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Introduction 1-1 

About Understanding The /CAD System 

Who Should Read Understanding The /CAD System 

Understanding Tlie ICAD System is for all members of the engineering and 
manufacturing team, including managers, who are considering using The ICAD 
System. The ICAD System, ICAD's knowledge-based engineering product, is used 
to develop knowledge-based engineering applications. Understanding The !CAD 
System introduces and defines the terminology of The ICAD System, examines 
some of the techniques used to develop an application using The ICAD System, 
and discusses some of the strategies used to integrate such an application into 
an existing engineering environment. 

Understanding The !CAD System answers the following questions: 

• What is The ICAD System, and what differentiates it from other computer­
aided-engineering design tools? 

• What types of engineering problems can be automated using The ICAD 
System? 

• What are the capabilities of The ICAD System and how can.they be used to 
create solutions to complex, large-scale, real-world engineering problems? 

• How can an ICAD knowledge-based engineering application be integrated into 
an existing engineering and computing environment? 

In a sense, Understanding Tlie !CAD System is a technical overview of The 
ICAD System. Since the concepts of using The ICAD System are new and 
unfamiliar to most engineers, the essential features of The ICAD System are not 
described on a feature-by-feature basis as with most technical overviews, but 
rather as they apply to a particular application. 

We show in detail how The ICAD System is used to create an engineering 
application that automatically designs mold bases for plastic injection molding. 
Although the concepts of knowledge-based engineering and The ICAD System 
are described in the context of a mold-base design, these same concepts are 
applicable to many engineering domains, and have been used successfully for 
many different kinds of products in many different industries. 
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About Understanding The /CAD System 

Chapters 

Understanding The ICAD System is divided into the following chapters: 

"Introduction" Discusses the purpose of Understanding The ICAD System, 
gives a brief history of ICAD, Inc., and describes the support 
that ICAD gives its customers to help them become 
successful users of The ICAD System. 

"Knowledge-based Engineering and The ICAD System" 
Provides an overview of knowledge-based engineering and 
lists some of the benefits realized using such a system. This 
section includes a definition of knowledge-based engineering, 
a comparison of knowledge-based engineering with other 
computer-aided engineering technologies, and a discussion of 
different kinds of applications that have been developed 
successfully using The ICAD System. 

"Example of an Engineering Problem" 
Describes the problem of designing a mold base for plastic 
injection molding. The rest of the document shows how The 
ICAD System applies to this problem. 

"Modeling an Engineering Problem Using ICAD" 
Describes the capabilities of The ICAD System by showing 
how they are used to develop a mold-base application. 

"Integrating ICAD Into an Existing Engineering Environment" 
Shows how an application created using The ICAD System 
can be integrated into an engineering environment that 
includes various analysis systems and CAD systems. 

"Appendix" Includes a glossary of concepts and terminology used by 
ICAD. . 
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About ICAD 

ICAD Inc. develops and markets The ICAD System, an advanced knowledge-based 
engineering software package for mechanical product and process design 
automation. At the end of 1989, ICAD Inc. had installed more than 300 ICAD 
systems in manufacturing and engineering firms throughout the world. The 
company's list of customers includes a number of leading manufacturing 
companies in many different industries, such as automotive, aerospace, industrial 
equipment, consumer products, etc. 

In 1984 the founders of ICAD Inc. began the development of The ICAD System 
under a consulting contract with a major CAD company to provide a system that 
would automate the design of heat exchanger units for a major industrial 
equipment manufacturer. The manufacturer recognized that although all heat­
exchanger designs were based on similar engineering principles, each new 
individual design had to be completely redeveloped. 

The manufacturer had attempted automating the design of heat exchangers 
using a traditional CAD/CAM system and a FORTRAN program that added a 
parametric design capability. As they began programming the design process, 
they recognized this would require a much greater programming effort than 
originally anticipated. 

ICAD's founders addressed this issue by developing The ICAD System, which 
uses a knowledge-based engineering approach and object-oriented programming 
techniques. The company's founders shared the vision that new software 
technology provided an opportunity to re-think the conventional approach to 
computer aided design, which is based on computer representation of drawings. 
Their experience with CAD systems convinced them that to do more than help 
edit drawings, the system would require a complete model containing all the 
factors that determine the design, including company standards, procedures, and 
processes. With such a model, a computer system can integrate the entire design 
and manufacturing process, constructing correct designs on demand. 

The early version of The ICAD System successfully automated the design of heat 
exchangers. Since that time, many other applications in different industries have 
been automated successfully as well. ICAD's comprehensive approach to 
engineering automation has enjoyed market acceptance, enabling the company to 
grow rapidly. 
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Learning to Use The ICAD System 

!CAD provides you with the support you need to develop successful applications 
using The ICAD System. We provide various kinds of assistance and training to 
enable you to change from a newcomer to knowledge-based engineering design to 
an experienced !CAD Design Language designer. Our goal is capability transfer: 
we transfer our expertise to you so that you become an effective user of our 
tools. 

• Intensive training 

The basic course, Intensive Introduction to the /CAD Design Language, 
includes both lectures and labs. In addition to learning the basics of The 
ICAD System, you learn techniques that help you select and execute a 
complex, real-world project in conjunction with your ICAD consultant. By the 
time the basic course has been completed, many customers have already 
completed a project with significant real-world savings. ICAD also provides a 
course on using the ICAD Surface Designer. 

• Expert consultants 

During training you are assigned a personal consultant to help you plan your 
application and break through learning barriers. ICAD's consultants are 
experienced mechanical engineers who have worked extensively on knowledge­
based engineering projects. 

• Comprehensive documentation 

The ICAD System is completely and thoroughly documented. The 
documentation includes a section on every ICAD Design Language feature 
including a description of the feature, a syntax diagram, and many complete, 
working examples of use. In addition, on-line help is available in the ICAD 
user interface, the ICAD Browser. 

• Extensive customer support 

Customer support is available via telephone, FAX, or electronic mail to answer 
any technical question or resolve any technical problem with installation, use 
of The ICAD System, or use of the hardware platform. 
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Overview 

What is Knowledge-based Engineering? 

Keywords: Knowledge-based engineering (KBE), product model, ICAD product 
model, rule-based system, concurrent engineering, parametric CAD systems, 
variational CAD systems, engineering-automation languages, expert systems 

This section introduces the concept of knowledge-based engineering and includes 
the following topics: 

• A definition of knowledge-based engineering. 

• A comparison of knowledge-based engineering with the traditional design 
process. 

• An introduction to the product model, including typical engineering rules 
included in a product model. 

• A discussion of some of the benefits realized from using knowledge-based 
engineering. 

• A comparison of knowledge-based engineering with other technologies such as 
traditional CAD systems, modern parametric and variational CAD systems, 
engineering-automation languages, and expert systems. 

Definition of Knowledge-based Engineering 

The ICAD System is a knowledge-based engineering system. Knowledge-based 
engineering, sometimes referred to as KBE, is an engineering method in which 
knowledge about the product, e.g., the techniques used to design, analyze, and 
manufacture a product, is stored. in a special product model (in The ICAD 
System, the product model is called an ICAD product model). 

The product model represents the engineering intent behind the geometric 
design; it captures the how and why, in addition to the what, of the design. It 
can store product information - attributes of the physical product such as 
geometry, material type, functional constraints, etc. - as well as process 
information - the processes by which the product is analyzed, manufactured, 
and tested. Unlike a CAD model which mostly contains geometric information, a 
knowledge-based engineering product model contains all the information required 
by the design. 

Once engineering knowledge about the product is collected and stored as a 
product model, design engineers can generate and evaluate new designs quickly 
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What is Knowledge-based Engineering? 

and easily by changing the input specifications for the product model, or modify 
designs by extending or changing the product model. This frees the engineer 
from time-intensive, detailed engineering tasks such as repetitive calculations 
and allows more time for creative design work. 

The Traditional Design Process Based on a Well-understood Design Strategy 

Consider the design of a crankshaft by an engineering team at an automotive 
company. The team is given requirements such as horsepower, number of 
cylinders, torque, and rpm, and is expected to design a new crankshaft that 
minimizes cost and maximizes fuel economy. Assume that collectively the 
engineers have a clear and well-understood strategy for designing crankshafts, 
that is, they have already designed many crankshafts. However, their collective 
experience is distributed among a group of people with varying ability and 
covering several engineering domains. 

Using traditional design methods in conjunction with CAD technology, the team 
integrates the input specifications with the constraints and stated goals. All the 
collective previous experience of designing crankshafts is manually incorporated 
into the new design. While the CAD system can help design the product 
geometry, it provides little help for calculating the engineering design attributes 
such as the required bearing load based on the number of cylinders, horsepower, 
and torque, or for taking into account other factors such as material constraints, 
cost considerations, and manufacturability. 

Once a preliminary design is created, it is frequently analyzed using one of the 
many available FEA (Finite Element Analysis) programs and modified 
accordingly. Finally, the team generates drawings and reports that document the 
crankshaft design. 

Even with all of engineering team's experience, the process of developing a 
single design is laborious, repetitive, and subject to error. If the input 
specifications change at any time, the entire process must be repeated. For these 
reasons, a new crankshaft design typically takes from four to six months to 
complete.1 

This scenario is typical of the traditional design process, in which engineers use 
CAD software to create, manipulate, and display geometry-based product-design 
data interactively. Traditional CAD systems allow engineers to process designs 
faster than when designs were done completely by hand, but go only part of the 
way toward providing a completely flexible tool for adapting to changes in a 
product design. No matter how sophisticated the software tools are, systems that 
use only geometric data to describe a product are limited in their ability to 
automate the design and engineering process since they provide no means of 
capturing the engineering expertise behind the design. 

1According to a current ICAD customer. 
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Finished 

What is Knowledge-based Engineering? 

The following diagram illustrates this traditional design process. Since the 
repetitive, detailed engineering tasks are not automated - they need to be done 
by humans - they create a bottleneck that slows down the design cycle. While 
the engineers use CAD systems to manage the geometric information and 
generate drawings, other design knowledge, including catalogs, databases, and 
engineering standards, must be managed separately without integrated tools. 
Finally, since this design process is really a loop which repeats until a 
satisfactory design is found, the effect of the bottleneck is multiplied by the 
number of times the loop is repeated. 
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The traditional design process. The design bottlerieck - the time-consuming, repetitive parts of the 
design process - is shown by using heavy lines. Based on inputs and engineering data and 
information, the engineer generates geometric outputs on a CAD system and manually creates 
non-geometric outputs such as BOMs and cost analyses. 
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What is Knowledge-based Engineering? 

The Same Design Process Using a KBE System 

Suppose this engineering team had previously used The ICAD System to develop 
a product model of a crankshaft that automates much of the routine and detailed 
engineering work. 2 If a new request for a crankshaft comes in, a design 
engineer on the team just feeds the new input specifications directly into the 
product model. The model asks the engineer some key questions about the 
application, and then generates a design that incorporates all of the input 
specifications, meets the constraints, and maximizes fuel economy while 
minimizing production costs. The design is sent to a FEA automatically, and the 
design engineer can easily modify the design either by changing the answers to 
some of the key design questions or by modifying the input specifications. 

Finally, the result already contains the document set for the crankshaft, e.g., the 
drawings, reports, and manufacturing plans. A more extensive ICAD product 
model could also produce a tooling plan. New inputs can be used to regenerate a 
new design easily. With the product model, generating a new crankshaft design 
can be done in two days by a single design engineer, as opposed to four to six 
months with traditional methods. 

In this scenario, the bottleneck of the traditional design process - the repetitive 
tasks that had to be done by an engineer - is eliminated. All such tasks are 
managed by the product model. The design loop can be repeated efficiently as 
many times as necessary. 

The following diagram illustrates the design process using a product model. The 
center of the design process is the product model, which manages all the routine 
engineering tasks. The role of the engineer is to provide the input specifications 
and make the important design decisions. Catalogs, databases, standards books, 
etc., are all integrated into the product model. Outputs are all generated 
automatically by the product model. 

2The effort involved m developing a product model is discussed later m this 
section. 
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What is Knowledge-based Engineering? 
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What is Knowledge-based Engineering? 

Clearly, there is a certain amount of effort involved in developing the product 
model. In practice, development time varies by application and by required level. 
of detail; typically, it takes slightly more time to develop a product model than it 
does to create a single design using the traditional design process. 3 The time 
benefits of developing a product model compared with using traditional design 
techniques are shown in the following diagram. 

Time Traditional design process 
using CAD system 

Design process 
using a KBE 
product model 

Number of 
Designs 

Time benefits of using KBE compared with the traditional design process. The squares represent 
new designs. 

Note that even a partially-developed product model shows substantial time 
benefits since the bottleneck can be widened incrementally. 

Using KBE for a Design Process Based on a New Design Strategy 

Consider another engineering team that is working on a new, more efficient 
crankshaft based on some recent theoretical or experimental research. Since this 
is a new type of crankshaft, they are developing a completely new strategy for 

3Interestingly, the more complex the design, the less time it takes to develop an 
ICAD product model relative to the time it takes to produce a single design 
iteration using traditional design techniques. 
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What is Knowledge-based Engineering? 

designing such a crankshaft. There are still many benefits to using a knowledge­
based engineering approach even though the design strategy is not well 
understood. 

Using a traditional design process, the team develops an initial design strategy 
which they use to generate an initial crankshaft design. This first design is not 
completely successful, so they change their design strategy and produce a new 
iteration. However, it takes almost as long to produce the second iteration as the 
first, since most of the calculations for important factors such as bearing width, 
joint configuration, counterweight layout, etc., have to be completely redone. 
Finally, after many time-consuming design iterations, the team arrives at the 
final design. 

However, if the team uses a knowledge-based engineering system such as The 
ICAD System to develop a product model that represents their initial design 
strategy, the first design can be generated from the product model. Subsequent 
changes to the design strategy can be made by directly modifying the product 
model, which can then be used to generate new design iterations. Much of the 
work done on the previous design iteration can be automatically carried over to 
the new design iteration. This leads to substantial overall time savings. 
Likewise, since each design iteration takes less time, many more iterations can 
be generated before the design is finalized, which leads to a better quality 
design. 

Creating a Product Model by Developing a Rule Base 

A product model captures the design strategy required to produce a particular 
product from a specification - in essence, it is the set of engineering rules used 
to design the product. For this reason, a knowledge-based engineering system is 
often called a rule-based system, and the product model is often called the rule 
base. This set of rules includes standard engineering rules and experiential 
"rules of thumb" that constrain the design, information about manufacturing and 
cost constraints, catalogs of standard materials, parts, and costs, and techniques 
to maximize quality while minimizing cost and production time. You are not 
limited to rules involving geometry; in fact, you can incorporate any knowledge 
about a product design into a product model, including knowledge about the 
processes used to manufacture the product. 

The product model takes an input specification, applies the engineering rules, 
and generates a product design. This product design can include various outputs, 
such as reports of engineering results, data for engineering analyses, 3D 
geometric models that can be downloaded to a CAD system, structured bills of 
materials, and manufacturing instructions. 
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What is Knowledge-based Engineering? 

Product models often include the following kinds of engineering rules: 

• Rules that automatically create the part's geometry from the input specifications. 

A rule might relate the diameter of an axle to the torque and length. Also, a 
length of shaft within an axle could be sized to fit between two load-bearing 
components whose size and position are based on engineering constraints. 

• Rules that calculate engineering properties about the part. 

A rule might calculate the maximum load a particular beam can handle based 
on the shape of the beam and its material. Alternately, the selection of beam 
size and material could be based on the required maximum deflection. 

• Rules that choose a configuration based on some condition. 

A rule might choose one configuration for a component within an axle if the 
axle is above a particular size or weight, and another configuration if the axle 
is below the size or weight. 

• Rules that optimize cost, performance, and quality. 

A rule might specify that the material used to construct a crankshaft be the 
least expensive material whose properties allow it to meet some input 
constraints. 

• Rules that extract information from external databases. 

A rule might look up the advertised strength of a material from a material 
table. Typical applications extract standard parts from catalogs, material 
properties from material tables, and design features from feature libraries. 

• Rules that communicate with and analyze the results of external engineering 
analysis programs. 

A rule might send a particular beam description to an in-house beam analysis 
program for analysis. Other rules might use the results of the analysis as a 
basis for changing aspects of the beam design. 
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What is Knowledge-based Engineering? 

There are a few important qualities of rules in a knowledge-based engineering 
system that make them particularly well suited for typical mechanical design 
problems: 

• Rules allow the direct implementation of standards. 

Corporate and regulatory standards and "design rules" form a significant part 
of common engineering practice. These rules can be implemented directly in 
the product model, resulting in product designs that always conform to these 
standards. 

• Rules record design intent. 

Product models provide a clear reason for every dimension, design decision, 
and configuration. This information is invaluable to the designer and to those 
who review the design. 

• Rules do not have to be exact. 

Many real-world problems do not have exact theoretical solutions, yet "rule-of­
thumb" techniques for handling these problems are well developed. 

Benefits of Using a KBE System 

Our customers have realized many benefits from using ICAD's knowledge-based 
engineering system. These include: 

• Reducing time to market by automating repetitive designs. 

Although most new products are variations of current products, each new 
product design starts from scratch. However, similar products share many of 
the same routine engineering tasks; they are designed from similar 
components using similar engineering techniques, and are analyzed and 
produced in similar ways. Engineers must repetitively perform tedious (and 
sometimes inaccurate) calculations and look up numerous table and catalog 
entries. Much time is spent repeating analyses that optimize product designs. 
A knowledge-based engineering system helps to automate these routine 
engineering tasks for similar products by representing the knowledge of how 
to accomplish them as rules in a product model. This frees engineers to spend
more time for creative designing. 
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What is Knowledge-based Engineering? 

• Capturing engineering expertise. 

Some experience can be lost permanently when the key design people leave 
the company. A knowledge-based engineering system captures their design 
knowledge so that it is available in the future. 

• Facilitating concurrent engineering. 

Typically, different engineering disciplines work separately and sequentially on 
the same product design. Any change to the design requires each engineering 
discipline to reevaluate their portion of the design. A product model 
synthesizes the constraints and engineering rules from all engineering 
disciplines; it checks that a design change made by one engineering group 
does not contradict the engineering rules and constraints from the other 
group. 

• Providing a fully documented design process. 

In most companies, the "knowledge" of how to design and manufacture a 
particular process is scattered throughout the organization in the form of 
drawings of past designs, reports, design notebooks, engineering standards 
books, and the experience of a few key people. Often it takes much time and 
effort to reorganize this knowledge for a new design. This can cause many 
problems, including high engineering and manufacturing costs, slow response 
to customer requests, and bottlenecks caused by the unavailability of a few 
key people. A product model supplies a deterministic design process that 
generates consistent results. 

• Integrating catalogs and databases. 

Engineers spend too much of their time searching for entries in catalogs and 
laboriously incorporating the results into their designs. A product model links 
to catalogs and databases and looks up the appropriate entries automatically. 

• Generating drawings and reports. 

Another large part of engineering time is spent annotating CAD drawings and 
writing engineering reports such as bills of materials. A product model can 
include design rules that capture drawing intent as well as report 
specifications. These rules allow the product model to generate annotated 
drawings and reports. 
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• Integrating analysis tools into the design process. 

Frequently, the design engineer uses software analysis tools to assist in 
solving specific problems. These tools are not easily integrated into the 
traditional design process since they require input in a specific format. 
Generating input in that format is difficult and time consuming. A product 
model can generate the inputs to the analyses routines directly as part of 
generating a new design. In addition, a product model can read the results of
the analysis routines and use them to alter the design, forming a closed 
analysis loop. 

• Integrating design and manufacturing. 

In many companies, manufacturing and engineering departments are 
physically separated and engineering design is often not integrated with 
manufacturing until the design is essentially complete. Any change to the 
design needed to meet manufacturing and process-planning constraints can 
require a long and costly redesign. Also, when engineering design and 
manufacturing analyses occur sequentially it is difficult to optimize the design
for manufacturing, which adds to the cost of the product. A product model 
incorporates manufacturing constraints as well as engineering constraints, so 
that the product design is optimized for manufacturing. Both sets of rules can
be developed concurrently by the design engineers and the manufacturing 
engineers, respectively. 

