J. LOGIC PROGRAMMING 1994:19, 20:1-679 1

A TOOL FOR DEVELOPING INTERACTIVE
CONFIGURATION APPLICATIONS

TOMAS AXLING AND SEIF HARIDI

> Knowledge based techniques have been proven to be well suited for config-
uration tasks and several, often successful, systems have been developed.
The goal of these knowledge based techniques has in general been to pro-
duce “black box” configuration systems, i.e. batch-mode systems that take
a set of requirements as input and produce configurations as output. This
has resulted in rather complex systems that have been time consuming to
develop and in which the choices of components, which are often subjec-
tive, are hidden from the user. In this paper we present a less complex
and more interactive approach to configuration that we label Interactive
Configuration by Selection (ICS). The idea is that a configuration sys-
tem could be more of a tool, assisting in the task of configuration, than a
“black box” automatically producing configurations directly from require-
ments. To support the approach we have developed OBELICS. OBELICS
is a prototype of a tool, implemented in SICStus Objects, that integrates
both a problem solving method for ICS and a tool for domain knowledge
modeling. With OBELICS we hope to demonstrate that such a tool can
make it feasible and profitable to develop configuration applications, even
for small scale applications. <

1. Introduction

It is common for manufacturing companies to market products that are tailor made
according to customers’ requirements. Each item to be sold can be regarded as a
new product which is assembled from a large predefined set of components to meet
the requirements. This type of configuration may be complex and time consuming
when performed without any specialized support tool.

Configuration tasks are well suited for knowledge-based support, and several
systems have been developed, e.g. XCON [8]. However, one of the lessons learned

Address correspondence to Swedish Institute of Computer Science PO Box 1263, 164 28 Kista,
Sweden, Tel: +46 8 752 15 00 E-mail: axling@sics.se, seif@sics.se

THE JOURNAL OF LOGIC PROGRAMMING

© Elsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010 0743-1066/94/87.00

Page 1 of 22 FORD 1004

from these, often successful, systems is that they are time consuming to develop
and hard to maintain. It is obvious that maintainability is crucial for applications
where the domain is rapidly changing, which usually is the case for configuration
tasks: new products are constantly designed and old products are modified.

The cost of developing configuration systems implies that in order to be prof-
itable, only large scale applications can be considered. Therefore there exists a need
for methods and tools that speed up the development of configuration systems and
make the systems more maintainable.

The goal of existing tools is in general to develop “black box” configuration
systems, i.e. batch-mode systems that take either parts or higher level functional
descriptions as input and produce configurations as output. These systems may
interact with the user while creating configurations by querying the user for design
decisions. This is generally done in a program driven fashion, forcing the user
to respond to the program. These are rather complex systems that still are time
consuming to develop and in which the choices of components, which often are
subjective, are hidden from the user.

In this paper we present a less complex and more interactive approach to configu-
ration that we label Interactive Configuration by Selection (ICS). The idea is that a
configuration system could be more of a tool, assisting in the task of configuration,
than a “black box” automatically producing configurations directly from require-
ments. As recognized in [10], from the end-user’s perspective the goal is not to
have a maximally “intelligent” system but rather one that will help him the most
in his day-to-day work. To support the approach we have developed OBELICS
(OBjEct-oriented Language for ICS). OBELICS is a prototype of a tool, imple-
mented in SICStus Objects [7], which integrates both a problem solving method
for ICS and a tool for domain knowledge modeling. The applications built with
OBELICS are truly interactive, user centered configurators that react to actions
rather than simply prompt for input at well-defined places in the program.

With OBELICS we hope to demonstrate that such a tool can make it feasible and
profitable to develop configuration applications, even for small scale applications.

The paper is structured as follows: In section 2 the task of configuration is
defined and restrictions that may be imposed on it are discussed. In section 3 the
ICS approach to configuration is introduced and argued for. In Section 4 a tool for
developing ICS applications is outlined and design rationales are discussed.

2. Defining Configuration

Making very few assumptions about the kinds of knowledge that might be available,
[9] defines a configuration task as follows:

Given: (a) a fixed, predefined set of components, where a component is described
by a set of properties, ports for connecting it to other components, con-
straints at each port that describe the components that can be connected
at that port, and other structural constraints; (b) some description of the
desired configuration; and (c) possibly some criteria for making optimal se-
lections.

Build: One or more configurations that satisfy all the requirements, where a con-
figuration is a set of components and a description of the connections between
the components in the set, or, detect inconsistencies in the requirements.

Page 2 of 22 FORD 1004

There are three important aspects to this definition; (a) the components that can
be used to design some artifact are fixed, i.e., one cannot design new components;
(b) the components cannot be modified to get arbitrary connectivity; and (c) a
solution not only specifies the actual components but also how to connect them
together. [9] also introduces two more restrictions on this definition.

1. The artifacts are configured according to some known functional architec-
tures.
2. The “key component” assumption.

The key component assumption implies that if one has selected a key component
then most of the components cannot be selected arbitrarily, because they are de-
pendent on the key component. Most implemented configuration expert systems,
such as XCON, Cossack and MICON, rely on these assumptions. We will label
configuration tasks that rely on these assumptions “restricted configuration tasks”.
The rest of this paper is mainly concerned with this restricted class of configuration
tasks.

3. Interactive Configuration by Selection

The Interactive Configuration by Selection (ICS) approach is mainly derived from
the Distribution Product System (DPS) [1], a tool for switchgear configuration which
is described below.

