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l. INTRODUCTION 

In a computer network, a routing method is required in 
order that the nodes can communicate messages to each 
other. Normally this is provided by a routing table of size 
O(N) at each node, where N is the number of nodes in the 
network. The table shows the link(s) to be traversed for 
each destination node. Santoro & Khatiba have shown 
that routing can be achieved without the need for any 
routing tables at all, provided the nodes of the network 
are suitably labelled and the routing is restricted to a 
spanning tree. The technique has subsequently been 
extended by van Leeuwen and Tan5 to obtain a method 
that utilizes every link of the network but requires tables 
of size O(d), where dis the degree of a node. 

In this paper we consider the intricate question of 
generating optimum or near-optimum routing schemes 
of this kind, and the impact of utilizing any such scheme 
on the message complexity of common distributed 
network problems. 

Basically the idea presented in Ref. 5 is to label the 
nodes and the edges of the graph (network) by labels from 
a linearly ordered set, say {i0 , i1, ... , iN~ 1 }, in a suitable 
manner. The labels i0 to iN~I are cyclically ordered. 

An interval labelling scheme (ILS) for a connected 
N-node network G is a scheme for labelling the nodes and 
links such that (i) all nodes get different labels and (ii) at 
every node each link receives a distinct label. The labels 
assigned to the links at node i are stored in a table at node 
i. To send a message m from node i to node j we use a 
'recursive' routine SEND (i, j, m) where at each 
intermediate node k, starting with node i, node k will look 
up its table and find link r:x8 such that the interval [r:x8 , 

r:xs+ 1) contains}. Node k then sends message m down the 
link labelled r:x8 , and the whole process is repeated until 
message m does arrive at node j, if ever. The routine can 
be described simply as follows: 
procedure SEND (i,j, m); 
begin 

if i = j then process m 
else 
begin 
.find label r:x8 in the labelling at node i such that 
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end. 

r:x8 ~ j < 01:8 +1; i: = the neighbour of i reached over 
link r:x8 ; SEND (i,j, m) 
end 

One cannot just pick an arbitrary scheme and hope that 
it will route a message correctly, as the message may never 
reach its destination due to a cycle in the route. An ILS 
is valid if all messages sent from any source node arrive 
at their destinations. Most ILS are in fact not valid. In 
Ref. 5 it was shown that there is an O(N2) algorithm to 
determine whether an ILS is valid or not. The main result 
of Ref. 5 is the following. 

Theorem 1.1 

For every network G there exists a valid interval labelling 
scheme. 

In this paper we study various techniques for 
generating valid ILS that are optimum, or othe~~ise 
sufficiently flexible to allow for, for example, the additiOn 
of nodes or the joining of networks in an easy manner. We 
also study the effect of having a valid ILS available in a 
network on the design and the complexity of distributed 
control problems. 

We briefly digress and describe the particular ILS th~t 
was used in Ref. 5 to prove Theorem I. I. The scheme IS 

generated by an algorithm that traverses G and assigns 
labels oc(u) to the nodes u that are visited. The algorithm 
is based on the technique of depth-first search,4 and 
works as follows. 

Start at an arbitrary node and number it 0, pick an 
outgoing link and label it I (by which we mean that ~he 
corresponding exit at node 0 is labelled I), follow the hnk 
to the next node and number it I. Continue numbering 
nodes and links consecutively. If a link is encountered 
that reaches back to a node w that has been numbered 
previously (a link of this type is call~d a. frond), it is 
labelled by oc(w) instead and another hnk IS selected. If 
a node is reached that admits no forward link any more 
(a node of this type is either a leaf or otherwise 'fully.' 
explored) and i is the largest node-number assig~ed until 
this moment, we backtrack and label every hnk over 
which we backtrack by (i + I) mod N until we can proceed 
forward on another link again. There is a slight twist to 
the labelling of links in this phase in case one backtracks 
from a node v that has a frond that reaches back to 0. 
The frond will have label 0 at v, and just 
when i happens to be N- I the same label would be 
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assigned to the link from v to (say) u over which one 
backtracks. The conflict is resolved by assigning the label 
a(u) to the link instead. In order to do this right, the 
algorithm marks a node as soon as it finds that it has a 
frond to 0. (It should be intuitive now that the ILS so 
constructed does its routing over the depth-first search 
spanning tree, with additional shortcuts over the fronds.) 
The following procedure makes the algorithm precise. 
Comments contain additional explanation. 

{N is the number of nodes, and i a global variable 
ranging over 0 .. N- 1 which denotes the next node
number or edge-label that is to be assigned. The variable 
i is initially set to 0. For convenience we use a boolean 
array MARK to keep track of the node(s) that have a frond 
back to 0. MARK is initially set to false. The procedure 
starts out at an arbitrary node x of the network, and is 
called as LABEL (x, x).} 
procedure LABEL (u, v); 
{u and v are nodes, u is the father of v in the depth-first 
search tree being constructed, and vis being visited.) 

begin 
{assign number i to v} 
a(v): = i; 
i: = (i+l) mod N; 
for each node w on the adjacency list of v do 

begin 
if w is not numbered then 

begin 
{proceed forward and add the link v, w to the 
depth-first search spanning tree} 
label/ink v, w at v by i; 
LABEL (v, w) 

end 
else 

begin 
{link v, w is a frond unless w = u. Mark v if 
the frond reaches back to 0} 
if w i= u then 

begin 
label/ink v, w at v by a(w); 

end 
end 

end; 

if a(w) = 0 then MARK[v]: =true 

{backtrack over the link v, u unless v = x} 
if vi= x then 

begin 
if i = 0 mod N & MARK[v] = true then 

label/ink v, u at v by a(u) 
else 

label/ink v, u at v by i 
end 

{end of the procedure} 
end; 
We shall refer to the ILS obtained by applying the 
procedure LABEL as the DFS scheme, because it is 
generated during a depth-first search. Recall that 
depth-first search visits the entire network, that the links 
over which the algorithm moves 'forward' (and back
tracks again at a later stage) together form a rooted 
tree spanning the network, and that fronds always point 
from a node to an ancestor of the node in this tree. 4 In 
Ref. 5 it was proved that the DFS scheme is indeed a valid 
scheme for the purposes of routing. 