• Improving quality. 

Under pressure to bring new products to market quickly, quality 
improvements for new products are often left incomplete. Since· a product 
model accelerates the optimization process, higher quality products can be 
designed in the same amount of time or less than the time it takes to produce
a design using traditional design methods. Increasing the number of design 
iterations almost always improves the design quality, since the designer now 
has the time and opportunity to produce "what if?" designs that experiment 
with the input specifications and design strategy. Additionally, many potential 
design mistakes are eliminated because of the consistency of generating a 
design from the same set of rules. 

• Lowering product costs. 

Unnecessary product costs are often incurred when design changes cannot be 
made quickly and easily. Design and manufacturing engineering reports, such 
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as part lists, process plans, drawings and documentation, maintenance, and 
routing sheets are often generated manually and must be manually changed 
when design changes are made. A product model automates the production of 
such reports, thereby lowering product costs. 

• Creating a centralized repository for mechanical design and manufacturing 
engi.neering information and experience. 

A product model can include such information as: 

0 Physical data such as geometry, size, location, material, cost. 

0 Descriptions of the complex design rules, relationships, engineering 
standards, and procedures that are used to design and produce the product. 

0 Maintenance, quality standards, and life-cycle support. 

0 Manufacturing information including manufacturing constraints, 
manufacturing engineering requirements, tooling and fixtures, cost, process 
plans, record keeping beyond drawings, and performance specifications. 

How KBE Differs From CAD Systems 

CAD systems are personal-productivity tools used by designers and draftspeople 
to create geometry, annotated drawings, and documentation for a single design. 
A knowledge-based engineering system does not just create a single design; it 
models the process of generating the design. It is used in all levels of the design 
process to accelerate the design development. 

In addition, CAD systems do not easily take into account non-geometric data. 
Although some CAD systems are flexible enough to annotate their geometric 
models with non-geometric information, their ability to interact with that 
information is very limited. It is difficult or impossible to represent objects that 
have no geometric components at all, such as processes. Furthermore, CAD 
systems are usually limited in the size and complexity of the objects that they 
can handle. 

How KBE Complements CAD Systems 

CAD systems are increasingly used in conjunction with knowledge-based 
engineering systems in an integrated engineering environment in the following 
ways: 

• Once a design has been generated from the product model, the geometric 
information can be transferred to a CAD system for further detailing and 
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drafting (if necessary), performing finite element analysis, or generating NC 
programs. 

• Parts designed on a CAD system can be used as geometric-constraint 
specifications to a product model. For example, an existing CAD database may 
have a complex surface definition for the outer skin of an automobile door. 
The surface definition of the door can be part of an input specification to a 
product model that determines the shape and structure of various dependent 
parts such as the locking mechanism, window movement, and door internal 
structure. 

How KBE Differs From Parametric and Variational CAD Systems 

Parametric CAD systems capture geometric relationships between parts. Parts 
can be scaled easily by altering dimensions. Current parametric modeling 
systems include geometric features such as holes, slots and pockets that can be 
positioned relative to one another. Variational CAD systems allow the designer 
to specify omni-directional geometric constraints in 2D geometry. The 
capabilities of these technologies, while powerful in their own right, are quite 
different from the capabilities of a knowledge-based engineering system. 

Unlike knowledge-based engineering systems, parametric and variational CAD 
systems do not automate the design process. They make design changes easier in 
the traditional process, but they do not replace the traditional design process. 
There are many other important distinctions between parametric and variational 
CAD systems and knowledge-based engineering systems: 

• Parametric and variational CAD systems are geometry based; they cannot 
easily handle any other types of engineering knowledge. Our customers' 
experience suggests that less than fifty percent of the design rules in a 
product model are related to the geometry. Most of the design can only be 
described using a knowledge-based engineering system. 

• Parametric instances (that is, designs created using parametric systems) are 
not generic in the same way a product model is generic. In a product model, 
the entire product configuration can change when input specifications change. 
This kind of change is impossible to parameterize in a parametric system. 

• Parametric instances can only efficiently manage limited complexity (that is, 
the number of parts and relationships that they can incorporate is limited). In 
contrast, a knowledge-based engineering system is designed to manage large 
and complex product designs. 
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• Although parametric and variational CAD systems can generate outputs, 
unlike a knowledge-based engineering system they cannot easily integrate an 
analysis program as part of a closed loop in which outputs are sent to the 
analysis program and the results are read back into the product model. 

• Current parametric and variational CAD systems produce geometric outputs 
for the most part. A knowledge-based engineering system can produce many 
different kinds of outputs. 

• Current parametric CAD systems are limited to solid modeling and only have 
limited free-form surface modeling capabilities. 

How KBE Differs From Traditional Procedural-Design Languages 

Many organizations have tried to implement design-automation programs using 
macro-programming languages associated with CAD systems (e.g., GRAPL), or 
standard computer languages such as Fortran or C. These efforts often prove 
unsatisfactory for a number of reasons: 

• They require a high level of programming expertise, since the developers 
must concern themselves with programming details such as data storage 
management and data dependencies. 

• While they may be adequate for small- to medium-sized tasks, it is too hard to 
use them to implement large-scale, complex automation projects. 

• Once developed, such systems are difficult and expensive to maintain and 
update. 

In contrast, the language used to implement a product model is a state-of-the-art 
object-oriented computer language that takes care of the storage management, 
data dependencies, and the procedural "flow" of the program. A product model is 
created the way engineers naturally describe their design. In fact, many 
successful ICAD customers had little or no computer programming experience 
before using The ICAD System. 

Product models have successfully implemented many large and complex 
automation applications, including products in which the final design consists of 
thousands of parts. 

Finally, a product model is relatively easy to maintain due to its modularity, 
English-like syntax, and declarative structure. 
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What is Knowledge-based Engineering? 

How KBE Differs From Expert Systems 

Summary 

Expert systems attempt to capture design knowledge in an automated decision­
making format, generally in the form of procedural "if-then" rules (e.g., "if the 
size is larger than 30 meters then use two support beams"). 

Many organizations have tried to implement design automation programs using 
expert-system shells. However, expert systems have limited use for a design­
automation application for the following reasons: 

• Typically, expert systems are not designed for mechanical engineering. For 
example, they do not have the built-in geometric primitives to describe 
mechanical products. In contrast, knowledge-based engineering systems 
include built-in geometric primitives for describing complex mechanical 
products. 

• Expert systems work using a collection of procedural "if-then" rules. All 
engineering knowledge must be put in this format. However, not all 
engineering rules naturally fit into such a format. In contrast, a rule in a 
knowledge-based engineering system can take any form that the engineer 
likes. 

• The efficiency of an expert system drops drastically as it gets more complex, 
since every rule must be checked with every change. To resolve this, expert­
system shells allow you to define "meta-rules" that control the flow of 
operations. However, meta-rules are hard to define and to debug. In contrast, 
a knowledge-based engineering system is extremely efficient since the system 
automatically keeps track of which rules need to be evaluated, and only 
evaluates those rules that are needed. 

• The ICAD System is the leading knowledge-based engineering system in the 
market today. Knowledge-based engineering is an engineering-design 
technology in which product and process knowledge about the product is 
stored in a product model as a set of engineering rules. A product model 
represents the way the product is designed, and can be used to accelerate the 
design process enormously by eliminating the bottleneck caused when 
engineers need to spend time on repetitive engineering tasks. 

• A product model includes engineering rules that describe the product's 
geometry, optimize cost, performance, or quality, extract data from external 
data bases, etc. A product model takes an input specification, applies the 
engineering rules, and generates a specific product design. 
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• Knowledge-based engineering is qualitatively different from all previous 
engineering-design technologies, and complements these technologies by 
managing large-scale and/or complex designs with longer design cycles. 
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Typical Knowledge-based Engineering Applications 

Keywords: semi-custom designs, complex one-of-a-kind products, generative process 
planning, configuration generation, feature-based design 

ICAD Applications 

Although there is no "typical" ICAD application, there are various kinds of 
engineering problems that are well suited to knowledge-based engineering 
solutions. Likewise, there is no "typical" industry best-suited to use The ICAD 
System; ICAD's knowledge-based-engineering systems are installed in a cross­
section of industries throughout the world. 

The following chart lists some actual ICAD applications and shows both the kind 
of engineering problem that the application solves and the industry in which the 
application is used. The remainder of this section describes the kinds of 
applications best suited to a knowledge-based engineering solution, followed by 
short descriptions of actual ICAD applications. 

Generative 
Semi-custom One-of-a-kind Tooling 

Generative 
Process 
planning 

Product 
Configuration 

Ae~ii::~ -~f ~~E:.~ ~~~~site RAMP 
project 

Electronic 
packaging 

Automotive Exhaust Layout of Crankshafts 
_ _ _ _ _ _ _ _ _ manifold die presses 

Hood design 

Consumer CRT glass 
Products 

Industrial 
Equipment 

---------
Prosthesis 

Vending 
machines 

Mold bases 

Axles and 
halfshafts 

Pipe-bending 
and end prep 

Option-order 
processing 

Generators 

Typical !CAD applications in various mechanical and manufacturing industries. 
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Semi-custom Designs 

Many products such as gear assemblies, generators, presses, economizers, etc., 
are customized in order to satisfy particular requirements of each customer. The 
product is semi-customized since no two products are exactly alike, yet all the 
different products are very similar and require much the same engineering work 
to produce a design. An ICAD product model encapsulates the elements shared 
by all designs, and allows you to produce new designs automatically from input 
specifications. 

• Boiler design 

Problem: 

Solution: 

Although there is a basic design process for boilers which 
changes infrequently, developing a new boiler design can 
take a long period of time. It can take between 500 and 
2 000 worker hours to create a design for an economizer, 
which is just one of the boiler's components. This is 
because each new boiler design is slightly different based 
on its size, complexity, and sensitivity to different fuels 
and operating conditions. 

An ICAD product model is used to design various 
components of boiler systems, including the design of 
economizers. Rules for designing an economizer include 
component catalogs for tubes, fins, etc., geometric rules 
that decide where to place the components, engineering 
rules for designing and placing the mechanical supports, 
and manufacturing and costing rules that insure that the 
resulting design is manufacturable at a reasonable cost. 
Now an economizer engineer can enter customer 
requirements and, within hours, have an accurate design 
including drawings, bill of materials, cost estimate, and an 
engineering report. 
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• Prostheses 

Problem: 

Solution: 

Complex, One-of-a-kind Products 

While off-the-shelf standard implants are acceptable for 
most patients, some patients require a customized implant, 
which is expensive to design. 

Given an input specification from the surgeon (the type of 
implant, the dimensions of the bone and joint, and the size 
and weight of the patient) and geometric data from a CAT 
scan, the prothesis product model selects an appropriate 
standard implant. If no standard implant is available, the 
ICAD product model selects the nearest basic implant 
style and designs the necessary differences to 
accommodate the patient. 

A large, complex product such as jet turbine blades, car doors, antennas, etc., 
may take several years to design using traditional design techniques. After the 
design engineer specifies an initial design, other engineering groups must create 
other aspects of the design sequentially. Using The ICAD System, engineering 
rules from all groups are stored in the ICAD product model, all changes are 
automatically kept up-to-date, and design work from all groups can be done 
concurrently. Many more iterations of the design can be made, improving final 
product quality. 

• Satellite antennas 
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Typical Knowledge-based Engineering Applications 

Problem: 

Solution: 

The design of a satellite antenna is a highly iterative 
process. The design engineers must consider tradeoff s 
between weight, reliability, and volume. 

Using an ICAD product model, design engineers can 
change design specifications to see how they affect the 
overall design. The automation of the design allows the 
company to evaluate many antenna possibilities and reduce 
the number of expensive prototypes. 

The input specifications for the ICAD product model 
include the number of ribs, the beam diameter, the 
parabolic focal length, and the off set distance from the 
parabola axis. The antenna product model uses these 
specifications to generate a "pre-design" for the antenna 
which is passed to a FEA program. The refined data from 
the FEA is brought back into the ICAD product model, 
which then redesigns the antenna to the more exacting 
specifications. 
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Generative Tooling 

A generative tooling application takes an existing part design and designs a 

customized tool for manufacturing that part. 

Composite tools for helicopter blades 

Problem: 

Solution: 

A helicopter with composite rotor blades requires a large 
number of different tools. Tool engineers must consider 
varying geometry of the blade, different material types, 
and material thermal expansion and contraction factors. 

An ICAD product model takes an existing blade design as 
an input specification, prompts the tool engineer for 
additional specifications, and uses that to create tools for 
the blade automatically. The ICAD product model 
maintains the same standards for each tool design. 
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• Automated Mold Bases 

Problem: 

Solution: 

A newly-designed plastic part requires a customized mold 
base for the injection-molding process. The mold-base 
designer chooses a standard mold base from a catalog, and 
then specifies how to customize the standard mold base 
for the part. 

An ICAD product model takes the shape of the mold insert 
and the number of parts to produce, selects a standard 
mold base, and produces a design for customizing the 
mold base which includes manufacturing and process data. 
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Generative Process Planning 

ICAD applications can be used to generate detailed process plans for each new 
design. 

• US Navy RAMP (Rapid Acquisition of Manufactured Parts) project 

Problem: 

Solution: 

Typically, it takes the US Navy 300 days to replace a part 
in one of its ships. r:rms is because there are many 
different kinds of ships, some as much as forty years old, 
with too many different kinds of parts to keep in stock. In 
many cases, even the tools for making the parts no longer 
exist. Replacement parts must be produced on demand. 
The objective is to cut the 300 days needed to replace a 
part down to 30 days. 

An ICAD product model reads a PDES/STEP description of 
the part, and generates a process plan for building the 
replacement part. The process plan consists of routing 
sheets, operator and machine instructions, bills of 
material, and cost sheets. 
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Product Configuration 

A product-configuration application can be used as a sales tool for order entry. 
Since the engineering costs for a semi-custom-designed product are unusually 
high and take an extended period of time, the sales department often must sell a 
product that has not yet been designed. In such cases, it is difficult to produce 
an accurate price estimate without going through a costly engineering cycle. A 
salesperson can use an ICAD product model to produce an accurate estimate at 
a fraction of the cost. 

In addition, since there are often many constraints in a design that make certain 
configurations difficult or impossible, a salesperson might unwittingly sell a 
costly or impossible design. An ICAD product model can provide immediate 
feedback to the salesperson on the engineering and cost consequences of the 
customer's choices. 

• Configuration of press machines 

Problem: Since there are many different applications of press 
machines, a high percentage of the press machines sold 
must be semi-custom designed in order to satisfy customer 
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Summary 

Solution: 

requirements. Salespeople are often physically separated 
from engineers, and many simple mistakes and 
misunderstandings often cause a design to travel between 
sales, engineering, and the customer several times before 
the job is finished. 

By giving the salespeople an ICAD product model that 
designs press machines, they can respond to each 
customer request more quickly and accurately. The 
engineers can concentrate on handling special cases and 
improving the design rather than on generating 
repetitious designs. 

• There are many types of engineering problems well suited for ICAD solutions. 
In addition, there are many different industries that use ICAD applications. 

• Typical applications include semi-custom design, complex one-of-a-kind 
products, tooling design, generative process planning, and product 
configuration. 
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Introduction 

This chapter describes in detail the design and manufacture of mold bases for 
plastic injection molding, which is a particular engineering domain whose design 
process has been automated successfully using The ICAD System. The two 
chapters that follow show how the different capabilities of The ICAD System are 
used to develop an ICAD product model that automates the solution to some of 
the engineering problems in this domain. Chapter 4, "Modeling an Engineering 
Problem Using ICAD" shows how the mold-base design can be represented as an 
ICAD product model. Chapter 5, "Integrating ICAD Into an Existing Engineering 
Environment" shows how the ICAD product model can be extended so that it 
integrates with other systems in an engineering environment. 

This ICAD product model is an extensive demonstration of using knowledge­
based engineering technology for designing mold bases. We chose this project as 
a sample ICAD product model for the following reasons: 

• The product domain is easy to understand. 

• It models a complex and large scale "real-world" problem. 

• It includes a generative process planner. 

• It integrates many other engineering tools, such as catalogs, analysis 
programs and CAD output. 

In addition, it highlights many of the features of The ICAD System in a simple, 
easy-to-understand fashion. 

While your own application may seem quite different from mold-base design and 
manufacturing, ICAD's experience with diverse industries shows that the 
capabilities described in the later chapters are applicable to most engineering 
domains. We present the mold base as a sample application to show how The 
ICAD System can model a complex, large-scale, real-world engineering domain. 
Your own application will use the features of The ICAD System in a similar 
fashion. 
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Injection Molding Process 

Injection molding is a manufacturing process in which molten plastic is injected 
into a mold, hardened, and ejected as a finished product. A mold consists of two 
basic parts. 

• The inserts contain the cavities, that is, the negative casts of the part's shape 
into which the molten plastic is injected (for the purposes of this discussion, 
the difference between cavity and core is ignored). Each part cavity is milled 
out of two inserts that can be separated to remove the part. The mold can 
contain one or more cavities. 

• The mold base holds the inserts in place and provides a runner system that 
brings the plasticated polymer to the inserts, a cooling system that cools the 
hot plastic so it can be ejected, and an ejector system that knocks out the 
finished plastic parts. 

The ICAD application models the mold base (in particular, an A-series mold 
base, which is the simplest kind). The mold base consists of two main blocks: 

• A stationary block into which the plastic is injected. 

• A moving block that contains the ejector plate. 

The stationary block is composed of two plates - the clamping plate and the 
A-plate - that are bolted together. The A-plate is also called the front cavity 
plate since the cavities for the runners and inserts are milled out of it. 

The moving block is composed of the B-plate, a separate support plate for the 
B-plate, and the ejector mechanism. The B-plate is also called the rear cavity 
plate since the other half of the runners and inserts are milled out of it. 

The ejector mechanism consists of a U-shaped ejector housing that provides the 
space for the moving ejector plate, and an ejector retainer plate. The B-plate is 
bolted to the support plate which is likewise bolted to the ejector mechanism. 
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The following diagram shows a mold base in an open position. 

Sprue through which 
plastic is injected 

Diagram of a mold base in an open position. 

Leader pins 

Cavities 
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Top 
clamping 
plate 

The following diagram shows an exploded view of a mold base. 

Ejector 
retaining plate 

T 
Support 
plate 

--"'-! ...... 

Ejector 
plate 

Ejector 
housing 

Exploded diagram ofa mold base with the components labelled. 

The inserts are separately milled and then inserted into the holes provided for 
them in the mold base. The inserts contain the cavities into which the plastic is 
injected, and the gates through which the plastic enters the cavities. A cross­
section of the A- and B-plates with inserts and cavities is shown in the following 
diagram. 

The A- and B-plates contain inserts from which the cavities are milled. 
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The mold base and inserts are then placed into an injection molding machine, 
which performs the injection molding. A standard production cycle consists of 
the following steps: 

1. The mold base is closed. The two parts of the mold base are clamped 
together under high pressure (typically on the order of 75 to 1000 tons) . 
The amount of pressure that can be brought to bear by an injection 
molding machine is called its clamp tonnage. 

2. The temperature of the plastic is raised until the plastic can flow under 
pressure. This process is called plasticizing the material. 

3. The plastic is injected into the closed mold through the sprue, which is a 
hole into the mold, from which it travels to the cavities via the runners. 
The amount of plastic that can be injected at one time by the injection 
molding machine is called its shot capacity. 

4. The mold base is cooled, allowing the molten plastic in the cavities to 
solidify. In a cold runner system, the plastic in the runner system is also 
cooled. In a hot runner system, the plastic in the cavities is cooled but the 
plastic is kept plastized so it is not wasted. 

