
Page 1 of 72 FORD 1017

Introduction to

Kno led

Mark Stefik

Morgan Kaufmann Publishers, Inc.
San Francisco, California

Page 2 of 72 FORD 1017

Sponsoring Editor Michael B. Morgan
Production Manager Yonie Overton
Production Editor Elisabeth Beller
Editorial Coordinator Marilyn Uffner Alan
Text Design, Project Management,

Electronic Illustrations and Composition Professional Book Center
Cover Design Carron Design
Copyeditor Anna Huff
Printer Quebecor Fairfield

Morgan Kaufmann Publishers, Inc.
Editorial and Sales Office
340 Pine Street, Sixth Floor
San Francisco, CA 94104-3205 USA
Telephone 415/392-2665
Facsimile 415/982-2665
Internet mkp@mkp.com

Library of Congress Cataloging-in-Publication Data is available for this book.
) t::~

I.,,,.

r-""i l'\

0(!-+
ISBN 1-55860-166-X

© 1995 by Morgan Kaufmann Publishers, Inc.

All rights reserved

Printed in the United States of America

99 98 97 96 95 5 4 3 2 1
,~:.--~-~1 ~~""'l

{ .<-''"'
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means---electronic, mechanical, photocopying, recording, or otherwise-without the prior written
permission of the publisher.

Brand and product names referenced in this book are trademarks or registered trademarks of their respec­
tive holders and are used here for informational purposes only.

Page 3 of 72 FORD 1017

on tents

Foreword Edward A. Feigenbaum xiii

Preface xv

Notes on the Exercises xix

INTRODUCTION AND OVERVIEW 1

PART I FOUNDATIONS 19

CHAPTER 1 Symbol Systems 21

1.1 Symbols and Symbol Structures 22
1.1.1 What Is a Symbol? 22
1.1.2 Designation 25
1.1.3 Causal Coupling 28
1.1.4 Cognitive and Document Perspectives of Symbols 30
1.1.5 Summary and Review 32

Exercises for Section 1.1 32

1.2 Semantics: The Meanings of Symbols 35
1.2.1 Model Theory and Proof Theory 36
1.2.2 Reductionist Approaches for Composing Meanings 41
1.2.3 Terminology for Graphs and Trees 44
1.2.4 Graphs as Symbol Structures 47
1.2.5 The Annotation Principle and Metalevel Notations 50
1.2.6 Different Kinds of Semantics 55
1.2.7 Summary and Review 59

Exercises for Section 1.2 60

v

Page 4 of 72 FORD 1017

vi

1.3 Modeling: Dimensions of Representation 68
1.3.1 Fidelity and Precision 69
1.3.2 Abstractions and Implementations
1.3.3 Primitive and Derived Propositions
1.3.4 Explicit and Implict Representations
1.3.5 Representation and Canonical Form
1.3.6 Using Multiple Representations 85
1.3.7 Representation and Parallel Processing
1.3.8 Space and Time Complexity 89
1.3.9 Structural Complexity 98
1.3.10 Summary and Review 101

Exercises for Section 1.3 102

71
77

80
84

88

1.4 Programs: Patterns, Simplicity, and Expressiveness 107
1.4.1 Using Rules to Manipulate Symbols 107
1.4.2 Treating Programs as Data 110

CONTENTS

1.4.3 Manipulating Expressions for Different Purposes 112
1.4.4 Pattern Matching 114
1.4.5 Expressiveness, Defaults, and Epistemological Primitives 117
1.4.6 The Symbol Level and the Knowledge Level 129
1.4.7 Summary and Review 130

Exercises for Section 1.4 131

1.5 Quandaries and Open Issues 136

CHAPTER 2 Search and Problem Solving 146

2.1 Concepts of Search 147
2.1.1 Solution Spaces and Search Spaces 148
2.1.2 Terminology about Search Criteria 153
2.1.3 Representing Search Spaces as Trees 156
2.1.4 Preview of Search Methods 157
2.1.5 Summary and Review 158

Exercises for Section 2.1 159

2.2 Blind Search 165
2.2.1 Depth-First and Breadth-First Search 165
2.2.2 Top-Down and Bottom-Up Search: A Note on Terminology 171
2.2.3 Simple and Hierarchical Generate-and-Test 173
2.2.4 A Sample Knowledge System Using Hierarchical

Generate-and-Test 180
2.2.5 Simple and Backtracking Constraint Satisfaction 187
2.2.6 Summary and Review 193

Exercises for Section 2.2 194

Page 5 of 72 FORD 1017

CONTENTS vii

2.3 Directed Search 203
2.3.1 Simple Match 205
2.3.2 Means-Ends Analysis 210
2.3.3 Hierarchical Match and Skeletal Planning 219
2.3.4 Hill Climbing and Best-first Search 225
2.3.5 Shortest-Path Methods 232
2.3.6 A* and Related Methods 239
2.3.7 Summary and Review 248

Exercises for Section 2.3 251

2.4 Hierarchical Search 259
2.4.1 Two-Level Planning 264
2.4.2 Planning with Multiple Abstraction Levels 271
2.4.3 Planning with Imperfect Abstractions 275
2.4.4 Summary and Review 279

Exercises for Section 2.4 280
.,

2.5 Quandaries and Open Issues 287

CHAPTER 3 Knowledge and Software Engineering 291

3.1 Understanding Knowledge Systems in Context 292
3.1.1 The Terminology of Knowledge Systems and Expertise 292
3.1.2 Knowledge Systems and Document Systems:

Five Scenarios 299
3.1.3 Preview of Knowledge Acquisition Topics 311
3.1.4 Summary .and Review 312

Exercises for Section 3.1 312

3.2 Formulating Expertise 314
3.2.1 Conducting Initial Interviews 314
3.2.2 Taking Protocols 320
3.2.3 Characterizing Search Spaces 324
3.2.4 Adapting Protocol Analysis for Knowledge Systems 327
3.2.5 Summary and Review 330

Exercises for Section 3.2 330

3.3 Collaboratively Articulating Work Practices 336
3.3.1 Variations in Processes for Interview and Analysis 336
3.3.2 Documenting Expertise 345
3.3.3 Engineering Software and Organizations 349
3.3.4 Summary anq Review 358

Exercises for Section 3.3 359

Page 6 of 72 FORD 1017

viii CONTENTS

3.4 Knowledge versus Complexity 365
3.4.1 MYCIN: Study of a Classic Knowledge System 365
3.4.2 The Knowledge Hypothesis and the Qualification Problem 380
3.4.3 Summary and Review 389

Exercises for Section 3.4 389

3.5 Open Issues and Quandaries 394

PART II THE SYMBOl lEVEl

CHAPTER 4 Reasoning about Time

4.1 Temporal Concepts 407
4.1.1 Timeline Representations 407
4.1.2 A Discrete Model of Transactions

in the Balance of an Account 408

4.2 Continuous versus Discrete Temporal Models 410

4.3 Temporal Uncertainty and Constraint Reasoning 411
4.3.1 Partial Knowledge of Event Times 412
4.3.2 Arc Consistency and Endpoint Constraints 414
4.3.3 Time Maps and Scheduling Problems 416
4.3.4 The Interface between a Scheduler and

a Temporal Database 416

4.4 Branching Time 421

4.5 Summary and Review 423

Exercises for Chapter 4 424

4.6 Open Issues and Quandaries 427

CHAPTER 5 Reasoning about Space

5.1 Spatial Concepts 433

5.2 Spatial Search 435
5.2.1 Simple Nearest-First Search 436
5.2.2 Problems with Uniform-Size Regions 437
5.2.3 Quadtree Nearest-First Search 438
5.2.4 Multi-Level Space Representations 440

5.3 Reasoning about Shape 442

5.4 The Piano Example: Using Multiple Representations of Space 444
5.4.1 Reasoning for the Piano Movers 444
5.4.2 Rendering a Piano 448
5.4.3 The Action of a Piano 450

403

405

432

Page 7 of 72 FORD 1017

CONTENTS ix

5.5 Summary and Review 452

Exercises for Chapter 5 453

5.6 Open Issues and Quandries 458

CHAPTER 6 Reasoning about Uncertainty and Vagueness

6.1 Representing Uncertainty 461
6.1.1 Concepts about Uncertainty
6.1.2 The Certainty-Factor Approach
6.1.3 The Dempster-Shafer Approach
6.1.4 Probability Networks 483

461
469
476

6.1.5 Summary and Conclusions 504

Exercises for Section 6.1 506

6.2 Representing Vagueness 517
6.2.1 Basic Concepts of Fuzzy Sets 518
6.2.2 Fuzzy Reasoning 524
6.2.3 Summary and Conclusions 531

Exercises for Section 6.2 532

6.3 Open Issues and Quandries 533

PART Ill THE KNOWLEDGE LEVEl.

CHAPTER 7 Classification

7.1 Introduction 543
7.1.1 Regularities and Cognitive Economies 543

7.2 Models for Classification Domains 54 7
7.2.1 A Computational Model of Classification 547
7 .2.2 Model Variations and Phenomena 549
7 .2.3 Pragmatics in Classification Systems 554
7 .2.4 Summary and Review 556

Exercises for Section 7.2 557

7.3 Case Studies of Classification Systems 563
7.3.1 Classification in MYCIN 563
7.3.2 Classification in MORE 567
7 .3.3 Classification in MOLE 572
7.3.4 Classification in MDX 580
7.3.5 Classification in PROSPECTOR 582
7.3.6 Summary and Review 586

Exercises for Section 7.3 586

460

541

543

Page 8 of 72 FORD 1017

CONTENTS

7.4 Knowledge and Methods for Classification 588
7.4.1 Knowledge-Level and Symbol-Level Analysis

of Classification Domains 589
7.4.2 MC-1: A Strawman Generate-and-Test Method 592
7.4.3 MC-2: Driving from Data to Plausible Candidates 593
7.4.4 MC-3: Solution-Driven Hierarchical Classification 594
7.4.5 MC-4: Data-Driven Hierarchical Classification 596
7.3.6 Method Variations for Classification 599
7.4.7 Summary and Review 602

Exercises for Section 7.4 603

7.5 Open Issues and Quandaries 604

CHAPTER 8 Configuration 608

8.1 Introduction 608
8.1.1 Configuration Models and Configuration Tasks 609
8.1.2 Defining Configuration 610

8.2 Models for Configuration Domains 612
8.2.1 Computational Models of Configuration 612
8.2.2 Phenomena in Configuration Problems 615
8.2.3 Summary and Review 620

Exercises for Section 8.2 621

8.3 Case Studies of Configuration Systems 625
8.3.1 Configuration in XCON 625
8.3.2 Configuration in M1/MICON 633
8.3.3 Configuration in MYCIN's Therapy Task 637
8.3.4 Configuration in VT 640
8.3.5 Configuration in COSSACK 647
8.3.6 Summary and Review 650

Exercises for Section 8.3 652

8.4 Methods for Configuration Problems 656
8.4.1 Knowledge-Level and Symbol-Level Analysis

of Configuration Domains 656
8.4.2 MCF-1: Expand and Arrange 661
8.4.3 MCF-2: Staged Subtasks with Look-Ahead 662
8.4.4 MCF-3: Propose-and-Revise 665
8.4.5 Summary and Review 665

Exercises for Section 8.4 666

8.5 Open Issues and Quandaries 667

Page 9 of 72 FORD 1017

CONTENTS

CHAPTER 9 Diagnosis and Troubleshooting

9.1 Introduction 670
9 .1.1 Diagnosis and Troubleshooting Scenarios
9 .1.2 Dimensions of Variation in Diagnostic Tasks

9.2 Models for Diagnosis Domains 673
9.2.1 Recognizing Abnormalities and Conflicts
9.2.2 Generating and Testing Hypotheses 680
9.2.3 Discriminating among Hypotheses 690
9 .2.4 Summary and Review 700

Exercises for Section 9.2 701

670
671

677

9.3 Case Studies of Diagnosis and Troubleshooting Systems 711
9.3.1 Diagnosis in DARN 712
9.3.2 Diagnosis in INTERNIST 715
9.3.3 Diagnosis in CASNET/GLAUCOMA 724
9.3.4 Diagnosis in SOPHIE III 729
9.3.5 Diagnosis in GDE 737
9.3.6 Diagnosis in SHERLOCK 744
9.3.7 Diagnosis in XDE 748
9.3.8 Summary and Review 759

Exercises for Section 9.3 761

9.4 Knowledge and Methods for Diagnosis 764
9.4.1 Plan Models for Diagnosis 765
9.4.2 Classification Models for Diagnosis 766
9.4.3 Causal and Behavioral Models for Systems 767
9.4.4 Summary and Review 768

Exercises for Section 9.4 769

9.5 Open Issues and Quandaries 771

APPENDIX A Annotated Bibliographies by Chapter

APPENDIX B Selected Answers to Exercises

Index 853

xi

670

776

811

Page 10 of 72 FORD 1017

Configuration tasks select and arrange instances of parts
frotrl (l:set. Computational models for configuration are
used for build-to~order manufacturing tasks and also for
tasks such as planning and therapy recommendation.
Incremental decision-making methods for configuration
must cope with threshold effects and horizon effects.

nfi ur ti n

8.1 Introduction
A configuration is an arrangement of parts. A configuration task is a problem-solving activity
that selects and arranges combinations of parts to satisfy given specifications. Configuration
tasks are ubiquitous. Kitchen designers configure cabinets from catalogs of modular cupboards,
counters, closets, drawers, cutting boards, racks, and other elements. Salespeople for home enter­
tainment systems must design configurations from tape decks, optical disk players, receivers,
turntables, and other units that can play recordings from different media, as well as from video
screens, speakers, and other units that can present performances to people. Computer engineers
and salespeople configure computer systems from various computing devices, memory devices,
input and output devices, buses, and software. Dieticians configure diets from different combina­
tions of foods. Configuration problems begin with general specifications and end with detailed
specifications of what parts are needed and how they are to be arranged.

A definitional characteristic of configuration, as we shall use the term, is that it instantiates
components from a predefined, finite set. This characterization of configuration does not create
new parts or modify old ones. Configuration tasks are similar to classification tasks in that
instantiation includes the selection of classes. However, to solve a classification problem is
merely to select one (or perhaps a few) from the predefined set of classes. To solve a configura­
tion problem is to instantiate a potentially large subset of the predefined classes. The search
space of possible solutions to a configuration problem is the set of all possible subsets of compo­
nents. This is the power set of the predefined classes. Furthermore, multiple instantiations of the
same part may be used in a solution, and different arrangements of parts count as different solu­
tions. Configuration problems are usually much harder than classification problems.

608

Page 11 of 72 FORD 1017

8.1 Introduction 609

8.1.1 Configuration Models and Configuration Tasks

Custom manufacturing and mass manufacturing are often seen as opposites. Custom manufactur­
ing tailors products to the specific and different needs of individual customers; mass manufactur­
ing achieves economies of scale when high-volume manufacturing techniques make it possible
to reduce the unit costs of nearly identical products. An industrial goal common to many kinds of
manufacturing is to combine the flexibility of custom manufacturing with the economics of mass
production. An important strategy for this is to create lines of products that can be tailored to a
customer's requirements by configuring customer-specific systems from a catalog of mass-pro­
duced parts. This approach has been called an a la carte or build-to-order marketing and manu­
facturing strategy.

A la carte manufacturing requires special capabilities of an organization. For production,
the required capabilities include the efficient means for managing of an inventory of parts, for
bringing the parts together that are required for each order, for assembling the parts into prod­
ucts, and for testing the quality of the different assembled products. A well-recognized logistic
requirement for this process is to accurately understand the customer's needs and to develop a
prodgct specification that meets those needs. This step, which actually precedes the others, is the
configuration step. The success and efficiency of the entire enterprise depends on configuration.

Since flexible product lines can involve hundreds or thousands of different, configurable
parts, there are many possibilities for errors in the configuration process. Errors in a configura­
tion can create costly delays when they are discovered at assembly time, at testing time, or by a
customer. An effective configuration process reduces costs by reducing level of inventory, reduc­
ing the amount of idle manufacturing space, reducing the delay before customers' bills are paid,
and better ensuring customer satisfaction.

As these factors have been recognized, companies have sought automated and semi-auto­
mated configuration systems for routinely creating, validating, and pricing configurations to
meet the differing requirements of their customers. One of the first and best known knowledge­
based configuration systems is the XCON system for configuring VAX computer systems
(McDermott, 1981). Knowledge-based systems for configuration tasks are being built by many
organizations.

Configuration is a special case of design. In design the elements of the designed artifact are
not constrained to come from a predefined set. They are subject only to the constraints of the
manufacturing methods and the properties of the raw materials. The knowledge necessary for
configuration tasks is more bounded than the knowledge for general design tasks. In general
design tasks, the solution space is more open-ended. For example, designing a pickup truck from
scratch is more open-ended than choosing options for a new one. In configuration tasks, much of
the "design work" goes into defining and characterizing the set of possible parts. The set of parts
must be designed so they can be combined systematically and so they cover the desired range of
possible functions. Each configuration task depends on the success of the earlier task of
designing configurable components.

From a perspective of knowledge engineering, configuration tasks are interesting because
they are synthetic or constructive tasks. They are tasks for which combinatorics preclude the pre­
-enumeration of complete solutions. Just as not all classification tasks are the same, not all config­
uration tasks are the same. Configuration models can be used as a basis for different kinds of
tasks, not necessarily involving manufacturing and physical parts. For example, "configuring"

Page 12 of 72 FORD 1017

610 8 CONFIGURATION

therapies can be a part of a larger diagnosis and therapy task. Configuring alternative combina­
tions of steps for a plan can be an important part of a planning process. In such cases we refer to
a configuration model for a task.

Knowledge-engineering techniques are suitable for classification tasks and configuration
tasks because most of the complexity in specifying how to carry out the task is in the domain
knowledge rather than the methods themselves. The knowledge-level methods define roles for
different kinds of knowledge and these roles help to control the way that the bodies of knowl­
edge interact and guide the search for solutions.

8.1.2 Defining Configuration

Selecting and arranging parts is the core of solving a configuration problem. Figure 8.1 presents
an example of a configuration that is a solution to a configuration problem. In this example, the
configuration has two top-level parts: Part-1 and Part-2. Each of these parts has subparts.

Configuration-!

Part-1

Part-1-1 Part-1-2

Part-1-1-1 Part-1-1-3

~A
- A -A

B~ _Iiiii A

w -
... -

B
Part-1-1-2

--Ill A BL..- ---Ill B r
B -

A
1111

B
A,..

·~
Ill

I ...

Part-2 I Ill

A B
11 Part-2-1 Part-2-2 B

.. ...
A c ..

B ~ 111111 A B Ill-

I
-- - ...