We note that the DFS scheme is in fact valid when the 

labels are chosen from any linearly ordered set {i0 , i 1 , ... , 

iN_1}. Any general ILS will have an equivalent form using 
labels from {0, ... , N -1} by the natural correspondence 
between {i0 , ••. , iN_1} and {0, ... , N-1}. An ILS 
is called normal if the set of labels is indeed the set 
{0, ... , N-1}. 

In this paper we further explore the theory of general 
interval labelling schemes and its various implications for 
network problems, and apply it to solve some common 
distributed problems. In Section 2 we look at optimum 
schemes for some common networks such as rings and 
grids. Various concepts of 'near optimality' are 
introduced. In Section 3 several insertion and joining 
techniques are given to form a larger network that still 
preserve some desirable properties of a given ILS. Section 
4 contains applications of ILS to solve for, for example, 
the leader-finding problem and the spanning-tree prob
lem in substantially fewer message-exchanges than are 
required in general networks such as rings without the 
effect of a valid ILS. The results are intriguing from the 
point of view of distributed algorithms, as they show that 
implicit information can severely affect (lower) the 
message complexity of distributed problems. Finally 
some open problems are stated in Section 5. 

2. OPTIMUM SCHEMES AND RELATED 
CONCEPTS 

Ideally we would like an ILS not only to be valid but 
also able to deliver messages over the shortest possible 
routes. We call such a scheme optimum. The DFS scheme 
as discussed in Section 1 is a valid scheme, but it is far 
from optimum. For instance, a DFS scheme will not label 
a ring with more than four nodes optimally. 

In the following, we list some common types of 
network and present optimum schemes for them. For the 
sake of simplicity we assume all ILS to be normal 
throughout this section. 

(i) Trees. A DFS scheme gives an optimum scheme 
here. Santoro & Khatib3 use a similar depth-first search 
of the tree, but with a different ordering of labels. 

(ii) Complete graphs. A DFS scheme again suffices 
here, since all links are either direct links or fronds and 
will deliver messages in one hop. 

(iii) Rings. An optimum scheme is given in van 
Leeuwen & Tan.5 Basically the idea there is to orient the 
ring in one direction and label the nodes consecutively 
from 0 toN- 1. Then for each node i, label the left link by 
(i+ 1) mode Nand the right link by (fN/2l+i) mod N. 

(iv) Complete bipartite graphs. Let the set of nodes of 
the graph be separated into two parts, A and B. Label the 
nodes consecutively from 0 to N- 1 in any order. Label 
the links by the node numbers they are connected to. For 
instance, if there is a link connecting node i and node j, 
label the link at node i by j and that at node j by i. Thus, 
by construction, there exists a direct hop from each node 
in one partition to all the nodes in the other partition. If 
nodes i and j are in the same partition and need to 
communicate then, by the circular nature of the interval 
order, there must be a link that carries the message to the 
opposite partition. From there it only takes one more 
hop to reach node j. So only one hop is needed to go 
across the partitions and two hops within the same 
partition, and this is optimum. 

(v) Grids. we consider several grid configurations. 
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(va) Grids with no wrap-around. Let G be a rectangular 
grid of M rows and N columns. Label the nodes 
consecutively by rows from left to right, so that the first 
row will be labelled 0 to N- I, the second row N to 
2N- I, and so forth. Informally each link in the four 
directions (if there is any) will be labelled as follows. 
The up link is labelled 0 and the down link is labelled 
with the node number of the leftmost element of the next 
row. The left link is labelled by the node number of the 
leftmost element on the current row and the right link by 
the next consecutive element on the right. More precisely, 
for each node i, if there exist the appropriate links, label 
the up link by 0, the down link by N + N .[if Nj, the left 
link by N .[if Nj and the right link by i +I. Note that the 
up link for all nodes is 0, all the down links for each 
row are identical, and so are the left links for each row. 
Thus we have the interval structure as shown in Fig. I, 
where r0 is N .[if Nj and (r+ 1)0 = N .[if NJ+N. 

0 up 

down (r + 1)0 r0 left 

i + I right 
Figure 1. 

We now show that the scheme is optimum by referring 
to the interval structure of Fig. 1. Suppose node i needs 
to send a message to node}. Assume first that i and} are 
on the same row of the grid, i.e. r 0 ~ j < (r + 1 )0 . If i < j 
then} E [i +I, (r + 1)0) so the message is passed to the right 
and kept on passing to the right until node j is reached 
because j must belong to one of the successive intervals 
[i+2, (r+ 1)0 ), ••• , [(r+ 1}0 -1, (r+ 1)0 ). Similarly, ifi > j 
then j belongs to interval [r0, i+ 1) and the message is 
passed to the left until it arrives at j. If i and j are not on 
the same row then jE[O, r0] or }E[(r+i)0, 0) so the 
message is passed up or down to the next row respec
tively. After the next row is reached and ifjis on that row, 
the previous process is applied and j is reached. If j is not 
on that row the message must be passed on to the next 
row in the same direction, i.e. once the message is passed 
up the link it cannot at any point be passed downward 
again and vice versa. This is because each r0 keeps on 
decreasing for each row and (r+ 1)0 keeps on increasing 
and the intervals [0, r0 ) and [(r+ 1)0 , 0) are disjoint. Thus 
eventually the message will arrive on the row on which 
j is located by vertical travels, and from then on by 
horizontal hops to node}. The route the message travelled 
is not the only shortest one possible, but it is optimum. 