8.1. DPS

DPS is a tool aiding the work of configuring and selling low voltage switchgear. It
was developed by Tomas Axling in 1989 for an ABB subsidiary in Saudi Arabia
and still is in active use. The work of configuring and selling low voltage switchgear
can be described as follows:

e An inquiry arrives to the company from a customer. The inquiry includes a
general specification of the required functionality and constraints.

o The sales engineer then makes an interpretation of the inquiry. He selects
the type and number of cubicles, the components needed and so forth.

o In accordance with the selection the sales engineer then creates a quotation
which includes:

— a specification of the parts needed
— a price calculation
— single line and front layout drawings

o If the customer approves of the quotation all the parts needed for the or-
der will be ordered or manufactured. Otherwise the order is lost or a new
interpretation (and quotation) will have to be made.

The task for DPS is to help with the interpretation and then automatically
generate a quotation. If the quotation becomes an order the list of needed parts
is produced by the DPS. The system does this by assisting the user in selecting
suitable switchgear components (like breakers, bus bars, cubicles) and then puts
them together to form a complete switchgear. As output the system produces a

Page 3 of 22 FORD 1004

SALES PROCESS

Finding ——— Understanding ——— gpecification
Prospects Customer Needs

N

Proposed -« Complete and
Order Correct Configuration

Contracts

Order Tracking

FIGURE 3.1. A generalization of the switchgear sales process

specification, a quotation, front layout and single line diagram drawings, and a
price calculation with a complete part list.

The system was very well received and the following gains from using DPS were
recognized.

e It cut down the monotonous and laborious work of creating quotations to
a minimum (a quotation that could consume weeks of manual labor can be
done in a few hours with DPS).

More consistent appearance of the quotations.

Easier to follow up on old quotations.

Even the smallest inquiries can be given a complete quotation.

The customer receives his quotation earlier.

e o ©° @

The major problem with DPS has been to keep it up to date with its domain.
This problem can be divided into two parts:

o Price changes and refinements of the text and drawings. This is easily done
using the DPS utilities.

o Changes in the product, where products constantly evolve and new solu-
tions are required of the DPS. This is the major problem when it requires
modifications in the program.

The switchgear sales process may be generalized to the sales process described
in figure 3.1 and generalizing DPS leads us to the definition of the ICS task.

3.2. ICS Tasks
We define an ICS task to be a restricted configuration task that:

1. assists the user in the selection of main components for a product by pre-
senting only valid options;

9. assembles the selected main components and add all other components nec-
essary to make a complete product; and

3. generates the required description of the product.

Page 4 of 22 FORD 1004

The task should be performed in an interactive process where the user together
with the application successively builds configurations. An ICS system should,
at any time during a configuration, be able to present the current state of the
configuration and allow the user to alter previously made configuration decisions.

3.3. Applicable Domains

For the ICS approach to be applicable for a domain it must be feasible to represent
it as a component hierarchy where:

1. the hierarchy represents all possible goal artifacts.

2. the knowledge of how the component classes can be combined is explicitly
represented.

3. the terminals are physical components.

(1) guarantees that all solutions can be found in the hierarchy. (2) guarantees
that it can be determined if a partial hierarchy includes conflicting component
classes or not. (3) guarantees that it is just a question of assembling components
once we have found a partial hierarchy representing a feasible goal artifact, i.e.
there cannot be any additional configuration or design to be done for the terminals
in the partial hierarchy. Criterion (3) distinguishes the ICS domain from the one
of routine design (see [4]) in which no such restriction exists.

Examples of domains that fulfill the three criteria for ICS are microcomputer
system [5], switchgear and kitchen configuration [6]. An example of domains just
outside of ICS’ is AIR-CYL’s [3](a system for designing air cylinders) which fulfills
criteria (1) and (2) but fails criterion (3) when e.g. it is not possible to decompose
a piston into existing components.

3.4. An Ezample

As an example of how ICS systems work we will use an imaginary ICS version of
Cossack [5], a configuration system for microcomputer systems.

In the first menu, M1=[PrinterStuff, Processors, Displays, Software], you might
choose software. Then from the software menu M2=[CAD, Wordprocessing,...] you
choose CAD. In the CAD menu M3=[AutoCAD,...] you choose AutoCAD. The
system will now (i) automatically add the extra components that are needed for a
microcomputer system running AutoCAD, e.g. in this case an arithmetic processor;
(ii) exclude all options in the menus that cannot be used together with AutoCAD,
e.g. only graphical printers will remain in the printer menu; and (iii) continue with
the M1 menu. You might now continue with selecting Displays, etc. The system
will not allow you to exit until you have chosen components enough for a complete
microcomputer system. When you have selected all the key components that you
felt were needed you exit and let the ICS system produce a specification of the
microcomputer system that you have configured.

Essentially the difference between an ICS version of Cossack and Cossack is
that the user requirements in the ICS version are basically specified by selecting
a number of key components, while in Cossack they are specified in more general
terms of constraints. The ICS version works in a interactive fashion, consulting the
user for all component choices that are not obvious, while Cossack takes a set of
requirements and tries to build a configuration directly from it.

Page 5 of 22 FORD 1004

3.5. Motivation

The basic principle behind ICS is that when there are several similar alternatives
the system should not try to decide which one is the most suitable, instead it should
Jeave this decision to the user. This may give the impression that ICS systems would
only give a fraction of the assistance “black box” systems give. Therefore will we
here present a few arguments for the use of ICS systems and try to show that an ICS
system can give as much assistance as a “black box” configuration system despite
using substantially less domain knowledge.

3.5.1. IMPLICATIONS OF THE “KEY COMPONENT ASSUMPTION” According to
the “key component assumption” [9] one can identify some particular component
(or a small set) that is crucial for implementing some function in many design
domains. Thus, one does not need to consider arbitrary configurations to implement
some function, one needs only to start with a “key component” and build suitable
configurations on that basis. Systems such as XCON, Cossack and MICON crucially
depend on this assumption. XCON actually relies on this assumption to “infer”
the functional requirements from the set of components it is given to verify. It has
rules which look for certain key components and then ensure that other components
needed to have consistent subsystems around those components are included in the
configuration. Cossack and MICON use this assumption to build subsystems which
are then composed together.