D.,

FIGURE 8.1. An example of a configuration using a port-and-connector model. In this figure, all compo­
nents are shown as boxes and the top-level component is Configuration-!. It has two parts, Part-1 and Part-
2. The arrangement of the configuration is indicated by the part-of hierarchy, displayed graphically by the
containment of boxes and by the interconnections among parts. Each part has a number of ports, labeled
A,B,C, or D. For example, the B port ofPart-1-1-1 is connected to the A port ofPart-1-1-3.

Page 13 of 72 FORD 1017

8.1 Introduction 611

Configuration domains differ in their representations of arrangements. For example, Figure
8.1 represents arrangements using a port-and-connector model. The ports on each part corre­
spond to the different roles that subparts can have with respect to each other. Like all models
governing arrangements, a port-and-connector model constrains the ways things can be con­
nected. Components can be connected only in predefined ways. Ports may have type specifica­
tions indicating that they can be connected only to objects of a particular kind. Each port can
carry only one connection.

Variations in the search requirements and the available domain knowledge for different
configuration tasks lead to variations in the methods. Nonetheless, certain regular patterns of
knowledge use appear across many different configuration tasks. Configuration methods work
through recognizable phases. They map from user specifications to abstract descriptions of a
configuration, and they refine abstract solutions to detailed configurations specifying arrange­
ments and further requirements. We distinguish between solution expansion and solution refine­
ment phases, not to imply that they are independent, but to emphasize the distinct meanings of
part requirement hierarchies, functional abstraction hierarchies, and physical containment hierar­
chies. Addition of required components is often a specialized process and can involve goals for
both··correcting and completing a specification. Refinements of specifications include the consid­
eration of alternative arrangements as well as selection among alternative implementations. Con­
figuration methods must mix and balance several kinds of concerns and different bodies of
knowledge.

Figure 8.2 shows the relevant spaces for defining configuration problems. It is a useful
starting framework from which we shall consider variations in the following sections. In some
domains there is no separate specification language: Specifications are given in the language of

N•----------------------------~--

Specifications

Specifications

0

'
'

'

Specification to

\ •truoture m•tching

Addition~~
specifications !

Component
hierarchy

'
'
'

FIGURE 8.2. Spaces in configuration tasks.

Configuration space

Abstract and
partial solutions

t t· Solution
refinement

t and expansion

t

Abstraction
hierarchy

~

m
'- Arrangement

~del

Page 14 of 72 FORD 1017

612 8 CONFIGURATION

parts and arrangements and the task begins with a partial configuration. In that case, we omit the
boundary in the figure between the specification space and the configuration space. The outer
oval in the configuration space signifies that the representations for partial and expanded solu­
tions are mixed together. Most configuration methods work incrementally on candidates,
expanding the candidates to include more parts and refining the specifications to narrow the
choices.

By analogy with names for classification methods, the pattern of knowledge use suggested
by Figure 8.2 could be called heuristic configuration to emphasize the use of heuristic knowl­
edge to guide the generation and testing of possible configurations. It could also be called hier­
archical configuration to emphasize the importance of reasoning by levels, both component
hierarchies and abstraction hierarchies. For simplicity, we just use the term configuration.

8.2 Models for Configuration Domains

This section discusses what configuration is and what makes it difficult.

8.2.1 Computational Models of Configuration

To understand configuration tasks we need a computational model of the search spaces and the
knowledge that is used. Our model has the following elements:

' ... i A specification language
,-. A submodel for selecting parts and determining their mutual requirements

A submodel for arranging parts
A submodel for sharing parts across multiple uses

We begin by describing these elements generally and simply. We then introduce the "widget"
domain as a concrete instantiation of a configuration model. We use this domain to illustrate rea­
soning and computational phenomena in configuration tasks. Afterward, we draw on the
domains from the previous section to extract examples of kinds of knowledge and the use of
knowledge.

A specification language for a configuration task describes the requirements that configu­
rations must satisfy. These requirements reflect the environment in which the configured product
must function and the uses to which it will be put. A specification may also indicate which opti­
mizing or due-process criteria should be used to guide the search, such as minimizing cost or
space or preferring some possibilities over others. (See the exercises.)

A functional specification describes capabilities for desired behaviors. For example, rather
than saying that a computer configuration needs a "printer," a functional specification might say
that the computer needs to be able to print copies. The printing function may be further special­
ized with qualifiers about speed, resolution, directionality, character sets, sizes of paper, color or
black and white, and so on. One advantage of describing systems in terms of functions rather
than in terms of specific classes of manufactured parts is that functions can anticipate and sim­
plify the addition of new classes of components to a catalog. When a functional specification
language is used, the configuration process must have a means for mapping from function to
structure.

Page 15 of 72 FORD 1017

8.2 Models for Configuration Domains 613

A specification language is not defined independently of the other submodels. Some con­
figuration models use the same language for describing specifications and for describing config­
urations. This approach avoids the function-to-structure mapping by associating each part with a
list of key functions. The most common approach is called the keymcomponent approach. This
approach has two parts: (1) For every major function there is some key component, and (2) all
the key components (or abstract versions of them) are included in the initial partial configuration
that specifies a configuration. A specification is assumed to include all the key parts. To complete
a configuration, a configuration system satisfies the prerequisites of all the key parts it starts with
as well as the parts it needs to add to the specification, and it also determines a suitable arrange­
ment for all the included parts.

A sub model for parts specifies the kinds of parts that can be selected for a configuration
and the requirements that parts have for other parts. Some parts require other parts for their cor­
rect functioning or use. For example, computer printed circuit boards may require power sup­
plies, controllers, cables, and cabinets. A part model defines required-component relations, so
that when a configuration process considers a part description, it can determine what additional
parts are needed. Required parts can be named explicitly or described using the specification lan­
guage. Descriptions indicate which parts are compatible with each other and what parts can be
substituted for each other under particular circumstances.

A submodel for spatial arrangements provides a vocabulary for describing the place­
ment of parts and specifies what arrangements of parts are possible. Together, the arrangement
model and the specification language form a basis for describing which arrangements are accept­
able and preferred. They make it possible to determine such things as where a part could be
located in an arrangement, whether there is room for another part given a set of arranged parts,
and which parts in a set could be added to an arrangement. Arrangement models constrain the set
of possible configurations because they govern the consumption of resources, such as space,
adjacency, and connections. These resources are limited and are consumed differently by differ­
ent arrangements. Arrangement models are a major source of constraints and complexity in con­
figuration domains.

A submodel for sharing expresses the conditions under which individual parts can be
used to satisfy more than one set of requirements. In the simplest case, part use is mutually exclu­
sive. For example, a cable for one printer cannot be used simultaneously to connect to another
printer. For some applications, mutual exclusion is too restrictive, such as with software pack­
ages that may use the same memory, but at different times. The following exemplifies a range of
categories of use and sharing for configuration systems:

i'.'.i Exclusive use: Components are allocated for unique uses.
''' Limited sharing: Parts can be shared between certain functions but not across others.
~21 Unlimited sharing: A component can be allocated for as many different purposes as

desired.
Serial reusability: A component can be allocated for several different purposes, but only
for one purpose at a time.
Measured capacity: Each use of a component uses up a fraction of its capacity. The com.:.
ponent can be shar~ as long as the total use does not exceed the total capacity. The electri­
cal power provided by a supply is an example of a resource that is sometimes modeled this
way.

Page 16 of 72 FORD 1017

614 8 CONFIGURATION

Specification Language
A widget component

Key components

in functional hierarchy ~ CAJ w w w
A-1 A-2 B-1 B-2 C-1 C-2 D-1 D-2

Parts Submodel

Part-A-1 Part-B-1 Part-C-1 Part-D-1

Required parts: 2 B's Required parts: 2 C's Required parts: None
Required parts:

B & 2 C's
Size: Half slot Size: Half slot Size: Half slot

Size: Half slot

Catalog

~ Part-A-2 Part-B-2 Part-C-2 Part-D-2

Required parts: 3 B's Required parts: None Required parts: None Required parts: C 1
Size: Full slot Size: Full slot Size: Half slot Size: Double slot

Arrangement Submodel

Half slot Full slot Double slot Empty slots

Widget

case -z_______;eft Right

Extension plug

(__ Extension case

Must occupy last
unused top half slot

of previous case

Sharing Submodel

All parts are allocated for exclusive use.

FIGURE 8.3. The widget model, W-1, illustrates phenomena in configuration problems.

A particular domain model may incorporate several of these distinctions, assigning differ­
ent characteristics to different parts. Sometimes these distinctions can be combined. One way to
model how different software packages could share memory would be to post capacity con­
straints indicating how much memory each package needs. The system allocation for serial
usage would be determined as the maximum capacity required for any software package. This
approach mixes serial reusability with measured capacity.

fu summary, our framework for computational models of configuration has four sub­
models: a specification language, a submodel for parts and requirements, a submodel for ar-

Page 17 of 72 FORD 1017

8.2 Models for Configuration Domains 61.5

rangement, and a submodel for component sharing. We return to these models later to describe
variations on them and to identify the ways in which they use domain knowledge. In the next
section, we instantiate our configuration model for the widget domain and use it to illustrate
important phenomena in configuration tasks.

8.2.2 Phenomena in Configuration Problems

This section describes reasoning phenomena that arise in configuration problems. These phe­
nomena are illustrated in the context of the sample domain in Figure 8.3. Figure 8.3 presents W-
1, a model for configuring widgets. We use W-1 to illustrate configuration phenomena in the fol­
lowing discussion and in the exercises at the end of this section.

Widget requirements are specified in terms of the key generic components A, B, C, and D.
The W-1 parts submodel provides a catalog with two choices of selectable components for each
generic component. Thus, generic component A can be implemented by either A -1 or A-2, B can
be implemented by B-1 or B-2, and so on. Each component requires either a half slot, a full slot,
or a double slot. Figure 8.4 presents the rules for the widget model.

·. When components are arranged in the widget model, there are sometimes unavoidable
gaps. When configurations are combined, these gaps are sometimes complementary. For this rea­
son it is not always adequate to characterize the amount of space that a configuration takes up
with a single number. Figure 8.5 defines several terms related to measures of space in the widget
model. Occupied space refers to the number of slots occupied by components, including any
required extension plugs. Trapped space refers to any unoccupied slots to the left of other slots,
including slots to the left of or below an extension plug. Space (or total space) is the sum of
occupied space and trapped space. The minimum space for a specification is the minimum
amount of space required by any possible configuration that satisfies the specification.

Required Parts
Each part in a configuration must have all of its required parts, as shown in Figure 8.3.

Arrangement
Components must be arranged in alphabetical order (left to right and top to bottom). Parts with the
same letter (e.g., C-T and C-2) can be mixed in any order.
All identical components (components with the same letter and number) must be in the same widget
case.
Afull~slot component must occupy a single vertical slot. It cannot be split across slots. A double-slot
componentmustoccupy two adjacent full slots in the same widget case.

• Anupper half slot must be filled before the corresponding lower half slot can be filled.
No full-slot gaps are allowed, except at the right end of a case.
If a case ls full, an extension case can be added butit requires using an extension plug in the last upper

.. half slot ofthe previous case.
Wheri an extension plug is used, no component can be placed in the half slot below the plug.

Sharing
The W~l sharing submodel requires that distiilct parts be allocated to satisfy each reqUirement.

FIGURE 8.4. Further rules governing the W-1 widget model.

Page 18 of 72 FORD 1017

616

A-1 B-2·

A-1

Occupied space: 3.5 slots
Space: 3.5 slots

A-1 B-2

8

B-2 C-1

~
Trapped space: 0 slots

B-2 C-1

~

~~----------------~
Trapped space: .5 slots) Occupied space: 3.0 slots

Space: 3.5 slots

A-1 B-2

D-1

Occupied space: 7.5 slots
Space: 10 slots

B-2 C-1 Ext. plug

~
D-2

Trapped space: 2.5 slots

CONFIGURATION

FIGURE 8.5. Examples illustrating the terms total space, occupied space, and trapped space. For most
problems, the key factor is the total space, which is called simply "space."

Configuration decisions are made incrementally. Figure 8.6 illustrates stages in a solution
process, starting with the initial specifications {A, D}. Under the part-expansion phase, alterna­
tives for required parts for A and D are considered. For requirement A, the candidates are the
selectable parts A-1 and A-2. However, A-1 and A-2 both have further requirements. A-1
expands to two B's, which could be implemented as either B-l's or B-2's. If B-1's are chosen,,
these require C's, which themselves can be implemented as either C-1 's or C-2's. This expansion
of requirements shows why we cannot use a simple constraint-satisfaction method with a fixed
number of variables and domains to solve the configuration task for the top-level parts. Depend­
ing on which alternatives are chosen, different required parts will be needed, and different fur-

Page 19 of 72 FORD 1017

8.2 Models for Configuration Domains

Specifications: {A, D}
Key

Choices~ Requires ----->

Part Expansion
/ 2 B-1's -----)-4 C's ~ 4 C-1's

A-1 -----)- 2 B's

A< ::3B-2'•
A-2 -----)- 3 B's ~

__ _---
7

B ~ B-1 ·-----)- 2 C's ~2 C-1's

:_ B-2 2 C-2's

--~ 2C's ~ 2C-1's

2 C-2's

D-2 ·-----)- C-1

Part Arrangement

Candidate part selection: {A-1, 2 B-1's, 5 C-1's, D-2}

A-1 B-1 C-1 C-1 D-2

B-1 C-1 C-1 C-1

Legal arrangement for the candidate solution

617

FIGURE 8.6. The dynamic nature of configuration problems. In this example, the initial specifications
are {A, D}. The solid arrows indicate where there are alternatives for implementing a part. The dashed
arrows indicate places where a part requires further parts. There are several possible solutions for the
given specifications. One solution is shown at the bottom. This one fits within a single widget case.

ther requirements will be noted. This dynamic aspect of the problem suggests the use of dynamic
and hierarchical constraint methods.

The arrangement model for W-1 lends itself to a sequential layout process, which first
places the required A components and then the B components, C components, and D components
in left-to-right order. If at any point all of the components of the same type cannot be fitted into
the space remaining in a widget case, an extension case is required. If the number of required
components of a g~ven type is more than fits into a single case, then the candidate cannot be

Page 20 of 72 FORD 1017

618 8 CONFIGURATION

arranged according to the rules. Furthermore, when more than one case is required, there must be
an available slot in the previous case for its extension plug. At the bottom of Figure 8.6 is one
solution to the sample problem, which fits within a single widget case.

Threshold Effects
Configuration problems exhibit threshold effects. These effects occur when a small change in a
specification causes candidates to exceed certain fixed thresholds, requiring discontinuous and
potentially widespread changes to the candidate. For example, in computer configuration
domains, overflowing the capacity of a cabinet requires the addition of not only an extension
cabinet, but also various components for extending the bus and additional power supplies. In
applications where parts have parameters to be determined by configuration, requirements for
upgrading the size of components can have ripple effects, so that further parts need to be
changed to accommodate changes in weight or size, resulting in shifts to different motor models.
Depending on how the decision making is organized in a configuration system, threshold effects
can occur in the middle of solving a problem if requirements discovered partway through the
process exceed initial estimates of required capacity. In such cases, many early decisions may
need to be revised (see Exercise 4).

Figure 8. 7 illustrates a threshold being exceeded when the widget specification is changed
from {A, D} to {A, 2 D's}. In the two solutions shown, the additional required components
exceed the capacity of a single widget case. Furthermore, in the second candidate solution, some
of the implementations for a C part were switched to C-2 (rather than C-1) to avoid violating the
rule that identical parts must be placed in the same case and to avoid overflowing the extension
case. The capacity of a case is a resource. Threshold effects can occur for different kinds of
resources. Other arrangement resources include order and adjacency.

Global resources that can be exceeded in different configuration domains include size,
power, weight, and cost. These resources present special challenges for allocation and backtrack­
ing. They are called global resources because they are consumed or required by components
throughout a configuration rather than by just one component. In the cases cited, the consump­
tion of the resource is additive consumption, meaning that requirements can be characterized in
terms of numeric quantities. Requirements from different parts are summed together.

Horizon Effects
When configuration decisions are made incrementally, their evaluation criteria are typically
applied in a local context, meaning that they recommend the best solution limiting the evaluation
to a small number of factors. This due-process approach is called myopic because it does not try
to take into account all of the entailments of a decision caused by the propagation of effects in
the model. This leads to a phenomenon called the horizon effect. In nautical experience, the cur­
vature of the earth defines a horizon beyond which things are hidden. To see things farther away,
you have to get closer to them. In reasoning systems, the "visible horizon" corresponds to things
that have been inferred so far. Partway through a configuration process, you cannot see all the
consequences of the choices so far because some inferences have not yet been made and because
some other choices have yet to be made. At best, you can make estimates from the decisions
made so far.

In the idealized case where configuration choices are independent, locally optimal deci­
sions yield globally optimal solutions. For example, if the total cost of a solution is the sum of

Page 21 of 72 FORD 1017

8.2 Models for Configuration Domains 619

Specification {A, 2 D's}

Candidate-1

Total parts required: {A-1, 2 B-1's, 6 C-1's, 2 D-2's}

Candidate-2
·.,

Total parts required: {A-1, 4 B-1's, 8 C-1's, 4 C-2's, 2 D-1's}

C-1 C-1 C-1 C-1 D-1

C-1 C-1 C-1 C-1 D-1

FIGURE 8.7. Threshold effects. This figure illustrates two possible solutions to a widget configuration
problem with the specifications {A, 2 D's}. Both candidate solutions exceed the capacity of a single wid­
get case. In more involved examples, exceeding one threshold can lead to a ripple effect of exceeding
other thresholds as well, leading to widespread changes in a configuration.

the costs of the independently determined parts, then picking the cheapest part in each case will
lead to the cheapest overall solution. If the choice of the next component can be determined by
combining the known cost of a partial solution with an estimate of the remaining cost, and the
estimate is guaranteed never to be too high, then the A* algorithm can be used as discussed in
Section 2.3.

However, in many configuration situations and domains these conditions do not hold and
myopic best-first search does not necessarily lead to a globally optimal solution. In each of the
following cases, both part A and part B satisfy the local requirements. Part A costs less than part

Page 22 of 72 FORD 1017

620 8 CONFIGURATION

B and would be chosen by an incremental best-first search that is guided by cost of the part.
These cases show why a choice that is locally optimal need not be globally optimal.

Case 1. Undetected required parts. The other parts required by part A are much more
expensive than the parts required by part B, so the total cost of a complete solution is
higher if A is chosen. The further requirements for parts A and B may involve con­
straints not yet articulated, choices dependent on situations not yet determined, or
design variables not yet introduced.

Case 2. Unanticipated arrangement conflicts. The parts required by part A consume
slightly more of some resource than the parts required by part B. If A is chosen, a
threshold will be crossed by later decisions leading to additional expensive cabinets,
cases, or whatever. If B had been chosen, the threshold would not have been crossed
and the overall solution would have been cheaper (see Exercise 4).

