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• lntro uction an verv1ew 
The Building of a Knowledge System 

tQ Identify Wild Plants 

There is always a tension between top-down and bottom-up presentations. A top-down presenta­
tion starts with goals and then establishes a framework for pursuing the parts in depth. Bottom­
up presentations start with fundamental and primitive concepts and then build to higher-level 
ones. Top-down presentations can be motivating but they risk lack of rigor; bottom-up presenta­
tions can be principled but they risk losing sight of goals and direction. 

Most of this book is organized bottom-up. This reflects my desire for clarity in a field that 
is entering its adolescence, metaphorically if not chronologically. The topics are arranged so a 
reader starting at the beginning is prepared for concepts along the way. Occasionally I break out 
of the bottom-up rhythm and step-at-a-time development to survey where we are, where we have 
been, and where we are going. This introduction serves that purpose. 

The following overview traces the steps of building a hypothetical knowledge system. 
Woven into the story are some notes that connect it with sections in this book that develop the 
concepts further. Many of the questions and issues of knowledge engineering that are mysterious 
in a bottom-up presentation seem quite natural when they are encountered in the context of 
building a knowledge system. In particular, it becomes easy to see why they arise. 

I made up the following story, so it does not require a disclaimer saying that the names 
have been changed to protect the innocent. Nonetheless, the phenomena in the story are familiar 
to anyone who has developed a knowledge system. Imagine that we work for a small software 
company that builds popular software packages including knowledge systems. This is a story of a 
knowledge system: how it was conceived, built, introduced, used, and later extended. 

To Build a Knowledge System 
It all began when we were approached by an entrepreneur who enjoys hiking and camping in the 
hills, mountains, and deserts of California. Always looking for a new market opportunity, he 

1 
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2 INTRODUCTION AND OVERVIEW 

noticed that campers and hikers like to identify wild plants but that they are not very good at it. 
Identifying wild plants can be useful for survival in the woods ("What can I eat?") and it also has 
recreational value. He was convinced that conservationists, environmentalists, and well-heeled 
hikers have a common need. 

The entrepreneur proposed that we build a portable knowledge system for identifying 
wildlife. He had consulted a California hiking club and a professional naturalist. He suggested 
that we begin by constructing a hypertext database about different kinds of plants, describing 
their appearance, habitats, relations to other wildlife, and human uses. Our initial project team is 
as follows: 

A hike representing the user community and customer. 
A naturalist, our domain expert on wildlife identification. 
A knowledge engineer, our expert in acquiring knowledge and knowledge representation. 
A software engineer, the team leader having overall responsibility for the development of 
software. 

After some discussion within the company we agreed to develop a prototype version of the 
knowledge system using the latest palmsize or "backpack" computers. If the technical project 
seemed feasible, we would then consider the next steps of commercialization. We planned to use 
the process of building the prototype to help us determine the feasibility of a larger project. We 
recruited the naturalist and a prominent member of one of the hiking clubs to our project team. 
We called the group together and started to learn about each other's ideas and terminology. 

Notes .The participants are just getting started. They need to size up the task, develop 
their goals, and determine their respective roles oh the project. They need to .consider 
many questions about the nature of the knowledge system they would build. They ask 
"Who wants it?'' because the situation and people matter for shaping the system. They 
also ask "What do these people do?" and "What role· should the system play?" because 
these issues arise in all software engineering projects, 

Connections See Chapter 3 for a discussion of the initial interview concepts :and 
background on software engineering. 

Our Initial Interviews 
Our naturalist tells us he wants to focus on native trees of California. We begin with the famous 
California redwood trees, the Sequoia sempervirens or coastal redwood and the Sequoiadendron 
giganteum or giant redwood that thrives in the Sierras. Our naturalist is a stickler for complete­
ness. He also adds the Metasequoia glyptostroboides or dawn redwood, which grew in most parts 
of North America. The dawn redwood was thought to have become extinct until a grove was dis­
covered in China in 1944. At a blackboard he draws a chart of plant families as shown in Figure 
I. I. He tells us about the history of the plant kingdom: 
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DIVISION 

ORDER 

FAMILY 

GENUS 

SPECIES 

Taxodium 

Taxodium 
distichum 
(swamp 

bald cypress) 

I 
Taxale 

I 
Yew 

Metasequoia 

Metasequoia 
glyptostroboides 

(dawn 
redwood) 

Gymnosperms 

r 
Taxodiaceae 

(swamp cypress) 

· Sequoia 

Sequoia 
sempervirens 

(coastal 
redwood) 

I 

Coniferale 

Pinus 
(pine) 

Abies 
(fir) 

Sequoiadendron 

Sequoiadendron 
giganteum 

(giant 
redwood) 

Pice a 
(spruce) 

Cunninghamia 

Cunninghamia 
lane eo lata 
(Chinese 

fir) 

Angiosperms 

Dicotyledon 

I I 1···l 
Oak Maple 

Sciadopitys 

Sciadopitys 
vertic illata 
(Japanese 

umbrella pine) 

Elm 

Others 

FIGURE 1.1. A partial taxonomy showing relations among plants closely related to California redwood trees. In our scenario and 
thought experiment, the naturalist was asked about redwoods and started lecturing about plant families. 

~ 
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4 INTRODUCTION AND OVERVIEW 

Plants evolved on Earth from earlier one-celled animals. About 200 million years 
ago was the age of conifers, the cone-bearing trees. Redwoods are members of the 
conifers, which were the dominant plant species at that time. They are among the 
gymnosperms, plants that release their seeds without a protective coating or shell. 

Our naturalist is a gifted teacher but he tends to slip into what we have started to call his 
"lecture mode." After an hour of exploring taxonomies of the plant kingdom we begin to get rest­
less. One of the team members interrupts him to ask the proper location in the taxonomy for the 
"albino redwoods," which are often visited in Muir Woods. This question jars the naturalist. 
Albinos do not fit into the plant taxonomy because they are not a true species, but rather a 
mutated parasite from otherwise normal coastal redwoods. Redwoods propagate by both seeds 
and roots. Sometimes something goes wrong in the root propagation, resulting in a tree that lacks 
the capability to make chlorophyll. Such rare plants would normally die, except a few that con­
tinue to live parasitically off the parent. Albino trees have extra pores on their leaves that rnalce 
them efficient for moving quantities of water and nutrients from their host and parent trees. 

At this point another member of the group, a horne gardener, wants to know about trees she 
had purchased at a local nursery called Sequoia sempervirens soquel and Sequoia sempervirens 
aptos blue. Again, the naturalist explains that these trees are not really species either. Rather, 
they are clones of registered individual coastal redwoods, propagated by cuttings and popular 
with nurseries because they grow to be predictable "twins" to the parent tree, having the same 
shape and color. These registered clones are sometimes called cultivars. They would be impossi­
ble to identify reliably by visual examination alone and they are not found in the wild. 

This leads us to a discussion of exactly what a taxonomic chart means, what a species is, 
what the chart is useful for, and whether it is really a good starting place for plant identification. 
Clearly the chart does not contain all the information we need about plants because some plants 
of apparent interest do not appear in it. We also have learned that there are some plants about 
which there is debate as to their lineage. After discussion we decide that the information is inter­
esting and that it would be a good base for establishing names of plants, but that it would not be 
appropriate for us to proceed by just filling out more and more of the taxonomic chart. We decide 
to focus on actual cases of plant identification at our next session. 

Notes In this part of the story the participants are beginning to build bridges into each 
other's areas to understand how they will work together. They bring to the discussion 
some preexisting symbol structures or representations, such as the plant taxonomic chart. 
Often there needs to be discussion about just what the symbols mean and whether those 
meanings are useful for the task at hand. As in this story, it sometimes turns out that these 
symbols and representations need to be modified. When the end product includes a 
knowledge system, then conventions about symbol structures must be made precise 
enough for clear communication and also expressive enough for the distinctions made in 
performing the task 

Connections See Chapter 1 for an introduction to symbols and symbol structures and 
the assignment of meaning to them. See Chapter 3 for a discussion of tools and methods 
for incremental formalization of knowledge. 
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To Build a Knowledge System 5 

1. The specimen is tall, 
2. I'd guess about 30 or 35 feet tall. 
3. So it's a tree ... 
4. symmetrical in shape. 
5. From the needles in the foliage, it's obviously a pine, 
6. but not one of the coastal pines since we're at too high an elevation in these mountains. 
7. Could be either a Pinus ponderosa, ajeffreyi, or a torreyana. 
8. Let's see (walking in closer) ... dark green needles, not yellow-green, 
9. about7inches1ong,and 

10. in clusters of three. 
11. Rather grayish bark, not cinnamon-brown. 
12. Medium-sized cones. 
13. Seems to be a young tree. Others like it are near, reaching heights of over a hundred feet tall. 
14. It's probably a Pinus jeffreyi, that is, a Jeffrey pine. 

FIG~RE 1 . .2. Transcription of our naturalist talking through the identification of one of the plants. 

The Naturalist in the Woods 
We prepare to study the naturalist's classification process on some sample cases. One member of 
the group sets up portable video and audio recorders at a local state park. Our hiking club mem­
ber is our prototype user. We define his job as walking into the woods and selecting a plant to be 
identified. In this way we hope to gain insight into what plants he finds interesting and to test the 
relevance of the plant taxonomy. We ask the naturalist to "think out loud" as he identifies·plants. 
Recording such a session is called taking a protocol. This results in verbal data where the natural­
ist talks about the bark coloration, surface roots, and leaf shapes. After these dialogs are recorded 
and pktures of the plants are taken, we transcribe all of the tapes. Figure 1.2 shows a sample tran­
script. 

Mter the session in the park, we go over the transcripts carefully with the naturalist, trying 
to reconstruct any intermediate aspects of his thought process that were not verbalized. We ask 
him a variety of questions. "What else did you consider here? How did you know that it was not 
a manzanita? Why couldn't it have been a fir tree or a digger pine? Why did you ask about the 
coloring of the needles?" Our goal is not so much to capture exactly what his reasoning was in 
every case, but rather to develop a set of case examples that we could use as benchmarks for test­
ing our computer system. As it turns out, the naturalist does different things on different cases. 
He does not always start out with exactly the same set of questions, so his method is not one of 
just working through a fixed decision tree or discrimination network. 

Notes At this point the group has begun a process of collecting knowledge about the 
task in terms. of examples of problem-solving behavior. As we will see below, it is possi­
ble to make some false starts in this, and it is also possible to recover from such false 
starts. 

Connections See Chapter 3 for discussion of the assumptions and methods of the 
"transfer of expertise approach. 
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6 INTRODUCTION AND OVERVIEW 

Characterizing the Task 

The knowledge engineer begins a tentative analysis of the protocols. He tells us he might need to 
analyze these sessions several different ways before we are done. He wants to characterize the 
actions of the naturalist in terms of problem-solving steps. His approach is to model the problem­
solving task as a search problem, in which the naturalist's steps carry out different operations in 
the search. Figure 1.3 shows his first tentative analysis of the session from Figure 1.2. In this, he 

Collect Initial Data 
Determine height of plant: Plant is more than 30-feet tall. (1) 
Shape is symmetrical. (4) 
Foliage has needles. (5) 

Determine General Classification 
Infer: Plant is a tree. (3) Plant is a pine tree or a close relative. 
Knowledge: Only pines and close relatives have needle-shaped leaves. (5) 

Collect Data about Location 
Mountrun location. 
Knowledge: Trees from the low areas and the coast do not grow in the mountains. (6) 
Rule out candidates that do not grow in this region. 

Form Specific Candidate Hypotheses 
Mountain pine trees include the Pinus ponderosa, the jeffreyi, and the torreyana .. (7) 

Determine Data to Discriminate among Hypotheses 
Knowledge: The hypotheses make different predictions about needle color and bark color. 
Species: ponderosa jeffreyi torreyana 
Bark color: cinnamon-brown grey brown 
Needle color: yellow-green dark green du11 green. 
Needle clusters: three three five 
Needlelength: 8" 7" 10" 

CollectDiscriminating Data 
Needles are dark green. (8) 
Needle$ are 7 inches long. (9) 
Needles are clustered in threes. (10) 
Barkis grayish. (11) · 
Cones are medium-size. (12) 

Consider Reliability of Data 
There are other trees in the area of the same character. (13) 
Mature he!ghtofother:s is more than lOOfeet. (13) 
Infer that the specimen is representative but not yet full grown. (13) 

Dete'rm.ine Whether Unique Solution Is Found 
Only a Pinus jeffreyi fits th.e data. ( 14) 

Retrieve Common Name 
Knowledge: APinusjeffreyi is commonly called a Jeffrey pine. 

FIGURE 1.3. Preliminary analysis of the protocol from the transcript in Figure 1.2. The numbers in paren­
theses refer to the corresponding steps in Figure 1.2. 

Page 16 of 153 FORD 1007



To Build a Knowledge System 

Examples: 
Tall tree 

Desert region 
Spring bloomer ... 

Examples: 
Tree is 30 feet tall 
Rainfall is 4 inches 

per year 
Berries are red 

Data. Space 

Abstracted 
data 

t 
/II.. Data 
' I ' abstraction 

t 

G 

Heuristic 
match 

Solution Space 

Solution , 1 , 
refinement 'f 

t 

Examples: 
Pinus family 

Vine in bush ... 

Examples: 
Arbutus menzies IT 

(Madrone) ... 

FIGURE 1.4. The search spaces for classification. This method reasons about data, which may be 
abstracted into general features. The data are associated heuristically with abstracted solutions and ulti­
mately specific solutions. 

7 

characterized operations such as "determining the general classification," "collecting data," 
"forming specific candidate hypotheses," and so on. These operations constitute a sketch of a 
comp~tation model for the plant identification, which searches through a catalog of possible 
answers. 

This tentative analysis of the protocol is consistent with a computational model that the 
knowledge engineer calls "classification." Someone in the group objects, arguing that the natu­
ralist was not "classifying." Instead, he was merely "identifying" plants because the classes of 
possible plants were predetermined. The knowledge engineer agrees but explains that this is 
exactly what classification systems do. He draws Figure 1.4 to illustrate the basic concepts used 
in this method. 

To use this method, we needed to identify the kinds of data that could be collected in the 
field-the data space-as well as the kinds of solutions-the solution space. Data consist of such 
observations as the number of needles in a cluster. A final solution is a plant species. Classifica­
tion uses abstractions of both data and solutions. A datum such as "3 inches of rain falls in the 
region annually" might be generalized to "this is a dry, inland region." A solution and species 
description such as Pinus contorta murray ana (lodgepole pine) might be generalized to pine tree. 
There are variations of classification, but they all proceed by ruling out candidate solutions that 
do not fit the data. Further analysis of protocols on multiple cases would be needed to determine 
what kinds of knowledge were being used and how they were used. 

The knowledge engineer now has some questions for the naturalist. Suppose the solution 
space is given by a catalog of possibilities, such as the charts in the botany books we used on the 
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INTRODUCTION AND OVERVIEW 

project. The protocol analysis in Figure 1.3 shows that the naturalist quickly ruled out the coastal 
varieties of the pine tree. But how about the many other species of pine that grow in the moun­
tains? With book in hand, he asks why the naturalist had not considered a coulter pine (Pinus 
coulteri). The naturalist is taken aback. He answers that the coulter pine actually is a plausible 
candidate and asks to see the pictures of the specimen. After looking at it, he says the pine cones 
are too small and that the specimen does not have a characteristic open tree shape like an oak 
tree. Continuing, the knowledge engineer asks about the sugar pine. The naturalist answers that 
the cross-examination ferls like "lesson time," but that sugar pines are the tallest pine trees in the 
world, being more than 200 feet tall and that you would know immediately if you were in a sugar 
pine forest. However, the idea of systematically going through the catalog to analyze the proto­
cols is appealing, so the two of them start working over them. The naturalist suggests that all of 
this post-protocol explanation and introspection might make him more systematic about his own 
methods. 

As we continue to work on this, the significant size of the search space becomes clearer to 
everyone. One could be "systematic" by asking leading questions about each possible plant spe­
cies. I;Iowever, there are about 50 common species of just pine trees in California. Species of 
trees represent only a small fraction of the native plants. A quick check of some catalogs suggests 
that there are about 7,000 plant species of interest in California, not counting 300 or 400 species 
of wildflowers that are often discounted as weeds. It is clear that any identification process needs 
a means to focus its search, and that we need to be economical about asking questions. We begin 
to examine the protocols for clues about search strategy. We want to understand not only what he 
knows about particular plants, but also how he narrows the search, using knowledge about the 
families of plants and other things to quickly focus on a relatively small set of candidates. 

Notes The group is developing a systematic approach for gathering and analyzing the 
do~ain lmowledge. The protocol analysis has led to a framework based on heuristic clas­
sification. Usually protocol analysis and selection of a framework are done together. It is 
not ull.usual for the analysis to reveal aspects that were :q.ot articulated. Experts sometimes 

_ forget to say things out loud and sometimes make mistakes. For these reasons, it is good 
practice to compare many examples of protocols on related cases. Knowledge needed for 
a task is seldom revealed all at once. 

Connections See Chapter 2 for characterizations of problem solving as search andfor 
the terminology of data spaces, search spaces, and solution spaces. This chapter focuses 
on basic methods for search. To build a computational model of a task domain, we need 

-to identify-the search spaces and to determine what knowledge is needed and how itis 
used. See Chapter 3 for a discussion about approaches and psychological assumptionsfor 
the analysis of protocols. See Chapters 7, 8, and 9 for examples of the knowledge-level 
analysis and computational models for different tasks. 

A "Naturalist in a Box" 
As we build up a collection of cases and study the transcripts, we become aware of some diffi­
culties with our approach. The first problem is that the naturalist is depending a great deal on 
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properties of the plants that he can see and smell. Much of the knowledge he is using in doing 
this is not articulated in the transcripts. 

Our hiking club representative kids the naturalist, saying he is "cheating" by just looking at 
the plants. We decide to take this objection seriously, and then notice three specific kinds of 
problems in the collected protocols. The first problem is that the naturalist makes his visual 
observations very quickly and often neglects to verbalize what he is doing at that point. Second, 
the naturalist does not articulate what guides his processes of perception. We need a systematic 
way of knowing where he is looking and then gathering the characterizations and inferences 
from what is seen. Third, we realize that the situation in which our system will be used intro­
duces a new aspect of the task outside of the naturalist's field experience: communicating as 
though blind with an inexperienced observer. In short, the taking and analyzing of protocols 
seemed to be a good approach, but our approach was providing us with data for solving the 
wrong problem. 

These problems mean that we have more work to do. For example, some additional "defi­
nitions" need to be captured, such as just what a "mottled pattern" is and what color is "cinna­
mon-brown." In using terms to refer to things in the world, we need to be sure that another 
observer can interpret the description and find the same thing. We call this the "reference" prob­
lem. We become nervous about the perceptual aspects of the naturalist's thinking because our 
"portable classifier" would not have capabilities for machine perception: In our projected system 
our users will need to observe the plants themselves. In addition, much technical vocabulary. 
appeared in the protocols. We are becoming familiar with the naturalist's vocabulary as a result 
of working on the project. However, we recognize that our potential users and customers will not 
be comfortable with a question such as "Does it have radical leaves?" or "How many stamens 
and stigma are there?" 

Again, we need a new approach to create a product that our potential customers will find 
usable. After a few hours of brainstorming, one of the group members proposes a knowledge 
acqui_sition set up that we later called "our naturalist in a box," as shown in Figure 1.5. 

In our setup the naturalist sits at a working table in a tent in the forest with whatever books 
and pictures he needs. The user walks off into the woods with a portable television. Each has a 
headset that allows them to speak by radio. In addition, the naturalist can show pictures from his 
books or drawings over the video link. This setup approximates the storage and display functions 
we would have with a portable hypermedia system, where the computer and stored images might 
perform the role of the "naturalist in the box." The voice communication would substitute for a 
pointing device and keyboard. All communications on the audio and video links are recorded for 
our later analysis. In addition, pictures of the plants and the user are taken, but not shown to the 
naturalist until later when we analyze the sessions. 

At first the naturalist feels quite confined and hampered by the setup. A crucial question 
was whether the naturalist could properly identify the plants without seeing them. Soon, how­
ever, it becomes clear that the naturalist is able to function in this mode and that the setup is suit­
able for obtaining the information we need. We begin to discover specific requirements about the 
interactions with the user. 

Along the way there are some interesting surprises. One fall day, a user wants to identify a 
brilliant red shrub at the side of the trail. As he describes the bush, the naturalist starts to ask 
whether it has shiny leaves organized in groups of three originating from the same point on the 
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Video camera 

User 
Naturalist 

FIGURE 1.5. Our "naturalist in a box" setup for gathering realistic problem-solving protocols. 

stem. Suddenly the naturalist becomes alarmed and says, "No, don't touch that! It's probably 
Rhus diversiloba, I mean, poison oak!" This leads us to recognize the need for additional 
functionality in the performance program, beyond the simple drive to classify. 

We begin to record various images of the plants from our cases and organize them for com­
puter-contr?lled retrieval in a catalog of digitized images. The naturalist begins to use these 
images in his conversations with the "users." With a few keystrokes, he can retrieve an image 
and display it on the user's television. We make a simple interface to switch from general views 
of a plant to close-up views of its foliage, bark, or seeds. We also make it easy to arrange image 
arrays of similar plants next to each other for visual comparison. Together with the naturalist we 
experiment with different ways of retrieving and displaying images. 

From the many video sessions it becomes apparent that our users are not willing to answer 
"20 questions" in order to identify plants. For one thing, they often do not understand words such 
as pollen cones or deciduous. Over a few weeks of experimenting with the setup, we begin to 
understand more about the flexibility inherent in the information exchanged in a session between 
the naturalist and a user. We notice that a user might volunteer some basic constraints at the 
beginning. For example, once it is determined that the region was "high desert" there is no point 
in considering plants that could grow only in less arid regions. Once it is determined that it is 
winter, there is no point asking questions about deciduous leaves that would no longer be on the 
plant. If the user is interested in shrubs, it is not necessary to enter that constraint for every spec­
imen. 

Our programmers create a template of constraints that can be carried over from problem to 
problem, without the need to reenter them or infer them from new data. To avoid tailoring our 
interactive approach to the requirements and idiosyncrasies of a single user, we rotate through a 
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collection of users and test whether the vocabularies and kinds of interactions can be easily 
understood. 

As we broaden our activities to different parts of the wilderness, our naturalist suggests 
that we enlist the help of other naturalists who specialized in those regions. The naturalists work 
alternatively as a team and as individuals checking each other's work. We find that they differ in 
their approaches. This raises general issues about combining expertise. We collect the interesting 
cases for staff discussion. 

As we begin to use the system, we need a name for it. Someone proposes calling it 
SEQUOYAH, after the Cherokee for whom the redwoods are thought to be named. Born in 1760, 
Sequoyah was known for developing a written alphabet for Native American languages. His goal 
was to enable the tribes to communicate and to preserve their Indian dialects. We thought that the 
name was appropriate for honoring the Native Americans who lived in and knew so much about 
the wilderness. We also saw the knowledge system as a new kind of writing medium or active 
documentation, that would be an appropriate tool for a modem-day Sequoyah. 

Notes The group has had some false starts. They needed to define the task better to 
focus their process of finding and formulating the relevant knowledge. The term process 
keeps coming up in the context of building and using knowledge systems. Knowledge 
systems for specific tasks must be designed to fit the processes in those tasks. In this 
example, the group discovered that it had made a crucial error in its assumptions about 
the way that the system would be used. In particular, it had implicitly assumed that the 
user would have the same observational skills as the naturalist. Addressing this exposed 
the need for different protocols. 

Connections Chapter 3 considers general points from software engineering about 
defining tasks and about involving potential users and multiple experts in early stages of 

-system design. When multiple experts are available, there is an opportunity for them to 
check each other's work, to find idiosyncrasies and gaps, and to develop alternative rea-
soiling models. Chapter 1 discusses the use of multiple models in reasoning. -

Developing Formal Representations 
Working from the protocols and other background material, we begin to develop formal relations 
for modeling the identification of plants. These relations need to make distinctions adequate for 
representing the reasoning in our sample cases. For example, we need to define a "color" relation 
that would map consistently to a range of colors and color mixtures. Furthermore, we know that 
the bark, leaves, and cones could all be different colors. This leads us to formalize a vocabulary 
of standard "parts" for plants. Following the biologist's lead, we select standard terms for parts 
and use the same names for particular relations throughout our database. 

The knowledge engineer develops an example of a frame for our consideration, as shown 
in Figure 1.6. As he explains it, the frame is a representation that would be used for the reasoning 
done internally by SEQUOYAH and externally for our discussions of what SEQUOYAH could 
and should do. Internally, SEQUOYAH might employ multiple and different representations for 
some parts of its task, but we would define our understanding and view of them largely through 
the vocabulary made visible in frames. Externally, user interfaces would specify how we viewed 
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Identity 

Genus: Sequoia 
Species: Sequoia sempervirens 
Common name: coastal redwood 

Shape ·---- ----, 
25 years ' . ' 

L~:~~-J 
,--------, 
' ' 100 years : view : 
' ---------,--------. 

Spike-top 1 view : 
~------- -· 
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·.,'---------------' 

Seed cones ' : view 
' 
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Scale arrangement: spirals 

·------- -. 
Pollen cones ' ' : view : 

' 
.. _______ _ 

Scale arrangement: spirals 

INTRODUCTION AND OVERVIEW 

Variations 

Cultivars: aptos blue, soquel, Santa Cruz 
Dwarf: Albo spica 
Albino: albino redwoods 

Habitat 

Climate zones: 4-9, 14-24 

Branches 

Long branches view 

Arrangement: shoots in alternate array 

Short branches 

Leaf arrangement: spirals 

Leaves 

Shape: 

Stalk: sessile 
Life: persistent 

I Needle I 
Awl 

view 

·------- -. 
' ' 

~-~-i~~-j 
·------- -, 
' ' 
: view : 
' ' ---------

FIGURE 1;6. Example of a composite frame tried for data entry. In designing these we seek ways that 
would ensure the use of a uniform vocabulary in the database. 

and interacted with the frames. His purpose at this setting is to consider some of the meaning and 
vocabulary that we would use in creating SEQUOYAH. The general idea is that we will choose a 
uniform vocabulary to the extent that it is possible. 

The first thing he explains about the frame in Figure I.6 is that it contains many different 
kinds of information. For example, the boxes marked "view" are intended to link to digitized 
photographs that can be shown to the user. They are not intended for interpretation by 
SEQUOYAH itself. The second point is that many of the entries have further elaborations else­
where in the data base. For example, there is a frame for pollen cones, a frame for the Sequoia 
genus, a frame for climate zone 14, a general frame for leaves, and so on. Using the frames, we 
define vocabulary and relations for plants, their parts, their botanical classifications, their habi­
tats, as well as observations and tests that could be carried out by our users. In addition we 
develop criteria for choosing what to observe, choosing what candidates to consider, combining 
constraints, and developing warnings about hazards. 

We then discuss the different data fields, with an eye toward specifying more precisely 
what they should mean. The naturalist says that separating the common name from the botanical 
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name is a good idea. In the case of the redwood, several other trees are commonly called red­
woods that are not related. In Brazil, the Amazonia is often called a redwood. It has light red and 
orange wood. In Burma, there is a tree called the Andaman redwood. It has red or crimson wood 
streaked with red. In Europe, the wood from Pinus sylvestris or Scots pine is often called red­
wood. The naturalist suggests that we provide means for retrieving descriptions and comparing 
trees with similar names. 

We then talk about descriptions of climate zones. We decide to use the zones established in 
the Sunset New Western Garden Book, which is widely used in the western states. However, there 
is an important issue about the meaning of habitat. Do we mean the places where the tree could 
be grown or the places where it grew naturally? Do we mean the places where it survives or the 
places where it thrives? Naturalists sometimes define habitat as the regions where the species 
will propagate naturally. It becomes clear that we needed to be able to distinguish several differ­
ent meanings of habitat, both for consistent reasoning by the system and for consistent encoding 
of the database. The naturalist offers to provide a candidate set of standard terms and relations for 
the knowledge base. 

Climate zones delineate places on the map. We notice in the protocols that the naturalist 
makes substantial use of information about location. If SEQUOYAH knew where the user was 
located, it could automatically take that information into account in its analysis, ruling out or de­
emphasizing plants that would not be expected to grow there naturally. This leads us to consider 
representations of map data, relating information about climate, latitude, longitude, and eleva­
tion. We also decide to include information about parks, towns, lakes, and so on. We recruit a 
specialist to the team who can investigate the availability and possible formats of map informa­
tion. 

A question comes up about the choice of units of measurement. In talking about length or 
width, should we use inches and miles or metric units? That issue turns out not to matter much 
because the computer can convert the information between different units of measurement. 

One of the important uses of the frames is to represent the possible solutions to the classifi­
cation task. Ideally, a solution corresponds to a single species. In going over the cases we had 
obtained from the "naturalist in a box" protocols, however, we find a few cases that challenge 
our representational capabilities. Some of the most interesting (and at first perplexing) cases are 
ones where several plants were growing so closely together that the observer did not realize that 
the "specimen" was actually two or more different plants. For example, vines can become so 
intertwined with their host plants that their leaves appear to belong to the host. To enable 
SEQUOYAH to reason about such cases, we decide to admit "composite solutions," generated 
by appropriately mixing together the attributes of plants that grow in this way. In cases such as 
this, decisions about what the system can represent determine the coverage of its problem-solv­
ing abilities. 

Finally, we notice that we need to model some data about the seasons. Plants appear differ­
ently in different seasons. This is especially true for plants that show bursts of spring growth, 
plants that lose their leaves, and flowers with a limited blooming period. 

Over the next few weeks, we build up a knowledge base about the domain. As the knowl­
edge base becomes more complete, we compare its performance on test cases with that of our 
naturalist. Our goal is not so much to replicate the precise sequence of his steps as much as to 
approximate his skill and expertise over a range of cases. 
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Notes At this point the group is beginning to develop formalsymb.olicrepresentations 
to model the domain, as in the example of the redwood tree frame, Tojl!(;lge ,~dequ(l<;Y '?f 
representations, the group needs to keep the task in mind. The world is quite open...:ended, 
and every project needs to determine the bounds on the knowledgy that it will Jormalize; 
Different designs for representation have different capabilities for milking 'distinctions. 
Different choices for symbol structures can also have a large impact on the practicality of 
making different kinds of inferences. For example, before picking representations for 
space (map data) and time (seasonal data), we need to lmow whatkinds of inferences we 
expect the system to make and which ones must be made quickly. 

One powerful advantage of computer systems over books as knowledge Jiledi(lis 
that they can be executed. That is, ,the mo.dels can be run and debugged on c::ase,s,:::Jbis 
encourages ,the systematic development and testing of models in an experimentali1lQde: ' 

Connections Chapter 1 introduces concepts about symbols and meaning withe:xam.,. . 
pies of objects and relations used in building models. Issues aboutrepresentationaiJ.drea­
soning about space and time are considered in Chapters 4 and 5. 

Testing the System with Users 
Over the next few weeks we get ready to work with what we called our "beta-test" users. By 
"beta-test," we mean the first people outside of our working group to try out our system. Given 
our operational version of SEQUOYAH, we knew that people could give us quite specific feed­
back about what they thought about it. Our goal is to collect information that will enable us to 
improve our product, bringing it closer to our customers' needs. 

We -use a variety of approaches to gather information. One is to work with hiking clubs to 
observe their use of the system. We collect detailed records of their interactions with the system, 
including video records, trying to identify those places where SEQUOYAH confused them. We 
also interview them about the system and collect questionaires and suggestions. This process 
reveals bugs, proposed changes, and proposed new features, which we then consider in the meet­
ings of our development staff. 

One thing we discover is that our customers often have very good ideas. We decide that we 
need a way to encourage customers to send us new ideas and bug reports on a regular basis. This 
leads to a "message" feature that we add to our system. At any time during a session, a user can 
push a message key and type in a short message with a suggestion or bug report. This creates a 
file on the computer with the user's name, the version of the system, the context in the session, 
and so on. At some later time, the user can plug his or her computer into a modular telephone and 
it would dial an 800-number that passed the information to us. The information gathered auto­
matically in this way enables us to reproduce the situation where the problem arose. To encour­
age contributions, we offer rewards for suggestions that we later incorporate into our products. 

Notes Testing the early version of a system in realistic settings is a cruCial p~ of ' 
every knowledge-system project._ Custom systems that_ are tailored for a singkugroup 
of users can be developed with those users from_the beginning. Companies that try.to 
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market to a large .set of users need to have effective ways to probe those markets and to 
assess the products. These studies can involve a joint effort between marketing and devel­
opmentstaff. 

Connections Marketing and testing are not major themes in this text. We mention 
them here to fill in some of the larger commercial context of knowledge systems. How­
eyer, Chapter 3 contains some suggestions for approaches for developing systems jointly 
with user groups. 

Add-on Systems 
We now skip forward in the story. SEQUOYAH is in its second release in the market. Several 
organizations have approached us about "opening" our knowledge base so it can be extended. 

One idea that provokes a lot of interest is extending SEQUOYAH to act as a "digital trail 
gu'ide" to the hiking trails in the state and national parks. Several well-known hikers express an 
interest in collaborating on add-on systems, which would provide an interactive interface for hik­
ers in choosing and selecting hiking trails. Different tour promoters specialize in different kinds 
of hikes. Some focus on challenges. Some focus on nature walks. Some would like to exchange 
"hiking instructions" that connect with each other and into the extensive map and plant database 
that we have already built. For example, software for guiding a nature walk could draw the 
hiker's attention to a particularly interesting redwood on a trail and could provide backup for 
questions drawing on our general database about wildlife. We see that by providing facilities for 
extending and exchanging databases, we can extend our market. One of the hiking magazines 
proposes to work with us to develop digital trail guides that they would distribute with their quar­
terly.magazine. They would like to have a partnership arrangement with us for developing the 
software and also to give special agreements to their members for purchasing our systems. The 
simpler proposals for a digital trail guide would build on our map database by overlaying trail 
information, showing the distance between points, the altitudes, the slope of trails. Other more 
elaborate proposals include systems that would design day hikes for campers on demand, given 
constraints about distance, what they want to see, and so on. 

In addition, a group of California nurseries approaches us about extending SEQUOYAH to 
advise on landscaping with native plants. With the difficulties created by drought in California, 
they have seen much greater interest in the horticultural use of water-efficient native plants. One 
nursery wants to extend our database of native plants and to develop a design assistant for land­
scapes. The database would be extended to include information about layout, planting, fertiliz­
ing, pruning, ecology, and forest management. They want to extend the plant selections to 
include plants overlooked by hikers, such as native grasses used for controlling erosion. They 
observe that many horticulturists are trying to catch up in their understanding about native plants. 
In an arrangement similar to one of the hiking clubs, one professional nursery proposes to create 
quarterly "digital feature reports" that recommend newly available plants and to extend the 
database and ideas into new areas. 

We convene some company meetings to assess the commercial prospects and managment 
and technical issues for these proposals. One of the issues that we see is that there will suddenly 
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be many different versions of our system. What will the maintenance issues be when someone is 
using last year's version of our plant database with a new digital trail guide from the hiker's 
club? We want the software to work together as well as possible, accessing the latest versions. 

We also discover that the landscaping advisor system would need representation and rea­
soning capabilities beyond those that we had used in SEQUOYAH. One member of the develop­
ment sketches out a mockup of the user interface in conjunction with one of the landscape spe­
cialists, a horticulturalist. The mockup, which is shown in Figure I. 7, shows the system reasoning 
about plants and maps. The map representations are more detailed than the ones that we used for 
SEQUOYAH, but about the same as would be needed for the trail guide applications. They 
would, however, need to represent additional elements, such as water systems and lighting. Fur­
thermore, the preliminary examination of the search processes for landscape design suggested 
that the methods used by SEQUOYAH, heuristic classification, would not be adequate. The 
landscaping system has a much more complex space of possible solutions. For example, a solu­
tion might include compatible plant selections; layout; land contouring; and the construction of 
sheds, patios, water sytems, and so on. There are quite a range of functions that the system could 
perform, including creating perspective drawings of the landscape, projecting plant growth over 
time using parameterized fractal drawings of plants, and comparsion views that show the effects 
of different choices. In general, it appears that the landscape advisor would be much more com­
plex than SEQUOYAH to build. We need to identify software from other vendors that we could 
incorporate in the product. We recognize that a preliminary study is needed to determine what 
features would be desirable and what is affordable. 

As we explore the technical and policy issues for our product, we recognize that there is 
not just the one business of selling "boxes" to hikers, but rather that there are many different 
businesses for providing data and services in our "knowledge medium." Some of the businesses 
could build on each other, and some of them require expertise beyond the means of our company. 
We need to understand which businesses make sense strategically and what the conditions are for 
making the~ commercially viable. If we turn our knowledge system into an "open system," we 
need to consider what protections would be required for our software. 

As we consider the changes we are seeing in technologies and concepts for publication and 
communication, we realize that our products are examples of a new kind of writing for people 
who enjoy the wilderness. The products are enabling such people to make their ideas and exper­
tise active in a way that is more adaptable than books. Reflecting back on the Cherokee 
Sequoyah's work to introduce an alphabet as a symbol system for American Indians, we feel that 
the selection of a name for our system is even more appropriate. 

Notes As knowledge systems become larger, the issues for managing, updating! and 
sharing information become more crucial. In the current state ofthe art, people ~ave not : 
yet confronted the issues ()f making knowledge bases that can be used for multiple tasks. j 
Although this point is notemphasized in the story, there are many open issues about' 
copyright and distribution of electronic publications and electronic services. The first j 
generation of electronic networks discouraged commercial participation and sidestepped 

1 

.the opportunity (and effort) to shape or inform enduring public policies, .Many poijcy~ j 

makers now believe that even the research networks seem likely to benefit fronithe use 
1 

of market mechanisms to fOster the creation and administratiqn of new services: 
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FIGURE 1.7. Mockup of a user interface for a landscape advisor. This system needs to accept as input a 
description of a landscape, including details about land contours, existing vegetation and trees, and uses 
for different areas. It needs a vocabulary to identify different uses of plants in yards, such as for erosion 
control, screening, shade, and so on. It needs to represent a variety of constraints about kinds of foliage 
desired, soil condition, and user needs. A "solution" is an expression of any of the plantings, changes to 
land contours, or physical structures that make up the elements of a landscape. 
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The Story and This Book 

The preceding story is a tour through topics relevant to building knowledge systems. It empha­
sizes the social and product issues over the technical issues of building them, which are the pri­
mary topics of this book. 