In our experience a configurer usually thinks in terms of key components. He
has an abstract sense of what key components are needed to obtain the required
functionality. For example while configuring a microcomputer system one would
have the intuitive feeling that a display will be needed to meet the desired func-
tionality. One might even know that a color display is wanted. The problem is
then to find concrete alternatives for the display and to figure out how the selection
of the display restricts the selection of the other components. For example what
components are needed to connect the display, can an 8 bit CPU be used (not if
the display requires a 16 bit display controller board), etc? This is exactly what an
ICS system assists you with.

Examples of applications that depend heavily on the “key component assump-
tion” and the above assumption about thinking in terms of key components are
Canard [11] and DPS.

3.5.2. EXPLORING THE SPACE OF ALTERNATIVES As pointed out in [11], cogni-
tive scientists have long known that people typically retrieve only a small fraction of
available alternatives when generating hypotheses. People tend to anchor on initial
guesses, giving insufficient regard to subsequent data. For various other reasons,
people may not be able to visualize whole classes of possibilities. An ICS system
presents all valid alternatives and also makes it easy to alter previous choices, hence
assists designers in exploring the space of alternatives. This gives the designer a
better feel for the effects of the constraints on different alternatives and the conse-
quences of assumptions and tradeoffs.

3.5.3. THE NoTION OF OPTIMAL CONFIGURATIONS In many cases configura-

tion is really an optimization task, where one can judge and compare configuration
alternatives and ultimately select the best or optimal configuration. The notion of

Page 6 of 22 FORD 1004

optimal configuration may involve several optimality criteria which are combined
together based on their relative merits. Criteria often work against each other. The
combination of different criteria is usually highly subjective. For example while con-
figuring a computer system one might prefer IBM components and a cheap solution.
Now say a configuration system is about to choose the display for the computer
system and it knows that the IBM display costs $100 more than a comparable alter-
native, what should it do? To make this decision it needs to know how strong the
preference for IBM components is compared to the preference for a cheap solution.
This could be done by letting the user specify it. But is the preference for IBM
components the same when it comes to selecting a printer, etc? This subjectivity
makes it difficult for a system to determine which configuration is optimal. This
combined with the fact that criteria may be difficult or even impossible to formu-
late implies that one should let the user consider several different alternatives and
choose the one he finds to be optimal according to his criteria. This is what an
ICS system does. It would furthermore support this by reporting what effects the
different choices have on the design at each selection.

3.5.4. INCREMENTAL DEVELOPMENT Incremental development with the follow-
ing stages may be used when developing ICS systems:

1. AnICS system could start by being a system that only assists in finding com-
ponent alternatives and then (regardless of validity) assembles the selected
components and produces the required documentation.

2. Then knowledge could be added to make the system present only valid com-
ponent alternatives. This is a system in which you cannot include conflicting
components in the construction, but the final construction may be incom-
plete if you forget to select some indispensable parts.

3. A true ICS system, i.e. a system that automatically adds components that
must be included to support the selected key components and guarantees
a valid construction. The system can then be further refined to reduce the
number of manual selections needed to produce a configuration.

4. Other problem solving methods may use ICS domain models if preference
knowledge (to enable the system to choose between sets of acceptable alter-
natives) is added. For example, extra control knowledge may be added to
produce an automated alternative generation option. The system may then
be used both as a “black box” configuration system and as an ICS system.
In this way existing ICS systems may provide a testing ground for config-
uration problem solving methods which may be interesting from a research
point of view.

This means that an ICS can be useful at an early stage of development. For example
DPS, which can be described as an ICS system in phase two, was very profitable
despite its updating problems. This is in contrast with conventional configuration
systems which often are not usable until all knowledge needed by the configuration
method is present. The advantages of a system being useful at an early stage are
further discussed in [10].

Page 7 of 22 FORD 1004

4. A Tool for Developing ICS Applications

In the previous section we argued that ICS systems can be useful. But ICS systems
are, like configuration systems in general, expensive to develop and maintain when
implemented without some specialized support tool. We believe that the restric-
tions that ICS imposes on the general configuration task make it appropriate to
implement a tool for developing ICS systems.

4.1. Design Rationales

e The problem solving knowledge should be separated from the domain knowl-
edge and be embedded in the tool.
The domain knowledge should be represented declaratively.
The tool should support the modeling of the domain. Instead of working
with unstructured collections of rules, as in regular rule-based languages,
the domain should be structured into chunks of knowledge. The chunks of
knowledge should be presented to the user with a graphical user interface,
making the domain model easy to understand and work with. The chunks of
knowledge should be as independent as possible, letting the user concentrate
on one chunk at a time without being concerned about interference with the
rest of the domain model.

4.2. What Needs to be Modeled?

The knowledge used in configuration expert systems can be classified into ftwo
types: knowledge about components and knowledge about configuration methods.
As pointed out in [13], only knowledge about configuration methods has been re-
garded as important in conventional systems. This is rather surprising considering
that almost all knowledge needed for real world configuration is bound to the com-
ponents.

In many configuration systems, like XCON, there is no clear separation be-
tween component knowledge and knowledge about configuration methods since
constraints on components are often expressed in the production rules. Moreover
it is often not clear, in this kind of system, how a newly added rule will interact
with existing rules when there is no explicit problem solving model.

In many cases the component models are mere data structures that represent
attributes of components. They need to be interpreted and manipulated in terms
of configuration tasks or procedures and the knowledge about the components may
be embedded in model manipulation procedures or configuration methods. This
embedding of component knowledge in configuration methods makes it difficult to
make effective use of the component knowledge.

The central role of components implies that the component model should not be a
mere data structure but a model that includes all knowledge about the component.
Then the component model can be given an active role in the configuration process.
Configuration requirements can be regarded as constraints on components which
reduce the configuration problem to a constraint satisfaction problem. These points
have recently been, to varying extent, recognized and used [9] [12] [13].