(v b) Grids with column-wrap-around. G is a rectangular 
grid of M rows and N columns, but each column is 
extended so as to be a ring also. The nodes are labelled 
consecutively as in case (va). The left and right links for 
each node remain identical as in (va). Label the first 
column using the optimum scheme for a ring, then copy 
the up and down links of the first column to remainder 
columns. Precisely, the left link is N .[if Nj, the right link 
is i + 1, the down link is (N + N .[if Nj) mod (M. N) and 
the up link is (N. [M f21 + N .[if Nj) mod (M. N). The 

forbidding appearances of the vertical links are harmless. 
They are just straightforward translations of the ring with 
M elements. Recall the formulae there are (i + 1) mod M 
and (fMf2l+i)modM. Now [ifNj plays the role of i, 
and since there are N columns, multiplying both 
equations by N yields the desired links. For a message to 
reach node j from node i, assuming they are on the same 
row, the message will travel by horizontal hops to its 
destination as before. If i and} are not on the same row 
the message must go round the ring until the correct row 
containing} is reached. This can be seen by applying the 
proof for optimum ring networks, where i now stands for 
the ith row, so that the row containing} is found in the 
most optimum way. Then the message is delivered by 
horizontal hops. 

Unfortunately the same technique does not work for 
grids with row and column wrap-around. This is because 
we lose the circular ordered effect of the ring interval on 
a row. So the question of an optimum scheme for row 
and column wrap-around remains open. 

One way to salvage the above situation is to introduce 
multiple labels on a link. 

Figure 2. 

Definition 

A k-labelled ILS is an ILS where (i) each link may receive 
up to k distinct labels and (ii) at every node all the 
link-labels must be distinct. 

Thus the usual ILS is simply a 1-labelled ILS. We now 
show how this concept can be applied. 

(vc) Grids with row and column wrap-around. Let G be 
a grid of M rows and N columns with each row and 
column extended to be a ring. The idea is to label the 
nodes as before, then label each column as a ring as in 
case (vb), following the first column, and finally to label 
each row also as a ring. However, this naive approach 
does not give us even a valid scheme. For instance on a 
5 x 5 wrap-around grid, the optimum ring on the third 
row is as shown in Fig. 2. 

It is not possible for node 13 to send a message to node 
I 0 via the usual circular route. The message has to go up 
and come down again, forming a cycle. This is solved 
by labelling link (13, 14) by both 14 and 10. The label
ling scheme is then as follows. Label the nodes 
consecutively by rows. Label the up link by 
([Mf21. N +lifNj. N)mod (M. N), the down link 
by (N+N.[ifNj)mod(M.N), the left link by 
([Nf2l+i)modN+N.lifNj and the right link by 
(i+ l)modN+N]ifNj. Now, for each row r, r = 0, ... , 
M- I, check each element i, i =1= rN. If the horizontal 
links do not contain rN as a label, pick the horizontal 
link with the highest label and add label rN to it. We thus 
have a two-labelled scheme. Note that the previous two 
grids of cases (va) and (vh) all have r. N =[if Nj. N as 
their left links, so that we have no such problem. By 
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construction, for every row r = 0, ... , M- 1, and for 
every node ion that row r, node i has a link-label rN and 
also (r + 1 )N mod (MN). Furthermore, all the horizontal 
link-labels are within this interval. Thus when a message 
travels from node i to node}, it first reaches the correct 
row r, such that j is on that row. Then it reaches j by 
horizontal hops. The scheme is optimum. 

We have only given optimum schemes for a few types 
of common graphs. In general it is not clear how one 
would construct an optimum scheme for an arbitrary 
graph, if such a scheme is possible. However, it can be 
quite easy to do this for multiple-labelled schemes. 

Proposition 2.1 

For any graph with N nodes, there exists an (N- 1 )
labelled ILS that is optimum. 

Proof 

Label the nodes somehow from 0 to N- 1. For each node 
i, pick a node j E [0, N- I]. Find a path to j that is 
optimum, say via link (i, p). Then label link (i, p) by j. 
Do this for allj,j of. i. A maximum of N- !labels suffices. 

D 
Note that the above (N- 1 )-labelled ILS is nothing but 

the traditional routing table in disguise, with one label 
for each node. Thus the multiple-labelled ILS is just a 
generalization and simplification of the traditional 
routing table. We are trying to achieve the same goal 
with fewer labels! 

In the following we introduce a few concepts that are 
related to optimum schemes, though they are strictly 
weaker than optimality. Observe that in a DFS scheme 
a node may not necessarily send a message addressed to 
its neighbour directly in one hop. 

4 3 

0 

3 

0 
2 0 

Figure 3. 

Definition 

An ILS is a neighbourly scheme if it is valid and all 
messages for a neighbour are delivered directly in one 
hop. 

An optimum scheme of course is a neighbourly scheme. 
The converse is false, as shown by the following example 
in Fig. 3. The scheme is neighbourly, but not optimum, 
since SEND (0, 4, m) traverses the path 0---> 2---> 3---> 4 
instead of the shorter route 0 ---> 1 ---> 4. 

Lemma 2.2 

The only nodes in a DFS scheme that do not necessarily 
deliver messages to neighbours in one hop are those 
nodes k that have fronds to nodes i with i of. 0, i < k. 