The SEQUOYAH story is intended to "make the strange more familiar." We seek an inte­
grated perspective on diverse topics: protocol analysis from information-processing psychology, 
project organization concepts from software engineering, search methods from artificial intelli­
gence and operations research, and representation and reasoning concepts from computer sci­
ence and graph theory. To understand about knowledge systems - from what knowledge is to 
how it is represented, or from how systems are built to how they are used - requires that we 
wear several different hats. For everyone, some of these hats fit better than others. This introduc­
tory story provides an orientation for why there are so many hats. We refer back to it occasion­
ally in the text. 

As you read this book, these increasingly familiar topics will reinforce each other. Protocol 
analysis may seem familiar as the art of conversation or the art of interview, but when applied in 
knowledge engineering it rests on models of problem solving as search and psychological as­
sumptions. Choosing a data structure may seem like the art of programming, but in the context of 
knowledge engineering, the engineering choices depend on requirements for the reasoning and 
search. Building a model of a classification task or a configuration task may seem like formaliz­
ing common sense, but in the context of knowledge engineering it rests on foundations about 
search methods and solution spaces. In this book, I hope to sharpen our perceptions of the "unex­
amined familiar." People who participate in knowledge engineering in their own areas of exper­
tise report a deeper sense about what they know and how they use it. They also gain new per­
spectives on the nature of knowledge, and the processes for creating it, using it, debugging it, and 
communicating it. 

Page 28 of 153 FORD 1007



This chapter introduces symbol structures, 
representation, meaning, modeling, inference, and 
computation. It presumesonly a modest familiarity 
with programming and logic 

ym I Syste s 

1 

In their 1975 Turing Award paper, Allen Newell and Herbert Simon presented what they called 
the physical symbol system hypothesis: 

The Physical Symbol System Hypothesis. A physical symbol system has the neces­
sary and sufficient means for general intelligent action. 

By necessary, Newell and Simon meant that an analysis of any system exhibiting general intelli­
gence would show that the system is a physical symbol system. By sufficient, they meant that any 
physical symbol system of sufficient complexity could be organized to exhibit general intelli­
gence. By general intelligent action, they meant the same order of intelligent and purposeful 
activity that we see in people, including activities such as planning, speaking, reading books, or 
composing music. This hypothesis puts symbols at the core of intelligent action. Roughly, it says 
that intelligent systems are subject to natural laws and that the natural laws of intelligence are 
about symbol processing. 

Symbols are central and familiar elements of natural language, mathematics, logical for­
malisms, and programming languages. As suggested by the physical symbol system hypothesis, 
they have also been traditionally associated with dominant theories of mind and intelligence. In 
recent years, symbolic and representational theories of mind have been challenged by other 
accounts based on nonsymbolic and subsymbolic structures. To pursue these topics here would 
defer us from our primary interest in knowledge systems and is deferred to the quandaries section 
of this chapter. 

Whatever the case for natural systems and general intelligence, symbols are central to 
knowledge systems. We can build and study knowledge systems without resolving the issue of 
whether they are intelligent. However, we cannot build them or understand them without using 
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symbols or without understanding the nature of symbols. This chapter is about symbols, what 
they are, how they acquire meaning, and how they are used in creating computational models. 

1.1 Symbols and Symbol Structures 
Symbols are the elements of our spoken and written languages. Here are some examples of sym­
bols: 

Paige 
infers 
3.141592654 
computer 
a-very-long-hyphenated-word . 

Symbols can be arranged into larger structures that we call symbol structures or simply 
expressions. Figure 1.1 shows several examples of symbol structures. 

Whev we refer to symbols in the context of knowledge systems, we usually mean words, 
numbers, and graphics. These symbols appear on computer displays, are represented in computer 
memories, and are manipulated by our programs. Symbols and symbol structures are so familiar 
that we seldom pause to examine their nature. In the following, however, we define symbols and 
introduce terminology that will enable us to be precise about the properties that we attribute to 
them. 

1.1.1 What Is a Symbol? 

The dictionary defines a symbol as a written or printed mark that stands for or represents some­
thing. A symbol may represent an object, a quality, a process, or a quantity as in music, mathe­
matics, or chemistry. 

For us the dictionary definition of symbol is preliminary. It conveys basic intuitions about 
the term. Symbols are marks in a medium. They are used to represent things. Although this defi­
nition seems simple enough, it raises some questions: Is any marking a symbol? Does the notion 
of "write" include electronic or biological encodings? Can we determine from a symbol itself 
what it represents? Can two people disagree about what a symbol represents? Can a symbol rep­
resent itself? 

Although these questions may seem obscure, simple confusions about symbols and repre­
sentation repeatedly lead to difficulties in creating and using knowledge systems. Symbols are 
fundamental to creating and using computational models. Through a series of examples, this sec­
tion develops terminology and a framework for understanding and answering these questions. 

The dictionary definition suggests that two basic themes concern the nature of symbols: 
(1) What is a marking, and (2) What is representation or reference? Markings and reference are 
the topics of this section. 

We begin with registration, which is about recognizing and identifying markings. Con­
sider Figure 1.2. What symbols are in the figure? One person might say that there are two over­
lapping squares arranged so that part of one square is occluded by the other. Another person 
might say simply that there is a set of eight horizontal and vertical lines. There is nothing about 
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-, 

Paige 
a+b 
(SQRT{- (* bb) (* 4 a c))) 

(forall (x) (if (and (instance-of x oak-leaf) 
(equals season spring)) 

(color x green))) 

( V'x) .t(~) ~ g(x) 

Willythrewthe ball to Morgan. 

S~bi~bt: 
Verb:. 

. Ot;)j~ct: 

Willy 

threw 

ball 

Mmgan 

FIGURE 1.1. Examples of symbol structures. A symbol is a pattern in a physical medium recognizable 
by some interpreter. A symbol structure is a physical arrangement of symbols. 

23 

the figure itself that makes one person right and the other wrong. These different accounts of 
what symbols are in the figure are called different registrations of the figure. When different 
people look at markings they may disagree about what symbols are present. They may use differ­
ent conventions about notation to identify symbols in particular kinds of documents, such as 
musical scores, books of poetry, or architectural drawings. 

The issue of what markings constitute a symbol is intimately bound up in however a per­
son or machine recognizes it. When we say that something is a symbol, we imply the choice of a 
recognizer. Typically, a recognizer has an associated alphabet or set of symbols that it can recog-

I 
-

FIGURE 1.2. The registration of symbols: This example shows marks on a page. There they might be 
recognized as a single symbol, or as two overlapping squares, or as a set of horizontal and vertical lines. 
Each different registration corresponds to a recognition process for a different interpreter. 
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nize. It can tell whether some set of markings constitutes a symbol in the set, and also, identify 
the symbol. We use the terms token and type to distinguish individual physical symbols (tokens) 
from classes of symbols that are recognized by the recognizer as equivalent (types). For exam­
ple, if a recognizer was designed to recognize the alphabet letters used in English- as printed in a 
particular font, then not counting numerals and punctuation there would be 52 types - one for 
each upper and lowercase character. On a printed page in this font, each occurrence of the letter 
"a" corresponds to a token. Two tokens are equivalent for the purposes of recognition if they are 
of the same type. 

We now give a definition of symbol that takes recognizers into account. A symbol is a 
physical marking or pattern, which can be read, recognized, and written by a recognizer. A sym­
bol structure is an arrangement of one or more symbols in a physical medium. We also use the 
simpler term expression to refer to a symbol structure. So far, our definition of symbol mentions 
markings but not representation. We postpone discussing representation, that is, the assignment 
of meaning to symbols. 

Not every piece of matter or energy is a symbol. The wind blows leaves across the ground 
and leaves markings, but these are not symbols. When we identify certain patterns as symbols, 
there must always be a recognizer that identifies the symbols. The recognizer can determine 
where each symbol starts and stops, can tell them apart, and can determine the salient features of 
the arrangement of symbols. Sometimes the recognizer is part of a larger system that can retrieve 
and sense symbols, compare them, write new symbols, and do various kinds of reasoning. Some­
times we use the somewhat vague term interpreter to refer to various kinds of larger systems 
that include a recognizer. 

The registration issue even arises in mundane contexts such as interpreting text symbols 
written on a page. Consider the symbols in the following sentences on this page. 

Willy lives across the street. He threw a ball to Morgan. (1) 

In the typical account, the symbols in (1) are the images of the eleven printed words, and the 
symbol structures are the sentences, which are composed of adjacent words. Other registrations 
are possible. For a theory of English spelling and grammar, the symbols are the printed charac­
ters, that is, images of letters of the alphabet and the symbol structures are words composed of 
letters; the sentences in turn are composed of words. For a theory of typography and font design, 
the symbols could be printed strokes or dots and the symbol structures the letters that they form. 
Different registrations correspond to different recognizers. 

The modifier physical is intended to emphasize the concrete physical realizability of sym­
bols, and to preclude any confusion with "ideal" symbols that have no tangible existence, such as 
perfect letters of an alphabet. The patterns can be almost anything. They can be arrangements of 
electrical charge in a computer memory, arrangements of organic compounds in brain cells con­
nected by nerves, patterns of electromagnetic waves with intensities arranged in time, patterns of 
brightness on a display screen, patterns of nucleotides in a gene, dark marks on white paper, or 
scratches and paintings on ancient Indian pottery. When we say that genes are symbols, we could 
have in mind recognizers that are either automatic machines that read genes from DNA, or natu­
rally occurring biological mechanisms that read genes to build proteins. The symbols in a symbol 
structure can be adjacent in a medium or linked together in some other way. 
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A physical symbol system is a machine such as a computer that operates on symbol struc­
tures. It can read, recognize, and write symbols. A symbol system creates new expressions, mod­
ifies old expressions, makes new copies of expressions, and destroys expressions. Symbols may 
be communicated from one part of a symbol system to another in order to specify and control 
activity. Over time, a physical symbol system produces a changing collection of symbol struc­
tures. 

Our definition of symbol admits a very wide variety of techniques for realizing symbols. 
They need to persist long enough to be useful for a symbol system. 

1.1.2 Designation 

In some branches of theoretical computer science and mathematics, symbols are taken as primi­
tive and undefined terms. In these theoretical studies of computation, ideal machines with vari­
ous kinds of finite and infinite memories read and write symbols. Turing machines with finite 
control stores and infinite tapes are examples of ideal machines of this sort. Like other such 
abstract machines, they are used for discussing formal theories about computability. 

·" These theories are concerned with fundamentals of formal languages and mathematical 
objects. Not only are they removed from finite and physical implementations, but they are also 
removed from practical uses and familiar settings.For example, these theories are not concerned 
with issues involved in creating physical patterns and arranging for their flexible and reliable 
manipulation. They treat computers as isolated systems. Symbols go in. An idealized computer 
munches on them and then other symbols come out. 

However, knowledge systems are built from real computers and compute things relevant to 
a real, physical world. They are part of larger systems and we need to be able to discuss how they 
are connected and embedded in a physical setting. To interact appropriately with an external 
world, computers must be able to reason about it and also be able to represent aspects of it with 
symbols. It is for worldly settings that Newell and Simon's physical symbol system hypothesis 
was developed and in such settings the concepts of knowledge, reference and representation are 
of interest. 

An embedded computer system is one that is integrally part of a larger system. Examples 
of such larger systems include electronic ignition systems devices, electronic banking systems, 
inventory and manufacturing systems, aircraft carrier information management systems, electro­
mechanical systems in a troubleshooting context, medical systems for patient monitoring, sales 
and inventory systems at point of sale terminals, and communications networks. The boundary of 
what constitutes the larger system depends on the purposes of our analysis. It could include 
machines or even people in a social organization. All computer systems can be seen as embedded 
systems. 

Our dictionary definition of symbol says that symbols represent things. We now tum our 
attention to what it means to represent something. 

When we talk about representation, we need to identify three things: the symbols, the situ­
ation, and an observer. As suggested in Figure 1.3, the observer is an agent, that is, someone or 
something that perceives both the symbols and the situation. The observer uses the symbols as a 
model of the situation. When the observer perceives the situation, he organizes his understanding 
of it in his mind in terms of different elements, often referred to as objects. These objects have 
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The "tree" 

0 
0 

0 
~ 

Observer 

SYMBOL SYSTEMS 

Physical medium 

abc 

tree 

house 

Observed situation 

FIGURE 1.3. Designation is in the mind of an observer. It is a mapping between elements he perceives 
in the situation and symbols in the physical medium. 

different relations to one another. For example, the observer might view a car in a situation as 
being on the driveway, or a car door as being part of a car. The observer uses symbols to stand 
for objects in the situation. When an observer picks some set of perceived objects in the situation 
and makes symbols for them, we say that he reifies them. When he associates symbols with 
objects in the situations, we say that the symbols designate the objects. The relation indicating 
what symbols stand for is called designation, or equivalently, denotation. 

This brings us to an important point about symbolhood and defining designation: the need 
for an observer. The problem is that giving an account of what symbols represent requires a van­
tage point, usually outside of the symbol system. In most cases, the things that symbols stand for 
have been perceived by somebody. What a symbol stands for is not determined by a symbol's 
encoding or by its location. Restated, designation is not a physical property of the markings. 
Designation is assigned by and relative to an observer. 

We introduce a distinction between a symbol system and its environment as shown in Fig­
ure 1.4. The boundaries that define the symbol system and environment depend on a point of 
view. The boundary around a symbol system delimits where the symbols are for particular pur­
poses of analysis. A symbol system is contained in its environment and often its symbols refer to 
parts of that environment. We use the term domain or symbol domain to refer to a elements of 
interest in the environment. 

In Figure 1.4, the observer of the computerized heating and cooling system says that "the 
'reading' symbol stands for the room's temperature." From a cognitive science perspective, we 
may imagine that the observer's mind may itself have separate symbol structures: one standing 
for the reading symbol in the computer, one standing for the room's temperature, and another 
standing for the designation relation between the first two. 

Exactly what do we mean when we say that the "temperature reading of 20" designates 
the room's temperature? There may be many symbols equal to 20 at various places in the 
computer's memory. For example, another 20 may be used by the computer to keep track of the 
number of heat vents in the building. We do not mean that every 20 pattern in the computer's 

l 
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External environment 
,-----------------------l 
I Internals to the symbol system I 
1 i--- ------------ ----- -- -- ---- -- ~~~~~t~r-~~~~~~----- ---- -- ---- ----------- - -! I 

I l I 
I l I 
I l I 
I : I 
I Aro~ I 

I I 
I I 
I I 
I 

The "reading" I 
. symbol stands for the I 

I room's temperature. --

I a I 
I o I 

I ~ I 

: r\k A~==w·''ifJ~ : 
L_ Observer _____________________ ! 

FIGURE 1.4. Designation is in the mind of an observer, who can give an account of both the symbol sys­
tem and the manner in which its symbols designate aspects of an environment. 

memory "stands for" the room's temperature. We probably associate a particular register in the 
machine as the "temperature variable." There must be some way for an observer to access a sym­
bol. Two observers discussing the meanings of symbols must assure each other that they are 
referring to the same elements of the physical symbol system, such as by agreeing on the use of a 
particular addressing scheme. They might say that the symbol that is stored at memory location 
1012 designates the temperature of the room. 

Names are not the only means for identifying particular symbols. When a computer user 
looks at a display as shown in Figure 1.5, the display renders symbols and presents them for per­
ception, identification, pointing and manipulation. A user interacts with a computer using the dis­
play and various keyboards or pointing devices. The picture elements or pixels in the display sur­
face provide a view of information stored elsewhere in the computer, updated and maintained by 
a display controller. Thus, a user can identify a symbol by pointing at it, not just by naming it. 

Figure 1.5 decomposes the process of designation for a variable into three steps. First an 
addressing scheme (memory address 1012 or "reading") is used to locate the variable or storage 
element. Then its value is determined (20). Then that value is assigned a referent in the environ-
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Steps Example 

Addressing 

Mnemonic ~ Physical 
name Name address ''reading'' ~ 1012 

tables 

Evaluation t t 
Address ~ Symbol 1012 ~ 20 

Eval. 

Reference t t 
Symbol ~ Referent 20 ~ ''room 

Map temperature'' 

FIGURE 1.5.' Designation for a variable involves addressing, evaluation, and mapping to some referent 
in the environment. 

ment ("room temperature"). The addressing scheme provides each symbol with a unique address 
and supplies a reliable means for accessing the symbol through that address. In effect, the 
address is a name for the symbol. Computer languages often provide various external names that 
are mnemonics for referring to addresses. 

1.1.3 Causal Coupling 
All of the action of designation is in the mind of the observer. If an observer changes his mind 
about what a symbol refers to, that need not have any observable effect on the symbol or the 
environment. We now consider a more active relation where changes to the symbols or the envi­
ronment can have effects. 

Consider the heat-regulation system in Figure 1.6, which includes a thermocouple, a com­
puter, and heating and cooling units controlled by the computer. In this system the electronics 
have been arranged such that the computer can access a symbol in its memory that it interprets as 
a reading of the temperature of a room on a numeric scale. The value of the temperature symbol 
is determined by a physical process starting with an interaction between the air in the room and a 
sensor. Electrical voltages corresponding to temperature are converted to digital signals by an 
analog-to-digital converter. The particular operating principles of the sensor and communication 
devices do not matter for the purposes of this example. The components are arranged so that 
when the temperature changes, a series of physical events follows, causing the temperature sym­
bol- the contents of computer memory at address 1012- to change. This kind of connection 
beween phenomena at one place and a distant symbol is called causal coupling. The term causal 
coupling can be expanded to include cases where all of the changes take place inside a single 
system, rather than just interactions between symbols in the system and entities in the environ­
ment. 
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External environment 
,-----------------------
1 , ________________________ ~~~~~~~ _t_?_ ~~~- ~~~~-~1- ~~-s_t~~- ________________ ·: 

I Computer memory : 

I 
I 
I 
I 
I 
I 
I 
I 
I. 
I 

Heating and 
cooling vent 

ND 
converter 

Controller for 
heating and 

cooling system 

20 

address: 1012 

"the temperature 
reading'' 

Computer processor 
Other 

Computer communication network 

' 1-------------------------------------------------------------------------' L_ ______________________ ___.j 

FIGURE 1.6. Causal coupling: In this example, a change in room temperature causes a change in the 
"temperature symbol" in a computer memory. Causal coupling can go from outside to inside as when a 
change in the sensor causes a change to a register in the computer's memory. It can also go from inside to 
outside, as when changing a register in the computer causes a setting to change in a heating vent. The key 
notion is that a phenomenon or a change in something causes a change in a symbol elsewhere. 

_There are always propagation delays between the time of the cause and the time of the cor­
responding change to a symbol. In large distributed systems, these propagation delays can be 
crucial in determining the dynamic behaviors of the systems. However, in the following exam­
ples, we will assume that the delays are negligible for the purposes of our analysis. 

Causal coupling can go from outside a symbol system to inside such as from a sensor to a 
register in the example in Figure 1.6. It can also go from inside to outside, as when a change in a 
symbol in a controller in Figure 1.6 causes a change in the setting of a heating and cooling vent 
that controls the distribution of air. These two directions correspond respectively to sensing and 
motor control. Causal coupling can go between two symbols inside the computer such as when 
the system transmits a reading between different parts in order to decide whether to vent cool air 
into a room. Copies of the reading may be transmitted periodically along a computer communi­
cation network to various environmental control units in the building. 

Causal coupling from an environment to symbols inside a computer is a very simple case 
of machine perception. In more sophisticated examples of machine perception, the effect on 
symbols is mediated by a potentially complex interpretation process. For example, consider a 
machine vision system that interprets digitized images from video cameras. The required compu­
tational process involves many levels of automatic analysis, and has many ambiguities and 
uncertainties associated with the sensor readings and the interpretation process. For example, the 
recognition of a person in a scene can involve processing of thousands of individual picture ele-
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ments, recognition of edges and regions in the image, clustering of regions into larger images, 
comparing images from the sensor to stored images of objects expected in the scene, and so on 
until finally the image on the camera is associated with an identification symbol. 

Causal coupling and designations are independent relations. A symbol may be causally 
connected to an object in an environment but not designate that object for some observer; simi­
larly, a symbol may designate some object in the environment for an observer but not be causally 
connected with it. For example, suppose that the wire in Figure 1.6 becomes broken. In this 
event, the reading inside the computer probably will be incorrect and the tokens communicated 
to other systems will not be tied causally to the temperature of the room. The internal reading 
now contains misinformation. The neighboring systems may respond correctly, but based on 
misinformation. Indeed, reasoning about such disconnections illustrates an example where we 
need to reason separately about the two relations. Even though the wire is broken, we still want 
to say that the symbol "stands for" the temperature. Because the wire is broken, the mechanism 
is not operating correctly and the symbol may be wrong. 

1.1.4 Cognitive and Document Perspectives of Symbols 

Symbols in computational systems play two distinct and important roles: the document role and 
the cognitive role. When we are interested in the use of symbols to communicate with another 
person, we are taking a document perspective. In this role we are interested in symbols as pre­
sentations, that is, in the way that they can be used to explain things. Knowledge systems share 
properties with paper and electronic documents. They use symbols, they mediate communica­
tion, they are often constructed by groups of people, and people come to agreement about what 
the symbols mean. 

When we are interested in the use of symbols for automated reasoning in the computer, we 
are taking a cognitive or "mentalist" perspective. In this role, we are interested in symbols as 
representations, that is, in the way that they model a situation, the properties of the symbols as 
the computer manipulates them in various ways to carry out reasoning, and in how we can use 
resulting symbols to infer things about the situation. 

Figure 1. 7 shows two users interacting with a graphical representation of scheduled tem­
perature changes over time. In this case, the graph and various interactive menus for changing it 
constitute a user interface. They are external symbols that the users can see and talk about. 

The situation in Figure 1.7 is representative of the context in which knowledge systems are 
created and used. Multiple people interact around a display. They create, discuss, share, and 
modify symbols that appear on the display. The symbols on the display are causally connected to 
symbols internal to the machine and perhaps to symbols on other machines. Part of the discus­
sion is used to agree about meanings of the symbols. This is necessary in case multiple people 
are making changes to the system. 

Sometimes we distinguish model symbols or domain symbols, such as the temperature 
reading symbol, from view symbols that represent and are causally coupled with presentations 
on the display. There are often many different kinds of view symbols, engaged in different parts 
of the process of rendering an appropriate image and supporting interactions with it. 

Suppose two users are talking about the temperature control system, and one of them 
points to a display and says, "This is the room's temperature." He is interested mainly in the 
symbol structure on the display and probably means that it designates the room's temperature, 
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External environment 
~-----------------------, 

_______________________ !~~~~~~ _t_~ ~~- ~~-~~~~ ~!~t~-~- _ _ _ _ _ _ _ _ __ _ _ __ _ _ __ _ _ _ I 

Heating and 
cooling vent 

Let's lower the 
temperature by two 

degrees at 7:00. 

0 
0 

0 
1\k 

AID 
converter 

Controller for 
heating and 

cooling system 

~I ,---· 
;~ 

Time 

Computer memory 

20 

(The temperature 
reading symbol is in 
address 1012 and has Other 
the name reading.) 

Computer processor 

Computer communication network 

processors 

Display 
controller 

FIGURE 1.7. Two people having a discussion about the planned control of room temperature over time. 
The mechanisms of the system including the sensing of room air temperature, the formatting of the dis­
play, the interactions with the user interface, and the control of the heating and air conditioning through 
the controller can be explained in terms of causal coupling. The assignment of meaning to symbols is 
described by the concept of designation. 

I 
I 

that he expects the other party to be able to read and understand it, and that the indication it pro­
vides is up to date because of causal coupling. If the second person is a designer of the system, he 
might be concerned with many internal symbols. He or she would be familiar with all of its inter­
nal connections and mechanisms, could refer variously to a symbol on the display, a symbol used 
to construct the image rendering of the display, the reading symbol in computer memory, the 
"symbol" that is the digital electrical pattern at the output of the analog-to-digital converter, the 
symbol that is the analog voltage on the output line from the sensor, or even the symbol that is 
the configuration of bent metal inside the temperature sensor? To the designer all of these sym­
bols play a role in the overall mechanism. When there is a chain of causal connections between 
symbols in a symbol system, it is sometimes convenient to ignore the differences between them 
in informal conversation. 

Page 39 of 153 FORD 1007



32 SYMBOL SYSTEMS 

1.1.5 Summary and Review 

We began with a dictionary definition of symbols that says symbols are markings that represent 
things. This definition leaves open issues about the nature of markings and the nature of repre­
sentation, leading us ultimately to introduce both a recognizer and an observer into our account 
of symbols. 

We define markings relative to a recognition process. Symbols are physical patterns that 
can be read, recognized, and written by a recognizer. The identification of a set of markings as 
constituting a symbol is called registration. Symbol structures (or expressions) are arrangements 
of symbols in a physical medium. There can be multiple copies of a pattern or symbol in a sym­
bol system. This gives rise to the terminological distinction between types and tokens. Types are 
classes of equivalent symbols in the alphabet of the recognizer; tokens are individual symbols in 
a medium. 

We make few computational requirements on the physical patterns used for making sym­
bols. The patterns must persist long enough for the workings of the symbol system and there 
must be a means for reading and writing the symbol structures. 

We "define representation relative to an observer. An observer is able to look both at the 
symbol system and a situation, and determines which elements of the situation are referred to by 
the symbols. This kind of meaning is a semantics of reference, and is called designation or deno­
tation. The term "symbol" is sometimes used casually by computer professionals to mean 
roughly the same thing as "term" in propositional logic, or roughly, what we called a "marking." 
However, when more precision is warranted, symbolhood requires specifying both a recognizer 
to identify the markings and an observer to assign meanings to them. 

An environment is a setting that contains a symbol system. Computer systems are embed­
ded in larger systems. Causal connections link symbols to their environments in such a way that 
a change in the environment causes a change in the symbol or a change in a symbol causes a 
change in the environment. Our heat control system provides an example of this kind of connec­
tion, where changes in room temperature lead to changes in a reading. 

We distinguish two perspectives on symbols in symbol systems. The document perspective 
emphasizes the observer's use of symbols for communication in presentations. The cognitive 
perspective emphasizes the computational use of symbols as representations. 

Exercises for Section 1. 1 

IIIII Ex. 1 [CD-05] Wannups. The following questions about symbols were raised early in this sec­
tion. Indicate the answers with yes or no. If the question is ambiguous, explain briefly. 
(a) Yes or No. Is any marking a symbol? 
(b) Yes or No. Can the marking for a symbol be an electronic or biological encoding? 
(c) Yes or No. Can we determine from a symbol itself what it represents? 
(d) Yes or No. Can two people disagree about what a symbol represents? 
(e) Yes or No. Can a symbol represent itself? 

Ex. 2 [CD-05] Recognizers and Observers. 
(a) Briefly, why are symbols (themselves) defmed relative to a recognizer? 
(b) Briefly, why is designation defined relative to an observer? 
(c) Briefly, what is the difference in concerns between part (a) and part (b)? 
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Ex. 3 [05] Designation for Symbols on a Computer Display. Consider the following story. 
Two accountants are using a spreadsheet program to make financial projections about 
rental property. As is typical for spreadsheet models, they have defined variables that stand 
for things like rental income, utilities costs, mortgage payments, depreciation and so on. 
One of the two accountants points to a place on the screen and says, "The utility cost esti­
mate for this month is too low because the tenants will probably run the air conditioner dur­
ing the summer." Later they discuss whether monthly cashflow variables should include 
projected tax payments or depreciation. 

In this chapter, we described a process of designation of program variables in terms of 
three steps: addressing, evaluation, and designation. Do these steps show up in the activi­
ties of the two accountants? Explain briefly. 

Ex. 4 [CD-05] Terminology. For each of the following statements indicate whether it is true or 
false. If the statement is ambiguous, explain briefly. 

Ex.S 

(a) True or False. An embedded computer system is a computer that is hidden inside a 
larger system. 
(b) True or False. In machine sensing, causal coupling means a change in the environ­
ment causes a change of a symbol or symbol structure. 
(c) True or False. In machine control, causal coupling means a change of a symbol or 
symbol structure causes something to change in the environment. 
(d) True or False. We defme both types and tokens with respect to a recognition process. 
(e) True or False. The document perspective of symbols in a knowledge system requires 
that symbols (or displays of them) need to be readable by observers who can discuss their 
meanings. 

[!-15] Storyboards and the Role of Assumptions in Understanding Narrative. Several pro­
jects in AI have sought to create computer systems that understand stories, that is, that give 
summaries of stories and answer questions about them. 

This open-ended exercise shows how the translation of natural-language sentences 
into formal representations requires knowledge about the situations that the sentences 
describe. 

Consider the following two-sentence story about Paige and Morgan, a girl and her 
brother. 

Paige rolled the ball to Morgan. 
Morgan threw it back to Paige. 

(a) A storyboard, such as is used in making movies and cartoons, is a sequence of scenes, 
each of which is a snapshot of the story world. 

Imagine a sequence of scenes representing the sequence of events in the story. Fill in 
information for the intermediate scenes that would be represented in a storyboard for our 
sample story. 

For all scenes. 
Paige is a person. 
Morgan is a person. 
There is a ball. 
Paige and Morgan are in a play area. 
They are playing together. 
(Various implicit facts about orientation, mass, roundness of balls, gravity, air, that 
are not really mentioned in the story.) 
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Scene 1 
Paige has the ball. 
She starts to roll it to Morgan. 
(Various implicit facts about Paige's feet being on the ground, how she moves, etc.) 

Scene 2 
The ball is in motion, rolling from Paige to Morgan. 
Paige no longer has the ball. 
Morgan is paying attention to the arrival of the ball. 

Scene 3 

Scene 6 
Paige catches the ball. 
Paige has the ball. 

(b) In the sample two-sentence story, does the story say explicitly who has the ball at the 
end? What assumptions might you use to answer the question? How does understanding 
the second sentence rely on understanding the first one? 

[!-10] Assumptions and Nonsense. The sentences we use for efficient human communica­
tion can be remarkably brief. This is possible because we use many clues from the context 
to understand what is being said. In doing that, we also make many assumptions. Consider 
the following answer that one person gave another when asked if he could have a ride to 
the airport. 

1. I could give you a ride. 
2. Except that my car is being fixed at the garage. 
3. But it should be ready by now. 
4. Except I don't have any money to pay for the repairs. 
5. But I can borrow some from Dan. 
6. Except Dan isn't around right now. 
7. But he should be right back. 

(a) Describe what a normal, competent and rational listener would believe about the 
availability of a timely ride to the airport after hearing each of these statements. 
(b) What does this tell us about inferential processes for understanding stories. 

Ex. 7 [7] The Knowledge Representation Hypothesis. Brian Smith (1982) proposed the knowl­
edge representation hypothesis, which follows: 

Every intelligent physical symbol system includes symbol structures that we as 
external observers can take to be a propositional account of the system's knowl­
edge. These symbol structures play an essential and causal role in determining 
the system's behavior. Furthermore, the system's behavior is independent of our 
account of its internal structures. 

Smith does not require a trivial mapping of one symbol structure to one proposition, and 
the symbol structures can be graphs, arrays, or distributed symbols. The encoding process 
could be arbitrarily complex. For example, in a particularly perverse security robot the 
symbols could be recorded using an encryption algorithm, which presumably would make 
the "mentalese" elusive or computationally intractible to decipher. Thus, the knowledge 
representation hypothesis covers a wide range of representational approaches. 
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(a) Briefly, compare the knowledge representation hypothesis to the physical symbol sys­
tem hypothesis. What does the knowledge representation add, if anything, to the physical 
symbol system hypothesis? How does Smith's notion of a propositional account differ 
from Newell and Simon's notion of designation? 
(b) What does the knowledge representation hypothesis guarantee about an observer's 
ability to make sense of "mentalese"? What does it predict about the correspondence 
between symbols used by the observer and symbols in the observed system? 
(c) Why is it useful to ascribe levels in representational theories of mind? 
(d) Are these hypotheses the subject of extensive inquiry in artificial intelligence 
research? Of what use are they to the study of knowledge systems? 

Ex. 8 [CD-05] Defining Symbols. The dictionary defines a symbol as a written or printed mark 
that stands for or represents something. In this section we have argued that there are several 
practical issues about this definition. 
(a) Briefly, what issues does the registration problem raise about the dictionary definition 
of symbols? 
(b) In defining designation, the text claimed that designation is not a property of the sym­
bol itself. Why not? Briefly, what issue does this point about designation raise about the 
dictionary defmition of symbols? 

1.2 Semantics: The Meanings of Symbols 

The term semantics is used to describe both natural language and computer languages. It is often 
contrasted with syntax and is popularly understood to refer to the meaning of symbols and ex­
pressions in languages. "Getting the semantics right" is a goal often lauded in computer science. 

In this vein, Hayes (1974) and others have argued for principled and systematic design of 
semantics for representation languages used in computers. As he put it, representation languages 
ought to have a semantic theory. Later in this section we consider in more detail what Hayes 
meant by this. For now we note that proposals like this have taken on broader appeal as the 
knowledge bases being proposed have increased in size and as it has seemed worthwhile to be 
able to combine knowledge bases that were developed separately. 

There are many pragmatic issues in developing semantic theories for knowledge systems. 
The problem is not just principled versus "sloppy" semantics. More fundamentally, there is con­
fusion about what kinds of semantics are needed. 

A semantics is an approach for assigning meanings to symbols and expressions. Different 
kinds of semantics differ in the kinds of symbols considered and the kinds of meanings they 
assign. In the following we will consider several kinds of semantics that are relevant for under­
standing knowledge systems. 

We begin by reviewing the most studied approach to semantics, the declarative semantics 
used for the predicate calculus. We then broaden the discussion by considering some historical 
examples of how AI researchers assigned meaning to expressions in representation languages 
and graph structures. For this it is convenient to establish some terminology and notation for 
graphs and trees. The terminology introduced here will be sufficient to carry us through the first 
three chapters of this book. Finally, we consider how different kinds of semantics are needed for 
different purposes. We compare several kinds of semantics that are relevant to knowledge 
systems. 
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Logical 
statements 

lsa (CBall) 

lsa (A Block) 

lsa (D Block) 

lsa (B Block) 

On (A Table) 

On (CTable) 

On (BA) 

On (Table Floor) 

On (D Floor) 

On (X Y) ---7 Above (X Y) 

Above (X Y) 1\ Above ( Y Z) ---7 

Above (X Z) 

Table 

FIGURE 1.8. The elements of a declarative semantics for logic. 

1 • .2.1 Model Theory and Proof Theory 

1 

Conceptualization 
(model) 

Floor 

Truth space 

TRUE 

FALSE 

SYMBOL SYSTEMS 

We begin with the semantics developed for formal logic. We use this to establish a vocabulary 
and a basis for comparing other kinds of semantics. Our presentation is brief, since the goal is to 
summarize the concepts of semantics used with the predicate calculus. 

Constants, Variables, Interpretations, and Models 

Predicate calculus has two kinds of symbols: constants and variables. Constants are used to name 
elements in a special set known as the universe of discourse. In other words, this set includes 
terms for all of the things we are talking and reasoning about. Object constants name the objects 
in the set. Function constants are used to designate functions on members of the set. For exam­
ple, arithmetic operations would be defined as functions. Relation constants name relations on 
the set. 

Variables are used to describe properties of objects in the set without naming them. The 
predicate calculus includes relations for the logical operators A (AND), v (disjunctive OR), and 
the usual others as well. A first-order predicate calculus includes universal and existential quanti­
fiers on objects, but not on functions or relations. 

Here is an example of an expression in predicate calculus in the example in Figure 1.8: 

On (Ball Table) 

In this example, On is a relation constant. Ball and Table are object constants. Another is 

Above (X Y) A Above ( Y Z) = >Above (X Z) 

Page 44 of 153 FORD 1007



1.2 Semantics: The Meanings of Symbols 37 

These statements are also called axioms in the model. Statements like these are what we write 
when we "axiomatise" a domain. 

The first part of the semantics of predicate calculus is essentially the same as the semantics 
of reference from Section 1.1. We assume there is a memory or database of statements in the 
calculus. There is an observer and the observer has in mind a conceptualization, analogous to 
what we have called an environment. Designation in the mind of the observer associates the 
object, function, and relation constants with their counterparts in the conceptualization. In the 
terminology of logic, a mapping from the statements to the conceptualization is called an inter­
pretation. Unfortunately, this is one of those words which has many different meanings in com­
puter science. 

For any term, we define its extension to be the elements in the conceptualization that it 
designates. Thus the extension of the term C would simply be the ball sitting on the table. A term 
like Block refers to a class of objects, whose members include the blocks A, B, and D. Similarly, 
an indefinite node might correspond to a variable whose referent has not yet been precisely 
determined, but that is perhaps limited to be some member of a class. So far we have not related 
the meaning of such terms to the inferences carried out on the model. To build a working system, 
claiming that terms refer to something does not signify much if the system does not reason with 
them. To formalize such reasoning, we need to add semantics of truth and semantics of proof. 

The next part of the semantics involves the assignment of truth to logical statements. The 
basic idea is quite simple. First we consider ground statements or ground literals, which are ones 
that can be tested quite simply in an interpretation. For example, the statement that "C is a 
ball"-lsa( C Ball)-and the statement "A is on the table"-On(A Table)-can be readily checked. 
We say that they are satisfied in the obvious or intended interpretation of Figure 1.8. For a differ­
ent interpretation they might not be satisfied. In Figure 1.8, the statement On(B Floor) is not satis­
fied. Truth semantics gives us a way of assigning a truth value to logical statements relative to 
an interpretation. 

If an interpretation satisfies a sentence for all variable assignments, then it is said to be a 
model of the sentence. For example, the following sentence is satisfied by the intended interpre­
tation of Figure 1.8 for all assignments to the variable X. 