Case 3. Undetected sharability. There are requirements not yet considered for a part that
is compatible with B but not with A. If B is a sharable component, then choosing B at
this stage will make it unnecessary to add parts later on, leading to an overall savings.
TQ.is phenomenon is especially likely to occur in domains that include multifunctional
coi:nponents, such as multifunctional computer boards that incorporate several inde­
pendent but commonly required functions (see Exercise 5).

All three cases exhibit the horizon effect. The local evaluation fails to lead to an optimal solution
because the indicators fall past the "observable horizon" defined by the commitments and infer­
ences made so far.

If computational complexity was not an issue, the effects of the first case could be miti­
gated by determining the problematic effects of the required components for a part before com­
mitting to a part. Thus, no commitment would be made to choose A until the effects of all of its
required components are known. The second case could be mitigated by considering the effects
on all resources consumed by a component. The effects in the third case could be mitigated by
considering all possible sharings of a component before committing to the selection.

To summarize (with tongue in cheek), the effects of incremental decision making and
myopic optimization can be mitigated by performing decision making as far past the immediate
horizon as needed. Unfortunately, exponential computational resources are required to look so
far ahead. In the following knowledge and symbol-level analyses, we discuss more realistic ways
to cope with threshold and horizon effects.

8.2.3 Summary and Review
This section models configuration in terms of four elements: a specification language, a model
for selecting parts and determining their mutual requirements, a model for arranging parts, and a
model for sharing parts across multiple functional requirements. Parts models can be simple cat­
alogs of parts. They can also include hierarchical relations based on functionality, required parts,
and bundled packaging. Arrangement models express what physical arrangements of parts are
possible and how some arrangements of parts preclude other arrangements. Arrangement models
range from complex spatial models to simple named resource models where parts fit in any of a
finite number of separately accounted spaces. Sharing models indicate when parts chosen to sat-

Page 23 of 72 FORD 1017

8.2 Models for Configuration Domains 621

isfy one requirement can be used to satisfy others as well. Variations in sharing include exclusive
use, open use, metered use, and serial reuse.

Search spaces for configuration domains can be large. Configurations themselves are rep­
resented in terms of fairly complex symbol structures that indicate the selection, arrangement,
and parameterization of their parts. Most configuration tasks are carried out incrementally, build­
ing up descriptions of candidate solutions from descriptions of their parts.

Although configuration domains differ in the complexity of their submodels and the
degree to which decisions in each submodel are dependent on decisions in others, they typically
exhibit threshold effects where small changes in local requirements can cause discontinuous
effects when overall capacities are exceeded. These threshold effects can arise in any of the sub­
models. Threshold effects and horizon effects for large interconnected problems create a
challenge in ordering and managing configuration decisions. The next section presents case stud­
ies of configuration systems.

Exercises for Section 8.2

1111

Ex. 1 [!-05] Global Resources. Decisions about global resources are often problematic in config­
uration tasks.
(a) Why? What are some examples of global resources from the configuration domains in
this chapter?
(b) Briefly describe some alternative approaches for making decisions about global re­
sources.

Ex. 2 [10] Skeletal Configurations. Professor Digit is a consultant to a company that configures
computer systems for its customers. He argues that the number of possible computer con­
figurations may be high but that the number of "really different" configurations sought by
customers is actually quite low. He proposes that a knowledge system for configuration
would be simpler if it proceeded as follows:

Ex. 3

1. Search a library of configurations and find the one closest to the initial config­
uration proposed for the customer, taking into account which components are
key components.

2. Add new key components from the customer's initial configuration that are
missing, and remove any extra key components and their required parts from
the matching library configuration.

3. Revise the configuration to accommodate the customer's needs.

(a) Briefly describe the main assumptions about the configuration task on which the via­
bility of Professor Digit's proposal depends.
(b) Sam, a graduate student working with Professor Digit, says this proposal creates a ten­
sion in the solution criteria for cases in the library between conservative and perhaps ineffi­
cient configurations that are easy to extend and ones that are minimal for a fixed purpose.
Do you agree? Explain briefly.
(c) Suppose the computer configuration domain is subject to many threshold effects.
Briefly, what are the implications for Professor Digit's proposal?

[25] Configuring Widgets. The text defines a configuration model, W-1, for widgets. We
assume that the following cost figures apply for widget parts.

Page 24 of 72 FORD 1017

622

111111 Ex.4

111111 Ex.S

8 CONFIGURATION

Part Unit Cost
A-1 $50
A-2 $20
B-1 $20
B-2 $40
C-1 $ 5
C-2 $10
D-1 $40
D-2 $20

(a) Find a minimal space configuration for the specification {A, B}. Use the standard
widget model in which there is no sharing of parts across functions. If there is more than
one configuration with the minimum space, choose the one with the lowest cost. Draw the
final configuration, following packing constraints.
(b) Find a minimal cost configuration for the specification {A, B}, ignoring case costs. If
there is more than one configuration with the minimum cost, choose the one with the low­
est space requirement. Explain your reasoning. Draw the final configuration.
(c) Parts a and b use the same solution criteria but in a different order. Are the results the

, same? Why?

[30] Threshold Effects in Local Cost Evaluations. This exercise considers threshold effects
in a configuration task. It uses the same cost figures as Exercise 3.
(a) Complete the following table showing the configurations for the minimum costs and
minimum space solutions for the specifications {A}, { B}, and { C}. Include trapped space
in your computation of minimum space.

Specification

{C}

{B}

{A}

Minimum Cost

$5
{C-1}

Minimum Space

.5
{C-1} or {C-2}

(b) Find a minimal cost configuration for the specification {A, 2 B 's}. Explain your rea­
soning. Ignore case costs.
(c) Suppose we are given the following costs for cases:

Widget case $60
Extension case $120

Find a minimal cost configuration for the specification {A, 2 B 's} including the cost of the
case(s). Draw your configuration and explain your reasoning.

[15] Estimates That Aggregate Space and Cost Constraints. Professor Digit proposes that a
simple and appropriate way to account for case costs would be to add to the cost of each
component a fractional cost corresponding to the fraction of the slots that are required. He
offers this as a method of reflecting case costs back into the decision making about individ­
ual parts. The purpose of this exercise is to evaluate this approach.

Page 25 of 72 FORD 1017

8.2 Models for Configuration Domains 6.23

IIIII Ex.6

We are given the following costs for cases:

Widget case $60
Extension case $120

(a) Show the adjusted component costs by filling in the missing entries in the accompa­
nying table. The case increment is the additional cost of the part accounting for the space
the part requires in terms of a fraction of the case cost.

Part Part Case Case-Adjusted
Cost Increment Part Cost

A-1 $50 $ 5 $55
A-2 $20 $10 $30
B-1 $20
B-2 $40
C-1 $ 5
C-2 $10
D-1 $40
D-2 $20

(b) Using Professor Digit's adjusted case costs, complete the following table, showing the
configurations with the minimum costs.

Specification

{C}

{B}

{A}

Minimum Cost Configuration

$10
{C-1}

$45
{B-1, 2 C-l's}

(c) Briefly explain why Professor Digit's proposal is both fair and inadequate for guiding
a search for a minimal cost solution.
(d) Using the above table as an evaluation function to guide the search for a minimum
cost solution, what would be the minimum cost configuration that Digit's approach would
yield for {A, 2 B 's}? What is its estimated cost? What is its real cost? Explain briefly.
(e) What is the real minimum cost solution? What is its estimated cost and its real cost?

[40] Shared Parts. In this exercise we develop the modified widget model W-S to enable
limited sharing of parts. Suppose the functions for {A} and for { D} are never needed at the
same time. We define A* to be the set of components including an A and all of its required
parts. Similarly D* is the set including aD and all of its required parts. In W-S, sharing is
permitted between A* and any D*, which means a single component can satisfy a require­
ment both for A and for D. No other part sharing is allowed, such as between two different
D*'s.
(a) Fill in the following table of configurations, focusing on those requiring minimal
space. For simplicity, leave specifications for C unrefined to C-1 or C-2 where possible.

Page 26 of 72 FORD 1017

624 8 CONFIGURATION

You can use the results of previous exercises. You need only fill in the minimal space par­
tial configurations.

Hint: You may find it useful in solving the later parts of this exercise to include other
"near minimal space" partial configurations in your table as well.

Specification Minimum Space Configurations

{D}

{2 D}

'"

Configuration Space Occupied Space Trapped Space

{A-1, 2 B-2} 3 2.5 .5
{A-1, B-1, B-2, 2 C}

{B-2, 2 C, D-1} 2.5
... more

{2 B-2, 4 C, 2 D-1} 5
... more

(b) Without sharing, what are all the minimal space configurations for {A, 2D}? Draw
the configurations you find. Briefly explain your reasoning.
(c) With sharing, what are the minimal space configurations for {A, 2D}? Draw the con­
figurations you find. Briefly explain your reasoning.
(d) What do the results of parts b and c tell us about optimizing in shared part models?
Briefly describe the computational phenomena introduced to the optimization process
when sharing is permitted.

Ex. 7 [05] Widget Thresholds. In the example of the widget configuration domain, how does the
rule that all identical parts must be in the same case contribute to a threshold effect?

Ex. 8 [05] Special Cases for Spatial Reasoning. The following paragraph describes some
requirements for spatial relationships in configurations of elevators:

The counterweight is a piece of equipment made up of metal plates that are
always 1 inch thick. The plates are stacked to get the total load needed to balance
the weight of the elevator car, the car's load, attached cables, and other compo­
nents. The plates can be ordered in varying lengths and widths. They are usually
hung from the machine sheave that provides the traction that moves the elevator.
The placement of the sheave and its angle of contact with the cable are critical to
get enough traction to make the elevator move. Safety codes regulate the mini­
mum clearance between the elevator car and the counterweight, between the
counterweight and the shaft walls on its three other sides, and between the coun­
terweight and the floor in its lowest position and the ceiling in its highest posi­
tion. These code clearances, in tum, are calculated using values such as the
weight supported, length of cables, height of the building, and other factors. The
configuration must specify the position of the sheave, the length of hoist cable,
the size of the counterweight in three dimensions, and actual clearances of the
counterweight and any obstacle it might run into all along the elevator shaft.

Page 27 of 72 FORD 1017

8.3 Case Studies of Configuration Systems 62.5

(a) Is a general approach to spatial reasoning important for this example? If not, why not?
(b) Why was it appropriate to use a fixed structure for its parameter network to capture
the reasoning above?

8.3 Case Studies of Configuration Systems

In this section we consider several knowledge systems and show how they solve configuration
problems. Our purpose is to consider the search requirements of the task, the kinds of knowledge
that are needed, the organization of the knowledge, and examples of implementation. The cases
illustrate a range of approaches to configuration tasks.

8.3.1 Configuration in XCON

XCON (also called Rl) is a well-known knowledge system for configuring computer systems
(McDermott, 1982). XCON has a place among configuration systems analogous to MYCIN's
place among classification systems. XCON was the first well-known knowledge system for con­
figuration, and it was initially characterized in terms of symbol-level issues and basic search
methods. Work on both MYCIN and XCON continued for several years and resulted in successor
systems. Retrospective analyses of these systems have uncovered new ways of looking at them
in knowledge-level terms. For MYCIN, the analysis has shifted from an account of backward
chaining at the symbol level to models for classification at the knowledge level. For XCON, the
analysis has shifted from forward chaining and match at the symbol level to search spaces and
models for configuration at the knowledge level. In both cases insights from the analysis have
led to new versions of the systems. For MYCIN the new system is called NEOMYCIN (Clancey
& Letsinger, 1981); for XCON it is XCON-RIME (Barker & O'Connor, 1989).

We consider XCON together with its companion program, XSEL. Together, the two sys­
tems test the correctness of configurations and complete orders of Digital Equipment Company
computers. Different parts of the configuration task are carried out by the two systems. XSEL
performs the first step in the process: acquiring initial specifications. Neither XSEL nor XCON
has a separate "specification language," but XSEL acquires a customer's order interactively in
terms of abstract components. XSEL checks the completeness of an order, adding and suggesting
required components. It also checks software compatibility and prerequisites. The output of
XSEL is the input to XCON.

XCON checks orders to greater detail than XSEL. XCON adds components to complete
orders. It also determines a spatial arrangement for the components, power requirements, cabling
requirements, and other things. It considers central processors, memory, boxes, backplanes, cabi­
nets, power supplies, disks, tapes, printers, and other devices. It checks prerequisites and market­
ing restrictions. It also assigns memory addresses and vectors for input and output devices. It
checks requirements for cabling and for power. Figure 8.8 illustrates the knowledge and infer­
ence patterns for XSEL and XCON. For simplicity in the following, we refer to the combined
system simply as XCON.

Although XCON does not have a functional specification to satisfy, it still needs to decide
when an order is complete. It needs to detect when necessary components have been omitted, but
it would not be appropriate for it to pad a customer's order with extra components, routinely
inflating the price and the functionality of the configured system. Instead, XCON just adds what-

Page 28 of 72 FORD 1017

626

Specifications

Extend order
Customer specifications
(generic components)

-------~

·.,

~
Incremental

specifications

Abstraction hierarchy
(specific components)

Specifications

Extend order

---------~

~
Incremental ~

specifications

Component
hierarchy

8 CONFIGURATION

XSEL

Configuration space

Abstract
solutions

Components

XCON

Solution
refinement

Solution
expansion

Component hierarchy
(software compatibility,

prerequisites)

Configuration space

t
, I, Staged
'f' 1 . so utiOn
t refinement

t
Components

Abstraction
hierarchy

~

~
' . Arrangement
~del

~---:

FIGURE 8.8. The pattern of knowledge use for XCON and XSEL. The systems split the responsibility,
with XSEL performing the first steps and XCON performing a more detailed job. XSEL is concerned
mainly with the completeness of a customer's order with regard to major system components ("key com­
ponents") and software compatibility and licensing. XCON focuses on hardware configuration and consid­
ers power requirements, bus connections, cabling, and arrangement of components in the cabinets.

Page 29 of 72 FORD 1017

8.3 Case Studies of Configuration Systems 627

ever parts are necessary for the operation of the parts that have been specified already. XCON
uses a key-component approach.

Crucial to the operation of XCON is its component database. This database has grown over
time and in 1989 was reported to contain information on more than 31,000 parts. There were 40
types of parts and an average of 40 attributes per part. Figure 8.9 gives an abbreviated example
of two component descriptions. The interpretation of the information in Figure 8.9 is approxi­
mately as follows:

The RK711-EA is a bundle of components. It contains a 25-foot cable (70-12292-
25), a disk drive (RK07-EA*), and another bundle of components (RK611). The
RK611 consists of three boards (G727), a unibus jumper cable (M9202), a backplane
(70-12412-00), and a disk drive controller (RK611 *).Because of its interrupt prior­
ity and data transfer rate, the RK611 * is typically located toward the front of the uni­
bus. The module is comprised of five hex boards, each of which will start in lateral
position "A" It draws 15.0 amps at +5 volts, 0.175 amps at -15 volts, and .4 amps at
+ 15 volts. It generates one unibus load and can support up to eight disk drives. It is

·• connected to the first of these with a cable (070-12292).

Other information includes requirements for boards and power and information about communi­
cations that will influence how the devices are connected to the computer's buses.

In addition to the component database, there is a container-template database that describes
how parts can physically contain other parts. These templates enable XCON to keep track of
what container space is available at any point in the configuration process and what the options
are for arranging the components. They also provide coordinate information so XCON can
assign components to locations in a cabinet. In XCON, arrangement includes electrical connec­
tions, panel space, and internal cabinet locations. XCON uses a model for spatial reasoning in
which the possible locations are described in terms of "slots," places where boards can plug in,
and nexuses, places where devices can be attached in cabinets. Figure 8.10 gives an example of a
template. Part of the interpretation of this template follows:

The components that may be ordered for the CPU cabinet are SBI modules, power
supplies, and an SBI device. Up to six bus interface modules fit into the cabinet. The
cabinet contains a central processor module and some memory. There are three slots
for options that occupy 4 inches of space and one slot for an option that occupies 3
inches of space. The description "CPU nexus-2 (3 5 23 30)" indicates that the central
processor module must be associated with nexus 2 of the bus interface. The numbers
in parentheses indicate the top left and bottom right coordinates of the space that can
be occupied by a CPU module.

Customer orders to XCON are highly variable. Although two system configurations may
need most of the same kinds of actions to occur, even slight differences in the configurations may
have broad consequences because of complex interactions between components. The knowledge
for driving the configuration task in XCON is represented mostly using production rules. In the
following we examine some rules from XCON and consider the kinds of knowledge they repre­
sent.

Page 30 of 72 FORD 1017

628

RK711-EA
CLASS:
TYPE:
SUPPOR1ED:
COMPONENT LIST:

RK611*
CLASS:
TYPE:
SUPPOR1ED:
PRIORITY LEVEL:
TRANSFER RA1E:
SYS1EM UNITS:
SLOTS REQUIRED:
BOARD LIST:

BUNDLE
DISK DRIVE
YES
1 070-12292-25
1 RK07-EA*
1 RK611

UNIBUS MODULE
DISK DRIVE
YES
BUFFERED NPR
212
2
6 RK611 (4 TO 9)
(HEXAM7904)
(HEX AM7903)
(HEX AM7902)
(HEX AM7901)
(HEXAM7900)

DC POWER DRAWN: 15.0 .175 A
UNIBUS LOAD: 1
UNIBUS DEVICES SUPPOR1ED: 8

8 CONFIGURATION

CABLE TYPE REQUIRED: 1 070-12292 FROM A DISK DRIVE UNIBUS DEVICE

FIGURE 8.9. Two component descriptions from X CON's database. The attributes of a component are
used in the configuration process to determine when other parts are needed, such as subsystems and
cabling. They also describe parameters that influence the arrangement of parts and the power require­
ments. (Adapted from McDermott, 1982a, Figure 2.2, pp. 46-47.)

Parts require other parts for their correct operation. The initial specifications to XCON
refer explicitly to key components, but not necessarily all the other components required to
enable a configuration to function correctly. Figure 8.11 gives an example of a rule for adding a
component.

Parts require other parts for a variety of reasons. For example, disk drives require disk con­
trollers to pass along commands from the central processor. One disk controller can service sev­
eral drives. All of these devices require cables to interconnect them. They also require power
supplies to power them and cabinets to house them. The interlocking requirements are repre­
sented in XCON by a combination of rules and the databases about components and templates.
Requirements for additional components are expressed locally, which means each description of
a component includes specifications for other components that it requires. When XCON adds a
component to a configuration, it needs to check whether the new component introduces require­
ments for other components.