5. The mold base is opened. 

6. The ejector mechanism knocks out the solidified plastic. 

Designing the Mold Base 

Mold bases come in standard sizes and configurations that can either be 
purchased "off the shelf' from any number of different vendors or custom­
manufactured. The holes for the inserts and the runner system must be custom­
machined, and the ejector-pin placement must be custom-configured. 

The mold-base designer must decide which injection-molding machine to use. 
This generally depends on which machine is available. Larger machines have a 
larger shot capacity (amount of plastic that can be injected), a faster plasticating 
rate (rate at which the plastic can be melted and transferred into the mold), and 
larger clamp tonnage (amount of pressure that can be exerted to hold the mold 
together while the plastic is injected). 

The size of the injection-molding machine determines the maximum size of the 
mold with which it can be used. In addition to molding larger parts, a larger 
mold can support multiple cavities, which allows the manufacture of multiple 
parts with each production cycle. It is always more expensive to prepare a mold 
base with multiple cavities since additional special-purpose milling is required. 
However, the production cost and time is lessened since more parts can be made 
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with each cycle. Multiple-cavity molds are generally more profitable for long 
production runs and are used in the majority of cases. 

When multiple cavities are used, the mold designer must configure the layout of 
the cavities. The cavities should be arranged around the sprue so that each 
receives its full share of the total pressure through its own runner system. 
There should be the shortest possible distance between cavities and sprue, equal 
runner and gate dimensions, and uniform cooling. In a cold runner system, the 
runners should be as small as possible to minimize the amount of scrap plastic 
(although the plastic from the runners can often be reused, it is of lesser 
quality). 

The following diagrams show the optimal cavity configurations for an eight- and 
three-cavity mold. 

Cavity 

T rt' e 1ary / 
Runner 

Sprue 

Secondary I Runner Primary Runner 

Optimal cavity configuration for an eight-cavity mold. 
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Primary Runner /Sprue 

Optimal cavity configuration for a three-cavity mold. 
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There are many other engineering attributes that m~st be taken i~to ~ccount to 
design the mold base. Different values f ?r thes~ a~tnbutes results m different 
design trade-offs. A sample of these attributes is listed here: 

• Viscosity, i.e., resistance to flow. This is a property of the plastic material 
used whose value must be approximated. There are two techniques for 
approximating the value, one of which is faster but less accurate. In most 
cases, the less-accurate approximation is good enough; however, when the 
injection speed is fast, it is necessary to use the more-accurate, slower 
approximation. 

• Runner pressure drop. The mold designer must specify how much pressure can 
be lost when the plastic goes through the runners before it enters the 
cavities. This value affects the amount of plastic waste in a cold-runner 
system. 

• Melt temperature. This is partially the property of the plastic material, but it 
can be specified by the mold designer within a given range. The hotter the 
temperature, the better the quality of the molded part, but the longer the 
cycle time for producing the part. 

• Mold temperature, i.e., the temperature to which the mold is cooled to harden 
the part properly. This is a property of the plastic material. Like the melt 
temperature, it affects the quality of the molded part. 

Summary of Mold Base Specifications and Outputs 

The goal of the mold-base designer is to design the most appropriate mold for a 
given part design. We assume that the mold insert has already been designed 
and the mold-base designer is given the following specifications: 

• The volumetric properties of the part to be molded. 

• The plastic material used to manufacture the part. 

• The desired production quantity for the part. 

• The available injection molding machines. 
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The designer needs to produce the following: 

• Annotated CAD drawings of the mold base, including the cavity layout, runner 
layout, and cooling layout. 

• A bill of materials that lists the costs of each off-the-shelf component, 
including the standard mold base and the necessary pins, bushings, and 
screws. 

• A summary of the necessary machining costs to machine the inserts and 
runners in the A- and B-plates. 

• Total cost analysis for manufacturing the part, including the cost of preparing 
the mold base and the production costs. 

• Routing sheet, pass details, tool details, machine details, and time standards 
for manufacturing the mold base. 

• An NC path for milling the mold base. 

The following chapters show how to develop an ICAD product model that takes 
these specifications and generates a design which includes these outputs. 
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Overview 

Introduction 

The chapter "Knowledge-based Engineering and The ICAD System" showed how 
an ICAD product model can accelerate the design process, save time and 
improve product quality. This chapter gives a technical overview of an ICAD 
product model and shows how you create and use one. Components of the mold­
base design described in the previous chapter are used to illustrate various 
aspects of The ICAD System (other examples are used where the mold-base 
design does not illustrate a particular concept or capability). 

It is important to realize that The ICAD System is not just another CAD-like 
design system except different and better. As shown in the previous sections, 
knowledge-based engineering is a completely new way of thinking about 
engineering and requires an understanding of new and possibly unfamiliar 
concepts, as well as new strategies and design techniques. It's worth learning 
the new concepts because the payoff is so large. 

This section outlines some of the basic concepts upon which The ICAD System 
is built. The rest of the chapter fills in the details; it shows how the concepts 
map into the capabilities of The ICAD System, and how these capabilities help 
you create and use your ICAD product model. 

ICAD Concepts 

• !CAD product model 

An ICAD product model is an engineering description of a set of parts, 
products, or even a complete product line. The description is as generic as 
possible, that is, it can generate an appropriate product design for many 
different sets of input specifications. 

• !CAD Design Language 

You create the ICAD product model using a specification language developed 
by ICAD called the ICAD Design Language, or IDL. The ICAD Design 
Language has an English-like syntax for describing the ICAD product model. 

• Product structure tree 

An ICAD product model is composed of many different components. The 
different components represent the different assemblies, parts and features in 
the overall product. The components are organized into a tree structure called 
a product structure tree. 
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• Defpart 

A defpart is a description in IDL of a single component of the product 
structure tree. A def part includes engineering rules, or attributes, as well as a 
description of its subcomponents, or subparts. The product model itself is just 
all the defparts that describe the components of the product structure tree. 
One defpart in the ICAD product model is special since it describes the "root" 
of the product structure tree. 

• Generating a design instance 

To generate a design, you supply some input specifications to the root defpart 
and ask The ICAD System to create a design instance of that defpart (that is, 
a specific version of the root defpart based on the input specifications). 

• Demand-driven evaluation 

The design instance contains all the aspects of the design that you included 
in the ICAD product model, including the geometric model, analysis data, bill 
of materials, etc. However, none of this data is computed until you ask the 
system for it. This is known as demand-driven evaluation, since The ICAD 
System only evaluates the necessary part of the design instance when you 
demand some information. 

• Mixins 

To avoid making complicated defparts, The ICAD System allows you to build 
complex defparts by "mixing together" simpler defparts; the new defpart has 
the same attributes (rules) and parts (components) as all of the "mixed-in" 
defparts. ICAD provides many basic defpart primitives that you can use as 
mixins in your own defparts. 

Overview of This Chapter 

This chapter includes the following sections: 

"Planning an ICAD Product Model" 
Describes how you plan an ICAD product model, including 
dividing the problem into smaller components, organizing the 
product structure, and identifying inputs and outputs. 
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"Writing Defparts and Generating Design Instances" 
Describes the ICAD Design Language and shows how to 
create simple defparts, how to use a defpart to generate 
designs, and how to include engineering rules and inputs in 
a defpart. 

"Writing Engineering Rules" 
Shows how you write rules that are included in a defpart. 

"Creating the Product Structure" 
Shows how you create the product structure of the ICAD 
product model by including component parts in a defpart. 

"Rule Dependencies in the ICAD Product Model" 
Shows how to relate engineering attributes that belong to 
different parts of a product structure tree. 

"Modularizing the ICAD Product Model" 
Describes the capability of The ICAD System to modularize 
the design of the ICAD product model, including mixins and 
generic parts. 

"Modeling with Simple Geometric Primitives" 
Shows how you incorporate 2D and 3D geometry into an 
ICAD product model. It also introduces the large set of 
primitive parts available in The ICAD System. 

"Additional !CAD-supplied Geometric Parts" 
Introduces some of the other geometric parts that are made 
available to you as optional packages: curve and surface 
parts in the ICAD Surface Designer, which is a knowledge­
based surface-modeling package, and solid parts in the ICAD 
Solids Designer, which is a knowledge-based solid modeling 
package. 

"Developing Complex ICAD Product Models" 
Describes some of the tools provided by ICAD for writing 
and testing an ICAD product model, including the ICAD 
Design Language compiler and the ICAD Browser. 

"End-user Interfaces for an ICAD Product Model" 
Describes how to use the finished ICAD product model in a 
production environment. 
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To get the most leverage out of The ICAD System, it is best to plan the 
application in advance. This section describes the planning stages of an ICAD 
product model and includes the following topics. 

• Dividing the problem into smaller components. 

• Deciding on the basic product structure. 

• Choosing appropriate input specifications. 

• Determining the necessary outputs. 

Dividing the Problem into Smaller Components 

A successful ICAD product model is developed by dividing the larger problem 
into smaller component problems, each of which is more manageable than the 
problem taken as a whole. While solving the entire problem is the eventual goal, 
the smaller components provide effective milestones in the development of the 
final application and usually automate some portion of the entire design. This 
allows the application to show some quick returns, with incremental returns 
following over the course of the development. 4 Also, this allows different 
members of the design team to work concurrently on different components. 

For all complex systems, there is a size beyond which solving a large problem is 
disproportionally more complicated than dividing the large problem into smaller 
pieces, solving each of the pieces, and integrating the separate solutions. It is 
best to break down all problems so that they are no larger than this size.5 

For example, the mold-base product model is divided into several manageable 
tasks: 

• Feature extraction from the IGES input data. 

4The ability to subdivide an ICAD product model into smaller pieces easily is 
one of the capabilities of The ICAD System that is very hard to do using 
traditional programming languages. 

5This is not an inherent limitation of The ICAD System; rather, subdividing 
complex problems is a generally-accepted problem-solving strategy. 
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• Selection of appropriate mold base and configuration of cavities and standard 
parts. 

• Creation of process plan for the mold base. 

• Creation of annotated CAD drawings. 

The mold base design, itself a component problem, is broken down into sub­
problems: 

• Determination of the maximum number of cavities, based on the volumetric 
properties of the part design, the material properties of the plastic, and the 
type of injection molding machine. 

• Configuration of the most efficient cavity layout and runner system. 

• Selection of a standard mold-base part from a catalog of mold bases. 

• Selection of standard pins, screws, bushings, etc., from catalogs. 

• Configuration of the most efficient cooling system. 

• Collection and reporting of costs for component parts and machining. 

The process plan can also be further divided: 

• Determination of form features that must be custom-machined in the mold 
base. 

• Generation of a process plan to manufacture each part of the mold base. 

Deciding on the Basic Product Structure 

The product structure of the ICAD product model represents the way the product 
model is divided into components, each of which is further divided into 
subcomponents, etc. A component might represent a physical part or a process. 

The first step in developing an ICAD product model is deciding on the 
organization of the top levels of the product structure, that is, the major 
assemblies and processes that you are representing in the ICAD product model. 
Usually this reflects the way that you have broken the problem into components, 
that is, the first level of the product structure represents the different 
components of the problem. For example, the product structure of the mold base 
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reflects the four main problem components:6 

Feature-extraction ... 

Mo ld-base-design .. . 
Mold-base 

Manufacturing-view ... 

CAD-drawing-view ... 

Problem components of the mold base. 

The most basic component of the mold-base application is the design of the mold 
base. Its product structure reflects the basic assemblies of the mold base, 
including the different plates, the cavity and runner configuration, etc. 

The following diagram shows the major components of the mold-base design: 

Cavity-and-runner-configuration . .. 

Top-clamping-plate .. . 

A-plate ... 

Support-plate 

Ejector-mechanism 

Components ... 

Major components of Mold-base-design. 

This structure closely matches the design of complex mechanical assemblies in 
which the overall assembly is divided into subassemblies, which are further 
divided into subassemblies as needed. Lower levels include standard parts (which 
can be purchased from a vendor or custom-manufactured), features, and 
geometric-construction parts (such as a curve, surface, or solid). For a more 

6Ellipses in the diagram indicate that the terminal components are divided into 
further components. 
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detailed discussion of the product structure, see the section "Creating the 
Product Structure", page 4-29. 

Engineers are concerned with the relationships between the components of an 
assembly. The ICAD System lets you describe these relationships by allowing a 
component description to ref er directly to another component in a different 
assembly. For example, even though the plates and the screws that hold the 
plates together are in different assemblies, you can relate the thickness of the 
plates to the type of screw needed to hold the plates together. 

If different individuals are working on different components, you should decide 
upon the interface between the different components. For example, the interface 
between the feature-extraction component and the mold-base design components 
of the mold-base application is accessed by rules in the feature-extraction 
component that completely specify the part to be molded. The mold-base-design 
component need not know anything about the feature-extraction component 
except how to reference these rules. 

Identifying Inputs 

By identifying inputs to the ICAD product model, you define the requirements of 
the design. This means you distinguish between elements of the design that can 
be accomplished by the ICAD product model using rules, and elements of the 
design that must be supplied by the design engineer. 

Usually the basic problem is represented by an input specification, that is, the 
design engineer is asked to design a product given some specifications. Clearly, 
it is logical to include these specifications as inputs to the ICAD product model. 
Within the scope of the specifications, the design engineer usually has some 
latitude to decide on other design issues. When developing an ICAD product 
model, you need to decide how much of that latitude should be left to the design 
engineer using the ICAD product model, and how much should be built into the 
rules. 

Taking the mold-base design for example, the input specifications include the 
properties of the part to be molded, the plastic material, the production quantity, 
and the available injection molding machines. These are all inputs to the ICAD 
product model. In addition, the ICAD product model prompts the mold-base 
designer for additional design decisions. For example, when determining the 
optimal cavity configuration, the ICAD product model lets the design engineer 
choose whether the cavity layout is optimized for cost or time efficiency. 

Identifying Outputs 

The purpose of an ICAD product model is to generate outputs. Initially it is 
more important to be sure that the ICAD product model has the correct content, 
regardless of the format the outputs will take. The components of an ICAD 
product model that generate outputs are usually developed towards the end of 
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the development process. However, the eventual outputs should still be identified 
in the planning stages, since they can affect the content of the rest of the ICAD 
product model. For example, in order to implement a bill-of-materials component, 
the mold-base design includes cost data in the description of each part. While 
the bill of materials is developed later, it uses the cost data that already exists 
in the mold-base-design component. 

Writing the Rules 

Summary 

Once an appropriate problem has been selected and divided into smaller 
components, you need to consider how to best use the capabilities of the ICAD 
Design Language, described later in this chapter, to model the problem. Most 
rules are written on a case-by-case basis. 

• There are many strategies that can be used to design an effective product 
model. Good planning is essential. ICAD consultants will help you plan your 
initial project. ' 

• Divide the problem into smaller components: each component is easier to solve 
than the entire problem, and solving a small component gives you immediate 
payback. The product structure of the ICAD product model is composed of 
many of these components. 

• Identify the inputs to and outputs from the ICAD product model in the 
planning stages. 

• Most components in the ICAD product model can be developed on a case-by­
case basis; the important issues to resolve early on are how the different 
components interact together, and how the components are organized into the 
product structure. 
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compilation, design instance, instantiation, demanding a value, input specifications 

This section shows how to describe each component of a product model and 
includes the following topics: 

• How to write defparts - descriptions of product components - using the 
ICAD Design Language. 

• How to compile a defpart and generate a design instance. 

• How to generate different design instances from the same defpart by 
specifying inputs to the defpart. 

What is a Defpart? 

A defpart ("definition of a part") is a description of component of an ICAD 
product model. The ICAD product model is just a collection of defparts. A design 
instance of the ICAD product model is a collection of defpart instances organized 
in a product structure tree. Just as you supply inputs to the ICAD product 
model to generate a design instance, you supply inputs to a defpart to generate 
an instance of the defpart. 

A defpart consists of the following: 

• Input-attributes are the inputs that must be specified in order to create an 
instance of the defpart. 

• Attributes are the engineering rules. 

• Parts are the components of the defpart; they describe the product structure 
tree that is created when a design instance of the defpart is generated. 
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The following diagram shows the different sections of a defpart: 

~~fpart 

.... ,,,::_Inputs , ._,_.,. ,,.:.,, ... , i/.' . . ,,.,,,,,,,:,:::c······ 

.:, .x Describe the ·inpuf re'qui r,e,r,Deritsol'' 
---·:·.·=·:;.·-

,,,.,;::,,,,,,;:::::, the defpart t ./:' ,,;: , ,.,,,_. 

Parts · .... , , ··,::::::· · · · · · 
oe·scribe tt1'E~ components of i~4"'C:i~~pa'rt. : 

.. . . ·:-_: 
·:-:' -:-:-:-:-:-:-: :::;::.:::::;:;:. .... 

Different parts of a defpart. 

This section discusses simple defparts which are not related to other defparts in 
a product structure tree. It shows how to write a defpart using the ICAD Design 
Language, and how to generate a design instance from the defpart. It also shows 
how attributes and input-attributes are incorporated into a defpart. 

The section "Writing Engineering Rules" describes different kinds of attributes 
and input-attributes in detail. 

The section "Creating the Product Structure" shows how defparts describe the 
product structure of a design instance by defining parts. 

Introduction to the ICAD Design Language 

Defparts are written using an engineering specification language provided by 
ICAD called the ICAD Design Language, or IDL. The ICAD Design Language 
has many features that make it particularly expressive for describing 
engineering parts and processes: 

• It is an object-oriented language. This means that different components of the 
product are described as separate pieces or objects, that is, a defpart. Each 
defpart contains engineering rules or attributes that describe it. 

• It provides facilities for describing complex relationships between defparts. 
Often the description of one defpart depends on aspects of other defparts. 
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• Engineering attributes are described in engineering terms using names that 
you define. 

• The order in which you describe the different defparts is irrelevant since The 
ICAD System determines the dependencies between defparts automatically. In 
this way, you can describe the higher-level components first, and then 
describe the lower-level components on which the higher-level components 
depend. 

A Simple Defpart 

This section shows how you can use the ICAD Design Language to describe one 
component of a mold base, which is a plate. (The mold base includes four plates; 
see the section "About Mold-base Design", · page 3-2 for details.) 

A Mold-base-plate defpart describes the geometry of a plate by its width and 
thickness, as well as the placement of holes for the inserts and screws. 7 The 
description also incorporates various engineering attributes, such as the plate's 
maximum expected load and the plate's maximum expected stress (which is a 
function of the the maximum expected load, the thickness, and the width). 
The following diagram shows a trimetric view of a plate: 

Screw holes 

Trimetric view of a plate. 

7For the purposes of this introductory example, a square Mold-base-plate is 
assumed. 
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A simplified Mold-base-plate defpart is shown in the following diagram. 
Throughout the next few sections, this defpart will be rewritten to show more 
and more capabilities of The ICAD System. 

In all ICAD Design Language examples shown in this chapter, names and syntax 
that are part of the ICAD Design Language are shown in boldface type, while 
user-defined names and values are shown in standard (roman) type. 

The defpart is named 
"Mold-base-plate" 

A Mold-base-plate adds to the existing 
definition of a box by "mixing it in" 
(described in the section "Modularizing the 
ICAD Product Model") \ 

"Attributes" are the 
engineering rules for the 
Mold-base-plate. In this 
example, everything that 
follows is an attribute of 
the Mold-base-plate. 