('v' X) Is a (X Ball) v I sa (X Block) => Above (X Floor) 

Variable assignment has no effect if there are no variables. Any interpretation that satisfies 
a ground sentence is a model of that sentence. A sentence is satisfiable if and only if there is some 
interpretation and variable assignment that satisfy it. An interpretation is a model for a set of sen­
tences if it is a model for every sentence in the set. 

The Meanings of Expressions 
Much of the utility of predicate calculus arises from the systematic rules for assigning truth val­
ues to new expressions in the language. For example, if we are given that both of the following 
statements are true, 

lsa(Biock A) 

lsa(Biock B) 
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then we can conclude that the conjunctive statement is also true. 

lsa(Biock A) A lsa(Biock B) 

The rules for this, which are learned by every beginning student of logic, are what people refer to 
as the well-founded semantics of logic. For another example, suppose we are asked whether the 
following formula is true. 

(lsa (Block A) 1\ lsa (Block B))v lsa (Block C) 

We can assign 

X= I sa (Block A) 

Y = I sa (Block B) 

Z = I sa (Block C) 

In our standard interpretation, we have 

X=True 

Y=True 

Z= False 

The next step is to determine the truth value of the expression. 

(X 1\ Y) v Z 

One way to do this is with a truth table as in Table 1.1. In this table, we build up the values 
for the total expression from the truth values of the subexpressions. This is exactly the sort of 
property that Hayes requested of a semantic theory, that is, an account of how the meaning of a 
whole symbol structure is built up from the meanings of the parts. Of course, in complicated 
expressions there are often shortcuts and it is not usually necessary to write out a complete truth 
table. Nonetheless, at least in the propositional calculus, this is an approach than can be followed 
in case of doubt. 

TABlE 1.1. A truth table. 

X y z (X A Y) (X 1\ Y)v Z 

T T T T T 
T T F T T 
T F T F T 
T F F F F 

F T T F T 
F T F F F 
F F T F T 
F F F F F 
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Formulas that are always true, regardless of the truth or falsity of their terms, are said to be 
valid. Such formulas are called tautologies. In propositional logic, truth semantics gives us a 
very simple and automatic way to determine whether a formula is valid. We simply compute its 
truth table and check whether every combination of truth assignments yields true for the formula. 

Continuing with our example, if we have the statements 

On (A Table) 

On (BA) 

then we can establish that the following statements are true without any further consultation with 
the model. 

Above (A Table) 

Above (BTable) 

We can also ask questions about the truth of a statement without associating it with a par­
ticular interpretation. Some sentences are true for every possible interpretation. For example, the 
left statement below implies the right statement for all possible interpretations. In such cases, we 
say that the sentence on the left "logically implies" the sentence on the right. 

(-A A B)=> A v 8 

The semantics of logic also deal with what is called provability. Predicate calculus pro­
vides prescriptions for establishing the truth or falsity of expressions, either from axioms or from 
expressions already established. Sanctioned inferences are described by rules of inference, 
which can be used to deduce new facts from old ones. The best known rule of inference is modus 
ponens, which says that if we have a fact p, and that p implies q, then we can deduce q. In the· 
concise notation of logic, we would say 

modus ponens: A 1\ (A=> B) 1- 8 

where the tumstyle figure means "proves." Figure 1.9 gives an example of the use of modus pan­
ens to deduce that Felix is a member of the artificial intelligentsia. Roughly speaking, a proof is 
a sequence of statements where each successive statement follows from the preceding ones by 
some rule of inference, and the last statement is the "proved" conclusion. 

A second important rule of inference is universal instantiation. It says that if something is 
true of everything, it is true of any particular thing. In logical notation, we would say 

universal instantiation: (\ix) A(x) => B(x), A(a) 1- B(a) 

Figure 1.10 shows how universal instantiation can be used to deduce that Ken is brilliant. 

Truths, Proofs, and Decidability 

The related ideas from truth theory and proof theory can be written using special symbols as fol­
lows. The following is a predicate calculus statement read as "A implies B." 

A=>B 
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Given the rule 
Can-pronounce (Student "heuristic") 

=> Member (Student 

Artificial-intelligentsia) 

And the fact 
Can-pronounce (Felix "heuristic" 

Use modus ponens to deduce 
Member (Felix Artificial-intelligentsia) 

1 SYMBOL SYSTEMS 

;IF a student can pronounce heuristic 

;THEN he is a member of the 

;artificial intelligentsia 

;Felix can pronounce heuristic 

;Thus, Felix is a member of the 
;artificial intelligentsia 

FIGURE 1.9. A logical deduction using modus ponens. 

By itself this expression is neither true nor false. It is satisfied relative to an interpretation and 
variable assignment if and only if A is not satisfied (true) orB is satisfied in the interpretation. 
This rule is from truth theory. If such an implication is true for every interpretation and variable 
assignment, then we say "A logically implies B" and write the following. 

A!=B 

Note that this is not a statement in the predicate calculus, but rather, is a statement about predi­
cate calculus statements. Similarly, we write the following if B is a tautology. 

!=8 

Finally, if there is a formal proof from A to B we write the following. 

At-B 

Assuming the rule 
V(Student) 

Undergraduate (Student) 

"Institution (Student Cal-Tech) 

=> Brilliant (Student) 

And the facts 
Undergraduate (Ken) 

Institution (Ken Cal-Tech) 

Use universal instantiation to deduce 

Brilliant (Ken) 

;For all students 

;IF the student is an undergraduate 

;at Cal Tech 

;THEN the undergraduate is brilliant 

;Ken is an undergraduate 

;Ken goes to Cal Tech 

;Ken is brilliant 

FIGURE 1.1 0. A logical deduction using universal instantiation. 
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A proof of a sentence is a finite sequence of sentences in which each element is a sentence 
chosen from a set, a logical axiom, or the result of applying a logical rule of inference. An 
important result of mathematical logic states that whenever a set of sentences implies another 
sentence, then there exists a finite proof of that sentence. For this reason the predicate calculus is 
said to be decidable. 

Such proofs offer us yet a third possible semantics for logic, called a proof semantics. A 
proof theory determines whether a given expression is valid, that is, derivable, from a given 
database of facts. It is valid if there is a proof. For a given statement, there may be many possible 
proofs or no proofs at all. A proof semantics can be defined to associate a statement with a 
proof, or more simply, with "valid" or "not valid." 

Proof theory establishes a standard of reasoning. It brings sense to many examples of con­
fusing and illogical reasoning. For example, consider the following. 

Given: 

Conclude: 

All fleas like some dog. 
No fleas like any swimmer. 
No dogs are swimmers. (1) 

Even if we suppose that the first two sentences are true relative to some interpretation, the con­
clusion does not follow. For example, all fleas could like the same nonswimming dog. Proof 
semantics provides a careful and systematic account of when deductions are justified, that is, 
what follows rightfully from what. Reasoning that follows the appropriate logical principles is 
said to be sound. Sound is used here as a technical term to describe systems or methods that 
derive no more than can be supported according to explicit rules of logic. Thus, the conclusion in 
(1) is not sound. In contrast, the conclusion in (2) is sound but bogus. Bogus is not a technical 
term. The fault lies not in the inference but in the nonstandard interpretation. 

Given: 

Conclude: 

Some fleas like all dogs. 
No fleas like any swimmer. 
No dogs are swimmers. (2) 

But how can we tell which inferences are sound? The approach in logic is to characterize 
sound inferences systematically as those that follow from specified rules of inference. 

In summary, there are three parts to the semantics of predicate calculus, the semantics of 
reference, the semantics of truth, and the semantics of proof. Each is a mapping from symbols 
and expressions to some kind of meaning, where the meaning may be elements in a model, the 
symbols true and false, or a proof. These are related respectively to model theory, truth theory, 
and proof theory. Sometimes this whole approach is called a declarative semantics. 

1.2.2 Reductionist Approaches for Composing Meanings 

A language is a set of expressions. In natural languages, a conventional unit of expression is the 
sentence. In English, sentences contain subjects and predicates. Crucial to the notion of a lan­
guage is that there is a way of deciding whether any particular arrangement of symbols is a sen­
tence in the language. In written and spoken natural languages, grammars are sets of rules that 
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determine which arrangements of symbols are sentences. Thus, the expression "Shoe blue knob 
five running." is not a sentence and "He runs in blue shoes." is a sentence. 

One remarkable fact about natural language is that indefinitely many linguistic expressions 
have meaning for people. Consider the following sentence: 

The pink mouse flew her helicopter downtown to the opera. (3) 

We have no trouble attributing a meaning to this silly sentence, even though it is unlikely 
that any reader of this book ever encountered it before reading it here. How can this be so? It 
suggests that the experience of understanding a sentence that we have never seen before is akin 
to the process of (say) adding two numbers we have never seen before or driving a car we have 
never seen before. We can do the addition because we view the numbers in terms of their smaller 
pieces, such as the digits in the ones column, the digits in the tens column, and so on. We have an 
algorithm that takes account the significance of the decimal representation and the rules for com­
bining 1-digit numbers. 

By this analogy, we expect it to be the case that there is a systematic way of interpreting 
expressi~ns in natural language. This is a structural approach to composing meanings. Some­
times we call it a reductionist approach because the meaning of the whole sentence derives from 
the meanings of its parts. 

The truth and proof semantics of predicate calculus both follow a reductionist approach in 
that the meaning of an expression is determined in a systematic way from the meanings of its 
parts. For example, the truth value of the expression A " B can be determined systematically 
from the truth value of A, the truth value of B, and the usual definition of 1\. 

It turns out that a reductionist view of the composition of meaning is not quite adequate for 
sentences in natural language. Consider the sentence "Is there any salt?" Asked of an environ­
mental scientist measuring water quality, this sentence is probably a request for information 
about the results of his measurements. Asked of a waiter at a restaurant, the question would be 
interpreted as an indirect request to bring a salt shaker to the table. Part of the problem is that the 
sentence is not always the right unit of analysis. Context is provided by other sentences. Another 
problem is that this account of meaning fails to take into account the role of the speaker, the lis­
tener, and the situation. 

For all of the shortcomings of a structural approach to semantics in natural language, this 
approach is important for systematic computer representations. We need to know how the mean­
ing of an expression depends on the meaning of the terms in the expression. An account of the 
composition of meaning should draw on regularities in the arrangement of symbols. Restated, 
regularities in meaning should be reflected by regularities in symbol structures. 

Computer systems use many different kinds of representations, not just sentences from a 
predicate calculus. Consider the following paragraph: 

When I write at home, I often look out the window at some of California's giant red­
wood trees. This morning on one such tree, I saw some branches high above a ham­
mock outside where age and neighboring growth have combined to cause them to 
turn brown and die. Sometime in the months ahead these branches will come crash­
ing down. I remembered that I should phone a tree surgeon to tend to them before 
they land in the hammock. 
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FIGURE 1.11. Deciphering the "mentalese" of the Mark-1 writing robot. This is analogous to trying to 
figure out how a computer works from the circuit diagram but without the operations manual. 

According to Newell and Simon's physical symbol system hypothesis, the cognitive parts 
of this story-writing, observing trees, and planning activities-can be accounted for in tenns of 
the processing of symbols, that is, marks in a memory and a processor that can read and manipu­
late those marks. Let us suppose for the purposes of this discussion that the agent in the previous 
paragraph is actually a manufactured physical symbol system, a "Mark-1" writing robot. As sug­
gested in Figure 1.11, somewhere inside the Mark -1 there is a memory medium with marks that 
we expect correspond to "home," "giant California redwood trees," "hammock," "tree-surgeon," 
"phoning" and so on for whatever knowledge and beliefs the robot may be said to possess. In a 
well-ordered system we would also expect to find symbol-processing machinery that causes the 
anticipation of falling branches and the phoning of a tree surgeon. It is not necessary that the 
Mark -1 itself be able to tell us about the location and encoding principles for the underlying sym­
bol system. However, if we as observers can discover the "mentalese" of the Mark-1, we expect 
to find symbols and processors that are causally connected with the behavior of the robot. 

In artificial intelligence and cognitive science these expectations about symbols in memory 
and their connection with intelligent behavior are at the core of representational theories of 
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mind. In the context of knowledge systems, the emphasis shifts from deciphering mentalese to 
the systematic use of symbols in a computational knowledge medium. 

By a semantic theory Hayes means an account of the way that particular configurations of 
symbols in a representation scheme correspond to particular configurations of the external 
world. By calling it a "theory," Hayes demands more than just allowing observers to assign arbi­
trary meanings to symbols. He wants a systematic approach for indicating how sentences in the 
language represent the subject matter. The grammar rules that determine whether a set of words 
is a sentence should also help us to determine what the sentence means. The regularities of this 
explain how we make any sense out of the sentence about the pink mouse in the helicopter. 

Seeking a semantic theory shifts the focus from a concern with interpreting or decoding 
the symbol structures of a particular robot to the design of representation languages of adequate 
power for which we can give a principled account of what symbols written in them mean. The 
goal of this revised enterprise is technical: It is the development of engineering principles by 
which we can design symbol structures and knowledge systems whose properties are predictable 
and understood. In both cases-mentalese languages of the mind or representation languages­
what we seek is a systematic way of assigning meanings to expressions. 

Returning to our analogy about the understanding of natural language, we would like to 
ask questions about the meaning of symbols and to derive answers using a computational process 
on the symbol structures in memory. So far, the declarative semantics of predicate calculus satis­
fies the requirements we have listed. Later in this section, we discuss why additional kinds of 
semantics have been developed to satisfy additional requirements. First, however, we will look at 
further examples of representational structures and at some of the approaches for assigning 
meanings to them that are in the same spirit as the declarative semantics although they are usu­
ally less-thoroughly developed. 

1.2.3 Terminology for Graphs and Trees 

Graphs are made up of two kinds of elements usually called nodes and arcs. Figure 1.12 gives 
several examples of graphs. The nodes are the circles and the arcs are the lines connecting them. 
When the nodes or arcs have distinguishing labels the graph is called a labeled graph. It is com­
mon in depictions of knowledge representations to use graphs with labels on the arcs and the 
nodes. Graphs are also distinguished as being either directed or undirected. Directed graphs 
have directed arcs, meaning the two ends are distinguishable. Directed arcs have an orientation, 
meaning that they start at one designated node and end at another. They are usually represented 
visually as arrows as shown in Figure 1.12. 

A graph is cyclic if there is a path, starting from one of its nodes, that leads along the arcs 
from one node to another leading back eventually to the starting node. For directed graphs, the 
path must follow in the direction of the arcs. An acyclic graph is a graph with no cycles. Figure 
1.13 gives examples of cyclic and acyclic graphs. Directed acyclic graphs are called dags. 

We define trees as directed acyclic graphs in which every node (except the root node) has 
exactly one ancestor. The root node is the unique node in the tree having no ancestors. Some­
times the term forest is used to refer to a set of trees. 
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Directed graph with labeled arcs 

FIGURE 1.12. Some basic terminology about graphs. 
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Trees are a very important special case in graph theory and computer science. As is appar­
ent from the reference to "ancestors" and "root node" in the definition, trees have their own spe­
cial terminology, which we will now make more precise. For trees, the directed arcs are also 
called branches. Directionality of the arcs point is important. Borrowing familiar language from 
family trees, we say that branches directly connect parent nodes with children nodes. Conven-

Cyclic directed graph 

Acyclic directed graphs 

FIGURE 1.13. Examples of cyclic and acyclic directed graphs. 
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Tree 
(directed graph version) 

Terminal node 

FIGURE 1.14. Comparing two definitions of trees. 
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uag "Tree" 
(undirected graph version) 

No unique root. 
No differentiation between node and successors. 

No terminal nodes or fringe. 

tionally, ·arcs point from parents to children. Ancestor and descendant nodes are defined in the 
obvious way. Mathematically inclined writers often prefer to use the term successors to refer to 
children nodes. Nodes with no successors are called terminal nodes. 

Trees can be generated or drawn a little at a time. In this case, the term leaf node is used to 
refer to terminal nodes or to any other nodes showing no successors, even if further generation 
may potentially cause more successors to be presented. The set of nonterminal nodes is collec­
tively called the interior and the set of leaf nodes is collectively called the fringe. In reasoning 
problems we often consider trees that are expanded incrementally. In these cases, the terms leaf 
node and terminal node are sometimes used to refer to nodes that have no successors yet, 
although they may later. We use the terms dynamic fringe or frontier in such cases to refer to 
the set of the deepest nodes in the tree that have been explored so far. 

The term branching factor refers to the number of successors of a node. Often for the pur­
poses of analysis, it is convenient to assume that all of the interior nodes in a tree have the same 
branching factor. When different nodes have different numbers of successors, we sometimes use 
an average branching factor for a set of nodes. 

Before leaving this discussion of terminoiogy, we note that although our definition of tree 
is the one most commonly used in computer science, it differs from the definition of tree most 
used in mathematics. In mathematics, trees are usually defined for undirected graphs rather than 
directed graphs. There are several equivalent definitions for trees as undirected graphs. (1) A tree 
is a graph that is connected and that has one more node than arc. (2) A tree is a connected, acyclic 
graph. Undirected trees are called "uags" or undirected, acyclic graphs. 

Figure 1.14 compares trees based on directed and undirected graphs. In uag trees, there is 
no privileged node that stands for the root, no nodes are characterized or terminal or in the fringe, 
and there is no orientation to links differentiating nodes and their successors. It has been said that 
you can "pick up" a uag tree from any node so that the rest of it "hangs down." The directed ver­
sion of trees is commonly associated with linked data structures in computer science and with 
search processes that have a starting place. 
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1.2.4 Graphs as Symbol Structures 
In the following we will consider examples of a graphic descriptive language often called a 
semantic network. The term semantic network arises from Ross Quillian's Ph.D. thesis in which 
he used them as network models of information. Semantic networks are used for different pur­
poses, are assigned meanings (semantics) in different ways, and are depicted by figures with 
nodes and directed arcs. 

Since Quillian's thesis semantic networks have been used to model all sorts of non­
semantic things such as propositions in logic, the physical structure of objects, and the behavior 
of devices. At some time, virtually every one of these representations has been called "semantic" 
by someone. In AI and knowledge engineering, the term semantic network refers generally to a 
wide class of informal and formal symbolic representations. What these representations have in 
common is that they are all made of links and nodes. In hindsight, it is clear that this definition is 
indistinguishable from that of a graph. Graphs and graph structures have many useful properties 
as representations. However, there is nothing fundamentally "semantic" about graphs. 

Graphs can mean things in just the same way that sentences in a language can mean things. 
We, choose graphs as examples of representations simply because so many representations in 
knowledge systems are graphs. The issues are much the same whether the representations are 
graphs, grammatical sentences, or bitmaps. 

When we use the term semantic network, we draw on vocabulary from the AI literature. 
We develop several informal variations of semantic networks in the following, using them to 
show why we need principles for systematic representation languages. 

Consider the sentence: 

Willy threw a ball to Morgan. (2) 

Figure 1.15 shows one way to represent the information stated in this sentence using a graph. The 
syntax of our graph is simple. Nodes, depicted here as ovals, stand for various kinds of objects 
and links, depicted here as arcs with arrowheads and labels, stand for various kinds of relations. 
Arcs naturally have two ends, so they are most useful for representing two-part or binary rela­
tions. Relations involving more than two parts (n-ary relations) can be represented as nodes. 
Thus, in addition to the nodes that correspond to physical objects (Willy, Morgan, a ball) there 
are nodes that stand for relations. For example, the verb throw is represented as a particular 3-ary 
relation called a "throw event." The binary relations include did-action, thrower, thrown-to, and 
object-thrown. 

thrower object-thrown 

FIGURE 1.15. Example of a semantic network. 
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FIGURE 1.16. Extended example of the semantic network from Figure 1.15, showing some assumed 
relations (thin lines). 

For such symbol structures to be useful in knowledge systems, there must be a way to 
structure knowledge in expressions and there must be a systematic way to determine the mean­
ings of expressions from the individual terms and the structure of the network. Given the net­
work in Figure 1.15, we could ask: 

Was something thrown? 
Is the ball a baseball? 
When did the event take place? 
Is Willy a person? 

From Figure 1.15, we might guess that the presence of a "throw event" indicates that something 
was thrown. There is no indication at all of the kind of ball; nor is there any explicit indication 
that the kind of ball has not been determined. The form of the verb threw in (2) suggests that the 
event took place in the past. Unless the binary relation did-action indicates when the event took 
place, however, nothing is known about the time of the event. There is no explicit indication that 
Willy is a person, although this is a reasonable inference to make from the use of capitalization in 
the English sentence in (2). In a revised version of the semantic network in Figure 1.16, the 
graph is augmented with some thin-line arrows, intended to represent other relations, not stated 
in the sentence, but perhaps inferred from some context. The revised figure indicates (loosely 
speaking) that Willy and Morgan are people. 

Unfortunately, this is much too glib. The history of representation languages in AI shows 
that it is easy and misleading to ascribe unwarranted knowledge and power to representations 
when we must use human intelligence to interpret them. A simple experiment demonstrates this. 
Consider how unintelligible the network becomes in Figure 1.17 when we substitute numbered 
symbols ("gensyms") for names: g0001 for is-a, g0002 for Willy, and so on. The loss of intelligi­
bility reveals the amount of background that we unconsciously use to interpret drawn semantic 
networks. In effect we make guesses about what an interpreter would do. Changing the natural 
language symbols to gensyms removes the (possibly misleading) clues that guided our guesses. 

Continuing this example, Figure 1.18 shows two sentences together with semantic net­
works that are intended to represent their contents. In this example, three elements take part in 
the across relation: Willy's dwelling is across the street from the speaker's dwelling. This three­
part relation is expressed by the relation node with three binary relation arrows (across-object, 
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FIGURE 1.17. Semantic network of Figure 1.16 substituting numbered symbols ("gensyms") for names. 
The difficulty of making sense of this figure shows how easy it is to overlook the knowledge that people 

can bring to bear in interpreting semantic networks. 

Sentence 

Willy lives across the 
street from our place. 

Graph representation of its contents 

Sentence 

Laverle lives across the 
bridge from our house. 

across-object 

Graph representation of its contents 

across-object 

across-what 

Across Relation 

across-from 

The Speaker 

across-what 

across-from 

FIGURE 1.18. Sentences with similar meanings should be represented by similar symbol structures. 
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across-what, across-from) pointing to the other boxes. Such a representation provides specific 
predetermined places for putting expected kinds of information. 

In summary, one of the requirements of having a semantic theory is that we give a detailed 
account of how meaning is ascribed to representations by their interpreter. For good engineering, 
the assignment of meaning should be systematic so that representations with similar meanings 
should have similar structures. 

1.2.5 The Annotation Principle and Meta/eve/ Notations 

In the following, we illustrate a sequence of semantic issues using semantic networks. In this 
sequence, we retrace some of the history of ideas in the development of representation languages 
in AI. 

We begin by considering a symbol system intended to reason about characters in old car­
toons. Tweety the bird and Sylvester the cat are favorite cartoon examples traditionally used at 
least once in all AI texts. Just for fun we will treat objects from such cartoons as our domain or 
"world" in the following examples. Presumably the system would need to represent the fact that 
birds and cats are animals, that birds have feathers and can fly, that canaries are birds, that 
Tweety is a neighbor of Sylvester and so on. One attempt to represent these facts in a simple 
semantic network is shown in Figure 1.19. 

In describing such a representation, we must give an account of the processing that the sys­
tem will carry out on the symbol structures in the course of its reasoning. For example, we expect 
the symbol system to infer that Tweety can fly. A common idea in such representations is that 
general information ought to be stored as high in a generalization hierarchy as applicable and 
inherited by nodes below it by means of a search process. This idea was motivated by psycholog­
ical studies of human memory response. If more general properties are stored higher up in a gen­
eralization hierarchy, one would expect it to take more time for a subject to affirm a statement 
like "Tweety eats" than one like "Tweety is yellow." 

a-kind-of 

FIGURE 1.19. A simple semantic network to represent facts about Tweety and Sylvester. 
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One account of the inferential processing in an inheritance model follows: 

The link from the bird node represents that birds can fly. The canary node is linked to 
the bird node, so that the processor can add that canaries can fly. Continuing this pro­
cess, the processor infers that Tweety can fly because the Tweety node is linked to 
the canary node. · 

51 

This naive argument and organization captures some of the logical structure of the domain. We 
know that a bird is an animal and the answers to questions about birds will often be derived 
through general properties of animals. Semantic networks treat these deductions specially, lead­
ing to economies of computation for common cases. 

However, from the same network we could give an analogous account showing how the 
processor would infer that Tweety has fur, as follows: 

The link at the cat node represents that cats have fur. The Sylvester node is linked to 
the cat node, so that the processor can add that Sylvester has fur. Continuing this pro­
cess, the processor infers that Tweety has fur because the Tweety node is linked to 
the Sylvester node. 

The silliness of the latter account derives from the last step, where the "fur" inference is 
implausible because Tweety is not a cat. More precisely, the implied processing acts as if we can 
infer that y has a property if y is linked to x by an arc and x has the property. This inference is too 
broad. The problem is that the network does not explicitly indicate which links convey inheri­
tance of properties and it is clear that not all of them do. Being a neighbor of somebody does not 
usually imply that one has the properties of that person. Neighbor-of means something different 
from is-a and a-kind-of, so the processor needs to treat these different relations differently. But 
they are all represented in the same way in the graph, as directed arcs, albeit with different 
names. This brings us to the annotation principle. 

The Annotation Principle. Differences in intended processing should be reflected 
by differences in symbol structures. If two symbol structures are intended to be 
treated in different ways by a processor in a symbol system, the processor must be 
able to distinguish among some of the properties of the symbol structures. If two 
symbol structures are intended to be processed in the same way by a processor, then 
some of their relevant properties should appear the same to the processor. 

The annotation principle makes explicit a structural approach to systematizing the compo­
sition of meaning. It is simple and perhaps obvious, but it comes up in many different guises in 
the design of symbol systems. The term annotation refers to the use of auxiliary symbols that are 
used to modify the interpretation of other symbols. These annotation symbols typically do not 
have the same kinds of meaning as the symbols that they annotate. For example, they usually do 
not designate objects in the environment. 

Annotations are also called metalevel notations and metadescriptions. They are the basis 
for many of the representational frameworks and declarative notations used in knowledge repre­
sentation languages. They are called metalevel because they do not refer to the same environ-
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covered-by 
(structural) 

a-kind-of 
(inherit) 

color 
(property) 
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Bird Seed 

eats (property) 

FIGURE 1.2Q. Augmenting the semantic network of Figure 1.19 with notations on arcs to guide 
processing. 

ment that the cartoon characters in our example inhabit. Rather, they guide a processor in its pro­
cessing of the symbol structures. 

Programming and representation languages sometimes provide special mechanisms for 
adding annotations to symbol structures. For example, metaclasses in object-oriented languages 
are often used to define how the system instantiates classes or allocates storage. In this same 
vein, some languages provide ways of embedding structures within notations in a way that is 
invisible to programs using normal methods for accessing memory. Representation languages 
provide annotation mechanisms to simplify the design and development of interpreters or sym­
bol structure processors. In this section, we will consider several examples of annotations. Many 
of these examples are drawn from problematic cases that were noticed by developers of early 
semantic networks. 

In the example of the neighbor-of arc versus the is-a arc in Figure 1.19, we could modify 
our approach so that that the processor would differentiate among the arcs on the basis of their 
relation names. This would require that the processor have information for each different rela­
tion. An alternative is to augment the network with annotations. 

In Figure 1.20, we extend the semantic network with additional annotations indicated by 
parenthetical labels associated with the arcs. This is a first step toward an engineering practice of 
developing taxonomic descriptions of relations. Such taxonomies characterize relations. For 
example, annotations can indicate which relations are used for inheritance, that is, for the propa­
gation of properties from nodes that designate general classes to nodes that designate more spe­
cific ones. In Figure 1.20, is-a and a-kind-of are annotated as inheritance links. By such propaga­
tion the representation can serve to represent that canaries can fly and that Tweety is yellow. The 
amount of processing required to propagate properties is determined by the branching factor of 
the network and the depth to which the information must be propagated. To provent looping, 
inheritance networks are generally required to be acyclic. 
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Annotations can indicate which relations are structural, that is, which relationships 
describe information about physical structure in terms of subcomponents. In our cartoon exam­
ple, cats have fur. If more detail were required we could show nested structural relations: Cats 
have paws, and paws have claws, and so on. As we make a representation more detail, we some­
times find it useful to increase the number of symbols used to represent the elements of a situa­
tion. Initially, it might be adequate to treat (say) properties of a eat's claws as properties of the 
cat. For example, we might just represent the eat's claws as being sharp. Later, however, we 
might need to represent claws on two different feet. Some claws are dulled and some are sharp. 
Furthermore, we may find that we want to reason in a similar way about bird claws and cat 
claws. At some point, however, the overall complexity of the representation may be reduced if 
we separate the representation of claw properties from cat properties, that is, if we reify the claws 
as separate objects with their own properties. Then the overall represent becomes a composite 
consisting of a cats, legs, paws, claws, and any other reified parts that are convenient. This makes 
it possible to simplify the overall hierarchy of classes into reusable representational elements. 

· Finally, some links could indicate information about nodes used for documentation by a 
database maintenance routine. Examples of this are the relations creator and date-created, which 
would connect nodes to representations of the knowledge engineer who created them and the 
dates that they were created. Such relations are used· for purposes of bookkeeping and updating 
and can be ignored by a processor concerned strictly with the subject matter of cartoons. 

These examples show how annotations enable an interpreter to distinguish cases for a 
small number of different annotations corresponding to relation types rather than a large number 
of different relation names. In particular, it opens up the possibility of defining classes of rela­
tions with common behavior. In our first account of processing in Figure 1.19, we assumed that 
the processor knew the names of the different relations in order to decide how to process them. 
With annotations, a symbol processor can treat is-a and a-kind-of as identical for the purposes of 
inheriting properties. Exercise 7 considers an alternative processing architecture for realizing this 
same effect. Regularities in the ways that symbols are to be interpreted can be exploited in terms 
of regularities in annotations and in the architecture of their processors. 

Annotation in a semantic network can guide not only the processing of arcs but also the 
processing of nodes. How can the processor determines which objects designate things that can 
appear in a cartoon? Clearly, Sylvester and Tweety can appear and both are shown in the network 
as nodes. But canary is also a node. Does it make sense to say that "canary can appear in a car­
toon" or "canary can appear in the node animal"? When we say that "Canaries are yellow," we do 
not refer to any particular canary. We referred to a class of small yellow birds. A class does not 
correspond to bounded physical entity in the world. You cannot "see" a class of birds. A class is a 
cognitive artifact that we use in organizing our thinking. 

Making the meaning of classes such as "canary" philosophically and genetically precise 
requires more work. Does the class include ancestral birds from the age of the dinosaurs that dif­
fer increasingly from today's canaries? The value of precision in sorting out and representing 
such matters depends on the expected uses of the symbol system. 

Figure 1.21 adds node annotations shown as parenthetical labels to indicate whether nodes 
designate classes or individuals. Even so, this is not yet enough to answer our question about 
what nodes designate things that can appear in the cartoons. For example, the network shows that 
cats eat available birds. What is this strange node available-birds? Again, it seems to describe a 
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a-kind-of 

FIGURE 1.21. Augmenting the semantic network of Figure 1.19 with notations on nodes to guide 
processing. 

class. Early developers of semantic networks were quite free in defining such nodes, but lax in 
characterizing precisely what they meant. The issue here is not that such nodes have no place in 
a semantic theory. Rather, the issue is that there is a fair amount of work required to be precise 
about what such nodes are intended to mean, and also work in arranging that the operations of a 
system are correct relative to the intended meaning of such representations. 

We consider one more example. It would be convenient to be able to refer to particular 
birds that have not yet been identified with known individuals. For example, we might see a grin,. 
ning Sylvester in the cartoon with yellow feathers in his mouth. We may want to reason about the 
fate and status of the unfortunate consumed bird, without knowing whether it was Tweety. Mys­
tery stories make much use of this kind of reference. They tell us about a murderer, before telling 
us whether the foul deed was committed by the pretty maid, the spoiled son, the spinster aunt, the 
wily lawyer or the sinister butler. Figure 1.19 introduces indefinite individual nodes to refer to 
concepts such as the unknown eaten canary or the unidentified murderer. 

What these notations about nodes have in common is that they are all about reasoning 
about the identity of individuals. We assumed without saying so that distinct nodes refer to dis­
tinct things. Class nodes refer to classes of objects. In our simplest examples, we have one node 
for Sylvester and another node for Tweety. The indefinite nodes change the way an interpreter 
reasons about identity. If we have a node for "the murderer" and other nodes for the maid, ·the 
spoiled son, and so, then later inferences about the possible identity of the murderer may leave us 
with more than one node referring to the same thing. If the system infers that the butler did it, 
then we would say that the butler node and the murderer node are co-referential. 

More generally, two representations are said to be co-referential if they refer to or desig­
nate the same thing. For example, the symbols "the first U.S. president" and "George Washing­
ton" would usually be co-referential. Technically, the question of whether two representations 
are co-referential must be determined relative to an observer. Annotations can be used to support 
reasoning about identity and co-referentiality. Thus, our example of indefinite individual annota­
tions for nodes support such reasoning. In addition, some representation languages include spe-

Page 62 of 153 FORD 1007



1.2 Semantics: The Meanings of Symbols 55 

cific co-reference relations intended to indicate where different symbols are known to be co-ref­
erential. Examples of such annotations and reasoning with them are given in the exercises. 

1.2.6 Different Kinds of Semantics 

We have now established the background to consider different approaches to semantics. A 
semantics assigns meanings to symbols. Different kinds of semantics differ in the kinds of sym­
bols considered and the kinds of meanings they assign. 

To understand the different approaches it is useful to understand the goals of people who 
use them. Following Woods' discussion of semantics in Woods, 1975, we compare these 
approaches using caricatures of different points of view. The first set of caricatures is concerned 
with assigning meanings to symbols in programs and representation languages. These include the 
Logician, the Programming Language Designer, the Systems Engineer, and the Representation 
Language Designer. The second set of caricatures is concerned with assigning meanings to sym­
bols in natural languages. These include the Computational Linguist, the Social Linguist, and the 
Social Scientist. These caricature names do not fully characterize the different fields. They are 
intended to exemplify some of the different kinds of issues that are relevant when people create 
semantics. 

Semantics for Programs and Representation Languages 
The Logician is concerned with specifying the meaning of a formal notation. To this end she is 
usually concerned with a formal definition of truth in a set theoretic model, sometimes called a 
Tarskian semantics. She wants a systematic way to determine when expressions in the notation 
are "true" propositions, when they are false, and what follows from what. For example, she 
wants to know how the truth of an expression like "(Socrates is a man) and (Socrates is short)'' 
depends on the truth assignments of the two parenthesized expressions and the conjunction and. 
In the previous section described the semantics of the predicate calculus in terms of a reference 
semantics, a truth semantics, and a proof semantics. 

The predicate calculus by itself does not embody any computational process. Programming 
languages and practical knowledge representation languages, however, need to specify processes 
for computing and reasoning. To accommodate this, additional kinds of semantics have been pro­
posed. 

The Programming Language Designer is interested in providing a formal specification of 
computation in programming languages. He wants to be clear about how syntax indicates what 
computation is to be performed, so that he can build reliable and portable compilers and com­
piler-compilers. He prefers formal specifications so that the omissions, contradictions, and ambi­
guities typical of informal language specifications may be avoided. His semantics describe how 
the output and final states of a program depend on its inputs and input states. There are different 
approaches to specifying this. 

The idea that a proof system can give meaning to a programming language, and hence to 
programs, is due to Hoare. This enterprise is sometimes called the axiomatic semantics, 
although it is more commonly called the denotational semantics. This differs from the usual 
sense of semantics in logic. Ordinarily, the formal semantics of a proof system is given by relat­
ing it to a model theory defined in set-theoretic terms. Here, a proof system is used to specify the 
semantics of a programming language or a class of its implementations. 
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The denotational semantics involves three interpretation functions. One interpretation 
function maps programs onto mathematical functions that relate inputs to outputs. A second 
maps language expressions and program states onto values. A third maps commands in the lan­
guage onto state transition functions. The details and variations of this approach are intricate and 
beyond the scope of this section. The main point is that the semantics map syntax onto descrip­
tions of a computation. 

The Systems Engineer is also a computer scientist, but she is chiefly concerned with aids 
to building and maintaining large computer programs. She is concerned with how a large pro­
gram is built up from many subprograms and hardware subsystems. Big programs are written by 
groups of people, used by different people in constructing their own subprograms, and modified 
as needs change. She wants to be able to modify her subprograms without changing the pro­
grams that use them. She also wants to be able to use subprograms without knowing the details 
of how they work. The semantics useful to a Systems Engineer are about the requirements of 
subprograms. She is interested in external data representations, subprogram parameters, control 
regimes, and computational resources required by subprograms. Generically, we say that such 
approaches are concerned with interface semantics. In practical examples this involves a mix­
ture of informal and formal descriptions. 

The Representation Language Designer is interested in the reasoning phenomena that arise 
when people gain new information while working on a problem. People make assumptions about 
defaults and about what events and values are possible and likely. They change their minds in the 
light of new information, sometimes retracting things they believed earlier. The Representation 
Language Designer would like to have ways of describing computational methods and goals that 
could guide such nonmonotonic reasoning in computers. To the extent that they effect the opera­
tion of an interpreter, he is also interested in distinctions such as those discussed earlier in this 
section between class nodes, individual nodes, and so on. He may characterize this as knowledge 
for control or metalevel reasoning. He does not want to hide this knowledge inside a "black box" 
interpreter or to intermingle it with the domain knowledge. He wants to enter the statements 
declaratively and have the interpreter find them and use them when it decides what to do next in 
the reasoning process. Generically, we call the association of such knowledge with domain sym­
bols a reasoning control semantics. This semantics maps statements in the representational lan­
guage to computational processes for reasoning. The semantics for programming and represent­
ing languages are summarized in Table 1.2. 

