

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

ACTIVISION BLIZZARD, INC.,
ELECTRONIC ARTS INC.,

TAKE-TWO INTERACTIVE SOFTWARE, INC.,
2K SPORTS, INC., and

ROCKSTAR GAMES, INC.,
Petitioner

v.

ACCELERATION BAY, LLC,
Patent Owner

Case IPR2016-00747
Patent 6,732,147

__

DECLARATION OF MR. VIRGIL BOURASSA
IN SUPPORT OF PATENT OWNER’S RESPONSE

Patent Owner Acceleration Bay, LLC - Ex. 2006, p. 1

1

I, Virgil E. Bourassa, declare as follows:

1. I am over the age of majority and make this declaration of my own

personal knowledge.

2. Between October, 1996 and May, 2001, I worked in Boeing’s

Mathematics and Computing Technology research division as a computing

technologist. As a computing technologist, I spent my time augmenting

3.

. Boeing used

 in order to . In November 1996, Robert Abarbanel, the

head of Research, asked me to start developing a communications library

for . We referred to the communications library as SWAN, which resulted

in inventions covered by U.S. Patent Nos. 6,829,634 (“the ’634 Patent”), 6,701,344

(“the ’344 Patent”), 6,920,497 (“the ’497 Patent”), 6,910,069 (“the ‘069 Patent”),

6,732,147 (“the ’147 Patent”), and 6,714,966 (“the ’966 Patent”) (collectively, the

“SWAN Patents”). I am a co-inventor of the SWAN Patents.

4. At around this time, Boeing was expanding beyond the Puget Sound

region as it acquired a series of airplane companies. For these reasons, we wanted

to augment to allow for peer-to-peer communications for virtual

communications so that review sessions could be shared across the world, to allow

major portions, such as the database query used for selecting parts, to be broken

Patent Owner Acceleration Bay, LLC - Ex. 2006, p. 2

 2

out, and to allow new modules to be introduced without a major software overhaul.

Boeing had a procedure that allowed for two running processes to work in

tandem. However, as soon as a third process was introduced, it broke

down.

5. As Fred and I described in our Invention Disclosure Form, the typical

computer network communications techniques included: (1) fully-connected point-

to-point network protocols, (2) client/server middleware, (3) multicasting network

protocols, and (4) peer-to-peer middleware.

6. Fully-connected point-to-point networking protocols were

disadvantageous because fully-connected network graphs do not scale as the

number of participating processes grows. Client/server middleware systems were

disadvantageous because the server is a performance bottleneck and a single point

of failure. Multicast networking protocols were disadvantageous because multicast

traffic at the time was limited to single local-area networks. Peer-to-peer

middleware at the time was not suitable for the needs of medium to large-scale

collaboration.

7. The lack of technology available that could provide peer-to-peer

communications among computer processes across the world with high reliability

and low latency reaffirmed that a solution was needed in this area to satisfy an

existing need in the market. Because I had written a reliable UDP multicast

Patent Owner Acceleration Bay, LLC - Ex. 2006, p. 3

 3

communications library suitable for local-area networks for another project

unrelated to , Robert Abarbanel, my supervisor and the head of

research at the time, asked me to come up with a way to create something similar

for the wide-area networking required to “ ” across multiple

sessions across the country.

8. I originally anticipated this to be a simple task and expected that I

would have a working model within three weeks. This estimate was far off from

what I was expecting—instead, it took me about three years and about 28

epiphanies to incorporate into what would eventually be referred to as

SWAN.

9. I knew that I did not want to use a tree per se because that would put

the root node in a privileged position. I considered breaking the nodes into two

trees that would be connected between the pair of roots and amongst the leaf

nodes. In around December of 1996, I began working with Fred Holt, a colleague

at Boeing with a Ph.D. in Mathematics, and told him about my proposal. The idea

worked well for a pair of ternary trees up to a depth of three. However, Fred

determined that beyond this level, there was insufficient connectivity among the

leaves to share the information between the trees any more quickly than sending

the shared message to the other through the roots. In other words, at this size and

Patent Owner Acceleration Bay, LLC - Ex. 2006, p. 4

 4

above, some of the leaf nodes would take at least twice as long to share a message

as the root nodes.

10. Fred and I first tested a 3-regular (meaning 3 connections per node)

and 3-connected (meaning at least 3 nodes would have to be lost to break the graph

apart) graph, but it only worked well while the number of nodes in the graph was

even. If the number of nodes were odd, it would create a half-edge problem,

meaning that it was necessary to keep track of one special node. Fred and I

discovered that if we made a four-regular, four-connected graph, the half edge

problem in the 3-regular, 3-connected graph was eliminated.