( defpart Mold-base-plate ( ~ ) 
~~~l :attributesl 

( :Thickness 0.25 
:Height 0.50 

These attributes represent the 
basic dimensions of the 
Mold-base-plate, defined in 

-- meters (any units 
:Width 0.50 can be used, however). 

These attributes represent : Maximum-load 1 o o o o o 
non-geometric information ---i :Maximum-stress 1.14 
about the Mold-base-plate. In this ) ) 
example, Maximum-load is defined 
in N and Maximum-stress is defined 
in MPa. 

The example starts with a parenthesis which indicates that a new defpart is 
being defined. The word defpart indicates that the name and definition of the 
defpart follow. 

After giving the name of the defpart, the example supplies a mixin for the 
defpart, that is, the name of another defpart whose definition is added to (or 
"mixed into") the Mold-base-plate defpart. The Mold-base-plate is a kind of a 
Box, since it mixes in the definition of a box. See the section "Modularizing the 
ICAD Product Model", page 4-49 for a more detailed discussion of mixins. 

Following the ICAD Design Language keyword :attributes is a list, in 
parentheses, of engineering attribute names and values. Engineering rules are 
usually defined as defpart attributes. In this defpart there are five different 
attributes. The first three, Thickness, Height, and Width, represent basic 
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geometric information about the part.8 Maximum-load and Maximum-stress 
represent engineering information. 

Finally, a closing parenthesis matches the opening parenthesis, indicating the 
end of the defpart. 

In general, The ICAD System does not assume any units; you are responsible for 
maintaining unit relationships. The Mold-base-plate is defined using 
international units, that is, the lengths are defined in meters (m), the load is 
defined in Newtons (N), and the stress is defined in Pascals (P). 

In this first example, all of the attribute values are constants. Later examples 
show that the value of some of the attributes are directly related to other 
attributes. Since we are restricting ourselves to a square Mold-base-plate, the 
value of the Height must be the same as the value of the Length. Additionally, 
the Maximum-stress can be computed from the values of the other attributes. 

aThe syntax of the ICAD Design Language requires that attribute names start 
with colons. The colons are dropped in the text of this document. Names that 
are part of the product definition are capitalized. 
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This next example of the Mold-base-plate defpart includes rules for calculating 
the Height and the Maximum-stress. 

( defpart Mold-base-plate (Box) 
:attributes 

( :Thickness 0.25 

:Height (the :Width) 

:Width 0.50 
:Maximum-load 100000 

:Maximum-stress 
(div (* 0.2874 

(the :Maximum-load) 
(A2 (the :Width)) 
1.0E7) 

The rule for computing the Height says 
that its value is the same as the Width. 

"The" means get the value of the attribute. 
This is called referencing the attribute. 

Notice that order of the attributes in the 
defpart is irrelevant. 

The rule for computing the Maximum-stress 
uses a simple formula for stress: 

0.2874 * Maximum-Loai *Width* 10
6 

Thickness 
2 

( A2 (the : Thickness))) ) ) 

Since the values of Width, Thickness, and 
Maximum-load are used in the rule for calculating the 
Maximum-stress, we say that Maximum-stress 
depends on Width, Thickness, and Maximum-load. 

Generating a Design Instance from a Defpart 

At first glance, this rule looks somewhat 
strange because the ICAD Design 
Language uses a prefix notation to 
represent expressions. That is, the 
operator comes first, followed by each 
operand. Each expression is written 
inside a set of parentheses. For 
example, the expression s * 6 is written 
(* s 6) in prefix notation. div means 
divide and 1\2 means raise to the power 
of 2. 

Once you have written a defpart, The ICAD System provides a way to generate 
design instances from the defpart. The first step is to compile the defpart, that 
is, The ICAD System translates the defpart into a form the computer can 
understand. Once the defpart is compiled, you can ask The ICAD System to 
produce a design instance of the defpart. This is called instantiating the defpart. 

The design instance knows how to evaluate the rules in the defpart to produce 
results. For instance, the previous . def part contains a rule that says the value of 
the Height is the same as the value of the Width. The design instance knows 
how to calculate the value of the Height based on that rule. When you ask the 
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design instance for its Height, it evaluates the rule and responds with 0.20.9 

Note that the design instance does not evaluate any rules until you ask for their 
values. This capability is called demand-driven evaluation. Demand-driven 
evaluation minimizes the number of calculations that The ICAD System 
performs, that is, only those calculations necessary to compute the results that 
you request are performed. When you ask for the Height, for example, the 
design instance evaluates the rule for the Height and Width (since Height 
depends on Width); it does not evaluate the more complex rule for Maximum­
stress. 

The following diagram shows how you produce a design instance from a defpart. 
First you compile the defpart, then you ask The ICAD System to create a design 
instance from the compiled defpart. Finally, you cah ask the design instance to 
evaluate rules built into the defpart. 

Mold-base-plate 
def part 

The designer asks: Q 
"What is the Height?" 

The design instance A 
responds: H0.50 m" 

The designer asks: Q 
"What is the 
Maximum-stress?" 

The design instance A 
responds: "1.15 MPa" 

Mokl-base-plate ~·: .. 

Compiled 
Mold-base-plate 
defpart 

Mold-base-plate 
design instance 

9Geometric attributes of a design instance are commonly demanded by asking 
The ICAD System to draw a picture of the design instance. 
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Including Input Specifications In a Defpart 

Defparts can contain input requirements as well as engineering rules. Input 
requirements are like engineering rules except that their values are not part of 
the defpart; The ICAD System expects you to supply values when the compiled 
defpart is used to generate a new design instance. The values of the inputs can 
substantially change the characteristics of the product design since many 
engineering rules depend on other values. If some values are inputs, then values 
of the dependent engineering rules change as the inputs change. 

Input specifications for 
first design instance 

~ Input specifications for 

/ L s_e_c_o_n_d_d_e_s_ig_n_in_s_t_an_c_e_ 

~ 
Compiled~ 

Mold-base-plate 
defpart 

First design instance Second 
design instance 

Different input specifications to the same compiled defpart generate different design instances. 

For example, the previous Mold-base-plate defpart has a fixed Width, Thickness, 
and Maximum-load. A more interesting defpart, shown below, describes a plate 
of any size with a varying maximum load. Width, Thickness, and Maximum-load 
are now inputs, that is, you supply them when you create a new design instance. 
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The following example shows this new Mold-base-plate defpart. You must supply 
the values of the Width, Thickness, and Maximum-load when you create a new 
Mold-base-plate part design. Notice that the definition of Maximum-stress is the 
same as before. However, since the value of Maximum-stress depends on the 
values of the inputs Maximum-load, Width, and Thickness, its value changes as 
these inputs change. 

( defpart Mold-base-plate ( Box ) 

:inputs 

(:Width :Thickness :Maximum-load ) 

:attributes 

(:Height (the :Width) 
:Maximum-stress 
(div (* 0.2874 

(the :Maximum-load) 
(A2 (the :Width)) 
1.0E7) 

(A2 (the : Thickness))) ) ) 

"Inputs" are attributes whose 
values are supplied by the 
end user when a new design 
instance is generated. 

The definition of Height and 
Maximum-stress are the same as 
before. 

Creating Different Design Instances from the Same Defpart 

With this new defpart, you must supply values for Width, Thickness, and 
Maximum-load when you generate a new design instance. For instance, you 
could supply the following set of inputs to the defpart: 

Width 
Thickness 
Maximum-load 

1.0 m 
0.025 m 
100 000 N 
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If you ask the design instance for its Maximum-stress, it evaluates the rule for 
Maximum-stress using the input values. 

Input Specifications 
l/Jidth 1.0 m 
Thickness 0.025 m 
Maximum-load 100 000 N 

The designer asks: Q 
"What is the Height?" 

The design instance A 
responds: "1.0 m" 

The designer asks: Q 
"What is the 
Maximum-stress?" 

The design instance A 
responds: "45.99 MPa" 

J .l + ,__M- ol-d-b-ase--pl-ate_< __ ··: .. _, ---

Compiled 
Mold-base-plate 
def part 

Mold-base-plate 
design instance 

Another set of inputs creates a new design instance which has a different value 
for Maximum-stress. The following inputs to the Mold-base-plate defpart, for 
instance, produce a new value for Maximum-stress: 

Width 
Thickness 
Maximum-load 

3.0 m 
0.10 m 
100 000 N 
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Changed inputs 

-----~ 
and responses 

The designer asks: Q 
The designer asks: Q "What is the Input Specifications 

r;----------- 1 
1 

Width 3.0 m "What is the Height?" Maximum-stress?" 

1 JhJ_c~n~s~ ____ OJ fl!~ , i-h~ de~~;i~s~a~c~ -A---The design- instance - -A-: 
Maximum-load 100 000 N 

' responds: "3.0 m" responds: "25.87 MPa" 1 

Summary 

1___________ --------------- ~ 

J .l + .__M- ol-d-b-ase--pl-ate_< __ ··: .. ~---
Compiled 
Mold-base-plate 
def part 

Mold-base-plate 
design instance 

This shows how an ICAD product model can be used to do "what-if' analysis. In 
this simple Mold-base-plate defpart, you can investigate how the Maximum-stress 
changes as the input specifications, e.g., the Width, Thickness, and Maximum­
load, change. 

• ICAD product models are divided into components. Defparts describe each 
component. 

• Defparts contain both engineering rules and input requirements for each 
component. These rule encapsulate the engineering knowledge about the 
component. Defparts are written using the ICAD Design Language. 

• To use a defpart, you compile it, and then generate a design instance from 
the compiled defpart. You can ask the design instance to evaluate any of the 
rules in the defpart. The results depend on both the input specifications and 
the rules. 
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This section shows how you include engineering rules in a defpart and includes 
the following topics: 

• Attributes as engineering rules. 

• Descriptions of different kinds of attributes. 

• Evaluation of the value of attributes in a design instance. 

The rules in a defpart are called engi.neering attributes, or just attributes. 
Attributes define a part's physical dimensions, its location in space, its economic 
traits, its material properties, and any other kind of information that is required. 
In fact, you can model any engineering property that describes the product using 
attributes. 

The previous section showed how some simple engineering rules are represented 
as attributes. It also showed how some attributes are represented by inputs, that 
is, their values are supplied when a new part design is generated. 

This section shows some of the more complex ways to define engineering rules 
as attributes. 

Attributes as Constant Values 

For simple attributes, you supply the value when you write the defpart. For 
instance, one attribute of the mold base is the Polymer-melt-temperature. The 
followinfi defpart fragment defines this attribute and specifies its value as 300 
Celsius. 0 

:Polymer-melt-temperature 300 

10 A def part fragment is a piece of a def part. We sometimes show def part 
fragments instead of the entire defpart to simplify this document. 
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The following fragment defines an attribute called Material. Its value says that 
the Mold-base is made out of AISI 4130 steel. In this case, the value of the 
attribute is a name, not a number.11 

:Material 'AISI4130-steel 

Attributes Whose Value Depends on Other Attributes 

More interestingly, you can define the value of attributes relative to other 
attributes. In the Mold-base-plate defpart, for instance, the value of Maximum­
stress is based on the Thickness, Width, and Maximum-load. As another 
example, the rule that calculates the Required-melting-temperature in the mold 
base is defined as "multiply the Polymer-melt-temperature by 1.05". This is 
written as follows in the ICAD Design Language: 

:Required-melting-temperature(* 1.05 (the :Polymer-melt-temperature)) 

Conditional Attributes 

The value of an attribute can be defined conditionally, that is, its value is one of 
several different choices depending on a test condition. 

The mold-base plates, for example, can be constructed from two different 
materials, AISI 1045 steel or AISI 4130 steel. The AISI 1045 steel has better 
stress characteristics than the AISI 4130 steel, but it is also more expensive and 
should only be used when the maximum load requires it. The value of the 
Material attribute is calculated using the following rule: If the Maximum-load is 
less than 200 000 N use AISI 4130 steel, otherwise use AISI 1045 steel. 

AISI 1 045 steel +--No Yes---+ AISI 4130 steel 

11 The quote character indicates that AISl4130-steel should be interpreted 
literally, that is, the computer should not try to translate it into a number. 
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You express this in the ICAD Design Language as follows: 

In put-attributes 

:Material ~ Test 

(ifl( < 200000 (the :Maximum-load)) 

'AISI4130 ~Value if test is true. 

1 AISI10451) 

I 
Value if test is false. 

Input-attributes represent the input requirements of the defpart. You supply a 
value for each input-attribute when you generate a new design instance. In the 
previous section we saw how Width, Thickness, and Maximum-load can be 
supplied as inputs to the Mold-base-plate. You must give a value for Width, 
Thickness, and Maximum-load whenever you make a new Mold-base-plate design. 

Choice-attributes 

Defparts can also contain choice-attributes. The values of choice-attributes are 
not part of the engineering rules. Instead, you supply the value of a choice­
attribute when prompted by The ICAD System. 

Choice-attributes are like inputs in that you supply their values when the design 
instance is generated. However, unlike inputs, you do not supply their value 
when the design instance is first created. Instead, the design instance prompts 
you for the value of a choice-attribute while it is computing an engineering rule 
that depends on the value of the choice-attribute. Thus, you do not have to 
supply values for all choice-attributes, just the ones that are needed for the 
design instance. 
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The mold base, for instance, requires that you choose an injection molding 
machine from a list of possible injection molding machines. This list is 
calculated from a catalog, so only certain machines are valid choices. The rule 
that describes the choice-attribute insures that only valid choices are presented. 
The following diagram shows the pop-up that appears to the end user when a 
value for the choice-attribute is required. 

Accept! Helo! Cancel! 
MOLD-DESIGN 

Select the Molding Machine Model (choose one) 

T-75 

T-100 

150 

T-150 

150-EP 

T-200 

:25((! 

T-300 

T-350 

375 

500-ED 

500 

i'lil0 

700-WP 

1000 
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Other Kinds of Attributes 

There are many other ways to write engineering rules in The ICAD System: 

• Catalog lookup 

The value of the attribute can be computed by looking it up in an on-line 
catalog. For example, the cost of each screw used to hold the plates together 
can be determined by querying a catalog or database. 

• Engineering trials 

Each value in a series of values can be "tried" as the value of the attribute. 
The first value that successfully passes a test is used as the value of the 
attribute. For example, there is a set of possible kinds of steel that can be 
used for the body of the plates. The least-expensive steel is tested first as the 
value for the plate material. If it is not strong enough, the next-expensive 
steel is tested, etc., until one is found that is strong enough for the job. 

• Remote evaluation 

The value of an attribute in a defpart can actually be computed by another 
engineering package, and then used in the !CAD product model. For example, 
the value of the Mold-flow-result attribute in the Mold-base is calculated by a 
remote flow-analysis package. 
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Evaluating the Value of Attributes 

Rules that are used to calculate the value of attributes are defined in the 
defpart. The actual values of the attributes are associated with design instances 
of the defpart, that is, after you generate a new design instance from the 
defpart you can evaluate the value of some of its attributes. 

Demanding the value of an attribute causes the rule that defines the attribute 
to be evaluated. In addition, all attributes on which the rule depends are also 
demanded and evaluated; however, no other attributes in the ICAD product 
model are evaluated. This insures that only those calculations that are required 
to compute the desired result are executed. This feature of The ICAD System is 
called demand-driven evaluation and is a main reason that The ICAD System can 
manage large designs with thousands of parts effectively. 

Consider the Mold-base-plate defpart (this is the same Mold-base-plate defpart 
discussed in the previous sectio:n): 

( defpart Mold-base-plate ( Box ) 
:inputs 
(:Width :Thickness :Maximum-load ) 

:attributes 
( :Height (the :Width) 

:Maximum-stress 
(div (* 0.2874 

(the :Maximum-load) 
(A2 (the :Width)) 
1.0E7) 

(A2 (the : Thickness))) ) ) 

Notice that the Height depends on the Width, that is, in order to evaluate the 
Height The ICAD System must first evaluate the Width. Likewise, the 
Maximum-stress depends on the Maximum-load, the Width, and the Thickness. 
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Consider a design instance of the Mold-base-plate with the following input 
specifications: 

Width 
Thickness 
Maximum-load 

1.0 m 
0.025 m 
100 000 N 

The ICAD System provides a tool called an inspector in which the value of all 
the rules in a design instance are shown. When the design instance is first 
generated, the inspector contains the following information: 

..• ,,:~~~·1.~,~ ·-:;::,.-,: __ _ 
. ft.~i'g~!I F _ 
Maximum-load ..... 

All of the attributes are unbound, that is, none of their values have been 
evaluated by the system yet. 

When you ask the design instance for the value of an attribute, that attribute is 
demanded by The ICAD System, and any other attnlmte upon which that value 
depends is also demanded. For instance, since Height depends on Width, when 
you ask for the value of Height, the value of Width is also calculated. 

After Height is requested, the inspector looks like this: 

Both Width and Height are calculated. 
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After an attribute is calculated, its value is automatically cached, that is, it is 
stored in the memory of the computer. This means that the first time an 
attribute is demanded, The ICAD System computes its value from the 
appropriate rules and then remembers the value.12 The ICAD System never has 
to recompute that attribute; subsequent times the attribute is required, The 
ICAD System just returns the cached value. This is much more efficient than 
recalculating the value each time it is required. 

For example, when you ask for the value of MaXimum-stress, The ICAD System 
automatically demands the values of Maximum-load, Thickness, and Width, since 
Maximum-stress depends on these other attributes. The ICAD System finds that 
Maximum-load and Width have not yet been calculated, so it calculates those 
values. The value of Thickness has already been calculated, so it returns the 
cached value without recalculating it. 

After Maximum-stress is requested, the inspector looks like this: 

12Unlike most programming languages, The ICAD System takes care of the 
order of evaluation and data dependencies for you. That is, The ICAD System 
always knows whether an attribute depends on the value of another attribute. 
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Summary 

• Attributes represent the rules in the product model. 

• Attributes can be simple values, arithmetic expressions defined relative to 
other attributes, conditional values, catalog entries, trial values, or values 
returned after executing another computer package. 

• You supply values for input-attributes when you create a new design instance. 

• You supply values for choice-attributes when prompted by the design instance. 

• The values of attributes are computed on demand. Only those attributes that 
you request are computed. Once computed, the value is cached. 
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This section shows how to create the product structure of an ICAD product 
model and includes the following topics: 

• The product structure tree and its components: root, parts, branches, and 
leaves. 

• The meaning of different levels of the product structure tree in a mechanical 
assembly. 

• The relationship between parts in a product structure tree and defparts. 

• Inputs in a product structure tree. 

• Varying the product structure tree using the inputs. 

The Product Structure Tree 

A design instance of an ICAD product model is organized into a tree structure 
called the product structure tree. 

A tree organization naturally reflects the way that design and manufacturing 
engineers think about product design. It provides an unambiguous way of 
addressing every rule in the ICAD product model, which allows complex 
relationships to be set up between rules (see the section "Rule Dependencies in 
the ICAD Product Model", page 4-45). Tree organizations also provide a natural 
modularity to the product design. Complex assemblies are divided into 
subassemblies. Each subassembly can be designed separately, and each is further 
divided into components that can be designed separately. 

A product structure tree links the components of a product design together. The 
root of the product structure tree is a design instance of the defpart that 
represents the entire product structure. The root branches out into more 
detailed levels which are called children or parts of the root. For example, a 
branch might represent a subassembly of the product assembly. Each child can 
have additional children. The terminal components of the tree are called leaves; 
these are parts that have no children. 
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I 
L 

The following diagram shows a basic tree structure with the root, branches, and 
leaves indicated. Each circle represents a part in the tree, which is a design 
instance of a defpart. 

Legend 

0 

• • 
=part 

= root (also a part) 

= leaf (also a part) 

= branch or subtree 

Basic tree structure. Each circle represents a part in the product structure tree, that is, 
a design instance of a defpart. 

Levels of the Product Structure Tree 

It can be helpful to think of the different levels of the product structure tree as 
roughly representing a number of conceptual levels in a mechanical assembly. 
The root represents the entire design instance, which is divided into the design 
of the part. This overall design decomposes into subassemblies. Subassemblies 
are typically built from component parts (e.g., screws, holes, etc). Parts are often 
divided into their component design features. The lowest level (leaves) of the 
product structure tree usually represents the actual geometric structure of the 
mechanical part (see the section "Modeling with Simple Geometric Primitives", 
page 4-56). 
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This is shown in the following diagram. Note that product structure tree of your 
ICAD product model may not follow this diagram exactly. Sometimes there are 
many levels of subassemblies before the component part level, and in some cases 