Semantics for Natural Languages 

We now turn to semantics for natural languages. The Computational Linguist is concerned with 
the translation of sentences in natural languages into formal representations of their meanings. 
She is interested in characterizing how the same sentence can sometimes mean different things 
and that some sentences mean nothing at all. She would like to find an unambiguous notation in 
which to express the different things that a sentence can mean. Thus, the Computational Linguist 
is concerned with the translation of sentences and expressions from natural language into formal 
notations such as predicate calculus or a well-defined semantic network. We call this approach a 
logical language semantics. Note that this approach maps sentences in one language to senten­
ces in another. 
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TABLE 1.2. Different semantics for programming and representation languages. 

Kind of 
Semantics 

Reference 
semantics 

Truth 
semantics 

Proof 
semantics 

Denotational 
semantics 

·., 

Interface 
semantics 

Reasoning 
control 
semantics 

Used for Symbols Meanings 

Identifying how symbols in Symbols and expressions in Designation. A description 
a computer refer to things in a physical symbol system or of things known to an 
an observer's environment. in a representation language. observer. 

Identifying what terms and 
expressions are true. 

Identifying what terms and 
expressions are valid. 

Characterizing how the 
syntax in a programming 
language specifies a 
computation. 

Characterizing the 
operations and requirements 
of modules in a computer 
program. 

Characterizing how 
symbols should be treated 
in a nonmonotonic 
reasoning process . 

Symbols and expressions in 
logical formulae with a 
given conceptualization. 

Symbols and expressions in 
logical formulae with a 
given database of formula. 

Symbols and expressions in 
the syntax of a 
programming language. 

Program modules. 

Symbols and expressions in 
a representation language. 

True or false. 

Valid or not, as supported 
by a proof. 

A characterization in terms 
of mathematical functions 
indicating how final states 
and output are determined 
by initial states and input. 

Abstractions described as 
protocols, arguments, types, 
and operations. 

Reasoning processes for 
default reasoning priorities, 
and so on. 

. Before passing on, we note in passing that is not generally adequate to consider sentences 
one at a time when assigning meanings. Consider the following two pairs of sentences. 

(1) It is 12:30. Morgan is out to lunch. 

(2) His memos never make sense. Morgan is out to lunch. 

In this example, the first sentence gives us an important clue about an idiomatic interpretation of 
the second sentence. Thus sentences do not necessarily provide independent chunks that can be 
analysed or processed independently to determine their meaning. Natural language requires a 
context to determine meaning. This is in striking contrast to the truth and proof semantics of 
logic, and contrary to the suggestion that the meaning of an expression in a representation lan­
guage be determined by the meaning of its parts. 

Returning to our tour of kinds of semantics, the Social Linguist recognizes that many sen­
tences uttered in conversation are chosen for their effect on the listener rather than to communi­
cate statements about an external situation. For example, the English statement, "The car is 
almost out of gas" may be uttered as an indirect request to a driver to stop at the next gas station. 
Even statements that seem to contain logical operators often have unusual meanings. Only a per­
verse sense of humor would allow one to answer "yes" to English question "Are you left-handed 
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or right-handed?" This is a request for information. One of the expected responses is "right­
handed." The Social Linguist refers to the semantics studied by the Computational Linguist as 
merely the "literal meaning." He classifies statements as kinds of "speech acts," whose purpose 
in conversation is to indicate agreements, disagreements, commitments, priorities, goals, under­
standings, and other aspects of the communication and negotation process involving the agents. 
We call this approach action semantics because the meanings of the sentences are actions 
intended to have certain effects. 

The Social Scientist is also concerned with the use of symbols in human interactions. She 
is interested in how it is that people come to agree about the meaning of terms that they use 
together in speaking and writing. She recognizes that people do not immediately understand each 
other's terms and that they develop models of each other and their use of language. She focuses 
on phenomena related to the change and elaboration of meaning. She characterizes the meaning 
of terms as being socially constructed and negotiated, as people sharpen or broaden what they 
mean by words. The point here is not the need for another kind of semantics, but rather, a need to 
focus on different properties of meaning. In our previous discussions of meanings, we acted as 
though meanings were fixed and unchanging. In contrast, the Social Scientist studies the evolu­
tion and ~on vergence of meaning. 

Before leaving these examples of kinds of semantics, we note that the list is not exhaustive 
and that there are many further variations. In the 1890s, the philosopher Frege, who invented the 
declarative semantics of logic, was also concerned with the relation between equality and the 
designations of terms in natural language. He proposed two natural language sentences, which 
have often been cited as perverse examples. 

(1) Necessarily, the Morning Star is the Morning Star. 

(2) Necessarily, the Morning Star is the Evening Star. 

In these sentences, the term Morning Star refers to a bright star observed near the sun at sunrise. 
The term Evening Star refers to a bright star observed near the sun at sunset. From an astronomi­
cal point of view, the two terms refer to the same physical object, usually the planet Venus. From 
Frege's point of view, however, the first sentence is true and the second false. The two terms do 
not have the same "meaning." 

People still argue about exactly what Frege meant with this example. Some people relate 
Frege's idea to the idea of transformational grammars. These grammars transform sentences to 
either a standard form or a logical statement. This approach is similar to the logical sematics 
described earlier. In this account, the terms evening star and morning star have different mean­
ings because there are no rules for transforming them to the same form. The reason that the two 
terms are not made equivalent is that the transformational rules involve knowledge about varia­
tions in syntax but presumably not knowledge of astronomy. 

A different explanation of Frege's point is based on consideration of the term intensional 
which means "of the senses." In this view, the semantics of evening star and morning star refer 
to the process by which they are perceived. They are perceived differently because one is seen in 
the morning and the other in the evening. This approach can be seen as a more sophisticated 
view of a reference semantics. It focuses on the operations, processing, and interpretation of the 
senses. We cannot simply refer to "the world" as though it were something that we necessarily all 
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TABLE 1.3. Kinds of semantics for natural languages. 

Kind of 
Semantics Used for Symbols Meanings 

Logical Characterizing what Example sentences and Sentences in a formal 
language sentences in natural expressions from natural notation, such as predicate 
semantics language mean. language. calculus. 

Action Characterizing how Example sentences and The goals, agreements, and 
semantics sentences in natural expressions from natural commitments of agents in a 

language are used to cause language. conversation. 
action. 

Intensional Characterizing how terms in Terms in natural language The operation, processes, 
semantics natural language refer to used in writing and speech. and interpretations of the 

things that are perceived. senses. 

see the same way. We must say more about how we go about perceiving and understanding it. We 
call this approach intensional semantics. Table 1.3 summarizes approaches for assigning mean­
ing to sentences in natural language. 

Other philosophers take intensions to correspond to concepts, ideas, or things that can be 
imagined. Further discussion of related topics such as the semantics of necessity and intensional 
logic would take us too far afield. 

1.2.7 Summary and Review 
A semantics is a way of assigning meanings to symbols. There is no single "true" meaning or true 
way of assigning meanings, at least in the academic fields. Different fields have different tradi­
tions for assigning meanings. We considered examples of semantics for programming and repre­
sentation languages and also for natural languages. 

Looking back over the different examples of semantic theories, we can group them roughly 
into three families. First is the referential family of semantic theories. In this family, meaning­
fulness comes in the relations of symbols to objects of different kinds. Members of this family 
include the reference semantics, the intensional semantics, and perhaps the denotational seman­
tics of programming languages where the "objects" are mathematical. 

Next is the cognitive family of semantic theories. Meaningfulness arises from the system­
atic ways that subject matter is mentally and computationally represented and how reasoning 
processes are sanctioned over those representations. This family includes the truth semantics, 
proof semantics, operational semantics, reasoning control semantics, and interface semantics. 

Third is the social family of semantic theories. This family emphasizes communication. In 
this approach, meaningfulness derives from the ways that agents use symbols in their interac­
tions with each other. This family includes the action semantics. 

These approaches to semantics are complementary. In discussing knowledge systems we 
draw on different approaches for different purposes. When we think of knowledge systems as 
embedded systems whose symbols refer to the world we draw on the referential family. When we 
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argue about the conclusions that knowledge systems should reach and their computational char­
acteristics we draw on the cognitive family of semantic theories. Finally, when we interact with 
people to incrementally define symbols to be used in a knowledge system that they will use and 
when we consider the interactions of knowledge systems in a human organization, we draw on 
the social family of semantic theories. 

Exercises for Section 1.2 

Ex. 1 [05] Identifying Graphs and Trees. Classify each of the following graphs as (1) directed or 
undirected, (2) labeled or unlabeled, (3) cyclic or acyclic, and ( 4) graphs, trees, or forests. 
(a) 

(b) 

(c) 

(d) 
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Ill 

Ex. 2 [05] Terminology. For each of the following statements indicate whether it is true or false. 

Ex.3 

Ex.4 

If the statement is ambiguous, explain briefly. 
(a) True or False. The main thing that different so-called semantic networks have in com­
mon is that they are composed of nodes and links (possibly labeled). This is the same as a 
definition of a kind of graph and there is nothing inherently semantic about graphs. 
(b) True or False. A reductionist and structural approach to the meaning of a representa­
tion says that the meaning of an expression is determined by the meaning of its terms and 
by the pattern of their arrangement. Restated, the meaning of an expression composed of 
terms is a composition of their meanings. 
(c) True or False. The annotation principle says that formal representations should be 
decorated with informal annotations that help people to understand them. 
(d) True or False. Two nodes in a graph representation are defined to be coreferential if 
they both have arcs that point directly to a common node. 
(e) True or False. The declarative semantics of predicate calculus consists of a reference 
semantics, a truth semantics, and a proof semantics. 

[05] Terminology. For each of the following statements indicate whether it is true or false. 
If the statement is ambiguous, explain briefly. 
(a) True or False. Acyclic graph is one in which there are two directed arcs leading to the 
same node. 
(b) True or False. In reasoning by inheritance, properties are propagated from general 
nodes to more specific ones. 
(c) True or False. In drawings of is-a hierarchies, the arcs point in opposite the conven­
tional direction for trees. That is, they point from specialized nodes to generalized nodes. 
(d) True or False. The annotation principle is intended to make the design of interpreters 
simpler for systematic representation languages. 
(e) True or False. The usual definition of a tree in computer science is equivalent to a 
dag. 

[CD-!-10] Reasoning about Identity. Indefmite-individual nodes are used to refer to indi­
viduals whose identity has not yet been established. They provide a notation to express 
incremental reasoning about identity. One proposed framework defines two kinds of rela­
tions for reasoning about such nodes: anchor relations, which link an indefinite-individual 
node to an individual node, and co-reference relations, which link two indefinite nodes to 
each other. In the usual interpretation, different individual nodes designate different objects 
in the environment, anchor relations mean that an indefinite designates the same object in 
the environment as the individual node it is linked to, and co-reference relations mean that 
two indefinite nodes designate the same object in the environment even if it has not been 
identified yet. 
(a) Consider a semantic network with individual nodes Huey, Duey, and Louie represent­
ing duck characters in a cartoon story and indefinite nodes for dessert-eater and brown­
coat-wearer. Draw a semantic network to indicate that the dessert-eater and the brown­
coat-wearer are known to be the same individual. 
(b) Describe appropriate processing on this representation that would infer who ate the 
dessert, given that the brown coat was worn by Huey. 
(c) Suppose that in a different situation, the processor had anchored dessert-eater to Huey 
and brown-coat-wearer to Louie. In what sense would it then become semantically inappro­
priate for the processor to put a co-reference link between the two indefinite-individual 
nodes? 
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[CD-!-15] Closed World and Other Assumptions. In murder mystery stories, the closed (or 
locked) room scenario is one in which all of the possible suspects are locked together in the 
same room (or train), so that no one could enter or leave during the crucial period when the 
foul deed was done. Furthermore, in detective stories, there is a kind of "fair play" assump­
tion amounting to a contract between the author and a reader, which says that it must be 
possible for the reader to solve the mystery from the evidence given. Introducing a 
revenge-seeking cousin in the last scene or aliens with special powers from outer space is 
not considered fair play in the genre. 

Similarly, in AI systems the closed-world assumption means that all of the objects of 
interest are described in the database. Usually many assumptions about interpretations 
influence modeling and representation. 

In this exercise we consider an adventure of the three cartoon character ducks Huey, 
Duey, and Louie, nephews of Donald Duck. The three ducks were locked alone in a room 
with the dessert, so that none of them could escape and no one else could enter. Suppose 
also that the dessert could only be eaten by a duck, and that the dessert disappeared while 
they were in the room. 
(a) How could a knowledge system infer who ate the dessert, given that neither Duey nor 
Louie wore the brown coat and that the brown-coat-wearer ate the dessert? Show how this 
requires the use of a closed-world assumption? 
(b) Professor Digit says, "Although we can use quite simple reasoning models to infer the 
answer to problems like this, real world (and cartoon world) possibilities are quite endless. 
How do we know that the dessert did not simply evaporate? There are many different 
assumptions about the world that a system could make in solving problems like this." Do 
you agree with Digit? If yes, give some examples. 
(c) In everyday reasoning, we are able to imagine a wide range of possibilities, and yet 
we are not overwhelmed by them on simple problems. Briefly, describe an approach for 
knowledge systems that provides this capability. 

Ill Ex. 6 [15] Representing Physical Parts. Representations are designed for a purpose and the ade-
. quacy of a representation is judged relative to that purpose. In this exercise, we consider 

representations of physical parts. We are given the following statements: 

A Buick is a kind of automobile. 
All automobiles can be driven. 
A Sky bird is a kind of Buick. 
The body of a Skybird is a sport body with an asymmetric shape. 
The particular Sky bird with serial number 100 has a red body. 
A Sky bird body has a left door and a right door. 
The right door of a Skybird body is a passenger door. 
The left door of a Skybird body is a driver door. 
A driver door is shaped as trapezoid pattern 1. 
A passenger door is shaped as trapezoid pattern 2. 
A car door has a handle. 
The engine of a Skybird is a model600. 
A model 600 engine has four cylinders. 

(a) Assuming that you will use a graph representation, discuss how you distinguish 
between the following: 
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Representations of part relations versus representations of other relations 
Representations of classes versus representations of particular objects 
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(b) Suppose that our task is to compute the list of parts of an object, from the largest part 
down to the smallest one. 

In a rigorous discussion of what it means to be a part, we would need to define more 
what it means to be a part. For example, coatings such as paint are not considered to be 
parts. Substances used to make up materials such as metal alloys are also not considered to 
be parts. There is also a practical issue of granularity. Are we really interested in listing the 
lock washer on the bolt that holds the hand to the door shaft? Assume for this problem that 
the granularity of interest corresponds to the granularity in the network. 

Show a systematic graph representation for the statements above. 
(c) Describe your method for computing the list of the parts of a Skybird, using your 
graph representation as the database. 
(d) Describe your approach for inheriting part descriptions. Specifically, explain how 
your approach includes door handles for both the passenger and driver door in the inven­
tory. 

Ex. 7 [1-40] Partitioned Semantic Networks. In 1975, Gary Hendrix observed that semantic net­
works were clumsy when compared with predicate calculus for representing quantified 
statements. He proposed a mechanism (Hendrix, 1975) for partitioning semantic networks 
into "spaces" that contained nodes and links and that were convenient for indicating the 
scope of quantified relations. Spaces are well suited for this purpose in that the node and 
arc variables encoding information within a space look exactly like the representations of 
specific facts. Furthermore, such variables are effectively isolated from constant informa­
tion by partition boundaries. 

Although interest in using semantic networks for representing statements in predicate 
calculus has been rather limited, notations for partitioning networks have provoked more 
interest as general representational mechanisms. Partitions are used for delineating clusters 
and defining boundaries for information hiding. For example they have been used to repre­
sent contexts, alternative worlds, and plots. 
(a) Figure 1.22 represents the statement "Every dog has scratched a flea." The partitions 
in this figure are SA, the outermost space, and S 1, the space that indicates the form over 
which the variable dis scoped. Arcs labeled with an e indicate element-of relations for the 
sets to which they point. Similarly, arcs labeled with an s indicate subset relations. The 
presence of each node and arc within a space are interpreted as implicit statements of exis-

' 
1-----------------------------------------------------------~ 

FIGURE 1.22. Roughly, "Every dog has scratched a flea." 
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FIGURE 1.23. The "invisibility" of the contents of spaces. 

tence about objects and their relations. Thus, the nodes in the figure assert that the follow­

ing: 

There are dogs. 
There are fleas. 
There are scratching events. 
Every dog, d, has participated in a scratching event, s, in which it was the scratcher 

and some flea, f, was the scratchee. 

In the same network, there are some metalevel statements, the details of which we 

will be a bit vague about. 

G is a general statement. 
It has a form (the space Sl) and a universally quantified variable within that form (d). 

Use this same graph and boundary notation to express the statement: "Every dog has 
visited every fire hydrant." Assume that both quantifications are part of the same general 

statement. 
(b) In Hendrix's scheme, partitions determine what nodes are visible to a routine search. 
We do not detail Hendrix's particular approach here. In this exercise, we assume that if a 
space is contained in another space, the contained space can "see" everything in the con­
taining space, but the contents of the contained space are invisible to the containing space. 
We assume further that the spaces are organized in a strict containment or subset hierarchy. 

For example, in Figure 1.23, a search for instances of dog would find Polar and Bar­
ney and Sonny Blue, but not d. What other mechanisms discussed in this section could 

serve to distinguish variables from constants? 
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left 

FIGURE 1.24. Semantic network representing "Sylvester left the room." 

Ex. 8 

(c) Two philosophers, Dr. A and Dr. B, have gotten together to discuss partitioned net­
works as presented in this exercise. After several minutes of deep thought, Dr. A exclaimed, 
"Eureka! Partitioned nets are not so strange. The partitions function just like parentheses in 
predicate calculus notation." Dr. B thought about this, and countered, "No. They are just 
notations for grouping network elements into sets. They could be used for other purposes, 
too." 

What feature of partitions enables them them to do more than delimit sets? 
(d) Explain how partitions are more flexible for representing sets than parentheses in a 
linear notation, assuming the usual rules for well-formed expressions? 

[!-20] Modeling Beliefs of Multiple Agents. Sometimes it is useful for representation lan­
guages to indicate when to "escape" to alternative interpretations. We consider this starting 
with an example, drawn from the cartoons. Tweety is a bird, Sylvester is a cat, and they 
play tricks on each other. 
(a) Consider the sentence: 

"Sylvester left the room." 

Using the notation from this section, we could represent this in a semantic network as in 
Figure 1.24. 

Consider now the revised sentences: 

"Sylvester was hiding in the room." 
"He knew that Tweety believed he had left the room." 

What is at issue in semantics if we use the same representation as before to indicate 
what Tweety believed? 
(b) Professor Digit says he can always distinguish beliefs by inventing new relations. For 
example, to represent the example from part (a) he proposes relations like knows, 
believes, and believes-that-another-agent-believes. Why is this approach problem­
atic? 
(c) Propose an approach that would distinguish what Tweety believes from what Sylves­
ter believes. Describe some of the requirements for interpreting symbols in your approach. 
Will your approach extend to cover the situation where there is deliberate deception 
because Tweety really saw Sylvester hiding and acted as if he did not see him in order to 
fool him. (Hint: See preceding exercise.) 

Ex. 9 [10] Kinds of Semantics. The following cases refer to the kinds of semantics described in 
this section. 
(a) What is the difference in concerns between a naive reference semantics and an inten­
sional semantics? Why might a social scientist fmd a reference semantics naive? 
(b) Programming formalists who want guarantees of the correctness of systems advocate 
the decoration of programs with annotations describing expectations and invariants. What 
approach to semantics would they use? 
(c) What kind of semantics is called the "literal meaning" of natural-language sentences? 

Page 73 of 153 FORD 1007



66 1 SYMBOL SYSTEMS 

Alternative # 1-Chinese Restaurant 

Pro Arguments 
Chinese food is healthy. 
A variety of food is available. 

Con Arguments 
Chinese lunch is expensive. 

Alternative #2-Hotdog Stand 

Pro Arguments 
Hotdogs are prepared quickly. 
Hotdogs are inexpensive. 

Con Arguments 
Hotdogs contain a lot of fat. 
No place to sit down. 

Alternative ,#3-Ice Cream Parlor 

Pro Arguments 
Ice cream is available quickly. 

Con Arguments 
Ice cream, by itself, is not satisfying. 
Ice cream, by itself, is not healthy. 

FIGURE 1.25. Some arguments for lunch alternatives. 

(d) What kind of semantics is most relevant to computer-aided software engineering 
· (CASE) tools, that is, tools for coordinating the programming activities of a programming 
team? 
(e) What kind of semantics is relevant for describing a reasoning process based on 
assumptions and defaults with different probabilities ? 

Ex. 10 [CD-!-30] Argumentation versus Proof It is often observed that arguments are not always 
won by "logic." This exercise considers ways that argumentation may be characterized in a 
way that is meaningful and computational, but which requires elements beyond those of 
the usual semantics of logic. 

In this exercise, we consider three people who are discussing where to have lunch. We 
will call the lunchers A, B, and C. They have identified three possible restaurants: a Chi­
nese restaurant, a hot dog stand, and an ice cream parlor. 
(a) The three lunchers agree to write out arguments for and against the different alterna­
tives. They come up with a chart like that in Figure 1.25. 

One of the three lunchers, who is studying logic, observed that the process they were 
going through was quite different from the process of proving a theorem. It was not much 
like writing down a theorem "Chinese food is the best lunch" and then trying to prove it. 
Do you agree? If yes, explain the essential ways in which the process differs from proof. 
(b) Once the arguments were written down, the lunchers then decided that some of the 
arguments depended on various assumptions. They wrote down a list of dependencies 
including those shown in parentheses in Figure 1.26. 
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Alternative #1-Chinese Restaurant 

Pro Arguments 
Chiilese food is healthy. 

A variety of food is available. 

Con Arguments 
Chinese lunch is expensive. 

Alternative #2-Hotdog Stand 

Pro Arguments 
Hotdogs are prepared quicldy. 

Hotdogs are inexpensive. 

Con Arguments 
Hotdogs contain a lot of fat. 
No place to sit down. 

Alternative #3-Ice Cream Parlor 

Pro Arguments 
Ice cream is available quicldy. 

Con Arguments 
Ice cream, by itself, is not healthy. 

Assumptions 

(Depends on assumption that the vegetables are fresh 
and not overcooked.) 

(Depends on assumption that they order separately. 
It is cheaper if they share a couple of main dishes.) 

(Depends on the assumption that they get there 
before the usual large lunchcrowd.) 
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(Depends on whether the low-cost vendor is there today.) 

(Depends on the assumption that they are unwilling to 
sit at the fountain on the patio.) 

(Depends on the assumption that they get there before 
·the large lunch crowd.) 

FIGURE 1.26. Some arguments for lunch alternatives, showing supporting assumptions. 

Reflecting on this process, one of the lunchers noted that the process was taking on 
some of the elements of deduction. Do you agree? Explain briefly. 
(c) As the lunchers pondered the assumptions, they noticed that they didn't believe all of 
them. 

Luncher A believes all of the assumptions except three. He does not believe that the 
low cost hot dog vendor will be there today. He does not believe that sharing main dishes in 
the Chinese restaurant will reduce costs. He also does not believe that they can get to the 
ice cream parlor before the lunch crowd does. 

Lunchers B and C also have different beliefs in the truth of the assumptions. 
At this point, one of the lunchers notices that their process has a kind of "truth theory," 

but that it is different from that of logic because it admits assumptions. Briefly, explain the 
significance of this difference. 
(d) After the different beliefs in the assumptions were tallied, the lunchers noticed that 
there was still more they wanted to discuss before drawing a conclusion. For example, 
luncher A noticed that he believed the pro argument "Chinese food is healthy" and also the 
con argument "Chinese lunch is expensive." However, he cared about the former argument 

Page 75 of 153 FORD 1007



68 1 SYMBOL SYSTEMS 

more than the latter because the amount of money he spends on lunch has never been sig­
nificant to him. Similarly, the other lunchers evaluate the arguments in their own ways. 

How does this part of their decision process require concepts beyond the declarative 
semantics of logic? Explain briefly. 

Note: This exercise is based on the idea of an argumentation spreadsheet, as 
described in Steftk et al, 1987, which was part of the Colab project at Xerox Palo Alto 
Research Center (PARC). 

Ex. 11 [!-L-15] Graphs and Logic as Representations. In many graph representations, an account 
of the meaning includes an account of processing by the physical symbol system. For 
example, a process might specify how information associated with one node can be propa­
gated to other nodes to which it is linked in particular ways. 
(a) Create a graph representation (semantic network) for the following three sentences. 
Referring to the elements of your graph representation, describe how you would infer that 
"Bill can fly": 

All birds can fly. 
A pelican is a kind of bird. 
Bill is a pelican. 

(b) Instead of using the semantic network representation, translate these statements into 
formulas of the predicate calculus. Give a short proof that "Bill can fly." Indicate the rules 
of inference that (such as modus ponens and universal instantiation) you use in the proof 
steps. 

11'1111 Ex. 12 [CD-05] The Changeable Mind of the Observer. Professor Digit is disturbed by the idea 
that the meaning of symbols is in the mind of an observer. 

For example, suppose in a medical domain about infectious diseases that some of the 
microorganisms responsible for the disease "sniffleitus" develop a resistance to a particular 
antiobiotic treatment. In that case, doctors and other medical practitioners would extend 
the symbol sniffleitus to include the new dominant variant of the disease and would also 
prescribe a different treatment for it. 

Professor Digit is concerned about the philosophical consequences of this, especially 
in the case that the knowledge system itself is not modified. He asks: "When people 
change their use of some symbols used in a knowledge system, does that change what the 
program means?" 
(a) Briefly, show how the answer to the professor's question depends on our choice of 
semantics. Compare the answers for reference and denotational semantics. 
(b) Suppose that the knowledge engineer now updates the program so that it prescribes a 
different treatment for sniffleitus, respecting its acquired resistance. Again, does this 
change the meaning of the program for denotational and reference semantics? 

(This exercise was inspired by an example from William Clancey.) 

1.3 Modeling: Dimensions of Representation 
Like many computer programs, a knowledge system is a computational model of something, 
where the "something" is the domain or the situation. For example, a knowledge system for diag­
nosis and repair of radios would typically include a model of the physical parts of a radio, a 
model of the functions of the parts and of their electrical operation, a model of how the compo­
nents can fail, a model of the diagnosis task, and a model for the repair task. For each model, rep-
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resentations are required and the representations must satisfy particular properties in order to be 
adequate. 

The design of representations is a central concern in building computational models, 
involving many considerations and sometimes several· changes until appropriate designs are 
found. In talking about the suitability of representations, we are concerned not only with the 
properties of the symbols themselves, but rather with their properties as representations. In the 
previous section, we discussed representational properties involving reference semantics, truth 
semantics, and proof semantics. These properties are concerned mainly with identity and infer­
ence. 

In this section we broaden our discussion of representational properties, including many 
that bear on the computational use of representations. We discuss fidelity and precision, abstrac­
tions and implementations, primitive and derived propositions, explicit and implicit representa­
tions, canonical forms, use of multiple representations, space, time and structural complexity, 
and the broad implications of parallel processing for efficient manipulation of symbol structures. 
These dimensions arise in the design of all kinds of computational models. 

The concepts introduced in this section are typical of an engineering approach to system 
design. For example, we ask about the adequacy of representations for making particular distinc­
tions. We ask about the efficiency of particular operations on symbol structures. We ask how that 
efficiency differs according to different assumptions about the nature of the computational pro­
cessing elements. 

If you have had programming experience, many of the representational properties dis­
cussed in this section will be familiar. A programmer must design representations, making sure 
sure that they cover the cases of interest, that all of the important distinctions can be represented, 
and that computations run in reasonable time and space. These practical concerns are inherent 
in building knowledge systems and are encountered by everyone who builds computational 
models. 

1.3.1 Fidelity and Precision 

Fidelity refers to the correctness of statements or predictions about the world. When applied to 
representations, it refers to the correctness of the meaning that we ascribe to them. Another term 
for fidelity is accuracy. Precision refers to the degree of detail in predictions about the world. 
Similarly, the precision of representations refers to the degree of detail in the meanings that we 
ascribe to them. For example, a computation that is given to ten decimal digits is more precise 
than one that is given only to six digits. In a circuit diagnosis system, a representation that pre­
dicts that voltage will rise to "eight volts plus or minus one" is more precise than one that simply 
predicts that voltage will rise. 

Representations can have fidelity with little precision or have great precision without fidel­
ity. For example, the statement "The sun will rise tomorrow morning and set in the evening" has 
fidelity, but little precision. It does not give the precise time of the sunrise or say anything about 
its path across the sky. In contrast, the statement that there are 1,456,853,123 molecules of air in 
a tiny bottle in my study has great precision but is not accurate. 

Different tasks have different requirements for accuracy and precision. Consider in Figure 
1.27 two representations of a chemical structure for different tasks. The first representation pres­
ents molecules as topological structures, characterized by nodes (atoms) and arcs (bonds) be-
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Topological representation: 

Logical clauses 

(Connected C A) 

(Connected C B) 

(Connected CD) 

(Connected C E) 

Three-dimensional representation: 

illustration 
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A 

c_; _____________ E 
--' - ' 

B 

Clause for left molecule 

Clauses for both 
(Center C) 

(Top A) 
Clause for right molecule 

... Topological clauses from above 

(Clockwise-Order BE D) (Clockwise-Order E B D) 

FIGURE 1.27. Stereoisomers are mirror-image molecules. They have the same atoms and the same cor­
responding chemical bonds, but they are distinguished by their shape. 

tween them. A topological representation describes which atoms are connected. It is adequate for 
determining the chemical composition of a molecule in terms of its individual atoms. 

However, a representation of a molecule limited to topology is inadequate for reasoning 
about molecular interactions. Molecules can have the same topological properties and yet differ 
in their three-dimensional structures. For example, organic enzymes must fit against other mole­
cules and their interactions depend on the particulars of their three-dimensional structures. When 
two molecules are mirror images of each other, they are called stereoisomers. Stereoisomers 
have the same topology but act differently in some chemical reactions. 

Precision and fidelity are not usually independent considerations. Representations that are 
correct but imprecise often lead ultimately to incorrect predictions. Continuous systems are ones 
in which a small change in the initial conditions leads to a small change in the final conditions. In 
continuous systems, small compromises in precision typically cause few problems in fidelity, if 
the results are not extrapolated too far. Chaotic systems, however, are ones in which arbitrarily 
small changes in the initial conditions can lead to large changes in the results. Even with great 
computational precision, there is little confidence in the fidelity of predictions for such systems. 
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Fidelity and precision reflect a tension between our representational goals and limitations 
when we use computational models. There are usually trade-offs in representations involving 
efficiency, fidelity and precision. Typically, an increase in precision requires a decrease in effi­
ciency. 

Practical knowledge systems employ multiple representations with different trade-offs in 
precision. In a diagnostic reasoning system, representations with low precision may be adequate 
for making coarse predictions about circuit behavior. For the purpose of isolating and identifying 
a faulty component, this may be enough to rule out major blocks of the circuit. More precise rep­
resentations may then be called on to make a more detailed analysis on selected parts of the cir­
cuit. For this reason, the design of a computational model sometimes involves a suite of comple­
mentary representations with degrees of precision suitable for different purposes. 

1.3.2 Abstractions and Implementations 

Abstractions are high-level descriptions that say what a representation must do but not precisely 
how it must do it. Abstractions are essential in large programming projects. Abstractions are 
soinetimes explicit as the "exported interface" of a program. When one subprogram refers to 
another and depends only on its exported interface, then implementations of the called program 
can be changed without changing the calling program. This facilitates the use of alternative 
implementations. Implementations are specific data structures and associated methods for stor­
ipg information and carrying out operations relative to a given computational interpreter. 

Unfortunately, the word abstract is misleading. All representations are abstract in that they 
leave out some features. In the terms of the previous section, all practical representations lack 
something in their precision, so they are necessarily "abstract." 

The terms abstraction and implementation are better understood as describing relations 
between representations. When the relation between two representations is akin to the relation 
between high-level specifications and low-level and detailed descriptions, then we call the for­
mer abstractions and the latter implementations. This distinction is common in programming 
methodology and software engineering. Figure 1.28 suggests how an object-oriented language 
could specify abstractions in terms of "message protocols" that an implementation must include. 
In this context, an implementation is a description of how it carries out the required protocol. In 
idealized programming practice, we first build specify abstract models and then develop 
implementations. Typically, however, these processes are intertwined. 

We define abstractions in terms of a set of features with meaning, a set of operations that 
change the features or return information about them, and a set of invariants on the features that 
must be preserved by the operations. This style follows object-oriented approaches to program­
ming. For example, we could define an abstract representation of a figure as an entity with a 
shape, an origin and dimensions, certain computable properties such as area that are related to its 
dimensions, and operations for changing its dimensions, moving it about, and determining 
whether it covers arbitrary points in the plane. In this example, there are several invariants. The 
dimensions and shape of a figure do not change when it is moved. However the origin of a figure 
is not an invariant; it changes when the figure is moved. A complete characterization of the ab­
stractions should characterize the required precision of the representation as well. 

------~-- ----------------------~ 
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Abstraction of Figure Implementation of Figure 

Protocol specification Method specification 

Retrieve-Figures (scene) "' Procedure for returning figures. ( 
Retrieve-Shape (figure) 

~ 
Procedure for retrieving shape. 

Retrieve-Origin (figure) 
-~ 

Procedure for retrieving origin. 
Move (figure) , Procedure for moving figure. 

. . . ... 

Invariants Storage specifications 

Shape does not change when Variable for position 
figure is moved. . .. 

FIGURE 1.28. Abstractions and implementations. 

To' make the abstraction/implementation distinction concrete we define an abstraction for 
figures and then compare three implementations of it. Our abstraction of "figure" requires the 
following specific operations: 

Get-Shape (figure): Retrieve a description of the shape of the figure, one of square, circle, 
triangle, and spiral. 

~, Get-Origin (figure): Retrieve the origin of the figure. 
Get-Area (figure): Retrieve the area of the figure. 
Move (figure): Move the figure to a new location. 

-, Overlap (figure 1, figure 2): Determine whether two figures overlap. 
Get-Overlapping-Figures (figure-set): Find all of the figures in a set that overlap a given 
figure. 

We now consider three alternative data structures for representing a scene with figures. We 
think of these data structures as alternative implementations. We illustrate these data structures 
with example representations of a square. 

A Binary Array Representation for Figures 
Figure 1.29 shows a two-dimensional binary array (bitmap) representation of the square. Each 
position in the bitmap corresponds to a square picture element or pixel in the scene. A 0 in the 
bitmap indicates that the position is unoccupied, and a 1 indicates the presence of some object at 
the position. Movement of an object is represented by appropriately shifting the bits representing 
the object to new positions in the bitmap. 

Figure 1.30 shows how a stack of such bitmaps can represent a scene containing several 
two-dimensional objects. Each object is represented by a separate bitmap and the composite 
scene is visualized by sighting through the stack of bitmaps, performing a logical OR of the bits 
corresponding to the same location on the plane. 
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0 0 0 0 0 0 0 0 0 0 0 0 

FIGURE 1.29. A two-dimensional binary array representation of a square. 
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Figure 1.31 summarizes how the operations of the figure abstraction could be carried out in 
this implementation. 

· This representation has inherent limitations in precision. Consider the program that 
implements the shape recognizer. For large enough figures it is clear that the imprint on the 
bitmap will be different for squares, circles, triangles, and spirals. However, for cases where the 
size of the image is close to the size of a pixel, the images can be indistinguishable. For example, 
a 2-pixel-by-2-pixel square and a circle with a radius of 1 pixel have the same rendering. Simi­
larly, in deciding whether two figures overlap, protocol must report that they do if they are within 
one pixel of each other. In a real task, we need to be specific in describing the required precision 
for the protocols in order to determine whether the bitmap implementation would be adequate. 

A Property List Representation for Figures 
Figure 1.32 proposes another representation of a square in terms of a coordinate table with prop­
erty lists. This representation indexes figures through a table according to the coordinates of their 
origins. For each figure, there is a property list of features indexed through the table. For exam­
ple, in a square, the value of the shape property would be "square." Also for a square, the value 

b /7 Squ=l 

/ jl Cimle2 

' ' ' / I Spring7 

/m 
FIGURE 1.30. A stack of bitmaps. The composite scene would be obtained by sighting through the stack. 
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811 Get-Shape: A recognition program analyzes a bit image in a plane to infer a shape andits parame­
ters. 

11 Get-Origin: A computation is performed on the image. For example; to fmd the origin of a squate 
the location of the leftmost and bottom-most corner must be determined. .. 

11. Get-Area: Acomputation must be performed on the shape parameters returned'by Get-Shape: Fora 
square, the length of a side is multiplied by itself. 

11 Move: The property list is shifted to a new cell in the array. 
11 Overlap: A computation must be performed on the two shape descriptions . 
. II Get-Overlapping-Figures: A search is made through the list of planes, iteratively invoking. the 

Overlap method. 

FIGURE 1.31. Implementing the operations for the bit image implementation of a figure. 

of the side-length property would be a number indicating the length of the square's side. The ori­
gin of the square is determined by the indices of its description in the array. Thus, the lower left 
corner of' the square is located in the scene at position (4, 3) and is indexed in the array through 
the cell at position ( 4, 3). If two figures have the same origin, then the coincident cell contains a 
list of pointers to the figure descriptions. 

Figure 1.33 describes one way that the figure operations could be implemented. The oper­
ation of Get-Shape is simpler than in the pixel representation since it is only necessary to retrieve 
the value of the shape property. In contrast, the Overlap operation is made more difficult. Differ­
ent computational approaches are possible. One approach, equivalent in precision to the bitmap 
approach, is to project the figure onto a temporary bitmap and then check whether any of the cor­
responding pixels are both on. An alternative approach is to solve the intersection problem ana­
lytically. To determine whether a square intersects a circle, we would need to compute the inter-

8 Property list 

7 Link 
from (Shape: square) 

6 

l/1/ 
(side-length 4) 

5 

4 

3 
/ 

2 

1 

0 1 2 3 4 5 6 7 8 9 10 

FIGURE 1.32. A feature-oriented representation of a square in a table. The property list description of 
the square is located at index (4, 3) in the table. 
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,111 Get~Shape: Retrieve a token naming the shape from the property list. :. ::: · 

111 Get:·:Origin: Return the indices in the array to the property list, . . . . . .·. . .···.. . , .· 
Jlill Get-Area:. Perform a computation on the shape panu:neters. For a ,square, the length of a sidiis 

squared. . . . . . · . . · · ; < 
111 Move: Shift the propertylistto a new cell in the array. .··. . ·. · .• ··•·.. ~·<{. 
111 Overlap: Perform a computation on the shape. This may be done by intersecting the poup.~aJ:!~§~~f 

the two figures or by computing a projection for each figure onto a plane and then.intersectiJ:!g't:Q~~e 
projections. . . · .•..• · · ·~ 7·.N 

111 Get-Overlapping-Figures: Search through the list of planes for those that overlap the given fi~111;e. 

FIGURE 1.33. Implementing the operations for the property list implementation of a figure. 

section of a circle and a line. If all of the figures are rectangles or polygons, the latter approach 
can be quite efficient. 