Proof 

If j and k are neighbours and link (}, k) is a frond in 
the spanning tree of DFS, then by construction link (}, 
k) is labelled k and link (k, J) is labelled j, so messages 
are delivered in one hop. So assume j and k are 
neighbours but link(}, k) is not a frond. If}< k then the 
label of link (}, k) must be k (by the labelling procedure 
of DFS), so messages get there in one hop from j to k. 
Thus we only have to consider SEND (k, j, m). If there 
are no fronds coming down from k to i where i < j link 
(k, j) labelled b is a backtrack edge. Also there must be 
a link labelled k + I emanating from k (by the labelling 
procedure of DFS). Thus j E [b, k +I), and the message 
gets routed to j via link (k,j) labelled b. If there is a frond 
coming down from k to i, but i = 0, then by the labelling 
procedure of DFS, link (k,J) must be labelled by j, so that 
message gets to j in one hop. The remaining case is when 
k has a frond coming down to i and no i = 0. Let the 
backtrack link be (k, j) with label b. Then}¢ [b, i) since 
i < j < b or b = 0, so j ¢: [0, i). Thus the message cannot 
come down from k to j via link (k, }). It has to be routed 
via one of the fronds, link (k, i). D 

We use a multiple-label scheme to salvage the above 
situation. 

Theorem 2.3 

There exists a two-labelled neighbourly scheme for any 
arbitrary graph. 

Proof 

We first do a DFS scheme on the graph G. By Lemma 
2.2, the only concern are those nodes k that have fronds 
going down to i with i < k but no i = 0. For each such 
k and its neighbour j via the backtrack link labelled b, 
we double-label link (k, j) by b and j. We thus have a 
two-labelled scheme that is neighbourly. To show that 
the resulting scheme is valid, we only have to be 
concerned with those special k-nodes. Let i be the 
maximum frond node in the above situation. Then 
normally messages to any node t E [i, k + 1) will travel via 
link i. With the introduction of the new label j, with 
i <j < k, those messages to tE[j, k+ 1) get transferred 
to node j first. So we only have to make sure that any 
message from k to IE[}, k+ I) is routed correctly. Now 
j "'( t < k, so it is not possible for the message to return 
to node k again via link (}, k) labelled k. Furthermore, 
since t ?: }, the message will be routed to the subtree of 
the DFS spanning tree rooted at}. The message will never 
encounter the situation of Lemma 2.2 again on the way 
as it will be an upward climb. As the DFS scheme is valid, 
the message will eventually reach t. D 

Another way to salvage the situation in Lemma 2.2 is 
to restrict the way the DFS labelling algorithm proceeds 
in generating the spanning tree. We would like the 
depth-first search to proceed in an orderly manner, 
exploring all the sub-branches as much as possible before 
encountering a 'backward' frond. 

Definition 

A DFS scheme is orderly if, whenever there is a 
'backward' frond from node k to node i and x > k, either 
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x must belong to the subtree of the DFS tree with k as 
a root or x does not belong to the subtree with i as a root 
in the DFS tree. This means that if xis explored after k, 
x must be further 'up' the tree from k or further 'down' 
the tree from i. 

Lemma 2.4 

In an orderly DFS scheme, if there is a backward frond 
from node k to node i and the backtrack link at k is 
labelled b, the backtrack link at i is also labelled b. 

Proof" 

Since b is the label for the backtrack link, b does not 
belong to the subtree with k as a root, which implies that 
b does not belong to the subtree with i as a root also. Thus 
every backtrack link from ito k must be labelled b. D 

Theorem 2.5 

There exists a neighbourly interval-labelling scheme for 
every graph that has an orderly DFS scheme. 

Proof 

We first relabel the given orderly DFS scheme. For each 
node k that has a backward frond to some nodes i, we 
relabel two links. First the label on the backtrack link is 
changed from b to j, the father of k in the spanning tree. 
Secondly, we find the smallest frond link i and relabel it 
from i to b at k. 

Claim (i). The scheme is neighbourly. 
By Lemma 2.2, we only have to examine nodes k that 

have a backward frond. Let i, j, k and b be defined as 
above. SEND (k,j, m) now delivers message m tojin one 
hop. SEND (k, i, m) used to deliver messages to i via the 
frond link in one hop also, but now we have changed the 
link to b. Suppose there are frond links to i 1, i2 , ••• , is 
with i = i1 < i2 < ... < i8 . Now iE[b, i2] or iE[b, J] 
depending on how many fronds there are. In either 
case, the message to i gets there in one hop. The rest 
of the links are unchanged, so the scheme remains 
neighbourly. 

Claim (ii). The scheme is valid. 
Any message sent to x will arrive properly if it does not 

pass through a node k with a backward frond, since the 
DFS scheme is valid. Therefore we only need to consider 
SEND (k, x, m). Only two links have been relabelled at 
k. Messages for most nodes x still follow the same link 
and lie in the same interval, with the exception of those 
in the intervals [j, k) and [b, i1). Messages for those nodes 
in [j, k) used to follow the frond link is (or i, if there is 
only one frond) down to node i8 (i1) and then 'up' the 
tree to their destinations. Now they only have to take one 
hop tojand go from there. Thus the new scheme bypasses 
the intermediary, and cuts down on the actual distance. 
Messages for the other nodes in interval [b, i 1) used to 
climb' down' the tree from node k to node i1 first and then 
go to their destinations. Now they take one hop to i1 and 
go to their destination from there. So the actual distance 

gets smaller once again. Note also that after a message 
traverses down the two links it cannot go back up the link 
in the next hop. Thus after reaching node k, the message 
still follows the path of the DFS scheme, and in some 
cases it even shortens the path. D 

Corollary 2.6 

There exists a neighbourly scheme for any Hamiltonian 
graph. 

Proof 

Apply the DFS labelling algorithm to the Hamiltonian 
graph G following a 'hamiltonian traversal'. The 
resulting DFS scheme is orderly. The result now follows 
from Theorem 2.5. D 

Finally, we introduce another concept that measures 
the effectiveness of an ILS. Ideally, if a node blindly sends 
out a message to itself it should receive the message back 
in minimum time. The number of hops the message takes 
is the index of the node. The index of an ILS is the 
maximum of indices of all nodes. Clearly, the smallest 
possible index is 2. Both optimum schemes and 
neighbourly schemes necessarily satisfy the 'index 2' 
condition. The converse is not true. 