component parts are not divided into design features. 

Root 
Subassembly 
level 

Different levels in a product structure tree. 

Part 
level 

Feature 
level 
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If we look at the product structure tree of a design instance of the mold base, 
we find that the mold base is subdivided into five subassemblies. A subassembly 
represents the Cavity-and-runner-configuration, the Top-clamping-plate, the 
A-plate, the B-plate, the Support-plate, the Ejector-mechanism, and the 
Components (that is, screws, pins, and bushings). The following diagram shows 
the root of a mold base design instance with its children. Note that the complete 
product structure tree is not shown. The ICAD System generates part designs 
for the product structure tree one level at a time; the ellipses show that there 
may be lower levels of the product structure tree that have not been 
generated.13 

Cavity-and-runner-configuration 

Top-clamping-plate 

A-plate 

Mold-base-design~=------- B-plate 

Support-plate 

Ejector-mechanism 

Components 

If we want to look at one of the children of the mold base in detail, we can ask 
The ICAD System to expand that portion of the tree. In this case, we ask to 
expand the Top-clamping-plate, and we find that the Top-clamping-plate has six 
children. One child, the Plate, represents a box with the same dimension as the 
Top-clamping-plate. The five other children represent holes in the Top-clamping­
plate. 

The Plate terminates the product structure tree; it directly represents the 
geometry of the product model. However, the Holes are subdivided into further 
children. Each Hole is composed of two features, a Counterbore and a 
Straightbore. 

13This is another example of demand-driven evaluation. 
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The following diagram shows the product structure tree for a Top-clamping­
plate: 

Plate 

Hole 0 
Counterbore 

C:::::::::straightbore 

Cavity-and-runner- Counterbore 
Hole 1 C:::::::::straightbore configuration 

Top-clamping-plate Counterbore 
Hole 2 C:::::::::straightbore A-plate 

Counterbore 
Mold-base-design B-plate Hole 3 C:::::::::straightbore 

Support-plate Counterbore 
Ejector-mechanism Hole 4 C::::::::: Straightbore 

Components Counterbore 
Hole 5 C:::::::::straightbore 
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Other products have different product structures. A simplified product structure 
for an automobile, for instance, might look something like this: 

Distributer 
Ignition 
Alternator 

Electrical Battery 
Starter 
Fuses 
Lights - ------Bulbs 

Radiators - -----Fans 
Cooling-system Water-pump 

Hoses 
Thermostat 

~steering-rack 
Steering Steering-column --- Steering-wheel 

Steering-
cont ro 1-arms 
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A product structure tree often has components that represent process 
information. This product structure tree of a Through-hole, for instance, 
includes components that represent manufacturing processes such as punching 
and drilling: 

Punching 

Through-hole < ~Center-drill 
Drilling Drill 

Bore 

Product Structure Trees and Defparts 

Each part of the product structure tree is a design instance of a defpart. The 
product structure tree links the design instances into an overall design instance. 
Thus, the product structure tree consists of a tree of design instances, not 
def parts. 

The root of the product structure tree is a design instance of the defpart that 
describes the overall ICAD product model. The name of the root in the product 
structure tree is the same as the name of the defpart that describes it. 

The root describes how it is divided into components. It does this by including 
the following items in its defpart: 

• The names of each of the components. For example, the components of the 
mold-base are named Cavity-and-runner-configuration, Top-clamping-plate, 
A-plate, B-plate, Support-plate, Ejector-mechanism, and Components. 

• The components type, that is, the defpart that defines the child. For example, 
the Top-clamping-plate, A-plate, B-plate, and Support-plate are all types of 
Mold-base-plate, that is, they are all defined by the Mold-base-plate defpart. 

• The input specifications for each child. Since each component is a design 
instance of a defpart that can have input-attributes, the necessary inputs for 
each child must be specified in the definition of each child. 

Notice that the mechanism of supplying inputs to a root def part is quite 
different from the mechanism of supplying inputs to a lower-level defpart. You 
supply the inputs to the root defpart when you create the new design instance. 
However, the inputs to a lower-level defpart are part of the rules of the parent 
defpart. For example, when you create a new Mold-base-design instance as the 
root of the product structure tree, you supply the inputs to the new Mold-base-
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design part. The inputs for each of the components, however, are specified in 
the rules for the Mold-base-design. This mechanism continues down the tree. 
For example, the inputs for each component of the Top-clamping-plate are 
specified in the rules for the Top-clamping-plate, etc. This is shown in the 
following diagram: 

Inputs for the root part 
(Mold-base-design) come 
from the design 

Inputs for Top-clamping-plate 
are part of the rules in the 
Mold-base-design engineer 

t+ Mold-base-design 
~ ~~~-clamping-plate~ Hole 0 ~ 

The inputs to the root come from the design engineer, but the inputs to the other parts in the product 
structure tree come from their parents. 
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The following is a simplified defpart that represents the mold base. It shows 
how the components of a design instance and their inputs are specified as rules 
in the defpart that creates the design instance. 

Mold-base-design "mixes in" Basic-mold-data, which 
j includes many of the design details. 

(defpart Mold-base-design Cl Ba ~ ic-mold-data l ) 

:inputs 

( : Part-to-mold 1
t---- The input requirements of the Mold-base-design 

:Production-quantity I> 
Following the "Parts" keyword 

[ : parts [,_----------- are the components of the Mold-base-design. 
i.......=-;::===:!..-----------------. 

( (Cavity-and-runner-configuration The first component is the 
:type Cavity-layout ) !'-... Cavity-and-runner-configuration. Its type is 

~---------------~ Cavity-layout, that is, it is a design instance of the 
(Top-clamping-plate Cavity-layout defpart. 

:type Mold-base-plate ,_The second component is the Top-clamping-plate. Its 
: Thickness 0 - 03 type is Mold-base-plate. Since the Mold-base-plate 
:Number-of-holes 5) requires inputs to generate a design instance, the 

Inputs Thickness and Number-of-holes are specified 
(A-plate here. 

:type Mold-base-plate The third, fourth, and fifth components -A-plate, 
: Thickness 0. 05 .-- 8-plate, and Support-plate - are also kinds of 
: Number-of-holes 5) Mold-base-plates. The inputs to each component are 

(B-plate different, however. 

:type Mold-base-plate 
:Thickness 0.05 
:Number-of-holes 8) 

(support-plate 
:type Plate 
:Thickness 0.03 

:Number-of-holes 8) 

(components 
: type Components ) 

(Ejector-mechanism 

:type Ejector-mechanism) 

The sixth and seventh components - Components 
v and Ejector-mechanism - have the same name as 

the defparts that describe them. 

) ) 
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The Top-clamping-plate, A-plate, B-plate, and Support-plate are all described by 
the Mold-base-plate defpart. As we saw earlier, each Mold-base-plate has six 
children. 

Mold-base-plate "mixes in" Basic-plate-data, 
which includes many of the design details. 

I 
(defpart Mold-base-plate ( IBasic-plate-dataj) 

:inputs 

1----- These are the inputs that were specified by (:Thickness 

:Number-of-holes ) 

I :parts 11---------­
( (Plate 

:type Box 

Top-clamping-plate, A-plate, B-plate, and Support-plate in 
the Mold-base-design defpart. 

Following the "Parts" keyword 
are the components of the Mold-base-plate. 

- Plate is described by the Box defpart. 

Holes are described by the Hole defpart. They 

:Length (the :Thickness) ) 
are quantified, that is, more than one design 
instance can be generated. The number of 

(Holes 

:type Hole 

holes generated 
depends on the value 
of the input 
Number-of-holes. 

:quantify (:series (the :Number-of-holes)) ) ) ) 
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Each Hole is composed of a Straightbore and Counterbore, therefore the defpart 
that represents a hole includes rules that specify the Hole's children. 

Hole "mixes in" Hole-data, which 
(defpart Hole Ci Hole-data ]) includes many of the design details. 

Following the "Parts" keyword I :parts I are the components of the Hole 

( (straightbore - Both Straightbore and Counterbore are 
described by the Cylindrical-feature 

:type Cylindrical-feature defpart. The Feature-spec input indicates 

:Feature-spec 'Counterbore ) to the defpart whether to create a 
Straightbore design instance or a 

(counterbore 
Counterbore design instance. 

:type Cylindrical-feature 

:Feature-spec 'Straightbore ) ) ) 
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Legend: 

I 

The following diagram shows how the product structure tree for a design 
instance of the Mold-base relates to the defparts that represent each part in the 
product structure tree. Note that there are many more parts in the product 
structure tree than there are defparts. 

I 

Cavity-and-runner­
configuration 

IEjector-mechanismj . .. 

I Components ... 

Described by a defpart of the same name (for example, the 
Components part is described by the Components defpart}. 

Described by the Mold-base-plate defpart (for example, the 
Top-clamping-plate part is described by the Mold-base-plate defpart}. 

Described by the Box defpart. 

Described by the Hole defpart. 

Described by the Cylindrical-feature defpart . 

Partial product structure tree for the Mold-base-design showing the defparts that describe each component. 
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Varying the Product Structure Tree Based on the Inputs 

The product structure described by a defpart is not fixed; its configuration is 
based on the input specifications. 

For instance, one of the inputs to the Mold-base-plate defpart is Number-of­
holes, that is, the number of holes in the plate. The value of this input changes 
the number of children the Mold-base-plate has. If Number-of-holes is four, then 
Mold-base-plate has five children - the box-shaped plate and four holes. If 
Number-of-holes is six, then Mold-base-plate has seven children - the box­
shaped plate and six holes. 

Input Specification 
(from Mold-base-design part) 

Number-of-holes 4 

~~::ea 
Mold-base-plate hole 1 

hole 2 

hole 3 

Input Specification 
(from Mold-base-design part) 

Number-of-holes 6 

plate 

hole 0 

hole 1 

hole 2 

hole 3 

hole 4 

hole 5 

A Mold-base-plate has five components when the input Number-of holes is four, and seven 
components when Number-of holes is six. 

In this example, the basic structure of the Mold-base-plate doesn't change 
drastically since the inputs to the Mold-base-plate only changes the number of 
holes in the plate. 

The Cavity-and-runner-configuration part of the Mold-base design instance 
illustrates a more dramatic structural change in the product structure tree. As 
discussed in the section "Design of a Plastic Injection Mold Base", one of the 
more complex aspects of a mold-base design is the layout of the cavities and 
runners. In the Mold-base product model, there are different defparts that 
represent different types of Cavity-and-runner-configurations. For instance, there 
are one-cavity configurations, two-cavity configurations, four-cavity 
configurations, etc. The actual type of Cavity-and-runner-configuration is chosen 
by The ICAD System when the product structure tree is generated. 
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The rules that the ICAD product model uses to chose a configuration can be 
summarized as follows: The type of injection-molding machine (selected by the 
design engineer) determines the maximum number of cavities that can be 
molded. The Cavity-and-Runner-Configuration part designs a different 
configuration for each of the possible numlber of cavities (from one to the 
maximum). The cost of each configuration increases as the number of cavities 
increases (since it costs more to mill additional cavities). However, the cost of 
production decreases as the the number of cavities increases (since you can 
produce more parts with each cycle). A cost-per-part attribute can be calculated 
by the following expression: 

Cost-of-manufacturing-mold-base + Total-production-cost 

Total-number-of-parts-to-mold 

The configuration that results in the least-expensive cost per part is chosen as 
the final configuration. The product structure tree reflects this final 
configuration. 

View of 5-cavity configuration 
Product structure tree 
for 5-cavity configuration 

Molded-part 0 

Molded-part 1 

Molded-part 2 

Molded-part 3 

Molded-part 4 

Runner-a 

Runner-1 

Runner-2 

Runner-3 

Runner-4 

Sprue 

Cavity-and-runner-configuration for 5-cauity mold base. This configuration is optimal for 200 000 
parts to mold. 
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View of 8-cavity configuration 

Cavity-and-runner­
configuration 

Product structure tree diagram 
for 8-cavity configuration 

Molded-part O .. . 

2xl o Molded-part 1 . . . 

Runner 

Molded-part O . . . 

2x2 O 1---- 2xl 1 Molded-part 1 . . . 

Runner 

Runner 

2xl 

L Molded-part O .. . 

O~ Molded-part 1 .. . 

Runner 

2x2 1 

L Molded-part 0 .. . 

.----2xl 1 ~Molded-part 1 .. . 

Runner 

Runner 

Runner 0 

Runner 1 

Sprue 

Cavity-and-runner-configuration for 8-cavity mold base. This configuration 
represents the optimal configuration for 3 000 000 parts to mold. 

Summary 

• The components of a design instance are organized into a product structure 
tree, which naturally represents the subdivision of a mechanical product into 
assemblies and subassemblies. The overall product is the root of the product 
structure tree. Product components are parts in the product structure tree. 
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• Different levels of the product structure tree correspond to different levels of 
the design. The root represents the overall product, which is typically divided 
into subassemblies. Subassemblies are composed of component parts. Parts are 
built out of features. The lowest level is the geometric primitives provided by 
ICAD. 

• Each part in a product structure tree is described by a defpart. Defparts can 
include components by specifying the name of the component, the kind of part 
the component is (i.e., the name of the depart that defines it), and the inputs 
to the defpart that defines it. 

• The product structure of a design instance can change as the input 
specifications to the defpart change. 
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Keywords: referencing, symbolic referencing, simple referencing chain, complex 
referencing chain, inherited values, descendant attributes, part-whole defaulting 

This section shows ICAD Design Language techniques for relating engineering 
attributes that belong to different parts of an assembly and includes the 
following topics: 

• Describing relationships between components. 

• Symbolic referencing between attributes in the same defpart. 

• Symbolic referencing between different components of a product structure 
tree. 

• Passing data between a component in the product structure tree and its 
descendants. 

Relationships Between Attributes 

Most engineering is concerned with relationships between different components 
and attributes of an assembly. In a mold base, for instance, the size and shape 
of the runners depend on the temperature of the molten plastic, as well as the 
distance the plastic has to travel to reach the cavities. These relationships are 
described in a defpart by having the rule that defines one attribute refer to the 
dependent attribute. This is known as symbolic referencing, since the rule refers 
to the dependent attributes by name. 

Symbolic Referencing Between Attributes in the Same Defpart 

When a rule refers to an attribute defined in the same defpart, it only needs to 
give the attribute name. 
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In the Mold-base-plate defpart shown earlier, for example, the value of the 
Maximum-stress depends on the value of the Maximum-load, Width, and 
Thickness, which are all referenced using simple referencing chains: 

:Maximum-stress "The" references another attribute 

(div (* 0.2874 

J (the :Maximum-load) r------­

("21 <the :wictth> I > 

References the value of Maximum-load 

References the value of Width 

1.0E7) ------- References the value of Thickness 
~(_t_h_e~: -T_h_i_c_k_n_e_s_s~)I )) 

Symbolic Referencing Between Attributes in Different Defparts 

One of the benefits of a product structure tree is that it allows any attribute 
anywhere in the tree to refer to any other attribute elsewhere in the tree. You 
refer to the attribute symbolically by describing the relative location of the 
attribute in the tree. 

In the mold base, for instance, the location of an ejector pin in the ejector 
mechanism depends on the cavity layout. The location of each cavity in the 
cavity layout is defined as an attribute called Cavity-location in the definition of 
the Cavity-and-Runner-Configuration part. The attribute that defines the location 
of each ejector pin is defined as an attribute called Ejector-location in the 
Ejector-mechanism part. Using symbolic referencing, the definition of the 
Ejector-location can depend upon the value of the Cavity-location even though 
the two attributes are defined in different parts of the tree. 
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The following diagram shows the relative location of the two attributes in the 
product structure tree: 

Attributes: 

Cavity-and-runner-configuration 

Top-clamping-plate ... 

A-plate ... 

Support-plate 

Ejector-mechanism 

Components ... 

Ejector-pin-location 1-----

The Ejector-pin-location attribute in the Ejector-mechanism part depends on the 
Cavity-location attribute in the Cavity-and-runner-configuration part. 

Symbolic Referencing Using Descendant Attributes 

It is very common for a component to require attribute values from components 
above it in the product structure tree. The normal mechanism for passing such 
data down the product structure tree is input-attributes, that is, a component 
can pass data to its subcomponents by supplying inputs to each subcomponent. 

The ICAD Design Language provides another mechanism for passing data down 
a product structure tree called part-whole defaulting.14 With this mechanism, a 
defpart can declare some of its attributes as descendant. This means that the 
values of those attributes can be accessed by another attribute that is lower in 
the product structure tree. Part-whole defaulting makes it easy to define a rule 
whose value is propogated through the entire product structure tree, and is thus 
available to any descendant of the part using a simple referencing chain. 

140ne of the two inheritance mechanisms implemented in the ICAD Design 
Language. The other, kind-of inheritance, is described in the next section. 
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Summary 

• Attributes can reference other attributes defined in the same defpart using 
simple referencing chains. 

• An attribute in one part of the product structure tree can access the value of 
an attribute in another part of the product structure tree using a complex 
referencing chain. 

• An attribute in a top-level part in the product structure tree can pass its 
definition down the tree to all of the descendants of the part using part-whole 
defaulting. 
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Modularizing the ICAD Product Model 

Keywords: generic parts, kind-of inheritance, modularization, mixins 

This section discusses some of the features of The ICAD System that are used 
to modularize the design of the ICAD product model and includes the following 
topics: 

• Benefits of modular design. 

• Components in the product structure tree. 

• Generic parts. 

• Kind-of inheritance. 

Benefits of Modularization 

Modularization means you describe the ICAD product model using small, easy-to­
understand defparts instead of using large, specialized defparts. A modular ICAD 
product model minimizes the number of different defparts that are necessary as 
well as the size of each defpart. 

A modular ICAD product model is robust and easy to maintain. This is because 
the component defparts of a modular ICAD product model are small, easy to 
understand, easy to test, and easy to use. 

ICAD provides three strategies for building modular ICAD product models: 

• Using the product structure tree to divide the ICAD product model into 
separate components. 

• Using generic parts, defparts that can be used many times in different 
components of the same ICAD product model. 

• Using mixins, which allows new defparts to be written using the definition of 
an existing defpart. 

You use all three of these strategies to implement the component problems 
isolated in the planning stages of the application (see the section "Planning an 
ICAD Product Model", page 4-4). 
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The Product Structure Tree 

The product structure tree provides the product design with a natural 
modularity. Each assembly in the product design can be developed separately -
in fact, they can be developed by different engineers at different times. It is 
easy to integrate separate assemblies; you simply define them as children of the 
same defpart. Likewise, each assembly can be further subdivided, with each 
piece being defined separately and integrated as parts of the assembly. You can 
subdivide an assembly to any extent that you like; The ICAD System puts no 
limit on the number of possible levels in a product structure tree. 

First Component ... 

Complete Product 
Model 

£ Can be developed separately from T second component 

Second Component ... 

t Can be developed separately from 
first component 

A product model can be modularized using components in a product structure tree. 

Generic Parts 

A generic part is a defpart that is developed as a stand-alone component, that is, 
it is not defined relative to any other part in the product structure tree. This 
allows you to use the generic part throughout the product structure tree. 
Typically, a generic part includes a large number of input requirements. 

A generic part often represents a component that is commonly used in the 
assembly. The individual design instances of each component may differ, e.g., 
they may be a different size, shape, material, etc., but the component is basically 
the same in all places. 

For instance, the mold base uses a number of different kinds of screws 
throughout the assembly. The screws differ in diameter, length, and type of 
head (phillips or slotted). While it is possible to write a different defpart for 
each type of screw used in the Mold-base, this increases the number of defparts 
you need to write for the ICAD product model, making the ICAD product model 
harder to maintain. 

A better solution is to define a generic screw whose common properties are 
constant and whose differing properties are specified by inputs. Such a screw is 
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generic since the same defpart can be used whenever a screw is needed. Inputs 
for a generic screw include the type of head, the screw-head diameter, and the 
screw length. 

The following defpart describes a generic screw: 

( defpart generic-screw ( box ) 

:inputs 
(:head-type :screw-length :head-diameter) 

:parts 

( (screw-head 
:type screw-head 

By changing the inputs, you 
change the kind of screw. 

:head-radius (half (the :head-diameter)) 
:head-type (the :head-type) ) 

(screw-body 
:type screw-body 
:head-radius (half (the :head-diameter)) 
: head-length (the : screw-length) ) ) ) 
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In the Mold-base, one type of screw is used to fasten the Top-clamping-plate to 
the A-plate, and another kind of screw is used to fasten the B-plate to the 
