Paths and sequences have been studied for each program mix as
a whole, assuming that programs in a mix are similar to each other.

Here, we will investigate the similarity within a mix quantitatively.
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R)/(n —1). Since R was computed to be about 0.5 and 1 = 10 for
FX/S and CX mixes, we estimate » = ().56. Hence, we may say
roughly half of the distinct Sequences in a program are commo=
a program mix, E

IV. CoNnCLUDING REMARKS

The measurement results of traces of the scientific and commers
programs have shown that most paths are very short and that the W
are relatively few distinct paths in a program. There are far fe
distinct sequences than distinct paths. It was found that only a sm
subset of all distinct sequences are responsible for most instruc
execution.

This shows that it is possible to obtain a very accurate simul
results of, say, pipelining by using a small subset of most comm
Sequences as an input to a simulator. Since there are relatively
distinct sequences, a simulation program can still run considers
faster even when all distinct sequences are fed into the simulator x -
when the original trace is used. For example, a detailed pipe 1
simulator can run about five hundred times faster without losing =
accuracy in such a case [11].
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is bounded above by a constant d. For vertices i, j we define

d(i,j) = min {A(R)}.
ReRyj

Finally, we define the diameter function D for g = 0 to be D(g)
= max {DV(g), D~(q)] where

D*(g) = max {|{j|d(i, /) < ¢}|}, and

D~(g) = max {|{i}d(i, /) < q}|}.
For our results we need just one elementary fact about matrices.
Lemma: If A is an m X m matrix of real numbers such that

L Aj=X
i
then for some permutation ¢ on{l, - -, m}
Z: A; oli) = = X/(2m — 1).

Proof: Suppose that the largest element of 4 has indexes i1, j;.
Let o(iy) = j; and let

Xy =A!1J1+ Z AI1J+ oL, A‘Jl
FED i)

= (Zm o ])AflJl'

Then, the matrix obtained by removing row i; and column j; from
A has elements that sum to X — X; = X — (Zm — 1)4; .

We repeat this process m — 1 times for the submatrices so con-
structed successively until ¢ is defined everywhere. We obtain that

0=X-X - Xo— " —XpZX—-(2m— 1)(214,"0([))
from which the result follows. O

III. RESULTS

The lower bound result depends on the diameter function D of the
graph and on no other property of it.

Theorem: If G is an IV vertex directed graph with diameter function
D then for any oblivious randomized routing algorithm that realizes
arbitrary permutations the following hold.

a) If the maximum route length is 2¢ then for some permutation
and some vertex k the expected number of packets passing through
k is at least (N — D(1))/2D(t).

b) If the mean route length is 2¢, then for some permutation and
some vertex k the expected number of packets passing through k is
at least

(E/2)N — D1+ €) !
e { 2D(1(1 + €))

Proof: For the first bound let p;jr be the probability that “a
packet originating at 7 and destined for j passes through vertex k
immediately after having traveled along exactly ¢ edges.” Clearly,
for any fixed ¢,j if d(i,j) = 1 then

%pfjk =1,
Hence,
2 |{(, )4, j) = 1]
= N2 — ND(1).

ZZP
L

We can therefore pick a k& such that
Z:Z_pijk ZN_D(I)- (*)
Py

Since at most D(¢) vertices are within distance ¢ of k in either the
forward or the backward direction, p;jx must be nonzero for at most
D(t) values of i and at most D(z) values of j. Let P bea D(t) X D(1)
submatrix of {p,-jk] 1 <, j < N} that contains all the nonzero ele-

ments. Applying the lemma to P and using (*) gives that for
permutation o

2 Py = (N — D))/ (2D(2)).
, IV} that extends ¢

Z Pi,a(i).k = (N o D(I))/(ZD(I))

Hence, for any permutation ¢ on {1, - -

We conclude that when the routing algorithm realizes the
mutation o the expected number of packets travelling througs =
k exceeds the above quantity.

To obtain the bound for the mean route length » = 2 we notz
by definition,

Famp®

€
> Prx; =R) = and

id R

2 A(R)-Pr(X; = R) = N°r.

iR

Hence, for any e such that 0 < e < 1,

3 Pr(Xy = Rand MR) <r(1+6) = (/N> (=
iy

for otherwise

2 PriX;=Rand MR) = r(l +¢€)) = (1 —¢/2)N?
iJ.R
and then

2 AR)-Prix; =

ij.R

Rand A(R) = r(1 + ¢)) =

(1+€)(1 — ¢/2)N%r >

which would contradict (**).