According to these arguments for focusing on component knowledge, most of the
domain knowledge should be contained within the component model.

Page 8 of 22 FORD 1004

Domain
Model

Editor 1

ICsS Case Description
PSH Model Generator

Domain / l
Model -~
TH Description

FIGURE 5.1. The main components of OBELICS

For example the knowledge about

e Under what conditions the component can be included in the construction
e Dependency relations on other components
o Attributes of the component

should be modeled in the component model.

In section 2 a configuration is defined as a set of components and a description
of the connections between the components in the set. This implies that we must
be able to model the connections in an effective way. For this reason, there should
be a separation between the component model and the connection model. The
component and connection models constitute the domain model of a product family.

5. OBELICS

In this section we will outline OBELICS (OBjEct-oriented Language for ICS), a
tool for creating ICS applications, and then describe its components in some detail.

As shown in figure 5.1, OBELICS consists of a domain model editor, a generic
problem solver for configuration tasks including a truth maintenance component,
and a description generator. For each configuration application, the domain model
editor assists in creating a domain model that describes the components, connec-
tions and constraints on them. The problem solver takes such a domain model and
additional information and constraints entered by the user to create interactively a
specific configuration (case model). The case model is available to the user during
a configuration session allowing the user to view the current state and to alter pre-
vious decisions. The truth maintenance component is responsible for keeping the
case model consistent upon changes. When the case model is finalized, it is used as
an input to the description generator to create the necessary textual and drawing
information.

OBELICS has been constructed mainly using SICStus Prolog Objects system, an
extension of Prolog for object oriented programming [7]. Since SICStus Objects has
been crucial in particular for the knowledge representation in the domain model,

Page 9 of 22 FORD 1004

10

we will give a brief description of the object system. For details the reader may
consult [7]. We assume familiarity of Prolog and the notions of logic programming,
as well as the notions of object oriented programming.

5.1. SICStus Prolog Objects System

SICStus Prolog Objects System (the short name is Prolog Objects), is an efficient
extension of SICStus Prolog with object oriented programming. In Prolog Objects,
an object is a named collection of predicate definitions. In this sense an object
is similar to a Prolog module. The object system can be seen as an extension of
SICStus Prolog’s module system. In addition an object may have attributes that
are modifiable. Predicate definitions belonging to an object are called methods. So,
an object is conceptually a named collection of methods and attributes. Some of
the methods defined for an object need not be stored explicitly within the object,
but are rather shared with other objects through the inheritance mechanism. The
Object system is based on the notion of prototypes, which basically allows “classes”
to be first-class objects, and provides a mechanism in addition to inheritance known
as method delegation.

Objects may be defined in a file, or dynamically created during the execution
of a program. When an object is created, during load-time or run-time, it inherits
the methods and attributes of its prototypical object(s). Objects defined in a file
can be either static or dynamic. Also methods can be either dynamic or static.
These properties are inherited by subobjects. Objects created during execution
are dynamic. Multiple inheritance is also allowed as well as light weight objects
called instances. Such an object may only inherits from one object, and have only
attributes derived from of its super object.

An object object-identifieris declared by writing it in the following form:

object—identifier :: {
sentence-1 &
sentence-2 &

sentence-n

¥
where object—identifieris a Prolog term that is either an atom or a compound
term of the form functor(Vi,...,Vn), where V1,...,Vn are distinct variables.

The object body consists of a number of sentences, possibly none, surrounded by
braces, where each sentence is a method-clause. A method is a number of method-
clauses with the same principal functor. A method-clause has a clausal syntax
similar to that of Prolog, but instead of the usual predicate calls in the body of a
clause there are method-calls. Ordinary Prolog goals are also allowed in a prefixed
form, using ¢ as a prefix. Goals in the body of a non-unit clause have the normal
control structures of Prolog. Atomic goals in the body of a method-clause may be
in a number of forms, besides being Prolog goals. The most relevant ones for this
paper are:

goal to send the message goal to the object self.
object: :goal to send the message goal to object object.
object<:goal to delegate the message goal to object object.

Page 10 of 22 FORD 1004

11

A few examples will clarify the concepts needed for this paper. The following is
an object called 1istObject. Different from ordinary Prolog modules, the methods
included there can be specialized by other subobjects.

listObject :: {

append([], L, L) &
append([X|L1], L2, [X|L3]) :-
append(L1, L2, L3) &

member (X, L) :-
member(X,L) &

length([1, 0) &
length([_|L], W) :-
length(L, N1),
(W is Ni+1)
¥

The following object apt1 could be part of a larger database about free apart-
ments at a real-estate agency. apt1 is defined by using attributes. These can be
retrieved and modified efficiently by the methods get/1 and set/1 respectively.
The attributes are defined with their default values. Immediate super objects are
declared using the method super/1. Several declaration of super/1 means multiple
inheritance.

aptl :: {
super (apartment) &

attributes([
streetName(’York’),
streetNumber(100),
wallColour(white),
floorSurface(wood)])

}.

Objects can be created dynamically using the method new/2 inherited from the
initial object object. The arguments of new/2 are the new object, and the list of its
immediate super objects respectively. This method can specialized. In OBELICS,
we have specialized new/2 so that if a method exists which has the same name as
an attribute in any of the super objects, the method will be used to compute the
value of the corresponding attribute.

The ability to create dynamic objects during domain modeling as well as the abil-
ity to define complex relations between objects, attributes, etc. is important for
modeling configuration domains. The expressions used in various relations may also
contain constraint expressions. These are provided by the underlying Prolog system
and are not specific to the object system. In the following section we allow expres-
sions containing attributes of objects. These attributes will be prefixed with @.
For example, apt1@streetliumber means the value of the attribute streetNumber
in the object apt1, whereas @streetNumber is the value of the attribute in the

Page 11 of 22 FORD 1004

12

self object. Such an attribute will be subject to the truth maintenance mecha-
nism, which belongs specifically to OBELICS and not to the object system. The
self-object may be retrieved in any method using the method self/1.