Support-plate. The lengths and diameters of the screws are determined by a rule 
that sums the thickness of the plates. However, the same generic screw def part 
describes both types of screws. 

Cavity-and-runner-configuration 

Top-clamping-plate 

A-plate 

B-plate 

Support-plate 

Mold-base-design Ejector-mechanism fi"~'*<~, 
~Screw Of:j. _. 
tt::W»~«-~~ 
i~screw 1 t1 ... 

Legend 

Cl 

Components 

Described by Generic-screw defpart 
with inputs as follows: 

Head-type: Standard 

Screw-length: 0.15 m 

Head-diameter: 0.05m 

Described by Generic-screw defpart 
with inputs as follows: 

Head-type: 

Screw-length: 

He ad-diameter: 

Standard 

0.10 m 

0.03 m 

Top-clamping-plate-to­
A-plate-connection 

Support-plate-to­
B-plate-connection 

i:~·.:i:':::'.$:=i"~<1 
~{Screw 2 ,,. ... 
~~$;::~;t:«:3;:;~:;=:;;:~~:~~ 

fl::.::::~:I · .. 

The mold base uses different kinds of screws, each described by the same generic-screw defpart with 
different inputs. In this product structure tree, the screws used to hold the Top-clamping-plate to the 
A-plate are different than the screws used to hold the Support-plate to the B-plate. 

Each application has its own set of useful generic parts. Generic parts for a 
holding tank, for instance, include beams, bolts, and braces. Generic parts for an 
engine assembly include connecting rods and belts. These are all components 
that are used in different forms throughout the assembly. 
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Modularizing the ICAD Product Model 

Defparts are rarely created from scratch. Instead, their definitions usually build 
upon pre-existing definitions. Mixins allow a new defpart to use the definitions 
(that is, the rules and component) that; are already described by an existing 
defpart. You can mix the definition of an existing into the new defpart. 

This capability allows you to create a new defpart that is just like an existing 
defpart except for some small differences. Only those characteristics that are 
different need to be specified. We say that the new defpart inherits some of its 
definition from the existing defpart. This is known as kind-of inheritance, since 
the new defpart is a "kind of' existing defpart.15 

15one of the two inheritance mechanisms implemented in the ICAD Design 
Language. The other, part-whole inheritance, was described in the previous 
section. 
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In the mold-base application all defparts that represent component parts of a 
mold (such as pins, bushings, screws, etc.) must include rules for computing cost 
information. In most cases the technique for computing the cost is the same. 
Rather than repeat the same rules in each defpart, you can create a Cost­
computation-mixin defpart and mix it into the defparts for the pins, bushings, 
screws, etc. This is shown in the following diagram: 

Defpart Pin 
Rules unique 
to Pin 

Defpart Bushing 

Rules unique 
to Bushing 

Defpart Screw 
Rules unique 
to Screw 

Without mixins, the rules for cost computation are repeated in 
all three defparts. 

Defpart Pin 
Rules unique 

to Pin 

Def part 
Bushing 

Rules unique 
to Bushing 

With mixins, the rules for cost computation are defined once 
and "mixed in" wherever needed. 

Often mixins are used to divide the information that would normally be in a 
single defpart into separate defpart modules. A single defpart that includes 
hundreds of attributes would be tiresome to write, hard to read, and difficult to 
maintain. Instead, the different attributes are divided into logical categories, and 
the attributes in each category are defined in separate defparts. 

Although the Mold-base-plate defpart discussed earlier is relatively simple, it 
includes two different categories of rules: geometric rules (e.g., the rules that 
describe the Thickness, Width, and Height), and engineering rules, (e.g., the 
rules that describe the Maximum-load and Maximum-stress). Using mixins, we 
can write a Mold-base-plate-geometry defpart that describes the geometry of the 
Mold-base-plate and a Mold-base-plate-stress defpart that describes the load and 
stress on the plate. Then we can mix the two together to form the Mold-base­
plate defpart. 
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Modularizing the ICAD Product Model 

• The ICAD Design Language includes tools for modularizing the ICAD product 
model design. A modular design is easier to write, clearer to understand, and 
simpler to maintain, and thus accelerates the process of developing the ICAD 
product model. The planning stage of the ICAD product model usually 
identifies most of the modules. 

• The product structure tree provides a basic modularity to the product design. 

• Generic parts are defparts that model commonly-used component parts in the 
product model. Using generic parts simplifies the ICAD product model. 

• Mi.xins allow a new defpart to inherit definitions from an existing defpart. 
This allows defpart definitions to be modularized. 
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Overview 

Keywords: geometric primitives, positioning, orienting, box, length, width, height, 2D 
wire-frame primitives, 3D volumetric primitives, local coordinate system, bounding 
box 

This section shows how you incorporate 2D and 3D geometry into an ICAD 
product model and includes the following topics: 

• ICAD-defined geometric primitives. 

• Positioning and orienting geometric parts. 

Geometric Primitives 

Geometric primitives provided by ICAD represent the physical shape of objects. 
The set of primitives can be used by different applications in many different 
industries. ICAD's focus has been to provide primitives for mechanical-design 
applications. 

Mixing an !CAD-provided primitive into your own defpart gives it geometric 
meaning. This implies that the part can be drawn in The ICAD System or 
transferred to a CAD system. Usually the leaves of a product structure tree 
represent the actual geometry of the product. 
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In the mold base application, the leaves of the Mold-base-plate in the Mold-base­
design are the Plate, Counterbores and Straightbores. The Plate is a kind of a 
Box (that is, it mixes in the !CAD-provided Box defpart), which gives it a box­
like geometric shape. The Counterbores and Straightbores are kinds of Cylinders 
(that is, they mix in the !CAD-provided Cylinder defpart) which gives them 
cylindrical kinds of shapes. 

Right view of 
Mold-base-plate 

Trimetric view of Mold-base-plate Right view of Hole 

Straightbore 

Counte/"' 
bore 

Platet 

1 
~Holes 

J 
Holes -------

Counter­
bore 

--'".i 

Trimetrlc view of Hole 

Counter­
bore~ 

Drawing of the Mold-base-plate with components labelled. Also shown is a drawing of a Hole, 
which includes a Counterbore and Straightbore. The different parts are modeled using 
/CAD-provided geometric primitives. 
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The following diagram shows how the leaves of the product structure tree 
represent the part's geometry. 

Mold-base­
pla te 

The shaded area represents the leaves of the Mold-base-plate, which represent the geometry 
of the part. 

The Box 

The most basic ICAD-defined primitive part is a box, which is described by its 
length, width, and height. 

Box with major dimensions (length, width, and height) labelled. 
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Often the higher-level parts of the product structure tree are kinds of boxes. 
This allows them to model the geometry of the "bounding box", which is a box 
that encloses the geometry of the leaves. By drawing the bounding box, you can 
roughly see the geometry of the assembly without having to draw the detailed 
geometry of the leaves. 

In the mold-base application, the geometry of the Hole assembly is a bounding 
box that includes the geometry of the Counterbore and Straightbore. 

Trimetric view of Mold-base-plate. 
Holes are drawn as bounding boxes. 

Trimetric view of Mold-base-plate. 
Holes are drawn using the detailed 
geometry of the Straightbores and 
Counterbores. 

Mold-base-plate. On the lefi,just the bounding boxes of the holes are drawn. On the right, the 
detailed geometry of the holes, that is, the Straightbores and Counterbores, is drawn. 
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Other Geometric Primitives 

ICAD provides many other commonly-used geometric primitive parts. The 
standard 2D wire-frame primitives include lines, circles, arcs, ellipses, points, 
and polylines. 3D volumetric primitives include boxes, cones, cylinders, cut 
cylinders, projected polygons, spheres, and tori. ICAD also provides standard 
high-level parts, including a route pipe through a set of points, and a pipe elbow 
between two straight pipes. 

cylinder torus 
sphere 

cone arc line 

Examples of 2D and volumetric primitives provided by /CAD. 

Orientation and Positioning of Geometric Parts 

Parts are always positioned and oriented relative to the assembly of which they 
are children. This allows you to design an entire assembly without having to 
consider the position and orientation of the subassembly in the overall assembly. 
You specify the position and orientation of the subassembly as inputs to the 
subassembly. 

Since the part is positioned and oriented relative to the parent assembly, we say 
that the parent provides a local coordinate system for its children, that is, it 
supplies the orientation of the three major axes. This is why many top-level 
parts are a kind of Box, since a Box makes it easy to visualize the local 
coordinate system. A global coordinate system describes the coordinate system of 
the overall design in which the major subassemblies are positioned and oriented. 
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For example, each Hole in the Top-clamping-plate is made of a Counterbore and 
a Straightbore, both of which are a kind of Cylinder. The Counterbore and the 
Straightbore are positioned and oriented relative to the Hole assembly, which 
defines a bounding box for these two parts. The Counterbore is positioned at the 
front of the bounding box defined by the Hole, and the Straightbore is positioned 
at the rear of the bounding box defined by the Hole. 

Counterbore positioned to 
the front of the bounding box 

Straightbore positioned to the rear 
of the bounding box 

I 
I 

.___ __ _._ _ ___!._ Bounding box ----+L_ 

Right view 

-:_-,.I 

I 
I 
I 
I 
I 
I 
I 

I j -1- ----
Trimetric view 

Counterbore and Straightbore positioned inside a Hole assembly, whose bounding box is 
indicated using dashed lines. 

Summary 

The Hole is really a generic part; you can position and orient each Hole in the 
Top-clamping-plate (and anywhere else in the mold base) as an overall assembly. 
The positioning and orientation of the Straightbore and Counterbore inside the 
Top-clamping-plate occur automatically, since they are defined relative to the 
Hole. 

• !CAD-supplied geometry primitives can be mixed into a user-defined part to 
give the part geometric meaning. Typically, the leaves of the product 
structure tree represent the geometry of the product. 

• The most basic geometric primitive is a Box. ICAD provides many other 
geometric primitives as well. 

• You position and orient a geometric part relative to its parent. The parent 
supplies a local coordinate system in which the part is positioned. 
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Overview 

Keywords: !CAD Surface Designer, !CAD Solids Designer, parametric curves and 
surfaces, B-splines, solid modeling, mass and volumetric properties 

ICAD offers products that provide additional geometric primitive parts that are 
extremely powerful in specialized situations. This section discusses these 
products and includes the following topics: 

• Products that supply additional primitives. 

• The ICAD Surface Designer. 

• The ICAD Solids Designer. 

Products that Supply Additional Primitives 

Some applications require that you use geometric parts that are more powerful 
than those supplied by the basic system. ICAD offers the following component 
products that add more powerful parts to the basic ICAD system: 

• The ICAD Surface Designer provides high-level curve and surface parts. 

• The ICAD Solids Designer provides parts for building solid models. 

The ICAD Surface Designer 

The ICAD Surface Designer integrates parametric curve- and surface-modeling 
techniques with a knowledge-based engineering system. It allows you to describe 
the "free-form" surface geometry of many products such as airplane wings, ship 
hulls, vehicles and complex molded objects. 

An ICAD Surface Designer part behaves like any other defpart in The ICAD 
System; it defines inputs and engineering rules, and you can mix it into your 
own defparts. The surface geometry is recalculated automatically when you 
change the inputs to the part. 

The ICAD Surface Designer includes a rich set of NURB (Non-Uniform Rational 
B-spline) curves and surfaces. It includes a large number of high-level primitives 
such as swept surfaces, off set surfaces, surfaces of revolution, extruded surfaces, 
arbitrarily trimmed surfaces, and various types of filleted and blended surfaces. 
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A simple product model of a cup, for example, uses the ICAD Surface Designer 
to construct the surfaces that make up the cup. The body of the cup is 
constructed from a revolved surface. The cup handle is a swept surface. Fillets 
generate a smooth blend between the handle and the body. Notice that simply by 
changing the input specifications the entire surface geometry is automatically 
recalculated. 

Trimetric view 

Input specifications 
Height: 20 cm 
Handle-height: 15 cm 
Radius: 1 O cm 

Right view 

Trimetric and right view of two different design instances of a cup. 
As the input specifications change, the surface definitions (fillets, 
sweeps, revolutions) are automatically updated. 
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The ICAD Surface Designer often uses surfaces imported from other surface 
packages, typically a CAD system. For example, a gas-tank cover product model 
imports a set of surfaces generated by a CAD system that models an automobile 
body. The ICAD Surface Designer is used to design a gas-tank cover for this 
existing car body. The designer specifies where on the auto body the gas-tank 
cover should be placed, and the ICAD Surface Designer automatically calculates 
the surface geometry of the gas-tank cover based on its location. 

Car body 
(imported from 
IGES data) 

Gas-tank cover 
(designed by 
ICAD product model) 

Detail of 
Gas-tank cover 

View of a gas-tank cover that is automatically generated by an 
!CAD product model. The geometry for the automobile body is 
imported via IGES. 

ICAD Solids Designer 

The ICAD Solids Designer integrates the ruled-based techniques of a knowledge­
based engineering system with a solid modeling system. With the ICAD Solids 
Designer you can create and view solid objects that are built from a library of 
!CAD-supplied parts, such as basic 2D and 3D primitive shapes, swept solids, 
and Boolean unions, intersections, and differences (that is, subtraction). 
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Additional !CAD-supplied Geometric Parts 

A solid model contains much more information than a wireframe model. It 
includes topological information that represents the connections between faces, 
edges, and volumes of the solid. This allows The ICAD System to display a view­
dependent picture of the part with all hidden lines removed (that is, the lines 
that are obscured by other parts are not displayed). You can also make section 
cuts that give detailed auxiliary views of a part and create exploded views to 
show entire assemblies. 

A solid model also can calculate volumetric and mass properties such as 
moments of inertia. In addition, you can check for interference between two 
parts or part assemblies. 

These properties of solid models are useful for manufacturing. A solid model can 
represent features such as holes, slots, chamfers, etc., which include 
manufacturing attributes such as surface finish, hardness, and tolerances. These 
features can be used by the design engineer to create the product design, and 
the information carried by them can be passed directly into manufacturing to 
create process plans. The manufacturing systems can use the feature­
interference capabilities of the solid model to help determine the best sequence 
of operations in a process plan. 

The Manufacturing-view of the mold base uses a solid model of the mold-base 
components as a tool for manufacturing. View-dependent images of the mold 
base with hidden lines removed can be displayed which are easier to interpret 
than wireframe images. In addition, many components are represented as 
features which contain manufacturing information. The Top-clamping-plate, for 
instance, contains Counterbore and Straightbore features with information that 
can be passed directly to manufacturing to generate a process plan. 

• ICAD provides various additional geometric primitives that meet the needs of 
special design applications. 

• The ICAD Surface Designer is a powerful surface-modeling package that 
integrates knowledge-based engineering with parametric curves and surfaces. 
Its surface modeling capabilities surpass those of most CAD systems. 

• The ICAD Solids Designer is a powerful solid-modeling package, based on the 
Parasolid solid modeling kernel from Shape Data, Ltd., that integrates 
knowledge-based engineering with solid modeling. 
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Keywords: edit/compile/test loop, editing, compiling, testing, demand driven, !CAD 
Browser 

This section highlights some of the features of The ICAD System that facilitate 
the development of large-scale, complex ICAD product models and includes the 
following topics: 

• The complexity of real-world applications. 

• ICAD Design Language features for developing complex ICAD product models. 

• How ICAD's application development environment, including the ICAD 
Browser, helps you develop complex ICAD product models. 

Complex ICAD Product Models 

Real-world applications are extremely complex and can encompass thousands of 
different component parts with tens of thousands of engineering rules. The 
ICAD System is designed to scale up to large and complex problems without 
becoming unwieldy. There are features both in the ICAD Design Language and 
the ICAD Browser that give you access to the complete ICAD product model as 
needed while you concentrate on a tiny subset of it. The ICAD System is 
designed to take advantage of the fast processors, high-resolution displays, and 
large-capacity disks of today's powerful engineering workstations. 

Features of the ICAD Design Language 

The ICAD Design Language is specifically designed for building large-scale, 
complex ICAD product models. Using its object-oriented language features, even 
the most complicated product designs can be developed in a modular, easy-to­
understand, maintainable fashion. These language features include: 

• Object-oriented definitions 

Components of the product are defined as separate objects (defparts), which 
allows you to think about the overall product in terms of relationships 
between separate parts. 
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• Product structure tree 

The product structure tree is similar to how an engineer thinks about the 
product structure of a mechanical assembly. Each level of the product 
structure tree can be developed separately, which makes it easy to allocate 
different components of the project among several members of the design 
team. 

• Mixins 

Mixins allow you to build complex definitions by "mixing" together simpler 
definitions. Each definition is clear and easy to understand, which makes the 
overall product definition easy to understand and maintain. 

• Symbolic referencing 

Symbolic referencing allows you to define complex relationships between 
different components in the product structure tree. Attributes in each 
component can be referenced by name and location in the tree, instead of 
using a complex addressing system. 

• Part-whole inheritance 

Part-whole inheritance allows the values of engineering attributes in the 
subparts to be inherited from attributes with the same name higher up in the 
product structure tree. This makes it easy to define engineering values and 
make them accessible throughout the entire product definition. 

• Geometric parts 

The rich set of geometric primitives provided by The ICAD System allows you 
to model all kinds of mechanical parts. The ICAD Surface Designer and the 
ICAD Solids Designer offer even more kinds of geometric parts and 
operations. 
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ICAD Development Environment 

The ICAD development environment has two major purposes: 

• To cut down on the time involved in the edit/compile/test loop, which is a cycle 
common to most software development efforts. That is, the designer edits, i.e., 
writes or makes a change to a defpart, compiles, i.e., uses the compiler to 
translate the defpart into a form the computer can understand, and tests, i.e., 
tests the design instances created from the defpart for errors. The cycle 
repeats until no errors are found. 

OK 

i 
FINISHED 

Edit I compile I test loop 

Write or edit the 
defparts 

Compile the 
defparts 

L... J 
~- -· ~ 

Create or update a design 
instance of the product model 

• To facilitate the inspection and testing of complex design instances generated 
by an ICAD product model. The ICAD product model takes an input 
specification, applies the engineering rules, and generates a design instance. 
ICAD provides special tools for "browsing" the design instance. 

The ICAD rule-development environment includes the following features: 

• All platforms include a powerful, full-screen, customizable editor for writing 
def parts. 

• ICAD provides an incremental compiler for compiling defparts. Often a defpart 
needs to be recompiled after a small change. Incremental compilation means 
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that The ICAD System only compiles the change, not the rest of the ICAD 
product model. This saves a significant amount of time in the development 
cycle. 

• ICAD provides the ICAD Browser which is a powerful graphical-debugging 
environment. The ICAD Browser is where you create a new design instance, 
supply it with the top-level inputs, demand values from the engineering rules, 
and generate output. The ICAD Browser includes numerous debugging tools, 
including: 

0 An Inspector Viewport that allows you to see the value of all attributes for 
any part in the part design. 

0 A Graphics Viewport that allows you to draw the geometry for a part, the 
children of a part, or the leaves of a part. The ICAD Browser provides 
graphical picking and graphical verification within a Graphics Viewport, 
e.g., when viewing surface parts you can choose to view the Gaussian 
curvature, the surface normals, etc. 

0 An Expand command that allows you to create only as much of the design 
instance as necessary. Parts of the design on which you are not currently 
working need not be created. This saves computing space and time. 

0 A Set Root command that isolates the part of the product structure tree in 
which you are interested. This is necessary since a real product structure 
tree is often so large that it does not on the computer screen. 

0 An Update command for updating a part design so that it incorporates any 
changes that you have made in the defpart. Often while you are working on 
a design instance in the ICAD Browser you need to make a change in one 
of the defparts that describes it. The Update command allows you to 
incorporate these changes into the existing design instance. You do not 
have to create a new design instance for the changed defpart. 

• The ICAD System is demand driven. This means that only those attributes, 
parts, etc. that are required are calculated. This is tremendously important, 
since you often work on one small piece of the potentially huge ICAD product 
model at a time. 
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• The ICAD System manages extremely complex ICAD product models. 

• The ICAD Design Language is designed for developing complex ICAD product 
models. 

• ICAD provides a graphical development environment to aid in all phases of 
