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Configuration tasks select and arrange instances of parts 
frotrl (l:set. Computational models for configuration are 
used for build-to~order manufacturing tasks and also for 
tasks such as planning and therapy recommendation. 
Incremental decision-making methods for configuration 
must cope with threshold effects and horizon effects. 

nfi ur ti n 

8.1 Introduction 
A configuration is an arrangement of parts. A configuration task is a problem-solving activity 
that selects and arranges combinations of parts to satisfy given specifications. Configuration 
tasks are ubiquitous. Kitchen designers configure cabinets from catalogs of modular cupboards, 
counters, closets, drawers, cutting boards, racks, and other elements. Salespeople for home enter­
tainment systems must design configurations from tape decks, optical disk players, receivers, 
turntables, and other units that can play recordings from different media, as well as from video 
screens, speakers, and other units that can present performances to people. Computer engineers 
and salespeople configure computer systems from various computing devices, memory devices, 
input and output devices, buses, and software. Dieticians configure diets from different combina­
tions of foods. Configuration problems begin with general specifications and end with detailed 
specifications of what parts are needed and how they are to be arranged. 

A definitional characteristic of configuration, as we shall use the term, is that it instantiates 
components from a predefined, finite set. This characterization of configuration does not create 
new parts or modify old ones. Configuration tasks are similar to classification tasks in that 
instantiation includes the selection of classes. However, to solve a classification problem is 
merely to select one (or perhaps a few) from the predefined set of classes. To solve a configura­
tion problem is to instantiate a potentially large subset of the predefined classes. The search 
space of possible solutions to a configuration problem is the set of all possible subsets of compo­
nents. This is the power set of the predefined classes. Furthermore, multiple instantiations of the 
same part may be used in a solution, and different arrangements of parts count as different solu­
tions. Configuration problems are usually much harder than classification problems. 

608 
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8.1 Introduction 609 

8.1.1 Configuration Models and Configuration Tasks 

Custom manufacturing and mass manufacturing are often seen as opposites. Custom manufactur­
ing tailors products to the specific and different needs of individual customers; mass manufactur­
ing achieves economies of scale when high-volume manufacturing techniques make it possible 
to reduce the unit costs of nearly identical products. An industrial goal common to many kinds of 
manufacturing is to combine the flexibility of custom manufacturing with the economics of mass 
production. An important strategy for this is to create lines of products that can be tailored to a 
customer's requirements by configuring customer-specific systems from a catalog of mass-pro­
duced parts. This approach has been called an a la carte or build-to-order marketing and manu­
facturing strategy. 

A la carte manufacturing requires special capabilities of an organization. For production, 
the required capabilities include the efficient means for managing of an inventory of parts, for 
bringing the parts together that are required for each order, for assembling the parts into prod­
ucts, and for testing the quality of the different assembled products. A well-recognized logistic 
requirement for this process is to accurately understand the customer's needs and to develop a 
prodgct specification that meets those needs. This step, which actually precedes the others, is the 
configuration step. The success and efficiency of the entire enterprise depends on configuration. 

Since flexible product lines can involve hundreds or thousands of different, configurable 
parts, there are many possibilities for errors in the configuration process. Errors in a configura­
tion can create costly delays when they are discovered at assembly time, at testing time, or by a 
customer. An effective configuration process reduces costs by reducing level of inventory, reduc­
ing the amount of idle manufacturing space, reducing the delay before customers' bills are paid, 
and better ensuring customer satisfaction. 

As these factors have been recognized, companies have sought automated and semi-auto­
mated configuration systems for routinely creating, validating, and pricing configurations to 
meet the differing requirements of their customers. One of the first and best known knowledge­
based configuration systems is the XCON system for configuring VAX computer systems 
(McDermott, 1981). Knowledge-based systems for configuration tasks are being built by many 
organizations. 

Configuration is a special case of design. In design the elements of the designed artifact are 
not constrained to come from a predefined set. They are subject only to the constraints of the 
manufacturing methods and the properties of the raw materials. The knowledge necessary for 
configuration tasks is more bounded than the knowledge for general design tasks. In general 
design tasks, the solution space is more open-ended. For example, designing a pickup truck from 
scratch is more open-ended than choosing options for a new one. In configuration tasks, much of 
the "design work" goes into defining and characterizing the set of possible parts. The set of parts 
must be designed so they can be combined systematically and so they cover the desired range of 
possible functions. Each configuration task depends on the success of the earlier task of 
designing configurable components. 

From a perspective of knowledge engineering, configuration tasks are interesting because 
they are synthetic or constructive tasks. They are tasks for which combinatorics preclude the pre­
-enumeration of complete solutions. Just as not all classification tasks are the same, not all config­
uration tasks are the same. Configuration models can be used as a basis for different kinds of 
tasks, not necessarily involving manufacturing and physical parts. For example, "configuring" 
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610 8 CONFIGURATION 

therapies can be a part of a larger diagnosis and therapy task. Configuring alternative combina­
tions of steps for a plan can be an important part of a planning process. In such cases we refer to 
a configuration model for a task. 

Knowledge-engineering techniques are suitable for classification tasks and configuration 
tasks because most of the complexity in specifying how to carry out the task is in the domain 
knowledge rather than the methods themselves. The knowledge-level methods define roles for 
different kinds of knowledge and these roles help to control the way that the bodies of knowl­
edge interact and guide the search for solutions. 

8.1.2 Defining Configuration 

Selecting and arranging parts is the core of solving a configuration problem. Figure 8.1 presents 
an example of a configuration that is a solution to a configuration problem. In this example, the 
configuration has two top-level parts: Part-1 and Part-2. Each of these parts has subparts. 

Configuration-! 

Part-1 

Part-1-1 Part-1-2 

Part-1-1-1 Part-1-1-3 

~A 
- A .... -A 

B~ _Iiiii A 

w -
... -

B 
Part-1-1-2 

--Ill A BL..- ---Ill B r 
B -

A 
1111 

B 
A,.. 

·~ 
Ill 

I ... 

Part-2 I Ill 

A B ... .... 
11 Part-2-1 Part-2-2 B 

.. ... 
A c .. 

B ~ 111111 A B Ill-

I 
-- - ... 

D., 

FIGURE 8.1. An example of a configuration using a port-and-connector model. In this figure, all compo­
nents are shown as boxes and the top-level component is Configuration-!. It has two parts, Part-1 and Part-
2. The arrangement of the configuration is indicated by the part-of hierarchy, displayed graphically by the 
containment of boxes and by the interconnections among parts. Each part has a number of ports, labeled 
A,B,C, or D. For example, the B port ofPart-1-1-1 is connected to the A port ofPart-1-1-3. 
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8.1 Introduction 611 

Configuration domains differ in their representations of arrangements. For example, Figure 
8.1 represents arrangements using a port-and-connector model. The ports on each part corre­
spond to the different roles that subparts can have with respect to each other. Like all models 
governing arrangements, a port-and-connector model constrains the ways things can be con­
nected. Components can be connected only in predefined ways. Ports may have type specifica­
tions indicating that they can be connected only to objects of a particular kind. Each port can 
carry only one connection. 

Variations in the search requirements and the available domain knowledge for different 
configuration tasks lead to variations in the methods. Nonetheless, certain regular patterns of 
knowledge use appear across many different configuration tasks. Configuration methods work 
through recognizable phases. They map from user specifications to abstract descriptions of a 
configuration, and they refine abstract solutions to detailed configurations specifying arrange­
ments and further requirements. We distinguish between solution expansion and solution refine­
ment phases, not to imply that they are independent, but to emphasize the distinct meanings of 
part requirement hierarchies, functional abstraction hierarchies, and physical containment hierar­
chies. Addition of required components is often a specialized process and can involve goals for 
both··correcting and completing a specification. Refinements of specifications include the consid­
eration of alternative arrangements as well as selection among alternative implementations. Con­
figuration methods must mix and balance several kinds of concerns and different bodies of 
knowledge. 

Figure 8.2 shows the relevant spaces for defining configuration problems. It is a useful 
starting framework from which we shall consider variations in the following sections. In some 
domains there is no separate specification language: Specifications are given in the language of 

N•----------------------------~----------------------------------------------------------------------------------

Specifications 

Specifications 

0 

' 
' 

' 

Specification to 

\ •truoture m•tching 

Addition~~ 
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Component 
hierarchy 
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FIGURE 8.2. Spaces in configuration tasks. 
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612 8 CONFIGURATION 

parts and arrangements and the task begins with a partial configuration. In that case, we omit the 
boundary in the figure between the specification space and the configuration space. The outer 
oval in the configuration space signifies that the representations for partial and expanded solu­
tions are mixed together. Most configuration methods work incrementally on candidates, 
expanding the candidates to include more parts and refining the specifications to narrow the 
choices. 

By analogy with names for classification methods, the pattern of knowledge use suggested 
by Figure 8.2 could be called heuristic configuration to emphasize the use of heuristic knowl­
edge to guide the generation and testing of possible configurations. It could also be called hier­
archical configuration to emphasize the importance of reasoning by levels, both component 
hierarchies and abstraction hierarchies. For simplicity, we just use the term configuration. 

8.2 Models for Configuration Domains 

This section discusses what configuration is and what makes it difficult. 

8.2.1 Computational Models of Configuration 

To understand configuration tasks we need a computational model of the search spaces and the 
knowledge that is used. Our model has the following elements: 

' ... i A specification language 
,-. A submodel for selecting parts and determining their mutual requirements 

A submodel for arranging parts 
A submodel for sharing parts across multiple uses 

We begin by describing these elements generally and simply. We then introduce the "widget" 
domain as a concrete instantiation of a configuration model. We use this domain to illustrate rea­
soning and computational phenomena in configuration tasks. Afterward, we draw on the 
domains from the previous section to extract examples of kinds of knowledge and the use of 
knowledge. 

A specification language for a configuration task describes the requirements that configu­
rations must satisfy. These requirements reflect the environment in which the configured product 
must function and the uses to which it will be put. A specification may also indicate which opti­
mizing or due-process criteria should be used to guide the search, such as minimizing cost or 
space or preferring some possibilities over others. (See the exercises.) 

A functional specification describes capabilities for desired behaviors. For example, rather 
than saying that a computer configuration needs a "printer," a functional specification might say 
that the computer needs to be able to print copies. The printing function may be further special­
ized with qualifiers about speed, resolution, directionality, character sets, sizes of paper, color or 
black and white, and so on. One advantage of describing systems in terms of functions rather 
than in terms of specific classes of manufactured parts is that functions can anticipate and sim­
plify the addition of new classes of components to a catalog. When a functional specification 
language is used, the configuration process must have a means for mapping from function to 
structure. 
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8.2 Models for Configuration Domains 613 

A specification language is not defined independently of the other submodels. Some con­
figuration models use the same language for describing specifications and for describing config­
urations. This approach avoids the function-to-structure mapping by associating each part with a 
list of key functions. The most common approach is called the keymcomponent approach. This 
approach has two parts: (1) For every major function there is some key component, and (2) all 
the key components (or abstract versions of them) are included in the initial partial configuration 
that specifies a configuration. A specification is assumed to include all the key parts. To complete 
a configuration, a configuration system satisfies the prerequisites of all the key parts it starts with 
as well as the parts it needs to add to the specification, and it also determines a suitable arrange­
ment for all the included parts. 

A sub model for parts specifies the kinds of parts that can be selected for a configuration 
and the requirements that parts have for other parts. Some parts require other parts for their cor­
rect functioning or use. For example, computer printed circuit boards may require power sup­
plies, controllers, cables, and cabinets. A part model defines required-component relations, so 
that when a configuration process considers a part description, it can determine what additional 
parts are needed. Required parts can be named explicitly or described using the specification lan­
guage. Descriptions indicate which parts are compatible with each other and what parts can be 
substituted for each other under particular circumstances. 

A submodel for spatial arrangements provides a vocabulary for describing the place­
ment of parts and specifies what arrangements of parts are possible. Together, the arrangement 
model and the specification language form a basis for describing which arrangements are accept­
able and preferred. They make it possible to determine such things as where a part could be 
located in an arrangement, whether there is room for another part given a set of arranged parts, 
and which parts in a set could be added to an arrangement. Arrangement models constrain the set 
of possible configurations because they govern the consumption of resources, such as space, 
adjacency, and connections. These resources are limited and are consumed differently by differ­
ent arrangements. Arrangement models are a major source of constraints and complexity in con­
figuration domains. 

A submodel for sharing expresses the conditions under which individual parts can be 
used to satisfy more than one set of requirements. In the simplest case, part use is mutually exclu­
sive. For example, a cable for one printer cannot be used simultaneously to connect to another 
printer. For some applications, mutual exclusion is too restrictive, such as with software pack­
ages that may use the same memory, but at different times. The following exemplifies a range of 
categories of use and sharing for configuration systems: 

i'.'.i Exclusive use: Components are allocated for unique uses. 
''' Limited sharing: Parts can be shared between certain functions but not across others. 
~21 Unlimited sharing: A component can be allocated for as many different purposes as 

desired. 
Serial reusability: A component can be allocated for several different purposes, but only 
for one purpose at a time. 
Measured capacity: Each use of a component uses up a fraction of its capacity. The com.:. 
ponent can be shar~ as long as the total use does not exceed the total capacity. The electri­
cal power provided by a supply is an example of a resource that is sometimes modeled this 
way. 
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614 8 CONFIGURATION 

Specification Language 
A widget component 

Key components 

in functional hierarchy ~ CAJ w w w 
A-1 A-2 B-1 B-2 C-1 C-2 D-1 D-2 

Parts Submodel 

Part-A-1 Part-B-1 Part-C-1 Part-D-1 

Required parts: 2 B's Required parts: 2 C's Required parts: None 
Required parts: 

B & 2 C's 
Size: Half slot Size: Half slot Size: Half slot 

Size: Half slot 

Catalog 

~ Part-A-2 Part-B-2 Part-C-2 Part-D-2 

Required parts: 3 B's Required parts: None Required parts: None Required parts: C 1 
Size: Full slot Size: Full slot Size: Half slot Size: Double slot 

Arrangement Submodel 

Half slot Full slot Double slot Empty slots 

Widget 

case -z_______;eft Right 

Extension plug 

(__ Extension case 

Must occupy last 
unused top half slot 

of previous case 

Sharing Submodel 

All parts are allocated for exclusive use. 

FIGURE 8.3. The widget model, W-1, illustrates phenomena in configuration problems. 

A particular domain model may incorporate several of these distinctions, assigning differ­
ent characteristics to different parts. Sometimes these distinctions can be combined. One way to 
model how different software packages could share memory would be to post capacity con­
straints indicating how much memory each package needs. The system allocation for serial 
usage would be determined as the maximum capacity required for any software package. This 
approach mixes serial reusability with measured capacity. 

fu summary, our framework for computational models of configuration has four sub­
models: a specification language, a submodel for parts and requirements, a submodel for ar-
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8.2 Models for Configuration Domains 61.5 

rangement, and a submodel for component sharing. We return to these models later to describe 
variations on them and to identify the ways in which they use domain knowledge. In the next 
section, we instantiate our configuration model for the widget domain and use it to illustrate 
important phenomena in configuration tasks. 

8.2.2 Phenomena in Configuration Problems 

This section describes reasoning phenomena that arise in configuration problems. These phe­
nomena are illustrated in the context of the sample domain in Figure 8.3. Figure 8.3 presents W-
1, a model for configuring widgets. We use W-1 to illustrate configuration phenomena in the fol­
lowing discussion and in the exercises at the end of this section. 

Widget requirements are specified in terms of the key generic components A, B, C, and D. 
The W-1 parts submodel provides a catalog with two choices of selectable components for each 
generic component. Thus, generic component A can be implemented by either A -1 or A-2, B can 
be implemented by B-1 or B-2, and so on. Each component requires either a half slot, a full slot, 
or a double slot. Figure 8.4 presents the rules for the widget model. 

·. When components are arranged in the widget model, there are sometimes unavoidable 
gaps. When configurations are combined, these gaps are sometimes complementary. For this rea­
son it is not always adequate to characterize the amount of space that a configuration takes up 
with a single number. Figure 8.5 defines several terms related to measures of space in the widget 
model. Occupied space refers to the number of slots occupied by components, including any 
required extension plugs. Trapped space refers to any unoccupied slots to the left of other slots, 
including slots to the left of or below an extension plug. Space (or total space) is the sum of 
occupied space and trapped space. The minimum space for a specification is the minimum 
amount of space required by any possible configuration that satisfies the specification. 

Required Parts 
Each part in a configuration must have all of its required parts, as shown in Figure 8.3. 

Arrangement 
Components must be arranged in alphabetical order (left to right and top to bottom). Parts with the 
same letter (e.g., C-T and C-2) can be mixed in any order. 
All identical components (components with the same letter and number) must be in the same widget 
case. 
Afull~slot component must occupy a single vertical slot. It cannot be split across slots. A double-slot 
componentmustoccupy two adjacent full slots in the same widget case. 

• Anupper half slot must be filled before the corresponding lower half slot can be filled. 
No full-slot gaps are allowed, except at the right end of a case. 
If a case ls full, an extension case can be added butit requires using an extension plug in the last upper 

.. half slot ofthe previous case. 
Wheri an extension plug is used, no component can be placed in the half slot below the plug. 