Proposition 2.7 

A D FS scheme is of index 2. 

Proof 

Suppose node i wants to send a message to itself. If the 
link that it traverses is a frond link to node j, then by 
the construction of DFS link (j, i) is labelled by i, so the 
message immediately returns to i. Suppose the link is not 
a frond. Then it cannot be a forward link in the spanning 
tree generated by the depth-first search algorithm, since 
all forward links have labels}> i. Thus the link must be 
a backward link to node k. This means that k has been 
numbered before i, so i > k and thus link (k, i) must 
be labelled by i, and the message returns to i again. D 

A DFS scheme also has the property that each node 
i has a link labelled (i + 1) mod N. Such an ILS is called 
sequential. All the optimum schemes presented earlier are 
sequential, with the exception of the ILS for the complete 
bipartite graph. Thus an optimum scheme need not be 
sequential. 

3. INSERTION AND CONNECTION OF 
SCHEMES 

Consider the practical situation in which a network 
expands and grows by incremental insertion of nodes 
or by connection to other networks. In this section we 
study how a network with a given ILS can 'grow' by 
incremental insertion of a node or by connection to 
another network with a given ILS so that the combined 
network still has an ILS of some desired form. 

Central to the insertion and connection problem is the 
concept of cyclically shifting a node number until it 
reaches a desired value. We again assume all ILS to be 
normal. 
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Proposition 3.1 

Given a valid ILS for a network G, it remains valid after 
cyclically shifting the labels of all nodes and links by a 
constant. 

Proof 

Suppose we shift the labels of all nodes and links by a 
constant c, i.e. node i gets label i' = (i+c)modN. We 
need to show that SEND (i, j, m) is valid iff SEND (i', 
j', m) is valid. Let SEND (i, j, m) follow the path i0 = i, 
il' ... , ik = j, where is =/= it for s =/= t, 0 ~ s, t < k. Then 
the sequence i0 ' = i', i/, ... , ik' = j' is such that is' =/= i/ 
also. Now, is---+i8+l iff jE[a, /3) at node is iff 
(a ~ j < /3) mod N iff (a+ c ~ j + c ~ f3 +c) mod N iff 
j' E[a', /3') at node i/ iff i/---+ i8+1'. Thus the new scheme 
is valid iff the old one is. 0 

We first consider the problem of incremental insertion 
of a node to an existing network with a valid ILS. We 
distinguish two possibilities: either a node is inserted in 
a network by a single link (unit-link insertion) or by 
multiple links (multiple-links insertion). 

Proposition 3.2 

There exists a simple algorithm for updating a valid ILS 
after unit-link insertion of a node for every network G 
with a valid sequential ILS. 

Proof 

Suppose a new node x is to be inserted ('appended') to 
node i in G. Cyclically shift every node and link label until 
node i becomes node N- 1. This is done by adding the 
constant (N- 1- i) mod N. The new scheme remains 
valid by Proposition 3.1. Label the new node x by N. 
After it is connected to node N- I, label link (N- I, N) 
by Nand link(N, N-1) by 0. 

Recall that sequentiality means that at each node j 
there exists a link labelled(}+ l)modN. We now argue 
that the new ILS is still valid. We consider the following 
cases. 

(i) First we claim that SEND (i,j, m) delivers a message 
properly for i, j E [0, N- 1]. SEND (i, j, m) already 
functions properly prior to addition of the new node. We 
only need to make sure that when a message passes 
through node N- I, it does not accidentally get routed 
to new node Nand causes a cycle. Let a be the minimum 
link and f3 the maximum link label for node N- I before 
insertion of the new node. Any node j E [/3, a) will get 
routed via link f3 then. With the insertion of the new node 
and link, any j such that f3 ~ j ~ N- I will still get routed 
via link {3, but those j with 0 ~ j < a will be sent via link 
N to node N, since j E [N, a). This would normally cause 
a cycle, since node N will pass the message back to 
node N -1 again, except for the saving grace of sequen
tiality. The ILS being sequential implies that 
(N- I)+ I mod N = 0 exists as a link originally at node 
N- I. Thus a = 0, and j E [N, 0) implies that the only 
message that will get sent to node N is exactly that 
intended for N. 

(ii) Next, we claim that SEND (i, N, m) routes 
messages properly for i E [0, N- 1]. N belongs to the 
interval [/3, a), where f3 is the maximum link and rx. the 
minimum link label at i. But N- 1 also belongs to this 

interval, since f3 ~ N -1 originally. Thus all messages 
meant for N will get sent eventually toN- I first and from 
there it is just an extra hop to node N. 

(iii) Finally, we claim that SEND (N, i, m) routes 
message correctly for i E [0, N- 1]. All messages are first 
delivered to node N- 1, and by (i) node N -1 delivers 
messages to node i properly. 0 

Note from the proof of Proposition 3.2 that the 
updated ILS is again sequential. 

Corollary 3.3 

A DFS scheme remains valid after a unit-link insertion 
of a node. 

Proof 

The DFS scheme is sequential. Now apply Proposition 
3.2. 0 

In the above construction, the presence of the link 0 at 
node N -1 is crucial for the scheme to be cycle-free. For 
the above construction to work for the case of multiple
links insertion of a node, we need to make sure that at 
each node to which the new node is to be connected 
there is a link 0 also. 

Definition 

An ILS is zero-biased if every node has a zero link, with 
the possible exception of the zero node itself. 