XCON uses knowledge to govern the automated arrangement of components, as demon­
strated in Figure 8.12. Several kinds of choices must be made about arrangements in XCON. A

Page 31 of 72 FORD 1017

8.3 Case Studies of Configuration Systems

CPU CABINET
CLASS:
HEIGHT:
WID1H:
DEP1H:
SBI MODULE SPACE:

POWER SUPPLY SPACE:

SBI DEVICE SPACE:

CABINET
60INCHES
52 INCHES
30INCHES
CPU NEXUS-2 (3 5 23 30)
4-INCH-OPTION-SLOT 1 NEXUS-3 (23 5 27 30)
MEMORY NEXUS-4 (27 5 38 30)
4-INCH-OPTION-SLOT 2 NEXUS-5 (38 5 42 30)
4-INCH-OPTION-SLOT 3 NEXUS-5 (42 5 46 30)
3-INCH-OPTION-SLOT NEXUS-6 (46 5 49 30)
FPANEXUS7 1(2 3210 40)
CPU NEXUS-2 (10 32 18 40)
4-INCH-OPTION-SLOT 1 NEXUS-3 (18 32 26 40)
MEMORY NEXUS-4 (26 32 34 40)
4-INCH-OPTION-SLOT 2 NEXUS-5 (34 32 42 40)
CLOCK-BATTERY (2 49 26 52)
MEMORY-BATTERY (2 46 26 49)
IO (2 52 50 56)

629

FIGURE 8.1 0. An example container template from XCON. (Adapted from McDermott, 1982a, Figure
2.3, page 48.)

distinction is made between the CPU cabinet, the CPU extension cabinets, and the unibus cabi­
nets. The CPU is the central processing unit and SBI modules are bus interface modules. Compo­
nents whose class is SBI module are located in the CPU cabinet. There is only a limited amount
of space in these cabinets, as indicated by the templates. XCON assigns components to locations
incrementally. In placing objects in the unibus cabinet, XCON needs to account for both panel
space and interior space. Modules that support each other need to be located either in the same
backplane or in the same box. Another arrangement issue is the electrical order by which objects
are located on the bus. This order affects system performance. Other arrangement decisions con­
cern the allocation of floor space to cabinets, taking into account any known obstructions at the
customer site.

Rule for adding parts
IF: The most current active context is assigning a power supply

THEN:

and a unibus adapter has been put in a cabinet
and the position it occupies in the cabinet (its nexus) is known
and there is space available in the cabinet for a power supply
for that.nexus
and there is an available power supply
and there is no H7101 regula tor available
Add an H7101 regulator to the order.

FIGURE 8.11. A rule from XCON for adding required parts to a configuration.

Page 32 of 72 FORD 1017

630 8 CONFIGURATION

Rule for arranging parts
IF: The most current active context is assigning a power supply

THEN:

and
and
and
for
and
and

a unibus adapter has been put in a cabinet
the position it occupies in the cabinet (its nexus) is known
there is space available in the cabinet for a power supply
that nexus
there is an available power supply
there is an H7101 regulator available

Put the power supply and the regulator in the cabinet in the
available space.

FIGURE 8.12. A rule from XCON for arranging parts in a configuration.

Other rules add specifications to further guide the configuration process. The XCON rule
in Figure 8.13 is an example of this. In other cases in XCON, the rules propose changes to the
given specifrcations. For example, if there are components in the order that have incompatible
voltage or frequency requirements, XCON tries to identify a minority set of components having
the "wrong" voltage or frequency and replaces them with components of the right voltage and
frequency.

Choices also must be made about implementation and arrangement. Some combinations of
choices are incompatible with others. For example, there may be a tension between having opti­
mal performance of the bus and still packing' as many components into a single cabinet as possi­
ble. XCON can fall back to delivering a configuration that works without guaranteeing that per­
formance is optimal.

The strategy taken by the designers of XCON was to organize it to make decisions in an
order that would enable it to proceed without undoing the decisions it has made so far. XCON's
decisions are organized into stages and subtasks. Stages correspond to large groups of subtasks,

Rule for extending the specifications
IF: The most current active context is checking for unibus jumper

THEN:

cable 6hanges in some box
and the box is the second box in some cabinet on some unibus
and there is an unconfigured box assigned to that unibus
and the jumper cable that has been assigned to the last
backplane in the box is not ~ BC11A~lo

and there is ~ BC11A-10 available a~d the current length of the
unibus is known
Mark the jumper cable assigned to the backplane as ncit assigned
and assign the BCllA-10 to the backplane
and increment the ~ufrent length of the unibus by ten feet.

FIGURE 8.13. An example of a rule for adding or changing specifications.

Page 33 of 72 FORD 1017

8.3 Case Studies of Configuration Systems 631

Stage 1 .Determine whether anything is grossly wrong with the order, such as mismatched items or
missing prerequisites.

Stage 2 Put the appropriate components in the CPU and CPU expansion cabinets. ""'-
Stage 3 Put boxes in the unibus expansion cabinets and put the appropriate components in those boxes.
Stage 4 Put panels in the unibus expansion cabinets.
Stage 5 Create the floor layout of the system.
Stage 6 Add necessary cables to the configuration.

FIGURE 8.14. Stages for the XCON system. The grouping and ordering of decisions in these stages is
arranged so that, for the most part, later decisions depend only the results of earlier decisions.

and subtasks can involve as little as a single rule. There are six stages and several hundred sub­
tasks. We first discuss gross interactions among the stages and then the more complex interac­
tions among subtasks.

XCON's stages are shown in Figure 8.14. These stages were not determined through a rig­
oreus analysis of the configuration problem. Rather, the ordering was originally designed to
reflect the way human experts performed the task. The ordering has evolved since then for
XCON, based on the insights and measurements that have become possible with an explicit
knowledge base. Nonetheless, the basic rationale of XCON's ordering of stages is straightfor­
ward. Component selection and component placement in boxes determines what cables are
needed, and floor layout must be known to determine the length of cables. This is why stage 6
comes after stages 1, 2, 3, and 5. Any arrangement of components made before all the required
components are known is likely to require rearrangements, because prerequisite components
often need to be co-located. This is why stages 2 and 3 should come after stage 1. Any attempt to
locate front panels for unibus devices on cabinets before it is known how many cabinets are
being used and where devices are located would probably need some redoing. This is why stage
4 comes after stage 3. Ordered in this way, the later stages implicitly assume that the previous
stages have been completed successfully.

The first stage adds missing but required components to the specification. The component
descriptions characterize some components as requiring others for their operation and also char­
acterize some components as coming in "bundles," which means they are packaged together for
either marketing or manufacturing reasons. Adding required components is potentially recursive,
since some required components require still other components. The first stage does not arrange
components. In addition to adding components, the first stage detects any mismatched compo­
nents in the order, such as components with mismatched power requirements as discussed
already.

The second and third stages arrange components. The second stage locates SBI modules in
the CPU cabinet. This stage can introduce additional components, but not ones that could them­
selves require revisiting decisions in the first stage or this stage. For example, stage 2 may need
to add CPU extension cabinets if there are too many components to fit in the one containing the
central processor. When all the relevant components have been placed, stage 2 puts a bus termi­
nator in the appropriate place in the last cabinet and adds dummy or "simulator" modules to fill
out any leftover slots corresponding to unordered options. Until these cabinets have been config­
ured, it is not known whether these additional parts are needed. Because these parts do not com-

Page 34 of 72 FORD 1017

632 8 CONFIGURATION

pete for space with other components and because they have no further requirements, adding
them does not trigger requirements for further parts.

The third stage is the most complex. This stage determines the parameters of three kinds of
arrangements: spatial arrangement of boxes in cabinets, spatial arrangement of components
inside boxes, and electrical arrangement of components on the unibus. For communication on
the unibus, the relevant factors are interrupt priority level and transfer rate. In an optimal order,
the components would be arranged in descending order of priority level (or more precisely, in
nonincreasing order). Within components of the same priority, they should be ordered by
decreasing transfer rate. XCON defines an "(almost) optimal unibus order" as one in which no
pairs of components at the same priority level are connected so that the one with lower transfer
rate comes before the one with the higher transfer rate. Below that, XCON characterizes any
other ordering as suboptimal. The third stage uses an iterative approach in configuring the unibus
expansion cabinets. It first tries to arrange the components in an optimal unibus order within the
space available. If that fails, it then tries other rearrangements of the components that compro­
mise the optimal unibus order but save space. Depending on what it can achieve, XCON may
need to allocate new cabinets and try again. This leads to ordering further parts in addition to the
cabinets, needed for extending the unibus across the cabinets. Within this stage XCON must
sometimes backtrack to consider all the alternatives.

The fifth and sixth stages for XCON introduce no new theoretical issues. The fifth stage
generates a linear floor plan for the computer system. The last stage generates cable assignments,
using the interdevice distances that have been determined by the earlier stages. It is interesting to
note that XCON's method does more than satisfice. Especially in stage 3, its ranking and itera­
tive development of alternatives is a due-process approach that attempts to optimize the layouts
using essentially a best-first generate-and-test method.

The next level down from stages in XCON is subtasks, implemented as one or more rules.
In contrast to the simple and fixed ordering of stages, the determination of the order of perform­
ing subtasks is complex, situation specific, and governed by conditionals. XCON employs exten­
sive look-ahead to detect exceptional situations and to check for possible future conflict before
making decisions. Early subtasks check for interactions with later ones. One difficulty in XCON
is that there are many potential long-range interactions. Restated, in spite of the task ordering,
there are still many possible interactions among decisions that are scheduled in early tasks and
those that are scheduled in later ones. Anticipating these interactions with conditional subtasks
has yielded a knowledge base that has proven quite complex to maintain. In 1989, XCON had
more than 31,000 components and approximately 17,500 rules (Barker & O'Connor, 1989). The
knowledge base changes at the rate of about 40 percent per year, meaning that modifications are
made to that fraction of it.

This maintenance challenge has led to the development of a programming methodology
for XCON called RIME (Bachant, 1988; van de Brug, Bachant, & McDermott, 1986), which
provides guidelines intended to simplify the continuous development of the system. RIME pro­
vides structuring concepts for rule-based programming. From the perspective of configuration
problems, it institutionalizes some of the concepts we have seen already in the organization of
XCON, especially in the third stage.

RIME advocates an approach based on concepts called "deliberate decision making" and
"propose-and-apply." Deliberate decision making amounts todefining configuration in terms of

Page 35 of 72 FORD 1017

8.3 Case Studies of Configuration Systems 633

small formal subtasks that are represented as explicit, separate processes. Examples of these pro­
cesses in the RIME implementation of XCON include selecting a device, selecting a container
for a component, and selecting a location within a container to place a component. These pro­
cesses were distributed and sometimes duplicated among the rules of XCON. By naming these
processes explicitly and representing them uniquely, RIME brings to XCON-RIME a concern for
modularity at the symbol level.

Another part of the RIME methodology, called propose-and-apply, organizes subtask
descriptions as a sequence of explicit stages that include proposing operators, eliminating the
less desirable ones, selecting an operator, and then performing the operation specified. In the
context of configuration tasks, this separates each subtask into three parts: looking ahead for
interactions in the situation, selecting a best choice for part selection or arrangement, and then
executing that choice. This bundling institutionalizes the way that XCON-RIME considers inter­
locked combinations of choices and backtracks on generating alternatives but not on making
commitments.

Sometimes configuration choices cannot be linearly ordered without backtracking because
the optimization requires a simultaneous balance of several different kinds of decisions. In
XCON, this occurs most noticeably in the third stage, which resolves this issue by bundling deci­
sions and generating combinations of decisions in an iterative approach. In particular, by gener­
ating composite alternatives in a preferred order, this stage generates some combinations of
choices before committing to any of the individual choices about unibus order and spatial
arrangement.

In summary, XCON is a knowledge system for configuring computer systems. Together
with XSEL, it accepts customer orders interactively in terms of abstract parts. Using the key
component assumption, functionality is specified in terms of a partial configuration. Decisions
about the selection and arrangement of a part often interact with decisions about distant parts.
XCON organizes its decision making into an ordered set of stages, but the detailed set of deci­
sions is still highly conditional and must account for potential interactions. RIME is a program­
ming methodology for a new implementation of XCON that organizes the configuration process
in terms of small, explicit subtasks with explicit modules for look-ahead, generation of alterna­
tives, and commitment.

8.3.2 Configuration in M1 /MICON

M1 is an experimental knowledge system that configures single-board computers given a high­
level specification of board functions and other design constraints. M1 is part of a larger single­
board computer design system called MICON (Birmingham, Brennan, Gupta, & Sieworek,
1988). Single-board computer systems are used for embedded applications, in which computer
systems are integrated in larger pieces of equipment. The limitation to single-board systems
means M1 does not contend with spatial layout issues for components inside boxes and cabinets.

M1 configures systems that use a single microprocessor, memory, input and output
devices, circuitry to support testing, and circuitry to enhance reliability. The output of M1 is a list
of components for a design, the list of how these components are interconnected, an address map
that defines where input and output devices are in memory, and some graphs detailing options
and costs for enhancing reliability and fault coverage. Figure 8.15 sketches the main search

Page 36 of 72 FORD 1017

634 8 CONFIGURATION

r---·~--------------------------------

'
'
'

'
'

'

Specifications

Specifications

Re~
specifications
for reliability

Configuration space

Components

Functional
hierarchy

~
' Arrangement
~del

--

FIGURE 8.15. The specification language for Ml is a list of key components, using Ml 's functional
hierarchy. Ml also has a component hierarchy that describes required parts, which are supporting cir­
cuitry. Its arrangement model is based on ports and connections. Not shown in this figure is Ml 's knowl­
edge for reliability analysis.

knowledge for Ml. Like our exemplar of configuration systems, M1 has knowledge for mapping
specifications to abstract solutions; knowledge for refining abstract solutions by selecting, add­
ing, and arranging parts; and knowledge for adding specifications.

M1 represents a functional hierarchy of components, as shown in Figure 8.16. This hierar­
chy includes both abstract parts and physical parts. The abstract parts are developed by general­
izing the functions of a class of parts. For example, the abstract part PI0-0 embodies a set of
functions common to all the devices in M1's database for parallel input and output. An important
purpose of abstract components is that they define a standard wiring interface called a "func­
tional boundary."

M1 begins with an interactive session with a user to acquire specifications for the system
to be configured. This session leads to a number of specifications about power, area, and the
desired functionality of the system. Like XCON, M1 uses a key-component assumption for spec­
ifying functionality. The key components used by M1 correspond to the third level (the lowest
abstract level) of its component hierarchy. For example, M1 asks the user whether a serial
input/output device is required and represents what it knows about serial input/output devices in
its description of the abstract class SI0-0, as shown in Figure 8.16.

Each abstract part has a set of specifications that characterize its function and performance.
In 1989, the parts database described 574 parts, of which 235 were physical parts and the rest
were abstract parts. The user's requirements for these are entered as a set of values. For example,
the specifications for a serial input/output device allow the user to specify, among other things,

Page 37 of 72 FORD 1017

8.3 Case Studies of Configuration Systems 635

Component for single-board computer

Processor Memory Input/output devices

I ~ ~
68009-Proc-0 SRAM-0 ROM-0 SI0-0 PI0-0

I 1\ 1\ 1\ 1\
6809 62256 6264 2764 2716 6850 8251 8255 6821

fiGURE 8.16. A functional hierarchy used in the Ml system. Some parts in this hierarchy represent
abstract parts. These parts are developed by generalizing the functions of a class of physical parts. For
example, the abstract part PI0-0 embodies a set of functions common to all parallel input/output chips in
Ml 's database. SRAM-0 represents static random-access memory. ROM stands for read-only memory.
SI0-0 and PI0-0 represent serial and parallel input/output devices, respectively. Parts like SI0-0 and PI0-
0, at the third level ofMl's component hierarchy, correspond to key components and are used for specify­
ing functionality. They also define functional boundaries, which provide a framework for specifying how
th\! more detailed parts should be connected. (Adapted from Birmingham, Brennan, Gupta, & Sieworek,
1988, Figure 2, page 38)

how many ports are needed, a chip type if known, an address, a baud rate, and whether the device
should be compatible with RS232 output. The user requirements then become constraints to
guide the initial selection of parts.

Once abstract parts are selected, M1 moves on to instantiate these parts and to arrange
them. The main arrangement decisions for M1 are the electrical connections between the compo­
nents. In contrast with the spatial arrangement subtasks in XCON, M1 produces a spatially
uncommitted network list that is passed to commercial programs for layout and wire routing.

During the phase of part instantiation, M1 adds supporting circuitry. Figure 8.17 shows
that a baud rate generator and RS232 driver are instantiated as parts of a serial input/output
device. The templates are represented procedurally as rules, as suggested by the abbreviated
English rule for connections in SI0-0 in Figure 8.18. In some cases the part expansion involves
substantial expansion into individual parts. For example, individual memory chips are organized
into an array to provide the required word width and storage capacity.

The next step in M1 is an optional analysis of the reliability of the design. If the analysis is
requested, the user is asked about several more characteristics as well as a selection of reliability
metrics such as mean time to failure and coverage of error detection. The user is also asked to
provide relative weights for trading off total board area and monetary cost. M1 has a number of
rules for determining sources of failure. These rules also guide it in making design changes, such
as substituting parts, changing their packaging, or adding error-correcting circuitry and redun­
dant circuitry. M1 's method is summarized in Figure 8.19.

In summary, Ml has one of the simplest configuration tasks of the applications we will
consider. Specifications include parameters about size and power as well as function. Functional­
ity is represented in terms of key components, where key components are expressed as abstract
parts in a component hierarchy. A weighted evaluation function is used to select among compet­
ing parts when there is no clear dominance. Part expansion is driven by templates represented as
rules. No conflicts arise in expanding or arranging parts. Other than recomputations required

Page 38 of 72 FORD 1017

636 8 CONFIGURATION

SI0-0

6850 RS232_DRIVE

... DATA_BUS DCD 111-GND -... IRQ RTS "" CONTROL_l "" - ...

... RfW TxDATA DATA_l

DATA_BUS

IRQ

WRITE

ADDRESS_BUS -- RS RxDATA ""' DATA_2 OUT"" - ~ OUT

CLOCK

IO_CS

-...
....
'""

vt I cso CTS

I CSl TxCLK

E RxCLK

CS2

BAUD_RATE_GENERATOR

OUT

""' ... CONTROL_2 - ...
Ill-

II-

--
FIGURE 8.11. Ml uses templates and a port-and-connector model for describing the space of possible
interconnections. The template in this figure is for the serial input/output device SI0-0. (Adapted from
Birmingham, Brennan, Gupta, & Sieworek, 1988, Figure 4, page 37)

after the reliability analysis, Ml performs no backtracking. Ml uses a port-and-connector model
for arrangements. The arrangement process does not compute an optimal layout. All topological
arrangements are achievable, so no revision of component choices or specifications is required
on the basis of connectivity constraints.

IF the goal ts assert_template and
the part::_name is 6850 and
the abstract"-pa rt_name . is 6850 ..

THEN get_part(RS232_DRIVER)
get_part(BAUD_RATE_GENERATOR)
connect_net(6850, dO, SIO_O, DATA_BUS)
connect_net_;VCC(6850, CSO) ·
connect_net_GND(685Q, DCD)
cbnnect_net(6850, JxCLK,. BAUD_RATE_GENERATOR, ·OUT)
, . . (more)·

FIGURE 8.18. Sample rule representation for template knowledge, specifying connections between the
internal parts that make up an abstract component and the outer ports of the abstract part. These outer
ports are called a functional boundary.