5.2. Domain Modeling

The OBELICS domain model is a form of component hierarchy that describes is-a
and part-of relations. The component hierarchy should represent all the possible
artifacts in the domain. The domain model editor presents hierarchies in an un-
derstandable way and makes it easy to add and modify components. Figure 5.2
illustrates the editor and also exemplifies OBELICS’ component hierarchies. In the
component hierarchies each component class is described as follows.

COMPONENT CLASS name

Description: A textual description of the component class.
If the component class does not have any subcomponents or subclasses we
label it a primitive component class. If it does have subcomponents we
call it a composite component class. For a primitive component class the
description describes the component represented by the component class.

Attributes: Attributes like price, size and auxiliary variables. They are described
in a declarative form. Some attribute values are entered by the user, some
are calculated and some are constants. The subclasses inherit the attributes.
Modes for calculating attribute values are:

Attribute whose value is constant.

Attribute whose value is to be entered by the user.

Attribute whose value is to be calculated with a specified method.
Attribute which is defined here, but the method for calculating its value
is defined in the subclasses.

Preconditions: The constraints that must be satisfied if the component class is

to be considered as a valid option, i.e. the constraints that state if it is correct
to include the component class in the construction. The preconditions are
defined as an OBELICS constraint expression.
An OBELICS constraint expression (OCE) is a conjunction or a disjunction
of OCEs or a simple constraint expression. A simple constraint expression
is an equality/inequality of attributes accessible in the component class, a
linear rational constraint, or a call to an access method. A linear rational
constraint is an linear equation of attributes accessible in the component
class enclosed in curly brackets, e.g. {@price<@k+100}. An access method
is one of OBELICS’ predefined methods for accessing other instances, for
example:

instance(CC,Expr,I) which means “There is an instance I of cC that
satisfies Expr”, Expr being of the same type as preconditions. This
method enables one to access other instances and their attributes using
Expr as criteria.

no_instance(CC,Expr) which means “There does not exist an instance
of CC that satisfies Expr”, Expr being of the same type as preconditfions.

apply(F,LLRes) which means “Res is the result of applying F/2 on the
part-of hierarchy rooted at instance I.

Page 12 of 22 FORD 1004

13

Customize u Help
smallcage @
._.,5; c ’_[@
ra @ largecage B
~{H proc266 8
L1 procs L&p proc3se B
= 486 O
@ P autocad B
-@ cad Esad 0
soft &P uord @

-‘@' communication @

~@ laserPrinter 8

'@? shestFeeder O

L&} daisubheslPrinter @

-@ dotMatrixPrinter B

cnmmunication[lomponent—@ moden B communicationCable &

—4@ cable @ externalStorageleviceCable B
@winterf:able L}
®seriaIPurt a

—%‘l‘ printers —————————

parallelPort O

—@* AR -@ ports displayPort B
5@ mousePort 8
@ keyboardPort @
L slot ———————& notherBoardSlot B

b ! ke d
@! dataEntrylevice —[=? gboa: :
mouse
cdl a

colourDispl
S displag——@ A @cd2 o
monochromeDisplay B
_@* " d’——[@ motherBoard B @ menoryBoard O
I0ar
(@’ extensionBoard '@- displayControllerBoard B

@“ @miZBkbChlp o asyncronousComnunicationsClockBoard B
i neno
™ [42} n256kbChip 8) _

& ddDiskettelrive B
@ diskettelrive
‘@hd]]isketteﬂrivs o

L+ external Stora hddo =
2 rigidﬂiskﬂriue——g
hdgo =

tapelrive O

Page 13 of 22

FIGURE 5.2. The Domain Model Editor

FORD 1004

14

Dependencies: Constraints stating what components and connections must exist
if an instance of this component class is be included in the construction. The
selection of this component class is not confirmed until the dependencies are
satisfied. For example a software package might require a selection of an
arithmetic processor, then a selection of a software package is not confirmed
until an arithmetic processor is selected. Dependencies are expressed in two
ways:
dependency(CC,I:OCE) which states “there must exist an instance I of
component class CC that satisfies OCE”,

connection(ConClass,CompClasses) which states “there must exist an
instance of the connection class ConClass connecting component class
instances as specified in CompClasses”. The CompClasses is a list of
pairs, (CC,I:0CE), each describing what class(CC) an instance I belongs
to and its associated constraints (OCE) that must be satisfied.

Subcomponents: The component class’ subcomponents and the number of pos-
sible occurrences of them. The number of possible occurrences are:

| : Exactly one is required to make the construction complete. We label
these subcomponents required component classes.

? . One may be included. We label these subcomponents optional com-
ponent classes.

* . Zero or more may be included. We label these subcomponents optional
iteration component classes.

+ : One or more must be included. We label these subcomponents required
iteration component classes.

Subclasses: The component class’ subclasses.

The subclass and subcomponent relations also describe the inheritance scheme.
Subclasses and subcomponents will inherit methods through an inheritance by over-
riding mechanism.

5.2.1. REPRESENTING CONNECTIONS To describe possible connections between
components we use connection classes. In a connection class we specify which com-
ponent classes are connected, and for each component class in the connection class,
we specify whether a component instance may occur in other connection instances.
If it may occur in other connection instances we specify which connection classes
they should belong to (e.g. the current connection class). For each of those connec-
tion classes, we specify whether the connection possibility is definite or optional.

The following is an informal description of how connection classes are represented
in OBELICS.

CONNECTION CLASS name

Description: A textual description of the connection class.