11. We then realized we could solve the half-edge issue by creating a 4-

regular, 4-connected graph that had a low diameter. The diameter was our figure

of merit for the latency of the graph. We gravitated towards developing an

inductive algorithm to build our 4-regular, 4-connected graphs. We would have a

known node in the graph to be the point of entry, then using an inductive approach,

have new nodes added in the vicinity of this entry point in such a way as to

maintain 4-regularity and connectedness. However, when we tested at 20 nodes,

we had a diameter of four, which seemed high to me. To confirm this, I ramped up

the algorithm to build a graph of 2000 nodes, and got a diameter of 179. Since a

balanced binary tree with 2000 nodes would only have a diameter of 20, we clearly

had done something wrong.

Patent Owner Acceleration Bay, LLC - Ex. 2006, p. 5

 5

12. We then realized that we needed to create 4-regular, 4-connected

graphs with as low as a diameter as we could get. This was when we decided to

use genetic algorithms to evolve lower and lower diameter graphs. We started

with randomly generated 4-regular, 4-connected graphs, and then had each

“generation” mate those with the lowest diameters to achieve even lower diameter

graphs. Fred and I also realized that we wanted to build the graph in such a way as

to require only local knowledge, not global knowledge. Normally with genetic

algorithm optimization, the initial random population individuals leave much to be

desired because it takes dozens or hundreds of generations to evolve “fit”

individuals. However, in this exercise, a first generation single individual of 2000

nodes had a diameter of only 9. This allowed us to realize that introducing nodes

into the graph “damaged” the pathways they were injected on, making some paths

between a pair of nodes longer. Therefore, while the inductive algorithm

concentrated damage in the area of the contact node, random injection spread the

damage around evenly.

13. At this point, we were closer to reaching a solution. We wanted to

weave together a “fabric” of point-to-point connections, such that each process was

connected to exactly four others. For reliability of the overall session, we wanted

the graph to be four-connected, meaning that at least four nodes would have to fail

Patent Owner Acceleration Bay, LLC - Ex. 2006, p. 6

 6

to separate the graph into two pieces. We also wanted to build the graph randomly

in such a way as to require no global knowledge, only local knowledge.

14. I built a two-dimensional visualization tool to watch the graphs as

they were formed and to measure their resulting connectivity and diameter. This

visualization tool helped us determine how to realize our invention beyond the

theoretical idea.

15. I wanted to make sure that once we had our basic 4-regular, 4-

connected graph that nodes would be able to be added and maintained. I

discovered that if we took two randomly selected disjointed edges, and replaced

those edges with edges to the new node, we would be able to meet this goal. As

indicated in my Invention Disclosure Form, I referred to this as “clothes-pinning.”

See Ex. 2008, Fig. 5:

16. This way, the new node will have four neighbors, and the previous

nodes all maintain four neighbors as well. The pathways along these two edges are

“damaged” with the addition of the new node. All paths between the nodes along

Patent Owner Acceleration Bay, LLC - Ex. 2006, p. 7

 7

these two edges are now one node further apart. Thus, choosing them randomly

spreads the damage around.

17. We were concerned whether clothes pinning ran the risk of reducing

the graph’s reliability. Fred evaluated all of the cut-set combinations. He

determined that given a cut-set where the two edges chosen are the only ones

coming from a potential partition, a clothespin operation would reduce the cut set

from four nodes to three. However, upon further investigation, a node with only

one connection to a partition can only arise from a previous clothes pinning on a

node with only one connection to the partition to begin with. In other words, to get

to the dangerous state, you had to start in a dangerous state. Since the graph is

built incrementally from a completely connected, four-regular, four-connected

graph of five nodes, there is no dangerous state so there is no way to enter a

dangerous state by the process of clothes pinning new nodes into the graph

incrementally. Fred proved to me by induction that clothes pinning maintains four-

connectedness, in addition to four-regularity and low latency.

18. We also wanted to know the full state of the graph, put all the edges

into a hat, and pull out two at random and confirm that they do not share a node

between them. In order to do that, we needed global knowledge and that the graph

not be in the process of changing. Both of these requirements went against our

design tenets since we only had local knowledge. A new participant wanting to

Patent Owner Acceleration Bay, LLC - Ex. 2006, p. 8

 8

join the graph could contact any existing node in the graph and request inclusion.

We could approximate a random edge selection by requesting an edge after a

“drunk walk.” To do this, the node contacted chooses one of his existing

neighbors randomly, and forwards the request to that node. It, in turn, does the

same thing, and the random walk continues until finally the last edge is selected.