Page 39 of 72 FORD 1017

8.3 Case Studies of Configuration Systems

To peiform Ml s method for configuring single-board computer systems:
1. Get specifications.

I* Initial part selection. *I
2. Repeat through step 4 for each key function of the specifications.
3. Collect parts that satisfy the specification.
4. Select the part having the highest rating according to M1's

feature-weighted evaluation function.

I* Perform a reliability analysis if requested and make part
substitutions. *I

5. If a reliability analysis is requested, then repeat through step 9
until the reliability specifications are satisfied.

637

6. Use an external program to predict mean time to failure, error­
detection coverage, and reliability of individual components.

7.
-_.,. 8.

9.

Report on reliability and acquire revised specifications.
Acquire weighting factors from the user to guide trade-offs
between board area and cost.
Select parts, substituting more reliable components and adding
redundant and error-detection circuitry as needed.

I* Expand design for cascaded components. *I
10. Repeat through step 11 for each cascadable part.
11. Invoke associated procedure to cascade the parts to the

required sizes. (Generate arrays for memories or trees for
priority encoding and carry look-ahead.)

I* Connect parts using structural templates. */
12. Repeat through step 14 for each unconnected part.
13. Retrieve the template rule for this component.
14. Apply the rule to retrieve parts for ancillary circuitry and

connect the ports of the parts as required.

FIGURE 8.19. The search method used by Ml.

8.3.3 Configuration in MYCIN's Therapy Task

MYCIN is well known as a knowledge system for diagnosing infectious diseases. Its diagnostic
task has been so heavily emphasized that its second task of therapy recommendation is often
overlooked. The computational model for therapy recommendation is different from that for
diagnosis. This section explains how therapy recommendation in MYCIN is based on a configu­
ration model.

The term therapy refers to medical actions that are taken to treat a patient's disease. The
most powerful treatments for infectious diseases are usually drugs, such as antibiotics. In

Page 40 of 72 FORD 1017

638 8 " CONFIGURATION

Example results from the diagnostic task
Therapy reco~mendations a~e based on the followihg possible iden~ties of
the organi.sms:

<item 1>

<item 2>
<item 3>

The identity of ORGANISM-1 may be STREPTOCOCCUS-GROUP-D.
The identity of ORGANISM-1 may be STREPTOCOCCUS-ALPHA.
The identity of ORGANISM-2 is PSEUDOMONAS.

Example results from the therapy task
.The preferred therapy recommendation is as follows:
ln order to cover for i terns <1><2><3>
Give the following in combination

L. PENICILLIN
Dose: 285,000 UNITS/KG/DAY - IV

2. GE:NTAMICIN
nose: 1.7 MG/KG QBH - IV or IM
Comments: Modify dose in renal failure.

FIGURE 8.20. Therapy recommendation in MYCIN. (From Shortliffe, 1984, pp. 123, 126.)

MYCIN, a therapy is a selected combination of drugs used to cover a diagnosis. Figure 8.20
presents an example of diagnostic results and a therapy recommendation. The results are charac­
terized in terms of items. The first two items correspond to alternative and competing identifica­
tions of the first organism. Medical practice usually requires that the therapy be chosen to cover
both possibilities. A possible therapy is shown at the bottom of the figure, recommending a com­
bination of drugs. In some cases, MYCIN ranks alternative therapies, each of which is a combi­
nation of drugs. By analogy with more typical configuration problems, the organisms that must
be covered by the treatment correspond to specifications, drugs correspond to parts, and thera­
pies correspond to configurations.

It would have been simpler in MYCIN if the same computational model could have been
used for both diagnosis and therapy. However, there are several phenomena and considerations
that arise in therapy recommendations that violate assumptions of the classification model that
MYCIN used for diagnosis. The most basic issue is that the number of possible solutions based
on combinations of drugs to cover combinations of diseases is too large to pre-enumerate. More
problematic than this, the selection of drugs to cover one item is not independent of the selection
of drugs to cover another. This follows from competing concerns in therapy. On the one hand, it
is desirable to select therapeutic drugs that are the most effective for treating particular diseases.
For the most part, this decision is based on drug sensitivities of different organisms. Tests are run
periodically in microbiology laboratories to determine the changing resistance patterns of micro­
organisms to different drugs. On the other hand, drugs sometimes interfere with each other and it
is usually desired to keep as low as possible the number of drugs simultaneously administered to
a patient. Thus, the best combination of drugs to cover two different diagnoses might be different
from the union of the best drugs to treat them separately. For example, it might be best to treat

Page 41 of 72 FORD 1017

8.3 Case Studies of Configuration Systems 639

both possible infections with the same drug, even if a different drug might be selected by itself
for either one of them.

Sometimes the risks associated with illness require that a doctor prescribe a treatment
before time-consuming laboratory tests can be completed. For example, culture growths would
narrow the range of possible diagnoses but may delay treatment for several hours. Other compli­
cating factors include drug interactions, toxic side-effects, cost, and ecological considerations.
An example of an ecological factor is when physicians decide to reserve certain drugs for use
only on very serious diseases. In some cases, this measure is used to slow the development of
drug-resistant strains of organisms, which is accelerated when a drug is widely prescribed. In
medical jargon, all negative factors for a therapy are called "contra-indications." Patient-specific
contra-indications include allergies, the patient's age, and pregnancy.

In the initial therapy algorithm for MYCIN (Shortliffe, 1984), therapy recommendation
was done in two stages. A list of potential therapies was generated for each item based on sensi­
tivity information. Then the combination of drugs was selected from the list, considering all con­
tra-indications. This approach was later revised (Clancey, 1984) to make more explicit the medi­
ation between optimal coverage for individual organisms and minimization of the number of
drugs prescribed.

The revised implementation is guided by the decomposition of the decision into so-called
local and global factors. The local factors are the item-specific factors, such as the sensitivity of
the organism to different drugs, costs, toxicity, and ecological considerations. Global factors deal
with the entire recommendation, such as minimizing the number of drugs or avoiding combina­
tions that include multiple drugs from the same family, such as the aminoglycosides family. One
variation is to divide the hypothesized organisms into likely and unlikely diagnoses and to search
for combinations of two drugs that treat all of the likely ones. There are sometimes trade-offs in
evaluating candidates. One candidate might use better drugs for the most likely organisms but
cover fewer of the less likely organisms. In such cases, the evaluation function in the tester needs ·
to rank the candidates. Close calls are highlighted in the presentation to a physician.

Figure 8.21 shows MYCIN's revised therapy method. Local factors are taken into account
in the "plan" phase. Global factors are taken into account in the generate-and-test loop. Thus, the

>
J

Rank > Propose

(plan) (generate)

Local factors

Sensitivity of organism
Toxicity

Drug allergies
Ecological concerns

> Approve

(test)

Global factors

Minimize number of drugs
Testing ''most likely'' organisms

> Prescribe

FIGURE 8.21. Therapy recommendation viewed as a plan, generate, and test process. (Adapted from
Clancey, 1984, Figure 6-1, page 135.)

Page 42 of 72 FORD 1017

640 8 CONFIGURATION

test step considers an entire recommendation. Patient-specific contra-indications are also taken
into account at this stage.

In summary, MYCIN is a knowledge-based system that performs diagnosis and therapy
tasks. The diagnosis task is based on a classification model and is implemented using production
rules. The therapy task is based on a configuration model and is also implemented using produc­
tion rules. A solution to the therapy task is a selected subset of drugs that meet both local condi­
tions for effectively treating for organisms as well as global optimality conditions such as mini­
mizing the number of drugs being used. MYCIN's configuration model involves selection but
not arrangement of elements. As in all configuration problems, small variations in local consider­
ations can effect the scoring of an entire solution.

8.3.4 Configuration in VT

VT is a knowledge system that configures elevator systems at the Westinghouse Elevator Com­
pany (Marcus, 1988; Marcus & McDermott, 1989; Marcus, Stout, & McDermott, 1988). VT
searches for solutions by proposing initial solutions and then refining them. This is called a "pro­
pose-and-refine" approach. The search spaces for VT are shown in Figure 8.22.

Interwoven with VT's model of parts is a parametric model of elevator systems. Compo­
nents are described in terms of their parameters. For example, a hoist cable may have a parame­
ter for HOIST-CABLE-WEIGHT. Parameters can also describe aspects of an elevator system not
associated with just one of its parts. For example, the parameters TRACTION-RATIO and
MACHINE-SHEAVE-ANGLE depend on other parameters associated with multiple parts.

r~~---n------------~

' '
: Specifications Configuration space '

'

' ' '
'
'
'
' ' ' '
'
'
'

'

'

Revise specification
(extend design and
post constraints)

Propose parts
and parameters

Component
hierarchy

Expand and , 1 ,
refine ~

solutions t
t

Parameter model

FIGURE 8.22. VT uses a propose-and-refme approach.

i--_r_

Page 43 of 72 FORD 1017

8.3 Case Studies of Configuration Systems 641

Design methods involving such parametric models are sometimes called parametric design.
Collectively, VT's parameters provide an abstract description of a solution.

VT starts with specifications of elevator performance, architectural constraints, and design
drawings. Specifications of elevator performance include such things as the carrying capacity
and the travel speed of the elevator. Architectural constraints include such things as the dimen­
sions of the elevator shaft. VT's task is to select the necessary equipment for the elevator, includ­
ing routine modifications to standard equipment, and to design the elevator layout in the
hoistway. VT's design must meet engineering safety-code and system performance requirements.
VT also calculates building load and generates reports for installing the elevator and having it
approved by regional safety-code authorities. Data for VT come from several documents pro­
vided by regional sales and installation offices. There are documents describing customer
requirements, documents describing the building where the elevator will be installed, and other
design drawings. VT also accepts information about the use of the elevator, such as whether it is
mainly to be used for passengers or freight, the power supply available, the capacity, the speed,
the shaft length, the required width and depth of the platform, and the type and relative location
of the machine.

·• VT's approach involves two separate phases. The first phase is for knowledge acquisition
and analysis. During this phase VT uses a knowledge acquisition tool called SALT to develop a
general plan for solving elevator configuration problems. SALT is not concerned with the specif­
ics of a particular case, but rather with the acquisition and organization of knowledge for the
range of cases that VT needs to solve. The concepts and analyses of SALT are discussed in the
following. The second phase for VT is the solution of particular cases. This is where the propose­
and-refine approach is applied. Roughly, VT follows a predetermined plan using knowledge
organized by SALT to guide its decisions. VT constructs an elevator configuration incrementally
by proposing values for design parameters, identifying constraints on the design parameters, and
revising decisions in response to constraint violations in the proposal.

To explain the operation of VT we begin in the middle of the story, with its parameter net­
work. This network is generated by SALT and used by VT on particular cases. Figure 8.23 gives
an example of part of a parameter network. Each box represents a design parameter. The arrows
show a partial order of inferences in which values of parameters at the tail of an arrow determine
values of parameters at the head of an arrow. Solid arrows indicate how one parameter is used to
compute values for another. Dashed lines indicate cases where values for parameters establish
constraints on values for other parameters. We use this network to establish a vocabulary about
kinds of knowledge used in VT's propose-and-refine approach. Afterward, we consider the anal­
ysis used by SALT to organize such knowledge.

Within a parameter network, knowledge can be expressed in one of three forms: proce­
dures for computing a parameter value, constraints that specify limits on parameter values, and
fixes that specify what to do if a constraint is violated. Figure 8.23 shows some of VT's knowl­
edge for extendiug a configuration by proposing values for parameters. SALT expects to have a
procedure for every parameter. The first rule in Figure 8.24 computes a value for a design param­
eter from other parameters. A rule like this is shown in a parameter network by arrows between
boxes. In Figure 8.23, the rightmost pair of boxes connected by a downward arrow depicts this
relation.

The second rule in Figur~ 8.24 selects a part from the database. Like Ml and XCON, VT
has a database of parts that describes the pieces of equipment and machinery VT configures.

Page 44 of 72 FORD 1017

642

Hoist-cable­
quantity

Hoist-cable­
weight

Machine­
groove­
pressure

Comp-cable­
unit-weight

Comp-cable­
weight

Traction­
ratio

Contributes to

Car­
supplement­

weight

Key

>

8 CONFIGURATION

CWT-to­
platform­
distance

Car-hitch­
to-CWT­

hitch­
distance

Machine­
sheave­
angle

Maximum­
traction­

ratio

Machine­
groove­
model

Maximum­
machine­
groove­
pressure

Constraints ·-------->

Hoist-
cable-

diameter

'W
Machine-
groove-

pressure-
factor

FIGURE 8.23. Segment ofVT's knowledge base showing relations among parameters. Each box repre­
sents one of VT's design parameters. Arrows between the boxes indicate a partial order for detennining
values for parameters. (Adapted from Marcus, 1988, Figure 4-5, page 102.)

There is a table of attributes for each kind of part, such as motors and machine models. The attri­
butes describe functional restrictions, such as the maximum elevator speed or the maximum
load, and other attributes, such as height or weight. Roughly speaking, VT first establishes values
for certain key design parameters and then selects appropriate parts from the database.

Within VT's representational framework, the type of a part is itself just another parameter.
The third rule in Figure 8.24 uses attributes from a database entry about a selected part to set val­
ues for design parameters. The domain for a given design parameter is the set of values obtain­
able from the relevant fields of the parts database.

Besides proposing values for design parameters, VT can post constraints on design values.
Figure 8.25 gives an example of a constraint, expressed both in a tabular form and as a produc­
tion rule. The precondition or conditional part of a constraint determines when the constraint is
applicable, which means when it will be posted. VT uses its constraints to influence values in a
directional way. The constraint in Figure 8.25 constrains a value of the parameter CAR-JAMB-

Page 45 of 72 FORD 1017

8.3 Case Studies of Configuration Systems 643

Computing a value for a parameter
IF: A value has been generated for HOIST-CABLE-DIAMETER, and

there is no value for MACHINE-GROOVE-PRESSURE-FACTOR
THEN: Set MACHINE-GROOVE-PRESSURE-FACTOR to be 2 * HOIST-CABLE-DIAMETER.

Selecting a part from the component database
IF: A value has been generated for SUSPENDED-LOAD. and

THEN:
there is no value for MACHINE-MODEL
Search the database in the MACHINE table and retrieve the value
of the MACHINE-MODEL field for the entry with the SMALLEST WEIGHT
whose field value for MAX-LOAD is greater than the value of the
SUSPENDED-LOAD parameter.

JUSTIFICATION: Taken from Standards Manual IliA. page 139.

Using attributes from a selected part to set other parameters
IF: A value has been generated for MACHINE-MODEL, and

there is no value for MACHINE-SHEAVE-DIAMETER
THEN: Search the database in the MACHINE table and retrieve the value

for MACHINE-SHEAVE-DIAMETER from the value of the SHEAVE-DIAMETER
field in the machine entry whose field value for MODEL is the
same as the value for the MACHINE-MODEL parameter.

FIGURE 8.24. Examples of rules representing knowledge for extending a configuration. All three rules
propose values for parameters. (Adapted with permission from Marcus, Stout, & McDermott, 1988, Fig­
ures 7 and 8, page 100.)

Tabular fonn
constrained value:
constraint type:
constraint name:
PRECONDITION:
PROCEDURE:
FORMULA:
JUST! FICATION:

CAR-JAMB-RETURN
MAXIMUM
MAXIMUM-CAR-JAMB-RETURN
DOOR-OPENING = SIDE
CALCULATION
PANEL-WIDTH * STRINGER-QUANTITY
This procedure is taken from Installation Manual I,
page 12b.

Rulefonn
IF: DOOR-OPENING = SIDE
THEN: CAR-JAMB-RETURN MUST BE <= PANEL~WIDTH * STRINGER-QUANTITY

FIGURE 8.25. An example of a constraint from VT's knowledge base. (From Marcus, 1988, page 88.)

Page 46 of 72 FORD 1017

644 8 c CONFIGURATION

IF: There has been a violation of the MAXIMUM-MACHINE-GROOVE-PRESSURE
constraint

THEN: (1) Try a DOWNGRADE for MACHINE-GROOVE-MODEL. (Level 1 effect:
Causes no problem.)
(2) Alternatively, try an INCREASE BY-STEP of 1 of HOIST-CABLE­
QUANTITY. (Level 4 effect: Changes minor equipment sizing.)

FIGURE 8.26. An example of a rule representing knowledge for selecting a part by performing a search
of the database when enough of the parameters are known. When there is more than one possible fix for a
problem, VT relies on an ordered set of effect levels, trying more drastic fixes only after the less drastic
ones have failed.

RETURN, depending on values of the parameters PANEL-WIDTH and STRINGER-QUAN­
TITY.

Figure 8.26 gives an example of the third form of knowledge used by VT, knowledge for
revising a"configuration after a violation has occurred. In this example, two alternatives are pro­
posed to guide the choice of revisions when the constraint is violated. Constraint violations can
be understood as conflicts over priorities. Viewed in the larger context of the entire elevator sys­
tem, every procedure for proposing parameter values is a myopic best-first search. If the solution
to the overall elevator configuration problem were made up of independent subproblems, then
each parameter subproblem could be solved or optimized separately. Constraint violations corre­
spond to antagonistic interactions between subproblems. To arbitrate in these cases, VT uses a
scale for comparing the effects of changes. VT recognizes several different kinds of effects for
making a change and establishes preferences among them. These effects are summarized in Fig­
ure 8.27. According to this list, the least desirable kind of fix is one that compromises the perfor-

Effect level
1
2
3
4
5
6
7
8
9

10
11

Effect of fix
Causes no problem
Increases maintenance requirements
Makes installation difficult
Changes minor equipment sizing
Violates minor equipment constraint
Changes minor contract specifications
Requires special part design
Changes major equipment sizing
Changes building dimensions
Changes major contract specifications
Compromises system performance

FIGURE 8.27. Categories of effects from making a change in VT. When VT detects that a constraint has
been violated and there are several different possible fixes, it prefers to make fixes with the least drastic
consequences. This list enumerates the kinds of fixes from least drastic to most drastic. Every "fix" rule is
assigned an effect level corresponding to an entry in this list.

Page 47 of 72 FORD 1017

8.3 Case Studies of Configuration Systems 64.5

mance of the elevator system. In weighing the costs of different changes, one-time difficulties in
installation (#3) are considered less costly than ongoing increases in maintenance costs (#11).

To review briefly, VT distinguishes three main forms of knowledge about elevator design:
knowledge for proposing parameter values, knowledge constraining parameter values, and
knowledge about what revisions to make when constraints are violated. We next consider some
of the analyses and considerations that go into VT's organization of such knowledge. The core of
SALT's operation is the analysis and structuring of parameter networks.