A, Graph Representation for Figures 
Our third candidate representation for figures is a graph representation as in Figure 1.34. This 
data structure has a unique node called the head node that represents the figure as a whole. In 
Figure 1.34, the head node has an is-a link to the class Square. The head node has part links to 
designate relations to each of the four lines that make up the sides, and other nodes representing 
such information as the position. Moving the square in this representation amounts to changing 
the position nodes to link to different coordinates. A set of figures is represented as a list of such 
graph representations. 

Figure 1.35 summarizes how the different operations of the figure abstraction could be car­
ried out on the graph representation. As in the case of the property list representation, the shape 
of the figure is determined by a retrieval operation except that instead of returning the value of a 
property the procedure must follow an is-a link and return the name of a class. Retrieving the 
origin of a square requires traversing through the nodes representing the parts of the square to 

is-a 
(inherit) 

other lines 
representing the other 

sides 
other relations on line 7 
such as its orientation 

FIGURE 1.34. A graph representation of a square. 
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1111 Get-Shape: Starting at the head node, follow the is-a link to its class and return the name of t:Qat . 
class. 

1111 Get-Origin: Starting.at the headnode, follow the bottom-side·link.to a line, the origin1inkt()a 
position, and then return the values. of the xand yrelations on thatposition. 

1111 Get-Area: Perform acomputation on the shape parameters. For a square, the length of a side is 
squared. .. 

1111 Move: Shift the property list to a new cell in the array. All of the positions of all of the lines in the 
figure are updated to reflect new coordinates 

1111 Overlap: The computation is analogous to the case of the property-list representation. 
·1111 Get-Overlapping-Figures: Search through the list of figures to find those that overlap. 

FIGURE 1.35. Implementing the operations for a graph representation of a figure. 

obtain the origin of the bottom side. The computation of overlap is analogous to the property list 
case. 

Comparing Representations for Figures 
The bitmap, property list, and graph all support the same abstraction. We can compare their per­
formance for carrying out the prescribed operations. For example, consider the retrieval of the 
origin of a square in a scene. In the property -list table, retrieval of the origin requires that the pro­
cessor be able to determine the indices of the entry in the table containing the square's descrip­
tion. To retrieve the square's origin in the graph representation, the processor must traverse the 
graph to retrieve the coordinates of the line representing the bottom side of the square. In the 
bitmap representation, retrieving the origin (at least for a "Manhattan square") involves stepping 
through the bitmap to locate the lowest and leftmost bit that is 1 and then returning the indices of 
that bit. Thus, to present the same abstraction, the three implementations must employ radically 
different processes with different amounts of time and space for the operation. Table 1.4 crudely 
compares the speeds of the operations on the three representations. 

As shown in Table 1.4 there are trade-offs in the choice of implementations. One 
implementation is better for some operations, and another is better for others. If the objects are 
rectangles aligned with the coordinate axes, the computation for determining overlap requires 
only a few arithmetic operations given the positions and sizes of the rectangles. In the absence of 
special hardware, using bitmaps to decide whether such rectangles overlap would be fast enough 
for small figures but inefficient for large ones. If, however, the shapes of objects are irregular and 
nonrectangular and the bitmap logical ANDing operation was limited to tight regions containing 

TABLE 1.4. Partial table of trade-offs for the three alternative implementations of a square. 

Implementation Return Origin Compute Overlap Name Shape 

Pixel arrays Slow Fast for small figures Slow 

Property-list table Fast Depends on shapes Fast 

List graph representations Medium Depends on shapes Fast 
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the objects, the bitmap representation could be made simple and efficient for determining the 
area of overlap. If we want to find the set of figures in a scene that overlap a given figure, then 
searching through the lists and tables and computing intersections can be a nontrivial computa­
tion for both the graph and feature representations. 

1.3.3 Primitive and Derived Propositions 

Reviewing the comparison of representations of figures, it is striking that, for each kind of query 
we considered, the favored data structure was one in which the required information was directly 
accessible. 

Hector Levesque calls such representations vivid (Levesque, 1986). Others have called 
these analogical and direct. Vivid representations have the following characteristics: 

For every kind of object of interest in the world, there is a type of symbol. 
For every simple relationship of interest in the world, there is a type of connection among 
the symbols. 
There is a one-to-one correspondence between the symbols and the objects that they desig­
nate in the world. 
There is a one-to-one correspondence between the connections and the relations that they 
designate in the world. That is, the relation holds among the objects in the world if and 
only if the connection exists among the symbols in the knowledge base. 

In considering vividness, we should not treat the notion of a "connection" among symbols too 
narrowly. Pointers in data structures are the simplest case of connections, but, as Levesque sug­
gests, the notion can be extended to mean that two symbols are connected if they jointly satisfy 
some predicate that can be computed in bounded time. The tighter that the bounds are on compu­
tation, the better. 

The terms vivid, analogical, and direct draw on a perceived similarity of the structure of a 
representation to the structure of the things designated. 

An example of a vivid representation is given in Figure 1.36, which shows a line drawing 
of a chemical structure; Figure 1.37 shows a graph that could be used to represent the same struc­
ture. The similarity of both representations is apparent: There is a node for each atom of the mol­
ecule and a link for each chemical bond. The graph in Figure 1.37 shows a pair of links for each 
chemical bond, leading from each participating atom to the other. 

0 H H 
II / / 
c--c--c-H 

H"' / H/ "'H 
C-H 

1/H /H 
C--C-H 

/ "' H H 

FIGURE 1.36. Line drawing of a chemical molecule. 
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FIGURE 1.37. Semantic network and analogical representation of a molecule. 

Analogical representations are like scale models. An often cited example of a direct repre­
sentation is the representation of spatial relations in a room by maps. A map is called direct 
because ofthe similarity between the two-dimensional plane of the paper and the two-dimen­
sional plane of the floor of the room. The paper is a direct homomorph of the room. Map and 
room have the same sort of structure (two-dimensional Euclidean space) and thereby admit the 
same sorts of operations such as sliding, rotation, and measurement. Naturally, the map is sim­
pler than the actual room, in that various properties and relations such as texture, color, or a third 
dimension are missing from the map. 

From another perspective, however, these concepts add nothing to the concepts of abstrac­
tions and implementations from the previous section. The "real world" does not present itself to 
us in terms of specific categories, objects, and relations. These concepts are all invented by us 
and we use them to describe what we perceive. To say that the line drawing of the chemical 
model is vivid is to say that it shares particular desired properties with the abstraction we want to 
use. The concepts of atoms and bonds are invented by people. In this regard, the notion of vivid­
ness is rather naive. Since designation depends on an observer, the directness of the representa­
tion depends on the distinctions already made by the observer. Thus, the world does not present 
itself to us in terms of objects and relations. Those are properties of how we think about the 
world, rather than intrinsic properties of the world itself. Thus vividness has to do with the corre­
spondence of a representation with a favored model of the world, rather than a correspondence 
with the world itself. 
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(large number of) 
Derived Propositions 

!j\ ,, 
Supports 

(small number of) 
Primitive Propostions 

What is the molecular weight? 
What is the reactivity? 
Are two atoms in the same molecule? 
How many oxygens in this molecule? 

Which atoms are bonded to each other? 

FIGURE 1.38. A small number of primitive propositions can support a much larger number of derived 

ones. 
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This argument brings us to a different way of understanding and appreciating what is 
important about vivid representations. Much of the appeal of a vivid representation arises from 
the astute selection of primitive and derived propositions. Primitive propositions are those mod­
eled directly in the representation. Derived propositions are other propositions about the objects 
that can be determined by a computation based on the primitive ones. 

The primitive propositions in Figures 1.36 and 1.37 are the representations of atoms and 
bonds. An example of a derived property is the connectedness of atoms in molecules. To deter­
mine whether carbon 1 is in the same molecule as carbon 6, one can simply follow the bond links 
starting from carbon 1, searching for a path to carbon 6. If no path can be found, the atoms are in 
separate molecules. Another derived property is the molecular weight, which can be computed 
by summing the atomic weights of all the connected atoms in a molecule. 

Figure 1.38 illustrates a common strategy in the design of knowledge systems that exploits 
this distinction between primitive and derived propositions. A large number of propositions can 
be derived from a small number of primitive ones. Derived propositions are computed on 
demand. In our representation of a chemical molecule, we had explicit representations indicating 
which atoms are bonded to their neighbors. These bonds were the basis for other computations 
on the graph, such as computing the molecular weight, computing the number of instances of any 
particular kind of atom in a molecule, computing the distance of separation of atoms of a particu­
lar type in a molecule, and so on. 

The disciplined. separation of intrinsic and derived properties can simplify the process of 
verifying that invariants are satisfied. To verify invariants in a design that segregates primitive 
and derived operations, it is enough to check the effects of operations on the primitive proposi­
tions. For example, assuming that interactions with air or other environment sources of atoms are 
properly accounted for, the making and breaking of chemical bonds in organic chemistry does 
not change the weight of the compounds or the number of atoms present. In building a computa­
tional model of chemical reactions, we might demand that our model preserve the same invari­
ants. 

To take an example, if the links representing chemical bonds between carbon 3 and carbon 
4 are broken, no further changes to the underlying representation are needed to indicate consis-' 
tently that carbon 1 is no longer part of the same molecule as carbon 6. No further changes are 
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needed to prepare for the computation of the molecular weight of the molecule containing car­
bon 1. In effect, the "conservation of atoms" that chemists ascribe to the real world is captured 
faithfully by the "conservation of nodes" during the operations that make and delete links 
between nodes. For another example, if carbon 1 were bond linked to carbon 6 to form a ring 
molecule, and then the bond link between carbon 3 and carbon 4 was deleted, then with no fur­
ther computational work the representation would correctly show that the molecule remains 
intact. In summary, the design of a vivid representation involves not only deciding which proper­
ties to make explicit, but also which properties to compute from a small set of primitive symbol 
structures, manipulated by the operations of frequent interest. 

1.3.4 Explicit and lmplict Representations 

Advocates of early representation languages developed in AI often characterized them as having 
explicit representations. But what is the difference between an explicit representation and an 
implicit one and what are the advantages of explicit ones? In this section we define what it 
means for a representation to be explict and compare some example representations along this 
dimension:" 

What It Means for a Representation to be Explicit 

A representation is explicit or declarative to the extent that it has the following properties: 

Modularity. The representation is self-contained and autonomous. In other words, there is 
an identifiable and bounded set of symbol structures that make up the representation, they 
are distinct and separate from the interpreter programs that use them, and there is a well­
defined and narrowly prescribed interface by which other parts of the system access the 
representations. 
Semantics. The representation must have well-understood semantics. As usual, different 
kinds of semantics are appropriate for different situations. A denotational semantics or 
interface semantics is required to describe what behaviors correspond to different repre­
sentations. If the interpreter draws inferences from the representation, the semantics 
include a reference semantics, a truth semantics, and a proof semantics. When the repre­
sentation is used in reasoning with limited resources defeasible reasoning, then the seman­
tics must include a reasoning control semantics. 
Causal Connection. For the representation to have any effect on the system from which it 
is separated, there must be a causal connection such that changing the representation 
causes the system to change its behavior in a way that is appropriate for the change to the 
representation and its semantics. This causal connection provides the basis by which the 
representation governs reasoning and behavior of the system. 

A representation is said to be implicit if it is not explicit. 
Explicit representations are important in knowledge systems. Their value does not rest on 

performance characteristics of the representations, since explicit and implicit representations are 
the same with regard to performance. Their value rests on the practical leverage that they provide 
for parameterizing the control of complex know ledge systems. 
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The importance attributed to explicit representations in knowledge systems reflects the 
concern of the field to the processes of updating of knowledge bases and reuse of knowledge sys­
tems. The combination of modularity, causal connection, and semantic correspondence makes it 
easier to change explicit representations than implicit ones. The semantics are understood and 
the interface is narrowly prescribed. These representational properties provide part of the inter­
face to a knowledge system as a computational model. 

The success of explicit representations in facilitating reuse and change depends on the 
extent to which the system's designers correctly anticipate the nature and extent of the different 
situations in which the system must operate, and which can be provided for by declarations. In 
this way, the design of explicit representations amounts to a bet about the likely dimensions 
needed for use and for change. 

Comparing the Explicitness of Representations 
We now consider two pairs of examples of representations to compare and discuss whether they 
are explicit. Figure 1.39 shows two approaches for organizing representations of facts about 
chemical elements in a reasoning system. In both organizations, particular parts of the systems 
are concerned with reasoning about molecular weights, chemical reactions, and printing reports 
about chemical structures. 

In the first approach, facts about the elements are scattered throughout the system. For 
example, statements about the weight and valence of the element carbon are located in separate 
parts of the program, perhaps several times. To add a new chemical element to the system or to 
change the facts about an existing one requires finding all of the places where it may be encoded. 

In the second approach, a single table of chemical facts is stored separately from the rea­
soning methods. Whenever a fact about the elements is needed, the program invokes a database 
retrieval interface to retrieve the required information. To update the facts used by the system 
requires only updating the table. 

Which of these approaches use explicit representations? First we consider the requirements 
for semantics and a causal connections, which the two approaches have in common. Both repre­
sentations in Figure 1.39 have a semantics described by a characterization of atomic numbers, 
valence, and molecular weight. These amount to what chemists call a "ball-and-stick" model of 
molecules or roughly "labeled graphs." The operational semantics of the representation of chem­
ical reactions or the computation of molecular weight are easily described in terms of primitives 
for making and breaking of bonds and appropriate graph operations and conservation laws. In 
summary, both representations satisfy the second and third requirements of being an explicit rep­
resentation. 

However, the first approach does not satisfy the modularity requirement. The database 
interface for the second approach has a quality of modularity that is lacking in the first. The rep­
resentations of chemical facts in the first approach are scattered throughout the program that uses 
them. In contrast, the symbols making up the representation in the database are identifiable and 
separable from their interpreter. The database symbols are stored in a separate database, and are 
accessible from the program by a retrieval interface to the database. Thus, the database is declar­
ative or explicit, but the first approach is not. 

Figure 1.40 shows two approaches for defining the term father in a reasoning system. The 
first approach defines the term father using a set of predicate calculus statements. These state-
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00 
N Approach I : : Approach 2 

Chemical reasoning system Chemical reasoning system 

Molecular weight module Molecular weight module 

begin begin 
If node.name="c" then wt=12.01 wt=GetWeight(node) 

... 
~nd end 

Chemical reaction module Chemical reaction module 

begin begin 
If node.name="c" then valence=4 valence=GetValence(node) 

~ 
/' ... 

end end 

Graph printing module Graph printing module 

begin begin 
If node.name="c" then print "carbon" print GetName(node) 

' , ... 
end end 

Data retrieval interface ~If 

Atom Name Atomic No. Weight 

H Hydrogen I 1.0080 
He Helium 2 4.003 
Li Lithium 3 6.940 
Be Beryllium 4 9.02 
B Boron 5 10.82 
c Carbon 6 12.01 
. . . .. . . .. ... 

FIGURE 1.39. Two representations of facts about the elements in a chemical reasoning system. 

Valence 

I 
0 
I 
2 
3 
4 
. .. 
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Approach 1 . 
Parent(x) => Person(x) 
Child(x) => Perrson(x) 
Parent(x) => HasChild(x) 
Parent(x) => NumChildren(x)2: 1 
Father(x) => Parent(x) A Male(x) 

Approach 2 
Parent 

Superclasses: Person 
Children: [Value: a Person] 
Cardinality: Minimum 1 

Father 
Superclasses: Parent, Male 

FIGURE 1.40. Two representations for defining the term father in a reasoning system. 
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ments enable a reasoning system to answer questions about fathers, noting that fathers have the 
properties of people, parents, and males and that they have at least one child. In the first 
approach, the relevant statements can be part of a large base of facts. The second approach in 
Figure 1.40 draws on concepts from object-oriented and frame-representation languages. A par­
ent is defined as a person who has at least one child. The term father inherits the properties from 
male and parent. 

We now consider the explicitness of the two approaches for defining father. Again, both 
approaches have semantics and both approaches have a causal connection. What is at issue is 
whether either or both representations satisfy the requirement of modularity. 

It is sometimes argued that any representation in predicate calculus is explicit because the 
sentences in a logic language are identifiably separated from their interpreter. However, senten­
ces about growing pumpkins can be mixed up with ones about conducting international affairs. 
There is nothing in the representation that makes evident the extent of interactions, especially if 
one assumes a complete theorem prover. Thus, without boundaries in the representation, there is 
only a limited sense of modularity. 

In contrast, the frame representation is designed so that all of the symbols that make up the 
definition of father are clustered together in a unit. The interpreter of a frame language is limited 
to making certain kinds of inferences involving inheritance, subsurnption, mutual exclusion, and 
so on. In this way, the interface between different concepts is more narrowly prescribed, accord­
ing to the rules of the particular frame language. Furthermore, the interaction with and through 
the interpreter are narrow because the operations of the interpreter in a frame language are fewer 
and more directed than those in a complete theorem prover. 

In summary, explicit representations must be modular, must have well-defined semantics, 
and must have a causal connection between the representation and the behavior of the system. 
Explicit representations are used in knowledge systems to provide convenient interfaces for con­
trolling the behavior of the system. A design that makes some representations explicit makes 
assumptions about what aspects of the systems behavior need to be controlled and parameterized 
for ease of reuse. 
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FIGURE 1.41. Three graph representations of a chemical molecule, equivalent under rotation and 
reflection. 

1.3.5 Representation and Canonical Form 

The design wf symbol structures with structure-building primitives often leads to questions about 
the equivalence of descriptions. Figure 1.41 shows three graphs representing chemical mole­
cules. Each letter stands for a unique bivalent piece of the molecule, and the links indicate chem­
ical bonds between the pieces. Below each drawing is a picture of a linked list, showing how the 
descriptions of the pieces might be arranged in a data structure. Thus, in the first molecule, the 
first element of the linked list is A, the second is B, and so on to F, corresponding to the last piece 
of the molecule, which is linked back to A. 

The three graphs in Figure 1.41 are topologically equivalent; that is, they are made up of 
the same kinds of pieces connected in exactly the same ways. Graph 2 is like graph 1 except that 
it has been rotated, so that it starts with B rather than A at the top. Graph 3 is also like graph 1 
except that it has been reflected: Reading graph 1 clockwise instead of counterclockwise would 
yield the linked list shown for graph 3. A computer program that could generate all six of the 
rotated versions of this data structure, as well as the corresponding six reflections, potentially 
would have to deal with 12 distinct graph representations for the same kind of molecule. 

The graph in Figure 1.42 is made of the same pieces as the three we have considered. 
However, it designates a distinct class of molecule because it is topologically different. The posi­
tions of B and C have been exchanged in the graph. No combination of rotations and reflections 
will yield a data structure like those in Figure 1.41. 

To simplify the testing of equivalence in such representations, it is convenient to define 
canonical forms and canonical functions. Canonical functions transform expressions into canon­
ical or standard forms. For example, we define the canonical form for these graphs as the list 
structure that is earliest in an alphabetical order reading left to right. 

Given a canonical function, there is a test for deciding whether two expressions are equiv­
alent: Apply the canonical function and test whether the resulting canonical expressions are 
equal. Thus, a canonical function is a procedure c that transforms any expression e into a unique 
equivalent expression c(e) such that, for any two expressions el and e2, el is equivalent to e2 if 
and only if c(el) is equal to c(e2). The resulting expressions, c(el) and c(e2), are called canoni­
cal forms. The canonical forms induce equivalence classes on the set of expressions. For each 
equivalence class, the canonical form is a distinguished representative of the class. 
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FIGURE 1.42. A data structure representing a molecule that has the same pieces as that in Figure 1.41, 

but that is not equivalent. 
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In the circular molecular graphs example, rotation and reflection are equivalence-preserv­
ing transformations because they do not change the identity of the graph. Without a canonical 
function, testing for equivalence would require searching for a chain of equivalence-preserving 
transformations connecting two expressions. Given a canonical function, we need only compute 
the corresponding canonical forms and compare them for equality. 

For circular lists like these, it is easy to define a canonical form. We need to determine a 
starting node and an orientation for traversing the graph. One approach is to pick the linear repre­
sentation that would come earliest in an alphabetic ordering. Thus, the representation (A B C D E 
F) comes before (B C D E F G) and also before (A FED C B). Because the linked list for graph 
1 in Figure 1.41 is in canonical form, and is different from the linked list in Figure 1.42, which is 
also in canonical form, the two data structures must designate different kinds of molecules. 

The basis of canonical forms comes partly from graph theory and partly from the domain 
model. Thus, the same issues that we considered in the representation of molecules arise in the 
representation of electrical circuits. Are two given circuits equivalent? Does a large circuit con­
tain a subcircuit equivalent to a known one? For sufficiently rich domains, the simple assump­
tions of pattern-matching languages are inadequate for answering these questions. 

In many cases, there is no general function for efficiently computing canonical forms. 
Chapter 2 shows that the issue of equivalence testing arises in the design of systems that system­
atically generate symbol structures as candidate solutions to a problem. Not paying attention to 
canonical forms in such systems can result in the unwanted generation of variant and redundant 
representations of the same solutions. What is important to remember is when our models are 
rich enough to represent things in more than one way, determining equivalence classes can be a 
crucial part of designing efficient approaches to reasoning. 

1.3.6 Using Multiple Representations 
All this attention of designing a suitable symbol structure and interpreter as a representation may 
have left the impression that a knowledge engineer must find a single best representation and 
stick with it. An important alternative to this is the use of multiple representations. Multiple rep­
resentations make it possible to combine the advantages of different representational forms. In 
multiple representations, more than one symbol structure designates something in the environ­
ment. 
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Molecule: A03 
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FIGURE 1.43. Caching molecular weight using multiple representations. 

Suppose we had a knowledge system that reasoned about interactions between molecules. 
Suppose it occasionally reasoned about breaking bonds, but very frequently needed to access the 
molecular weight. You will recall that in our example of a graphical representation of a molecule, 
molecular weight was computed by traversing the graph that represents the molecule and sum­
ming the individual atomic weights. If molecular weight was used for many inferences, it would 
be expensive to traverse the graph and recompute it everytime it was needed. 

An obvious alternative is to cache the computed molecular weight as part of the represen­
tation of th,e molecule as in Figure 1.43. The cached molecular weight is redundant to the molec­
ular weight computed by traversing the molecular structure. 

Whenever multiple representations are used, measures must be taken to keep them syn­
chronized. In this case, whenever any operation is performed that changes the graph representing 
a molecule, the cached molecular weight could become invalid. This issue is inherent in the use 
of multiple representations and is called the stale data problem. To preclude the accidental 
use of stale data in a computation, we need to extend our concern with the operations and invari­
ants of abstractions to include multiple representations rather than just primitive propositions. As 
in the example of caching molecular weight, cached values need to be invalidated whenever the 
assumptions behind their caching become invalid. Specifically, the cached molecular weight 
should be invalidated whenever operations make or break chemical bonds. 

It is worthwhile to approach the stale data problem in two parts. To preclude inferences 
using invalid derived data, it is enough to mark the cached and derived representations as invalid 
whenever the underlying primitive representations are changed. This is known as invalidating 
the cache. Typically, an additional bit or a special value associated with the cache is used to indi­
cate when the cache is valid. A separate question is when to recompute the derived value. If the 
primitive values could change several times before the derived value is requested, it is wastefull 
to recompute the cache every time that the primitive data change. A more efficient alternative is 
to recompute the derived value only on demand, that is, when the value is requested and the 
cache is not valid. 

For another example of the use of multiple representations, we return to the three imple­
mentations of the figure abstraction that we considered earlier. Suppose that a typical scene con­
tained tens of thousands of figures and that a common operation was to find all of the figures in a 
given region that overlap with a given figure. 

Each of the proposed implementations is potentially expensive for this operation. In the 
pixel representation, we need to compare (or AND) the planes of pixels for every figure. This 
operation is proportional to nd2 where where n is the number of figures and d2 is the number of 
pixels per plane. For the property-list representation, the table indicates the origins of the figures 
but not their sizes. Because figures can have arbitrary sizes, figures whose origins are arbitrarily 
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FIGURE 1.44. Combining representations. 

distant could still overlap. Thus, information about origins does not let us weed out figures that 
potentially overlap and we need to compute the overlap of the figure of interest with every possi­
ble figure. For the graph representation, the computation is similar. 

Figure 1.44 shows an approach to making this computation more efficient by combining 
multiple representations. In this example, each figure is represented in detail by a graph represen­
tation. From this graph representation, the coverage on the plane is then projected back onto a 
coarse map. We call this projection the figure's "shadow." Each cell in this coarse map has a 
count of the number of figures that cover that cell, wholly or partially, and a list of pointers to 
those figures. 

The advantage of this representation is the way that it provides a coarse but inexpensive 
filter that makes it unnecessary to perform detailed overlap computations for most figures. To 
find the figures that overlap a given figure we procede as follows. First we find the shadow for 
the figure of interest. Then we collect all of the figures which have common elements in the 
shadow. These are the figures that "potentially" overlap the given figure. This eliminates from 
detailed consideration all of those figures whose shadows do not overlap. When there are tens of 
thousands of figures and all but a few of them are eliminated, the savings can be considerable. 

As always with multiple representations, we must consider how operations could invali­
date the cached values. Thus, when a figure is moved, the projection is recomputed and the old 
counts in the coarse array of image positions are decremented under its shadow. If any cell has a 
count of zero, then it's accumulated shadow is zeroed out. Then the origin of the figure is 
updated and a new projection is computed, the shadow is ORed into the coarse array, and the cell 
data are updated. 

The coarser the shadow array, the less expensive it is to maintain. At any resolution, the 
shadow overlap is accurate in that it never misses a potential overlapped figure. Precision de­
pends on the coarseness of the map. Lack of precision shows up as a false positive: Two figures 
may seem to overlap if they actually cover disjoint parts of a cell. 

In summary, multiple representations create new options when there are unacceptable 
trade-offs among fidelity, precision, and efficiency. Whenever multiple representations are used, 
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the concern with consistency and invariants must be extended to include not only primitive prop­
ositions but also multiple representations. 

1.3.7 Representation and Parallel Processing 
In a conventional (von Neumann) computer architecture, one processor operates on symbol 
structures in a passive memory. As alternative computer architectures become available, we 
should consider the opportunities for parallel and distributed computation. The efficiency of 
operations on a representation depends both on the data structure and the capabilities of the com­
puter. 

Figure 1.45 shows an example of a parallel computer architecture: a simplified picture of a 
connection machine (Hillis, 1985). A connection machine links together thousands of extremely 
small processors and memories. The first generation of these machines contains up to 64,000 
small processors. The sequence of operations carried out by the small processors is ,determined 
by the front-end processor, which broadcasts instructions to them. Figure 1.45 shows communi­
cation links from the cells to each of their four neighbors and to the front end processor. In the 
actual·.,computer there is also a packet switching network that makes it possible to send informa­
tion simultaneously between arbitrary pairs of processors. 

A connection machine can perform discrete simulations of fluid flow, as shown in Figure 
1.46. The hexagon-shaped cells correspond to small regions of space. Within a cell, particles 
move about according to specific interaction rules. For example, a particle in motion will con­
tinue to move in the direction it started unless it collides with another particle or with some 
obstacle in the space. In the figure, an obstacle in a cell is indicated by a solid rectangle and a 
moving particle is indicated by an arrow. 

The wind in a wind tunnel does not blow over one square centimeter of an airplane model 
at a time. It blows across the whole model at once, showing the engineers how the flow in one 

Instructions 
and data Front-end 

~----~ 
processor 

Synchronized parallel computers 

FIGURE 1.45. Architecture of a connection machine. 
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FIGURE 1.46. Part of a simulation of fluid flow on a connection machine. 
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section interacts with the flow in another. If we simulate the wind in parallel, that is, simulating 
the flow of air particles through all of the space at once, the results can be computed more 
quickly. This approach has been called "data-level parallelism" (TMC, 1986). 

With data-level parallelism, the simulation can be carried out by representing each cell 
with a processor in the connection machine. At each time step, every cell updates its state by 
checking all of its adjoining cells for particles that are heading in its direction. The cells then 
update their state according to the interaction rules. A connection machine is capable of modeling 
approximately 1 billion cell updates per second. These results are averaged to predict macro­
scopic effects accurately, providing a computational alternative to a wind tunnel. 

This approach to simulating fluid flow would be almost unthinkable on a conventional 
computer. Data-level parallelism makes it practical by providing enough processor power to 
assign a computer to each region of space. The representation is analogous to a computational 
view of the universe in which small regions of space are seen as computational elements that 
communicate with their nearest neighbors. This point of view has some subtle advantages over 
steady-state modeling. For example, the analogical representation naturally and faithfully pre­
dicts the emergence of turbulence; that is, the unstable and chaotic swirls that develop, as fluid 
flows across complex surfaces. This is an important aspect of reality that is not captured by the 
differential equation models typically used. 

The main point of this example is that the efficiency of a representation depends both on 
the data structure and the capabilities of the computer. When we say that computers are "good 
with numbers," this is a result of the built-in hardware for efficiently performing arithmetic oper­
ations on binary representations of numbers. A connection machine is good for data-level paral­
lelism because of the many built-in and interconnected processors supporting massive parallel­
ism. As new computer architectures become widely available to knowledge engineers, the design 
of appropriate representations will need to encompass not only the selection of data structures, 
but also the selection of effective computer architectures. 

1.3.8 Space and Time Complexity ADVANCED 

So far in this chapter we have referred rather loosely to symbol structures and their interpreters as 
being efficient or not. In this section we present notation and concepts for quantitatively charac­
terizing the complexity of computations. 
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The amount of storage that an algorithm uses is called its space complexity and the 
amount of time that it uses is called its time complexity. In the broadest sense, the efficiency of 
an algorithm involves all the various computing resources needed for executing it. Time require­
ments are typically the dominant factor in determining whether or not a particular algorithm is 
efficient enough to be practical. 

Time and space requirements of an algorithm can often be expressed in terms of a single 
variable, the "size" of the problem instance. For example, the size may be "the number of ele­
ments to be sorted" or "the number of cities to be visited." This is convenient because we expect 
the relative difficulty of problems to vary with their size. 

For idealized computations, we assume that accessing any storage element in memory 
requires unit time, meaning that each access takes the same amount of time. Similarly, in com­
puting time complexity, it is common to count the number of times that the steps are performed, 
where each step must be executable in constant time. In computing space complexity, it is cus­
tomary only to account only for space actually accessed by the algorithm. There is no charge for 
memory that is not referenced during execution. If the algorithm requires that a large data struc­
ture be initialized, then we have to be clear about whether we are counting the initialization time 
and usually we should. Thus, the time complexity of an algorithm is always greater than or equal 
to its space complexity, since every an instruction can either reuse an element of memory or allo­
cate a new one. 

Asymptotic Complexity 
In the theory of algorithms, the "big-oh" notation is used to indicate asymptotic measures of 
complexity. The notation O(j(n)) refers to a numeric quantity that is within a constant factor of 
f(n) where f is a function of the integer n, which is some parameter of the method being analyzed. 
More precisely, we say that 

Xn = O(j(n)) (1) 

when there is a positive constant C such that 

(2) 

for all n greater than some initial integer, n0• For example, if the time complexity of some algo­
rithm is precisely 

6n2 + 43n +16 (3) 

we could say simply that it was O(n2
) since, for large enough n, the running time is dominated by 

the squared term. This is called an asymptotic complexity because it need only hold for large 
enough n. In this way, the big-oh notation leaves out the details of a complexity measure while 
presenting enough information to get the main point of a comparison. It is often the case that 
minor variations in algorithms do not change the way that they scale, and thus, do not require 
changes to estimates of asymptotic complexity. 
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FIGURE 1.47. Entries in an unsorted, linear list. Search time is proportional to the length of the list. 

In addition to the big-oh notation, there are two other conventional shorthands-little oh 
and omega notations-that summarize related asymptotic conditions. These notations are 
defined in equations (4) through (6). 

g(n) is O(j(n)) 
g(n) is o(j(n)) 
g(n) is Q(j(n)) 

g(n) :::; C f(n) for n > n0 

lim g(n) I f(n) = 0 as n -----1 oo 

g(n) > Cf(n) for n > n0 

(4) 
(5) 
(6) 

Algorithms can take different amounts of time for different classes of starting data. If we 
talk about the time complexity of the algorithm, we have to specify whether we are referring to 
the exact time for particular data of size n, the worst-case time for data of size n, the average time 
for all possible data of size n, or the typical time for data of size n. In general, the worst-case 
tiiiles are the easiest to compute and at one time these were the ones most often used to character­
ize algorithms. However, worst-case times are not always usefully indicative of the performance 
of algorithms. Today it is considered more appropriate to give several characterizations of the 
time complexity of an algorithm, including not only worst-case and average times, but also typi­
cal times for well-characterized classes of cases. 

To give an example of the use of the order notation for comparisons, we will compare three 
algorithms for searching a symbol structure for an entry. In the first case, the entries are kept in 
an unsorted linear list, such as that in Figure 1.47. Figure 1.48 presents pseudocode for searching 
this list. It iterates down the list starting at the beginning, comparing each list element in tum 
with the target entry. If a matching entry is found, it returns "yes" together with some auxiliary 
data. If the algorithm encounters the end of the list as indicated by the entry with a slash in it, it 
returns "no." 

If there are n items in the list, the algorithm will execute the steps in the loop n times. We 
can treat this loop as a unit of time or otherwise normalize it to the instruction time for the steps 
in the loop. Of course in doing this, we need to be sure that no step in the loop requires a time 
that depends on n. In such cases, we need to account how much time each step takes. 

To search a list: 
1. Proc~dure(target, 1 ist) 
2. do begin 
3. item := pop(list) 
4. if riame(i tern) = name(t~rget) then return- "yes" with data ( i tern); 
5. end until end-of~list (list); 

t* Here if target not found; * l 
6. return "no" 

FIGURE 1.48. Method for searching an unsorted, linear list. 
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FIGURE 1.49. Entries in a balanced tree. Search time is proportional to the depth of the tree. 

How long does our algorithm take to run? In this problem, the worst-case time complexity 
is O(n), where the algorithm searches to the end of the list and then fails. But what is the average 
time to find an entry? To answer this question, we need to make some assumptions about the list. 
Suppose, for example, that that the desired item will almost never be found in the list. In this 
case, the algorithm usually searches to the end of the list and then fails. 

on··,the other hand, suppose that the target is usually found in the list. Again, to make the 
estimate we need to make assumptions about the position of the data in the list. Suppose that 
there is an equal probability that the target will be at each point in the list. It is easy to see that on 
average the method will search half of the list before matching the target. Since "half' is a con­
stant factor, once again we have that the average time complexity is O(n). 

Different symbol structures and algorithms can support the same abstractions but with dif­
ferent efficiencies. Figure 1.49 gives an alternative tree representation of a set to be searched. For 
now, we assume that each entry in the tree has two links called "more" and "less." The data are 
arranged so we have a three-way test at each entry. If the entry equals the target, the search is 
done. Otherwise, if the target is alphabetically less than the entry, the algorithm follows the 
"less" link and checks the entry there. If the target is alphabetically greater than the entry, the 
algorithm follows the "more" link and checks the entry there. Eventually, the algorithm either 
finds the target or reaches the edge of the tree. This algorithm is presented in Figure 1.50. 

To search a tree: 
1. Procedure(target, tree) 
2. begin 
3. item := root(tree) 
4. do begin 
5. if name(item) = name(target) then return "yes" with data(item) •· 
6. elseif lexical(target) < lexical(item) then item:= less(item) 
7. elseif lexical(target) > lexical(item) theh item :~ more(item) 
8. end until null (item); 

/* Here if target not found. */ 

9. return "no" 

FIGURE 1.50. Method for searching a tree. 
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FIGURE 1 . .51. Entries in a sorted, linear list. Search time is proportional to the length of the list. 

Once again, we ask about the time complexity of the algorithm. To analyze the time we 
need to make assumptions about the shape of the tree. Suppose we know that this is a balanced 
tree, in the sense that the subtrees on either side of a node are of nearly the same size. As the 
algorithm proceeds, it marches down a path from the root or top of the tree. The maximum num­
ber of times the algorithm must execute the loop is the depth of the tree, that is, the number of 
steps in a path from the root. The length of such a path for a balanced tree is the ceiling or next 
integer greater than login). Thus, the worst-case time complexity of this method is 00 log n l). 
Readers interested in more details about operations on balanced trees can consult a basic text­
book on algorithms and data structures, such as Knuth, 1973. 

Before leaving this searching example, we note that achieving an O(log n) time on it does 
n9t necessarily require having a tree structure. Figure 1.51 gives a tabular representation of the 
list where items can be reached by indexing them in array. Unlike the previous list example, this 
one assumes that the items are kept in the table in alphabetical order. This sorted data structure 
lends itself to a binary search, where the first item checked is one halfway through the list. If an 
item does not match, the search then proceeds in a manner analogous to the method in Figure 
1.50. It focuses its search to either the elements greater than or less than the item just searched 
and tries again at the middle of an unsearched portion of the list. At each comparison, the region 
left to search is approximately halved. A binary search considers the same items in the same 
order as the tree search. It trades arithmetic operations on indices for link-following operations in 
a tree. Once again, the average and worst-case time complexities are O(log n). Updating the table 
to add or delete an element takes time O(n). 