19. We experimented with a 100-node 4-regular, 4-connected random

graph, with a diameter of 6. Using Einstein’s theory of Brownian Motion, we

confirmed that at a drunk-walk of length 36, the diameter squared, the probability

of landing on any given node was nearly identical. A walk of length 6 led to a

terrible distribution, mostly centered on the entrance node and its neighbors. A

walk twice that long was better, with about half of the nodes having some

preference over the other half. Since twice the diameter was almost as good as the

diameter in algorithmic order, and since the slightly preferred half switched by

adding one to this length, we opted for getting our two “random” edges by taking

the first drunk walk at twice the diameter, and the second at twice the diameter

plus one more, which we referred to as a “staggered” drunk walk. The result was

an efficient selection algorithm with results practically identical to true random

selection.

20. For a message to be shared in the SWAN graph, a source process

creates a message and then repeats it to each of its four neighbors. These in turn,

Patent Owner Acceleration Bay, LLC - Ex. 2006, p. 9

 9

repeat it to each of their three other neighbors, ignoring the message if they see it a

second time. By including a count of how many times a message has been

forwarded, every node in the graph can see how far away they are from the source

code of the message—it is the least distant copy of that message they receive.

21. The diameter is determined in a distributed fashion. In the small

regime (less than five nodes, kept fully connected), each node is initialized to

understand that the diameter of the graph is one hop. As nodes are added and the

graph enters the large regime (four-regular), at some point the diameter increases.

When the diameter increases, either of the two nodes furthest away from each

other will recognize it upon hearing a message from the other. That node will then

know that the diameter has increased. When a node discovers a new diameter, it

sends a special administrative message through the graph to let everyone else

know.

22. There are redundant pathways, which provide reliability in the face of

node and link loss during the sharing of messages. These also provide faster

alternative pathways in the face of slow links.

23. Another problem to be tackled was making guarantees to the

consuming applications about the nature of the messages being shared. We

provided that the messages from multiple sources may come in any order, but

messages from the same source would be delivered in the order they were sent.

Patent Owner Acceleration Bay, LLC - Ex. 2006, p. 10

 10

And when a new node joins the graph, it would not get what happened in the past,

but subsequent message streams from each source would be intact. Assigning each

message a source, and an index specific to that source, then queuing up messages

from each source that arrived out-of-order until missing messages arrive, solved

this need once communication was underway.

24. But for newcomers, there was a potential problem. Because of the

distributed nature of the graph, there was no guarantee that these messages will

arrive in order. A new node, which I refer to as a greenhorn, may have been

injected into the graph after, say, message 143 from Oz has gone by, but a slower

delivery of message 142 from Oz shows up. The greenhorn’s Swan library callback

would deliver the Oz:142 message to its application, then queue up messages from

Oz forever after waiting for Oz:143 to show up.

25. I concluded that the greenhorn could not solve this problem. Instead,

it was up to its neighbors, which know that the newcomer is new, because they just

made connections to it. When this happens, they put the newcomer into a

“greenhorn” status.

26. While in this status, they don’t just send him copies of messages sent

from their other neighbors. Instead, they treat him the same as the application,

only sending messages from each source in order. In this way, they remove any

holes in the message streams from each of the newcomer’s neighbors individually.

Patent Owner Acceleration Bay, LLC - Ex. 2006, p. 11

 11

27. Once a neighbor has no messages backed up in its queues, i.e., all of

the “holes” have been removed, they can stop treating the newcomer as a

greenhorn, and go on to feeding him the messages as they are received. In this

way the newcomer never encounters a hole in its incoming streams.

28. When a node is ready to leave the graph, it first provides all of its

neighbors with a list of all of its other neighbors. The first pair of neighbors then

disconnect and pair up with each other, as does the second pair.

29. If, however, a neighbor dies unexpectedly, its neighbors discover this

the next time they try to send it a message. Upon discovering the lost neighbor,

each will send an administrative message through the fabric asking for anyone else

needing a connection to contact it.

30. These methods of repair work well the vast majority of the time.

However, there is a small possibility (at most one in nine, but diminishing as the

size of the graph grows) of a problem.

31. Consider a list of neighbors in which the first pair is already

connected to one another. Now, this pair of nodes cannot connect to each other and

maintain 4-connectedness. We refer to this situation as a “bilateral 3-connected

wedgie.” The solution we came up with was to move the problem somewhere else.

When node A needs a neighbor, it sends an “I need a connection” message through

the fabric, but includes its list of neighbors in the message.

Patent Owner Acceleration Bay, LLC - Ex. 2006, p. 12

 12

32. Now when B sees the message, realizes that it too needs a connection,

but is already connected to A. First, it checks to see if it has the same set of

neighbors as A. If so, the graph has actually just gone from 5 nodes total down to

4, which looks like a wedgie but is just a transition from the large regime to the

small regime.