Between: A set of triples (CC,SC,0SC) that describe the components the con-
nection class can connect. The triples are defined as follows:

CC is a component class.
SC is a set of connection classes.
OSC is a set of connection classes.

Each triple states that a connection of the class must include a component

Page 14 of 22 FORD 1004

15

C of class CC that is not included in any other connections except for con-
nections of classes that occur in SC or in OSC if granted by the user.
Hence SC states shareability, i.e. indicates if a component may be simulta-
neously used in more than one connection.

OSC states optional shareability. An example of this is a printer and a mo-
dem that are using the same port. This is possible if the printer and the
modem are not to be used simultaneously and the inconvenience of switching
between the two is acceptable. The question of shareability is hence subjec-
tive and should therefore be dealt with in an interactive fashion, as opposed
to the cases where a component is clearly sharable.

5.83. An Ezample Domain

This section describes how we made a domain model for the example in section 3.4
using OBELICS.

The example is based on Cossack [5], a configuration system for microcomputer
systems. The component hierarchy we created is shown in figure 5.2. This hierarchy
could have been designed in many other ways, some a lot more suited to OBELICS,
but to corroborate the flexibility of modeling in OBELICS we followed the Cossack
model as much as possible.

The example was implemented in the following steps.

1. The ICS Cossack component hierarchy was built by defining the component
classes needed for the domain. At this stage we did not include all dependen-
cies and preconditions needed. The component classes were defined using
the domain model editor which represents them as objects in SICStus Ob-
jects. For example the component classes compsys and cad were represented
as:

compsys::{
super (component)&
description(’computer system’)&
attributes([minmem(0) ,memory(0),total_price(0),name(’PC’)])&
description(total_price,’Price of the computer system’)&
description(name, ’Label for the computer system’)&
description(memory,’Amount of selected memory’)&
precondition(true)&

% Methods for calculating attribute values
total_price(P):- self(S), sum(S,price,P)&
memory (X) : —sum(memory ,no_kb,X)&

displayable([total_price,memoryl)&
user_specified([name,minmem])&
subclasses([]1)&
subcomponents ([(connector,*),
(procs,!),
(soft,*),
(printers,*),
(cage,!),
(dataEntryDevice,!),

Page 15 of 22

FORD 1004

16

(display,!),

(board, *),

(memory,*),

(motherBoard, !),
(externalStorage,+),
(communicationComponent,*)])

¥,

cad::{
super(software)&
description(’CAD software package’)&
attributes([dimensions(2)1)&
preconditions({@dimensions>1,0dimensions=<3})¥&
user_specified([dimensions])&
subclasses([autoCAD,3dCAD])&

i

super(software) defines the inheritance relation for cad.
attributes([dimensions]) introduces a new attribute, dimensions. The
values of dimensions will be stored in cad instances, but are specified by
cad’s subcomponent/subclass instances.
preconditions({@dimensions>1,@dimsnsions=<3}) is a constraint that
cad imposes on dimensions.
user_specified([dimensions]) states that the value of dimensions may
be set by the user during configuration.
subclasses([autoCAD,SdCAD])sumesthatcadhassubdasm%;autoCADand
3dCAD.

9. The connection classes were defined. For example:

printerToPort::{
super(connection)&
description(’connection between printer and port’)&
between([(printer,[,[1),
(cable,[1,01),
(port, [portBoard] , [printerToPort])])
7

printerToPort describes connections that consist of a printer and a cable,
neither included in any other connection, and a port instance that may also
be included in a portBoard connection and, if the user permits it, in another
printerToPort connection.

3. The remaining preconditions and dependencies were added to the component
classes. For example:

laserPrinter::{
super (printer)&
description(’Laser printer’)&
precondition((@graphic=true,{@price=8}))&
connection(printerToPort,[(1aserPrinter,L:self{L)),
(cable,C:true),
(port,P:Petype=serial)l)

Page 16 of 22 FORD 1004

17

}.

The precondition imposes constraints on the attributes graphic and price.
These are attributes of printer which laserPrinter is a subclass of. This
means that for a printer instance to select laserPrinter as subclass it
must be possible to set the value of graphic to true and the value of price
to 8 in the printer instance.

The connection statement implies that for a laserPrinter instance there
must be an instance of the connection class printerToPort that connects the
laserPrinter instance, a cable instance and port instance that satisfies
type=serial.

autocad: :{
super(cad)&
description(’AutoCAD’)&
precondition(true)&
displayable([])&
user_specified([])&
attributes([price(7)])&
subcomponents([1)&
dependency (procs,P:P@speed=high))&
dependency (printers,Pr:Pr@graphic=true)&
dependency(display,D:{D@no_pixels>1500})
}.

The first dependency states that if an instance of autocad is included in the
hierarchy instance, an instance of processor where @speed=high must also
be included before the hierarchy instance is considered valid.

5.4. The Problem Solving Method

The purpose of the problem solving method is to produce configurations from user
inputs and domain models. In this case domain models are component hierarchies
including connection classes. In OBELICS we represent a configuration as a hierar-
chy of component class instances following the structure of the component hierarchy
and a set of connection class instances. In a sense, a configuration is an instance of a
component hierarchy. If all constraints, preconditions and dependencies, are satis-
fied in a component hierarchy instance, it represents a valid configuration. Usually
a set of connection instances are needed to satisfy the dependencies.

OBELICS problem solving method is rather simple. It works in a top-down
fashion, i.e. it takes the top component in a component hierarchy and creates an
instance of it, and then evaluates the instance. The evaluation of the top component
instance will in turn cause the creation and evaluation of the other instances needed
for a configuration.

The following describes what OBELICS’ PSM does when evaluating an instance:

1. Set user-specifiable attribute values The user is prompted to set the
instance’s user-specifiable attribute values.

2. Try to satisfy the instance’s preconditions If any of the preconditions
fails then the instance cannot be included in the construction, so the evalu-
ation of the instance fails.