Sharing 
The W~l sharing submodel requires that distiilct parts be allocated to satisfy each reqUirement. 

FIGURE 8.4. Further rules governing the W-1 widget model. 
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A-1 B-2· 

A-1 

Occupied space: 3.5 slots 
Space: 3.5 slots 

A-1 B-2 

8 

B-2 C-1 

~ 
Trapped space: 0 slots 

B-2 C-1 

~ 

~~----------------~ 
Trapped space: .5 slots ) Occupied space: 3.0 slots 

Space: 3.5 slots 

A-1 B-2 

D-1 

Occupied space: 7.5 slots 
Space: 10 slots 

B-2 C-1 Ext. plug 

~ 
D-2 

Trapped space: 2.5 slots 

CONFIGURATION 

FIGURE 8.5. Examples illustrating the terms total space, occupied space, and trapped space. For most 
problems, the key factor is the total space, which is called simply "space." 

Configuration decisions are made incrementally. Figure 8.6 illustrates stages in a solution 
process, starting with the initial specifications {A, D}. Under the part-expansion phase, alterna­
tives for required parts for A and D are considered. For requirement A, the candidates are the 
selectable parts A-1 and A-2. However, A-1 and A-2 both have further requirements. A-1 
expands to two B's, which could be implemented as either B-l's or B-2's. If B-1's are chosen,, 
these require C's, which themselves can be implemented as either C-1 's or C-2's. This expansion 
of requirements shows why we cannot use a simple constraint-satisfaction method with a fixed 
number of variables and domains to solve the configuration task for the top-level parts. Depend­
ing on which alternatives are chosen, different required parts will be needed, and different fur-
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Specifications: {A, D} 
Key 

Choices~ Requires -----> 

Part Expansion 
/ 2 B-1's -----)-4 C's ~ 4 C-1's 

A-1 -----)- 2 B's 

A< ::3B-2'• 
A-2 -----)- 3 B's ~ 

__ _---
7 

B ~ B-1 ·-----)- 2 C's ~2 C-1's 

:_ B-2 2 C-2's 

--~ 2C's ~ 2C-1's 

2 C-2's 

D-2 ·-----)- C-1 

Part Arrangement 

Candidate part selection: {A-1, 2 B-1's, 5 C-1's, D-2} 

A-1 B-1 C-1 C-1 D-2 

B-1 C-1 C-1 C-1 

Legal arrangement for the candidate solution 

617 

FIGURE 8.6. The dynamic nature of configuration problems. In this example, the initial specifications 
are {A, D}. The solid arrows indicate where there are alternatives for implementing a part. The dashed 
arrows indicate places where a part requires further parts. There are several possible solutions for the 
given specifications. One solution is shown at the bottom. This one fits within a single widget case. 

ther requirements will be noted. This dynamic aspect of the problem suggests the use of dynamic 
and hierarchical constraint methods. 

The arrangement model for W-1 lends itself to a sequential layout process, which first 
places the required A components and then the B components, C components, and D components 
in left-to-right order. If at any point all of the components of the same type cannot be fitted into 
the space remaining in a widget case, an extension case is required. If the number of required 
components of a g~ven type is more than fits into a single case, then the candidate cannot be 
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arranged according to the rules. Furthermore, when more than one case is required, there must be 
an available slot in the previous case for its extension plug. At the bottom of Figure 8.6 is one 
solution to the sample problem, which fits within a single widget case. 

Threshold Effects 
Configuration problems exhibit threshold effects. These effects occur when a small change in a 
specification causes candidates to exceed certain fixed thresholds, requiring discontinuous and 
potentially widespread changes to the candidate. For example, in computer configuration 
domains, overflowing the capacity of a cabinet requires the addition of not only an extension 
cabinet, but also various components for extending the bus and additional power supplies. In 
applications where parts have parameters to be determined by configuration, requirements for 
upgrading the size of components can have ripple effects, so that further parts need to be 
changed to accommodate changes in weight or size, resulting in shifts to different motor models. 
Depending on how the decision making is organized in a configuration system, threshold effects 
can occur in the middle of solving a problem if requirements discovered partway through the 
process exceed initial estimates of required capacity. In such cases, many early decisions may 
need to be revised (see Exercise 4). 

Figure 8. 7 illustrates a threshold being exceeded when the widget specification is changed 
from {A, D} to {A, 2 D's}. In the two solutions shown, the additional required components 
exceed the capacity of a single widget case. Furthermore, in the second candidate solution, some 
of the implementations for a C part were switched to C-2 (rather than C-1) to avoid violating the 
rule that identical parts must be placed in the same case and to avoid overflowing the extension 
case. The capacity of a case is a resource. Threshold effects can occur for different kinds of 
resources. Other arrangement resources include order and adjacency. 

Global resources that can be exceeded in different configuration domains include size, 
power, weight, and cost. These resources present special challenges for allocation and backtrack­
ing. They are called global resources because they are consumed or required by components 
throughout a configuration rather than by just one component. In the cases cited, the consump­
tion of the resource is additive consumption, meaning that requirements can be characterized in 
terms of numeric quantities. Requirements from different parts are summed together. 

Horizon Effects 
When configuration decisions are made incrementally, their evaluation criteria are typically 
applied in a local context, meaning that they recommend the best solution limiting the evaluation 
to a small number of factors. This due-process approach is called myopic because it does not try 
to take into account all of the entailments of a decision caused by the propagation of effects in 
the model. This leads to a phenomenon called the horizon effect. In nautical experience, the cur­
vature of the earth defines a horizon beyond which things are hidden. To see things farther away, 
you have to get closer to them. In reasoning systems, the "visible horizon" corresponds to things 
that have been inferred so far. Partway through a configuration process, you cannot see all the 
consequences of the choices so far because some inferences have not yet been made and because 
some other choices have yet to be made. At best, you can make estimates from the decisions 
made so far. 

In the idealized case where configuration choices are independent, locally optimal deci­
sions yield globally optimal solutions. For example, if the total cost of a solution is the sum of 
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Specification {A, 2 D's} 

Candidate-1 

Total parts required: {A-1, 2 B-1's, 6 C-1's, 2 D-2's} 

Candidate-2 
·., 

Total parts required: {A-1, 4 B-1's, 8 C-1's, 4 C-2's, 2 D-1's} 

C-1 C-1 C-1 C-1 D-1 

C-1 C-1 C-1 C-1 D-1 

FIGURE 8.7. Threshold effects. This figure illustrates two possible solutions to a widget configuration 
problem with the specifications {A, 2 D's}. Both candidate solutions exceed the capacity of a single wid­
get case. In more involved examples, exceeding one threshold can lead to a ripple effect of exceeding 
other thresholds as well, leading to widespread changes in a configuration. 

the costs of the independently determined parts, then picking the cheapest part in each case will 
lead to the cheapest overall solution. If the choice of the next component can be determined by 
combining the known cost of a partial solution with an estimate of the remaining cost, and the 
estimate is guaranteed never to be too high, then the A* algorithm can be used as discussed in 
Section 2.3. 

However, in many configuration situations and domains these conditions do not hold and 
myopic best-first search does not necessarily lead to a globally optimal solution. In each of the 
following cases, both part A and part B satisfy the local requirements. Part A costs less than part 
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B and would be chosen by an incremental best-first search that is guided by cost of the part. 
These cases show why a choice that is locally optimal need not be globally optimal. 

Case 1. Undetected required parts. The other parts required by part A are much more 
expensive than the parts required by part B, so the total cost of a complete solution is 
higher if A is chosen. The further requirements for parts A and B may involve con­
straints not yet articulated, choices dependent on situations not yet determined, or 
design variables not yet introduced. 

Case 2. Unanticipated arrangement conflicts. The parts required by part A consume 
slightly more of some resource than the parts required by part B. If A is chosen, a 
threshold will be crossed by later decisions leading to additional expensive cabinets, 
cases, or whatever. If B had been chosen, the threshold would not have been crossed 
and the overall solution would have been cheaper (see Exercise 4). 

Case 3. Undetected sharability. There are requirements not yet considered for a part that 
is compatible with B but not with A. If B is a sharable component, then choosing B at 
this stage will make it unnecessary to add parts later on, leading to an overall savings. 
TQ.is phenomenon is especially likely to occur in domains that include multifunctional 
coi:nponents, such as multifunctional computer boards that incorporate several inde­
pendent but commonly required functions (see Exercise 5). 

All three cases exhibit the horizon effect. The local evaluation fails to lead to an optimal solution 
because the indicators fall past the "observable horizon" defined by the commitments and infer­
ences made so far. 

If computational complexity was not an issue, the effects of the first case could be miti­
gated by determining the problematic effects of the required components for a part before com­
mitting to a part. Thus, no commitment would be made to choose A until the effects of all of its 
required components are known. The second case could be mitigated by considering the effects 
on all resources consumed by a component. The effects in the third case could be mitigated by 
considering all possible sharings of a component before committing to the selection. 

To summarize (with tongue in cheek), the effects of incremental decision making and 
myopic optimization can be mitigated by performing decision making as far past the immediate 
horizon as needed. Unfortunately, exponential computational resources are required to look so 
far ahead. In the following knowledge and symbol-level analyses, we discuss more realistic ways 
to cope with threshold and horizon effects. 

8.2.3 Summary and Review 
This section models configuration in terms of four elements: a specification language, a model 
for selecting parts and determining their mutual requirements, a model for arranging parts, and a 
model for sharing parts across multiple functional requirements. Parts models can be simple cat­
alogs of parts. They can also include hierarchical relations based on functionality, required parts, 
and bundled packaging. Arrangement models express what physical arrangements of parts are 
possible and how some arrangements of parts preclude other arrangements. Arrangement models 
range from complex spatial models to simple named resource models where parts fit in any of a 
finite number of separately accounted spaces. Sharing models indicate when parts chosen to sat-
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isfy one requirement can be used to satisfy others as well. Variations in sharing include exclusive 
use, open use, metered use, and serial reuse. 

Search spaces for configuration domains can be large. Configurations themselves are rep­
resented in terms of fairly complex symbol structures that indicate the selection, arrangement, 
and parameterization of their parts. Most configuration tasks are carried out incrementally, build­
ing up descriptions of candidate solutions from descriptions of their parts. 

Although configuration domains differ in the complexity of their submodels and the 
degree to which decisions in each submodel are dependent on decisions in others, they typically 
exhibit threshold effects where small changes in local requirements can cause discontinuous 
effects when overall capacities are exceeded. These threshold effects can arise in any of the sub­
models. Threshold effects and horizon effects for large interconnected problems create a 
challenge in ordering and managing configuration decisions. The next section presents case stud­
ies of configuration systems. 

Exercises for Section 8.2 

1111 

Ex. 1 [!-05] Global Resources. Decisions about global resources are often problematic in config­
uration tasks. 
(a) Why? What are some examples of global resources from the configuration domains in 
this chapter? 
(b) Briefly describe some alternative approaches for making decisions about global re­
sources. 

Ex. 2 [10] Skeletal Configurations. Professor Digit is a consultant to a company that configures 
computer systems for its customers. He argues that the number of possible computer con­
figurations may be high but that the number of "really different" configurations sought by 
customers is actually quite low. He proposes that a knowledge system for configuration 
would be simpler if it proceeded as follows: 

Ex. 3 

1. Search a library of configurations and find the one closest to the initial config­
uration proposed for the customer, taking into account which components are 
key components. 

2. Add new key components from the customer's initial configuration that are 
missing, and remove any extra key components and their required parts from 
the matching library configuration. 

3. Revise the configuration to accommodate the customer's needs. 

(a) Briefly describe the main assumptions about the configuration task on which the via­
bility of Professor Digit's proposal depends. 
(b) Sam, a graduate student working with Professor Digit, says this proposal creates a ten­
sion in the solution criteria for cases in the library between conservative and perhaps ineffi­
cient configurations that are easy to extend and ones that are minimal for a fixed purpose. 
Do you agree? Explain briefly. 
(c) Suppose the computer configuration domain is subject to many threshold effects. 
Briefly, what are the implications for Professor Digit's proposal? 

[25] Configuring Widgets. The text defines a configuration model, W-1, for widgets. We 
assume that the following cost figures apply for widget parts. 
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111111 Ex.4 

111111 Ex.S 

8 CONFIGURATION 

Part Unit Cost 
A-1 $50 
A-2 $20 
B-1 $20 
B-2 $40 
C-1 $ 5 
C-2 $10 
D-1 $40 
D-2 $20 

(a) Find a minimal space configuration for the specification {A, B}. Use the standard 
widget model in which there is no sharing of parts across functions. If there is more than 
one configuration with the minimum space, choose the one with the lowest cost. Draw the 
final configuration, following packing constraints. 
(b) Find a minimal cost configuration for the specification {A, B}, ignoring case costs. If 
there is more than one configuration with the minimum cost, choose the one with the low­
est space requirement. Explain your reasoning. Draw the final configuration. 
(c) Parts a and b use the same solution criteria but in a different order. Are the results the 

, same? Why? 

[30] Threshold Effects in Local Cost Evaluations. This exercise considers threshold effects 
in a configuration task. It uses the same cost figures as Exercise 3. 
(a) Complete the following table showing the configurations for the minimum costs and 
minimum space solutions for the specifications {A}, { B}, and { C}. Include trapped space 
in your computation of minimum space. 

Specification 

{C} 

{B} 

{A} 

Minimum Cost 

$5 
{C-1} 

Minimum Space 

.5 
{C-1} or {C-2} 

(b) Find a minimal cost configuration for the specification {A, 2 B 's}. Explain your rea­
soning. Ignore case costs. 
(c) Suppose we are given the following costs for cases: 

Widget case $60 
Extension case $120 

Find a minimal cost configuration for the specification {A, 2 B 's} including the cost of the 
case(s). Draw your configuration and explain your reasoning. 

[15] Estimates That Aggregate Space and Cost Constraints. Professor Digit proposes that a 
simple and appropriate way to account for case costs would be to add to the cost of each 
component a fractional cost corresponding to the fraction of the slots that are required. He 
offers this as a method of reflecting case costs back into the decision making about individ­
ual parts. The purpose of this exercise is to evaluate this approach. 
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IIIII Ex.6 

We are given the following costs for cases: 

Widget case $60 
Extension case $120 

(a) Show the adjusted component costs by filling in the missing entries in the accompa­
nying table. The case increment is the additional cost of the part accounting for the space 
the part requires in terms of a fraction of the case cost. 

Part Part Case Case-Adjusted 
Cost Increment Part Cost 

A-1 $50 $ 5 $55 
A-2 $20 $10 $30 
B-1 $20 
B-2 $40 
C-1 $ 5 
C-2 $10 
D-1 $40 
D-2 $20 

(b) Using Professor Digit's adjusted case costs, complete the following table, showing the 
configurations with the minimum costs. 

Specification 

{C} 

{B} 

{A} 

Minimum Cost Configuration 

$10 
{C-1} 

$45 
{B-1, 2 C-l's} 

(c) Briefly explain why Professor Digit's proposal is both fair and inadequate for guiding 
a search for a minimal cost solution. 
(d) Using the above table as an evaluation function to guide the search for a minimum 
cost solution, what would be the minimum cost configuration that Digit's approach would 
yield for {A, 2 B 's}? What is its estimated cost? What is its real cost? Explain briefly. 
(e) What is the real minimum cost solution? What is its estimated cost and its real cost? 

[40] Shared Parts. In this exercise we develop the modified widget model W-S to enable 
limited sharing of parts. Suppose the functions for {A} and for { D} are never needed at the 
same time. We define A* to be the set of components including an A and all of its required 
parts. Similarly D* is the set including aD and all of its required parts. In W-S, sharing is 
permitted between A* and any D*, which means a single component can satisfy a require­
ment both for A and for D. No other part sharing is allowed, such as between two different 
D*'s. 
(a) Fill in the following table of configurations, focusing on those requiring minimal 
space. For simplicity, leave specifications for C unrefined to C-1 or C-2 where possible. 
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You can use the results of previous exercises. You need only fill in the minimal space par­
tial configurations. 

Hint: You may find it useful in solving the later parts of this exercise to include other 
"near minimal space" partial configurations in your table as well. 

Specification Minimum Space Configurations 

{D} 

{2 D} 

'" 

Configuration Space Occupied Space Trapped Space 

{A-1, 2 B-2} 3 2.5 .5 
{A-1, B-1, B-2, 2 C} 

{B-2, 2 C, D-1} 2.5 
... more 

{2 B-2, 4 C, 2 D-1} 5 
... more 

(b) Without sharing, what are all the minimal space configurations for {A, 2D}? Draw 
the configurations you find. Briefly explain your reasoning. 
(c) With sharing, what are the minimal space configurations for {A, 2D}? Draw the con­
figurations you find. Briefly explain your reasoning. 
(d) What do the results of parts b and c tell us about optimizing in shared part models? 
Briefly describe the computational phenomena introduced to the optimization process 
when sharing is permitted. 