Different algorithms have different asymptotic complexity functions. What is efficient 
enough depends on the situation at hand. However, one widely recognized distinction is between 
polynomial time algorithms and exponential time algorithms. A polynomial time algorithm is 
one whose time complexity function is O(p(n)) for some polynomial functionp, where n is used 
to denote the input size. An algorithm whose time complexity function is greater than this for all 
fixed polynomials is called an exponential time algorithm. 

The distinction between these two types of algorithms is particularly significant when we 
compare the solution of large problems, since exponential functions grow so much faster than 
polynomial ones. Because of this growth property, it is common practice to refer to a problem as 
intractable if there is no polynomial time algorithm for solving it. 

Space and Time Complexity for Parallel Algorithms 

When multiple or parallel processors are engaged in a computation, it is appropriate to express 
time complexities in a way that takes into account the number of processors. In some cases, we 
can assign n processors to problems of size n although this option is often not realistic. 

Using k processors can not reduce the asymptotic time complexity of a problem by more 
than a factor of k. This is not to trivialize the value of multiprocessing. After all, applying 64,000 
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FIGURE 1.52. The weight of a molecule is the sum of the weights of its constituent atoms. 

processors to achieve a constant speedup by a constant factor of 64,000 can be very dramatic and 
practically significant. 

Our earlier simulation example of fluid flow showed that when multiple processors are 
available, there can be an opportunity for radically rethinking an approach to a problem. Discov­
ering different ways to partition problems can be very challenging and does not always lead to 
dramatic· speedups. A recurring issue as parallel processing becomes more available is finding 
ways to partition problems. 

In the fluid flow problem, the dramatic speed-up was largely due to the fact that the prob­
lem could be divided into a set of local computations. Each processor represented a small region 
of space. All of the data required for its computation was contained in the processor itself or 
could be obtained from its immediate neighbors. Such computations are called local computa~ 
tions. This is important because it is often the case in massively parallel computers that commu­
nications instructions beyond local neighbors require much more time than other instructions. 

In contrast, global computations involve combining data from distant processors or 
aggregating over a large set of processors. In such computations, some serialization of process­
ing is often required. For example, consider our earlier problem of computing the total weight of 
a molecule given a graph representation of its structure. 

Figure 1.52 gives an example of a molecule. Suppose we assign a processor to every atom 
in the molecule. Each processor has a table of addresses of the processors that represent adjacent 
or chemically linked atoms in the molecule. An algorithm for computing the total weight must 
include the weight of each atom exactly once. 

Roughly, one way to proceed is to start at one atom and have it ask each of its neighbors in 
tum to send it their weights for summing. The process iterates until each atom had contacted its 
previously uncontacted neighbors. The resulting partial sums are accumulated as they approach 
the starting atom. We can visualize the process in terms of two waves. The first wave is a request 
for weight sums. It moves out from the processor representing the starting atom. The second 
wave is the returning wave, containing the partial sums. Unfortunately, in spite of the fact that 
this approach uses n processors, it still runs in O(n) time in the worst case, such as when the start­
ing atom is at the end of a long linear molecule. 

To speed up the process we would need to engage more processors at once. There are 
many ways to do this and specialized languages for different computer architectures. The details 
of this are beyond the scope of this section, but one way to understand it is to imagine that we 
superimpose a summing tree over the molecule as in Figure 1.53. There are 19 atoms in this fig­
ure, but they are linked in a tree with only 5 levels. All of the atoms linked together at the first 
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FIGURE 1.53. The weight of a molecule is the sum of the weights of its constituent atoms. Heavy links 
correspond to chemical bonds. Arrows indicate data flow to summation points for computing the total 
weight. 

level of the tree (labeled 1) are performed on the first cycle. These partial sums are then com­
bined at the second level of the tree on the next cycle. Those partial sums are combined at the 
next level. After each phase, only half as many processors are active as on the previous phase. 
The total sum is aggregated in time proportional to the ceiling of the depth of the tree, that is, in 
0 (log n) time. 

Complexity Distributions 
It is well known that for some algorithms the worst-case complexity is much worse than the aver­
age complexity. But the average case can also be misleading. 

Consider the distribution of computation times in Figure 1.54. In this example, there is a 
population of possible inputs to the algorithm and the time to perform the computation on the 
input varies drastically. Thus, there is a small set of elements for which the time is O(x\ and a 
few more where the complexity is O(x2

). The largest set of elements has complexity O(x4
). The 

curve drops off so that there are only a few elements where the complexity is O(xn). 
In this example, the worst-case time complexity is O(xn). Perhaps surprisingly, the mean 

time complexity is still O(xn In). That this is the case can be seen by considering equation (7). 

N 

mean complexity= (liN) L xi 
i=l 

Thus the mean complexity is dominated by the largest term. 

(7) 
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n 

What this shows us is that the mean complexity is also not necessarily representative of 
typical complexity. Referring back to Figure 1.54, most of the elements in the set will result in 
computations that are O(x4

). Thus, the mode of the distribution is much less than the mean. This 
example suggests that providing a distribution of complexities may in many cases be a more 
meaningful way of conveying expectations about running time than either a worst-case or mean­
case analysis. 

Phases, Phase Transitions, and Threshold Effects 
The previous section characterizes expected running times of algorithms in terms of their perfor­
mance on populations of structures. In this section we consider phenomena that can arise when 
populations are characterized by possibly critical values of variables. The terminology of these 
phenomena-phases, phase transitions, and threshold effects-is drawn from physical chem­
istry. The analyses are drawn from statistical mechanics. 

Phase transitions are familiar from everyday experience. Most substances have character­
istic melting points and boiling points. As temperature is raised or lowered at constant pressure 
near these points, materials undergo phase transitions-from solid to liquid or from liquid to gas. 
Underneath this abrupt, qualitative change at the macroscopic level is a small change at the 
microscopic level. Temperature is a measure of the vibrations of atoms in a substance. As tem­
perature is increased, these vibrations become more energetic. Increased temperature causes a 
substance to expand because the vibrations increase the average separations between atoms. 
Usually small changes in temperature cause small changes in vibration and small changes in the 
size of an object made from the material. 

However, at certain critical points such as the melting point and boiling point, small 
changes in temperature result in gross changes at the macroscopic level. At these points, the 
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actual energy and separations of the vibrating atoms changes only slightly it but results in a qual­
itative softening as vibrations become vigorous enought to enable atoms to slide past each other. 

To a first order approximation, phase transitions are very sharp. Below the melting point, 
the substance is a solid and above it is a liquid. Such sharp transition points are called thresholds. 
If we view the area around the transition point in fine detail, the story is usually more chaotic. As 
ice forms, sometimes crystals form and then melt and then form again. Liquids sometimes exist 
in "superchilled" states for periods of time without making the transition. Mathematical models 
show both phenomena-the relatively sharp macroscopic transition points as well as fine­
grained chaotic behavior in the immediate vicinity of the transition. 

For a simple example of this phenomenon in the context of algorithmic complexity, we 
consider again algorithms that operate on trees. Suppose that we have a population of trees char­
acterized by an average branching factor, b. We use the term cluster size to refer to the expected 
size of a tree drawn from the population. We will consider several such algorithms in Chapter 2 
that search trees. For now it is enough to know that our algorithm visits every node in a cluster. 

To determine the time complexity of such an algorithm, it is useful to know how many 
nodes there are in a cluster. To count the nodes, we start at the root of the tree. On average, there 
ar~ b nodes immediately adjacent to the root. Then there are b2 nodes immediately adjacent to 
these one level down. For a tree of infinite extent, the cluster size, C(b ), is given by equation (8). 

C(b) =_I b; = 1 I (1- b) 
idJ (8) 

For trees of finite depth, d, the cluster size is given by equation (9). 
d-1 

C(b)=_I (9) 
i=O 

Figure 1.55 shows cluster size as a function of the average branching factor for trees of dif­
ferent depth. For a potentially infinite tree, an average branching factor less than one leads to a 
finite-size cluster. However, when the average branching factor reaches 1, there is a singularity in 
the graph as number of nodes connected to the root on average suddenly becomes infinite. This 
singularity is an example of a threshold. It marks the existence of a phase transition character­
ized by an explosive increase in cluster size as the threshold is approached from below. For any 
fixed polynomial of b, the time complexity of our node-visiting algorithm exceeds the polyno­
mial as b approaches the critical point. 

The signature of the phase transition for potentially infinite trees is still visible for trees of 
finite depth. The other curves in Figure 1.55 show the expected cluster size for trees with several 
fixed depths. 

Phase transitions show up in many kinds of computations. For example, they show up in 
the analysis of search methods where the number of nodes explored along a false "garden path" 
corresponds to the cluster size in this example. They also show up in analyses of algorithms that 
work over more general graph structures than trees. Again in these cases, the cluster sizes of 
graphs undergo phase transitions as the number of connections between nodes increases. 
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FIGURE 1.55. Cluster size for trees with finite depth, d, as a function of the average branching factor, b. 
(Adapted fom Huberman, B. A., and Hogg, T. Phase transitions in artificial intelligence systems. Artificial 
Intelligence 33, 1987, pp. 155-171.) 

1.3.9 Structural Complexity 
Space and time complexity are properties of algorithms as applied to populations of different 
possible data structure inputs. Sometimes the running time of an algorithm over a particular data 
structure depends a great deal on its particular properties. For example, an algorithm to reverse 
the order of a list depends on the number of elements in the list. Algorithms that search trees 
depend on the particular depths and branching factors of the trees. 

Measures of the properties of a structure are called structural complexities. In this book 
we use several different measures of structural complexity for different kinds of structures and 
different purposes, as suggested by Figure 1.56. In this section we develop and study two exam­
ples of such measures. First, however, we discuss generally what it is that measures of structural 
complexity are good for. 

Measures of structural complexity provide scales for comparing structures. Suppose that 
we are given a set of structures {Sp S2, S3, .•• , Sn} and a complexity measure C. If C(S1) > C(S2) 

then we say that structure S1 is more complex than S2• We can use the scale to identify the sim­
plest members of a set. 

Suppose further that there is a computation, F, that we can perform on various members of 
the set, and that the time complexity of F(Sk) depends in a known way on C(Sk). In this case, the 
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Measure 
Number of elements 
Depth of tree 
Branching factor 

Hierarchical diversity 
Width of constraint graph 

Bandwidth of constraint graph 

Shannon information entropy 

Remarks 
Same as space complexity. 
Can be used to compute space and time complexities for tree searches. 
Can be used together with depth to compute space and time complexi­
ties of tree searches. 
Measure of the diversity of structures in unlabeled trees. 
Measure of complexity of labeled graphs, such as constraint graphs. 
Related to time complexity for solving constraint satisfaction problems. 
Measure of complexity of graph structures. Related to time complexity 
for solving constraint satisfaction problems. 
Measure of the sharpness of a distribution of probabilities. Used in 
diagnostic systems to select probe sites most likely to reduce the 
number of competing hypotheses. 

FIGURE 1.56. Examples of measures of structural complexity. 

struf:tural complexity measure can be useful for partitioning the set of structures into families 
whose time complexities for Fare equivalent. For example, suppose that the time complexity 
relates to the structural complexity as follows: 

time complexity (F(Sk)) = O(mqsxl) for some constant m. 

That is, the time complexity for computing F on Sk is polynomial in the structural complexity of 
Sk. In this case, C gives us a means for dividing {Sp S2, ••• Sn) into easy and hard problems. The 
more complex the structure, the longer it takes to compute F on it. In this way, measures of struc­
tural complexity can provide useful alternatives to nonrepresentative worst-case estimates of 
time complexity over large populations of data structures. The alternatives are either to measure 
C(Sk) so as to get a better estimate of the time complexity of F(Sk) or to identify Sk as belonging 
to a subpopulation where the range of C(S) is much narrower and thereby more representative. 

To be concrete, we now consider a particular complexity measure for unlabeled trees. This 
complexity measure is called Huberman-Hogg complexity or hierarchical diversity (Huber­
man & Hogg, 1986). Huberman and Hogg were struck by examples of structures in physics and 
computational systems. In physics, both crystalline materials and gases are considered to be rela­
tively simple when compared with amorphous structures. Crystalline structures are considered 
simple because their molecular structures are repetitious. Gases are simple because the mole­
cules are randomly located and do not aggregate. On the other hand, amorphous structures have a 
mixture of molecular structures of different sizes and are considered complex. Similarly in lin­
guistics, random strings are viewed as simpler than sentences produced by the grammars of for­
mal and natural languages. Huberman and Hogg sought a measure of structural complexity that 
would reflect these intuitions. They wanted to quantify the regularities and hierarchical structure 
of trees. 

We first consider some examples of hierarchical structures. Figure 1.57 shows three unla­
beled trees, {T1, T2, T3 }. Intuitively, what should be the relative complexities of the three trees? 
Most people would agree that T1 is the simplest, that is, 

C(T1) ~ C(T2) 

C(T1) ~ C(T3) 

Page 107 of 153 FORD 1007



100 1 SYMBOL SYSTEMS 

However, what is the relation between C(T2) and C(T3). Because T3 has more nodes than T2 we 
might classify it as more complex. On the other hand, T3 is very symmetric. All of the subtrees of 
T3 are identical at each level, making it very simple. 

Hierarchical diversity is intended to measure the diversity of a structure and to reflect the 
number of interactions among nonidentical elements. For this reason, it counts T2 as the most 
complex of the three trees in Figure 1.57. In fact, the tree T3 can be extended to balanced binary 
trees of arbitrarily large size without increasing its hierarchical diversity. 

We are now ready to define hierarchical diversity. The hierarchical diversity of a tree, 
D(T), is defined recursively. The diversity of a node with no subtrees is just 1. The diversity of a 
node with subtrees is the made up of two terms. The first term counts the number of non­
isomorphic subtrees of the node. We refer to each set of identical subtrees as a cluster. At each 
level, there are k clusters of identical subtrees. We are interested in counting the number of dif­
ferent interactions at each level, so all identical subtrees count as 1. Specifically, we multiply 
together the diversities of the clusters at the lower level. This product is then multiplied by Nk, 
the number of ways that the k different clusters can interact as given in equation (8). 

(8) 

Combining these factors we obtain equation (9) 

k 

D(T) = (2k - 1) II D(Ij) 
j=l (9) 

where j ranges over the k nonisomorphic subtrees. 
Figure 1.58 gives examples of computing hierarchical diversity. The number in the box for 

each level of the tree gives the structural diversity at that node. The diversity of T1 is trivial, since 
the node has no subtrees. Because the subtrees of T3 are identical, there is only one cluster at 
each level. Thus, the diversity of T3 is 1 and is less than the diversity of T2• In T4 and T5, the mag­
nitude of the diversity is much higher, because the product of the diversities at lower levels is 
higher. 

It is easy to see that Huberman-Hogg complexity does correspond to the intuitions about 
physical complt;xity by comparing the values it yields for different trees. We have already ob-

• 

!- tA 
Tl T2 T3 

FIGURE 1.57. Some examples of hierarchical structures of differing complexity. By the hierarchical 
complexity measure, T2 is the most complex of the three trees. 
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1 

FIGURE 1.58. Examples of computing the hierarchical diversity of trees. The trees T1, T2, and T3 are 
repeated from Figure 1.57, with the points indicating nodes replaced by boxes containing the diversity at 
that node in the tree. 

served that it has a low value for trees with much symmetry, because the number of non­
isomorphic subtrees of a node will be low. Indeed, for complete trees with uniform branching 
factors like T3, it is easy to show that D(7) = 1. Similarly, hierarchical complexity is low for trees 
of trivial depth. It is highest for trees like T4 and T5 , where there is substantial asymmetry. As 
Huberman and Hogg put it, the measure is optimum at a place midway between order and disor­
der. Although this goes beyond the scope of this section, Huberman-Hogg complexity and some 
variants of it are involved in hypotheses about the complexity of systems that are adaptable and 
are relevant to the study of machine learning systems. 

In summary, the point of a structural complexity measure is to summarize intrinsic proper­
ties of structures on a scale so that we can compare them. When structural complexity measures 
are mathematically related to the time complexity of algorithms that run over the data structures, 
they can be used to partition the space of data structures into cases of graded difficulty. 

1.3.10 Summary and Review 

This section surveys computational issues in the design of representations. It introduces a vocab­
ulary of dimensions for comparing alternative representations for computational models. 

We compared symbol structures and their interpreters for representing a square: a pixel 
array, a property list, and a graph representation. These representations provide alternative 
implementations of a common abstraction for figures, with operations for such things as retriev­
ing size and position, moving figures, and computing overlap of figures. Different implemen­
tations can have dramatically different computational requirements for time and space. 
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When we design representations, we decide which propositions to make primitive and 
which derived. This theme pervades our discussion of vivid and analogical representations. Thus 
directed graphs model the topology of molecules or the connectivity of circuits. Maps, like other 
scale models, have the same kinds of structures as their domains, that is, two-dimensional 
Euclidean spaces. 

Representations are explict when they are written in a declarative language. This means 
that they are modular, that they have well-characterized semantics, and that there is a causal con­
nection between the representation and the system that interprets it. The declarative quality of a 
representation depends not only on the symbols themselves, but also on the people who need to 
understand it and the complexity of what is described. Explicit representations are widely used 
because they afford advantages for making changes to systems. 

When computational models are sufficiently expressive, they may admit several expres­
sions of the same thing. In such cases we need to consider canonical functions and canonical 
forms. 

It is not necessary to select and use a single representation in knowledge systems. When 
different implementations offer trade-offs in efficiency, multiple representations can be usefully 
combined. This requires maintaining an appropriate causal connection between symbol struc­
tures, and careful accounting to invalidate and recompute caches at appropriate times. 

Parallel computing architectures offer opportunities to include both structure and process 
in analogical and direct representations. In the wind flow example, not only is the structure of the 
data similar to structure of the domain, but also the activity of the processors is similar to the 
activity in spatial regions of the domain. 

Finally, we introduced the big-oh notation for summarizing asymptotic space and time 
complexity. The worst-case complexity is often the easiest to compute but need not be represen­
tative of the average complexity. Indeed, even average complexity can be misleading about the 
expected complexity if the average is skewed by a small number of cases of very high complex­
ity. A more meaningful presentation of expectations is sometimes given by a distribution of com­
plexities over a population of structures. A structural complexity measure is any measure based 
on the size or organization of a symbol structure. Measures of structural complexity are closely 
related to measures of time complexity for algorithms that run on the structures. 

Exercises for Section 1.3 

Ex. 1 [CD-05] Systematic Representations. Professor Digit was fascinated when he learned 
about the physical symbol system hypothesis, and dashed off to build several computer 
programs that he called "minimal symbol systems." He later exhibited these to his col­
leagues. The first minimal symbol system was a single instruction which compared two 
bits ("the input bits") in memory and then set a bit ("the output bit") in computer memory 
from 0 to 1 depending on the results. When his colleagues asked what his program did, he 
told them that it was an ultrafast multiplication program: When both of the input bits were 
0, they represent the numbers 3141592653589793238462643 and 987654321987654321. 
In that case, the program sets the output bit to 0, indicating the product of the two numbers. 
If either of the two input bits is one, the program sets the output bit to 1 meaning that it 
does not know the input numbers and cannot compute the product. His colleagues were 
puzzled (flabbergasted?) by this, but he assured them that this his interpretation was rea­
sonable because a bit can designate anything whatsoever. 
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(a) How many input and output states does his program have? 
(b) In what way is Professor Digit's account unsatisfactory? (Hint: What do we reason­
ably require of a computer program that reasons about operations on numbers?) 

Ex. 2 [ CP-1 0] Computing about Rectangles. In this chapter we considered examples of represen­
tation where the choice of primitives or symbol structures was intended to make some 
inferences computationally effective. Manhattan rectangles are rectangles whose sides are 
parallel to either the x- or y-axes in the real plane. Such rectangles can be represented as a 
record with the fields (left, bottom, width, height). 

Two rectangles are said to overlap if their areas have at least one point in common. 
Describe an algorithm for deciding efficiently whether two rectangles overlap. (Hint: It is 
possible to consider area-overlap in terms of x andy components.) 

Ex. 3 [CP-15] More Computing about Rectangles. The Manhattan separation between rectangles 
can be defined as the minimum length of a segmented Manhattan line between the closest 
edges of the rectangles, where the edges of the line are confined to integer coordinates. 

Briefly, sketch an algorithm for deciding whether two rectangles are within a Manhat­
tan separation of k units. 

Ex. 4 [CD- !-CP-30] Parallel Computing about Rectangles. The claim that bitmaps are inefficient 
for determining whether two Manhattan rectangles overlap depends on several assump­
tions about the rectangles and the capabilities of the computer. 
Suppose we have a bitmap processing computer (called SAM for "synchronous active 
memory"). Each processor has 16 bits of addressable memory, a 1-bit accumulator, and 1-
bit wide communication lines to each of its four neighboring processors. The instructions 
can communicate with a host computer. The host computer can select arbitrary combina­
tions of rows and columns of the bitmap processors. All the selected bitmap processors per­
form the same instruction at the same time, as broadcast by the host computer. The 
processors have the following instruction set: 

Load and store instructions 
store <bit> <bit>:=Acc 
load <bit> Acc:=<bit> 

1-bit operations 
clr-
and <bit> 
gt <bit> 
lt <bit> 
xor <bit> 
or <bit> 
nor <bit> 
cmp <bit> 
not <bit> 
ge <bit> 
inv-
1 e <bit> 
nand <bit> 
set-

Acc:=O 
Ace :=Ace and <bit> 
Acc:=Acc greater-than <bit> 
Ace:= Ace less-than <bit> 
Acc:=Acc xor <bit> 
Acc:=Acc or <bit> 
Acc:=Acc nor <bit> 
Acc:=Acc equals <bit> 
Ace :=not <bit> 
Ace :=Ace greater-than-or-equals <bit> 
Acc:=not Ace 
Acc:=Acc less-than-or-equa7s <bit> 
Acc:=Acc nand <bit> 
Acc:=l 
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Neighbor communication operation 
dot <mask> Acc:=MaskoNbr0+Mask1Nbr1+Mask2Nbr 2 

+Mas k3Nbr 3+Ma s k4Acc 

Host communication operations 
read- Host-Data:=Acc (ored over selected cells) 
write- Acc:=Host-Data (for all selected cells) 

Note: The dot instruction is a kind of dot product. Each mask bit indicates which 
neighbor's accumulators are included in the result. For example, 

dot (0 3) means to OR together the accumulators from neighbors 0 and 3 and 
save the result in the accumulator. 

dot (1 2 4) means to OR together the accumulator values from neighbors 1 and 2 
together with the accumulator of self and save the result in the 
accumulator. 

(a) Suppose the initial data in bitplanes 1 and 2 for a 4x4 SAM array are as follows: 

Bit 1 Bit 2 

Rectangle 1 Rectangle 2 

The following algorithm computes the intersection of the rectangle stored in bit 1 (across 
the entire block) with the rectangle stored in bit 2. 

load 1 
and 2 
read 

illustrate the action ofthis algorithm using matrices to show the state of bit 1, bit 2, and the 
accumulator at each step. How does the value read on Host-Data depend on the rectan­

gles? 
(b) Suppose that bit 0 in an 8x8 SAM memory is initialized with a large filled-in rectan-

gle as follows: 
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Trace the execution of the following program. 

load 0 
inv 
dot (0 1 2 3 4) 
inv 
xor 0 

10.5 

Explain how this is an edge-finding program, finding those points at the outer limits of the 
rectangle. Hint: Consider de Morgan's laws. 

Note that the bits in the mask of the dot instruction correspond to the directions of the 
neighbors with O=North, 1=East, 2=South, and 3=West. Cells at the edge of the array 
always return 0 when they try ask for data beyond the array. 
(c) Is the computation in part (b) an example of a local computation or a global computa­
tion? Explain briefly. 
(d) Write a SAM program to compute whether rectangles stored in bit 1 and bit 2 are at 
least 1 unit of Manhattan separation apart. Does your program depend on the shape of the 
figures (that is, must they be rectangles)? 

Ex. 5 [10] Canonical Forms. Each of the following data structures represents a circular linked 
structure of six items. 

1. (afbced) 
2. (b c e d a f) 
3. (b face d) 
4. (decbfa) 
5. (cedabf) 

(a) Suppose the interpreter is supposed to treat rotation and reflection is equivalence-pre­
serving operations. The canonical form for these lists is defmed as the list that is earliest 
"alphabetically" starting with the left-most term. In other words, the leftmost element of 
the canonical form of the lists is its alphabetically earliest one. In the event of a tie, then the 
second element is considered following the simplest rules of dictionary order. 

Give the canonical form for each structure. 
(b) Indicate which of the structures are equivalent to each other. How many distinct struc­
tures are represented here? 

Ex. 6 [05] Terminology. Determine whether each of the following statements are true or false. If 
a statement is ambiguous, explain your answer briefly. 
(a) True or False. Fidelity and precision refer roughly to the accurateness and detail of a 
representation in its use in making predictions. 
(b) True or False. There is usually exactly one best way to implement a given abstraction. 
(c) True or False. In most inferential systems, a large number of propositions can poten­
tially be derived from a small number of primitive ones. 
(d) True or False. One of the advantages of using multiple representations is that such 
systems need not contend with the stale data problem. 
(e) True or False. In a system that is implemented in multiple layers, the implementation 
at one level of description may in tum be an abstraction for the next level down. 

Ex. 7 [05] More Terminology. Determine whether each of the following statements is true or 
false. If a statement is ambiguous, explain your answer briefly. 
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FIGURE 1.59. Three trees. 

(a) True or False. When a system has two representations for the same thing and one is 
derived from the other by a long computation and the derived result is referenced more fre­
quently than the primitive one is changed, it is appropriate to cache the derived representa­
tion. 
(b) True or False. To prevent stale data problems, a cache should be invalidated when­
ever its value is retrieved. 
(c) True or False. It is appropriate to recompute a derived and cached value whenever an 
operation changes a primitive value on which it depends. 
(d) True or False. One problem with the bitmap representation of figures is that for low 
enough precision or resolution of the bitmap, the shapes of some figures are indistinguish­
able. 
(e) True or False. If the running time of a computation is 56m2n3 + 37m3n + 60m2n + 
3n + 30, then we can characterize its time complexity as O(m2n\ 

Ex. 8 [05] Even More Terminology. Determine whether each of the following statements is true 
or false. If a statement is ambiguous, explain your answer briefly. 
(a) True or False. Explicit representations offer advantages over implicit ones in knowl­
edge systems that must be modified over time. 
(b) True or False. An implicit representation is one whose utility rests on unstated 
assumptions. 
(c) True or False. A bitmap is an implicit representation of shapes. 
(d) True or False. An explicit representation usually requires a declarative semantics. 
(e) True or False. The declarative semantics (including reference semantics, truth seman­
tics, and proof semantics) are the only semantics needed for defining a declarative repre­
sentation. 
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Ex. 9 [05] Asymptotic Superlinear Speed-ups. Is it possible to achieve more than a factor of k 
order speed-up on a problem by applying k processors instead of one, assuming that all 
processors are equivalent? If yes, give a brief example. If not, present a brief argument. 

Ex. 10 [05] Space versus Time Complexity (True or False). The asymptotic time complexity of an 
algorithm for a single processor is always greater or equal to its asymptotic space complex­
ity. Explain briefly. 

Ex. 11 [08] Hierarchical Diversity. Figure 1.59 gives four unlabeled trees of eight nodes each. 
Compute the hierarchical diversity of each tree. 

1.4 Programs: Patterns, Simplicity, and Expressiveness 
Whenever we build computational models, we express them in programming languages or repre­
sentation languages. Observably, some languages are better than others for particular programs 
in that the programs are generally more concise, easier to understand, and easier to extend. But 
what makes some languages and representations better than others in this way? 

In the previous section on representational properties, we considered the use of program­
ming abstractions. Programming abstractions are used to build systems in levels, so that the most 
abstract level gives a concise description of a program in terms of appropriate primitives. 

In this section we consider two additional methods for achieving simplicity of expression: 
metalevel factoring and the use of epistemological primitives with a large base of shared knowl­
edge. We introduce these concepts through a sequence of increasingly sophisticated examples. 
Along the way we consider basic ideas widely used in building knowledge systems: production 
rules, pattern matching, and logic programming. 

1.4.1 Using Rules to Manipulate Symbols 
Our first example is quite elementary for anyone who has written many computer programs. It is 
a starting point for comparisons. 

Figure 1.60 depicts a traffic intersection where a farm road crosses a highway. The right­
of-way at this intersection is indicated by a traffic light, which has a sensor to detect traffic enter­
ing the highway from the farm road, assuming that traffic drives on the right-hand side of the 
road. 

Figure 1.61 depicts two internal symbol structures for the controller of the traffic-light sys­
tem. There is a cell or storage element named fa r m- road - 1 i g h t that designates the traffic light 
facing the farm road. This cell contains one of three symbols red, ye 11 ow, or green. Similarly 
there is another cell, hi ghway-1 i ght, designating the traffic light facing the highway. It is con­
venient to think of these cells as program variables, and the symbols in the cells as the values of 
the variables. 

Symbol systems change symbol structures dynamically. Our account of the traffic-light 
controller is a simulation. That is, it uses a running computer program to.model another (usually 
more complicated) system that we call its "world." The values in the program variables corre­
spond to a snapshot of the world at some instant of time. As the program runs, its program 
actions model world actions that would change it over time. An observer could watch the simula­
tion just as he might watch the world, seeing the traffic light on a highway tum yellow, and then 
red, and then a light on a farm road tum green. 
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FIGURE 1.60. Traffic light at an intersection of a highway and a farm road. 
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Figure 1.62 illustrates four computational "rules" that specify the behavior of a traffic-light 
controller. The particular syntax for the rules in this figure and others in this section is not 
important. Many variations are possible in programming languages. 

The rules in our simulation example make use of two external timers called 1 i g h t- t i mer 
and t r a f f i c- timer, which can be started and tested to see whether an allotted time is up, and 
a sensor, which can be tested to determine whether a car is present at the end of the farm road. 
The code and variables for the simulated timers and sensor are not shown. 

The rules in Figure 1.62 are examples of production rules. Each rule has two major parts, 
called the if-part and the then-part. The if-part of a rule consists of conditions to be tested. In the 
first rule, the conditions test whether the highway light is green, whether a car is waiting, and 
whether time is up on the traffic timer. If all of the conditions in the if-part of a rule are true, the 
actions in the then-part of the rule are carried out. In the idiosyncratic terminology of production 
rules, we say that the rule is "fired." The then-parts of these rules consist of actions to be taken. 
In the first rule, these actions tum the highway light to yellow and start the light timer. The parts 
of a production rule are sometimes called by different names. The if-part is also known as the sit­
uation part, the conditional or the antecedent. The then-part is also known as the action part or 
the consequent. 

In our program, after the first rule is tried, the second, third, and fourth rules are tried in 
order. The program then starts over again with the first rule. The complete simulation program 
would have representations of cars and rules for modeling traffic. Cars could speed up, slow 
down, or tum. No two cars could occupy the same space at the same time (we hope!). The simu­
lated sensor would occasionally indicate that a simulated car is present. Then the timers would 
perform their measurements of simulated elapsed time and the rules of our traffic-light controller 

fann-road-light highway-light 

Value: Red Value: Green 

Possible values: {red, yellow, green} Possible values: {red, yellow, green} 

FIGURE 1.61. Symbol structures in the traffic-light controller. 
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do 
begin 

begin 
farm-road-light := 'red 
highway-light := 'green 
start (light-timer) 
start(traffic-timer) 
start (sensor) 

end 

;rule-1 
if highway-light= 'green 

and car-waiting? (sensor) 
and time-up?(traffic-timer) 

then highway-light := 'yellow 
start (light-timer) 

;rule-2 
if highway-light= 'yellow 

and time-up?(light-timer) 
then 

;rule-3 
if 

then 

;rule-4 

highway-light := 'red 
farm-road-light := 'green 
start (traffic-timer) 

farm-road-light= 'green 
and time-up? (traffic-timer) 
farm-road-light := 'yellow 
start (light-timer) 

if farm-road-light = 'yellow 
and time-up? (light-timer) 

then farm-road-light := 'red 
highway-light := 'green 
start (traffic-timer) 

end 

FIGURE 1.62 Rules in the traffic-light controller. 

;infinite loop 

;Initially ... 

;turn the farm-road light red 

;turn the highway light green 

;start the light timer 

;start the traffic timer 

;start the sensor 

;IF the highway light is green and 

;and the sensor shows a car waiting 

;and the traffic timer shows time up 

;THEN tum the highway light yellow 

;and start the light timer. 

;IF the highway light is yellow 

;and the light timer shows time up 

;THEN turn the highway light to red 

;and tum the farm road light to green 

;and start the traffic timer. 

;IF the farm road light is green 

;and the traffic timer shows time up 

;THEN tum the farm road light to yellow 

;and start the light timer. 

;IF the farm road light is yellow 

;and the light timer shows time up 

;THEN tum the farm road light to red 

;and tum the highway light to green 

;and start the traffic timer. 

109 
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Data 
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I 

Interpreter 

Fetch-execute 
cycle 

FIGURE 1.63. Program and interpreter for the traffic-light controller . 
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would cycle around, switching the lights to control the simulated flow of traffic at the intersec-
tion. 

Production rules take many different forms. The rules shown in Figure 1.62 are similar to 
IF statements available in most programming languages. In this example, the selection of which 
rule to fire next is quite trivial. The program specifies exactly what to do, step by step. 

Variations on production rules can admit many kinds of additional information, different 
syntaxes, and different methods for controlling execution. They are used to model simulation 
and also to model reasoning. Later in this section we will consider production rules that are 
based on pattern matching. Production rules are an important representation in knowledge-based 
systems because they directly represent how actions depend on conditions. Production rules are 
sometimes called situation-action rules. 

Figure 1.63 shows the organization of the traffic-light controller system. There is a pro­
gram made up of a set of statements-the rules from Figure 1.63. The statements in this program 
are retrieved and executed by an interpreter. This architecture is essentially the same as that of a 
von Neumann computer where the program is represented as instructions in computer memory 
and the interpreter is the processor which carries out a fetch-execute cycle. The difference in this 
case is that the statements are rules and the interpreter executes the rules. Nonetheless, the inter­
preter is still quite simple, in that the rules are executed in sequential order. The bottom part of 
the figure corresponds to data read or written by the program. The data are the program variables 
that store the state of farm- road -1 i ght and hi ghway-1 i ght. The reading from the sensor is 
also included in data. These data are read and sometimes written as the program runs. By design, 
the program never directs its interpreter to decode the data as instructions: 

1.4.2 Treating Programs as Data 
The representation of programs as symbol structures is related to the stored program concept: 
the storing of computer instructions in memory in the same manner as data. Different codes are 
recognized by the processor as different instructions. Storing programs in memory has the practi-
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FIGURE 1.64. Universal computation, in which one computational process emulates another by interpre­
ting its instructions as data. 

cal advantage of making it easier to arrange for computers to run different programs. This is the 
major contribution of the von Neumann architecture for computers. 

That programs on one computer can interpret symbolic instructions of a different computer 
is the universal computation concept. The "universal" part of this refers to the ability to simu­
late the instructions of any computer. A universal computer can be programmed to carry out the 
instructions of a different computer, even though its instruction codes are different. The basic 
idea as shown in Figure 1.64 is that the universal computer maintains a table to look up sets of 
instructions in its memory that simulate the instructions written for the other computer. 

Universal computation places few constraints on the representations that are used in the 
two computers. The instruction sets on the two computers could be identical or very different. 
The symbols can have structural similarities or be very different. Let { s 1' s2, .•• , s k } be symbols 
on the simulated computer, representing either instructions or data, and {S1

, S2, ••• , Sk} be sym­
bols on the simulating computer. There must be a mapping, M, between the two sets of symbols, 
stated as M: {sk} ---0 {Sk}. Similarly there must be a mapping, P, between the processing steps or 
instructions on the two computers. Suppose that { ip i2, i3, ••• , in} is a sequence of descriptions of 
the symbols in the memory of the simulated computer when its interpreter is rull. Universal com­
putation requires that when the simulating computer runs, that it yields a sequence of states, such 
that M holds between corresponding symbols in each of the states in order. 

As suggested by Figure 1.64, universal computation divides an interpreter into layers. This 
layered approach is not limited;say, to simulating obsolete computers that are no longer manu-

Page 119 of 153 FORD 1007



112 1 SYMBOL SYSTEMS 

factured. It is widely used in knowledge systems to partition programs into simpler layers. At 
each layer, interpreters make much use of symbol manipulation operations for recognizing pat­
terns, extracting parameters, and carrying out parameterized action. 

In the following sections, we see concrete examples of how symbol manipulation lan­
guages provide symbol manipulation primitives and thereby layers of interpretation that can sim­
plify the writing of programs. 

1.4.3 Manipulating Expressions for Different Purposes 

The layperson's view of computers is that they are good with numbers, that is, they are able to do 
arithmetic rapidly. In contrast to arithmetic, algebra and calculus involve much richer symbol 
manipulation. For example, a typical exercise in an introductory calculus course is to differenti­
ate a polynomial like that in expression (1) to yield its derivative (2). 

function: fix)= (2/3)i + 7x2 + 12x- 8 
derivative:f(x) = 2x2 + 14x + 12 

(1) 
(2) 

The function in (1) can be represented indifferent ways, such as the LISP computer language, as 
shown in (3). The advantage of LISP in the following examples is that the patterns are simpler 
because the program syntax requires no parsing. 

(defun f (x) (+ (* (/ 2 3) (expt x 3)) 
(* 7 (expt x 2)) 
(* 12 X) 

(- 8))) (3) 

Equation (1) could also be expressed in a graph notation, as shown in Figure 1.65. In either case, 
a symbol system (such as a standard LISP interpreter) can be made to compute the value of the 
polynomial given a value for x. A LISP interpreter would evaluate the equation in (1) to yield that 
flO) = -8, fl1) = 11.666667, and f(.508517) = 0. A different program, a dif.ferentiator, could 
accept the definition off as input and produce as output a symbolic expressionfJ representing its 
derivative: 

(defun f1 (X) (+ (* 2 (expt x 2)) 
(* 14 X) 

12)) (4) 

This expression (4) is a full-fledged LISP program, as is the original function definition in (3). It 
could be executed or further differentiated. 