Page 17 of 22 FORD 1004

18

3. Find subgoals From the dependencies and the set of required subcompo-
nents a set of goals is extracted. These goals all have the form “there must
exist an instance of component class/connection class CC with attribute val-
ues that satisfy Ezpr”. These are required goals, i.e. for the evaluation of
the instance to succeed, the whole set of goals must be satisfied.

From the set of optional subcomponents the user may add optional goals.
These goals have the same form and are treated in the same way as the
required goals but they do not need to be achieved for the evaluation to
succeed. Only subcomponents with satisfiable preconditions may be selected
as optional goals.

From the set of subclasses a specialization is chosen, if the set is not empty.
The choice may only be from valid subclasses, i.e. subclasses with satisfiable
preconditions. If the set is not empty but none of the subclasses is valid,
the evaluation of the instance fails. If there is only one valid subclass, it is
trivially chosen. If there is more than one, the user is asked to make the
choice. From the chosen subclass a goal is extracted and added to the set of
required goals.

4. Evaluate subgoals When the PSM has tried to achieve all the optional
goals and has achieved all the required goals the instance is successfully
evaluated.

If the evaluation of an instance fails, it is removed and the truth maintainer
is notified. If the instance has subinstances, these are also removed. The case of
instances that are created to satisfy the removed instance’s dependencies is not so
trivial. The user may still want to include these components in the configuration
whether the instance is removed or not. Therefore the user is prompted to make
this decision.

Figure 5.3 illustrates the relation between a component hierarchy and an instance
of it. In other words, it illustrates the relation between a domain model and a
configuration.

5.5. The Truth Maintainer

A major problem for OBELICS is the problem of keeping constraints in the instance
hierarchy satisfied. We have separated this part from the rest of OBELICS PSM,
into a separate truth maintainer (TM).

The TM’s activities can be divided into two main areas: maintaining consistency
between attribute values and maintaining dependency relations. The TM maintains
a constraint network for each of these areas: one for attributes and the relations
between them (ACN), and one for the instances and the relations between them
(ICN). When creating an instance the TM analyses its constraints and augments
the constraint networks accordingly. The networks are then used by the TM to
maintain consistency when the hierarchy instance changes.

The events that affect the ACN are, besides adding new instances, user changes
of attribute values and context changes of the methods used to calculate attribute
values. For example the attribute tot memory, which is calculated with a method
which sums all the memory instances value of the attribute size, changes if a mem-
ory instance is deleted even though no explicit updates of attribute values have
occurred. These events trigger recalculation of the affected part of the ACN. The

Page 18 of 22 FORD 1004

19

TEESEERsssERERSE TEEEEEEsssEREEE TEEEEsaaa S TEEEERsEERasaS AL TEessssEsRas TEsEEsssEssaEss TEEssssssaEES v

semsssadunnnan
sessannakanans

engine i
instance chassis

instance

..
)
;

coupe

* 4-cylinder 8-cylinder sedan coupe
instance

:engine engine

B-cylinder
engine instance

Y s N NS NSNS AN NS ESSESSSSsEssEmsEssssasssnssesn)

SEsEmsEEEnEnE A

sessmzammEn EmsEssEsEEEEsssEEESEREESES sssssssssssssnenss Eamsaw smssEssEsEEmEEEE EEEEEEEEEEEEEESEESEEEEEEEEEEENES

A Component hierarchy An instance of the component
hierarchy

FIGURE 5.3. Relations between a component hierarchy and an instance of it

current values of the attributes are stored in the network.

When an instance is deleted or modified TM uses ICN to find instances that are
dependent on the instance. The TM will try to re-satisfy these instances depen-
dencies by e.g. creating new instances.

When constraints imposed by previously made choices prevent the instantiation
of a required subcomponent, it is necessary to backtrack and modify some of the
previously made choices. This is presently done by using fixes! that are explicitly
represented in the domain model. This is an area for improving the truth main-
tainer. At present this kind of situation should be avoided as much as possible, by
structuring the domain model with this in mind.

The truth maintainer can only guarantee consistency if it can analyze all the
constraints in the domain model. This means that OBELICS cannot allow arbitrary
Prolog expressions as constraints. They must be in the format described in section
5:%

5.6. The User Interface

OBELICS PSM interacts with the user through a GUI. The GUI has two main
parts:

e During the configuration there are choices of design alternatives that have
to be made and instances’ user-specifiable attribute values have to be set.
This part of the GUI is responsible for presenting the alternatives in an
understandable way to the user and for reporting the choices to the PSM.
This part is also responsible for presenting explanations of design decisions
made by the PSM.

1A fix is knowledge of what to do in case of failure

Page 19 of 22 FORD 1004

20

e A part that makes it possible for the user, at all times during a configuration
session, to view and edit the current state of the configuration, e.g. what
component class instances have been included so far.

5.7. Generating Descriptions of the Configurations

As mentioned earlier, a hierarchy instance represents a configuration, i.e. an ar-
tifact. A hierarchy instance is not a very presentable description of an artifact.
The required description is usually a textual specification and a set of drawings.
Other forms of texts may be component lists and scripts to be used by other ap-
plications etc. To support the generation of this type of output it is possible in
OBELICS to define mappings between hierarchy instances and the descriptions of
the configurations that they represent.

This mapping is implemented using two additional object classes; text and draw-
ing objects.

TEXT name

Describes: An expression stating what components, if any, the object can de-
scribe,

Subtexts: Texts that may be included.

Pretext: A text fragment to be included ahead of the subtexts. The fragment may
include variables whose values are to be found in the component instances
the object describes.

Posttext: A text fragment to be included after the subtexts.

DRAWING name

Type: A classification of the object.

Describes: An expression stating what components, if any, the object can de-
scribe.