Ex. 7 [05] Widget Thresholds. In the example of the widget configuration domain, how does the 
rule that all identical parts must be in the same case contribute to a threshold effect? 

Ex. 8 [05] Special Cases for Spatial Reasoning. The following paragraph describes some 
requirements for spatial relationships in configurations of elevators: 

The counterweight is a piece of equipment made up of metal plates that are 
always 1 inch thick. The plates are stacked to get the total load needed to balance 
the weight of the elevator car, the car's load, attached cables, and other compo­
nents. The plates can be ordered in varying lengths and widths. They are usually 
hung from the machine sheave that provides the traction that moves the elevator. 
The placement of the sheave and its angle of contact with the cable are critical to 
get enough traction to make the elevator move. Safety codes regulate the mini­
mum clearance between the elevator car and the counterweight, between the 
counterweight and the shaft walls on its three other sides, and between the coun­
terweight and the floor in its lowest position and the ceiling in its highest posi­
tion. These code clearances, in tum, are calculated using values such as the 
weight supported, length of cables, height of the building, and other factors. The 
configuration must specify the position of the sheave, the length of hoist cable, 
the size of the counterweight in three dimensions, and actual clearances of the 
counterweight and any obstacle it might run into all along the elevator shaft. 
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(a) Is a general approach to spatial reasoning important for this example? If not, why not? 
(b) Why was it appropriate to use a fixed structure for its parameter network to capture 
the reasoning above? 

8.3 Case Studies of Configuration Systems 

In this section we consider several knowledge systems and show how they solve configuration 
problems. Our purpose is to consider the search requirements of the task, the kinds of knowledge 
that are needed, the organization of the knowledge, and examples of implementation. The cases 
illustrate a range of approaches to configuration tasks. 

8.3.1 Configuration in XCON 

XCON (also called Rl) is a well-known knowledge system for configuring computer systems 
(McDermott, 1982). XCON has a place among configuration systems analogous to MYCIN's 
place among classification systems. XCON was the first well-known knowledge system for con­
figuration, and it was initially characterized in terms of symbol-level issues and basic search 
methods. Work on both MYCIN and XCON continued for several years and resulted in successor 
systems. Retrospective analyses of these systems have uncovered new ways of looking at them 
in knowledge-level terms. For MYCIN, the analysis has shifted from an account of backward 
chaining at the symbol level to models for classification at the knowledge level. For XCON, the 
analysis has shifted from forward chaining and match at the symbol level to search spaces and 
models for configuration at the knowledge level. In both cases insights from the analysis have 
led to new versions of the systems. For MYCIN the new system is called NEOMYCIN (Clancey 
& Letsinger, 1981); for XCON it is XCON-RIME (Barker & O'Connor, 1989). 

We consider XCON together with its companion program, XSEL. Together, the two sys­
tems test the correctness of configurations and complete orders of Digital Equipment Company 
computers. Different parts of the configuration task are carried out by the two systems. XSEL 
performs the first step in the process: acquiring initial specifications. Neither XSEL nor XCON 
has a separate "specification language," but XSEL acquires a customer's order interactively in 
terms of abstract components. XSEL checks the completeness of an order, adding and suggesting 
required components. It also checks software compatibility and prerequisites. The output of 
XSEL is the input to XCON. 

XCON checks orders to greater detail than XSEL. XCON adds components to complete 
orders. It also determines a spatial arrangement for the components, power requirements, cabling 
requirements, and other things. It considers central processors, memory, boxes, backplanes, cabi­
nets, power supplies, disks, tapes, printers, and other devices. It checks prerequisites and market­
ing restrictions. It also assigns memory addresses and vectors for input and output devices. It 
checks requirements for cabling and for power. Figure 8.8 illustrates the knowledge and infer­
ence patterns for XSEL and XCON. For simplicity in the following, we refer to the combined 
system simply as XCON. 

Although XCON does not have a functional specification to satisfy, it still needs to decide 
when an order is complete. It needs to detect when necessary components have been omitted, but 
it would not be appropriate for it to pad a customer's order with extra components, routinely 
inflating the price and the functionality of the configured system. Instead, XCON just adds what-

Page 28 of 72 FORD 1017



626 

Specifications 

Extend order 
Customer specifications 
(generic components) 

-------~ 

·., 

~ 
Incremental 

specifications 

Abstraction hierarchy 
(specific components) 

Specifications 

Extend order 

---------~ 

~ 
Incremental ~ 

specifications 

Component 
hierarchy 

8 CONFIGURATION 

XSEL 

Configuration space 

Abstract 
solutions 

Components 

XCON 

Solution 
refinement 

Solution 
expansion 

Component hierarchy 
(software compatibility, 

prerequisites) 

Configuration space 

t 
, I, Staged 
'f' 1 . so utiOn 
t refinement 

t 
Components 

Abstraction 
hierarchy 

~ 

~ 
' . Arrangement 
~del 

~-----------------------------------------------------------------------------------------------------------------------: 

FIGURE 8.8. The pattern of knowledge use for XCON and XSEL. The systems split the responsibility, 
with XSEL performing the first steps and XCON performing a more detailed job. XSEL is concerned 
mainly with the completeness of a customer's order with regard to major system components ("key com­
ponents") and software compatibility and licensing. XCON focuses on hardware configuration and consid­
ers power requirements, bus connections, cabling, and arrangement of components in the cabinets. 
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ever parts are necessary for the operation of the parts that have been specified already. XCON 
uses a key-component approach. 

Crucial to the operation of XCON is its component database. This database has grown over 
time and in 1989 was reported to contain information on more than 31,000 parts. There were 40 
types of parts and an average of 40 attributes per part. Figure 8.9 gives an abbreviated example 
of two component descriptions. The interpretation of the information in Figure 8.9 is approxi­
mately as follows: 

The RK711-EA is a bundle of components. It contains a 25-foot cable (70-12292-
25), a disk drive (RK07-EA*), and another bundle of components (RK611). The 
RK611 consists of three boards (G727), a unibus jumper cable (M9202), a backplane 
(70-12412-00), and a disk drive controller (RK611 *).Because of its interrupt prior­
ity and data transfer rate, the RK611 * is typically located toward the front of the uni­
bus. The module is comprised of five hex boards, each of which will start in lateral 
position "A" It draws 15.0 amps at +5 volts, 0.175 amps at -15 volts, and .4 amps at 
+ 15 volts. It generates one unibus load and can support up to eight disk drives. It is 

·• connected to the first of these with a cable (070-12292). 

Other information includes requirements for boards and power and information about communi­
cations that will influence how the devices are connected to the computer's buses. 

In addition to the component database, there is a container-template database that describes 
how parts can physically contain other parts. These templates enable XCON to keep track of 
what container space is available at any point in the configuration process and what the options 
are for arranging the components. They also provide coordinate information so XCON can 
assign components to locations in a cabinet. In XCON, arrangement includes electrical connec­
tions, panel space, and internal cabinet locations. XCON uses a model for spatial reasoning in 
which the possible locations are described in terms of "slots," places where boards can plug in, 
and nexuses, places where devices can be attached in cabinets. Figure 8.10 gives an example of a 
template. Part of the interpretation of this template follows: 

The components that may be ordered for the CPU cabinet are SBI modules, power 
supplies, and an SBI device. Up to six bus interface modules fit into the cabinet. The 
cabinet contains a central processor module and some memory. There are three slots 
for options that occupy 4 inches of space and one slot for an option that occupies 3 
inches of space. The description "CPU nexus-2 (3 5 23 30)" indicates that the central 
processor module must be associated with nexus 2 of the bus interface. The numbers 
in parentheses indicate the top left and bottom right coordinates of the space that can 
be occupied by a CPU module. 

Customer orders to XCON are highly variable. Although two system configurations may 
need most of the same kinds of actions to occur, even slight differences in the configurations may 
have broad consequences because of complex interactions between components. The knowledge 
for driving the configuration task in XCON is represented mostly using production rules. In the 
following we examine some rules from XCON and consider the kinds of knowledge they repre­
sent. 
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RK711-EA 
CLASS: 
TYPE: 
SUPPOR1ED: 
COMPONENT LIST: 

RK611* 
CLASS: 
TYPE: 
SUPPOR1ED: 
PRIORITY LEVEL: 
TRANSFER RA1E: 
SYS1EM UNITS: 
SLOTS REQUIRED: 
BOARD LIST: 

BUNDLE 
DISK DRIVE 
YES 
1 070-12292-25 
1 RK07-EA* 
1 RK611 

UNIBUS MODULE 
DISK DRIVE 
YES 
BUFFERED NPR 
212 
2 
6 RK611 (4 TO 9) 
(HEXAM7904) 
(HEX AM7903) 
(HEX AM7902) 
(HEX AM7901) 
(HEXAM7900) 

DC POWER DRAWN: 15.0 .175 A 
UNIBUS LOAD: 1 
UNIBUS DEVICES SUPPOR1ED: 8 

8 CONFIGURATION 

CABLE TYPE REQUIRED: 1 070-12292 FROM A DISK DRIVE UNIBUS DEVICE 

FIGURE 8.9. Two component descriptions from X CON's database. The attributes of a component are 
used in the configuration process to determine when other parts are needed, such as subsystems and 
cabling. They also describe parameters that influence the arrangement of parts and the power require­
ments. (Adapted from McDermott, 1982a, Figure 2.2, pp. 46-47.) 

Parts require other parts for their correct operation. The initial specifications to XCON 
refer explicitly to key components, but not necessarily all the other components required to 
enable a configuration to function correctly. Figure 8.11 gives an example of a rule for adding a 
component. 

Parts require other parts for a variety of reasons. For example, disk drives require disk con­
trollers to pass along commands from the central processor. One disk controller can service sev­
eral drives. All of these devices require cables to interconnect them. They also require power 
supplies to power them and cabinets to house them. The interlocking requirements are repre­
sented in XCON by a combination of rules and the databases about components and templates. 
Requirements for additional components are expressed locally, which means each description of 
a component includes specifications for other components that it requires. When XCON adds a 
component to a configuration, it needs to check whether the new component introduces require­
ments for other components. 

XCON uses knowledge to govern the automated arrangement of components, as demon­
strated in Figure 8.12. Several kinds of choices must be made about arrangements in XCON. A 
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CPU CABINET 
CLASS: 
HEIGHT: 
WID1H: 
DEP1H: 
SBI MODULE SPACE: 

POWER SUPPLY SPACE: 

SBI DEVICE SPACE: 

CABINET 
60INCHES 
52 INCHES 
30INCHES 
CPU NEXUS-2 (3 5 23 30) 
4-INCH-OPTION-SLOT 1 NEXUS-3 (23 5 27 30) 
MEMORY NEXUS-4 (27 5 38 30) 
4-INCH-OPTION-SLOT 2 NEXUS-5 (38 5 42 30) 
4-INCH-OPTION-SLOT 3 NEXUS-5 (42 5 46 30) 
3-INCH-OPTION-SLOT NEXUS-6 (46 5 49 30) 
FPANEXUS7 1(2 3210 40) 
CPU NEXUS-2 (10 32 18 40) 
4-INCH-OPTION-SLOT 1 NEXUS-3 (18 32 26 40) 
MEMORY NEXUS-4 (26 32 34 40) 
4-INCH-OPTION-SLOT 2 NEXUS-5 (34 32 42 40) 
CLOCK-BATTERY (2 49 26 52) 
MEMORY-BATTERY (2 46 26 49) 
IO (2 52 50 56) 

629 

FIGURE 8.1 0. An example container template from XCON. (Adapted from McDermott, 1982a, Figure 
2.3, page 48.) 

distinction is made between the CPU cabinet, the CPU extension cabinets, and the unibus cabi­
nets. The CPU is the central processing unit and SBI modules are bus interface modules. Compo­
nents whose class is SBI module are located in the CPU cabinet. There is only a limited amount 
of space in these cabinets, as indicated by the templates. XCON assigns components to locations 
incrementally. In placing objects in the unibus cabinet, XCON needs to account for both panel 
space and interior space. Modules that support each other need to be located either in the same 
backplane or in the same box. Another arrangement issue is the electrical order by which objects 
are located on the bus. This order affects system performance. Other arrangement decisions con­
cern the allocation of floor space to cabinets, taking into account any known obstructions at the 
customer site. 

Rule for adding parts 
IF: The most current active context is assigning a power supply 

THEN: 

and a unibus adapter has been put in a cabinet 
and the position it occupies in the cabinet (its nexus) is known 
and there is space available in the cabinet for a power supply 
for that.nexus 
and there is an available power supply 
and there is no H7101 regula tor available 
Add an H7101 regulator to the order. 

FIGURE 8.11. A rule from XCON for adding required parts to a configuration. 
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Rule for arranging parts 
IF: The most current active context is assigning a power supply 

THEN: 

and 
and 
and 
for 
and 
and 

a unibus adapter has been put in a cabinet 
the position it occupies in the cabinet (its nexus) is known 
there is space available in the cabinet for a power supply 
that nexus 
there is an available power supply 
there is an H7101 regulator available 

Put the power supply and the regulator in the cabinet in the 
available space. 

FIGURE 8.12. A rule from XCON for arranging parts in a configuration. 

Other rules add specifications to further guide the configuration process. The XCON rule 
in Figure 8.13 is an example of this. In other cases in XCON, the rules propose changes to the 
given specifrcations. For example, if there are components in the order that have incompatible 
voltage or frequency requirements, XCON tries to identify a minority set of components having 
the "wrong" voltage or frequency and replaces them with components of the right voltage and 
frequency. 

Choices also must be made about implementation and arrangement. Some combinations of 
choices are incompatible with others. For example, there may be a tension between having opti­
mal performance of the bus and still packing' as many components into a single cabinet as possi­
ble. XCON can fall back to delivering a configuration that works without guaranteeing that per­
formance is optimal. 

The strategy taken by the designers of XCON was to organize it to make decisions in an 
order that would enable it to proceed without undoing the decisions it has made so far. XCON's 
decisions are organized into stages and subtasks. Stages correspond to large groups of subtasks, 

Rule for extending the specifications 
IF: The most current active context is checking for unibus jumper 

THEN: 

cable 6hanges in some box 
and the box is the second box in some cabinet on some unibus 
and there is an unconfigured box assigned to that unibus 
and the jumper cable that has been assigned to the last 
backplane in the box is not ~ BC11A~lo 

and there is ~ BC11A-10 available a~d the current length of the 
unibus is known 
Mark the jumper cable assigned to the backplane as ncit assigned 
and assign the BCllA-10 to the backplane 
and increment the ~ufrent length of the unibus by ten feet. 

FIGURE 8.13. An example of a rule for adding or changing specifications. 
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Stage 1 .Determine whether anything is grossly wrong with the order, such as mismatched items or 
missing prerequisites. 

Stage 2 Put the appropriate components in the CPU and CPU expansion cabinets. ""'-
Stage 3 Put boxes in the unibus expansion cabinets and put the appropriate components in those boxes. 
Stage 4 Put panels in the unibus expansion cabinets. 
Stage 5 Create the floor layout of the system. 
Stage 6 Add necessary cables to the configuration. 

FIGURE 8.14. Stages for the XCON system. The grouping and ordering of decisions in these stages is 
arranged so that, for the most part, later decisions depend only the results of earlier decisions. 

and subtasks can involve as little as a single rule. There are six stages and several hundred sub­
tasks. We first discuss gross interactions among the stages and then the more complex interac­
tions among subtasks. 

XCON's stages are shown in Figure 8.14. These stages were not determined through a rig­
oreus analysis of the configuration problem. Rather, the ordering was originally designed to 
reflect the way human experts performed the task. The ordering has evolved since then for 
XCON, based on the insights and measurements that have become possible with an explicit 
knowledge base. Nonetheless, the basic rationale of XCON's ordering of stages is straightfor­
ward. Component selection and component placement in boxes determines what cables are 
needed, and floor layout must be known to determine the length of cables. This is why stage 6 
comes after stages 1, 2, 3, and 5. Any arrangement of components made before all the required 
components are known is likely to require rearrangements, because prerequisite components 
often need to be co-located. This is why stages 2 and 3 should come after stage 1. Any attempt to 
locate front panels for unibus devices on cabinets before it is known how many cabinets are 
being used and where devices are located would probably need some redoing. This is why stage 
4 comes after stage 3. Ordered in this way, the later stages implicitly assume that the previous 
stages have been completed successfully. 

The first stage adds missing but required components to the specification. The component 
descriptions characterize some components as requiring others for their operation and also char­
acterize some components as coming in "bundles," which means they are packaged together for 
either marketing or manufacturing reasons. Adding required components is potentially recursive, 
since some required components require still other components. The first stage does not arrange 
components. In addition to adding components, the first stage detects any mismatched compo­
nents in the order, such as components with mismatched power requirements as discussed 
already. 

The second and third stages arrange components. The second stage locates SBI modules in 
the CPU cabinet. This stage can introduce additional components, but not ones that could them­
selves require revisiting decisions in the first stage or this stage. For example, stage 2 may need 
to add CPU extension cabinets if there are too many components to fit in the one containing the 
central processor. When all the relevant components have been placed, stage 2 puts a bus termi­
nator in the appropriate place in the last cabinet and adds dummy or "simulator" modules to fill 
out any leftover slots corresponding to unordered options. Until these cabinets have been config­
ured, it is not known whether these additional parts are needed. Because these parts do not com-
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pete for space with other components and because they have no further requirements, adding 
them does not trigger requirements for further parts. 