development and to view design instances generated by complex ICAD product 
models. This enviroment includes the ICAD Browser. 
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Overview 

End-user Interfaces for an ICAD Product Model 

Keywords: production user interfaces 

This section shows how you deploy a finished ICAD product model for production 
purposes and includes the following topics: 

• Designing an ICAD product model for production. 

• The ICAD Production System 

• Simple interfaces to a finished ICAD product model. 

Designing an ICAD Product Model for Production Purposes 

After completion, ICAD product models are often stand-alone engineering 
systems. End users (e.g., design engineers, project engineers, manufacturing 
engineers) know little or nothing about The ICAD System; they are only 
interested in the automated engineering solution that the ICAD product model 
provides. For this reason, it is important to develop an interface to the ICAD 
product model that includes an easy way to provide inputs and generate outputs. 

For the rest of this document, we differentiate between the developer of an 
ICAD product model and the end user of the ICAD product model. The second 
person pronoun ("you") always refers to the developer of the ICAD product 
model. We refer to the end user of the ICAD product model in the third person 
as "the design engineer" or "the end user". 

ICAD Production System 

The ICAD Production System is a low-cost version of The ICAD System that is 
targeted for production use. You can use the ICAD Production System to 
generate output from finished ICAD product models but not to develop new 
ICAD product models. 

ICAD Browser Interfaces to the ICAD Product Model 

ICAD provides the ICAD Browser as a graphical interface to an ICAD product 
model. Many simple interfaces are included in the ICAD Browser: 

• The Top-level Inputs Viewport allows an end user to enter input specifications 
for the ICAD product model. 
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• Choice attributes allow the end user to specify input values interactively via 
popup windows. 

• Engineering forms that display the values of important engineering attributes 
can be created in the ICAD Browser. 

Mold Syst;em 
Average Machining And Labor Costs 20.000 

Catalog Nunber MOLD::1323A-23-23 

ClaMp Open Tine 5.000 

Cost Per Thousand Parts 105.676 

Cycle Tine 27.040 

Melt TeMperature 475.000 

Sample engi,neering form. 

• Reports can be generated from the ICAD Browser using a single mouse click. 

ICAD Production UI 

The ICAD Production UI (User Interface) allows you to develop a menu-based 
end-user interface in which an engineer can edit input values used to generate 
the design instance.16 It includes additions to the ICAD Design Language that 
let you specify menus for selecting which inputs to edit and specification sheets 
for presenting and interacting with the input values. 

16The ICAD Production UI is a new component product that will be released in 
1990. 
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Other Production User Interfaces 

McDonnell Douglas provides the UG-ICAD Connection product, which is a simple 
production user interface to an ICAD product model through the Unigraphics II 
System. 
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Summary 

You can develop your own simple production user interface using the ICAD 
Kernel Interface, which lets you access the capabilities of The ICAD System 
without using ICAD's own user interface.17 

• A successful ICAD product model requires an end-user interface. 

• ICAD offers the ICAD Production System as a low-cost solution for use with 
an end-user interface. 

• ICAD provides an interface to an ICAD product model through the ICAD 
Browser and the ICAD Production UI. Alternately, you can develop your own 
end-user interface using the tools provided by the ICAD Kernel Interface. 

17The ICAD Kernel Interface is a new component product that will be released 
in 1990. 
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Summary of Chapter 4 

• ICAD consultants help you plan your first application by showing you how to 
divide your application into smaller components, identify the inputs to and 
outputs from your application, and develop rules for each component. 

• An ICAD product model is divided into components, each of which is described 
by a defpart. Each defpart is compiled before it is used to generate a design 
instance of the defpart. Defparts include attributes, which are its engineering 
rules, inputs, which are the input requirements for a new design instance, 
and parts, which are its components. You supply the inputs when a new 
design instance is generated to create the design instance. 

• Design instances are organized into a product structure tree, at the root of 
which is a design instance of the overall product. The product structure tree 
decomposes a product such as a crankshaft, mold base, etc., into assemblies, 
subassemblies, component parts, features, and primitives. Other components in 
the product structure tree can represent processes used to manufacture or 
test the product. A defpart contains a parts section which describes how the 
defpart decomposes into components. 

• The ICAD Design Language provides techniques for describing relationships 
between different parts of the product structure tree. An engineering 
attribute in one part of the product structure tree can be written that 
depends on an attribute in another part of the product structure tree. An 
attribute value in a part can be inherited by the descendants of the part. 

• The ICAD Design Language provides techniques for modularizing an ICAD 
product model. These techniques include dividing the assembly into 
components, using generic parts, and using mixins. 

• Geometric modeling is accomplished using !CAD-defined primitive parts and 
positioning and orientation features of the ICAD Design Language. ICAD 
provides a large set of primitive parts. Positioning and orientation is done 
relative to the subassemblies, so that entire subassemblies can be repositioned 
as a single entity. 

• The ICAD System can manage extremely complex ICAD product models. ICAD 
provides tools for writing, compiling, debugging, testing, and using an ICAD 
product model, as well as for developing end-user interfaces. 
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Introduction 

The Design Pipeline 

Most successful ICAD product models are integrated into a larger engineering 
environment that includes engineers in different departments, traditional CAD 
systems, analysis programs, corporate databases, and a corporate structure that 
demands accountability and justification. 

An ICAD product model is typically part of a design pipeline that includes other 
engineering systems. Inputs enter the pipeline from engineers or directly from 
other engineering systems (e.g., CAD systems). As we saw in the previous 
chapter, the ICAD product model generates a design instance that meets the 
input specifications and generates outputs such as drawings, reports, and data 
for other computer systems. 

The following diagram shows a simple design pipeline with inputs and outputs. 

Inputs /CAD Browser Outputs 

t £ D ~ Design report 

~ Q ~=~~':.te~ \ , A~~: report 

y y Routing sheet 

J:l ¢ IGESlnput ret~i~~~ii~~it' CADdrawings ¢ g 
CAD NC preparatory CAD 

ICAD Product Model data 

Simple design pipeline. 

A more complex design pipeline might include an analysis package. The product 
model contains rules that generate data for the analysis package and send the 
data to the package for evaluation. In some applications, the product model also 
contains rules that use the result of the analysis package to reconfigure the 
design. 
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The following diagram adds an analysis package to the design pipeline. 

t & Inputs Fl~' ~~!~~t~eport ¢ t. 
'f ¢ ~:~:::'ete~ LJ \ ,_ ""~~~ repM 

y y Routing sheet u ¢ IGES Input ~~~~~m CAD drawings ¢ u 
CAD NC preparatory CAD 

ICAD Product Model data 

fr ~ 
~~ 

Data-analysis 
program 

Design pipeline including interaction with other programs. 

Human interaction is often part of the design pipeline. As The ICAD System 
evaluates rules in the design instance, it may prompt the end user for additional 
information. 
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Introduction 

The following diagram adds human interaction to the design pipeline. 

Inputs 

t t ¢ ~=,~~:i.C> 
J:l ¢ IGES Input 

CAD 

Outputs tt 
Design report ~ 
MAP report L-.y"" 

~BOM 

/CAD Browser 

D~ y Routing sheet 

;:.:::.:::.::::.::::::::=====-~ CAD drawings Q ) J 
NC preparatory CAD 

ICAD Product Model data 

Data-analysis 
program 

Design pipeline including interaction with design engineer. 

Databases that contain part information, material data, MRP data, etc., can also 
be accessed by the design instance. Some applications write to databases as well. 
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The following diagram adds a database to the design pipeline. 

t & Inputs (CAD j~' ::~~~eport ¢ t + 
~ ¢ ~~~:1.~ \ ' A~~~ report 

y y Routing sheet 

J:J, ¢ IGES Input rel~~~~~ib CAD drawings ¢ J:J, 
CAD NC preparatory CAD 

ICAD Product Model data 

lr ~ 
~~ 

Da1abase 

Design pipeline including database transactions. 

Data-analysis 
program 

The complete design pipeline can be implemented on a distributed network that 
includes different hardware platforms. Different elements of the pipeline can be 
on different platforms or in some cases on the same platform. 

In one possible network configuration, a UNIX platform runs a CAD workstation 
and an ICAD development system on which a new ICAD product model is being 
developed. The network contains four other CAD workstations. Three of these 
access an ICAD production system on a UNIX workstation via a client/server 
configuration. The fourth has an ICAD production system resident on the same 
workstation. The ICAD Systems on the network are clients for a solid-modeling 
server and an Oracle-database server running on another UNIX workstation. 
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The following diagram shows this network configuration. 

CAD System 

ICAD 
Production 

System 

ICAD 
Development 

System 

CAD System 

I 

CAD System 

Server for 
ICAD Production 
System 

Possible network configuration for the design pipeline. 

Design Pipeline for the Mold Base 

CAD System 

!f:H·i"_:: Server for 
solid modeler 
and for 
Oracle database 

The mold-base application is part of such a design pipeline. The ICAD System is 
the central part of the pipeline; not only does it receive inputs and generate 
outputs, but it is also a central repository of engineering data about mold-base 
design. The design pipeline works as follows: 

• Initially, a part designer designs the part to be molded on a McDonnell 
Douglas UNIGRAPHICS II CAD System, which generates an IGES 
representation of the geometry. The ICAD product model reads the IGES 
representation and translates it into an ICAD representation, that is, as 
design instances of geometric parts. 

• The ICAD product model designs an appropriately-shaped part insert. 

• Once the insert is designed, the mold-base designer uses a custom-designed 
user-inteface (designed using the ICAD Production UI) for feature recognition 
in the part design. 
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• The ICAD product model prompts the mold-base designer for additional 
information such as runner pressure drop and material temperature, and 
configures an optimal mold base for the part. 

• The ICAD product model includes an SQL interface to an Oracle database 
from which it gets vendor-supplied catalog data about component parts in the 
mold base. 

• Once a configured mold base is designed, it is sent to a flow-analysis package 
for analysis. The mold-base designer views the output from the flow-analysis 
package and uses it to make minor modifications to the mold-base design, 
such as repositioning the gates or changing the material temperature. The 
ICAD product model redesigns the mold base, and it is sent back to the flow­
analysis package for re-analysis. This step is repeated until the mold-base 
designer is satisfied with the output from the flow-analysis package. This 
same process occurs with a cooling-analysis package. 

• Once a validated mold base and configuration are designed, the ICAD product 
model queries an Oracle database to see if an equivalent mold base has 
already been manufactured. If so, the existing mold base is used. If not, a 
description of the new mold base is registered in the Oracle data base. 

• If an existing mold base is found, the existing outputs for that mold base are 
located. If no equivalent mold base exists, the ICAD product model creates a 
solid model of the mold base using the ICAD Solids Designer, and generates a 
process plan for milling the A- and B-plates. An interface to the Metcut 
database returns the appropriate machining operations data. 

• The ICAD product model generates various reports, including a bill of 
materials, a routing sheet, and tool details. Machine-readable outputs include 
an IGES representation of the completed mold base, and a UNIGRAPHICS NC 
prep generation file. 
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The following diagram shows how the complete mold-base application is 
integrated into the design pipeline: 

Design-engineer 
Interactive Inputs 

Design-engineer 
Top-level Inputs 
Production '\.. 
quantity "'\ 

System Inputs 

IGES representation of 
/ part to mold 

System Interfaces Feature recognition ~ 

and selection "-". 
/CAD Browser Parts catalog (Oracle) 

MAP database (Oracle) 
Response to prompts about 

key parameter values~ D~ Flow-analysis package 

Cooling-analysis package 

--•Ill Metcut database (Oracle) 

Mold Base Product Model 

Human-readable 
Outputs 

BOM 
Routing sheet 

Pass details 
Tool details 

Machine details 

Time standards 

Overview of this Chapter 

Machine-readable 
Outputs 

Unigraphics NC path 
generation file 

IGES geometric representation 

The rest of this chapter describes aspects of The ICAD System that can 
integrate your ICAD product model into a similar engineering pipeline. 

"Inputs to The ICAD System" 
Describes various ways in which inputs can enter into the 
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ICAD product model from both the design engineer and from 
outside systems. 

"Outputs from The ICAD System" 
Describes various ways that the product model generates 
outputs to the design engineer and to other systems. 

"Integration Tools and Strategies" 
Describes ICAD Design Language tools for designing an 
integrated ICAD product model. 
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Inputs to The ICAD System 

Keywords: design-engineer inputs, system inputs, catalog inputs, top-level input 
specifications, interactive input specifications, specification sheets, catalogs, !CAD 
Relational Object Manager, !CAD Oracle Interface, !CAD Production UI, !CAD 
Kernel Interface 

The ICAD System supports different kinds of inputs to an ICAD product model. 
The different kinds of inputs can be broadly divided into three basic categories. 
Each category is discussed later in this section. 

• Inputs supplied by the design engineer. 

• Inputs generated automatically by another computer system and read by the 
!CAD product model. 

• Inputs from databases that can be queried by the product model. 

Inputs Supplied by the Design Engineer 

The design engineer can supply input in two ways: via top-level inputs and via 
interactive inputs. 

Top-level inputs, or initial input specifications, are supplied in order to create a 
new design. Top-level inputs are implemented in the ICAD Design Language 
using input-attributes. 

In the mold-base application, the only top-level input to the mold base product 
model is the production quantity, that is, the number of plastic parts to mold. 

Interactive inputs are supplied by the design engineer when prompted by the 
ICAD product model. While The ICAD System is generating a new design 
instance, it may require additional information from the design engineer. 
Therefore, the actual interactive inputs for which the design engineer is 
prompted depends on the processing that has already occurred. Interactive 
inputs are implemented in the ICAD Design Language using choice-attributes or 
using the !CAD Production UI. 

The mold-base design pipeline includes many different interactive inputs. In one 
case, it prompts the mold-base designer for the name of an injection molding 
machine supplier from a set of available suppliers. Depending on the selected 
supplier, it then prompts the designer to choose a particular injection molding 
machine from a set of mold bases provided by that supplier. In another case, 
rules in the Cavity-and-runner-configuration part determine the maximum 
number of cavities that can be used with that machine, configure the cavities 
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for each possible number of cavities, and calculate the cost per part and 
production time for each configuration. The designer is then asked to choose the 
appropriate cavity configuration based on the calculated data. Sometimes the 
mold designer chooses to optimize for cost, other times to minimize 
manufacturing-production time. 

The following diagram shows some of the interactive inputs in the mold-base 
application. 

Top-level Inputs ¢ Mold-base Product Model ¢ Outputs 

/CAD Browser 

D~ 

Interactive input specifications 

Select an injection-mold-machine A A 
supplier from a list of suppliers. ., ., 

Select a particular machine from those t ' 
available from the supplier. 

Select a cavity-and-runner configuration 
from a list of possible configurations.----+ 

Some of the interactive inputs for a design instance of the mold base. 

ICAD provides the ICAD Production UI for customizing interactive input in 
special-purpose specification sheets that are organized into hierarchical menus. 
By accessing the appropriate specification sheet, a design engineer can select 
graphical entities, enter textual values, or choose from a set of items. You 
design the appearance of the specification sheet as part of developing the ICAD 
product model. 

The process of extracting features from the mold-base design is well suited to 
an interactive spec sheet. The designer interactively indicates the parts of the 
mold base that are features, and then specifies what kind of features they are, 
e.g., a boss, a pocket, etc. 
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System inputs are generated by some other computer system and are brought 
into the product model automatically. They are integrated into the ICAD product 
model by rules that read and interpret the data from the external system. Often 
(although not necessarily) the data is in a computer file that can be accessed by 
the computer on which The ICAD System runs. 

The ICAD System supports the direct import of IGES files. In the mold-base 
application, the geometry of the part to be molded is brought into the ICAD 
product model as IGES data. 

Alternately, you can write special rules to interpret any other data format. For 
example, many aerospace companies have geometric data stored in proprietary 
file formats. In an ICAD product model that designs hatch covers on airplane 
wings, the airfoil profile of the wing is stored in a proprietary format. The data 
is read and interpreted by rules in the ICAD product model and used by the 
ICAD Surface Designer to construct parts with the same geometry. 

Database Interaction 

Manufacturing companies often maintain corporate databases to store 
engineering data. Likewise, vendor catalogs can be maintained in databases, 
since one of the most common, repetitive, and error-prone engineering tasks is 
to look up data in catalogs. Such databases can be incorporated into an ICAD 
product model. 

For example, the actual mold-base part in the mold-base product model is a 
standard part chosen from a catalog of available parts from vendors such as 
DME or Husky. This catalog is entered as an on-line database from which the 
product model can select individual items. The ICAD product model chooses the 
best part from the catalog based on its engineering rules, and can automatically 
access all the data associated with that catalog entry. 

Sometimes it is desirable for the ICAD product model to update an existing 
database. For instance, after the mold-base product model chooses a mold base 
and a plan for manufacturing the mold base inserts and runners, it queries a 
database for the existence of an equivalent mold base design. If none exists, the 
database is automatically updated to include the new design. 
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Summary 

ICAD provides two products that automate database look-up and integrate it into 
a knowledge-based engineering system. 

• The ICAD Relational Object Manager lets you enter catalog information using 
the same editor with which you write defparts. A powerful set of query 
operators can then be used to access the data in the catalogs. A typical query 
might find all of the mold bases that are between two meters and three 
meters wide, sort them in increasing order by price, and return the first and 
second one. Another typical query might find the price of an item with a 
particular catalog entry number, such as A0031. 

• The ICAD Oracle Interface is an SQL (Structured Query Language) interface 
to an Oracle Relational Database Management System, and can easily access 
and update an Oracle database. 

• The basic kinds of inputs are design-engineer inputs, system inputs, and 
database inputs. 

• There are two kinds of design-engineer inputs: top-level inputs and interactive 
inputs. Top-level inputs are supplied when the design instance is created -
they are inputs to the root of the product structure tree. Interactive inputs 
are supplied when prompted by the design instance. 

• System inputs are inputs that are generated by another computer system and 
read into the ICAD product model. 

• Database inputs come from interactions with a database. Database input is 
useful for catalog lookup. The ICAD product model can also update existing 
databases. 
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The ICAD System supports three kinds of output. Each is described in this 
section. 

• Graphical output. 

• Reports. 

• Output to other computer systems, including CAD systems. 

Graphical Output 

You can display various views of the geometry of the design instance in the 
ICAD Browser. These views can then be printed on a Postscript printer. 
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Report Output 

For higher-quality graphical output, an HP 9000 Series 300 SRX or Turbo SRX 
or a Silicon Graphics IRIS 4D workstation can be networked to the platform 
running The ICAD System to display full color shaded images. Shaded pictures 
are especially useful for viewing complex 3D models. 

Much of the desired output from a design instance is in the form of reports. 
Anything calculated by the ICAD product model can be output in report form. 

For example, the mold-base application includes a number of engineering 
reports. The main components are a detailed bill of materials and a process plan 
that includes a routing sheet, pass detail, tool detail, machine detail, and time 
standards. 
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The mold-base application automatically generates the following bill of materials: 

Bill-of-Materials 

DME Catalog Number Description Unit Cost Quantity Total Cost 
1112A-27-27 A-SERIES-MOLD-BASE $ 1739.00 1 $ 1739.00 
B-6605 SPRUE-BUSHING $ 58.70 $ 58.70 
5714 SHOULDER-BUSHING $ 11.40 4 $ 45.60 
5108-GL LEADER-PIN $ 9.60 4 $ 38.40 
EX-7 EJECTOR-PIN $ 4 .15 9 $ 37.35 
7517 RETURN-PIN $ 7.35 4 $ 29.40 
6501 LOCATING-RING $ 16 .10 1 $ 16 .10 
7100 STOP-PIN $ 0.90 6 $ 5.40 
7218 SPRUE-PULLER-PIN $ 4.60 $ 4.60 
3/1-4 TUBULAR-DOWEL $ 2.25 2 $ 4.50 
112-13 CLAMP-PLATE-SCREWS $ 0.00 $ 0.00 
5/16-18 EJECTOR-PLATE-SCREWS $ 0.00 $ 0.00 
1/2-13 EJECTOR-HOUSING-SC $ 0.00 $ 0.00 

The total cost for the design is $ 1979.05 

End of Bill-Of-Materials 

You include a report definition in a defpart by defining a special attribute called 
a report-attribute. Report-attributes contain rules that collect the desired data for 
the report and format it appropriately. 