Note that the optimum scheme for a grid, discussed in 
Section 2, satisfies this property. We do not need such a 
strong condition for unit-link insertion since sequentiality 
provides us with the zero link, and sequentiality is 
preserved under cyclic shift. Unfortunately such is not 
the case for zero-biasedness. 

Proposition 3.4 

The property of being zero-biased of an ILS for some 
graph G is not preserved under arbitrary cyclic shifts 
unless G is a complete network. 

Proof 

Suppose each node has a zero link except node 0. After 
a shift by 1, we still have 0 links. Therefore each node 
must have a link labelled N- 1 to begin with, except at 
node N- I. Continuing the shifts, we conclude that each 
node must have all the link-labels except itself. Thus G 
must be complete. 0 

The above proposition suggests that we cannot just 
insert a node anywhere with arbitrary links using the 
previous construction. Since we cannot do an arbitrary 
cyclic shift on a general graph without fouling the 
zero-biased condition, we require that one of the nodes 
to which the new node is to be connected must be the node 
N-1. 

Proposition 3.5 

There exists a simple algorithm for updating a valid ILS 
after multiple-links insertion of a node to the specific 
node N- 1 in a zero-biased ILS. 
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Proof 

Label the new node N. Connect all the necessary links. 
Label each link (i, N) by N and link (N, i) by i. 

The presence of a zero link at every node guarantees 
that the only message that will get routed to new node 
N is exactly that intended for N. Thus SEND (i,j, m) will 
function correctly for i,j E [0, N -I] as in Proposition 3.2. 
SEND (i, N, m) for iE[O, N-1] will either get routed to 
node N- I first and then to N or it will take a short cut 
up the new frond links. SEND (N, i, m) will traverse any 
one of the frond links first and then to its final destination. 

0 

Corollary 3.6 

A DFS scheme for a Hamiltonian graph allows multiple
links insertion of a node to the end node of the graph. 

Proof 

A DFS scheme for a Hamiltonian graph is zero-biased. 
Now apply Proposition 3.5. 0 

In general, it is not clear how one can insert a node in 
the unit-link or multiple-links case arbitrarily and still 
'preserve' an ILS. 

We turn now to the problem of connecting different 
ILS networks together to form a larger ILS network. 
Suppose G1 and G2 are two networks with their own valid 
ILS. They are to be connected by a single link between 
two specific nodes. Basically we apply the same idea as 
for unit-link insertion of a node, but with a slight 
modification of one network since it is no longer a' single' 
node. 

Theorem 3.7 

There exists a simple algorithm for constructing a valid 
ILS for the unit-link connection of two arbitrary net
works with sequential ILS. 

Proof 

Let G1 and G2 be graphs with a valid sequential ILS of 
N nodes and M nodes respectively. Suppose G1 is to be 
connected toG 2 by adding a link from node i in G 1 to node 
j in G2 ; now 'connect' the labelling schemes as follows. 

(i) Relabel G1 by cyclically shifting node ito N -1, by 
adding (N- I- i) mod N to all node and link labels. 

(ii) Relabel G2 by cyclically shifting node j to 0, and 
then add N to all node and link labels. This is to ensure 
that the labels of G1 and G2 are now disjoint. 

(iii) Relabel all links with value N to 0 in G2 , except 
at node N. 

(iv) Connect G1 and G2 via the link between node 
N-1 in G1 and node N in G2 • Label link (N-1, N) by 
Nand link (N, N-1) by 0. 

We now argue that the new ILS is valid for the larger 
graph. Proposition 3.2 guarantees that G1 functions 
properly under the new scheme and that all messages for 
jE[N, N+M-I] are routed via node N-1 to node N. 
We check that G2 functions properly also. Basically the 
same argument as used in Proposition 3.2 applies to G2 

in the interval [N, N + M- 1]. The only exception is Rule 
(iii) above. We need to check the effect of changing link 
N to 0. SEND (i, j, m) functions properly for i, j, E [N, 

N + M- 1]. Everything functions as before with the 
possible exception of those nodes that got their links 
changed from N to 0. Before this change N is the 
minimum link label. Since there is no longer any node in 
G 2 numbered 0 toN- I, changing link N to 0 has no effect 
in the routing procedure within G2• At node N, let p be 
the maximum link label. By sequentiality of G2 there is 
a link labelled N + 1, which is the original minimum link 
before connection. For any jE[N, N+M -1], if jE[p, 
N +I) then j E [p, 0), as all j ~ P still traverse via link p. 
Any i E [0, N + I) will traverse the 0 link, as desired. The 
exception at Rule (iii) concerning not changing link N to 
0 at node N, handles the special case when there is a link 
at N labelled N. We cannot change it to 0 since there is 
already a 0 link to G1. This causes no problem in validity 
though. Finally, SEND(}, i, m) routes messages properly 
whenjE[N, N+M-1] and iE[O, N-1]. Let p be the 
maximum link and a the minimum link label (a# N, by 
Rule (iii)) for each node j in G2 • Either i E [p, a), in which 
case, the message for i is routed in the direction of node 
N since a # N, so a > N and N E [p, a). Or i E [0, a), in 
which case N E [0, a) also, so the message is again routed 
via N. This is always the case, because if the original 
minimum link is labelled N, Rule (iii) changes it to 0, so 
that i E [0, a). Eventually the message arrives at node N 
and passes on to G 1 via the 0 link. The scheme is thus 
valid. D 

We note that the above unit-connection scheme 
preserves index, sequentiality and optimality. Hence it is 
ideally suited for connecting similar ILS together to form 
a larger ILS with the same property. 

4. APPLICATIONS TO DISTRIBUTED 
ALGORITHMS 

In a distributive network, processors can only commun
icate directly with their neighbours and have only very 
limited knowledge of the topology of the whole network. 
Many algorithms have been designed to solve distributed 
control and synchronization problems on specific net
works such as rings, trees, grids, etc. 