Much of SALT's analysis is concerned with checking paths through the network. In the
ideal case, there are unique paths through the network whereby all the elevator system parame­
ters can be computed for any combination of input parameters. In the simplest case, VT would
need only to invoke knowledge for proposing parameter values, without using knowledge for
constraining parameter values or fixing values after constraint violations. The partial ordering
represented by the network would allow VT to compute other parameter values from the given
ones, continuing in a data-driven fashion until the elevator was configured. Such an ideally struc­
tured computation has not proven workable in practice. Analogous to RIME, SALT can be
understood as a structured programming environment for building parameter networks that
approach this ideal. It uses the equivalent of structured programming in the parameter network to
yield behaviors that converge to optimal configurations given a wide range of input parameters.

SALT's analysis includes checking for a number of undesirable patterns in the parameter
network, including ones involving loops. These patterns correspond to such things as race condi­
tions, unreachable paths, and potential deadlocks as described in the following. For example, if
one procedure is applicable for computing motor torque for speeds less than 300 and another is
applicable for speeds greater than 200, then there would be two applicable procedures for the
speed 250. This is a race condition because either procedure could be executed depending on the
order of traversal used by VT's interpreter. Similarly, there might be combinations of conditions
such that no procedure is applicable for some combination of parameters.

A deadlock condition is recognized when there are procedures for computing two parame­
ters such that each procedure requires the value of the other parameter before it can be run. In a
data-driven interpreter, this would result in an infinite delay while each procedure waits for the
other. When it detects the possibility of a deadlock, SALT guides the builder of a knowledge base
in adding procedures that estimate initial parameter values. When this results in multiple proce­
dures proposing a value, SALT guides the user in converting some of the procedures to post con­
straints on values and in adding procedures that propose fixes when there is a conflict. In this
way, SALT incrementally builds revision cycles into the parameter network. These revision
cycles correspond to programming idioms. For example, a revision loop can incrementally
increase the value of a parameter up to some limit. That idiom, implemented in terms of con­
straints and fixes, corresponds in function to an iterative looping construct in procedural pro­
gramming languages.

SALT assumes that the procedures for proposing parameter values correspond to an
underconstrained case reflecting local optimality. Potential fixes should be less preferred
(locally) than the value originally proposed. The default strategy in VT is to try values in a best­
first order. If the fixes for one constraint violation have no effect on other constraint violations,
then this strategy guarantees that the first configuration found will be the most preferred. How­
ever, it is possible that fixes selected for one constraint violation may interact with values for

Page 48 of 72 FORD 1017

646 8 CONFIGURATION

other parameters in the network. A particularly pathological case of feedback between conflict­
ing fixes is called thrashing. Thrashing occurs in scenarios of different complexity. In a simple
scenario, a fix for one parameter value causes a new value to be computed for a second variable,
which then violates a constraint, causing a fix to a third variable, which causes an opposing
change in the first variable, violating the original constraint again. The term thrashing refers to
any persistent looping behavior that results when antagonistic fixes undo and redo a repeating
sequence of changes.

SALT uses syntactic techniques to analyze a parameter network for the possibility of these
behaviors. A detailed consideration of SALT's syntactic analysis methods and the expressive
power of the language is beyond the scope of this section. The tests built into SALT are intended
to detect common errors of omission by builders of a VT knowledge base.

Given a SALT-created network, VT works on a particular case as follows. It starts with a
forward-chaining or data-driven phase in which procedures extend the configuration by propos­
ing parameter values. As it extends the design, VT records which parameter values were used to
derive other ones using a truth maintenance system (TMS). Constraint violations are detected by
demons, which invoke procedures to revise the network. The fix procedures then propose
changes to values of individual parameters or to combinations of parameters.

The effects of the proposed change are investigated with limited look-ahead as follows.
First VT verifies that the revised value violates no constraints on the changed parameter. Then it
works through the consequences, verifying that there are no antagonistic changes to the proposed
fix using a TMS. If a proposed change violates constraints, then the next alternative fix is consid­
ered. The TMS keeps track of combinations of revisions it has tried so as not to repeat any. This
process is a due-process approach. The prioritized list of effects in Figure 8.27 guides backtrack­
ing to approximate a best-first search.

From a network perspective like that in Figure 8.23, many kinds of interactions in the
search space can be visualized. The most common interaction among design parameters in VT is
a rippling effect that follows when a constraint violation causes one piece of equipment to be
upgraded, or increased in size. In this case, other pieces of related equipment may be affected
and upgraded as well. Depending on circumstances, the initial fix may trigger a sequence of
changes. For example, requiring more hoist cables than fit on the machine model selected may
result ultimately in selecting a larger machine model and using larger sheaves.

The 1988 version of VT recognized 54 different kinds of constraint violations, of which 37
had only one known fix, meaning one parameter that might be revised. The remaining constraint
violations also had a small number of fixes. Each possible fix provides directions of where to
look next in VT's search for solutions. On an average case, however, VT needs to consider only a
small number of fixes. In a typical run, VT makes between 1,000 and 2,000 design extensions
and only about one-hundredth as many fixes to a design. In a typical case, VT detects 10 or 20
constraint violations and averages just slightly more than 1 fix per violation.

In summary, VT constructs an approximation to a solution and then refines it. VT's knowl­
edge base is made up predominantly of three kinds of knowledge: knowledge for proposing
design extensions, knowledge for posting constraints, and knowledge for revising the configura­
tion when constraint violations are detected. VT's rules are applied in a data-driven fashion with
limited look-ahead. VT's performance using this approach depends on the prior analysis by
SALT, which identifies undesirable patterns and missing information in the network. In represen­
tative runs, VT detects very few constraint violations, and the first fix tried almost always works.

Page 49 of 72 FORD 1017

8.3 Case Studies of Configuration Systems 641

rM~---

'
' ' '
'
'

'

'
'
'

Specifications

Specification to
structure matching
(key components)

AdditiOnal ~
specifications

(constraint posting)

Configuration space

t
t Solution
t refinement

t

Functional hierarchy
(key components)

FIGURE 8.28. COSSACK begins with user specifications, in terms of evaluation criteria and functional
specifications. The evaluation criteria are used to order candidates in component selection. Functionality
specifications are represented using a key-component approach, where key components may be either
hardware or software components.

8.3.5 Configuration in COSSACK

COSSACK (Mittal & Frayman, 1989) is a knowledge system for configuring personal comput­
ers that was developed at Xerox Corporation. Because Xerox stopped selling personal computers
shortly after COSSACK became operational, the system never received substantial field testing.
However, COSSACK is an interesting system from a technical point of view especially in its use
of a partial-choice strategy.

Like the other computer configuration systems we have considered so far, COSSACK's
process starts with customer requirements. These include evaluation criteria, such as minimum
cost, expandability, early delivery requirements, and functionality requirements. COSSACK per­
forms a best-first search, using the evaluation criteria to order candidates during component
selection. Figure 8.28 shows the elements involved in COSSACK's search. Specifications are
mapped onto abstract solutions. Abstract solutions are incrementally refined, making choices
about component selection and arrangement.

COSSACK uses key components to express functionality specifications. It creates require­
ments in terms of specific components, such as an "Epson-LX80 printer," and also in terms
of abstract component descriptions, such as a "letter-quality printer." Figure 8.29 presents a por­
tion of COSSACKS's functional hierarchy. In this class hierarchy, each node represents a sub-

Page 50 of 72 FORD 1017

648

Processor Memory
External

Hardware
component

8

Display

CONFIGURATION

Data entry
device

/\
General­
purpose

Special­
purpose

Floppy Rigid Tape
drive disk drive

Color
display

Monochrome
display

Pointing
device

Keyboard

~

Floating­
point processor

Printing
device

~ drive ~
~

Communications Board

~ ~

~ I A
Modem Motherboard Extension

board Daisy
wheel
printer

~

Dot Laser
matrix printer

printer ~

~

~

External storage
interface board

Memory
board

Asynchronous
communications

clock board

Extension
board
slot

Display
controller

board

~

~

Connector

~
External
storage

slot

Port Cable

~

Serial Parallel Keyboard
port port port

FIGURE 8.29. Portion of the functional hierarchy for components in COSSACK. Any component below
the root can be a key component. COSSACK also considers software components in its configuration and
has classes for word processors, accounting programs, spreadsheets, and operating systems.

class of its parent node. Any node lower than hardware component, the root, can be used to
express a key component. Besides the classes of hardware components shown, COSSACK rep­
resents software components as well. In January 1987, COSSACK represented a total of 65
different hardware components and 24 different software components.

As in other configuration tasks, specifying a key component often leads to requirements
for other components. COSSACK distinguishes two main relations for this, subcomponent and
required component. The subcomponent relation indicates that other components are
always included with the key component. This can reflect a manufacturing decision, as when
multiple components are assembled as part of the same board. For example, the manufacturing

Page 51 of 72 FORD 1017

8.3 Case Studies of Configuration Systems 649

4045 Laser Printer

Class: PrintingDevice

Functional specifications
Printing technology: Laser
Printing speed: 8,000 cps
Print quality: Letter
Graphics capability: Yes

Subcomponents
Font packages: (Modem-10,

Required components
Printer driver:

??? constraint: Constraint 23
Printer cable:

??? constraint: Constraint 44

Constraint 23

Description: Constraint on printer driver for 4045 printer
Component type: PrinterDriver
Constraint expression: (Compatible-with 4045SLaserPrinter)
Number of components needed: 1
Optional constraint: No
Requested use: Shared

Constraint 44

Description: Constraint on cable for 4045 printer
Component type: PrinterCable
Constraint expression: (OR(Cable type: 36/25length: 10 feet)

(Cable type: 36/251ength: 25 feet))
Number of components needed: 1
Optional constraint: No
Requested use: Exclusive

FIGURE 8.30. Frame representation of a component in COSSACK's functional hierarchy. This frame
represents a 4045laser printer. Frame slots are organized into groups: functional specifications, sub­
components, required components, and processing information. The functional specifications are used
when matching this description against specifications using key words. Slots in subcomponents refer to
other parts, both hardware and software, that are included or bundled with this component. The required­
component slots describe other components, not bundled with this one, that are needed for correct opera­
tion. Constraints associated with thos~ slots are used to narrow the choices.

group may package a clock, memory, and modern on one multifunctional board. Parts can also be
bundled for marketing reasons. The required component relation indicates that other parts
are necessary for the correct functioning of a part. As with XCON and Ml, this indicates a range
of requirements for auxiliary parts and cables. Required component relations are also useful
for software components. For example, these relations can indicate how much memory or exter­
nal storage capacity a particular software package needs to run.

Figure 8.30 gives an example of a frame representation of a component from COSSACK's
knowledge base. The key component in this case is a 4045laser printer. The slots grouped under
"Functional specifications" are used for matching. For example, this printer would satisfy a spec­
ification for a letter-quality printer. The subcomponents include various other parts that are nec­
essarily included. This example shows that various font packages are routinely bundled with a
printer purchase.

Required components for the 4045 printer include a software driver for the printer and a
cable. Like VT, COSSACK posts constraints to guide future decisions. In Figure 8.30 Constraint
23 indicates that any driver can be used that is compatible with the 4045 printer. Constraint 44
indicates that the cable must be of type 36/25 and can have a length of either 10 or 25 feet.

The two constraints in this figure illustrate a representational issue not dealt with in the
previous configuration systems that we considered: the reuse or sharability of components across

Page 52 of 72 FORD 1017

650 8 CON FIGURATION

different requirements. When one component description presents a requirement for another
component, can the second component be used to satisfy any other requirements? In Figure 8.30,
the software module for the printer driver can be shared, meaning that, in principle, the driver
can be used for other components as well, such as when a configuration includes multiple print­
ers. Similar issues come up for required components for hardware. For example, can a modem
and a printer use the same RS232 port? In contrast, constraint 44 indicates that the printer cable
cannot be shared. It must be dedicated to the exclusive use of one printer.

Like VT, COSSACK does not organize its design subtasks in a fixed order for all sub­
problems. Also like VT, it has knowledge for extending a design by making choices and for post­
ing constraints. COSSACK is able to retract component decisions, revisit preference..:guided
choices, and remove constraints that were posted as requirements when the retracted components
were originally selected. Unlike VT, COSSACK does not use domain-specific knowledge for
modifying a configuration when constraint violations are detected, but rather employs a blind
search.

COSSACK uses a partial-commitment strategy to reduce backtracking. Figure 8.31 shows
a simplified example of a case where partial commitment makes guessing and backtracking
unnecessacy. In this example, both the operating system and an accounting package are specified
as key components. Neither component has any immediate constraints bearing on the other. We
assume that no other preferences are known to guide the choice. At this point, a simple generate­
and-test approach could arbitrarily select candidates for either one. Suppose it arbitrarily selected
Accounting Package #1 and OS Version B. Then later, when it expanded the required compo­
nents for Acounting Package #1, it would pick a rigid disk drive and discover that none of the
satisfactory disk drives are compatible with OS Version B, leading to backtracking. The partial­
choice approach enables it to generalize the requirements held in common by Accounting Pack­
age #1 and Accounting Package #2. This would result in the generation of a constraint specifying
that whatever rigid disk was chosen, its operating system must be OS Version A.

Arrangement issues in COSSACK are not as complex as in XCON and are represented
using constraints on a port-and-connector model. The main arrangement conflict is that personal
computers have a limited number of slots. Components consume both slots and ports.

In summary, COSSACK is a knowledge-based system for configuring personal computers.
It uses a key-component model for functionality, a preference model for selecting components in
a best-first search, constraint posting to add specifications for related decisions, and partial com­
mitment to reduce backtracking. It relaxes the notion that required components need to be dedi­
cated to a single use by representing "sharable" components.

8.3.6 Summary and Review

A configuration is an arrangement of parts. A configuration task instantiates a combination of
parts from a predefined set and arranges them to satisfy given specifications. The large size of
configuration search spaces precludes pre-enumeration of complete solutions. Knowledge-based
systems for configuration are important to manufacturers that customize their products for indi­
vidual customers by configuring customer-specific systems from a catalog of mass-produced
parts.

XCON is a well-known knowledge system for configuring computer systems at Digital
Equipment Company. Together with its companion program, XSEL, XCON tests the correctness

Page 53 of 72 FORD 1017

8.3 Case Studies of Configuration Systems 651

Key
components

' : Choice of accounting package

Accounting Package #1

Constraint 10
Class: SoftwareApplicationPackage

Component type: RigidDiskDrive
Required components /' Constraint expression: (Min-capacity 10 megabytes)
External storage: L__ ________________ __j

??? constraint: Constraint 10

Accounting Package #2

Constraint 12
Class: SoftwareApplicationPackage

Component type: RigidDiskDrive
Required components /' Constraint expression: (Min-capacity 10 megabytes)
External storage: L__ ________________ __j

??? constraint: Constraint 12

Choice of operating system

OS Version A

Class: OperatingSystem

Choice of disk drive

Rigid Disk Drive #1

Class: DiskDrive
Capacity: 15 megabytes

Required components
Operating system: OS Version A

OS Version B

Class: OperatingSystem

Rigid Disk Drive #2

Class: DiskDrive
Capacity: 20 megabytes

Required components
Operating system: OS Version A

FIGURE 8.31. Simplified partial commitment example from COSSACK. In this example, we assume
that an accounting package and an operating system have been specified as key components. COSSACK
notices that whatever rigid disk drive it chooses, the required operating system is OS Version A.

of configurations and completes orders for computers. Like all configuration systems, XCON
relies on a component database and a body of rules that describes what combinations of parts
work correctly together and how they should be arranged. The challenge of maintaining a large

· database about parts and a body of rules about their interactions has led to the development of a
programming methodology for XCON called RIME. RIME organizes configuration knowledge
in terms of small recurring subtasks such as selecting a device, selecting a container for a compo­
nent, and selecting a location within a container to place a component. To a first approximation,
these subtasks are local, explicit, and separate processes. To represent knowledge about the inter­
actions among these subtasks, RIME organizes the subtask descriptions as a sequence of explicit

Page 54 of 72 FORD 1017

652 8 CONFIGURATION

stages that look ahead for interactions in the situation and select a best choice for part selection
or arrangement before executing that choice.

Ml is an experimental knowledge system that configures single-board computers given a
high-level specification of board functions and other design constraints. Ml represents compo­
nents in a functional hierarchy. Like XCON, Ml relies on the use of key components to specify
system function. It selects abstract parts and then instantiates them. Spatial layout is carried out
by commercial programs for layout and wire routing.

In MYCIN, a therapy is a selected combination of drugs used to treat a patient for infec­
tious diseases. This example shows that configuration can be used as a model for a task not
involving manufacturing. The heuristic classification model that MYCIN uses for diagnosis is
inadequate for characterizing therapy because the number of possible solutions based on combi­
nations of drugs to cover combinations of diseases is too large to pre-enumerate. MYCIN's con­
figuration model separates consideration of local factors, such as the sensitivity of the organisms
to different drugs, from global factors that deal with the entire recommendation, such as mini­
mizing the number of drugs.

VT is a knowledge system that configures elevator systems at the Westinghouse Elevator
Company. Interwoven with VT's model of parts is a parametric model of elevator systems. VT's
approach involves separate phases for knowledge acquisition and analysis and for solving partic­
ular cases. The analysis phase includes checking for race conditions, unreachable paths, and
potential deadlocks. The case phase uses data-driven procedures to extend the configuration by
proposing parameter values. VT's knowledge is organized within a parameter network in one of
three forms: procedures for computing a parameter value, constraints that specify limits on
parameter values, and fixes that specify what to do if a constraint is violated. Analogous to
RIME, VT's analysis and knowledge acquisition facility can be viewed as a structured program­
ming environment for building parameter networks.

COSSACK is a knowledge system for configuring personal computers. It begins with user
specifications, in terms of evaluation criteria and functional specifications. The evaluation cri­
teria are used to order candidates in component selection. Functionality specifications are repre­
sented in terms of key components. In describing how components require each other, COS­
SACK distinguishes between subcomponents that are always included and ones that must be
added. COSSACK also distinguishes between different ways that components may be shared to
satisfy multiple requirements. COSSACK uses a partial-commitment strategy.

Challenges in configuration tasks arise from the size of the search spaces and the complex­
ity of individual solutions. Most configuration systems build descriptions of solutions incremen­
tally. However, the acceptability of a configuration depends not only on local considerations.
Following the threshold effect and horizon effect, interactions can propagate and be far-reaching.
The next section considers how different computational methods used in these cases try to cope
with these effects.