The third stage is the most complex. This stage determines the parameters of three kinds of 
arrangements: spatial arrangement of boxes in cabinets, spatial arrangement of components 
inside boxes, and electrical arrangement of components on the unibus. For communication on 
the unibus, the relevant factors are interrupt priority level and transfer rate. In an optimal order, 
the components would be arranged in descending order of priority level (or more precisely, in 
nonincreasing order). Within components of the same priority, they should be ordered by 
decreasing transfer rate. XCON defines an "(almost) optimal unibus order" as one in which no 
pairs of components at the same priority level are connected so that the one with lower transfer 
rate comes before the one with the higher transfer rate. Below that, XCON characterizes any 
other ordering as suboptimal. The third stage uses an iterative approach in configuring the unibus 
expansion cabinets. It first tries to arrange the components in an optimal unibus order within the 
space available. If that fails, it then tries other rearrangements of the components that compro­
mise the optimal unibus order but save space. Depending on what it can achieve, XCON may 
need to allocate new cabinets and try again. This leads to ordering further parts in addition to the 
cabinets, needed for extending the unibus across the cabinets. Within this stage XCON must 
sometimes backtrack to consider all the alternatives. 

The fifth and sixth stages for XCON introduce no new theoretical issues. The fifth stage 
generates a linear floor plan for the computer system. The last stage generates cable assignments, 
using the interdevice distances that have been determined by the earlier stages. It is interesting to 
note that XCON's method does more than satisfice. Especially in stage 3, its ranking and itera­
tive development of alternatives is a due-process approach that attempts to optimize the layouts 
using essentially a best-first generate-and-test method. 

The next level down from stages in XCON is subtasks, implemented as one or more rules. 
In contrast to the simple and fixed ordering of stages, the determination of the order of perform­
ing subtasks is complex, situation specific, and governed by conditionals. XCON employs exten­
sive look-ahead to detect exceptional situations and to check for possible future conflict before 
making decisions. Early subtasks check for interactions with later ones. One difficulty in XCON 
is that there are many potential long-range interactions. Restated, in spite of the task ordering, 
there are still many possible interactions among decisions that are scheduled in early tasks and 
those that are scheduled in later ones. Anticipating these interactions with conditional subtasks 
has yielded a knowledge base that has proven quite complex to maintain. In 1989, XCON had 
more than 31,000 components and approximately 17,500 rules (Barker & O'Connor, 1989). The 
knowledge base changes at the rate of about 40 percent per year, meaning that modifications are 
made to that fraction of it. 

This maintenance challenge has led to the development of a programming methodology 
for XCON called RIME (Bachant, 1988; van de Brug, Bachant, & McDermott, 1986), which 
provides guidelines intended to simplify the continuous development of the system. RIME pro­
vides structuring concepts for rule-based programming. From the perspective of configuration 
problems, it institutionalizes some of the concepts we have seen already in the organization of 
XCON, especially in the third stage. 

RIME advocates an approach based on concepts called "deliberate decision making" and 
"propose-and-apply." Deliberate decision making amounts todefining configuration in terms of 
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small formal subtasks that are represented as explicit, separate processes. Examples of these pro­
cesses in the RIME implementation of XCON include selecting a device, selecting a container 
for a component, and selecting a location within a container to place a component. These pro­
cesses were distributed and sometimes duplicated among the rules of XCON. By naming these 
processes explicitly and representing them uniquely, RIME brings to XCON-RIME a concern for 
modularity at the symbol level. 

Another part of the RIME methodology, called propose-and-apply, organizes subtask 
descriptions as a sequence of explicit stages that include proposing operators, eliminating the 
less desirable ones, selecting an operator, and then performing the operation specified. In the 
context of configuration tasks, this separates each subtask into three parts: looking ahead for 
interactions in the situation, selecting a best choice for part selection or arrangement, and then 
executing that choice. This bundling institutionalizes the way that XCON-RIME considers inter­
locked combinations of choices and backtracks on generating alternatives but not on making 
commitments. 

Sometimes configuration choices cannot be linearly ordered without backtracking because 
the optimization requires a simultaneous balance of several different kinds of decisions. In 
XCON, this occurs most noticeably in the third stage, which resolves this issue by bundling deci­
sions and generating combinations of decisions in an iterative approach. In particular, by gener­
ating composite alternatives in a preferred order, this stage generates some combinations of 
choices before committing to any of the individual choices about unibus order and spatial 
arrangement. 

In summary, XCON is a knowledge system for configuring computer systems. Together 
with XSEL, it accepts customer orders interactively in terms of abstract parts. Using the key 
component assumption, functionality is specified in terms of a partial configuration. Decisions 
about the selection and arrangement of a part often interact with decisions about distant parts. 
XCON organizes its decision making into an ordered set of stages, but the detailed set of deci­
sions is still highly conditional and must account for potential interactions. RIME is a program­
ming methodology for a new implementation of XCON that organizes the configuration process 
in terms of small, explicit subtasks with explicit modules for look-ahead, generation of alterna­
tives, and commitment. 

8.3.2 Configuration in M1 /MICON 

M1 is an experimental knowledge system that configures single-board computers given a high­
level specification of board functions and other design constraints. M1 is part of a larger single­
board computer design system called MICON (Birmingham, Brennan, Gupta, & Sieworek, 
1988). Single-board computer systems are used for embedded applications, in which computer 
systems are integrated in larger pieces of equipment. The limitation to single-board systems 
means M1 does not contend with spatial layout issues for components inside boxes and cabinets. 

M1 configures systems that use a single microprocessor, memory, input and output 
devices, circuitry to support testing, and circuitry to enhance reliability. The output of M1 is a list 
of components for a design, the list of how these components are interconnected, an address map 
that defines where input and output devices are in memory, and some graphs detailing options 
and costs for enhancing reliability and fault coverage. Figure 8.15 sketches the main search 
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r-------------------------------------------------------------------------------·~--------------------------------

' 
' 
' 

' 
' 

' 

Specifications 

Specifications 

Re~ 
specifications 
for reliability 

Configuration space 

Components 

Functional 
hierarchy 

~ 
' Arrangement 
~del 

------------------------------------------------------------------------------------------------------------------

FIGURE 8.15. The specification language for Ml is a list of key components, using Ml 's functional 
hierarchy. Ml also has a component hierarchy that describes required parts, which are supporting cir­
cuitry. Its arrangement model is based on ports and connections. Not shown in this figure is Ml 's knowl­
edge for reliability analysis. 

knowledge for Ml. Like our exemplar of configuration systems, M1 has knowledge for mapping 
specifications to abstract solutions; knowledge for refining abstract solutions by selecting, add­
ing, and arranging parts; and knowledge for adding specifications. 

M1 represents a functional hierarchy of components, as shown in Figure 8.16. This hierar­
chy includes both abstract parts and physical parts. The abstract parts are developed by general­
izing the functions of a class of parts. For example, the abstract part PI0-0 embodies a set of 
functions common to all the devices in M1's database for parallel input and output. An important 
purpose of abstract components is that they define a standard wiring interface called a "func­
tional boundary." 

M1 begins with an interactive session with a user to acquire specifications for the system 
to be configured. This session leads to a number of specifications about power, area, and the 
desired functionality of the system. Like XCON, M1 uses a key-component assumption for spec­
ifying functionality. The key components used by M1 correspond to the third level (the lowest 
abstract level) of its component hierarchy. For example, M1 asks the user whether a serial 
input/output device is required and represents what it knows about serial input/output devices in 
its description of the abstract class SI0-0, as shown in Figure 8.16. 

Each abstract part has a set of specifications that characterize its function and performance. 
In 1989, the parts database described 574 parts, of which 235 were physical parts and the rest 
were abstract parts. The user's requirements for these are entered as a set of values. For example, 
the specifications for a serial input/output device allow the user to specify, among other things, 
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Component for single-board computer 

Processor Memory Input/output devices 

I ~ ~ 
68009-Proc-0 SRAM-0 ROM-0 SI0-0 PI0-0 

I 1\ 1\ 1\ 1\ 
6809 62256 6264 2764 2716 6850 8251 8255 6821 

fiGURE 8.16. A functional hierarchy used in the Ml system. Some parts in this hierarchy represent 
abstract parts. These parts are developed by generalizing the functions of a class of physical parts. For 
example, the abstract part PI0-0 embodies a set of functions common to all parallel input/output chips in 
Ml 's database. SRAM-0 represents static random-access memory. ROM stands for read-only memory. 
SI0-0 and PI0-0 represent serial and parallel input/output devices, respectively. Parts like SI0-0 and PI0-
0, at the third level ofMl's component hierarchy, correspond to key components and are used for specify­
ing functionality. They also define functional boundaries, which provide a framework for specifying how 
th\! more detailed parts should be connected. (Adapted from Birmingham, Brennan, Gupta, & Sieworek, 
1988, Figure 2, page 38) 

how many ports are needed, a chip type if known, an address, a baud rate, and whether the device 
should be compatible with RS232 output. The user requirements then become constraints to 
guide the initial selection of parts. 

Once abstract parts are selected, M1 moves on to instantiate these parts and to arrange 
them. The main arrangement decisions for M1 are the electrical connections between the compo­
nents. In contrast with the spatial arrangement subtasks in XCON, M1 produces a spatially 
uncommitted network list that is passed to commercial programs for layout and wire routing. 

During the phase of part instantiation, M1 adds supporting circuitry. Figure 8.17 shows 
that a baud rate generator and RS232 driver are instantiated as parts of a serial input/output 
device. The templates are represented procedurally as rules, as suggested by the abbreviated 
English rule for connections in SI0-0 in Figure 8.18. In some cases the part expansion involves 
substantial expansion into individual parts. For example, individual memory chips are organized 
into an array to provide the required word width and storage capacity. 

The next step in M1 is an optional analysis of the reliability of the design. If the analysis is 
requested, the user is asked about several more characteristics as well as a selection of reliability 
metrics such as mean time to failure and coverage of error detection. The user is also asked to 
provide relative weights for trading off total board area and monetary cost. M1 has a number of 
rules for determining sources of failure. These rules also guide it in making design changes, such 
as substituting parts, changing their packaging, or adding error-correcting circuitry and redun­
dant circuitry. M1 's method is summarized in Figure 8.19. 

In summary, Ml has one of the simplest configuration tasks of the applications we will 
consider. Specifications include parameters about size and power as well as function. Functional­
ity is represented in terms of key components, where key components are expressed as abstract 
parts in a component hierarchy. A weighted evaluation function is used to select among compet­
ing parts when there is no clear dominance. Part expansion is driven by templates represented as 
rules. No conflicts arise in expanding or arranging parts. Other than recomputations required 
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SI0-0 

6850 RS232_DRIVE 

... DATA_BUS DCD 111-GND -... IRQ RTS .... "" CONTROL_l "" - ... 

... RfW TxDATA .... ... DATA_l ... .... ... 

DATA_BUS 

IRQ 

WRITE 

ADDRESS_BUS -- RS RxDATA ""' .... ... DATA_2 OUT"" ... ... - ~ OUT 

CLOCK 

IO_CS 

-... 
.... 
'"" 

vt I cso CTS 

I CSl TxCLK 

E RxCLK 

CS2 

BAUD_RATE_GENERATOR 

OUT 

""' ... CONTROL_2 - ... 
Ill-

II-

--
FIGURE 8.11. Ml uses templates and a port-and-connector model for describing the space of possible 
interconnections. The template in this figure is for the serial input/output device SI0-0. (Adapted from 
Birmingham, Brennan, Gupta, & Sieworek, 1988, Figure 4, page 37) 

after the reliability analysis, Ml performs no backtracking. Ml uses a port-and-connector model 
for arrangements. The arrangement process does not compute an optimal layout. All topological 
arrangements are achievable, so no revision of component choices or specifications is required 
on the basis of connectivity constraints. 

IF the goal ts assert_template and 
the part::_name is 6850 and 
the abstract"-pa rt_name . is 6850 .. 

THEN get_part(RS232_DRIVER) 
get_part(BAUD_RATE_GENERATOR) 
connect_net(6850, dO, SIO_O, DATA_BUS) 
connect_net_;VCC(6850, CSO) · 
connect_net_GND(685Q, DCD) 
cbnnect_net(6850, JxCLK,. BAUD_RATE_GENERATOR, ·OUT) 
, . . (more)· 

FIGURE 8.18. Sample rule representation for template knowledge, specifying connections between the 
internal parts that make up an abstract component and the outer ports of the abstract part. These outer 
ports are called a functional boundary. 
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To peiform Ml s method for configuring single-board computer systems: 
1. Get specifications. 

I* Initial part selection. *I 
2. Repeat through step 4 for each key function of the specifications. 
3. Collect parts that satisfy the specification. 
4. Select the part having the highest rating according to M1's 

feature-weighted evaluation function. 

I* Perform a reliability analysis if requested and make part 
substitutions. *I 

5. If a reliability analysis is requested, then repeat through step 9 
until the reliability specifications are satisfied. 

637 

6. Use an external program to predict mean time to failure, error­
detection coverage, and reliability of individual components. 

7. 
-_.,. 8. 

9. 

Report on reliability and acquire revised specifications. 
Acquire weighting factors from the user to guide trade-offs 
between board area and cost. 
Select parts, substituting more reliable components and adding 
redundant and error-detection circuitry as needed. 

I* Expand design for cascaded components. *I 
10. Repeat through step 11 for each cascadable part. 
11. Invoke associated procedure to cascade the parts to the 

required sizes. (Generate arrays for memories or trees for 
priority encoding and carry look-ahead.) 

I* Connect parts using structural templates. */ 
12. Repeat through step 14 for each unconnected part. 
13. Retrieve the template rule for this component. 
14. Apply the rule to retrieve parts for ancillary circuitry and 

connect the ports of the parts as required. 

FIGURE 8.19. The search method used by Ml. 

8.3.3 Configuration in MYCIN's Therapy Task 

MYCIN is well known as a knowledge system for diagnosing infectious diseases. Its diagnostic 
task has been so heavily emphasized that its second task of therapy recommendation is often 
overlooked. The computational model for therapy recommendation is different from that for 
diagnosis. This section explains how therapy recommendation in MYCIN is based on a configu­
ration model. 

The term therapy refers to medical actions that are taken to treat a patient's disease. The 
most powerful treatments for infectious diseases are usually drugs, such as antibiotics. In 

Page 40 of 72 FORD 1017



638 8 " CONFIGURATION 

Example results from the diagnostic task 
Therapy reco~mendations a~e based on the followihg possible iden~ties of 
the organi.sms: 

<item 1> 

<item 2> 
<item 3> 

The identity of ORGANISM-1 may be STREPTOCOCCUS-GROUP-D. 
The identity of ORGANISM-1 may be STREPTOCOCCUS-ALPHA. 
The identity of ORGANISM-2 is PSEUDOMONAS. 

Example results from the therapy task 
.The preferred therapy recommendation is as follows: 
ln order to cover for i terns <1><2><3> 
Give the following in combination 

L. PENICILLIN 
Dose: 285,000 UNITS/KG/DAY - IV 

2. GE:NTAMICIN 
nose: 1.7 MG/KG QBH - IV or IM 
Comments: Modify dose in renal failure. 

FIGURE 8.20. Therapy recommendation in MYCIN. (From Shortliffe, 1984, pp. 123, 126.) 

MYCIN, a therapy is a selected combination of drugs used to cover a diagnosis. Figure 8.20 
presents an example of diagnostic results and a therapy recommendation. The results are charac­
terized in terms of items. The first two items correspond to alternative and competing identifica­
tions of the first organism. Medical practice usually requires that the therapy be chosen to cover 
both possibilities. A possible therapy is shown at the bottom of the figure, recommending a com­
bination of drugs. In some cases, MYCIN ranks alternative therapies, each of which is a combi­
nation of drugs. By analogy with more typical configuration problems, the organisms that must 
be covered by the treatment correspond to specifications, drugs correspond to parts, and thera­
pies correspond to configurations. 

It would have been simpler in MYCIN if the same computational model could have been 
used for both diagnosis and therapy. However, there are several phenomena and considerations 
that arise in therapy recommendations that violate assumptions of the classification model that 
MYCIN used for diagnosis. The most basic issue is that the number of possible solutions based 
on combinations of drugs to cover combinations of diseases is too large to pre-enumerate. More 
problematic than this, the selection of drugs to cover one item is not independent of the selection 
of drugs to cover another. This follows from competing concerns in therapy. On the one hand, it 
is desirable to select therapeutic drugs that are the most effective for treating particular diseases. 
For the most part, this decision is based on drug sensitivities of different organisms. Tests are run 
periodically in microbiology laboratories to determine the changing resistance patterns of micro­
organisms to different drugs. On the other hand, drugs sometimes interfere with each other and it 
is usually desired to keep as low as possible the number of drugs simultaneously administered to 
a patient. Thus, the best combination of drugs to cover two different diagnoses might be different 
from the union of the best drugs to treat them separately. For example, it might be best to treat 
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both possible infections with the same drug, even if a different drug might be selected by itself 
for either one of them. 