A network with a valid ILS has some built-in 
knowledge of the global network. For instance, the 
directions of the maximal link and minimal link add a 
form of global orientation, which may be lacking in a 
general distributive network. This should provide an 
extra advantage in solving some distributive problems. 

In this section we show that this is indeed the case for 
distributive problems such as leader-finding, the genera
tion of spanning trees, and the counting problem. We do 
not assume the ILS to be necessarily normal, so that there 
is no a priori knowledge of the existence of a zero node. 
The only information available at each node are the 
link-labels. As is customary in asynchronous distributive 
algorithms, the efficiency of the algorithms is measured 
in terms of the number of messages exchanged, and we 
assume that there are incoming-message queues for each 
node so that messages arrive in the order in which they 
were sent over a link. We consider only the ring network 
and the general network. 

4.1. The Leader-finding or Election Problem 

Consider a network in which each node has a unique 
identification number. The problem is to design an 
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algorithm by means of which any active node can incite 
an election and the node with the maximum identification 
number will learn that it is the leader. 

Let G be a network with N nodes that has a valid ILS. 
We shall find it advantageous to use an ILS with index 
2. This is not a severe restriction as an optimum scheme 
or any DFS scheme easily provides us with a scheme of 
index 2. As the ILS may not be normal and the zero node 
may be non-existent, we cannot use the nai"ve approach 
of having all the nodes send their identities down to the 
zero node. To do so may cause a fatal loop. Another 
approach is needed. The idea is to pass the probing 
message via the maximum link. 

We first make a distinction between two kinds of 
message. One is the regular message to awaken the 
neighbours that an election is going on. The other is the 
probing message that contains an awake message with 
the identification number of the sender. This second 
probing message is the one to be sent via the maximum 
link. 

Lemma 4.1 

In a ring network with a valid ILS of index 2, if every 
node sends a probing message via the maximum link, 
either the maximum node or one of its neighbours must 
eventually receive two probing messages. 

Proof 

Let the maximum node be k. Then node k must receive 
at least one probing message from its neighbours since we 
have a valid scheme. It is possible that it receives probing 
messages from both of its neighbours, in which case we 
are done. Suppose node k receives only one probing 
message. The probing message must have come from one 
of its neighbours, say the left one. As the index of the 
scheme is 2, node k must send its probing message to the 
left neighbour (so that it would get back in the next hop). 
This means that the right neighbour receives no probing 
message from k and it must have sent its probing message 
to the node away from k. As the scheme is valid, the 
probing message from the right neighbour must 
eventually arrive at k if it has been passed all the way 
around the ring. It follows that the node preceding the 
left neighbour must send its probing message to the left 
neighbour as well. The left neighbour thus receives two 
messages. D 

Theorem 4.2 

There is an algorithm for locating the maximum node in 
a ring network of N nodes with a valid ILS of index 2. 
This is achieved in at most 2N + 1 exchanges of messages. 

Proof" 

The algorithm for finding the maximum node is as 
follows. 

(i) Every node, if awake, sends a probing message 
containing its identification number via the maximum 
link to one of its neighbours, and a regular awake 
message to the other neighbour. 

After a while, a node either awakes spontaneously and 
realizes that an election is going on or will eventually be 

awakened by its neighbours, so that eventually the whole 
ring will participate in the election. Each node will 
eventually receive two awaken messages, regular or 
probing. The total number of messages exchanged is 2N. 

(ii) The node(s) whose awaken messages are both 
probing (by Lemma 4.1, there is at least one, either the 
maximum node or its neighbour or both) will process all 
three identification numbers (the two incoming values 
and its own) and compute the maximum. 

If the maximum agrees with its own identification 
number the node knows that it is the leader. If not, then 
its neighbour must be the leader and it sends an extra 
message next door via the maximum link to notify the 
neighbour that it is indeed the leader. The upper bound 
~~s. 0 

In a general network, we do not have an equivalent 
result to Lemma 4.1. Nothing much can be said about the 
exact number of probing messages received by a node. 
However, we do have an equivalent result to Theorem 4.2. 

Theorem 4.3 

There is a distributed algorithm for locating the 
maximum node in a general network of N nodes given a 
valid ILS of index 2. This is achieved in at most 2E + N 
exchanges of messages, where E is the total number of 
edges. 

Proof 

The algorithm for locating the maximum node is as 
follows. 

(i) Each node, if awake, sends a probing message with 
its identification number over the maximum link to one 
of its neighbours, and regular awake messages to all the 
other neighbours. 

As in the ring network, eventually every node will be 
awake and participate in the election. Each node will also 
eventually receive a total number of messages equal to 
the degree of the node. The total number of messages 
exchanged is 2£. 

(ii) Each node waits till it has received a message from 
all its neighbours. It then processes all the incoming 
identification numbers plus its own identification number 
to find the maximum. To prepare for the next step 
consider the (directed) graph G' obtained by taking at 
every node the edge of maximum label. G' essentially is 
a tree rooted at the maximum node, with a single cycle 
of length 2 at this root. 

(iii) Each node now sends the computed maximum to 
the neighbour via the maximum link again. This step 
takes another N messages total. The node that receives 
its own identification number back again as a processed 
maximum declares itself the leader. 

The algorithm is correct, as there can be only one cycle, 
and this is between the maximum node and one of its 
neighbours, because the scheme is valid and the index is 
2. The only node that could have received its own 
identification number back in two passes as a processed 
maximum must be the maximum node. 0 

The role of the index is crucial in the above algorithms. 
As a curiosity, in a ring network we can only have two 
kinds of index. 
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Proposition 4.4 

For any ILS that is valid for a ring network of N nodes, 
the index is either 2 or N. 