Exercises for Section 8.3
Ex. 1 [05] Prefigured Configurations. Professor Digit argues that very few of the possible VAX

computer configurations are actually ever built. By his own estimate, no more than 1 in
1,000 of the configurations that are possible for VAXes will ever be ordered. He believes
that all the effort in building knowledge-based configuration programs like XCON is

Page 55 of 72 FORD 1017

8.3 Case Studies of Configuration Systems 653

Ex.2

unnecessary. He recommends instead that a table recording all actual configurations be
kept and used to avoid refiguring them. This table would contain the input/output pairs
from the history of configuration. It would show what configuration was used for every
VAX system that has been ordered. The first column of the table would contain the specifi­
cations and the second column would describe the configuration.
(a) Briefly discuss the merits of Professor Digit's proposal. Is a reduction by a factor of
1,000 enough to make the table size manageable?
(b) Discuss advantages for building a knowledge-based configuration system· over a
"table system" even in cases where the determination of configurations is not computation­
ally challenging.

[10] Due Process in Configuration Problems. Several of the descriptions of the configura­
tion systems mentioned optimization and best-first search.
(a) Which of the configuration systems discussed in this section perform exhaustive
searches for solutions?
(b) Briefly explain the meaning of the term due-process search in the context of configu­
ration problems, relating it to ideas for best-first search and optimization as discussed in
this section. What are the implications of a high rate of turnover of knowledge in configu­
ration domains?

Ex. 3 [05] "Parts Is Parts." This exercise considers limitations of a simple port-and-connector
model for configuration as shown in Figure 8.32.

Configuration-!

Part-1

Part-1-1 Part-1-2

Part-1-1-1 Part-1-1-3

~A BL
.-- A A A

,... ..
·r ...

B
Part-1-1-2

YA
BL r----11 B r

B '----

A B
A,.

·~ ·~ I ...

Part-2 II
A B..,

11 Part-2-1 Part-2-2 B~'"" ..
A c.

B""" .. A B--
I

.. ,... - .. -D

FIGURE 8.32. Ports and connectors.

Page 56 of 72 FORD 1017

654

Ill

8 CONFIGURATION

(a) How many top-level parts are there in configuration-!? How many detailed parts are
shown?
(b) Why is there a difference between subparts and required parts in configuration prob­
lems?
(c) Are cables parts? A port-and-connector model represents cables as mere connections
between ports. Briefly, what are some of the practical issues in representing cables as
parts? How could a port-and-connector model be augmented to accommodate this?

Ex. 4 [05] Key Components. The key-component approach is the technique of representing the
functionality of a configuration in terms of essential components or abstract components in
a partial configuration.

Ex.S

(a) Briefly, what representational issues does this approach seek to side-step?
(b) What is an advantage of this for the user interface in systems like XCON?
(c) Does the configuration model for therapy in MYCIN use a key-component approach?

[!-10] Thrashing in Antagonistic Subproblems. Thrashing occurs in VTwhen fixes for con­
straint violations of one parameter lead to constraint violations of another parameter,
whose fixes lead ultimately to further violations of the first parameter.

Here is an example of thrashing behavior for the parameter network in Figure 8.33:
VT derives a value for machine-groove-pressure and maximum-machine-groove-pressure
and finds that machine-groove-pressure is greater than the maximum. This triggers a fix
that decreases car-supplement-weight. This decreases car-weight, which in tum decreases
suspended-load. This decreases machine-groove-pressure, the desired effect, but also
increases traction-ratio. An increase in traction-ratio makes it more likely for it to exceed
its maximum. A violation of maximum-traction-ratio leads to the fix of increasing comp­
cable-unit-weight, which in tum increases comp-cable-weight, cable-weight, and sus­
pended-load. Increasing suspended-load increases machine-groove-pressure. Thrashing
occurs if this scenario repeats.
(a) Annotate Figure 8.33 with directed arcs to show the operation of the fix operations to
revise parameter values. Also annotate it with + and - to show the subsequent increases
and decreases in parameter values.
(b) An antagonistic interaction is one where there are simultaneous contributions from
different arcs in opposite directions to change the value of a parameter. At which nodes in
the thrashing scenario are there antagonistic interactions? Briefly, what measures can be
taken in systems like VT to deal with such interactions?

Ex. 6 [1 0] Structured Programming Methodologies for Configuration Knowledge. Several of the
configuration projects discussed in this section have needed to face the classical knowl­
edge engineering issue of providing support for acquiring, organizing, and maintaining a
large knowledge base. In two of the cases that were described (XCONIRIME and
VT/SALT), special languages or subsystems were developed for this. This exercise briefly
compares the approaches taken for RIME and SALT.
(a) Both XCON and VT build descriptions of solutions incrementally. How is this
reflected in the forms of knowledge that they expect?
(b) What is the distinction between local and global interactions in configuration prob­
lems? Why is this distinction important?
(c) Briefly compare propose-and-apply with propose-and-revise.

Ex. 7 [10] Configuration Grammars. Professor Digit says the knowledge representations used in
configuration systems are excessively ad hoc. In particular, he advocates developing gram-

Page 57 of 72 FORD 1017

8.3 Case Studies of Configuration Systems 655

Hoist-cable­
quantity

Comp-cable­
unit-weight

CWT-to­
platform­
distance

Hoist-cable­
weight

Comp-cable­
weight

Suspended­
loads

Car­
weight

Traction­
ratio

Car­
supplement­

weight

Car-hitch­
to-CWT­

hitch­
distance

Machine­
sheave­
angle

Machine­
groove­
model

groove­
pressure

Maximum­
traction­

ratio

Maximum­
machine­
groove­
pressure

Key

Contributes to) Constrains ·--- -----;>

FIGURE 8.33. Interactions between antagonistic subproblems. (Adapted from Marcus & McDermott,
1989, Figure 5, page 18.)

Ex.8

mars for describing valid configurations analogous to those used for describing valid sen­
tences in computer languages. He argues that standard algorithms from the parsing litera­
ture could then be used to carry out configuration tasks.
(a) Briefly list some of the kinds of domain knowledge needed for configuration tasks.
What are some of the main problems with Professor Digit's proposal for using grammars to
represent this knowledge?
(b) Is configuration essentially a parsing task? Explain briefly.

[05] Levels of Description. Professor Digit can't decide whether XCON, the well-known
rule-based computer configuration program, reasons forward or backward. On the one
hand, the production rules used by XCON are interpreted by forward chaining. On the
other hand, he has seen XCON described as working backward by setting up subproblems.
Briefly, how can the apparent terminological confusion be resolved? Are either of these
characterizations useful in understanding the main computational phenomena that arise in
XCON's configuration task?

Page 58 of 72 FORD 1017

656 8 CONFIGURATION

8.4 Methods for Configuration Problems
In the preceding sections we considered example knowledge systems for configuration tasks and
developed a computational model to compare and analyze configuration domains. This section
revisits our model of configuration to discuss knowledge-level and symbol-level analysis and
then presents sketches of methods for configuration. Our goal in this section is not to develop an
"ultimate" configuration approach, but rather to show how variations in the requirements of con­
figuration tasks can be accommodated by changes in knowledge and method.

As in the case of classification tasks, most of the complexity in configuration tasks is in the
domain-specific knowledge rather than in the search methods. Furthermore, most of the remain­
ing complexity in the methods is in implementations of general search techniques. In this section
the methods are stripped down to basics so we can see the assumptions they depend on in the
configuration domain.

8.4.1 Knowledge-Level and Symbol-Level Analysis
of Configuration Domains

Knowledge ahout configuration is used by the submodels of our model. We begin our knowl­
edge-level analysis by considering variations in the knowledge from the domains of our case
studies. The submodels define major categories of knowledge for configuration in terms of its
content, form, and use.

The Parts Submodel: Knowledge about Function and Structure
The parts submodel contains representations and knowledge about what the available parts are,
what specifications they satisfy, and what requirements they have to carry out their functions.
The simplest parts submodel is a catalog, which is a predetermined set of fixed parts. However,
in most configuration domains the set of parts includes abstractions of them, organized in an
abstract component hierarchy also called a functional hierarchy. Such hierarchies are used in
mapping from initial specifications to partial configurations and in mapping from partial config­
urations to additional required parts. In most configuration domains these hierarchies represent
functional groupings, where branches in the hierarchy correspond to specializations of function.
In the last section we saw several examples of functional hierarchies in the computer configura­
tion applications for XCON, Ml, and COSSACK.

At the knowledge level an abstraction hierarchy guides problem solving, usually from the
abstract to the specific. At the symbol level a parts hierarachy can be implemented as an index
into the database of parts. There are several other relations on parts that are useful for indexing
the database.

The determination of required parts is a major inference cycle in configuration. This pro­
cess expands the set of selected parts and consumes global resources. The required-parts rela­
tion indicates what additional parts are required to enable a component to perform its role in a
configuration. For example, a disk drive requires a disk controller and a power supply. These
parts, in turn, may require others. These relations correspond to further requirements, not to spe­
cializations of function. In contrast, power supplies are required parts for many components with
widely varying functions. Power supplies perform the same function without regard to the func­
tion of the components they serve.

Page 59 of 72 FORD 1017

8.4 Methods for Configuration Problems 657

We say that parts are bundled when they are necessarily selected together as a group.
Often parts are bundled because they are manufactured as a unit. Sometimes parts are manufac­
tured together because they are required together to support a common function. For example, a
set of computer clocks may be made more economically by sharing parts. In other cases parts are
made together for marketing reasons. Similarly, bundling components may reduce requirements
for some resource. For example, communication and printing interfaces may be manufactured on
a single board to save slots.

In some domains, parts are bundled because they are logically or stylistically used
together. In configuring kitchen cabinets, the style of knobs and hinges across all cabinets is usu­
ally determined by a single choice. Parts can also be bundled for reasons not related to function
or structure. For example, a marketing group may dictate a sales policy that certain parts are
always sold together.

Some part submodels distinguish special categories of "spanning" or "dummy" parts.
Examples of spanning parts from the domain of kitchen cabinets are the space fillers used in
places where modular cabinets do not exactly fit the dimensions of a room. Examples of filler
parts from computer systems are the conductor boards and bus terminators that are needed to
compensate electrical loads when some common component is not used. Examples from config­
uring automobiles include the cover plates to fill dashboard holes where optional instruments
were not ordered. Dummy and filler parts are often added at the end of a configuration process to
satisfy modest integrity requirements.

Another variation is to admit parameterized parts, which are parts whose features are deter­
mined by the given values of parameters. A modular kitchen cabinet is an example of a parame­
terized part. Parameters for the cabinet could include the choice of kind of wood (cherry, maple,
oak, or alder), the choice of finish (natural, red, golden, or laminate), and the choice of dimen­
sions (any multiple of 3 inches from 9 inches to 27 inches).

Finally, parameterization can be used to describe properties of parts and subsystems, as in
the VT system. Global properties of a configuration such as power requirements, weight, and
cost are usually treated as parameters because they depend on wide-ranging decisions. In the VT
system, essentially all the selectable features of the elevator system and many intermediate prop­
erties are represented in terms of parameters.

The Arrangement Submodel: Knowledge about Structure
and Placement
The arrangement submodel expresses connectivity and spatial requirements. There are many
variations in the requirements for arrangement submodels. Some configuration domains do not
require complex spatial reasoning. For example, VT's elevator configurations all use minor vari­
ations of a single template for vertical transport systems. Ml uses a port-and-connector model
for logical connections but its configurations are spatially uncommitted. Spatial arrangement of
antibiotics is not relevant for MYCIN therapy recommendations.

Arrangements do not always require distance metrics or spatial models. In configuring the
simplest personal computers, the slots that are used for different optional parts are referenced and
accounted for by discrete names or indexes. A configuration task need only keep track of which
slots are used without bothering about where they are.

Figure 8.34 illustrates several examples of specialized arrangement models. The simplest
of these is the port-and-connector model. This model was used in the Ml and COSSACK appli-

Page 60 of 72 FORD 1017

658 8 CONFIGURATION

Port-and-connector model Linear-placement model

Part-1

Part-1 I Part-21 Part-3 Part-4

' '
~--~---
' ' : Ordered-slot model : Packed-box model
' ' ' '

Par~

'

' --

FIGURE 8.34. Alternative models of arrangement for configuration problems. Different arrangement
models lend themselves to different resource allocation strategies.

cations discussed earlier. In this model, ports are defined for all the configurable parts. Ports have
types so that different kinds of ports have different properties. Ports are resources than can be
assigned to at most one connector. COSSACK implemented a port-and-connector model in a
frame language, combining its use for specifying the arrangement of parts with indexing on con­
straints that specified what parts were compatible or required. The linear-placement model orga­
nizes parts in a sequence. A specialization of this model was used in XCON for specifying the
order of electrical connections on a computer bus. In that application, roughly speaking, it is
desirable to locate parts with a high interrupt priority or a high data rate nearer the front of the
bus. Location on the bus was a resource that was consumed as parts were arranged. The ordered­
slot model combines a linear ordering with a spatial requirement. In the version in Figure 8.34,
parts are ordered along a bus, starting with Part-1 and ending with Part-4. Parts in the first row
can be up to two units deep, and parts in the second row can be only one unit deep. In this exam­
ple, both space and sequence are resources that get consumed as parts are arranged. The packed­
box model emphasizes the efficient packing of parts. In this model, space is a consumable

Page 61 of 72 FORD 1017

1-----:.--

8.4 Methods for Configuration Problems

Part-1

Part-2

Part-3

Part-4

Part-S

Part-6

Eart-7

Part-8

Cabinet space

Box-1

Box-2

......................................
U B B B B B BUB DB B B B U aU B B II BUB B B B B BUB B B B B BUB B
11 a • a a a a a a • a a

Side view

659

Panel space

Panel for Part -1

Panel for Part-7

Front view

FIGURE 8.35. Another variation on models of arrangement for configuration problems. In this model,
parts are arranged in boxes and boxes are arranged in cabinets. In addition, some parts require control pan­
els and there is a limited amount of panel space. Panels for parts must be located on the cabinet that con­
tains the parts. In this model, space in boxes, space in cabinets, and space for panels are all resources con­
sumed during configuration. Because of the connections between parts and panels, the resource allocation
processes are interdependent.

resource. Constraints on packing may also include requirements about certain parts being adja­
cent to one another.

All the variations in Figure 8.34 represent physical containment. Physical-containment
relations form a hierarchy whose branches indicate which parts are physically contained in oth­
ers. For example, a cabinet may contain a circuit board, which in tum may contain a processor
and some memory. Contained parts do not necessarily carry out specializations of their
container's function, nor are they necessarily required parts for their container.

COSSACK uses a port-and-connector model to account for the use of slots. It also keeps
track of memory resources. XCON's arrangement models are the most complex in our example
systems. Figure 8.35 illustrates another complication in arrangement models. In this example,
there are three interlinked tasks in arrangement: the location of boards inside boxes, the location
of boxes inside cabinets, and the location of panels on the front of cabinets. The tasks are inter­
linked because the control panels for particular boards need to be located on the cabinet contain­
ing the corresponding boards.

XCON also admits complex arrangement conditions and interactions with nonspatial
resources. For example, a rule for allocating slots inside boxes says: "a box can accommodate

Page 62 of 72 FORD 1017

~~:--:__ -

660 8 CONFIGURATION

five 4-slot backplanes; the exception is that a 9-slot backplane may not occupy the space
reserved for the second and third 4-slot backplanes." This example combines electrical require­
ments with space allocation.

Knowledge about Decision Ordering and Interactions
The difficulty of configuration problems arises from a three-horned dilemma, where the three
horns are combinatorics, horizon effects, and threshold effects. The combinatoric difficulty is
that the number of possible configurations increases multiplicatively with the number of parts
and arrangements. In the configuration domains discussed in this chapter, there are far too many
possible configurations to instantiate them all in complete detail. Most decisions need to be made
on the basis of partial information about the possible configurations. This is where the horizon
effect comes in. At each stage of reasoning, some interactions are not yet visible either because
not enough inferences have been made or because not enough commitments have been made.
When information is partial, a natural approach is to rely on estimates. This is where the thresh­
old effect comes in. A small difference in specifications or descriptions can lead to large, wide­
spread changes. Because of their approximate nature, estimation functions can be off by small
amounts. If these small errors are near critical thresholds, then the estimates may not be trust­
worthy.

To reiterate the argument in short form, there are too many configurations to develop them
in detail. Making choices on the basis of partial information is subject to horizon effects. Esti­
mates at the horizon based on partical information are subject to threshold effects.

The approaches that we consider for coping with these effects assume that there are pre­
dictable or typical patterns of interaction and that knowledge about these patterns is available.
The following discussion is concerned with the dimensions of these patterns.

The first horn of the dilemma, combinatorics, is dealt with by two major techniques:
abstraction and decision ordering. Thus, the use of functional abstractions in reasoning about
configuration amounts to hierarchical search and has the usual beneficial effects. Controlling the
order of decisions can reduce the amount of backtracking in search. In the context of configura­
tion, knowledge-level justifications of decision ordering complement the symbol-level graph
analyses. In XCON and VT, the reduction of backtracking is characterized in terms of dependent
and independent decisions, where each decision is carried out only after completing other deci­
sions on which it depends.

For example, XCON defers cabling decisions to its last subtask. Three assumptions ratio­
nalize this late placement of cabling decisions. The first assumption is that for any configuration,
cabling is always possible between two components. This assumption ensures that the configura­
tion process will not fail catastrophically due to an inability to run a cable. The second assump­
tion is that all cables work satisfactorily, for any configuration. Thus, a computer system will
work correctly no matter how long the cables are. The third assumption is that cable costs do not
matter. Cable costs are so low when compared with active components that they will not influ­
ence an overall cost significantly. As long as these assumptions hold, XCON would never need
to backtrack (even if it could!) from a cable decision and there is no need to consider cable issues
any earlier in XCON's process. If there were some special cases where cables beyond a certain
length were unavailable or would prevent system operations, a fix in terms of other component
choices or arrangements would need to be determined and XCON would be augmented with
look-ahead rules to anticipate that case.

Page 63 of 72 FORD 1017

8.4 Methods for Configuration Problems 661

Much of the point of the SALT analysis in the elevator domain is to identify patterns of
interactions. VT's data-driven approach is a least-commitment approach and is analogous to con­
straint satisfaction methods that reason about which variable to assign values to next. Least com­
mitment precludes guessing on some decisions when refinements on other decisions can be made
without new commitments. Deadlock loops correspond to situations where no decision would be
made. To handle cases where decisions are inherently intertwined so there is no ordering based
on linear dependencies, SALT introduces reasoning loops in the parameter network that search
through local preferences toward a global optimum.

The partial-commitment approach extends least commitment by abstracting what is com­
mon to the set of remaining alternatives and then using that abstraction to constrain other deci­
sions. VT narrows values on some parameters, sometimes on independent grounds, so that com­
ponents are partially specified at various stages of the configuration process.

In VT, such reasoning can amount to partial commitment to the extent that further infer­
ences are drawn as the descriptions are narrowed.

All efforts to cope with the combinatorics of configuration encounter horizon effects.
Since uniform farsightedness is too expensive, an alternative is to have limited but very focused
farsightedness. Domain knowledge is used to anticipate and identify certain key interactions,
which require a deeper analysis than is usual. This approach is used in XCON, when it employs
its look-ahead rules to anticipate possible future decisions. The required conditions for look­
ahead can be very complex. In XCON, heuristics are available for information gathering that can
tell approximately whether particular commitments are feasible. The heuristics make look-ahead
less expensive.