Now, let p;j be the probability that “a packet originating at « &
destined for j gets a route of length no more than #(1 4 ¢€) and pass
through & immediately after having travelled along exactly 7{1 —
edges of this route.” Since there are at most ND(z(1 + ¢)) paxs

) such that d(i, j) < t(1 + €), if we exclude these from the summ: -
(*#*+*) we get <
=
> A(R):Pr(X; = Rand 1
iR =
AR) <r(l+ eyand d(i, ) = 1(1 = s "
= (e/2)N? — ND(t(1 + ¢)). =
By the definition of pjj«, the left hand side of the above ineqe i ot
equals -
e
; ? % Dijk- !
Hence, for at least one of the N possible choices of k E
S5 puk = (2N = De(1 + €)).
L
Now it follows exactly as in the first half of the theorem tha:
can pick a permutation o such that
Tof
2 Piotk Z [(6/2)N — D(t(1 + e))]/2D(¢(1 + €)). p 2
i L 4
We conclude that when a routing algorithm with mean route lesz
r = 2¢ realizes this permutatlon then the expected number of pacis=
passing through & is at least the above quantity. =
T
IV. APPLICATIONS sad

The d-way shuffle [15] has indegree and outdegree d, N = &
nodes, diameter # = logy N and D(g) < (d9F - 1)/(d — 1) <d=
Part a) of the theorem implies that any algorithm with maximal rowss
length 2(1 — i) can cause, for some permutation and node, expeca=e
traffic
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hat for szL 40=wn+1

?_-(';I~y)n+l =l
_ | €2(2vm) if p is a constant
Q((log N)¥y if u = (k logg n)/n

~ ~ce at most d packets can leave a node simultaneously, these
wites are lower bounds on the expected runtime of the algorithm
‘=2 bad permutation.
_=1 b) of the Theorem implies that if the mean route length of an
~=ithm is 2(1 — w)n then the expected traffic through some node
2e as high as

is g

*=s the p

Tough n

Edn/z Ry d(l+e)(17p)n+l
2d(l+£)(|—f.l.)ﬂ+1

€ note th

sosing € = p/2 gives a lower bound of
Q(Ve/2) if p is a constant
Q((log N)K) if u = (2k logy n)/n

% = conclude that the two-phase routing algorithm suggested in
* s optimal in that it has maximum route length 27 and runtime
aly 0(log N) [1].
e shuffle-exchange graph was suggested by Stone [11] as being
. -l= for several natural algorithms. For realizing permutations,
.er, it is inferior to the 2-way shuffle. To make the comparison
~w=ard the 2-way shuffle, in the standard way, as a directed graph
—~degree and outdegree 2. To be as generous as possible to the
7= exchange, which is normally defined as an undirected graph
~===ce three, we interpret all the edges to be bidirectional so that
- =ode has indegree and outdegree three. The naive observation
« for N = 27 nodes the 2-way shuffle has diameter n, while the
exchange has diameter 2n. We have seen that a good algo-
= “or the former needs to have route length 2n. What we can show
. that any good algorithm for the shuffle-exchange must have
= longer route length, at least 2.87.
== nodes of the shuffle-exchange are labeled with the binary
g s ~.=ntations of the numbers 0,1, -+, N — 1 respectively then we
=ard the three edges emanating from a node as a) “left shift on
\w=ary representation,” b) “right shift on the binary representa-
~ 2nd ¢) “exchange the least significant bit.” Hence any, directed
2= be characterized by a sequence of symbols from the alphabet
e} where 5 denotes a shift, e denotes an exchange, R denotes
== shifts to follow, before the next L, are all right shifts, and L
< that the shifts to follow, before the next R, are all left shifts.
.=zl such string is RssesLsseseRse. For a minimal path we can
== that e’s never occur consecutively. Also, the reader can prove
~ he following.
" —ma: For any pair of nodes in the shuffle-exchange graph there
“sortest path in which the shifts reverse directions at most

8)d /24—t — 1 /2 =

- (*

N2

s=c2. to compute the function D(g) for the shuffle exchange we
= counting the number of sequences of S's’s and E e’s where

B ; 5 o S+1
- = = g and no two ¢’s arc consecutive. This is just g |

-~z for the shift indicators and summing gives
S=q S+1
< ¥ e[t

S=4/2 g—S
“=d an upper bound let § = (1 + «)g/2. Then, g —S > (1 =
© Lsing Stirling’s approximation we get that the largest term

25
([ + a)(]-l—u)q/z
(1 — a)1=24/2(2e)q

« equals 1/~/5. This gives an upper bound on D(g) of 2P4 for
“ciently large 1, where 8 = 0.71. Hence, we can deduce from
“eocem a lower bound of 212/3 =~ 2,87 on the maximal and mean
“z=zth of any oblivious 0(log V) time algorithm.

+. we note that for the n-dimensional binary cube the di-

863

ameter is so far from optimal that our technique yields no lower
bounds. It is reasonable to conjecture that the bound does not hold
and that efficient algorithms with route length about r rather than
the 2n suggested in [14], [15] exist. The obvious candidate is the
following. Fix a small € > 0. For each pair (i, j) of nodes guess a
random k under the constraint that d(i, k), d(k, j) < (n+ €)/2. The
first phase now routes the packet from i to k, and the second from k
to .
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On the Minimization of Wordwidth in the Control Memory of a
Microprogrammed Digital Computer

CHAMARTY D.V.P. RAO AND
NRIPENDRA N. BISWAS

Abstract— This paper deseribes a new method for reducing the wordwidth
in the control memory of a microprogrammed digital computer. The method
requires the computation of maximal comparibility classes (MCC’s) of only
a subset of subcommands unlike the existing methods in which MCCs of the
entire set of subcommands are used. An algorithm has been given to obtain a
near minimal solution by appropriate grouping of the MCC’s, The necessary
modification of the algorithm has also been presented to deal with large size
microprograms.
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