Most ICAD applications generate CAD output in the form of 2D and 3D models 
or detailed, finished drawings. CAD systems usually have a facility whereby a 
CAD drawing can be read from a file that contains data in a special input 
format. IGES is often used as a generic input format, although many CAD 
systems have their own proprietary input formats as well. 
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O.Sml I I 

1 cm 1 

I 1 1 

0.3 m-J ~ 

1.5 m 

4.5m 1 3m 

l•.i------- 4.5 m-------~1 
CAD drawing of top clamping plate. 

The ICAD System can generate files that contain the geometric data about the 
ICAD product model in CAD format. ICAD supports the IGES format, as well as 
direct translators to Intergraph Microstation PC, AutoCAD, CADDS4X, and 
UNIGRAPHICS II. 
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The following diagram shows how ICAD's IGES CAD Output Tools are used to 
generate an IGES data file that can be read by a CAD system. 

/CAD 
Browser 

.......__.,'""'".(.~::,,,,:. IGES CAD 
·'·""'.::: Output Tools 

Geometric 
~

1
data 

ICAD Product 
Model 

IGES _. IGES ---+ fn 
data Preprocessor ~ 

CAD 

IGES output generated using the IGES CAD Output Tools. 

To generate CAD output for the ICAD product model, you write a report­
attribute that collects the geometric data and sends it out in the appropriate 
format. The following ICAD Design Language fragment defines an engineering 
report, IGES-Mold-Base, that generates a file in IGES format representing the 
mold base geometry. The two lines of code are all that is necessary to define the 
IGES "report." To generate the IGES data, the design engineer "presses" the 
IGES-Mold-Base report button in the ICAD Browser. 

:IGES-Mold-base (with~writer (iges "filename") 
(write-the :cad-output-tree)) 

Output for Other Computer Systems 

Most other computer systems, such as analysis packages, NC machining systems, 
and other CAD systems, accept input data from a file in a custom, often 
proprietary format. ICAD provides the tools to write your own translator from 
the ICAD product model to the outside computer system of your choice using the 
ICAD Output Interface Toolkit. The translator collects the necessary data from 
the ICAD product model and formats it so the other system can understand it. 
For example, you might write a translator to a finite element analysis package, 
or to your company's proprietary CAD system. 
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Once you have written the translator, it can be used for any future ICAD 
product model as well. This is shown in the following diagram. 

Your ICAD 
Product Model 

Another ICAD 
Product Model 

Translator for 
outside system 

Outside system 

The same translator can be used for many different !CAD Product Models. 

In the case of an analysis program, there is often a closed data loop between 
The ICAD System and the analysis program. The data to be analyzed is sent to 
the analysis program through the translator. Once analyzed by the analysis 
program, the ICAD product model can read and interpret the results as a new 
system input (see the section "Inputs to The ICAD System", page 5-9), using 
them to reconfigure the design. This loop can repeat until a satisfactory design 
is found. 
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The mold-base application, for example, uses a translator to a flow-analysis 
package. Data from a mold-base design instance is formatted and written to a 
computer file that can be read by the analysis program. The analysis program 
analyzes the data from the computer file. The analysis results are read as 
system inputs and used to reconfigure the cavity and runner configuration . 

/CAD Browser 

D~ 

Mold-base application 

.-:::::::=t#·§· ij Flow-analysis 
'~~/ Translator ~ 

Flow-analysis 
input data 

i 
Flow-analysis Program 

Results of 
Flow-analysis program 

Mold-base product model output to flow-analysis package. The analysis result is read back into 
the !CAD product model as system inputs, forming a closed loop. 

Summary 

• The three kinds of output are graphical output, report output, and output to 
another computer system (including CAD systems). 

• Wireframe graphical images of the model can be drawing in the ICAD 
Browser. With additional software, full color shaded images can be displayed 
on various workstations. 

• Reports can be generated using report-attributes. 

• ICAD supports CAD output for various CAD systems. 

• You can write customized translators for other computer systems such as 
analysis programs or proprietary CAD systems. 
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This section describes integration tools and strategies and includes the following 
topics: 

• Organization of the product structure tree into different views. 

• Different tools provided by ICAD for integration. 

• Custom user interfaces. 

Organizing the Product Structure Tree for Integration 

In the previous chapter, we saw how to organize the product structure tree for 
the product design (see the section "Creating the Product Structure", page 4-29). 
In this section, we add to the product structure tree so that it integrates the 
ICAD product model with other engineering systems. 

Different engineering disciplines see the same product differently. There can be 
multiple views of the same product, that is, multiple ways to look at the same 
product. For example, a design engineer and a manufacturing engineer look at 
the same product differently. The design engineer is concerned with design 
issues such as form, fit, and function. The manufacturing engineer is concerned 
with manufacturing issues such as manufacturability, standard manufacturing 
features, and required manufacturing resources. 
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Integration Tools and Strategies 

You can use The ICAD System to represent the different views of a product by 
dividing the root of the product structure tree into views of the product. Each 
view is a component of the root and includes its own subtree. One component 
represents the design view of the product; this is the component that we have 
been concerned with up to now. Any number of other components could be 
created to represent the manufacturing view, the CAD view, the analysis view, 
the quality assurance view, etc. 

Complete­
product-model 

The Design-view is the component of the 
product structure tree discussed in chapter 4. 

Design-view ... 

Manufacturing-view ... 

QA-view ... 

CAD-drawing-view ... 

Different views of the same product are represented in the product structure tree 
using a different component of the root to model each view. 

Usually the design view is developed first. The other views use ICAD Design 
Language tools such as symbolic referencing to read the appropriate data from 
the design view and interpret the data for their own purposes. 
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Integration Tools and Strategies 

Mold-base 

The root part of an integrated mold-base application, for example, is divided into 
four different views. A design view, implemented by the Mold-base-design part, 
represents the product design (discussed in the previous chapter). A feature­
extraction view, implemented by the Feature-extraction part, recognizes features 
in the part to be molded. A CAD view, implemented by the CAD-structure part, 
organizes the geometry defined in the design view into different drawings for a 
CAD system, complete with annotations. A manufacturing view, implemented by 
the Manufacturing-structure part, translates the design into a solid model using 
the ICAD Solids Designer. The solid representation can be used to drive a 
process planner. The manufacturing view also contains rules and databases that 
represent the available manufacturing resources. 

Feature-extraction .. . 

Mold-base-design .. . 

Manufacturing-view ... 

CAD-drawing-view . . . 

Implements interactive feature 
extraction from IGES data. 

See Chapter 4 for a discussion 
of this component. 

Contains an /CAD Solids Designer 
representation of the design geometry 
as well as manufacturing resource data. 

Contains rules that generate CAD 
drawings with annotations. 

Different views of the same mold-base application represented in the product structure tree. 

Tools for Integration 

ICAD provides various tools for integrating an ICAD product model into the 
engineering environment. Most of these tools are available as layered products, 
that is, products added to the basic ICAD system. 

• Specific CAD Output Tools automatically generate CAD files in IGES, 
Intergraph Microstation PC, AutoCAD, CADDS4X, or UNIGRAPHICS II 
format. 

• The ICAD Output Interface Toolkit allows you to define reports, or generate 
output for any CAD system or computer analysis system. 

Page 151 of 167 FORD 1018



Integrating ICAD Into an Existing Engineering Environment 5-23 

Integration Tools and Strategies 

• The IGES Input Tools automatically reads in data files in IGES format. 

• The ICAD Oracle Interface provides an SQL interface to Oracle databases. 

• The HP 300 Graphics Driver and Silicon Graphics IRIS 4D Graphics Driver 
can be used to generate shaded images on HP 9000 Series 300 SRX 
workstations or Silicon Graphics IRIS 4D workstations, respectively. 

The following diagram shows The ICAD System integrated into an engineering 
environment. 

ICAD'S OPEN KBE ENVIRONMENT 

Proprietary 
Surface Modeler 

Parasolids 
kernel 

Oracle 
RDBMS 

Shaded Images 

UG II 

CADDS4X 

AutoCAD 

Microstation PC 

CATIA 

Any CAD System 

Non-graphical 
System 

Custom 
,,.,..-----;~ User 

Interface 

The !CAD System is integrated into an open engineering environment. 
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The ICAD System and Custom User Interfaces 

ICAD can be used as a knowledge kernel for your own interface. The ICAD 
Kernel Interface allows you to design your own user interface that 
communicates directly with The ICAD System kernel. You can write your own 
interface to define defparts, create design instances from the defparts, and 
generate results from the design instance. 

t+ 
The !CAD Kernel Interface allows you to develop a custom user interface for your application. 

Summary 

For example, the UG-ICAD Connection product is a user interface developed by 
McDonnell Douglas that connects the Unigraphics II CAD system with The 
ICAD System. With the UG-ICAD Connection product, you create an ICAD 
product model in the standard way using The ICAD System. Then, an end user 
supplies the inputs to the ICAD product model and generates the outputs from 
the !CAD product model directly from the UNIGRAPHICS II CAD System. 

• You integrate different engineering views in the same product structure tree 
by making each a component of the root. 

• The ICAD System provides many different products that can be added to the 
basic system and used for integration purposes. 

• You can use The ICAD System as a kernel for your own custom-designed user 
interface. 
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Summary of Chapter 5 

• The ICAD System fits into a design pipeline that includes other kinds of 
engineering systems. Inputs come into the ICAD product model from the 
pipeline. The ICAD product model can interact with other computer systems 
or with the design engineer. Output from the final design is in the form of 
reports, graphical output, or machine readable output. 

• Inputs can be from the design engineer or from other computer systems. 
Design-engineer inputs can be supplied when the design is first instantiated, 
or "interactively" while the ICAD product model is computing the design 
instance. 

• Different "views" of the same product, e.g., manufacturing, QA, and design, 
can be incorporated into the product structure tree. 

• The ICAD System provides many different products that provide an interface 
for the ICAD product model with other computer systems. Alternately, you 
can develop your own user interface using the ICAD Kernel Interface. 
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Glossary 

annotated drawings 

Drawings that include dimensions, labels, etc. The ICAD System can 
produce annotated drawings automatically. 

attributes 
Engineering rules written in the ICAD Design Language. Attributes are 
always associated with defparts and can be calculated in many different 
ways. See input-attributes, choice-attributes, descendant-attributes, report­
attributes, and trial-attributes. 

bounding box 
A box that encloses a 3D geometric object. 

box 
The basic geometric primitive in The ICAD System. 

cached value 
A value of an engineering attribute that has already been calculated and is 
stored in the computer memory. The next time the value of the attribute is 
required, it does not have to be recalculated. 

CAD Output 
2D- or 3D-geometric output from an ICAD product model in a format that 
can be read by a CAD system. 

catalogs 
Tables of engineering or other data. You can define rules in The ICAD 
System that automate the repetitive task of catalog lookup. 

children 
The components of a design instance in a product structure tree. Also 
referred to as parts. 

choice-attributes 
Engineering rules in which the design engineer is prompted for a value. 
See attributes. 

Common LISP 
A powerful general-purpose computer language upon which the ICAD 
Design Language is based. 

compiling 
The process of turning the engineering rules, that is, defparts, into a form 
the computer can understand. 
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concurrent engineering 
Engineering teams working in parallel on different aspects of the same 
product, for example, design and manufacturing. The ICAD System 
facilitates concurrent engineering. 

product configuration 
An application of The ICAD System that automates the organization of 
products with varying structure and many interrelated components. 

custom user interface 
An end-user interface developed for a particular ICAD application. 

defpart 
The basic building block of the ICAD Design Language. A defpart 
represents a component of the product model. It includes inputs, that is, 
input requirements, attributes, that is, engineering rules, and parts, that is, 
references to subcomponents. 

demand driven 
A feature of The ICAD System in which only those attributes that are 
needed to generate the desired result are calculated. For example, if you 
just want to generate the geometry of a product, the rules that relate to 
the cost analysis do not need to be computed. 

descendant-attributes 
An attribute whose value is made available to all the parts in a branch of 
the product structure tree. 

design-engineer inputs 
Inputs to an ICAD product model that are supplied by the design engineer, 
as opposed to being supplied by another computer system. See system 
inputs. 

design instance 
A particular design created by an ICAD product model. The ICAD product 
model takes the input specifications, applies the engineering rules, and 
creates a new design instance. 

edit/compile/test loop 
The process of developing an !CAD product model. First you edit the ICAD 
Design Language defparts, then you compile them into a form the computer 
can understand, and then you test them by generating a few design 
instances. If they are correct, you are finished. Otherwise, you repeat the 
process. 

engineering rules 
Representation of the strategy for designing or manufacturing the product. 
Rules describe how to divide the product into components, how to model the 
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product's geometry, how to calculate various engineering attributes, how to 
describe the process of manufacturing or testing the product, etc. Rules are 
written in the ICAD Design Language using attributes and parts. 

engineering views 
Multiple ways to look at the same product. For example, a design view 
contains design information, a manufacturing view contains information 
about the processes used to manufacture the product, and a quality-control 
view contains information about testing the design. The same ICAD product 
model can incorporate multiple engineering views. 

expert systems 
Computer system that captures some amount of design knowledge in an 
automated decision-making format, generally in the form of "if-then" rules. 

generative process planning 
An application of The ICAD System in which the product model 
automatically generates process-planning information. 

generic part 
A defpart that describes a design component that can be used in multiple 
places in the product structure tree. 

geometric primitives 
!CAD-provided defparts that have geometric meaning, such as boxes, 
spheres, etc. 

global coordinate system 
The coordinate system in which the geometry of the entire product is 
represented. See local coordinate system. 

graphical output 
Display of design-instance geometry. The ICAD System generates 3D 
wireframe displays automatically. 

!CAD Browser 
!CAD-provided user interface to The ICAD System. In the ICAD Browser 
you create new design instances and generate output from them. 

!CAD Design Language 
An engineering specification language used to describe defparts that is 
provided by ICAD. 

!CAD product model 
A description of the design strategy required to produce a particular 
product from a product specification - in essence it is the set of 
engineering rules used to design the product. An ICAD product model is 
written using the ICAD Design Language as a set of defparts. 
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incremental compiler 
A feature of The ICAD System-that allows you to change a small piece of a 
defpart without having to recompile the entire defpart. See edit/compile/test 
loop. 

input specifications 
Engineering attributes whose values are supplied by the design engineer 
when a new design instance is generated. Changing the input specifications 
can drastically change the design instance. Input specifications are written 
in the ICAD Design Language as input-attributes or choice-attributes. 

inspector 
A tool in the ICAD Browser that allows you to see the value of attributes 
for a particular design instance. 

instantiation 
The process of creating a new design instance from an ICAD product 
model. 

interactive input specifications 

KBE 

Inputs to an ICAD product model for which the engineer is prompted by 
the ICAD product model. Interactive input specifications are written in the 
ICAD Design Language as choice-attributes or as specification sheets. 

Acronym for knowledge-based engineering. 

kind-of inheritance 
A feature of The ICAD System in which a new defpart can be written that 
includes all of the attributes and parts of an existing defpart. See mixin. 

Knowledge-based engfoeering 
An engineering method in which engineering knowledge about the product, 
e.g., the techniques used to design, analyze, and manufacture a product, is 
stored in a product model which represents the engineering intent of the 
design. 

leaves 
A part in a product structure tree that has no children. 

local coordinate system 
The coordinate system in which the geometry of the components of an 
assembly in the product structure tree is represented. By defining the 
components of an assembly in the assembly's local coordinate system, the 
assembly can be positioned and oriented as a whole with respect to the 
overall product in the global coordinate system. See global coordinate 
system. 
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mix in 
A defpart whose attributes and parts are included in the description of 
another defpart. We say that the new defpart mixes in the existing defpart. 
See kind-of inheritance. 

modularization 
Breaking up an application into discrete components such that developing 
each component separately and then integrating the components is 
significantly easier than developing the application all at once. ICAD 
provides many tools for modularization, including dividing the product into 
components of a product structure tree and dividing defparts into mix.ins. 

object-oriented 
A way to develop computer systems such that the basic form of the 
program is an "object" that includes both data and instructions for 
manipulating data. An ICAD product model is an object-oriented computer 
system; each object is described by a defpart, which includes both data for 
the object and rules for relating it to other objects. Many of the features of 
The ICAD System, including mix.ins, attributes, parts, etc., are a direct 
result of its being an object-oriented system. 

parametric curves and surfaces 
Mathematically-described free-form curves and surfaces. The ICAD Surface 
Designer lets you create products whose geometry is based on parametric 
curves and surfaces. 

parametric CAD system 

parts 

A type of modern CAD system that lets you relate the geometry of different 
elements of a product. When you change one element, the geometry of the 
rest of the product changes as well. 

The children of a design instance in a product structure tree. Parts 
indicate how a design is divided into components. You specify parts when 
you write a defpart. 

part-whole defaulting 
A feature of The ICAD System that allows attribute values to be inherited 
from other parts that are higher up in the product structure tree. 

product model 
See !CAD product model. 

product structure tree 
The components of a design instance of an ICAD product model are 
organized into a product structure tree. A component might represent a 
product assembly, a part, or geometric feature. Alternately, a component 
might represent a manufacturing process. 
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referencing 
A feature of The ICAD System that allows you to use the value of an 
attribute in one component of the product structure tree to compute the 
value of an attribute in another component of the product structure tree. 

remote evaluation 
Using a computer system other than The ICAD System to compute the 
value of an attribute. 

report-attributes 
Attributes that let you generate output from a design instance. 

reports 

root 

Textual output from a design instance. Typical reports include bills of 
material, routing sheets, etc. 

The design instance that is the top of the product structure tree. The 
root of the product structure tree represents the design instance of the ICAD 
product model. 

rule base 
The rules that form an ICAD product model. 

rule-based system 
Another name used to describe a knowledge-based engineering system. 

specification sheets 
A technique for interactively specifying the inputs to an ICAD product 
model by selecting and editing them in menus or by identifying them 
graphically. 

semi-custom design 
An application of The ICAD System in which a standard design technique 
is used, with minor modifications, to produce slightly-differing designs. 

solid modeling 
A geometric modeling technique that can be used to build and manipulate 
solid objects and combine them into assemblies. Complex solid objects are 
built from primitive shapes using Boolean operations such as unite, 
subtract, and intersect. Primitive shapes usually include analytic solids such 
as a block, cylinder, cone, sphere, and torus, linear and rotational sweeps, 
and parametric (free-form surface) sheets. 

surface modeling 
A geometric modeling technique used to build and manipulate free-form 
surface objects. A surface is represented using parametric equations that 
allow the use of many geometric operations such as sweeping, extrusion, 
etc. 
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system inputs 
Inputs to an ICAD product model that are supplied by another computer 
system, as opposed to a design engineer. See design-engi.neer inputs. 

translators 
A tool in The ICAD System that translates information in a design instance 
into a form that can be understood by another computer system. For 
example, a translator is used to generate output to a CAD system. !CAD 
provides translators for several CAD systems, as well as tools for writing 
your own translators. 

trial-attributes 
Attributes whose values are computed by trying out new values until a 
successful value is found. 

unbound values 
An indication that the value of a particular attribute has not yet been 
computed. 

variational geometry systems 
A type of modern CAD system that allows you to define omni-directional 
geometric constraints on 2D geometry. 
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