Finally, we come to techniques for coping with the threshold effect. The issue is not just
that there are thresholds, but rather that the factors contributing to the threshold variables are
widely distributed. Sometimes this distribution can be controlled by bringing together all the
decisions that contribute. This helps to avoid later surprises. Knowledge about thresholds and
contributing decisions can be used in guiding the ordering of decisions. In general, however,
there is no single order that clusters all related decisions. One approach is to anticipate thresholds
with estimators and to make conservative judgments. For example, one could anticipate the need
for a larger cabinet. This conservative approach works against optimization. In XCON, many of
the constraints whose satisfaction cannot be anticipated are soft. This means that although there
may be violations, the softness of the constraints reduces the bad consequences. Thus, the extra
part may require adding a cabinet, but at least it is possible to add new cabinets.

In summary, domain knowledge is the key to coping with the complexity of configuration.
Knowledge about abstractions makes it possible to search hierarchically .. Knowledge about key
interactions makes it possible to focus the computations for look-ahead to specific points beyond
the horizon. Knowledge about soft constraints reduces the effects of threshold violations.

8.4.2 MCF-1: Expand and Arrange

In this section and the following, we consider methods for configuration. In principle, we could
begin with a method based on a simple generate-and-test approach. By now, however, it should
be clear how to write such a method and also why it would be of little practical value. We begin
with a slightly more complex method.

Page 64 of 72 FORD 1017

662 8 CONFIGURATION

Figure 8.36 presents an extremely simple method for configuration, called MCF-1. MCF-1
acquires its specifications in terms of key components, expands the configuration to include all
required parts, and then arranges the parts. Although this method is very simple it is also appro­
priate for some domains. MCF-1 is M1's method, albeit in skeletal form and leaving out the sec­
ondary cycle for reliability analysis and revision. It is practical for those applications where the
selection decisions do not depend on the arrangement decisions.

MCF-1 has independent auxiliary methods get-requirements, get-best-parts, and arrange­
parts. The auxiliary method get-requirements returns all the requirements for a part and returns
the initial set of requirements given the token initial-specifications. Given a set of requirements,
there may be different alternative candidate sets of parts for meeting a requirement. The method
get-best-parts considers the candidate sets of new parts and employs a domain-specific evalua­
tion function to select the best ones. Finally, given a list of parts, the method arrange-parts deter­
mines their best arrangement. A recursive subroutine, add-required-parts, adds all the parts
required by a component.

MCF-1 relies on several properties of its configuration domain as follows:

Specifications can be expressed in terms of a list of key components.
There is a domain-specific evaluation function for choosing the best parts to meet require­
ments.
Satisfactory part arrangements are always possible, given a set of components.
Parts are not shared. Each requirement is filled using unique parts.

The first assumption is quite common in configuration tasks and has little bearing on the method.
The second assumption says there is a way to select required parts without backtracking. An
evaluation function is called from inside get-best-parts. The third assumption says that arrange­
ment concerns for configurations involve no unsatisfiable constraints, even in combination. This
is not unusual for configuration tasks that use a port-and-connector model for arrangements. In
such domains, one can always find some arrangement and the arrangement does not affect the
quality of the configuration. This assumption is crucial to the organization of MCF-1 because it
makes it possible to first select all the required parts before arranging any of them. It implies fur­
ther that the arrangement process never requires the addition of new parts. A somewhat weaker
assumption is actually strong enough for a simple variation of the method: that part arrangement
never introduces any significant parts that would force backtracking on selection or arrangement
decisions. The last assumption means the system need not check whether an existing part can be
reused for a second function. This method would need to be modified to accommodate multi­
functional parts.

8.4.3 MCF-2: Staged Subtasks with Look-Ahead

Method MCF-1 is explicit about the order that configuration knowledge is used: first, key com­
ponents are identified; then required parts are selected; and finally, parts are arranged. As dis­
cussed in our analysis of configuration, these decisions may need to be more tightly interwoven.
Sometimes an analysis of a domain will reveal that certain groups of configuration decisions are
tightly coupled and that some groups of decisions can be performed before others. When this is
the case, the configuration process can be organized in terms of subtasks, where each subtask

Page 65 of 72 FORD 1017

8.4 Methods for Configuration Problems

To perform configuration using MCF-1:
· I* Initialize and determine the key components from the

specifications. *I
1. Set parts-list to nil.

663

I* Get-requirements returns specifications for required parts given
a part. *I

. ,

2. Set requirements to get-requirements(initial-specifications).
3. Set key-components to get-best-parts(requirements).

4.
5.

6.
7.

8 .

9.

10.

I* Add all the required parts to the parts-list. *I·
For each key component do
begin

end

Push the key component onto the parts-list.
Add-required-parts(key-component).

I* Arrange parts in the configuration. *I
Arrange parts using arrange-parts(parts-list).
Return the solution.

I* Recursive subroutine to add parts required by a given
part. When there are multiple candidates it selects the best one
get-best-parts. *I

1. Add-required-parts(part)
2. begin
3. Set requirements to get-requirements(part).
4. If there are some requirements, then
5. begin
6. Set new-parts to get-best-parts(requirements).
7. For each of the new-parts do.
8. begin
9. Push the new-part onto the parts-list.
10. Add-required-parts(new-part).
11. end
12. end
13. end

FIGURE 8.36. MCF-1, a simple method for configuration problems in which there is no interaction
between selection and arrangement of required parts.

performs a combination of closely related decisions to refine, select, and arrange components.
Subtasks cluster decisions so that most interactions among decisions within a subtask are much
greater than interactions with decisions outside of it.

Page 66 of 72 FORD 1017

664 8 CONFIGURATION

In some domains the partitioning of decisions into subtask clusters does not necessarily
yield a decision ordering in which all later decisions depend only on early ones. To restate this in
constraint satisfaction terms, there may be no ordering of variables such that values can be
assigned to all variables in order without having to backtrack. To address this, knowledge for
selective look-ahead is used to anticipate interactions. Such knowledge is domain specific and
may involve conservative estimates or approximations that anticipate possible threshold effects.
This approach can be satisfactory even in cases where the look-ahead is not foolproof, if the fail­
ures involve soft constraints.

This approach is followed in MCF-2. The method description given in Figure 8.37 says
very little about configuration in general. Nonetheless, MCF-2 is the method used by XCON,
albeit with its domain:..specific particulars abstracted.

To perform configuration using MCF-2:
I* Initialize and get the key components from the specifications. *I

1. Set parts-list to nil.
2. Set requirements to get-requirements(initial~specifications).
3. Set key-components to get-best-parts(requirements).

I* Conditionally invoke Subtasks. *I
4. While there are pending subtasks do
5. begin
6. Test conditionals for invoking subtasks and choose the best

one.
7. Invoke a specialized method for the subtask.
8. end
9. Return the solution.

I* Each specialized method performs a subset of the task. It is
responsible for refining some specifications. adding some parts. and
arranging some parts. It incorporates whatever look-ahead is needed.
*I

10. Method-for-Subtask-1:

I* Subtask-1: Look ahead as needed and expand some parts. *I
I* Subtask-2: Look ahead as needed and arrange some parts. *I

20. Return.

30. Method-for-Stage-3:

FIGURE 8.37. MCF-2, a method for configuration problems in which part selection and arrangement
decisions can be organized in a fixed sequence of subtasks. The method depends crucially on the proper­
ties of the domain. This method tells us very little about configuration in general.

Page 67 of 72 FORD 1017

8.4 Methods for Configuration Problems 665

This method is vague. We might caricature it as advising us to "write a configuration sys­
tem as a smart program using modularity as needed" or as "an agenda interpreter that applies
subtasks in a best-first order." Such symbol-level characterizations miss the point that the deci­
sion structure follows from an analysis of relations at the knowledge level. This observation is
similar to the case of methods for classification. The particulars of the domain knowledge make
all the difference. The burden in using MCF-2 is in analyzing a particular domain, identifying ·
common patterns of interaction, and partitioning the decisions into subtasks that select and
arrange parts while employing suitable look-ahead.

It is interesting to compare MCF-2 to the general purpose constraint satisfaction methods.
One important result is that when the variables of a constraint satisfaction problem (CSP) are
block ordered, it is possible to find a solution to the CSP with backtracking limited to the size of
the largest block, which is depth-limited backtracking. Although there are important differences
between the discrete CSP problems and the configuration problems, the basic idea is quite sim­
ilar. Subtasks correspond roughly to blocks. When subtasks are solved in the right order, little or
no backtracking is needed. (See the exercises for a more complete discussion of this analogy.)

As in MCF-1, MCF-2 does not specify an arrangement submodel, a part submodel, or a
sharing submodel. Each domain needs its specially tailored submodels. In summary, MCF-2
employs specialized methods for the sub tasks to do special-case look -ahead, to compensate for
known cases where the fixed order of decision rules fails to anticipate some crucial interaction
leading to a failure. The hard work in using this method is in the analysis of the domain to parti­
tion it into appropriate subtasks.

8.4.4 MCF-3: Propose-and-Revise

In MCF-2, there are no provisions in the bookkeeping for carrying alternative solutions, or for
backtracking when previously unnoticed conflicts become evident. Figure 8.38 gives MCF-3,
which is based loosely on the mechanisms used in VT, using the propose-and-revise approach.
Like MCF-2, we can view MCF-3 as an outline for an interpreter of knowledge about configura­
tion. It is l~osely based on the ideas of VT and the interpretation of a parameter network. It
depends crucially on the structure of the partial configuration and the arrangement of know ledge
for proposing values, proposing constraints, noticing constraint violations, and making fixes.

The beauty of MCF-3 is that the system makes whatever configuration decisions it can by
following the opportunities noticed by its data-driven interpreter. In comparison with MCF-2,
MCF-3 is does not rely so much on heuristic look-ahead, but has provisions for noticing con­
flicts, backtracking, and revising.

8.4.5 Summary and Review

This section sketched several different methods for configuration, based loosely on the example
applications we considered earlier. We started with a method that performed all selection deci­
sions before any arrangement decisions. Although this is practical for some configuration tasks,
it is not adequate when arrangements are difficult or are an important determinant of costs. The
second method relied on look-ahead. Our third method triggered subtasks according to knowl-

Page 68 of 72 FORD 1017

666 8 CONFIGURATION .

To pe1jorm configuration using MCF-3:
I* Initialize and obtain requirements. *I

1. Initialize the list of parts to empty.
2. Set requirements to get-requirements(initial-specifications).
3. Set key-components to get-best-parts(requirements).

I* Apply the domain knowledge to extend and revise the configuration.
*I

4. While there are open decisions and failure has not been signaled do
5. begin
6. Select the next-node in the partial configuration for which a

decision can be made.
7, If the decision is a design extension, then invoke method

propose-design-extensions(next-node).
8. If the decision is to post a constraint, then invoke method

post-design-constraints().
9. If there are violated-constraints, then invoke revise-design().
10. end
11. Report the solutions (or failure).

fiGURE 8.38. MCF-3, a method based on the propose-and-revise model.

edge about when the subtasks were ready to be applied and used constraints to test for violations
when choices mattered for more than one subtask.

Exercises for Section 8.4

Ex. 1 [1 0] MYC1N's Method. How does MYCIN's method for therapy recommendation fit into
the set of methods discussed in this section? Is it the same as one of them? Explain briefly.

Ex. 2 [R] Subtask Ordering. After studying the XCON system and reading about constraint satis­
faction methods, Professor Digit called his students together. "Eureka!" he said. "MCF-2 is
really a special case of an approach to constraint satisfaction that we already know: block
ordering. In the future, pay no attention to MCF-2. Just make a tree of 'constraint blocks'
corresponding to the configuration subtasks and solve the tasks in a depth-first order of the
tree of blocks."
(a) Briefly sketch the important similarities and differences between CSP problems and
configuration problems.
(b) Briefly, is there any merit to Professor Digit's proposal and his suggestion that there is
a relation between traversing a tree of blocks in a CSP problem and solving a set of staged
subtasks in a configuration problem?
(c) Briefly relate the maximum depth of backtracking necessary in a CSP to the "no back­
tracking" goal of systems like XCON.

Ex. 3 [1 0] Methods and Special Cases. The methods for configuration are all simple, in that the
complexity of configuration tasks is manifest in the domain-specific knowledge rather than

Page 69 of 72 FORD 1017

8.5 Open Issues and Quandaries 667

in the methods. The methods, however, form a progression of sorts, in that they can be seen
as providing increased flexibility.
(a) In what way is MCF-1 a special case of MCF-2?
(b) In what way is MCF-2 a special case ofMCF-3?
(c) In what way could MCF-3 be generalized to use other techniques from the example
systems in this chapter?

8.5 Open Issues and Quandaries

In the 1970s, folk wisdom about expert systems said that they might be developed routinely for
"analytic" tasks but not "synthetic" tasks, which were too difficult. Analytic tasks were charac­
terized in terms of feature recognition. Medical diagnosis was cited as an example of an analytic
task. In contrast, synthetic tasks reasoned about how to put things together. Design was said to be
an example of a synthetic task.

In hindsight, this dichotomy is too simplistic. Some problem-solving methods combine
aspects of synthesis and analysis, to wit: "synthesis by analysis" and "analysis by synthesis."
Large tasks in practical domains are made up of smaller tasks, each of which may have its own
methods. In the next chapter we will see that even methods for diagnosis require the combination
of diagnostic hypotheses.

However, the main point for our purposes is that synthetic tasks tend to have high combi­
natorics and require a large and complex body of knowledge. This made them unsuitable for the
first generation of knowledge systems, which performed simpler tasks mostly based on classifi­
cation. Design tasks are still more often associated with research projects than with practical
applications. Ambitious knowledge systems for design tasks tend to be doctoral thesis projects.

Configuration tasks specify how to assemble parts from a predefined set. It could be
argued that the "real" difficulty in configuration tasks is setting up the families of components so
that configuration is possible at all. For computer configuration, this involves designing the bus
structures, the board configurations, the bus protocols, and so on. If these standards were not
established, there would be no way to plug different options into the same slot. There would be
no hope of creating a simple model of functionality around a key-component assumption. Behind
the knowledge of a configurable system, there is a much larger body of knowledge about part
reusability in families of systems. This brings us back to the challenges of design.

The goal in both configuration and design is to specify a manufacturable artifact that satis­
fies requirements involving such matters as functionality and cost. Design can be open-ended.
Will the truck ride well on a bumpy road? What load can it carry? What is its gas mileage? Can
the engine be serviced conveniently? There is an open-ended world of knowledge about materi­
als, combustion, glues, assembly, manufacturing tools, markets, and other matters.

Human organizations have responded to the complexity of designing high-technology
products by bringing together specialists with different training. The design of a xerographic
copier involves mechanical engineers concerned with systems for moving paper, electronical
engineers concerned with electronic subsystems, and computer engineers concerned with inter­
nal software. But this is just a beginning. Other people specialize in particular kinds of systems
for transporting paper. Some people specialize in printing materials. Some specialize in the
design of user interfaces. Some specialize in different manufacturing processes, such as plastics,
sheet metal, and semiconductors. Others specialize in servicing copiers in the field.

Page 70 of 72 FORD 1017

668 8 CONFIGURATION

As the number of issues and specializations increase, there are real challenges in managing
and coordinating the activities and in bringing appropriate knowledge to bear. Competition
drives companies to find ways to reduce costs and to speed the time to bring products to market.
In this context, a large fraction of the cost of producing a product is determined by its design.
Part of this cost is the design process itself, amortized over the number of products made. But the
main point is about the time of decisions. Many decisions about a product influence the costs of
its manufacture and service. What size engine does the truck have? Does it run on diesel or gaso­
line? Can the battery be replaced without unbolting the engine? How much room is in tlie cab?
How many trucks will be sold? Many of these decisions are made at early stages of design and
cannot be changed later, thus locking in major determinants of the product cost.

To reduce costs we must understand them at earlier stages of design. Thus, products are
designed for manufacturing, designed for flexibility, designed for portability, or designed for ser­
vicing. All these examples of "design for X' attempt to bring to bear knowledge about X at an
early stage of design. In design organizations, this has led to the creation of design teams and a
practice called "simultaneous engineering." The idea is to bring together specialists representing
different concerns, and to have them participate all the way through the design process.

There, are no knowledge systems where you "push a button to design a truck." The
challenges for acquiring the appropriate knowledge base for such ambitious automation are stag­
gering. Instead, the response to shortening product development times involves other measures.
Many of these involve ways for moving design work online. Databases and parts catalogs are
online. Simulation systems sometimes replace shops for prototyping. The controls for manufac­
turing equipment are becoming accessible through computer networks. Reflecting the reality that
much of an engineer's day is spent communicating with colleagues, another point of leverage is
more advanced technology for communicating with others. This ranges from facsimile machines
and electronic mail, to online computer files, to devices that enable teams of engineers to share a
"digital workspace."

Systems to support design need not automate the entire process but can facilitate human
design processes, simulate product performance and manufacturing, and automate routine sub­
tasks. The elements of new design systems include knowledge systems, online catalogs, collabo­
ration technology, simulation tools, and visualization tools. These elements reflect a move
toward shared digital workspaces. As the work practice and data of design organizations become
more online, many different niches appear where knowledge systems can be used to assist and
automate parts of the process.

Automation advances as it becomes practical to formalize particular bodies of knowledge.
Inventory and catalog systems now connect with drafting systems to facilitate the reuse of manu­
factured parts. Drafting systems now use constraint models and parameterized designs to relate
sizing information from one part of the system with sizing information from other parts. In
design tasks such as the design of paper paths using pinch roller technology (Mittal, Dym, &
Morjaria, 1986), it has been practical to systematize a body of knowledge for performing large
parts of the task.

Conventional tools for computer-aided design (CAD) tend to be one of two kinds: analysis
tools or drafting tools. An example of an analysis tool is one for predicting the effects of vibra­
tions on structure using finite element analysis. An example of a drafting tool is a tool for pro­
ducing wire-frame models of solids. Knowledge-systems concepts are beginning to find their
way into CAD systems, joining the ranks of graphics programs, simulation systems, and visual-

Page 71 of 72 FORD 1017

8.5 Open Issues and Quandaries 669

ization systems. As computer technology for computer graphics and parallel processing have
become available, there has been increased development of tools to help designers visualize
products and manufacturing, by simulating those steps and showing the results graphically.

In summary, configuration tasks are a relatively simple subset of design tasks. They are
more difficult because specifications can be more open-ended and design can involve fashioning
and machining of parts rather than just selection of them. Human organizations have responded
to the complexities of modern product design by engaging people who specialize in many differ­
ent concerns. This specialization has also made it more difficult to coordinate design projects and
to get designs to market quickly.

Page 72 of 72 FORD 1017