Looking at the equivalent semantic network representation in Figure 1.65, it is easy to see 
how a differentiation program could work, that is, how it could symbolically differentiate a poly­
nomial. A differentiation program needs to create a second linked structure of terms, computing 
the coefficient and exponent relations of the new terms from corresponding relations on the old 
terms. For each term, it creates a new term node, linking it to a new coefficient node, a new ex­
ponent node, and a new next-term. Each-new coefficient is computed by multiplying the old co-:-
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FIGURE 1.65. Graph representation of a polynomial. 

efficient by the old exponent; the new exponent is the old exponent minus one. The new terms 
represent the new polynomial with the values as shown in ( 4 ). Thus, the differentiation process 
builds a new polynomial representation as it traverses the original polynomial representation, 
computing the parameters of each new term from the parameters of the old terms. It must walk 
through the graph and create a new graph whose properties are computed from those of the orig­
inal graph. 

Furthermore, different computations can be done on a single representation. Another sym­
bolic manipulation program, a quadratic root finder, could be written to take the roots of a sec­
ond-order polynomial such as (4). For this, we view a polynomial as fitting the following pattern 

f(x) = ax?+ bx + c 

and then apply the quadratic equations 

root 1 = ( -b + sqrt( b2 
- 4ac) )12a 

root2 = (-b- sqrt(b2
- 4ac))/2a 

(5) 

(6) 

A quadratic root finder steps through the terms of a polynomial and extracts values for the 
parameters a, b, and c. Given these parameter values, computing the roots as in (5) and (6) 
requires another modest procedure, not much more complicated than the preceding polynomial 
functions. 

In summary, radically different computations can be performed on a representation. The 
polynomial representation can be used to yield specific evaluations for different values of x. 
Alternatively, a differentiator program operate on the same representation to produce derivatives. 
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Similarly, a root finder can use the representation as a template for extracting parameters for 
computing quadratic roots. 

1.4.4 Pattern Matching 
In the examples of the last section, the symbol-manipulating operations included traversing 
graphs, extracting information, and creating new expressions. Because structure recognition and 
parameter extraction are so fundamental, people have designed computer languages that provide 
these operations as primitive computational mechanisms. Such mechanisms are widely used in 
production-rule and logic programming languages. This section uses these operations to give 
concrete examples of how appropriate symbol manipulation primitives can simplify the expres­
sion of programs. 

There are two main variations on pattern matching, notably one-way pattern matching and 
two-way pattern matching (unification). In one-way pattern matching, a pattern with variables is 
matched against an expression containing constants. At the end of the operation, the variables in 
the pattern may take on values corresponding to parts of the constant structure. In unification, 
patterns with variables are matched against other patterns with variables. Variables in both pat­
terns may take on values at the end of the matching operation. 

Figure 1.66 shows a simple example of a pattern and the results of matching it against an 
expression. A key element in the syntax of pattern matching is the specification of pattern varia 
abies. In the following, there are three pattern variables to be matched: a, b, and c. In the follow­
ing examples, we indicate that terms are variables to be matched by preceding them with ques­
tion marks at the parts of the pattern where matching is to take place. Other terms are assumed to 
be constants in the matching process. When a pattern variable appears again later in a pattern­
matching rule it need not be preceded by a question mark. The value of the variable is required to 
match the corresponding datum in the matching expression. 

Matching a pattern against an expression requires aligning the corresponding parts of the 
pattern with the expression and then extracting values for the pattern variables. Thus, the pattern 
matching process assigns values a= 2, b = 14, and c = 12. 

Matching the pattern 
· (+ (* ?a (expt x 2)) 

(* ?b X) 

?c) 

to the expression 
(+ {* 2 (expt x 2)) 

(* 14 X) 

12)) 

yields values for the pattern variables 
a = 2, b = 14, c = 12 

FIGURE 1.66. An example of pattern matching. 

.. """::! 
l 
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if-]Jart: {pattern to be matched} 
{if (match test-expres~ion 

(+ (* ?a {expt x 2)) 
(* ?b X) 

?c)) 

then-part:· {actions to be carried out} 
(then (~etf root (/ (+ (- b) 

(sqrt (- (* b b) 

(* 4 a c)) 

(* 2 a)) 

;IF the test expression matches 
;a quadratic polynomial 

;THEN compute a root 

FIGURE 1.67. Pattern-matching rule for computing the discriminant of a second-order polynomial. 

11.5 

Figure 1.67 shows an example of how pattern matching can be used with a production rule. 
If the pattern matches the test expression, then the parameter values are extracted and a root of 
the polynomial can be computed. 

To simplify programming, many production-rule languages and logic-programming lan­
guages provide an automatic way of searching for candidate expressions. The job of the inter­
preter is deciding how to traverse a database to find candidate expressions for possible matching. 
For example, the following three production rules do most of the work for differentiating polyno­
mials: 

rule 1: (deriv (*?a (expt x ?n))) -> (* n a (expt x (n-1))) 

rule 2: (deriv (+ ?u ?v)) -> (+ (deriv u) (deriv v)) 
rule 3: (deriv (- ?u ?v)) -> (- (deriv u) (deriv v)) 

These rules are examples of a rewrite or substitution language. In such a language, there 
is a working memory containing one or more expressions. Patterns are matched against these 
expressions. If they match, then the rule replaces the expression with a new one. Multiple rules 
correspond to different possible patterns in memory, treated as distinct cases. For rules in this for­
mat, the if-part is often called the left side and the then-part is called the right side. 

Figure 1.68 dissects the first rule for our analysis. Given an appropriate interpreter, this 
rule specifies how to differentiate a single term in a polynomial: Create a new term such that the 
coefficient is the coefficient of the matching term times its exponent, and the exponent is the 
exponent of the matched term minus one. 

if-part:{pattern to be matched] 
(deriv (* 1a (expt x ?n))) ;IF there is an expression matching ?a x7n 

then-part: [rewrite actions to be carried out] 
· (* n a (expt x <n-1))) · ;THEN replace it with na.x"-1 

FIGURE 1.68. Rewrite production rules combine pattern matching and action with search. 

Page 123 of 153 FORD 1007



116 

Initial expression 
(deriv (+ (* (/ 2 3)(expt x 3)) 

(* 7 (expt x 2)) 
(* 12 X) 

(- 8))) 

Step 1: Apply rule 2 to the sum of tenns 
(+ (deriv (* (/ 2 3)(expt x 3))) 

(deriv (* 7 (expt x 2))) 
(deriv (* 12 x)) 
(deriv (-8))) 

Step 2: Apply rule 1 to the first term 
(+ C* 2 (expt x 2)) 

(deriv (* 7 (expt x 2))) 
(deriv (* 12 x)) 
Cderiv (-8))) 

Step 3: Apply rule 1 to the second term 
(+ (* 2 (expt x 2)) 

(* 14 X) 

Cderiv (* 12 x)) 
(deriv (-8))) 

After a Jew more steps we have the derivative 
(+ (* 2 (expt x 2)) 

(* 14 X) 

12) 

FIGURE 1.69. Rule applications in the differentiation of a polynomial. 

1 SYMBOL SYSTEMS 

Figure 1.69 shows how these rules could be applied in the differentiation of a polynomial. 
In the first step, rule 2 is applied to change the derivative of a sum to the sum of some deriva­
tives. Our single-step application of the rule operates on all of the terms at once. Alternatively, 
rules could be written that convert a sum of n terms into one term plus the sum of the remaining 
terms. In the second step, rule 1 is applied to differentiate the first term. This process continues 
until no more rules match and the polynomial is completely differentiated. For simplicity we 
have omitted some intermediate rules and steps for simplifying terms. For example, in addition 
to the steps in Figure 1.69, ( expt x 1) is reduced to x, and ( * 2 7) is reduced to 14. 

Pattern-matching languages enable us to write very short programs. The first advantage is 
that the program: does not need to specify in detail how to extract information. It need only spec­
ify the patterns to be matched and the use to be made of the extracted information. Much of the 
programmatic detail is supplied by the language interpretation program, which searches the 
graph, matches patterns against expressions, extracts parameters, and builds new structures with 
substituted information. 
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FIGURE 1.70. An example of metalevel factoring. In pattern-matching languages, programs can be terse 
because much of the work of graph search, matching, parameter extraction, and substitution is done auto­
matically. 

This approach in pattern-matching language shows an important way that conciseness can 
be achieved in programming: metalevel factoring. This conciseness is possible due to the parti­
tioning of interpretation into two levels. As illustrated in Figure 1. 70, one level of interpretation 
is carried out by the rules in pattern matching. This process differentiates polynomials, finds 
roots, and so on. The symbolic description of this program is simple, largely, because so much of 
the work is done by the next interpreter: the processor that interprets the pattern-matching rule 
program. That processor selects which rule to fire, locates candidate symbolic expressions to 
consider, tests candidate expressions to determine whether they match the patterns given in the 
if-parts of rules, extracts the values of pattern variables, and rewrites expressions according to 
the actions in the then-parts of the rules. 

1.4.5 Expressiveness, Defaults, and Epistemological Primitives 

The preceding discussion of symbol manipulation languages emphasizes simplicity of expres­
sion. In this section, we extend the discussion from programming languages to representation 
languages. The boundary between programming and representation languages is not sharp since 
many ideas that started out as part of representation languages are now part of programming lan­
guages and conversely. Roughly, representation languages represent facts in a way that enables 
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their use for many different possible purposes. A representation system includes a database 
containing facts expressed in the representation language plus an interpreter that provides 
answers to queries. In this section, we consider what it means for representation languages and 
query languages to be expressive. 

Our perception of the simplicity of computational models depends on being able to 
describe them in simple terms and on being able to leave many things unsaid. We begin with a 
characterization of representation in terms of predicate calculus and then consider other well­
known languages. 

In 1985, Hector Levesque and Ronald Brachman (Levesque & Brachman, 1985) called 
attention to what they described as a tradeoff between tractability and expressiveness. They 
asked: What is the appropriate service to be provided by a knowledge representation system? 
They offered a strawman proposal. A knowledge representation (KR) system manages a knowl­
edge base and presents a picture of the world or an environment based on what it represents. 
Given a knowledge base, they required that a KR system be able to determine, given a sentence, 
Z, whether that sentence is believed to be true. More precisely, assuming that the knowledge base 
is a finite set of sentences and that KB stands for their conjunction, they wanted to know whether 
KB => Z. Determining this generally requires not just retrieval capabilities but also inference. 

Their strawman proposal was to use the first-order predicate calculus as the exemplary 
representation language. This has the advantage that 

KB I=Z iff t- (KB =>Z) 

That is, if Z is true then it is derivable from the sentences in the knowledge base. Unfortunately, 
this requirement also has the effect of ensuring that the strawman service as described cannot be 
provided. 

The difficulty of providing this service follows from its generality. No theorem prover can 
always determine the answer for arbitrary sentences in reasonable time. Completeness requires 
generality and brings a price of intractability. This is not to say that finding a proof or counterex­
ample is intractable for every sentence. For most theorem provers there are classes of problems 
that are easy. Many theorem provers also have worst cases that are much more time-consuming 
than the average cases and the easy ones. If theorem provers are complete then it follows that 
some classes of problems are intractable. 

Knowledge systems use a wide range of representations with different expressiveness. One 
dimension along which representations differ is the degree to which they can leave things unsaid 
about a model. There are different ways that a language can be incomplete in what it can say. 

Consider the logic sentences in Figure 1.71. The first sentence says John is not a female 
without saying what he is. The second sentence says that either Jack or Monica is a parent of 
Steve, but does not specify which. Nor does it say that some other person might not be a parent 
of Steve, since nothing has been said about a person having exactly two biological parents. The 
third sentence says that Steve has at least one male parent but does not say who that parent is. 
The fourth sentence says that all of Steve's neighbors own pets without saying who those neigh­
bors are, who their pets are or even whether there are any neighbors. These examples show that 
first-order logic can leave many kinds of details unspecified. It avoids representing details that 
may not be known. Indeed, this ability to not specify details is quite remarkable. It reflects the 
original intended use of predicate calculus to formalize infinite collections of mathematical enti-
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-,Female (John) 

Parent (Steve, Jack) v Parent (Steve, Monica) 

3 XParent (Steve, x) ;\ Male (x) 

V x Neighbor (Steve, x) => 3 y Owns-Pet (x y) 

FIGURE 1.71. Example sentences with different kinds of incomplete information. 
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ties. This use emphasizes different requirements from typical applications of knowledge systems 
where domains are often finite and many of their details are explicitly represented. 

Following the exposition in Levesque and Brachman, 1985, we consider incomplete 
knowledge and inference for a relational database, a logic program, and a semantic network. As 
we consider KR systems based on these languages, we will see not only that they cannot perform 
the strawman KR service, but also that they necessarily must perform different though related 
services. Our goal in the following is not to give a thorough characterization of relational 
d~tabases, logic programming, or semantic networks. Rather, it is to sketch them briefly and 
compare them to reveal general issues about the expressivenesss of representations. 

Representation and Inference Using a Relational Database 

Databases store facts. In this section we consider examples from a relational database to show 
limitations that the format imposes on the kinds of incompleteness in represented facts. In princi­
ple, it might be argued that a database imposes no limitations on information because it is a gen­
eral storage medium. In this argument, the interpretation of symbols is entirely open-ended. For 
example, we could use a database to build exactly one table that would just be addresses and 
memory contents for an arbitrary computer program. However, this misses the intent of the 
mechanisms provided with databases. 

Databases have mechanisms for matching and retrieval and these mechanisms are used in a 
well-defined way by the query language. These are similar in purpose to the pattern-matching 
operations we discussed earlier for symbol-manipulation tasks. When we speak of using a 
database and having a "natural" or "standard" interpretation, we presume to make the most use 
of the query language and the retrieval mechanisms. 

Figure 1. 72 lists some entries from a relational database. 
To characterize in first-order logic the information in these sentences, we can use a collec­

tion of function-free atomic sentences such as the following: 

Course(CS131) 

Days(CS112,TTh) 

Course(CS112) Enrollmen (CS131, 60) 

Days(CS228A, TTh) Cross-Listin (CS275, Ling120) 

The expression of incompleteness is much more limited than in our earlier examples from predi­
cate calculus. For example, we have no sentences like the following. 

-, Time(CS228A, 11) Days(CS112, TTh)v Days(CS112, MWF) 
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Course Name Days Time Enrollment Instructor Cross-Listing 
CS131 Applied Linear Algebra MW 11 60 Golub 
CS275 Computational Linguistics ll TTh 3 10 Kay Linguistics 120 
CS112 Computet Organization TTh 11 40 Gupta 
CS228A · futro to Knowledge Systems TTh 4 50 Stephic 
CS237A Advanced Numerical Analysis MWF 10 40 Staff· 
CS260 Concrete Mathematics MWF 9 35 Knuth 

FIGURE 1.72. Example entries from a relational database. 

Furthermore, the standard interpretation of a database contains more information than is 
typical of a collection of sentences from first-order logic. Suppose we were to ask the question, 

"How many courses are offered at 11 o'clock?" (7) 

Assuming that the database includes only courses in the Computer Science Department, question 
(7) might be answered by a query (8) such as 

Count c in Course where c. Time = 11 (8) 

This query asks about the entries in the database. The relation between those entries and the 
world is in the mind of the questioner. It is also supported by various assumptions that the query 
system makes in its processing. 

Returning to question (7), a logical account of what the query should return must use infor­
mation not explicitly stored in the database. For example, it must determine which literal atoms 
correspond to distinct course names. In the simplest case, unique atom names correspond to 
unique courses. To indicate this with theorems would require us to add a statement expressing 
explicit inequality for every pair of constants. Such theorems are not represented explicitly in the 
database. However, even if we did that, it would not quite work in this case. Course CS275 is 
cross-listed between the departments of Linguistics and Computer Science, resulting in two 
course numbers for the same course. Thus, the rule for determining unique courses would need 
to be expanded to something like "unique atoms declared to be courses correspond to unique 
courses unless declared otherwise by an explicit Cross-Listing relation." Another important 
assumption used in answering query (8) to the database is that all of the courses that are offered 
are listed in the database. This is an example of a closed-world assumption (CWA). By embod­
ying these assumptions, the query system is able to answer a question about the world using a 
computation on its database. 

An important issue in processing queries is in finding answers quickly. In the context of 
databases this topic is called query optimization. Suppose we wanted to answer the following 
question: 

"How many courses in the Computer Science Department are offered at 11 o'clock 
by graduates of MIT who also teach in the medical school?". (9) 
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In searching for an answer to such a query there are several choices about how to search 
the database. Should the system first identify all of the instructors of 11 o'clock classes in the 
Computer Science Department? Alternatively, it could identify all instructors who graduated 
from MIT or all instructors who teach both at the medical school and in the Computer Science 
Department. Query optimization employs a computational model of a database based on the 
times required by different database operations. Query optimization is concerned with the order 
that different fields are indexed and the size of sets on which various operations are performed. 
Although a discussion of the methods of query optimization is beyond the purposes of this sec­
tion, we notice that such concern with the efficiency of answering a particular query is an import­
ant practical concern. Unfortunately, it is also outside the scope of the strawman KR service. 
Know ledge about query optimization is another example of know ledge we like a know ledge sys­
tem to have but that we would not need to specify. In this case, the knowledge is unsaid and is 
unsayable in the knowledge base because it is handled by the query optimizer, which is a sepa­
rate program. Beyond trivial problems, knowledge about how to make inferences efficiently is 
crucial. 

In summary, inference is carried out by database operations and accessed through a query 
language. Normally, a query language makes certain assumptions about the way that symbols are 
used to represent the world. Knowledge for making inferences efficiently is held in the query 
system. 

Representation and Inference Using Logic Programming 
In this section we give a short introduction to logic programming to show how it fits in this 
sequence of representations with different expressiveness. 

In logic programming a knowledge base is a collection of first-order sentences. They have 
the form: 

'<./ X1 X2 ••• Xn [Pl 1\ ••• 1\ Pm => Pm+l] 

where each P; is atomic and m ~ 0. (10) 

Sentences in this form are called Horn clauses. Hom clauses are more general than sentences in 
a relational database. In the case where m = 0 and the arguments to the predicates are all con­
stants, this reduces to the form of a relational database. 

Figure 1.73 gives some examples of sentences in PROLOG. Each sentence ends with a 
period. The first six sentences are function-free atomic sentences as with the relational database 
examples. They say that "Paige is female" and "Morgan is male" and so on. The next four sen­
tences are sirniliar except that they involve a 3-ary predicate. 

The second to the last sentence defines brother as a derived relation. Roughly, it says 
that "someone is my brother if he has the same parents that I have and he is male and he is not 
me." In comparison with the previous syntax for Hom clauses, PROLOG elides the universal 
quantification symbols, replaces the conjunction symbols with. commas, and replaces the 
implication symbol with :-.The\= means "roughly not equal," although we will discuss some 
subtleties of this later. A PROLOG rule consists of a head and a body, connected by :-. The head 
of the last rule in Figure 1. 73 is brother ( S e 1 f , S i b 1 i n g ) . The head describes what the rule 
is intended to define. The body of the rule is the implied conjunction parents (Self, Mom, 
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female(paige). 
female(mabel). 
female(ellen). 
maleCmorgan). 
male( stan). 
maleCmark). 

parents(mabel, paula, peter). 
parents(stan, paula, peter). 
parents(paige, ellen, mark). 
parents(morgan, ellen, mark). 

1 SYMBOL SYSTEMS 

brother(Self, Sibling) :- parents(Self, Mom, Dad), parents(Sibling, Mom; 
Dad), male(Sibling), Sibling\= Self. 

likesCpolar, Person) :- has_food(Person), pats(Person, polar). 

FIGURE 1.73. Example sentences from PROLOG. 

Dad), parents(Sibling, Mom, Dad), male(Sibling), Sibling\= Self. The body 
describes a conjunction of goals that must be satisfied, one after the other, for the head to be true. 
The body and head in PROLOG are in the reverse order that we defined them for the Horn clause 
in (10). 

In PROLOG, atoms that begin with capital letters are taken to be variables and atoms that 
begin with lowercase letters are taken to be constants. The last sentence means roughly that 
"Polar likes anyone who pats him and has food." In this sentence, polar is a constant corre­
sponding to my neighbor's dog and Person is a variable. (Curiously, English conventions for 
capitalizing names is at odds with PROLOG syntax in this example.) 

The analog in PROLOG to processing a database query is interpreting a PROLOG pro­
gram. Figure 1. 7 4 illustrates some steps in processing the statement brother ( p a i g e , S i b -
l in g), which translates roughly as "Who is Paige's brother?" The process begins by retrieving 
the rule that defines brother and binding S e l f to p a i g e. This value for the S e l f variable is 
kept for the subsequent.matches in the sentence. The interpreter then steps through the clauses of 
the rule. In the first clause, unification binds Mom to ell en and Dad to rna rk. After a few more 
steps, a consistent binding is found and the answer morgan is returned. 

This example is a very simple case. Only one step of backtracking was required, when the 
matching routine binds both Self and Sibling to paige. 

Figure 1.75 gives another example of running the same program, except that a different 
query is answered because a different argument is made constant. In this case, the query 
brother (Self, morgan) translates roughly as "Who is Morgan the brother of?" This ability 
to use definitions in more than one kind of computation is one of the interesting features oflogic 
programming. It exemplifies what is meant when people say that logic programming makes it 
possible to say what a program should compute without saying how it should compute it. This is 
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A Query 
?- brother(paige, Sibling) 

Trace of the matching process 
Match prot her (paige, Sib 1 i ng) against the database. 
This retrieves the definition of brother: 

123 

parents(Self, Mom, Dad), parents(Sibling, Mom, Dad), male(Sibling), Sibling 

\=Self. 

bind SeH to paige. 
Match pa'rents (paige, Mom, Dad) against the database. 
bind Mom to ell en. 
bindDadto mark. 

Matchparents(Sib ling, ell en, rna rk) against the database. 
This fiist match is with parents ( pa i.ge, e 11 en, rna r k) 
bind Sib 1 ing to paige. 

Match rna l e (paige) against the database. 
Thisfails and there is no method for proving male. So the matcher starts to unwind. 

Itlooks for another match to ( S i b l i n g , e 11 en , rna r k) in the database. 
Itmatches parents (morgan, ell en, mark) 
bind Sib 1 j n g to morgan. 

Matc;h rna le ( morgan) against the database. 

Testthatmorgan /=paige. 

Retum:morgan, that is, brother (paige, morgan) 

FIGURE 1.74. Processing a PROLOG query using the program in Figure 1.73. 

also called a "declarative reading" of a logic program. For this query, the program returns the 
answer paige. 

However, reading and executing a program in more than one way is not without costs. A 
PROLOG interpreter proceeds through its generation and backtracking process in a predeter­
mined order. In logic programming languages, common practice is to write programs to be effi­
.cient for one expected use. 

In our example of the brother predicate, it is assumed that the most common computa­
tion is to find the brother of S e l f. The way the predicate is written prescribes how the computa­
tion in that case is carried out as follows. First the Mom and Dad of S e l f are determined. Then the 
system generates candidates in the database having the same Mom and Dad as parents. Then can­
didates that are not male are eliminated. Finally, a check is made that the candidate is not equal to 
S e 1 f. The backtracking interpreter enables the program to answer other questions, but at a cost 
of more search. For example, when brother is asked how to determine whose brother S i b 1 i n g 
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Another Query 
?- brother(Self, morgan) 

Trace of the matching process 

Match b rot her (Self, morgan) against the database. 
This retrieves the definition of brother: 

SYMBOL SYSTEMS 

parents(Self, Mom, Dad), parents(Sibling, Mom, Dad), male(Sibling). 
bind Sibling to morgan. 

Match parents (Self, Mom, Dad) against the database. 
Thefirstmatchiswithparents (mabel, paula, peter). 
bind S e 1 f to m a be 1 . 
bind Mom to paul a. 
bind Dad to peter. 

Match parents (Sib l in g=Mo rg an, Mom=pa u l a, Dad=pete r) against the database. 
This faik The interpreter backtracks. 

Matchparents (Self, Mom, Dad)againstthedatabase. 
Thenextmatchisparents (stan, paula, peter). 
This fails in the same manner as the previous. 

Match parents (Self, Mom, Dad) againstthedatabase. 
Thenextmatchisparents (paige, ellen, mark). 
bind Self to paige. 
bind Mom toe ll en. 
bind Dad to rna r k. 

Match parents(morgan, ellen, mark) againstthedatabase. 
This succeeds. 

Match rna l e (morgan) against the database. 
This succeeds. 

Testthatmorgan /= paige. 
This succeeds. 

Return: paige,thatis,brother(paige, morgan) 

FIGURE 1.75. Another PROLOG query: "Who is Morgan the brother of?'' 

is, it begins by generating candidates for Self that have a Mom and Dad. The process is sound, 
but inefficient. 

Logic programming extends the capability for determining whether a sentence is true 
beyond that of a relational database because it includes instructions for performing inferences 
that can determine the truth of derived relations. Thus, unlike the case of a relational database, 
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some of the knowledge about the order in which to try inferential steps is in the knowledge base 
(database) and under the control of the programmer as expressed by the ordering of clauses. 

In performing its inferences, the PROLOG interpreter makes several assumptions. It 
assumes that unique atoms refer to unique individuals. This assumption is reflected in the way 
that unification works. Obviously, the only constants it considers are those in the database. This 
is the closed-world assumption. It also assumes that something it cannot prove must be false. 
This explains the rationale behind the backtracks in Figures 1.74 and 1.75. This is called a "fail­
ure-as-negation" (FAN) assumption. 

PROLOG is not a complete theorem prover. It is based on a resolution theorem prover for 
Horn clauses. The particular strategy that it uses is a form of linear input resolution. The infer­
ence process is split into two parts: a retrieval part that extracts atomic facts from a database by 
pattern-matching and a search part that tries to use non-atomic Hom sentences to form the infer­
ences. There are many details that could be discussed about how PROLOG goes about deciding 
what clause to consider next and how this relates to more general theorem provers, but discuss­
ing them would take us beyond our current purposes. 

However, it is interesting to note that the kinds of incompleteness of knowledge that logic 
programming can represent are similar to those in relational databases. For example, there are no 
clauses like the following: 

-, male (paige) parents (paige, ellen, mark) v parents (paige, ozma, wizard) 

PROLOG has predicates for NOT and disjunction. However the predicate NOT(B) does not 
declare that B is false. Rather, it tests whether the negated clause can be proven. It succeeds if the 
negated clause cannot be proven. The status of this kind of statement is different from the others 
that we have discussed. For example, its effect depends not only on the contents of the knowl­
edge base but also on the power of the theorem prover. 

On one hand, including NOT in a language undermines its proof semantics. Characterizing 
what inferences are true becomes quite difficult. On the other hand, statements involving not can 
be quite useful for modeling certain kinds of human reasoning about defaults that resist formal­
ization using standard semantics of logic. They allow the language to say "assume x if you can­
not prove otherwise." 

Within PROLOG, negation and disjunction can be used in rules, but they cannot be 
included as ground statements since all ground statements must be atomic. Similarly, there are 
restrictions on the i:- predicate. Different versions of PROLOG treat it differently, but in most 
common ones it can only be used if the terms have already been bound. It succeeds only if the 
terms are different. 

In summary, logical languages express several things. Like a relational database, they 
describe a space of possibilities. This is reflected in focusing on the terms in the database coupled 
with the closed world assumption. We can find all possible candidates for Paige's brother in the 
database. Restricting the kinds of incomplete knowledge in the language limits the work required 
of the inference machinery. Unlike a relational database, logical programming makes it possible 
to represent derived propositions. At the same time, the way that the statements for deriving 
propositions are expressed determines the efficiency of the search strategy for each kind of 
query. Clauses are considered in a predefined order so that logic programs implicitly embody 
expectations about what queries will be asked in terms of how a computation is performed. In 
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likes 

FIGURE 1.76. A simple semantic network. 

other words, the way that a program is written makes some inferences more efficient than others. 
Finally, the inclusion of facilities like NOT can express metalogical knowledge. They make it 
possible to advise the inferential process about how to carry out default reasoning, a concept that 
is not part of standard logic. 

Representation and Inference Using Frame Languages 
We now revisit semantic networks as introduced earlier. Since there is no single language of 
semantic networks, we will concern ourselves with some features that have been common to a 
wide range of frame languages. 

Figure 1.76 presents a semantic network representation similar to ones we considered ear­
lier in this chapter. 

One of the things to notice is that a semantic network provides different ways to handle 
predicates of different arity. Unary relations are called types or classes. They are organized in a 
taxonomy. For example, the relation 

Person(Willy) 

is represented using the is-a link between the nodes Willy and Person. Binary predicates are rep­
resented by arcs. For example, in Figure 1.76, the binary relation meaning "Willy likes football," 
represented in logic by 

Likes(Willy, Football) 

shows up in the semantic network as the arc labeled likes connecting the nodes Willy and Foot­
ball. Binary relations are sometimes called attributes. Higher-order relations are represented by 
creating special objects. For example, the predicate 

Threw(Willy, Ball, Morgan) 

is represented in Figure 1.76 with a special kind of object called a "throw-event." 

1-'--
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Inferences in frame languages about classes take several forms. In the simplest case, all 
members of a class have some common property. The characterization of the property A is given 
at the level of the class class, but is interpreted as being a property of its instances. 

\::f x (is-a (x class) => A(x)) 

We called such reasoning from classes to instances inheritance reasoning. In Figure 1.76, we 
infer that "Willy breathes air" from the facts that Willy is a person, person is a subclass of mam­
mal, and all mammals breath air. By placing an attribute high in a taxonomy, one can allow many 
instances below to inherit that property. This kind of reasoning lends itself to a graph search 
where one starts with the node in question and searches up the taxonomy to find a node defining 
the property. It also lends itself to certain intuitive approaches for default reasoning. For exam­
ple, if nodes at different levels of a taxonomy indicate different values to be inherited, then the 
search process can be used to either specialize or override the values of attributes of nodes at dif­
ferent levels. 

There are other variations on information about inheritance. Predicate calculus provides no 
laiowledge or epistemological primitives for organizing a knowledge base. In contrast, many 
frame languages provide primitives for expressing certain commonly used relations for organiz­
ing the terminology of a KS. These include such relations as subclasses, specifications for 
defaults, and primitives for defining the structure of objects in terms of their parts. These primi­
tives are a beginning of a theory of semantics. 

A simple example suffices to give the flavor of such expressions as they relate to the inher­
itance relations discussed so far. Figure 1.77 defines Plant-Part as a class for large structural ele­
ments of growing plants. 

One of the properties of a plant part is that it has a color. In a frame language, we can indi­
cate that all parts have some color by establishing a description involving a color link from the 
class. This is the link labeled "value specification" in Figure 1.77. That link indicates a closed­
world specification. In particular, it indicates that the color of an instance of Plant-Part must be 
some instance of the Color node and that in the absence of other information we can assume that 
the color of a plant part is brown. In frame languages, such an instance of Color must be a filler 
of this role in an instance of Plant-Part. 

Another node in the figure is the Tree node. The Tree node illustrates some notions for 
structuring inheritance relations. Frame languages incorporating such notions are called struc­
tured inheritance languages. 

The Tree node defines a property of trees called foliage. The notation in Figure 1. 77 is sup­
posed to indicate the following: Trees have foliage. Foliage is a relation indicating a part of a 
tree. The value or filler in a foliage relation of an instance of a tree must be an instance of a plant 
part. Like all plant parts, tree foliage has a color. Its color, however, is limited to red and green 
rather than the full range of colors. Furthermore, the default color of foliage is green rather than 
brown. The dashed links in Figure 1. 77 are intended to suggest this web of relations, so that the 
plant-part description for foliage of trees is related to the general description of plant part and 
overrides some of its elements. 

This richer set of links conveys an important shift in style of representation. This style rec­
ognizes the awkwardness of representing objects, especially objects with structure, in terms of 
flat propositions associated with a single node. In this style, an individual is represented by a 
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Plant-Part 

Color: 

., 

: Value specification 

Red 

Freq: ... 

' 

(a color) <- Value specialization 
- ----------------------------------' Default: Brown ' ' 

/ 

' is-a ' 
' 

' 
Trees ' 

' 
' 

Foliage: (a plant-part) ' 
' 

Color: {Red or Green} 

Default: Green 

1 ! SYMBOL SYSTEMS 

-

Part-Relations 

Relation 

type 

FIGURE 1.77. Example of structured inheritance in a frame-based representation language. 

cluster of nodes where some nodes and links, primitive to the interpreter, are used to define the 
mutual roles. Within such representations, single is-a links are inadequate for capturing the many 
relations between the bundled parts. The richer set of connections opens up the possibility of spe­
cializing subconcepts of generic ones by restricting some of the subparts of the description 
embodied by the generic concept. 

With the usual but important caveats about efficiency of inference and reasoning with 
incomplete knowledge, the meaning of everything we have said here about frame languages is 
similar to what we said about relational databases and logic programming in that it can be char­
acterized by predicate calculus statements. What is extra is the set of knowledge primitives and 
guidelines for representation. Such guidelines are sometimes called the epistemological level for 
characterizing frame languages because they introduce primitives for knowledge used by the 
interpreter. In practical knowledge base tools, which emphasize the process of building KSs 
incrementally, such characterizations are also useful for limited forms of type checking as new 
concepts are added to the KS. 

The appeal of the graphical nature of semantic networks has led to many forms of reason­
ing that are not well understood. Historically, developers of semantic networks have been lax in 
characterizing the semantics of the representations. As many formalists have lamented, it is 
unfortunately much easier to develop algorithms that seem to reason over structures of a certain 
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kind than it is to characterize the behavior of those algorithms carefully or to justify the reason­
ing that is carried out. 

Referring back to our earlier examples of a relational database and logic programming, 
frame languages are intermediate in terms of how they embody inference. As with relational 
databases, inference is carried out by an external interpreter that makes various assumptions 
about the network. Unlike logic programming, there is no way to express derived propositions. 
The main example of inference for semantic networks is reasoning about inheritance of proper­
ties. As in the case of NOT in logic programming, computations of default values have provided 
examples of reasoning that are said to model human reasoning but that are not characterized eas­
ily in terms of truth or proof semantics. 

1.4.6 The Symbol Level and the Knowledge Level 

The what-to-how spectrum ranks programming languages in terms of expressiveness. Programs 
written in languages at the "how" end of the spectrum describe what to do in many, simple steps. 
At the "what" end of the spectrum, languages provide integrated sets of powerful primitives. 
Because many of the details of what to do are represented in the interpreter, the programs written 
in these languages are shorter. 

A representation system is expressive to the extent that it makes it possible to leave things 
unsaid, both in the language and in queries to the representation system. A striking aspect about 
this characterization of expressiveness is that the prescription of what an interpreter can bring to 
bear to process either a program statement or a query is extremely open-ended. Interpreters can 
be categorized according to what they bring to bear in processing queries. 

In the design of knowledge systems, it is useful to distinguish between two levels of analy­
sis known as the symbol level and the knowledge level. The symbol level is concerned with 
manipulating patterns of symbols. It is not concerned with what the symbols designate in an 
external world, that is, it is not concerned with their reference semantics. The knowledge level is 
concerned with particular tasks and, for that reason, with what symbols mean. At the knowledge 
level we are concerned with what knowledge is needed to carry out a task and how that knowl­
edge can be used. 

Most of the examples of expressiveness in this section have been about the symbol level. 
Analysis at the symbol level is concerned with the structural complexity of symbol structures. It 
is concerned with space and time complexity of algorithms over symbol structures, independent 
of what the symbols mean. 

The advantages of expressiveness provided by pattern-matching languages are entirely due 
to operations at the symbol level. That is, the knowledge that pattern-matching interpreters use to 
make programs simpler is all about the symbols themselves. The interpreters know about pattern 
matching, they laiow about the extraction of parameters during matches, they know about substi­
tuting constants for variables, and they know about backtracking search. A theorem prover, a pat­
tern matcher, or a query-processing program could be said to have knowledge, but what they 
know is about the structure of the symbols that they manipulate. They know about efficient 
indexing of their tables. They know how to reliably traverse a graph. They can carry out a search 
for solutions using such information. 

When we analyze the complexity of various kinds of algorithms over graphs and relate 
their running time to properties of the graphs, we are working at the symbol level. Symbol-level 
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analyses are of broad interest in computer science. Similar computational phenomena arise when 
similar procedures run over similar symbol structures. 

The knowledge that an interpreter may use to interpret a statement in a program, represen­
tation language, or query, however, can also include knowledge and assumptions about the 
world. In our examples of the expressiveness of representation languages, we referred to closed­
world assumptions and failure as negation assumptions. These examples are at the knowledge 
level because they are concerned with what symbols mean. 

More broadly, an interpreter can gain further expressive leverage in query processing by 
effectively solving problems. In this way it moves beyond what we call a representation system 
toward what we call a knowledge system. The knowledge employed includes methods for find­
ing solutions and knowledge for guiding that search. Chapter 2 discusses problem solving and 
the use of search methods as ways to find solutions. An analysis of a task at the knowledge level 
characterizes the use of world knowledge in terms of its effect in guiding the search of a space of 
possible solutions. 
. Looking further ahead, Chapter 3 discusses fundamentally what knowledge is and where it 
comes frolJl. It extends our discussion about the construction of knowledge systems beyond the 
symbol-level manipulations in the computer to the social situations in which knowledge systems 
are created and used. 

1.4.7 Summary and Review 
In this section we considered the expressiveness of programming and representation languages. 
One indicator of expressiveness is what things need not be stated explicitly. In pattern-matching 
languages, the simplicity of the programs results because some operations are performed auto­
matically by the interpreter of the language. Some of the complexity is factored out of the pro­
gram and placed in the interpreter. In several example programs we saw how the expression of 
the differentiation program was made simpler when many of the details of graph search, parame­
ter extraction, and substitution were handled by the interpreter of the pattern-matching language. 
This approach is called metalevel factoring. 

Representations differ what they can express easily and the things they express at all. For 
example, all of the representations we considered were less capable than predicate calculus in 
expressing certain kinds of incompleteness of knowledge, such as ground literals involving 
negation and disjunction. 