Constraints: The constraints that must be satisfied if the drawing is to be in-
cluded.

Drawing: Knowledge of how the object is to be drawn.

Composition: Knowledge of how subdrawings are to be inserted.

Subdrawings: The set of drawing types that can be inserted.

Specializations: The set of possible specializations of the drawing.

For example:

software_text::{
super (compsys_text)&
describes(all, (compsys,soft),true)&
pretext (["
\section{Software}
\begin{itemize}"])&
subtexts([cad_text,word_text,com_text])&
posttext (["
\end{itemize}"])
}.

The describes(all, (compsys,soft),true) statement means that the text class
describes all soft instances descending from the current compsys instance. The

Page 20 of 22 FORD 1004

21

pretext is to be inserted ahead of the subtext instances, e.g. cad_text instances,
and the posttext after.

To generate a drawing describing a hierarchy instance from a drawing hierarchy
the drawing generator starts with the top object of the drawing hierarchy and:

1. Create Instances Create an instance of the drawing object for each com-
ponent instance that the drawing object describes. Record in each drawing
instance the knowledge of which component instance it describes.

2. Evaluate Instances For each instance do

(a) Generate the frame of the drawing using the instance’s drawing knowl-
edge.

(b) 1If there are any subdrawings, create and evaluate instances of them
and insert the instances in the frame using the instance’s composition
knowledge.

(c) If there are any specializations, find one with valid preconditions. Create
and evaluate an instance of it.

A similar method is used to generate texts describing a hierarchy instance from
a text hierarchy.

6. Conclusions

Although OBELICS is only a prototype its run-time efficiency and the relative
eagse with which it was implemented demonstrate that Prolog, when extended with
tools such as Objects, is very suitable for implementing this type of applications.
There are no reasons to use some other, “more efficient”, language for developing a
fielded version of OBELICS. We believe that the algorithm rather than the runtime
performance determines the speed of this kind of application, and in Prolog it is
usually easier to find the algorithm, refine it, or replace it with a better algorithm
than in e.g. C++.

We have used OBELICS to re-implement DPS, a switchgear configuration tool.
The re-implementation was done with only a fraction of the effort required to imple-
ment the original DPS. During the re-implementation many of the claimed benefits
of OBELICS were corroborated. The domain model was easy to understand and
work with. The application could be developed incrementally etc.

In collaboration with Ericsson Telecom AB we have also produced an example
of how OBELICS can be used for configuration of telecommunication products.
This example shows how OBELICS can work with parameterized functional re-
quirement descriptions, in this case a traffic matrix describing the communication
between users. The application takes such a matrix as input and uses it to plan
how the users should be connected in an optimal way according to a communica-
tion cost function. This plan is then passed to OBELICS’ regular problem solving
method which does the actual configuring. In this way we have an application that
accepts parameterized functional requirement descriptions and produces an optimal
configuration from that while we still have the opportunity to freely (within the
limits of the constraints in the domain model) modify the result. The point here
was to show the ease with which other problem solving methods can communicate
with OBELICS.

Page 21 of 22 FORD 1004

22

Another interesting OBELICS application, developed by Hesham A. Hassan
(SICS), is a support tool for assisting knowledge engineers in configuring prob-
lem solving models from a library of tasks and their corresponding problem solving
methods similar to the CommonKADS library [2].

At this time the claimed ease of maintenance has not yet been properly tested
in practice, but we still believe that the ease of maintenance is perhaps the greatest
advantage of OBELICS.

Acknowledgment

Thanks are due to Klas Orsvarn, SICS, who has contributed to the work, and the
ideas behind OBELICS.

REFERENCES

1.

2.

10.

11.

12.

13.

Tomas Axling. A tool for developing interactive configuration applications. Mas-
ter’s thesis, Department of Computer and Systems Science, KTH, 1993.

J. Breuker and W. Van de Velde, editors. The CommonKADS Library: reusable
components for artificial problem solving. 10S-Press, Amsterdam,Tokyo, August
1994.

D. Brown and B. Chandrasekaran. Knowledge and control for a mechanical design
expert system. [EEE Computer, 19:92-100, July 1986.

David Christopher Brown. Ezpert systems for design problem-solving using design
refinement with plan selection and redesign. PhD thesis, The Ohio State University,
Columbus, OH 43210, 1984.

F. Frayman and S. Mittal. Cossack: A constraint-based expert system for config-
uration tasks. In Proceedings of the 2nd International Conference an Applications
of Al to Engineering, 1987.

Sabine Geldof. Kitchen design: Knowledge level analysis. Technical Report
D/WP2/2, Free University of Brussels, 1991.

S. Haridi. Prolog objects in SICStus Prolog library manual. Technical Report
T93:02, SICS, 1993.

John McDermott. Rl: A rule-based configurer of computer systems. Artificial
Intelligence, 19(1):39-88, 1982.

S. Mittal and F. Frayman. Towards a generic model of configuration tasks. In
Proceedings of the 11th IJCAIL 1989.

R. Pfeifer and P. Rademakers. Situated adaptive design: Toward a new method-
ology for knowledge system development. Technical Report 3, Free University of
Brussels, 1991.

D.B. Shema, J.M. Bradshaw, S.P. Covington, and J.H. Boose. Design knowledge
capture and alternative generation using possibility tables in Canard. In Proceed-
ings 4th AAAI Knowledge Acquisition Tools for Expert Systems Workshop, 1989.

Michael Vitins. A prototype expert system for configuring technical systems. In
Knowledge-based Systems in Industries, Baden-Dattwil, Switzerland, 1986. Brown
Boveri Research Center.

T. Yokoyama. An object-oriented and constraint-based knowledge representation
system for design object modeling. In Proceedings of the Sizth IEEE Conference
on AT Applications, 1990.

Page 22 of 22

FORD 1004