Sometimes the risks associated with illness require that a doctor prescribe a treatment 
before time-consuming laboratory tests can be completed. For example, culture growths would 
narrow the range of possible diagnoses but may delay treatment for several hours. Other compli­
cating factors include drug interactions, toxic side-effects, cost, and ecological considerations. 
An example of an ecological factor is when physicians decide to reserve certain drugs for use 
only on very serious diseases. In some cases, this measure is used to slow the development of 
drug-resistant strains of organisms, which is accelerated when a drug is widely prescribed. In 
medical jargon, all negative factors for a therapy are called "contra-indications." Patient-specific 
contra-indications include allergies, the patient's age, and pregnancy. 

In the initial therapy algorithm for MYCIN (Shortliffe, 1984), therapy recommendation 
was done in two stages. A list of potential therapies was generated for each item based on sensi­
tivity information. Then the combination of drugs was selected from the list, considering all con­
tra-indications. This approach was later revised (Clancey, 1984) to make more explicit the medi­
ation between optimal coverage for individual organisms and minimization of the number of 
drugs prescribed. 

The revised implementation is guided by the decomposition of the decision into so-called 
local and global factors. The local factors are the item-specific factors, such as the sensitivity of 
the organism to different drugs, costs, toxicity, and ecological considerations. Global factors deal 
with the entire recommendation, such as minimizing the number of drugs or avoiding combina­
tions that include multiple drugs from the same family, such as the aminoglycosides family. One 
variation is to divide the hypothesized organisms into likely and unlikely diagnoses and to search 
for combinations of two drugs that treat all of the likely ones. There are sometimes trade-offs in 
evaluating candidates. One candidate might use better drugs for the most likely organisms but 
cover fewer of the less likely organisms. In such cases, the evaluation function in the tester needs · 
to rank the candidates. Close calls are highlighted in the presentation to a physician. 

Figure 8.21 shows MYCIN's revised therapy method. Local factors are taken into account 
in the "plan" phase. Global factors are taken into account in the generate-and-test loop. Thus, the 

> 
J 

Rank > Propose 

(plan) (generate) 

Local factors 

Sensitivity of organism 
Toxicity 

Drug allergies 
Ecological concerns 

> Approve 

(test) 

Global factors 

Minimize number of drugs 
Testing ''most likely'' organisms 

> Prescribe 

FIGURE 8.21. Therapy recommendation viewed as a plan, generate, and test process. (Adapted from 
Clancey, 1984, Figure 6-1, page 135.) 
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test step considers an entire recommendation. Patient-specific contra-indications are also taken 
into account at this stage. 

In summary, MYCIN is a knowledge-based system that performs diagnosis and therapy 
tasks. The diagnosis task is based on a classification model and is implemented using production 
rules. The therapy task is based on a configuration model and is also implemented using produc­
tion rules. A solution to the therapy task is a selected subset of drugs that meet both local condi­
tions for effectively treating for organisms as well as global optimality conditions such as mini­
mizing the number of drugs being used. MYCIN's configuration model involves selection but 
not arrangement of elements. As in all configuration problems, small variations in local consider­
ations can effect the scoring of an entire solution. 

8.3.4 Configuration in VT 

VT is a knowledge system that configures elevator systems at the Westinghouse Elevator Com­
pany (Marcus, 1988; Marcus & McDermott, 1989; Marcus, Stout, & McDermott, 1988). VT 
searches for solutions by proposing initial solutions and then refining them. This is called a "pro­
pose-and-refine" approach. The search spaces for VT are shown in Figure 8.22. 

Interwoven with VT's model of parts is a parametric model of elevator systems. Compo­
nents are described in terms of their parameters. For example, a hoist cable may have a parame­
ter for HOIST-CABLE-WEIGHT. Parameters can also describe aspects of an elevator system not 
associated with just one of its parts. For example, the parameters TRACTION-RATIO and 
MACHINE-SHEAVE-ANGLE depend on other parameters associated with multiple parts. 

r~~-----------------------------------------------------------------------------------------------------n------------~ 
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FIGURE 8.22. VT uses a propose-and-refme approach. 
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Design methods involving such parametric models are sometimes called parametric design. 
Collectively, VT's parameters provide an abstract description of a solution. 

VT starts with specifications of elevator performance, architectural constraints, and design 
drawings. Specifications of elevator performance include such things as the carrying capacity 
and the travel speed of the elevator. Architectural constraints include such things as the dimen­
sions of the elevator shaft. VT's task is to select the necessary equipment for the elevator, includ­
ing routine modifications to standard equipment, and to design the elevator layout in the 
hoistway. VT's design must meet engineering safety-code and system performance requirements. 
VT also calculates building load and generates reports for installing the elevator and having it 
approved by regional safety-code authorities. Data for VT come from several documents pro­
vided by regional sales and installation offices. There are documents describing customer 
requirements, documents describing the building where the elevator will be installed, and other 
design drawings. VT also accepts information about the use of the elevator, such as whether it is 
mainly to be used for passengers or freight, the power supply available, the capacity, the speed, 
the shaft length, the required width and depth of the platform, and the type and relative location 
of the machine. 

·• VT's approach involves two separate phases. The first phase is for knowledge acquisition 
and analysis. During this phase VT uses a knowledge acquisition tool called SALT to develop a 
general plan for solving elevator configuration problems. SALT is not concerned with the specif­
ics of a particular case, but rather with the acquisition and organization of knowledge for the 
range of cases that VT needs to solve. The concepts and analyses of SALT are discussed in the 
following. The second phase for VT is the solution of particular cases. This is where the propose­
and-refine approach is applied. Roughly, VT follows a predetermined plan using knowledge 
organized by SALT to guide its decisions. VT constructs an elevator configuration incrementally 
by proposing values for design parameters, identifying constraints on the design parameters, and 
revising decisions in response to constraint violations in the proposal. 

To explain the operation of VT we begin in the middle of the story, with its parameter net­
work. This network is generated by SALT and used by VT on particular cases. Figure 8.23 gives 
an example of part of a parameter network. Each box represents a design parameter. The arrows 
show a partial order of inferences in which values of parameters at the tail of an arrow determine 
values of parameters at the head of an arrow. Solid arrows indicate how one parameter is used to 
compute values for another. Dashed lines indicate cases where values for parameters establish 
constraints on values for other parameters. We use this network to establish a vocabulary about 
kinds of knowledge used in VT's propose-and-refine approach. Afterward, we consider the anal­
ysis used by SALT to organize such knowledge. 

Within a parameter network, knowledge can be expressed in one of three forms: proce­
dures for computing a parameter value, constraints that specify limits on parameter values, and 
fixes that specify what to do if a constraint is violated. Figure 8.23 shows some of VT's knowl­
edge for extendiug a configuration by proposing values for parameters. SALT expects to have a 
procedure for every parameter. The first rule in Figure 8.24 computes a value for a design param­
eter from other parameters. A rule like this is shown in a parameter network by arrows between 
boxes. In Figure 8.23, the rightmost pair of boxes connected by a downward arrow depicts this 
relation. 

The second rule in Figur~ 8.24 selects a part from the database. Like Ml and XCON, VT 
has a database of parts that describes the pieces of equipment and machinery VT configures. 
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FIGURE 8.23. Segment ofVT's knowledge base showing relations among parameters. Each box repre­
sents one of VT's design parameters. Arrows between the boxes indicate a partial order for detennining 
values for parameters. (Adapted from Marcus, 1988, Figure 4-5, page 102.) 

There is a table of attributes for each kind of part, such as motors and machine models. The attri­
butes describe functional restrictions, such as the maximum elevator speed or the maximum 
load, and other attributes, such as height or weight. Roughly speaking, VT first establishes values 
for certain key design parameters and then selects appropriate parts from the database. 

Within VT's representational framework, the type of a part is itself just another parameter. 
The third rule in Figure 8.24 uses attributes from a database entry about a selected part to set val­
ues for design parameters. The domain for a given design parameter is the set of values obtain­
able from the relevant fields of the parts database. 

Besides proposing values for design parameters, VT can post constraints on design values. 
Figure 8.25 gives an example of a constraint, expressed both in a tabular form and as a produc­
tion rule. The precondition or conditional part of a constraint determines when the constraint is 
applicable, which means when it will be posted. VT uses its constraints to influence values in a 
directional way. The constraint in Figure 8.25 constrains a value of the parameter CAR-JAMB-
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Computing a value for a parameter 
IF: A value has been generated for HOIST-CABLE-DIAMETER, and 

there is no value for MACHINE-GROOVE-PRESSURE-FACTOR 
THEN: Set MACHINE-GROOVE-PRESSURE-FACTOR to be 2 * HOIST-CABLE-DIAMETER. 

Selecting a part from the component database 
IF: A value has been generated for SUSPENDED-LOAD. and 

THEN: 
there is no value for MACHINE-MODEL 
Search the database in the MACHINE table and retrieve the value 
of the MACHINE-MODEL field for the entry with the SMALLEST WEIGHT 
whose field value for MAX-LOAD is greater than the value of the 
SUSPENDED-LOAD parameter. 

JUSTIFICATION: Taken from Standards Manual IliA. page 139. 

Using attributes from a selected part to set other parameters 
IF: A value has been generated for MACHINE-MODEL, and 

there is no value for MACHINE-SHEAVE-DIAMETER 
THEN: Search the database in the MACHINE table and retrieve the value 

for MACHINE-SHEAVE-DIAMETER from the value of the SHEAVE-DIAMETER 
field in the machine entry whose field value for MODEL is the 
same as the value for the MACHINE-MODEL parameter. 

FIGURE 8.24. Examples of rules representing knowledge for extending a configuration. All three rules 
propose values for parameters. (Adapted with permission from Marcus, Stout, & McDermott, 1988, Fig­
ures 7 and 8, page 100.) 

Tabular fonn 
constrained value: 
constraint type: 
constraint name: 
PRECONDITION: 
PROCEDURE: 
FORMULA: 
JUST! FICATION: 

CAR-JAMB-RETURN 
MAXIMUM 
MAXIMUM-CAR-JAMB-RETURN 
DOOR-OPENING = SIDE 
CALCULATION 
PANEL-WIDTH * STRINGER-QUANTITY 
This procedure is taken from Installation Manual I, 
page 12b. 

Rulefonn 
IF: DOOR-OPENING = SIDE 
THEN: CAR-JAMB-RETURN MUST BE <= PANEL~WIDTH * STRINGER-QUANTITY 

FIGURE 8.25. An example of a constraint from VT's knowledge base. (From Marcus, 1988, page 88.) 
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IF: There has been a violation of the MAXIMUM-MACHINE-GROOVE-PRESSURE 
constraint 

THEN: (1) Try a DOWNGRADE for MACHINE-GROOVE-MODEL. (Level 1 effect: 
Causes no problem.) 
(2) Alternatively, try an INCREASE BY-STEP of 1 of HOIST-CABLE­
QUANTITY. (Level 4 effect: Changes minor equipment sizing.) 

FIGURE 8.26. An example of a rule representing knowledge for selecting a part by performing a search 
of the database when enough of the parameters are known. When there is more than one possible fix for a 
problem, VT relies on an ordered set of effect levels, trying more drastic fixes only after the less drastic 
ones have failed. 

RETURN, depending on values of the parameters PANEL-WIDTH and STRINGER-QUAN­
TITY. 

Figure 8.26 gives an example of the third form of knowledge used by VT, knowledge for 
revising a"configuration after a violation has occurred. In this example, two alternatives are pro­
posed to guide the choice of revisions when the constraint is violated. Constraint violations can 
be understood as conflicts over priorities. Viewed in the larger context of the entire elevator sys­
tem, every procedure for proposing parameter values is a myopic best-first search. If the solution 
to the overall elevator configuration problem were made up of independent subproblems, then 
each parameter subproblem could be solved or optimized separately. Constraint violations corre­
spond to antagonistic interactions between subproblems. To arbitrate in these cases, VT uses a 
scale for comparing the effects of changes. VT recognizes several different kinds of effects for 
making a change and establishes preferences among them. These effects are summarized in Fig­
ure 8.27. According to this list, the least desirable kind of fix is one that compromises the perfor-

Effect level 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Effect of fix 
Causes no problem 
Increases maintenance requirements 
Makes installation difficult 
Changes minor equipment sizing 
Violates minor equipment constraint 
Changes minor contract specifications 
Requires special part design 
Changes major equipment sizing 
Changes building dimensions 
Changes major contract specifications 
Compromises system performance 

FIGURE 8.27. Categories of effects from making a change in VT. When VT detects that a constraint has 
been violated and there are several different possible fixes, it prefers to make fixes with the least drastic 
consequences. This list enumerates the kinds of fixes from least drastic to most drastic. Every "fix" rule is 
assigned an effect level corresponding to an entry in this list. 
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mance of the elevator system. In weighing the costs of different changes, one-time difficulties in 
installation (#3) are considered less costly than ongoing increases in maintenance costs (#11). 

To review briefly, VT distinguishes three main forms of knowledge about elevator design: 
knowledge for proposing parameter values, knowledge constraining parameter values, and 
knowledge about what revisions to make when constraints are violated. We next consider some 
of the analyses and considerations that go into VT's organization of such knowledge. The core of 
SALT's operation is the analysis and structuring of parameter networks. 

Much of SALT's analysis is concerned with checking paths through the network. In the 
ideal case, there are unique paths through the network whereby all the elevator system parame­
ters can be computed for any combination of input parameters. In the simplest case, VT would 
need only to invoke knowledge for proposing parameter values, without using knowledge for 
constraining parameter values or fixing values after constraint violations. The partial ordering 
represented by the network would allow VT to compute other parameter values from the given 
ones, continuing in a data-driven fashion until the elevator was configured. Such an ideally struc­
tured computation has not proven workable in practice. Analogous to RIME, SALT can be 
understood as a structured programming environment for building parameter networks that 
approach this ideal. It uses the equivalent of structured programming in the parameter network to 
yield behaviors that converge to optimal configurations given a wide range of input parameters. 

SALT's analysis includes checking for a number of undesirable patterns in the parameter 
network, including ones involving loops. These patterns correspond to such things as race condi­
tions, unreachable paths, and potential deadlocks as described in the following. For example, if 
one procedure is applicable for computing motor torque for speeds less than 300 and another is 
applicable for speeds greater than 200, then there would be two applicable procedures for the 
speed 250. This is a race condition because either procedure could be executed depending on the 
order of traversal used by VT's interpreter. Similarly, there might be combinations of conditions 
such that no procedure is applicable for some combination of parameters. 

A deadlock condition is recognized when there are procedures for computing two parame­
ters such that each procedure requires the value of the other parameter before it can be run. In a 
data-driven interpreter, this would result in an infinite delay while each procedure waits for the 
other. When it detects the possibility of a deadlock, SALT guides the builder of a knowledge base 
in adding procedures that estimate initial parameter values. When this results in multiple proce­
dures proposing a value, SALT guides the user in converting some of the procedures to post con­
straints on values and in adding procedures that propose fixes when there is a conflict. In this 
way, SALT incrementally builds revision cycles into the parameter network. These revision 
cycles correspond to programming idioms. For example, a revision loop can incrementally 
increase the value of a parameter up to some limit. That idiom, implemented in terms of con­
straints and fixes, corresponds in function to an iterative looping construct in procedural pro­
gramming languages. 

SALT assumes that the procedures for proposing parameter values correspond to an 
underconstrained case reflecting local optimality. Potential fixes should be less preferred 
(locally) than the value originally proposed. The default strategy in VT is to try values in a best­
first order. If the fixes for one constraint violation have no effect on other constraint violations, 
then this strategy guarantees that the first configuration found will be the most preferred. How­
ever, it is possible that fixes selected for one constraint violation may interact with values for 
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other parameters in the network. A particularly pathological case of feedback between conflict­
ing fixes is called thrashing. Thrashing occurs in scenarios of different complexity. In a simple 
scenario, a fix for one parameter value causes a new value to be computed for a second variable, 
which then violates a constraint, causing a fix to a third variable, which causes an opposing 
change in the first variable, violating the original constraint again. The term thrashing refers to 
any persistent looping behavior that results when antagonistic fixes undo and redo a repeating 
sequence of changes. 

SALT uses syntactic techniques to analyze a parameter network for the possibility of these 
behaviors. A detailed consideration of SALT's syntactic analysis methods and the expressive 
power of the language is beyond the scope of this section. The tests built into SALT are intended 
to detect common errors of omission by builders of a VT knowledge base. 

Given a SALT-created network, VT works on a particular case as follows. It starts with a 
forward-chaining or data-driven phase in which procedures extend the configuration by propos­
ing parameter values. As it extends the design, VT records which parameter values were used to 
derive other ones using a truth maintenance system (TMS). Constraint violations are detected by 
demons, which invoke procedures to revise the network. The fix procedures then propose 
changes to values of individual parameters or to combinations of parameters. 