In the relational database example, the language is equivalent to function-free terms with 
constant arguments and the interpreter is the query system. We saw that a practical query lan­
guage actually depends on additional assumptions, such as closed-world assumptions, and also 
that it needs to be concerned about the efficiency of query processing. 

In the logic programming example, the representation is in terms of Horn clauses and the 
interpreter is that for the language. We required closed-world assumptions as well as failure-as­
negation assumptions for use in the search for solutions. 

In the structured inheritance networks, we saw that epistemological primitives can be used 
to organize clusters of nodes into larger coherent structures. These languages provide prescrip­
tions for organizing representations, including specialized closed-world assumptions and knowl­
edge about defaults. This idea has been extended to the design of specialized representation 
shells for specific tasks and to the approach of building large knowledge bases with many poten-
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tially reusable representations and compositional primitives. Such approaches are on the edge of 
current research. 

Exercises for Section 1.4 

Ex. 1 [00] Pattern Matching. Assume the following symbol structures: 

II -, Ex. 2 

(and (likes Fido Bonzo)(feather-brained Fido)) 

(and (likes Rover Lucky)(feather-brained Lucky)) 

(and (likes Spot Sperald)(feather-brained Lucky)) 

(or (likes Sport Dizzy)(feather-brained Dizzy)) 

What values would be assigned to the pattern variables by matching the following pattern 
against each of the symbol structures? 

(and (likes ?dog ?person)(feather-brained ?person)) 

Hint: Some of the expressions do not match at all. 

[15] Common Sense and the Database. Consider a database of family relationships. Sup­
pose there are predicates for brother, father, mother, sister, and surname. For example, the 
database may contain several thousand facts like the following: 

(brother Joe Mike) 

(father Joe Pete) 

(brother Mike Azel) 

(father Fred Sam) 

(surname Mike Smith) (surname Sam Stevens) 

(brother Ed Joe) 

_ (father Andy Nick) 

You may assume for the purposes of this exercise that the personal names used in these 
relations are unique identifiers for individuals. In addition, there are some rules for infer­
ring surnames: 

Rule 1: "A father and a son always have the same surname." 
If (father ?fath-1 ?son-1) and (surname ?fath-1 ?sur), 

then (assert (surname ?son-1 ?sur)) 

Rule 2: "Two brothers always have the same surname." 
If (brother ?bro-1 ?bro-2) and (surname ?bro-1 ?sur), 

then (assert (surname ?bro-2 ?sur)) 

(a) In what way is rule 1 weaker than the common-sense meaning of the corresponding 
natural language statement? Discuss briefly. 
(b) Does rule 2 have the same problems as rule 1? How does the answer to this question 
depend on the properties of the pattern-matching process of the rule interpreter? 
(c) Give two additional rules similar to the ones above that would extend the situations 
for inferring the surnames of brothers, fathers, or sons. Briefly discuss any relevant proper­
ties of the matching process of the rule interpreter. 
(d) Would it be appropriate to add a notation saying that the brother relation is commuta­
tive? (Hint: This is a trick question. The given database is missing entries for some crucial 
kinds of people in families.) 

Ex. 3 [CD-00] Simulation versus Deduction. After staring at several production-rule programs, 
Professor Digit exclaimed, "Eureka! Simulation and deduction are just the same thing! All 
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of these programs use production rules and some control structure or other! It's all just if­
then or pattern matching." Do you agree with Professor Digit? Explain briefly. 

Ex. 4 [L-05] Representation Using Predicate Calculus. Sometimes the naive translation of state­
ments into the predicate calculus can be misleading. Consider the following statement: 

Ex.S 

Every person knows someone who has a feather-brained dog. 

(a) Represent this statement in predicate calculus. 
(b) Is the logical interpretation of the statement realistic? Give an example of what else a 
program would need to know to make realistic use of such a statement. 

[!-15] Control in Production Systems. In production-rule systems, it often happens that 
more than one rule matches the data in the working memory. When this happens and it is 
desired to fire only one rule, some means must be found for selecting among the rules. The 
set of rules that match the data at a given cycle is called the conflict set. A method for 
choosing which rules in a conflict set to fire is called a conflict-resolution strategy. 

Suppose the following set of rules is used for recommending choices of food for 
patrons in a restaurant. The left sides are conjunctions of terms that must be in the memory, 
and the right sides list foods to be recommended. 

For example, rule 3 can be translated roughly as "If it is breakfast time and the patron 
is overweight, then recommend cereal." 

rule-1: breakfast-time -> (eggs bacon) 
rule-2: breakfast-time hungry -> (eggs bacon waffles) 
rule-3: breakfast-time overweight-> (cereal) 
rule-4: breakfast-time hurried -> (juice toast jelly) 
rule-5: breakfast-time overweight hungry-> (fruit cereal) 
rule-6: breakfast-time kids -> (milk pancakes) 
rule-7: breakfast-time runner -> (yogurt fruit) 
rule-8: breakfast-time kids hungry -> (pancakes eggs juice) 
rule-9: breakfast-time hungry runner-> (fruit cereal) 
rule-10: kids -> (pizza) 
rule-11: lunch-time kids -> (burgers fries shakes) 
rule-12: lunch-time overweight -> (salad) 
rule-13: runner -> (sportDrink) 

(a) A rule is in the conflict set if all the terms on the left side of the rule are present in the 
working memory. What is the conflict set for each of the following cases? 

working memory-1: kids 
working memory-2: hungry runner 
working memory-3: lunch-time 
working memory-4: lunch-time kids 

Note: The conflict set can be large or small, depending on how many rules match. Remem­
ber that every element on the left side of the rule must match an element in working mem­
ory. 
(b) Suppose instead that the interpreter uses a "most specific rule" strategy. Again, the 
conflict set is made up of all of the rules that match the data. The winning rule is the one 
that matches the most terms in the data. In the event of a tie, the earliest rule in the 
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Ex.6 

1111 Ex. 7 

sequence dominates. For each of the following cases, give the conflict sets, the match 
scores, and the winning rules. 

working memory-1: kids 
working memory-2: breakfast-time hungry kids 
working memory-3: hungry runner 
working memory-4: breakfast-time seniors 

(c) Suppose that we change the interpreter of the rules so each cycle proceeds in two 
passes. First all of the rules are matched against all of the data. Then the most specific 
rule/data match (determined by the maximum number of matching terms) is identified and 
that rule is fired. After a rule fires, the data it matched are removed from the working mem­
ory and the process is repeated. In the event of a tie, the rule with the lowest index numbers 
is done first. Conflict sets are recomputed at each cycle. Briefly, describe the actions of the 
interpreter given the following initial working memory. 

working memory: breakfast-time kids hungry runner 

[1 0] Rule Interpretation Example. Use the traffic-light controller rules in Figure 1.62. 
(a) Describe the behavior of the traffic-light system when there is no traffic on the farm 
road. (Focus on the case where there has been no traffic there for a long time.) 
(b) Describe the behavior of the traffic-light system when the farm road and the highway 
are both crowded with traffic. 
(c) Describe the behavior of the traffic-light system if the sensor is jammed, so that it 
always indicates "car-waiting" even when there is no traffic on the farm road. 

[!-20] Forward and Backward Chaining. When the firing of rules is driven by matching the 
left sides of the rules against data, we say that the rules are driven by forward chaining. 
Consider the following rules: 

(Rule-1 
(if (mother ?mom ?kid)) 
(then (parent mom kid))) 

(Rule-2 
(if (father ?dad ?kid)) 
(then (parent dad kid))) 

( Rul e-3 
(if (and (parent ?gran ?par) 

(parent par ?kid))) 
(then (grandparent gran kid))) 

(Rule-4 
(if (and (brother ?unc ?mom) 

(mother mom ?kid))) 
(then (uncle unc kid))) 

(Rule-5 
(if (and (brother ?unc ?dad) 

(father dad ?kid))) 
(then (uncle unc kid))) 
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(Rule-6 
(if (and (sister ?an ?mom) 

(mother mom ?kid))) 
(then (aunt an kid))) 

(Rule-? 
(if (and (sister ?an ?dad) 

(father dad ?kid))) 
(then (aunt an kid))) 

1 SYMBOL SYSTEMS 

(a) Suppose the interpreter fires the rules using forward chaining. The rules are matched 
against the data in the working memory. When more than one rule matches, the first rule is 
fired first. The interpreter uses an audit table to keep track of which rules have been fired 
on which data. Each rule is fired exactly once on each combination of matching data. More 
specifically, every combination of data is considered for each rule and no rule is fired more 
than once on the same data. When a rule is fired, the then-part adds new data to the work­
ing memory which may then be processed by other rules. The process stops when no more 
rules match any new data. 

Write down the resulting data given that the working memory initially contains the 
following: 

(mother Mary Ellen) 
(father Virgil Ellen) 
(brother Karl Ellen) 
(sister Paula Ellen) 
(sister Julie Ellen) 
(mother Ellen Paige) 
(mother Ellen Morgan) 
(father Mark Paige) 
(father Mark Morgan) 
(brother Eric Mark) 
(brother Mike Mark) 

(b) Considering what you observed in part (a), is the answer sensitive to the order in 
which the rules are fired? Explain briefly. 
(c) When the frring of rules is driven by matching the right sides of the rules against 
goals, we say that the rules are driven by backward chaining. For example, we could use 
backward chaining on the rules to flnd all of Morgan's aunts. We would first find the rules 
that conclude that somebody is an aunt, in this case, rules 6 and 7. Proceeding frrst with 
rule 6, we examine the left side. If the rule is satisfied, we can apply the rule at once. Oth­
erwise, we can make new goals from the left side and try again. In this case, we can infer 
that Paula and Julie are Morgan's aunts. 

Show how backward chaining can be used to determine Paige's uncles starting from 
the initial state of the working memory. 
(d) Give the trace of backward chaining for detennining Paige's grandparents. 
(e) In backward chaining to compute Paige's grandparents, and expanding the clauses in 
rule 3, 

(and (parent ?gran ?par) 
(parent par Paige))) 

why is it probably more efficient to consider the clause about Paige's parents first? 
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(f) Briefly, what would happen if we use this approach to determine Ellen's grandpar­
ents? 

Ex. 8 [! -1 0] From Explicit Representation to Machine Learning. Upon understanding the opera­
tion of a universal Turing machine and the von Neumann architecture, Professor Digit was 
struck by a sense of profundity. He gathered his graduate students together and announced 
that there were three main principles that should forever change the way they view compu­
tation and machine learning: 

o Symbol structures are dynamic and changeable in physical symbol systems. 
o Programs are prescriptions for changing symbol structures. 
o Programs themselves are represented by symbol structures and can be inter­

preted by other programs. 

From these, Professor Digit concluded that we have the key for building learning sys­
tems. Programs could just reason for a while, see how they are doing, and then use symbol 
processing to modify themselves to be better. Programs could be self-organizing, using the 
powerful pattern-matching ideas discussed in this section. For example, when a pattern in a 
rule (the manipulating rule) matched part of another is that simple! 

Do you agree? Explain briefly. 

Ex. 9 [CD-CP-16] "Predicate Calculus as Assembly Language." John Sowa sometimes remarks 
that predicate calculus (PC) is to a representation language (RL) what assembly language 
(AL) is to a high-level programming language (HL). Noting that the analogy is not exact, 
he observes that characterizing what a representation language means in terms of predicate 
calculus requires an increase in verbosity not unlike the increase in the size of a program 
description when a program in a high-level language is compiled. This exercise explores 
some questions inspired by this analogy. 

In the following, RL, AL, and HL all correspond to classes of languages. For the pur­
poses of discussion, choose whatever instances of these classes are appropriate. 
(a) What semantics is relevant for comparing PC and RL? What semantics is relevant for 
comparing AL and HL? 
(b) What expectations does the analogy about HL:AL create about the relative computa­
tional efficiencies of PC and RL? Briefly explain how the analogy is misleading with 
regard to efficiency. 
(c) What things can you express in AL that you cannot say in HL? What kinds of things 
can you say in HL that you cannot say in AL? 
(d) What things can you express in PC that you cannot say in RL? What kinds of things 
can you express in RL that you cannot say in PC? 

Ex. 10 [05] Basic Concepts. Determine whether each of the following statements are true or false. 
If a statement is ambiguous, explain your answer briefly. 
(a) True or False. Pattern-matching languages tend to provide simple expressions of pro­
grams because the detailed operations of matching, parameter extraction, substitution, and 
backtracking need not be explicitly described in the program. 
(b) True or False. Requiring that it be possible to tell whether a sentence follows from a 
database of sentences is intractable even if we limit the class of sentences that can be 
expressed and tested. (Note: The sentence tested and the sentences in the database are not 
arbitary but are limited to some restricted class. The question is whether proof must be 
intractable even so.) 
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(c) True or False. Failure as negation is seldom used as a policy in logic programming 
because there is no fixed upper limit on the amount of time needed to construct a proof. 
(d) True or False. Hom clauses are more general and expressive than the atomic senten­
ces used in a relational database. 
(e) True or False. Compared with logic programming languages, structured inheritance 
languages tend to be strong on expressing inference and weak on providing epistemologi­
cal primitives. 

1 . .5 Quandaries and Open Issues 
This chapter concentrated on symbols, symbol structures, and physical symbol systems as funda­
mental concepts for understanding knowledge systems. In this section, we step back from this 
broad development to ask how our attitudes about symbols and traditional formal systems can be 
misleading. We consider results and speculations from cognitive science and philosophy. We 
briefly discuss theories of cognition that build upward from nerves and others that build down­
ward from intelligent agents. These theories enrich our perspectives about the role of symbols in 
both com~utation and communication. 

The Physical Symbol System Hypothesis, Again 
We begin our consideration of open issues with the hypothesis with which we opened this chap­
ter, the physical symbol system hypothesis by Newell and Simon (1975). 

The Physical Symbol System Hypothesis. A physical symbol system has the neces­
sary and sufficient means for general intelligent action. 

By this, Newell and Simon meant that an analysis of any system exhibiting general intelligence 
would show that the system is a physical symbol system and that any physical symbol system of 
sufficient complexity could be organized to exhibit general intelligence. By general intelligent 
action, they meant the same order of intelligent and purposeful activity that we see in people, 
including activities such as planning, speaking, reading books, or composing music. 

The hypothesis proposes that intelligence follows from the organization of physical sys­
tems and that it obeys natural laws. It also suggests that human intelligence follows directly from 
our organization as physical symbol systems and that, in principle, it is possible to build artifi­
cially intelligent systems by creating symbol structures that have the right properties. 

Throughout most of this book, we skirt around the question of what constitutes "intelli­
gence." This issue leads to many debates within artificial intelligence, but the arguments have 
tended to be rather sterile in the context of knowledge systems, where the focus is on the con­
struction of systems with task-specific performance criteria. 

Within AI the hypothesis has received a mixed reception. Some researchers consider it 
obvious and tautological, given that physical symbol systems are capable of manipulating and 
interpreting symbols. They believe that mind is an emergent phenomenon from the right kind of 
computation. Others find the hypothesis fundamental, but not obvious and potentially wrong. 
Another argument is that the physical symbol hypothesis is vague and trivial. It begs the import­
ant questions of just what kinds of organization are necessary for intelligence, and what kinds of 
mechanisms are needed for processing the symbols. Supporters of this view argue that the es-
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sence of intelligence is in the details. They argue that vague hypotheses are of little use scientifi­
cally because they are not testable by experiment. Still others consider the hypothesis circular, 
turning on definitions of symbol, action, and intelligence that preclude normal kinds of scientific 
testing. 

One of the most extreme positions on this was presented by Rodney Brooks when he 
argued that intelligent systems need not have representations (Brooks, 1991). Brooks' paper was 
based on ideas explored building simple robotic creatures called "insects," "mobots," or 
"animats." He argued that AI has relied too much on the study of representations. He proposed an 
approach wherein increases in functionality come from a layering of systems, each of which con­
nects perceptors to effectors without symbolic intermediaries. In the same issue, Kirsh (1991) 
argues that the potential of Brooks' seemingly symbol-free approach is overstated and that the 
example systems embody symbols anyway. 

The status of the physical symbol system hypothesis now is like the status of the axiom of 
choice before set theory was made rigorous. For many years, set theory was informal. Its theo­
rems were considered obvious and not worthy of careful attention. Then, some puzzling exam­
ples were found in strangely constructed infinite sets. This led to the formalization of the seem­
ingly, ingenuous axiom of choice in mathematics. This axiom says that the Cartesian product of a 
nonempty family of nonempty sets is nonempty. Restated more simply, given a set, it is possible 
to select an element from it. At first nobody recognized that the axiom was needed. Then, after 
the axiom was made explicity, it was not at all clear what its consequences were. Set theory now 
includes branches of study with and without this axiom. In just this way, research on artificial 
intelligence now debates whether symbols are necessary for intelligence. 

The debate about the role of symbols takes place in the context of models of mind. Since 
the time when he first proposed the physical symbol system hypothesis, Newell and others have 
gone on to develop much more elaborate hypotheses and models of mind. Although reviewing 
these is beyond the scope of this section, the interested reader is referred to Newell, 1991. The 
next few sections show how these debates are concerned both with the nature of intelligence and 
the nature of symbols. 

Symbols in Natural Minds 
Symbols in computer languages and memories are compact, discrete markings. Critics of compu­
tational models of cognition have argued that because symbols in computer systems are digital, 
they are irrelevant to the operation of memories in living brains. Our concern is with the con­
verse. How do studies of brains or memory offer insights about the design of knowledge sys­
tems? 

At the time of this writing, progress in understanding how memory in a brain works has 
been quite limited. Experiments on the biological mechanisms of memory have focused on ani­
mals with extremely simple nervous systems. These experiments study small parts of small ner­
vous systems and raise many new questions. Are the mechanisms for memory in one part of the 
nervous system the same as mechanisms for other parts? What storage and retrieval mechanisms 
are universal across different species? Are the same mechanisms used for short- and long-term 
memories? 

Beyond the issue of how memories work are larger questions about how minds and brains 
work. The organization of brains and nervous systems is being studied on many fronts. Within 
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that context, the most crucial property of symbols is their use in causing action at a distance in. 
space or time. Many kinds of actions are possible, such as triggering a specific external activity 
by the symbol system or evoking larger symbol structures. Symbols can cause action at a dis­
tance in space because they can be copied and transmitted to distant processors. Whenever they 
are presented, symbols cause a processor to carry out a reproducible action. Symbols can cause 
action at different times because they can be stored in memories and recalled for later use. This 
"action at a distance" property explains how memories stored in one part of a brain can be used 
to cause actions, controlled by a distant part of the brain. 

The biological memories studied so far employ local, chemical, and physical changes dur­
ing learning. Chemical traces of brain activity also provide data on how different areas of the 
brain have specialized functions; detailed timing studies of linguistic and problem-solving activ­
ities provide data on how much parallelism must be employed for various mental tasks. Combin­
ing these kinds of data for a unified understanding of brain function is a long way off. 

Connectionism, Signals, and Symbols 
Most of o,ur discussion of the operation of physical symbol systems was based on architectural 
concepts from Turing and von Neumann machines, in which the processor is separate and dis­
tinct from the memory that retrieves symbols, interprets them, and causes operations to be car­
ried out. In these models memory is a passive structure, capable of storage and retrieval but little 
else. Inspired by models of neural networks, there is an active and vigorous school of thought in 
cognitive science called connectionism that challenges these basic assumptions about symbols 
and information processing. Connectionists argue that von Neumann computational models are 
irrelevant to the operation of a brain. 

Connectionist systems are networks of large numbers of simple but highly interconnected 
units. Each unit is assumed to receive signals along its input lines, either excitatory or inhibitory 
or both. Typically the individual units do little more than add the signals, perhaps combining 
them with an internal state. The output of a unit is a simple, nonlinear function, such as a thresh­
old function of the sum. The connectionist framework gives us "distributed symbols," colorfully 
described as "symbols among the neurons." These distributed symbols have many of the essen­
tial properties of the symbols described in this chapter: They are material patterns, recognizable 
by complicated processors. However, connectionism mixes memories and processors together so 
much that one cannot draw a neat boundary between them. Connectionism challenges the notion 
that memory and processors are separable. 

One mystery in cognitive models is how it is that slow nerves can compute so quickly. The 
massively parallel connectionist models have much appeal in explaining this. Related mysteries 
potentially drawing on massive parallelism include how people can recognize enormous num­
bers of patterns and how brain function continues without catastrophic failure even when the 
brain has sustained damage. 

How do new symbols and expressions acquire their meanings? Connectionists look toward 
repeated patterns in the orderliness of the world and in the repeated structure of routine tasks. In 
this view, the meaning of symbol structures is intimately tied to their creation and use. From the 
beginning, symbols are linked to perception and action. 

Agre and Chapman (1988) have argued that information-processing theories of intelli­
gence presuppose a substantial and implausible amount of mental processing machinery. For 
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example, they propose an "indexical functional" theory of representation rather than having 
unique symbols that stand for unique objects in the world. lllustrating their ideas in a video game 
player, they would have an indexical symbol standing for "the bee on the other side of the block 
in the direction I am moving" rather than having a bee- 064 symbol. Roughly, the patterns of 
interaction between the symbols reflects the patterns of interaction between the observer and the 
environment. This moves much of the inferential load into the representation and even into the 
environment. By defining terms indexically, it may also reduce the number of symbols needed. 

Fodor and Pylyshyn (1988) argue that a crucial point of difference between connectionist 
and classical models of mind is that the meaning of a unit in a connectionist account is not a rule­
based composition of the meanings of the units to which it is connected. In this chapter we saw 
that this reductionist view that the meaning of an expression is composed from the meanings of 
its parts is a property of truth semantics of most representation languages such as the predicate 
calculus. It is also a property of denotational semantics that describe the operation of program­
ming language, and it is useful in explaining concepts such as recursion. 

In a connectionist graph, a link between unit x and unity means that states of node x caus­
ally affect states of unity. Fodor and Pylyshyn argue that this particular aspect of connectionism 
disqualifies it from providing a complete basis for a theory of cognition. They favor a classical 
information-processing model. For example, they observe that people can understand sentences 
that they have never heard before and that are structured quite differently. Similarly, people carry 
out wide classes of inferences that they have never made before. In the information-processing 
model, much of the power comes from pattern matching and recursive processing of symbol 
structures. In the grammar case, rules of grammar and rules of interpretation can be applied 
recursively in processing long (previously unheard of) sentences. Such recursive processing 
seems essential to the process and is missing from the connectionist account. 

For Fodor and Pylyshyn, the connectionist models are more compelling for explaining 
low-level perceptual processes than high-level symbol manipulation processes in intelligent sys­

. terns. From the perspective of knowledge systems, we would like to understand the computa­
tional limitations of models built in either way. This is an area in which much basic work remains 
to be done. 

Although the physiological elements of a brain can be reduced to smaller elements, the 
basic notion that the meaning of the whole is a function of the meanings of the parts becomes 
less tenable as the parts become as small as individual nerve cells. More important in this realm 
are patterns of interactions. Marvin Minsky addresses this issue extensively in his book The Soci­
ety of Mind. He describes many kind~ of mental phenomena, processes, and possible constructs. 
One interesting aspect of Minsky's theory is that its elements range from being implementational 
in nature to being psychological in nature. In this vein, Minsky sees "symbolness" as a matter of 
degree rather than as a sharp issue. Comparing connectionist and symbolic formalisms for com­
puting in terms of their capabilities and computational resources, Minsky (1990) argues that 
mental architectures need both kinds. 

This notion that representations can have different degrees of a symbol-like character is 
also in line with computational models of perception. One of the ubiquitous concepts in research 
on perception is the signal. Examples of signals include acoustic waveforms, visual images, or 
the output of various other sensor arrays. Signals have extents in space and time. We can talk 
about changes in a signal over a second and can analyze the structure of a signal across both large 
and small intervals. Signal processing includes developing analyses of signals and various ab-
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stractions of them. For example, we can say that a signal has a particular frequency in some 
interval, or that its amplitude is increasing, or that it is periodic. Analyses of one-dimensional 
signals on time can attribute particular properties to arbitrary points in time; analyses of two­
dimensional images can attribute abstractions to arbitrary points in a plane. When an abstraction 
is attributed to all of the points of a signal, the abstraction itself is said to be a signal-like repre­
sentation. We can reasonably ask whether mental representations are more like signals or more 
like symbols. 

Within architectures of cognition, it is now common to refer to subsymbolic processing. As 
experimentation with neural networks continues, such terminology and methodology will proba­
bly find its place in the design of knowledge systems. 

Cognition and Levels 

It would be nice to have theories of cognition that explain mental activities all the way from the 
firing of nerves to emotion and reason. Returning to our discussion of the ongoing dialog 
between information processing psychology and connectionism, Fodor and Pylyshyn suggest 
that instead of providing a comprehensive architecture for cognition, connectionism may provide 
a computational account of how nerves work, or rather the physical mechanisms of memory and 
low-level computation. Thus, although connectionist architectures may be unsuitable as a com­
plete basis for explaining cognition, they are appropriate for implementing other levels of cogni­
tion. Many cognitive scientists suggest that systems should be understood in terms of levels of 
cognition and representation. Levels also lead to insights about different kinds of symbols, what 
they are used for, and how they fit into different kinds of theories. 

Cognitive scientists characterize two levels of description above the raw physical encod­
ings of memory. The memory itself is called either the physical level or the biological level. 
Above that Newell distinguishes the symbol level from the knowledge level (Newell, 1982); 
other cognitive scientists have used the corresponding terms functional level and semantic level 
(Pylyshyn, 1984), respectively. The symbol level is a description in terms of symbols (tokens and 
terms), expressions, and the deterministic interpretation of them. A symbol theory does not refer 
to the physical properties of a system but only to the way that the system operates. It is con­
cerned with how the behavior of a system can be explained in terms of processes on symbols. In 
representational theories of mind, a system's behavior is explained not only in terms of the sen­
sory inputs from its immediate environment, but also in terms of its internal state encoded in 
symbols. The symbol level is concerned with the manipulation of these symbols. 

In theories of intelligence, the knowledge level is concerned with the representational con­
tent of the symbols. The knowledge level describes systems as agents, having goals, actions, and 
physical embeddings. An agent selects actions to achieve its goals. Newell's knowledge level is 
intended for predicting and understanding behavior without having an operational model of the 
processing actually done by the agent at the symbol level and below. To predict the behavior of 
an agent at the knowledge level, an observer ascribes to the agent principles of rationality. 
These principles provide constraints on the role and interpretation of symbols, but they are a 
much less complete description of behavior than a problem-solving process. More detailed 
accounts of behavior are possible at the symbol level. For example, at the symbol level one could 
predict which state-to-state transitions are likely to occur in a system, corresponding to rational 
decisimrs. Methodological approaches based on taking protocols of people solving problems and 
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comparing these with computer traces (Newell, Simon, & Shaw, 1963) have shown how com­
puter programs can predict and model in considerable detail the steps that human problem solv­
ers take in solving problems. Such experiments provide evidence supporting the validity both of 
computational models of problem solving and for representational theories of mind. 

The terms symbol level and knowledge level are used somewhat differently for knowledge 
systems. In the context of knowledge systems, we use the term knowledge level to refer to analy­
ses of a task in terms of the knowledge that is needed for a task and how it is used. We use the 
term symbol level to refer to physical representations. 

The Semantics of Existential Quantifiers 
Terms in natural language routinely refer to states of affairs that are contrary to fact. The follow­
ing phrases are all problematic in the analysis of their designations: "the current king of France," 
"the Wizard of Oz," "justice," "the common cold," "the unexplored regions of Africa," "the way 
things could have been," and "the average American." A well-known aphorism, attributed to 
Korzibski, comes to mind: "The map is not the territory." One should not confuse symbols with 
their designations. Linguists collect such odd examples of referring expressions. These examples 
reflect issues that a coherent theory for reference semantics must deal with. A larger set of such 
examples gathered from many sources can be found in Chierchia and McConnell-Ginet, 1990. 

Graeme Hirst (1989) has analyzed such examples in a challenge to the semantics of exis­
tential and universal quantifiers in logic as used to represent the meanings of sentences in natural 
language. His examples range from sentences about things that aren't there ("I don't own a 
dog"), events that never happened, existence ("the existence of carnivorous cows"), fictional 
characters, things at different times, and things that might have been. His examples show that if 
we want a reasonable account of common sentences about existence, nonexis~ence, and nonexis­
tent objects then we need more than one notion of existence. 

Hirst's work makes it possible for us to see more clearly the assumptions behind our for­
mulations of truth and proof semantics. In our discussion in this chapter about different kinds of 
semantics, we saw how some linguists use formallangU.age semantics to represent the meaning 
of sentences. Hirst turns this around. He notices that most logics and knowledge-representation 
languages base their semantics of universal and existential quantifiers on the ontological assump­
tions of Russell and Quine. These examples show that these semantics are inadequate for captur­
ing subtleties of meaning in natural language. 

How Is Communication Possible? 
The interaction between natural language and thought has been a topic of interest of many years. 
In the 1930s, Benjamin Whorf, an insurance company fire inspector, teamed up with an anthro­
pologist Edward Sapir to explore the influence of language on thought and culture. 

According to legend, Whorf developed his interest in language when he saw how fre­
quently verbal misunderstandings led to fires. For example, he noted that people smoke and then 
thoughtlessly toss their spent matches into "empty" gasoline drums. Because gasoline fumes are 
highly flammable, empty does not mean safe. 

The Sapir-Whorf hypothesis holds that language molds the form and texture of thought. 
As Whorf puts it, "We dissect nature alop.g lines laid down by our native tongues .... We cut 
nature up, organize it into concepts, and suscribe significances as we do, largely because we are 
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parties to an agreement to organize it this way-an agreement that holds throughout our speech 
community and is codified in the patterns of our language." 

Language influences thought in several ways. It provides the words we use for expression, 
it determines what is routinely included in sentences, and it determines what is easy and difficult 
to express. This highlights the role of the social context in an analysis of the meaning of lan­
guage. Children both learn about the environment and learn language in a social setting. Lan­
guage shapes learning and perception and arguably thought. 

When we communicate with each other through language, we routinely leave things out in 
the interest of efficiency in speech. This is why communication requires more than translation to 
internal symbols. To communicate effectively one needs not only only to translate or change the 
form, but also to fill in the missing information, to make plausible inferences, to integrate new 
knowledge with previous knowledge, and to signal understandings and possible misunderstand­
ings with the other communicants. 

There are deep questions about how these processes might actually work. What is really 
happening when two people believe they have achieved mutual understanding about the mean­
ing of a word and how do they create a basis for convergence? Faced with such questions, Lakoff 
and Johnson studied examples of ordinary conversation. Lakoff is a linguist who was struck by 
the pervasive use of metaphor in everyday language and thought. Johnson is a philosopher who 
was struck that traditional philosophical views permitted little role for metaphor in understand­
ing the world or mental life. Their book (Lakoff & Johnson, 1980) is a rich source of examples of 
how metaphors enable us to comprehend one aspect of a concept in terms of another. Consider 
the sentences "It's hard to get that idea across to him" and "Your reasons came through to us." 
Both sentences make use of a conduit metaphor for communication and meaning. "That boosted 
my spirits." "I'm feeling up." These sentences use an up/down metaphor, where happy is up and 
sad is down. Perhaps this is based on common human experiences related to posture. Drooping 
posture typically goes along with sadness and an erect posture with a positive emotional state. 
Lakoff and Johnson believe that metaphor enables new symbols and statements to draw on pre­
sumably familiar situations, imbuing symbol structures with meaning that relates to commonly 
shared experiences. Metaphors carry hints about the construction of meaning. This work is excit­
ing because it suggests basic ways that communications can carry meaning, enabling a listener to 
construct meaning about experiences that he or she did not have with his own senses. 

Pieces of Mind 
Imagine that we are observing a team of people working together. As outside observers, we could 
try to model the group as a single symbol system. Of course, there are some immediate quibbles 
about the persistence of symbols. When someone speaks, the "speech symbols" are heard, 
recorded, and processed by the participants. One point of view is that the group of people func­
tions as a single physical symbol system, or as an organization as having a collective intelli­
gence or group mind. This attribution of agency to a group is not uncommon. Committees, com­
panies, and even nations are often described anthropomorphically as having goals, personalities, 
strengths, and emotions. 

Minsky (1986) has proposed modeling a mind as a society of agents, composed of simpler 
agents all the way down. In this model, new agents are created and specialized as a mind devel­
ops. In comparison with connectionism, which tries to extend upward from essentially nerve 
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models, Minsky's society of mind tries to extend downward from powerful abstract agents to 
simpler ones. Symbols enable remote access. Symbols correspond to activations of "k-lines" that 
cause various parts of the brain to become active. There are many things yet to be understood 
about the power of this model of cognition. Indeed, it is difficult to tell at this stage whether var­
ious models of cognition are distinguishable experimentally. As a challenge, try to design an 
experimental psychological test under which the society-of-mind model and some different one 
would yield different signatures. 

The society of mind blurs together all of the issues about communication and computation. 
Suppose we as observers have a wonderful "symbol-scope" for looking into the activities of a 
brain housing a mind. In a society model the interactions among high-level agents may be more 
akin to communication between separate beings while symbolic interactions between low-level 
agents may be more akin to computation or message passing as in a programming language. We 
can imagine looking at a robot who is looking at a scene. Suppose the robot is reaching for a 
block. As outside observers, we may see early visual processors creating scene descriptions. The 
early-perception agents may reduce these symbols to descriptions passed along to scene-interpre­
tation agents, which have access to their previous interpretation of the scene a few moments ago, 
as well as to other scenes. They may identify changing parts of the picture and update an indexi­
cal representation of the "current scene." Elsewhere in the mind, we may see some high-level 
agent describing the place to put the block in terms of other constructions it has made before, 
possibly using "metaphor" in its communications. Of course, this scenario is very speculative. 
We just don't know how all this processing is done in the human brain. We can now build robots 
to carry out parts of it. 

Minsky has been a critic of the assumption that there is a useful and crisp division between 
symbolic and nonsymbolic systems. The society model challenges another sharp distinction, 
between symbols used externally between agents (natural language) and symbols used internally 
between agents that form a mind. 

Active Documents 
People build knowledge bases collaboratively. They discuss and agree about the meanings of 
symbols in the knowledge bases. They design the behavior of the systems around the agreed 
upon meanings of the symbols. Viewed this way, knowledge systems are like blackboards or 
paper. They are a place for writing symbols. They augment human memory and processing with 
external memory and processing. Like scratch pads or calculators, knowledge systems augment 
our short-term memories. Like books in a library, they augment long-term memory. Like mail, 
speech, and blackboards, they augment various media for human communication. As we talk 
about this, it is curious how we begin to mix cognitive and document perspectives. In any social 
situation in which knowledge systems are built and serve a group of people, they necessarily 
must function as electronic documents, used for communication among those people. 

Knowledge systems are not just passive media for recording and retrieving writings. We 
expect them to carry out rational processes using the symbols. This brings us back to the cogni­
tive perspective on the meaning of symbols. In knowledge systems, we often use the same lan­
guage to serve both cognition and documentation. For example, the same production rule lan­
guage may be used for inference and as elements of explanations of the behavior of a system; the 
concepts acquired in knowledge arquisition are the same as the concepts used in problem solv-
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ing. In programming terms, this is akin to the advantage of a "source language debugger," which 
makes it unnecessary to know a lower-level machine language (the target language for the com­
piler) when debugging a program. There can be several layers of symbol interpretation and com­
pilation between the symbols that users see and the ones that are used in the rational processes of 
symbol manipulation. The advantage is that computations can be more efficient when the source 
language is compiled. To have it both ways, systems need to be able to translate back and forth 
between external (source) and internal (compiled) languages. 

Returning to the discussion of the role of symbols, knowledge systems straddle the distinc­
tion between internal and external symbols. The psychological models of symbols are useful for 
describing the reasoning processes that knowledge systems engage in. The communications 
models for symbols are most useful for describing how separate knowledge system can interact, 
and for describing how knowledge systems can interact with people. 

About Foundations 

Although speculations about evolution, communication, and rationality are fascinating, they are 
far beyond the concepts that are applied routinely in knowledge engineering. Brian Smith (1986) 
wants to·,develop a theory of correspondence explaining the intricate relations among representa­
tion, specification, implementation, communication, and computation. Understanding these rela­
tions may provide insights about building knowledge systems. Symbols are deeply rooted not 
just in the methods of knowledge engineering and AI, but also in psychology, mathematics, com­
puter science, and logic. The open issues in this section show that we have not yet heard the last 
word. 

Knowledge systems are not built entirely on firm and securely established foundations. As 
is the case with even such fields as physics, astronomy, and mathematics, the foundations are 
subject to inspection, reexamination, and occasional challenges. We make progress in the 
absence of entirely satisfactory answers. Practitioners depend more on their native ability to 
communicate than on having a fundamental grasp of the connections between communication 
and computation. They draw insights from cognitive architectures without insisting that knowl­
edge systems be modeled closely after human minds; they draw on insights from logic without 
insisting that a knowledge system use strictly logical principles. 

It is important to adopt an appropriate attitude toward foundations. In physics and astron­
omy, ne.w theories of elementary particles and cosmology provide insights about foundations. 
But only slowly does this work yield knowledge that changes what applied physicists do. In 
mathematics there have been revolutions in theories of measure and sets, but basic mathematics 
stays the same. For example, there have been no changes in the tables of integration and differen­
tiation used in calculus, even as the foundations of measure theory have shifted. The subject mat­
ter of these fields depends on stable properties that are emergent from the properties of the foun­
dations. For example, a sense of connection and coherence about topics in biology is mostly 
independent of foundations in chemistry, and a sense of connection and coherence in chemistry 
is mostly independent of foundations in physics. Although knowledge engineering is newer, 
there is a sense of connection and coherence about our theories of symbols, knowledge, and 
search that we expect to persist even as the field expands at its edges. 

In considering the foundations of mathematics, Bertrand Russell once remarked that we 
judge the veracity of our axioms by their implications for our theorems, not our theorems by the 
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axioms. We might say that we judge our symbols by what we can compute with them. This 
reflects a confident experimental and flexible attitude about foundations: They are important, but 
subject to change. The details become less relevant with increasing distance. This section con­
veys that spirit, as well as an engineering at titude about the use of symbols in the design of 
knowledge systems. 
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