33. If it has different neighbors, it’s a wedgie, and B knows it. B invokes

the “wedgie repair algorithm” as follows. B contacts a random neighbor, C,

instructing it to disconnect from one of its other neighbors, D, again using a

random choice. C immediately replaces this disconnected neighbor with a

connection to A.

34. This results in the missing connection moving from A, which wasn’t

working as a potential connection for B, to some other node, D, which has a 90%+

chance of being suitable. Now D sends an “I need a connection” message through

the fabric, B picks it up, and connects to D. If C had happened to choose a random

neighbor that was also connected to B, the process would just repeat until the bad

luck was resolved.

35. Although SWAN was built by August 30, 1999, we were finally able

to run it within without any software bugs by September 16, 1999, as

indicated on the Invention Disclosure Form. In fact, Fred and I presented a

Patent Owner Acceleration Bay, LLC - Ex. 2006, p. 13

 13

demonstration of SWAN to the Group prior to September 16,

1999.

36. SWAN took us 3 years to complete and was fully built as of August

30, 1999, and successfully implemented in by September 16, 1999, as

indicated on our Invention Disclosure Form, attached to the Patent Owner

Response as Ex. 2008. The Invention Disclosure Form contains my signature on

each page following the first page. Although my signature is dated December 22,

1999, the Invention Disclosure Form describes how SWAN was working in

 as of September 16, 1999. This is indicated on the first page of the

document, which states that the SWAN was satisfactorily tested on September 16,

1999. In addition to , SWAN had undergone alpha and beta testing for use

in Boeing’s used in Everett, Washington.

37. The Invention Disclosure Form describes the SWAN technology,

which was implemented as a 4-regular network. By September 16, 1999, SWAN

used an incomplete graph. Each participant had a connection to at least four

neighbor participants. In operation, SWAN would send data from an originating

participant to the other participants by sending data through each of its connections

to its neighbor participants. Each participant would then send data that it receives

from a neighbor participant to its other neighbor participants. SWAN was also a

dynamic network that used a non-routing table based broadcast channel. SWAN

Patent Owner Acceleration Bay, LLC - Ex. 2006, p. 14

 14

was an overlay network that used an underlying communication network. SWAN

provides peer-to-peer communications between the participants connected to the

broadcast channel. In one example, each participant to the broadcast channel could

receive an indication of the four neighbor participants. The broadcast component

could receive data from a neighbor participant using the communication network

and send the data to the neighbor participants to affect the broadcasting of the data

to each participant of the broadcast channel.

38. SWAN was able to accommodate any number of nodes being brought

in or removed in any order without disruption to the session conversation. In other

words, since the system was completely distributed among the participants, any of

them could join, depart, or fail at any time and in any order, without causing any

interruptions to the connections.

39. To summarize, the process that resulted in the creation of the SWAN

Patents took Fred Holt and I almost three years, although I estimated to Robert that

I should be able to have something working in about three weeks. However, Fred

Holt and I successfully implemented SWAN as described in our Invention

Disclosure Statement in by September 16, 1999. SWAN was able to

provide general world-wide peer-to-peer communications among computer

processes.

Patent Owner Acceleration Bay, LLC - Ex. 2006, p. 15

 15

40. In addition, Boeing launched its initiative to look for

Boeing-internal technologies that had commercial potential. SWAN was one of

the companies selected and quickly rose to become the leader in this portfolio of

potential Boeing spinout companies.

41. In connection with writing this declaration, I reviewed the Invention

Disclosure Form, which is attached to the Patent Owner Response as Exhibit 2008.

Fred Holt and I completed the Invention Disclosure Form after we created SWAN.

It was the regular practice at Boeing to complete and maintain such invention

disclosure forms. Because it was typical practice for our team to include dates on

documents, any dates that are indicated on the Invention Disclosure Form are

reliable evidence of when the described events occurred. Specifically, SWAN was

built on August 30, 1999, and satisfactorily tested by September 16, 1999. Exhibit

2008 has not been altered from what was provided to counsel, other than the

following markings at the bottom of the page: “Protective Order Material,” “Patent

Owner Acceleration Bay, LLC,” the exhibit number, and page number. No other

changes have been made to this document.

42. I have kept Exhibit 2008 in my possession since the document was

created at Boeing until it was transferred to Panthesis as part of the spin-off of the

company. After Panthesis ceased its operations, I kept this document in my

personal possession.

Patent Owner Acceleration Bay, LLC - Ex. 2006, p. 16

 16

43. I declare under penalty of perjury under the laws of the United States

of America that this declaration is true, complete, and accurate to the best of my

knowledge. I further acknowledge that willful false statements and the like are

punishable by fine or imprisonment, or both under 18 U.S.C. § 1001.

Executed at Bellevue, Washington on December 12, 2016.

Patent Owner Acceleration Bay, LLC - Ex. 2006, p. 17