The effects of the proposed change are investigated with limited look-ahead as follows. 
First VT verifies that the revised value violates no constraints on the changed parameter. Then it 
works through the consequences, verifying that there are no antagonistic changes to the proposed 
fix using a TMS. If a proposed change violates constraints, then the next alternative fix is consid­
ered. The TMS keeps track of combinations of revisions it has tried so as not to repeat any. This 
process is a due-process approach. The prioritized list of effects in Figure 8.27 guides backtrack­
ing to approximate a best-first search. 

From a network perspective like that in Figure 8.23, many kinds of interactions in the 
search space can be visualized. The most common interaction among design parameters in VT is 
a rippling effect that follows when a constraint violation causes one piece of equipment to be 
upgraded, or increased in size. In this case, other pieces of related equipment may be affected 
and upgraded as well. Depending on circumstances, the initial fix may trigger a sequence of 
changes. For example, requiring more hoist cables than fit on the machine model selected may 
result ultimately in selecting a larger machine model and using larger sheaves. 

The 1988 version of VT recognized 54 different kinds of constraint violations, of which 37 
had only one known fix, meaning one parameter that might be revised. The remaining constraint 
violations also had a small number of fixes. Each possible fix provides directions of where to 
look next in VT's search for solutions. On an average case, however, VT needs to consider only a 
small number of fixes. In a typical run, VT makes between 1,000 and 2,000 design extensions 
and only about one-hundredth as many fixes to a design. In a typical case, VT detects 10 or 20 
constraint violations and averages just slightly more than 1 fix per violation. 

In summary, VT constructs an approximation to a solution and then refines it. VT's knowl­
edge base is made up predominantly of three kinds of knowledge: knowledge for proposing 
design extensions, knowledge for posting constraints, and knowledge for revising the configura­
tion when constraint violations are detected. VT's rules are applied in a data-driven fashion with 
limited look-ahead. VT's performance using this approach depends on the prior analysis by 
SALT, which identifies undesirable patterns and missing information in the network. In represen­
tative runs, VT detects very few constraint violations, and the first fix tried almost always works. 
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FIGURE 8.28. COSSACK begins with user specifications, in terms of evaluation criteria and functional 
specifications. The evaluation criteria are used to order candidates in component selection. Functionality 
specifications are represented using a key-component approach, where key components may be either 
hardware or software components. 

8.3.5 Configuration in COSSACK 

COSSACK (Mittal & Frayman, 1989) is a knowledge system for configuring personal comput­
ers that was developed at Xerox Corporation. Because Xerox stopped selling personal computers 
shortly after COSSACK became operational, the system never received substantial field testing. 
However, COSSACK is an interesting system from a technical point of view especially in its use 
of a partial-choice strategy. 

Like the other computer configuration systems we have considered so far, COSSACK's 
process starts with customer requirements. These include evaluation criteria, such as minimum 
cost, expandability, early delivery requirements, and functionality requirements. COSSACK per­
forms a best-first search, using the evaluation criteria to order candidates during component 
selection. Figure 8.28 shows the elements involved in COSSACK's search. Specifications are 
mapped onto abstract solutions. Abstract solutions are incrementally refined, making choices 
about component selection and arrangement. 

COSSACK uses key components to express functionality specifications. It creates require­
ments in terms of specific components, such as an "Epson-LX80 printer," and also in terms 
of abstract component descriptions, such as a "letter-quality printer." Figure 8.29 presents a por­
tion of COSSACKS's functional hierarchy. In this class hierarchy, each node represents a sub-
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FIGURE 8.29. Portion of the functional hierarchy for components in COSSACK. Any component below 
the root can be a key component. COSSACK also considers software components in its configuration and 
has classes for word processors, accounting programs, spreadsheets, and operating systems. 

class of its parent node. Any node lower than hardware component, the root, can be used to 
express a key component. Besides the classes of hardware components shown, COSSACK rep­
resents software components as well. In January 1987, COSSACK represented a total of 65 
different hardware components and 24 different software components. 

As in other configuration tasks, specifying a key component often leads to requirements 
for other components. COSSACK distinguishes two main relations for this, subcomponent and 
required component. The subcomponent relation indicates that other components are 
always included with the key component. This can reflect a manufacturing decision, as when 
multiple components are assembled as part of the same board. For example, the manufacturing 
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4045 Laser Printer 

Class: PrintingDevice 

Functional specifications 
Printing technology: Laser 
Printing speed: 8,000 cps 
Print quality: Letter 
Graphics capability: Yes 

Subcomponents 
Font packages: (Modem-10, 

Required components 
Printer driver: 

??? constraint: Constraint 23 
Printer cable: 

??? constraint: Constraint 44 

Constraint 23 

Description: Constraint on printer driver for 4045 printer 
Component type: PrinterDriver 
Constraint expression: (Compatible-with 4045SLaserPrinter) 
Number of components needed: 1 
Optional constraint: No 
Requested use: Shared 

Constraint 44 

Description: Constraint on cable for 4045 printer 
Component type: PrinterCable 
Constraint expression: (OR(Cable type: 36/25length: 10 feet) 

(Cable type: 36/251ength: 25 feet)) 
Number of components needed: 1 
Optional constraint: No 
Requested use: Exclusive 

FIGURE 8.30. Frame representation of a component in COSSACK's functional hierarchy. This frame 
represents a 4045laser printer. Frame slots are organized into groups: functional specifications, sub­
components, required components, and processing information. The functional specifications are used 
when matching this description against specifications using key words. Slots in subcomponents refer to 
other parts, both hardware and software, that are included or bundled with this component. The required­
component slots describe other components, not bundled with this one, that are needed for correct opera­
tion. Constraints associated with thos~ slots are used to narrow the choices. 

group may package a clock, memory, and modern on one multifunctional board. Parts can also be 
bundled for marketing reasons. The required component relation indicates that other parts 
are necessary for the correct functioning of a part. As with XCON and Ml, this indicates a range 
of requirements for auxiliary parts and cables. Required component relations are also useful 
for software components. For example, these relations can indicate how much memory or exter­
nal storage capacity a particular software package needs to run. 

Figure 8.30 gives an example of a frame representation of a component from COSSACK's 
knowledge base. The key component in this case is a 4045laser printer. The slots grouped under 
"Functional specifications" are used for matching. For example, this printer would satisfy a spec­
ification for a letter-quality printer. The subcomponents include various other parts that are nec­
essarily included. This example shows that various font packages are routinely bundled with a 
printer purchase. 

Required components for the 4045 printer include a software driver for the printer and a 
cable. Like VT, COSSACK posts constraints to guide future decisions. In Figure 8.30 Constraint 
23 indicates that any driver can be used that is compatible with the 4045 printer. Constraint 44 
indicates that the cable must be of type 36/25 and can have a length of either 10 or 25 feet. 

The two constraints in this figure illustrate a representational issue not dealt with in the 
previous configuration systems that we considered: the reuse or sharability of components across 
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different requirements. When one component description presents a requirement for another 
component, can the second component be used to satisfy any other requirements? In Figure 8.30, 
the software module for the printer driver can be shared, meaning that, in principle, the driver 
can be used for other components as well, such as when a configuration includes multiple print­
ers. Similar issues come up for required components for hardware. For example, can a modem 
and a printer use the same RS232 port? In contrast, constraint 44 indicates that the printer cable 
cannot be shared. It must be dedicated to the exclusive use of one printer. 

Like VT, COSSACK does not organize its design subtasks in a fixed order for all sub­
problems. Also like VT, it has knowledge for extending a design by making choices and for post­
ing constraints. COSSACK is able to retract component decisions, revisit preference..:guided 
choices, and remove constraints that were posted as requirements when the retracted components 
were originally selected. Unlike VT, COSSACK does not use domain-specific knowledge for 
modifying a configuration when constraint violations are detected, but rather employs a blind 
search. 

COSSACK uses a partial-commitment strategy to reduce backtracking. Figure 8.31 shows 
a simplified example of a case where partial commitment makes guessing and backtracking 
unnecessacy. In this example, both the operating system and an accounting package are specified 
as key components. Neither component has any immediate constraints bearing on the other. We 
assume that no other preferences are known to guide the choice. At this point, a simple generate­
and-test approach could arbitrarily select candidates for either one. Suppose it arbitrarily selected 
Accounting Package #1 and OS Version B. Then later, when it expanded the required compo­
nents for Acounting Package #1, it would pick a rigid disk drive and discover that none of the 
satisfactory disk drives are compatible with OS Version B, leading to backtracking. The partial­
choice approach enables it to generalize the requirements held in common by Accounting Pack­
age #1 and Accounting Package #2. This would result in the generation of a constraint specifying 
that whatever rigid disk was chosen, its operating system must be OS Version A. 

Arrangement issues in COSSACK are not as complex as in XCON and are represented 
using constraints on a port-and-connector model. The main arrangement conflict is that personal 
computers have a limited number of slots. Components consume both slots and ports. 

In summary, COSSACK is a knowledge-based system for configuring personal computers. 
It uses a key-component model for functionality, a preference model for selecting components in 
a best-first search, constraint posting to add specifications for related decisions, and partial com­
mitment to reduce backtracking. It relaxes the notion that required components need to be dedi­
cated to a single use by representing "sharable" components. 

8.3.6 Summary and Review 

A configuration is an arrangement of parts. A configuration task instantiates a combination of 
parts from a predefined set and arranges them to satisfy given specifications. The large size of 
configuration search spaces precludes pre-enumeration of complete solutions. Knowledge-based 
systems for configuration are important to manufacturers that customize their products for indi­
vidual customers by configuring customer-specific systems from a catalog of mass-produced 
parts. 

XCON is a well-known knowledge system for configuring computer systems at Digital 
Equipment Company. Together with its companion program, XSEL, XCON tests the correctness 
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Accounting Package #1 

Constraint 10 
Class: SoftwareApplicationPackage 

Component type: RigidDiskDrive 
Required components /' Constraint expression: (Min-capacity 10 megabytes) 
External storage: L__ ________________ __j 

??? constraint: Constraint 10 

Accounting Package #2 

Constraint 12 
Class: SoftwareApplicationPackage 

Component type: RigidDiskDrive 
Required components /' Constraint expression: (Min-capacity 10 megabytes) 
External storage: L__ ________________ __j 

??? constraint: Constraint 12 

Choice of operating system 

OS Version A 

Class: OperatingSystem 

Choice of disk drive 

Rigid Disk Drive #1 

Class: DiskDrive 
Capacity: 15 megabytes 

Required components 
Operating system: OS Version A 

OS Version B 

Class: OperatingSystem 

Rigid Disk Drive #2 

Class: DiskDrive 
Capacity: 20 megabytes 

Required components 
Operating system: OS Version A 

FIGURE 8.31. Simplified partial commitment example from COSSACK. In this example, we assume 
that an accounting package and an operating system have been specified as key components. COSSACK 
notices that whatever rigid disk drive it chooses, the required operating system is OS Version A. 

of configurations and completes orders for computers. Like all configuration systems, XCON 
relies on a component database and a body of rules that describes what combinations of parts 
work correctly together and how they should be arranged. The challenge of maintaining a large 

· database about parts and a body of rules about their interactions has led to the development of a 
programming methodology for XCON called RIME. RIME organizes configuration knowledge 
in terms of small recurring subtasks such as selecting a device, selecting a container for a compo­
nent, and selecting a location within a container to place a component. To a first approximation, 
these subtasks are local, explicit, and separate processes. To represent knowledge about the inter­
actions among these subtasks, RIME organizes the subtask descriptions as a sequence of explicit 
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stages that look ahead for interactions in the situation and select a best choice for part selection 
or arrangement before executing that choice. 

Ml is an experimental knowledge system that configures single-board computers given a 
high-level specification of board functions and other design constraints. Ml represents compo­
nents in a functional hierarchy. Like XCON, Ml relies on the use of key components to specify 
system function. It selects abstract parts and then instantiates them. Spatial layout is carried out 
by commercial programs for layout and wire routing. 

In MYCIN, a therapy is a selected combination of drugs used to treat a patient for infec­
tious diseases. This example shows that configuration can be used as a model for a task not 
involving manufacturing. The heuristic classification model that MYCIN uses for diagnosis is 
inadequate for characterizing therapy because the number of possible solutions based on combi­
nations of drugs to cover combinations of diseases is too large to pre-enumerate. MYCIN's con­
figuration model separates consideration of local factors, such as the sensitivity of the organisms 
to different drugs, from global factors that deal with the entire recommendation, such as mini­
mizing the number of drugs. 

VT is a knowledge system that configures elevator systems at the Westinghouse Elevator 
Company. Interwoven with VT's model of parts is a parametric model of elevator systems. VT's 
approach involves separate phases for knowledge acquisition and analysis and for solving partic­
ular cases. The analysis phase includes checking for race conditions, unreachable paths, and 
potential deadlocks. The case phase uses data-driven procedures to extend the configuration by 
proposing parameter values. VT's knowledge is organized within a parameter network in one of 
three forms: procedures for computing a parameter value, constraints that specify limits on 
parameter values, and fixes that specify what to do if a constraint is violated. Analogous to 
RIME, VT's analysis and knowledge acquisition facility can be viewed as a structured program­
ming environment for building parameter networks. 

COSSACK is a knowledge system for configuring personal computers. It begins with user 
specifications, in terms of evaluation criteria and functional specifications. The evaluation cri­
teria are used to order candidates in component selection. Functionality specifications are repre­
sented in terms of key components. In describing how components require each other, COS­
SACK distinguishes between subcomponents that are always included and ones that must be 
added. COSSACK also distinguishes between different ways that components may be shared to 
satisfy multiple requirements. COSSACK uses a partial-commitment strategy. 

Challenges in configuration tasks arise from the size of the search spaces and the complex­
ity of individual solutions. Most configuration systems build descriptions of solutions incremen­
tally. However, the acceptability of a configuration depends not only on local considerations. 
Following the threshold effect and horizon effect, interactions can propagate and be far-reaching. 
The next section considers how different computational methods used in these cases try to cope 
with these effects. 

Exercises for Section 8.3 
Ex. 1 [05] Prefigured Configurations. Professor Digit argues that very few of the possible VAX 

computer configurations are actually ever built. By his own estimate, no more than 1 in 
1,000 of the configurations that are possible for VAXes will ever be ordered. He believes 
that all the effort in building knowledge-based configuration programs like XCON is 
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Ex.2 

unnecessary. He recommends instead that a table recording all actual configurations be 
kept and used to avoid refiguring them. This table would contain the input/output pairs 
from the history of configuration. It would show what configuration was used for every 
VAX system that has been ordered. The first column of the table would contain the specifi­
cations and the second column would describe the configuration. 
(a) Briefly discuss the merits of Professor Digit's proposal. Is a reduction by a factor of 
1,000 enough to make the table size manageable? 
(b) Discuss advantages for building a knowledge-based configuration system· over a 
"table system" even in cases where the determination of configurations is not computation­
ally challenging. 

[10] Due Process in Configuration Problems. Several of the descriptions of the configura­
tion systems mentioned optimization and best-first search. 
(a) Which of the configuration systems discussed in this section perform exhaustive 
searches for solutions? 
(b) Briefly explain the meaning of the term due-process search in the context of configu­
ration problems, relating it to ideas for best-first search and optimization as discussed in 
this section. What are the implications of a high rate of turnover of knowledge in configu­
ration domains? 

Ex. 3 [05] "Parts Is Parts." This exercise considers limitations of a simple port-and-connector 
model for configuration as shown in Figure 8.32. 

Configuration-! 

Part-1 

Part-1-1 Part-1-2 

Part-1-1-1 Part-1-1-3 

~A BL 
.-- A ... ... ... A A 

,... .. 
·r ... 

B 
Part-1-1-2 

YA 
BL r----11 B r 

B '----

A B 
A,. 

·~ ·~ I ... 

Part-2 II 
A B.., .... 
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FIGURE 8.32. Ports and connectors. 
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(a) How many top-level parts are there in configuration-!? How many detailed parts are 
shown? 
(b) Why is there a difference between subparts and required parts in configuration prob­
lems? 
(c) Are cables parts? A port-and-connector model represents cables as mere connections 
between ports. Briefly, what are some of the practical issues in representing cables as 
parts? How could a port-and-connector model be augmented to accommodate this? 

Ex. 4 [05] Key Components. The key-component approach is the technique of representing the 
functionality of a configuration in terms of essential components or abstract components in 
a partial configuration. 

Ex.S 

(a) Briefly, what representational issues does this approach seek to side-step? 
(b) What is an advantage of this for the user interface in systems like XCON? 
(c) Does the configuration model for therapy in MYCIN use a key-component approach? 

[!-10] Thrashing in Antagonistic Subproblems. Thrashing occurs in VTwhen fixes for con­
straint violations of one parameter lead to constraint violations of another parameter, 
whose fixes lead ultimately to further violations of the first parameter. 