Proof 

Suppose the index is not 2. Consider a node i of index 
greater than 2. Let node i send a message to itself, and 
say it is sent via one of its neighbours x. Now x must not 
send the message back to i, otherwise the index is 2. So 
x must pass the message down the ring to its other 
neighbour y. Observe thaty cannot pass the message back 
to x again, otherwise we have a cycle and the scheme 
becomes invalid. Continuing this process, the message 
must traverse the whole ring before it ever gets back to 
i again. Thus the index of i and, hence, the index of the 
ring must then be N. D 

4.3. The Counting Problem 

In this problem the task is to count the number of nodes 
in the network and to let every node know the result. 

We first need to make sure that there are some special 
nodes that can initiate the process of counting which will 
culminate at the maximum node. 

Proposition 4.5 

In a general graph of N nodes (N ~ 3) and with a valid 
ILS of index 2, there is at least one node that receives no 
probing message if every node sends a probing message 
via its maximum link. 

Proof 

If we look at the paths generated by the links the probing 
messages traversed, there can only be one cycle, as the 
scheme is valid. This cycle must of length 2 and centres 
on the maximum node and one of its neighbours. As there 
are more than two nodes in the graph, there must be an 
end-node somewhere. D 

Theorem 4.6 

There is a distributed algorithm for the counting problem 
in a graph with a valid ILS of index 2 that takes at most 
(i) 4N- I messages in a ring, and 

(ii) 2E + 3N- 2 messages in a general graph. 

Proof 

The algorithm for the counting problem that applies to 
both rings and general graphs is as follows. 

(i) Find the maximum node by the previous algor
ithms, cf. Theorems 4.2 and 4.3. This takes at most 2N + I 
and 2£ + N messages for the ring and the general graph 
respectively. Furthermore, each node must keep track of 
the number of probing messages it received in the first 
pass. 

(ii) By Proposition 4.5, there is at least one node that 
receives no probing message. Use all these nodes as 
initiators for the counting, by letting them pass the value 
I down their maximum link. 

(iii) Each node except the maximum node waits for 

all the incoming messages (which number it knows from 
part (ii), finds the sum, increases the sum by I and passes 
the sum down its maximum link. 

(iv) Finally, the maximum node processes all the final 
sums, increases it by I and declares the size of the graph. 

If every node needs to know the result, the maximum 
node will then pass the result down the 'reverse' maxi
mum links to each node. 

The algorithm for the ring uses (2N +I) + (N- I) 
+(N-1) = 4N-l messages and for the general graph 
(2£ + N) + (2N- 2) = 2£ + 3N- 2 messages. D 

4.3. The distributed Spanning Tree Problem 

In the distributed spanning tree problem we need to 
construct a spanning tree and let each node know which 
adjoining links belong to the spanning tree. 

Let G be a network with a valid ILS of index 2. Then 
by Proposition 4.5 the maximum links form edges in a 
spanning tree, as there is no cycle (except at the maximum 
node, but this is of no consequence as it is of length 2). 
This step requires no message exchange whatsoever. To 
locate the root of the tree is to locate the maximum node, 
and the results are provided by Theorems 4.2 and 4.3. We 
thus have the following result. 

Theorem 4.7 

There is a distributed algorithm for generating a spanning 
tree and locating the root of the tree for a graph of N 
nodes with a valid ILS of Index 2 that requires. 
(i) at most 2N + 1 exchange of messages in a ring, and 

(ii) at most 2E + N exchange of messages in a general 
graph. 

The above results demonstrate that a graph with a 
valid ILS of index 2 does have an extra edge on solving 
some distributive problems. In particular for leader 
finding, the bounds of O(N) messages for a ring and 
O(E) + O(N) messages for a general network with a valid 
ILS of index 2 compare very favourably with the bounds 
of O(N log N) messages for leader-finding in a ring with 
no ILS (see [I] for an overview) and ofO(E)+O(Nlog N) 
messages for a general graph with no ILS (see [2]). 

5. CONCLUSIONS AND OPEN PROBLEMS 

We have shown that valid interval labelling schemes 
(ILS) can be made optimum for such common graphs as 
trees, rings, complete graphs, complete bipartite graphs 
and most grids. Furthermore, these schemes can be joined 
together in a certain way to form schemes of larger 
networks that remain optimum. Thus one can keep on 
building networks using this scheme. We also introduced 
some 'nearly optimum' schemes such as neighbourly 
schemes and multiple-labelled schemes, and showed that 
for any graph there exists a 2-Iabelled neighbourly 
scheme. Finally, we show that networks with an ILS have 
advantages over networks with no ILS from the 
viewpoint of designing distributed algorithms. Not only 
is an ILS much more compact than the ordinary routing 
table schemes, but problems such as leader-finding, 
counting and distributed spanning-tree construction can 
be resolved very fast in O(N) exchanges of messages, 
instead of the traditional O(N log N) bounds, in rings and 
O(E + N) instead of O(E + N log N) in general graphs. 
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There are quite a number of unresolved problems left. 
We give a partial list. 

( 1) Is there an optimum, valid interval labelling 
scheme for any arbitrary graph? If not, what is the 
smallest k such that there exists a k-labelled optimum 
scheme? 

(2) Is there an optimum, valid interval labelling 
scheme for row-column wrap-around grids? 

(3) Is there a neighbourly scheme for any arbitrary 
graph? 

(4) Define a k-neighbourly scheme as a scheme that 
delivers messages to a node of distance kink-hops. Thus 
a neighbourly scheme is just 1-neighbourly. Is there a 
k-neighbourly scheme for any graph with k ~ 1? 

(5) If not, is there a k-labelled scheme that is 
k-neighbourly? 

(6) Can every scheme be made sequential, i.e. given a 
valid ILS is there an equivalent sequential ILS? 
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