Here is an example of thrashing behavior for the parameter network in Figure 8.33: 
VT derives a value for machine-groove-pressure and maximum-machine-groove-pressure 
and finds that machine-groove-pressure is greater than the maximum. This triggers a fix 
that decreases car-supplement-weight. This decreases car-weight, which in tum decreases 
suspended-load. This decreases machine-groove-pressure, the desired effect, but also 
increases traction-ratio. An increase in traction-ratio makes it more likely for it to exceed 
its maximum. A violation of maximum-traction-ratio leads to the fix of increasing comp­
cable-unit-weight, which in tum increases comp-cable-weight, cable-weight, and sus­
pended-load. Increasing suspended-load increases machine-groove-pressure. Thrashing 
occurs if this scenario repeats. 
(a) Annotate Figure 8.33 with directed arcs to show the operation of the fix operations to 
revise parameter values. Also annotate it with + and - to show the subsequent increases 
and decreases in parameter values. 
(b) An antagonistic interaction is one where there are simultaneous contributions from 
different arcs in opposite directions to change the value of a parameter. At which nodes in 
the thrashing scenario are there antagonistic interactions? Briefly, what measures can be 
taken in systems like VT to deal with such interactions? 

Ex. 6 [1 0] Structured Programming Methodologies for Configuration Knowledge. Several of the 
configuration projects discussed in this section have needed to face the classical knowl­
edge engineering issue of providing support for acquiring, organizing, and maintaining a 
large knowledge base. In two of the cases that were described (XCONIRIME and 
VT/SALT), special languages or subsystems were developed for this. This exercise briefly 
compares the approaches taken for RIME and SALT. 
(a) Both XCON and VT build descriptions of solutions incrementally. How is this 
reflected in the forms of knowledge that they expect? 
(b) What is the distinction between local and global interactions in configuration prob­
lems? Why is this distinction important? 
(c) Briefly compare propose-and-apply with propose-and-revise. 

Ex. 7 [10] Configuration Grammars. Professor Digit says the knowledge representations used in 
configuration systems are excessively ad hoc. In particular, he advocates developing gram-
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FIGURE 8.33. Interactions between antagonistic subproblems. (Adapted from Marcus & McDermott, 
1989, Figure 5, page 18.) 

Ex.8 

mars for describing valid configurations analogous to those used for describing valid sen­
tences in computer languages. He argues that standard algorithms from the parsing litera­
ture could then be used to carry out configuration tasks. 
(a) Briefly list some of the kinds of domain knowledge needed for configuration tasks. 
What are some of the main problems with Professor Digit's proposal for using grammars to 
represent this knowledge? 
(b) Is configuration essentially a parsing task? Explain briefly. 

[05] Levels of Description. Professor Digit can't decide whether XCON, the well-known 
rule-based computer configuration program, reasons forward or backward. On the one 
hand, the production rules used by XCON are interpreted by forward chaining. On the 
other hand, he has seen XCON described as working backward by setting up subproblems. 
Briefly, how can the apparent terminological confusion be resolved? Are either of these 
characterizations useful in understanding the main computational phenomena that arise in 
XCON's configuration task? 
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8.4 Methods for Configuration Problems 
In the preceding sections we considered example knowledge systems for configuration tasks and 
developed a computational model to compare and analyze configuration domains. This section 
revisits our model of configuration to discuss knowledge-level and symbol-level analysis and 
then presents sketches of methods for configuration. Our goal in this section is not to develop an 
"ultimate" configuration approach, but rather to show how variations in the requirements of con­
figuration tasks can be accommodated by changes in knowledge and method. 

As in the case of classification tasks, most of the complexity in configuration tasks is in the 
domain-specific knowledge rather than in the search methods. Furthermore, most of the remain­
ing complexity in the methods is in implementations of general search techniques. In this section 
the methods are stripped down to basics so we can see the assumptions they depend on in the 
configuration domain. 

8.4.1 Knowledge-Level and Symbol-Level Analysis 
of Configuration Domains 

Knowledge ahout configuration is used by the submodels of our model. We begin our knowl­
edge-level analysis by considering variations in the knowledge from the domains of our case 
studies. The submodels define major categories of knowledge for configuration in terms of its 
content, form, and use. 

The Parts Submodel: Knowledge about Function and Structure 
The parts submodel contains representations and knowledge about what the available parts are, 
what specifications they satisfy, and what requirements they have to carry out their functions. 
The simplest parts submodel is a catalog, which is a predetermined set of fixed parts. However, 
in most configuration domains the set of parts includes abstractions of them, organized in an 
abstract component hierarchy also called a functional hierarchy. Such hierarchies are used in 
mapping from initial specifications to partial configurations and in mapping from partial config­
urations to additional required parts. In most configuration domains these hierarchies represent 
functional groupings, where branches in the hierarchy correspond to specializations of function. 
In the last section we saw several examples of functional hierarchies in the computer configura­
tion applications for XCON, Ml, and COSSACK. 

At the knowledge level an abstraction hierarchy guides problem solving, usually from the 
abstract to the specific. At the symbol level a parts hierarachy can be implemented as an index 
into the database of parts. There are several other relations on parts that are useful for indexing 
the database. 

The determination of required parts is a major inference cycle in configuration. This pro­
cess expands the set of selected parts and consumes global resources. The required-parts rela­
tion indicates what additional parts are required to enable a component to perform its role in a 
configuration. For example, a disk drive requires a disk controller and a power supply. These 
parts, in turn, may require others. These relations correspond to further requirements, not to spe­
cializations of function. In contrast, power supplies are required parts for many components with 
widely varying functions. Power supplies perform the same function without regard to the func­
tion of the components they serve. 
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We say that parts are bundled when they are necessarily selected together as a group. 
Often parts are bundled because they are manufactured as a unit. Sometimes parts are manufac­
tured together because they are required together to support a common function. For example, a 
set of computer clocks may be made more economically by sharing parts. In other cases parts are 
made together for marketing reasons. Similarly, bundling components may reduce requirements 
for some resource. For example, communication and printing interfaces may be manufactured on 
a single board to save slots. 

In some domains, parts are bundled because they are logically or stylistically used 
together. In configuring kitchen cabinets, the style of knobs and hinges across all cabinets is usu­
ally determined by a single choice. Parts can also be bundled for reasons not related to function 
or structure. For example, a marketing group may dictate a sales policy that certain parts are 
always sold together. 

Some part submodels distinguish special categories of "spanning" or "dummy" parts. 
Examples of spanning parts from the domain of kitchen cabinets are the space fillers used in 
places where modular cabinets do not exactly fit the dimensions of a room. Examples of filler 
parts from computer systems are the conductor boards and bus terminators that are needed to 
compensate electrical loads when some common component is not used. Examples from config­
uring automobiles include the cover plates to fill dashboard holes where optional instruments 
were not ordered. Dummy and filler parts are often added at the end of a configuration process to 
satisfy modest integrity requirements. 

Another variation is to admit parameterized parts, which are parts whose features are deter­
mined by the given values of parameters. A modular kitchen cabinet is an example of a parame­
terized part. Parameters for the cabinet could include the choice of kind of wood (cherry, maple, 
oak, or alder), the choice of finish (natural, red, golden, or laminate), and the choice of dimen­
sions (any multiple of 3 inches from 9 inches to 27 inches). 

Finally, parameterization can be used to describe properties of parts and subsystems, as in 
the VT system. Global properties of a configuration such as power requirements, weight, and 
cost are usually treated as parameters because they depend on wide-ranging decisions. In the VT 
system, essentially all the selectable features of the elevator system and many intermediate prop­
erties are represented in terms of parameters. 

The Arrangement Submodel: Knowledge about Structure 
and Placement 
The arrangement submodel expresses connectivity and spatial requirements. There are many 
variations in the requirements for arrangement submodels. Some configuration domains do not 
require complex spatial reasoning. For example, VT's elevator configurations all use minor vari­
ations of a single template for vertical transport systems. Ml uses a port-and-connector model 
for logical connections but its configurations are spatially uncommitted. Spatial arrangement of 
antibiotics is not relevant for MYCIN therapy recommendations. 

Arrangements do not always require distance metrics or spatial models. In configuring the 
simplest personal computers, the slots that are used for different optional parts are referenced and 
accounted for by discrete names or indexes. A configuration task need only keep track of which 
slots are used without bothering about where they are. 

Figure 8.34 illustrates several examples of specialized arrangement models. The simplest 
of these is the port-and-connector model. This model was used in the Ml and COSSACK appli-
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Port-and-connector model Linear-placement model 

Part-1 

Part-1 I Part-21 Part-3 Part-4 

' ' 
~----------------------------------------------------------~-----------------------------------------------------------
' ' : Ordered-slot model : Packed-box model 
' ' ' ' 

Par~ 

' 

' ------------------------------------------------------------------------------------------------------------------------

FIGURE 8.34. Alternative models of arrangement for configuration problems. Different arrangement 
models lend themselves to different resource allocation strategies. 

cations discussed earlier. In this model, ports are defined for all the configurable parts. Ports have 
types so that different kinds of ports have different properties. Ports are resources than can be 
assigned to at most one connector. COSSACK implemented a port-and-connector model in a 
frame language, combining its use for specifying the arrangement of parts with indexing on con­
straints that specified what parts were compatible or required. The linear-placement model orga­
nizes parts in a sequence. A specialization of this model was used in XCON for specifying the 
order of electrical connections on a computer bus. In that application, roughly speaking, it is 
desirable to locate parts with a high interrupt priority or a high data rate nearer the front of the 
bus. Location on the bus was a resource that was consumed as parts were arranged. The ordered­
slot model combines a linear ordering with a spatial requirement. In the version in Figure 8.34, 
parts are ordered along a bus, starting with Part-1 and ending with Part-4. Parts in the first row 
can be up to two units deep, and parts in the second row can be only one unit deep. In this exam­
ple, both space and sequence are resources that get consumed as parts are arranged. The packed­
box model emphasizes the efficient packing of parts. In this model, space is a consumable 
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FIGURE 8.35. Another variation on models of arrangement for configuration problems. In this model, 
parts are arranged in boxes and boxes are arranged in cabinets. In addition, some parts require control pan­
els and there is a limited amount of panel space. Panels for parts must be located on the cabinet that con­
tains the parts. In this model, space in boxes, space in cabinets, and space for panels are all resources con­
sumed during configuration. Because of the connections between parts and panels, the resource allocation 
processes are interdependent. 

resource. Constraints on packing may also include requirements about certain parts being adja­
cent to one another. 

All the variations in Figure 8.34 represent physical containment. Physical-containment 
relations form a hierarchy whose branches indicate which parts are physically contained in oth­
ers. For example, a cabinet may contain a circuit board, which in tum may contain a processor 
and some memory. Contained parts do not necessarily carry out specializations of their 
container's function, nor are they necessarily required parts for their container. 

COSSACK uses a port-and-connector model to account for the use of slots. It also keeps 
track of memory resources. XCON's arrangement models are the most complex in our example 
systems. Figure 8.35 illustrates another complication in arrangement models. In this example, 
there are three interlinked tasks in arrangement: the location of boards inside boxes, the location 
of boxes inside cabinets, and the location of panels on the front of cabinets. The tasks are inter­
linked because the control panels for particular boards need to be located on the cabinet contain­
ing the corresponding boards. 

XCON also admits complex arrangement conditions and interactions with nonspatial 
resources. For example, a rule for allocating slots inside boxes says: "a box can accommodate 
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five 4-slot backplanes; the exception is that a 9-slot backplane may not occupy the space 
reserved for the second and third 4-slot backplanes." This example combines electrical require­
ments with space allocation. 

Knowledge about Decision Ordering and Interactions 
The difficulty of configuration problems arises from a three-horned dilemma, where the three 
horns are combinatorics, horizon effects, and threshold effects. The combinatoric difficulty is 
that the number of possible configurations increases multiplicatively with the number of parts 
and arrangements. In the configuration domains discussed in this chapter, there are far too many 
possible configurations to instantiate them all in complete detail. Most decisions need to be made 
on the basis of partial information about the possible configurations. This is where the horizon 
effect comes in. At each stage of reasoning, some interactions are not yet visible either because 
not enough inferences have been made or because not enough commitments have been made. 
When information is partial, a natural approach is to rely on estimates. This is where the thresh­
old effect comes in. A small difference in specifications or descriptions can lead to large, wide­
spread changes. Because of their approximate nature, estimation functions can be off by small 
amounts. If these small errors are near critical thresholds, then the estimates may not be trust­
worthy. 

To reiterate the argument in short form, there are too many configurations to develop them 
in detail. Making choices on the basis of partial information is subject to horizon effects. Esti­
mates at the horizon based on partical information are subject to threshold effects. 

The approaches that we consider for coping with these effects assume that there are pre­
dictable or typical patterns of interaction and that knowledge about these patterns is available. 
The following discussion is concerned with the dimensions of these patterns. 

The first horn of the dilemma, combinatorics, is dealt with by two major techniques: 
abstraction and decision ordering. Thus, the use of functional abstractions in reasoning about 
configuration amounts to hierarchical search and has the usual beneficial effects. Controlling the 
order of decisions can reduce the amount of backtracking in search. In the context of configura­
tion, knowledge-level justifications of decision ordering complement the symbol-level graph 
analyses. In XCON and VT, the reduction of backtracking is characterized in terms of dependent 
and independent decisions, where each decision is carried out only after completing other deci­
sions on which it depends. 

For example, XCON defers cabling decisions to its last subtask. Three assumptions ratio­
nalize this late placement of cabling decisions. The first assumption is that for any configuration, 
cabling is always possible between two components. This assumption ensures that the configura­
tion process will not fail catastrophically due to an inability to run a cable. The second assump­
tion is that all cables work satisfactorily, for any configuration. Thus, a computer system will 
work correctly no matter how long the cables are. The third assumption is that cable costs do not 
matter. Cable costs are so low when compared with active components that they will not influ­
ence an overall cost significantly. As long as these assumptions hold, XCON would never need 
to backtrack (even if it could!) from a cable decision and there is no need to consider cable issues 
any earlier in XCON's process. If there were some special cases where cables beyond a certain 
length were unavailable or would prevent system operations, a fix in terms of other component 
choices or arrangements would need to be determined and XCON would be augmented with 
look-ahead rules to anticipate that case. 

Page 63 of 72 FORD 1017



8.4 Methods for Configuration Problems 661 

Much of the point of the SALT analysis in the elevator domain is to identify patterns of 
interactions. VT's data-driven approach is a least-commitment approach and is analogous to con­
straint satisfaction methods that reason about which variable to assign values to next. Least com­
mitment precludes guessing on some decisions when refinements on other decisions can be made 
without new commitments. Deadlock loops correspond to situations where no decision would be 
made. To handle cases where decisions are inherently intertwined so there is no ordering based 
on linear dependencies, SALT introduces reasoning loops in the parameter network that search 
through local preferences toward a global optimum. 

The partial-commitment approach extends least commitment by abstracting what is com­
mon to the set of remaining alternatives and then using that abstraction to constrain other deci­
sions. VT narrows values on some parameters, sometimes on independent grounds, so that com­
ponents are partially specified at various stages of the configuration process. 

In VT, such reasoning can amount to partial commitment to the extent that further infer­
ences are drawn as the descriptions are narrowed. 

All efforts to cope with the combinatorics of configuration encounter horizon effects. 
Since uniform farsightedness is too expensive, an alternative is to have limited but very focused 
farsightedness. Domain knowledge is used to anticipate and identify certain key interactions, 
which require a deeper analysis than is usual. This approach is used in XCON, when it employs 
its look-ahead rules to anticipate possible future decisions. The required conditions for look­
ahead can be very complex. In XCON, heuristics are available for information gathering that can 
tell approximately whether particular commitments are feasible. The heuristics make look-ahead 
less expensive. 

Finally, we come to techniques for coping with the threshold effect. The issue is not just 
that there are thresholds, but rather that the factors contributing to the threshold variables are 
widely distributed. Sometimes this distribution can be controlled by bringing together all the 
decisions that contribute. This helps to avoid later surprises. Knowledge about thresholds and 
contributing decisions can be used in guiding the ordering of decisions. In general, however, 
there is no single order that clusters all related decisions. One approach is to anticipate thresholds 
with estimators and to make conservative judgments. For example, one could anticipate the need 
for a larger cabinet. This conservative approach works against optimization. In XCON, many of 
the constraints whose satisfaction cannot be anticipated are soft. This means that although there 
may be violations, the softness of the constraints reduces the bad consequences. Thus, the extra 
part may require adding a cabinet, but at least it is possible to add new cabinets. 

In summary, domain knowledge is the key to coping with the complexity of configuration. 
Knowledge about abstractions makes it possible to search hierarchically .. Knowledge about key 
interactions makes it possible to focus the computations for look-ahead to specific points beyond 
the horizon. Knowledge about soft constraints reduces the effects of threshold violations. 

8.4.2 MCF-1: Expand and Arrange 

In this section and the following, we consider methods for configuration. In principle, we could 
begin with a method based on a simple generate-and-test approach. By now, however, it should 
be clear how to write such a method and also why it would be of little practical value. We begin 
with a slightly more complex method. 
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Figure 8.36 presents an extremely simple method for configuration, called MCF-1. MCF-1 
acquires its specifications in terms of key components, expands the configuration to include all 
required parts, and then arranges the parts. Although this method is very simple it is also appro­
priate for some domains. MCF-1 is M1's method, albeit in skeletal form and leaving out the sec­
ondary cycle for reliability analysis and revision. It is practical for those applications where the 
selection decisions do not depend on the arrangement decisions. 

MCF-1 has independent auxiliary methods get-requirements, get-best-parts, and arrange­
parts. The auxiliary method get-requirements returns all the requirements for a part and returns 
the initial set of requirements given the token initial-specifications. Given a set of requirements, 
there may be different alternative candidate sets of parts for meeting a requirement. The method 
get-best-parts considers the candidate sets of new parts and employs a domain-specific evalua­
tion function to select the best ones. Finally, given a list of parts, the method arrange-parts deter­
mines their best arrangement. A recursive subroutine, add-required-parts, adds all the parts 
required by a component. 

MCF-1 relies on several properties of its configuration domain as follows: 

Specifications can be expressed in terms of a list of key components. 
There is a domain-specific evaluation function for choosing the best parts to meet require­
ments. 
Satisfactory part arrangements are always possible, given a set of components. 
Parts are not shared. Each requirement is filled using unique parts. 

The first assumption is quite common in configuration tasks and has little bearing on the method. 
The second assumption says there is a way to select required parts without backtracking. An 
evaluation function is called from inside get-best-parts. The third assumption says that arrange­
ment concerns for configurations involve no unsatisfiable constraints, even in combination. This 
is not unusual for configuration tasks that use a port-and-connector model for arrangements. In 
such domains, one can always find some arrangement and the arrangement does not affect the 
quality of the configuration. This assumption is crucial to the organization of MCF-1 because it 
makes it possible to first select all the required parts before arranging any of them. It implies fur­
ther that the arrangement process never requires the addition of new parts. A somewhat weaker 
assumption is actually strong enough for a simple variation of the method: that part arrangement 
never introduces any significant parts that would force backtracking on selection or arrangement 
decisions. The last assumption means the system need not check whether an existing part can be 
reused for a second function. This method would need to be modified to accommodate multi­
functional parts. 

8.4.3 MCF-2: Staged Subtasks with Look-Ahead 

Method MCF-1 is explicit about the order that configuration knowledge is used: first, key com­
ponents are identified; then required parts are selected; and finally, parts are arranged. As dis­
cussed in our analysis of configuration, these decisions may need to be more tightly interwoven. 
Sometimes an analysis of a domain will reveal that certain groups of configuration decisions are 
tightly coupled and that some groups of decisions can be performed before others. When this is 
the case, the configuration process can be organized in terms of subtasks, where each subtask 
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To perform configuration using MCF-1: 
· I* Initialize and determine the key components from the 

specifications. *I 
1. Set parts-list to nil. 

663 

I* Get-requirements returns specifications for required parts given 
a part. *I 

. , 

2. Set requirements to get-requirements(initial-specifications). 
3. Set key-components to get-best-parts(requirements). 

4. 
5. 

6. 
7. 

8 . 

9. 

10. 

I* Add all the required parts to the parts-list. *I· 
For each key component do 
begin 

end 

Push the key component onto the parts-list. 
Add-required-parts( key-component). 

I* Arrange parts in the configuration. *I 
Arrange parts using arrange-parts(parts-list). 
Return the solution. 

I* Recursive subroutine to add parts required by a given 
part. When there are multiple candidates it selects the best one 
get-best-parts. *I 

1. Add-required-parts(part) 
2. begin 
3. Set requirements to get-requirements(part). 
4. If there are some requirements, then 
5. begin 
6. Set new-parts to get-best-parts(requirements). 
7. For each of the new-parts do. 
8. begin 
9. Push the new-part onto the parts-list. 
10. Add-required-parts(new-part). 
11. end 
12. end 
13. end 

FIGURE 8.36. MCF-1, a simple method for configuration problems in which there is no interaction 
between selection and arrangement of required parts. 

performs a combination of closely related decisions to refine, select, and arrange components. 
Subtasks cluster decisions so that most interactions among decisions within a subtask are much 
greater than interactions with decisions outside of it. 
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In some domains the partitioning of decisions into subtask clusters does not necessarily 
yield a decision ordering in which all later decisions depend only on early ones. To restate this in 
constraint satisfaction terms, there may be no ordering of variables such that values can be 
assigned to all variables in order without having to backtrack. To address this, knowledge for 
selective look-ahead is used to anticipate interactions. Such knowledge is domain specific and 
may involve conservative estimates or approximations that anticipate possible threshold effects. 
This approach can be satisfactory even in cases where the look-ahead is not foolproof, if the fail­
ures involve soft constraints. 

This approach is followed in MCF-2. The method description given in Figure 8.37 says 
very little about configuration in general. Nonetheless, MCF-2 is the method used by XCON, 
albeit with its domain:..specific particulars abstracted. 

To perform configuration using MCF-2: 
I* Initialize and get the key components from the specifications. *I 

1. Set parts-list to nil. 
2. Set requirements to get-requirements(initial~specifications). 
3. Set key-components to get-best-parts(requirements). 

I* Conditionally invoke Subtasks. *I 
4. While there are pending subtasks do 
5. begin 
6. Test conditionals for invoking subtasks and choose the best 

one. 
7. Invoke a specialized method for the subtask. 
8. end 
9. Return the solution. 

I* Each specialized method performs a subset of the task. It is 
responsible for refining some specifications. adding some parts. and 
arranging some parts. It incorporates whatever look-ahead is needed. 
*I 

10. Method-for-Subtask-1: 

I* Subtask-1: Look ahead as needed and expand some parts. *I 
I* Subtask-2: Look ahead as needed and arrange some parts. *I 

20. Return. 

30. Method-for-Stage-3: 

FIGURE 8.37. MCF-2, a method for configuration problems in which part selection and arrangement 
decisions can be organized in a fixed sequence of subtasks. The method depends crucially on the proper­
ties of the domain. This method tells us very little about configuration in general. 
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This method is vague. We might caricature it as advising us to "write a configuration sys­
tem as a smart program using modularity as needed" or as "an agenda interpreter that applies 
subtasks in a best-first order." Such symbol-level characterizations miss the point that the deci­
sion structure follows from an analysis of relations at the knowledge level. This observation is 
similar to the case of methods for classification. The particulars of the domain knowledge make 
all the difference. The burden in using MCF-2 is in analyzing a particular domain, identifying · 
common patterns of interaction, and partitioning the decisions into subtasks that select and 
arrange parts while employing suitable look-ahead. 

It is interesting to compare MCF-2 to the general purpose constraint satisfaction methods. 
One important result is that when the variables of a constraint satisfaction problem (CSP) are 
block ordered, it is possible to find a solution to the CSP with backtracking limited to the size of 
the largest block, which is depth-limited backtracking. Although there are important differences 
between the discrete CSP problems and the configuration problems, the basic idea is quite sim­
ilar. Subtasks correspond roughly to blocks. When subtasks are solved in the right order, little or 
no backtracking is needed. (See the exercises for a more complete discussion of this analogy.) 

As in MCF-1, MCF-2 does not specify an arrangement submodel, a part submodel, or a 
sharing submodel. Each domain needs its specially tailored submodels. In summary, MCF-2 
employs specialized methods for the sub tasks to do special-case look -ahead, to compensate for 
known cases where the fixed order of decision rules fails to anticipate some crucial interaction 
leading to a failure. The hard work in using this method is in the analysis of the domain to parti­
tion it into appropriate subtasks. 

8.4.4 MCF-3: Propose-and-Revise 

In MCF-2, there are no provisions in the bookkeeping for carrying alternative solutions, or for 
backtracking when previously unnoticed conflicts become evident. Figure 8.38 gives MCF-3, 
which is based loosely on the mechanisms used in VT, using the propose-and-revise approach. 
Like MCF-2, we can view MCF-3 as an outline for an interpreter of knowledge about configura­
tion. It is l~osely based on the ideas of VT and the interpretation of a parameter network. It 
depends crucially on the structure of the partial configuration and the arrangement of know ledge 
for proposing values, proposing constraints, noticing constraint violations, and making fixes. 

The beauty of MCF-3 is that the system makes whatever configuration decisions it can by 
following the opportunities noticed by its data-driven interpreter. In comparison with MCF-2, 
MCF-3 is does not rely so much on heuristic look-ahead, but has provisions for noticing con­
flicts, backtracking, and revising. 

8.4.5 Summary and Review 

This section sketched several different methods for configuration, based loosely on the example 
applications we considered earlier. We started with a method that performed all selection deci­
sions before any arrangement decisions. Although this is practical for some configuration tasks, 
it is not adequate when arrangements are difficult or are an important determinant of costs. The 
second method relied on look-ahead. Our third method triggered subtasks according to knowl-

Page 68 of 72 FORD 1017



666 8 CONFIGURATION . 

To pe1jorm configuration using MCF-3: 
I* Initialize and obtain requirements. *I 

1. Initialize the list of parts to empty. 
2. Set requirements to get-requirements(initial-specifications). 
3. Set key-components to get-best-parts(requirements). 

I* Apply the domain knowledge to extend and revise the configuration. 
*I 

4. While there are open decisions and failure has not been signaled do 
5. begin 
6. Select the next-node in the partial configuration for which a 

decision can be made. 
7, If the decision is a design extension, then invoke method 

propose-design-extensions(next-node). 
8. If the decision is to post a constraint, then invoke method 

post-design-constraints(). 
9. If there are violated-constraints, then invoke revise-design(). 
10. end 
11. Report the solutions (or failure). 

fiGURE 8.38. MCF-3, a method based on the propose-and-revise model. 

edge about when the subtasks were ready to be applied and used constraints to test for violations 
when choices mattered for more than one subtask. 

Exercises for Section 8.4 

Ex. 1 [1 0] MYC1N's Method. How does MYCIN's method for therapy recommendation fit into 
the set of methods discussed in this section? Is it the same as one of them? Explain briefly. 

Ex. 2 [R] Subtask Ordering. After studying the XCON system and reading about constraint satis­
faction methods, Professor Digit called his students together. "Eureka!" he said. "MCF-2 is 
really a special case of an approach to constraint satisfaction that we already know: block 
ordering. In the future, pay no attention to MCF-2. Just make a tree of 'constraint blocks' 
corresponding to the configuration subtasks and solve the tasks in a depth-first order of the 
tree of blocks." 
(a) Briefly sketch the important similarities and differences between CSP problems and 
configuration problems. 
(b) Briefly, is there any merit to Professor Digit's proposal and his suggestion that there is 
a relation between traversing a tree of blocks in a CSP problem and solving a set of staged 
subtasks in a configuration problem? 
(c) Briefly relate the maximum depth of backtracking necessary in a CSP to the "no back­
tracking" goal of systems like XCON. 

Ex. 3 [1 0] Methods and Special Cases. The methods for configuration are all simple, in that the 
complexity of configuration tasks is manifest in the domain-specific knowledge rather than 
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in the methods. The methods, however, form a progression of sorts, in that they can be seen 
as providing increased flexibility. 
(a) In what way is MCF-1 a special case of MCF-2? 
(b) In what way is MCF-2 a special case ofMCF-3? 
(c) In what way could MCF-3 be generalized to use other techniques from the example 
systems in this chapter? 

8.5 Open Issues and Quandaries 

In the 1970s, folk wisdom about expert systems said that they might be developed routinely for 
"analytic" tasks but not "synthetic" tasks, which were too difficult. Analytic tasks were charac­
terized in terms of feature recognition. Medical diagnosis was cited as an example of an analytic 
task. In contrast, synthetic tasks reasoned about how to put things together. Design was said to be 
an example of a synthetic task. 

In hindsight, this dichotomy is too simplistic. Some problem-solving methods combine 
aspects of synthesis and analysis, to wit: "synthesis by analysis" and "analysis by synthesis." 
Large tasks in practical domains are made up of smaller tasks, each of which may have its own 
methods. In the next chapter we will see that even methods for diagnosis require the combination 
of diagnostic hypotheses. 

However, the main point for our purposes is that synthetic tasks tend to have high combi­
natorics and require a large and complex body of knowledge. This made them unsuitable for the 
first generation of knowledge systems, which performed simpler tasks mostly based on classifi­
cation. Design tasks are still more often associated with research projects than with practical 
applications. Ambitious knowledge systems for design tasks tend to be doctoral thesis projects. 

Configuration tasks specify how to assemble parts from a predefined set. It could be 
argued that the "real" difficulty in configuration tasks is setting up the families of components so 
that configuration is possible at all. For computer configuration, this involves designing the bus 
structures, the board configurations, the bus protocols, and so on. If these standards were not 
established, there would be no way to plug different options into the same slot. There would be 
no hope of creating a simple model of functionality around a key-component assumption. Behind 
the knowledge of a configurable system, there is a much larger body of knowledge about part 
reusability in families of systems. This brings us back to the challenges of design. 

The goal in both configuration and design is to specify a manufacturable artifact that satis­
fies requirements involving such matters as functionality and cost. Design can be open-ended. 
Will the truck ride well on a bumpy road? What load can it carry? What is its gas mileage? Can 
the engine be serviced conveniently? There is an open-ended world of knowledge about materi­
als, combustion, glues, assembly, manufacturing tools, markets, and other matters. 

Human organizations have responded to the complexity of designing high-technology 
products by bringing together specialists with different training. The design of a xerographic 
copier involves mechanical engineers concerned with systems for moving paper, electronical 
engineers concerned with electronic subsystems, and computer engineers concerned with inter­
nal software. But this is just a beginning. Other people specialize in particular kinds of systems 
for transporting paper. Some people specialize in printing materials. Some specialize in the 
design of user interfaces. Some specialize in different manufacturing processes, such as plastics, 
sheet metal, and semiconductors. Others specialize in servicing copiers in the field. 
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As the number of issues and specializations increase, there are real challenges in managing 
and coordinating the activities and in bringing appropriate knowledge to bear. Competition 
drives companies to find ways to reduce costs and to speed the time to bring products to market. 
In this context, a large fraction of the cost of producing a product is determined by its design. 
Part of this cost is the design process itself, amortized over the number of products made. But the 
main point is about the time of decisions. Many decisions about a product influence the costs of 
its manufacture and service. What size engine does the truck have? Does it run on diesel or gaso­
line? Can the battery be replaced without unbolting the engine? How much room is in tlie cab? 
How many trucks will be sold? Many of these decisions are made at early stages of design and 
cannot be changed later, thus locking in major determinants of the product cost. 

To reduce costs we must understand them at earlier stages of design. Thus, products are 
designed for manufacturing, designed for flexibility, designed for portability, or designed for ser­
vicing. All these examples of "design for X' attempt to bring to bear knowledge about X at an 
early stage of design. In design organizations, this has led to the creation of design teams and a 
practice called "simultaneous engineering." The idea is to bring together specialists representing 
different concerns, and to have them participate all the way through the design process. 

There, are no knowledge systems where you "push a button to design a truck." The 
challenges for acquiring the appropriate knowledge base for such ambitious automation are stag­
gering. Instead, the response to shortening product development times involves other measures. 
Many of these involve ways for moving design work online. Databases and parts catalogs are 
online. Simulation systems sometimes replace shops for prototyping. The controls for manufac­
turing equipment are becoming accessible through computer networks. Reflecting the reality that 
much of an engineer's day is spent communicating with colleagues, another point of leverage is 
more advanced technology for communicating with others. This ranges from facsimile machines 
and electronic mail, to online computer files, to devices that enable teams of engineers to share a 
"digital workspace." 

Systems to support design need not automate the entire process but can facilitate human 
design processes, simulate product performance and manufacturing, and automate routine sub­
tasks. The elements of new design systems include knowledge systems, online catalogs, collabo­
ration technology, simulation tools, and visualization tools. These elements reflect a move 
toward shared digital workspaces. As the work practice and data of design organizations become 
more online, many different niches appear where knowledge systems can be used to assist and 
automate parts of the process. 

Automation advances as it becomes practical to formalize particular bodies of knowledge. 
Inventory and catalog systems now connect with drafting systems to facilitate the reuse of manu­
factured parts. Drafting systems now use constraint models and parameterized designs to relate 
sizing information from one part of the system with sizing information from other parts. In 
design tasks such as the design of paper paths using pinch roller technology (Mittal, Dym, & 
Morjaria, 1986), it has been practical to systematize a body of knowledge for performing large 
parts of the task. 

Conventional tools for computer-aided design (CAD) tend to be one of two kinds: analysis 
tools or drafting tools. An example of an analysis tool is one for predicting the effects of vibra­
tions on structure using finite element analysis. An example of a drafting tool is a tool for pro­
ducing wire-frame models of solids. Knowledge-systems concepts are beginning to find their 
way into CAD systems, joining the ranks of graphics programs, simulation systems, and visual-
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ization systems. As computer technology for computer graphics and parallel processing have 
become available, there has been increased development of tools to help designers visualize 
products and manufacturing, by simulating those steps and showing the results graphically. 

In summary, configuration tasks are a relatively simple subset of design tasks. They are 
more difficult because specifications can be more open-ended and design can involve fashioning 
and machining of parts rather than just selection of them. Human organizations have responded 
to the complexities of modern product design by engaging people who specialize in many differ­
ent concerns. This specialization has also made it more difficult to coordinate design projects and 
to get designs to market quickly. 
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