676

66.

67.

69.

70.

&0

85
86

8.

S. MUGGLETON AND L. DE RAEDT

Lavrat, N.. D¥eroski, S., and Grobelnik, M., Learning Non-Recursive Definitions of
Relations with LINUS, in: Yves Kodratoff (ed.), Proceedings of the 5th European Working
Session on Learning, vol. 482 of Lecture Notes in Artificial Intelligence, Springer-Verlag,
1991.

Lavrat. N.. Deroski, S., Pimat, V., and Krizman, V., The Use of Background Knowledge
in Learning Medical Diagnostic Rules, Applied Artificial Intelligence 7:273-293 (1993).
Ling, C., Inventing Necessary Theoretical Terms in Scientific Discovery and Inductive
Logic Programming, Technical Report 302, Department of Computer Science, University
of Western Ontario, 1991,

Maher, M. J., Equivalences of Logic Programs, in: Proceedings of Third International
Conference on Logic Programming, Springer, Berlin, 1986.

Marcinkowski, J., and Pacholski, L., Undecidability of the Horn-Clause Implication
Problem. in: Proceedings of the 33rd IEEE Annual Symposium on the Foundations of
Computer Science, 1992, pp. 354-362.

Mellish. C. S.. Some Global Optimizations for a Prolog Compiler, Journal of Logic
Programming 2:43-66 (1985).

Michalski, R. S.. A Theory and Methodology of Inductive Learning, in: R. Michal-
ski. J. Carbonnel, and T. Mitchell (eds.), Machine Learning: An Artificial Intelligence
Approach, Tioga, Palo Alto, CA, 1983, pp. 83-134.

Mishra, P.. Towards a Theory of Types in Prolog, in: Proceedings of the | 984 International
Symposium on Logic Programming, IEEE Computer Society Press, Atlantic City, 1984,
pp. 289-298.

Mitchell. T. M., Generalisation as Search, Artificial Intelligence 18:203-226 (1982).
Mizoguchi, F., and Ohwada, H., Constraint-Directed Generalization for Learning Spatial
Relations, in: Proceedings of the Second Inductive Logic Programming Workshop, Tokyo,
1992, ICOT TM-1182.

Moore, E. F.. Gedanken-Experiments on Sequential Machines, in: C. E. Shannon and
J. McCarthy (eds.), Automata Studies, Princeton University Press, Princeton, NJ, 1956,
pp. 129-153.

Morik, K., Sloppy Modeling, in: Katharina Morik (ed.), Knowledge Representation and
Organization in Machine Learning, vol. 347 of Lecture Notes in Artificial Intelligence,
Springer-Verlag, 1989.

Mortimer, H., The Logic of Induction, Ellis Horwood, Chichester, England, 1988.
Muggleton, S., Duce, An Oracle Based Approach to Constructive Induction, in: Pro-
ceedings of the 10th International Joint Conference on Artificial Intelligence, Morgan-
Kaufmann, 1987, pp. 287-292.

Muggleton, S, A Strategy for Constructing New Predicates in First Order Logic. in:
Proceedings of the 3rd European Working Session on Learning, Pitman, 1988, pp. 123
130.

Muggleton, $., Inductive Logic Programming, New Generation Computing 8(4):295- 318
(1991),

Muggleton, S. (ed.), Proceedings of the Ist International Workshop on Inductive Logic
Programming, University of Porto, Porto, Portugal, 1991

Muggleton, S. (ed.), Inductive Logic Programming, Academic Press, 1992,

Muggleton, S. (ed.), Proceedings of the 2nd International Workshop on Inductive Logic
Programming. 1COT, Tokyo, Japan, 1992.

Muggleton, S., Inverting Implication, Artificial Intelligence Journal (1994) to appear,
Muggleton, S., Predicate Invention and Utility, Journal of Experimental and Theoretic al
Artificial Intelligence 6(1):127-130, (1994),

Muggleton, S. (ed.), Proceedings of the 3rd International Workshop on Inductive Logic
Programming, Jozef Stefan Institute, Bled, Slovenia, 1993,

Muggleton, 5., Mode-Directed Inverse Resolution, in: K. Furukawa, D. Michie, and
S. Muggleton (eds.), Machine Intelligence 14, Oxford University Press (to appear).

Versata 2007 Part 12 of 12

Ford v. Versata
0692 IPR2016-01014

INDUCTIVE LOGIC PROGRA MMING

89.

90.

91,

98.

99

100.

101.

102.

103.

104,

105.

106

107,

108,

113

Muggleton, 8., and Buntine, W., Machine Invention of First-Order Predicates by Inverting
Resolution, in: Proceedings of the 5th International Conference on Machine Leami;;r;
Morgan-Kaufmann, 1988, pp. 339-352. s
Muggleton, 8., and Feng, C., Efficient Induction of Logic Programs, in: Proceedings of
the Ist Conference on Algorithmic Learning Theory, Ohmsha, Tokyo, 1990, s
Muggleton, 8., King, R., and Sternberg, M., Protein Secondary Structure Prediction
Using Logic-Based Machine Learning, Protein Engineering 5(7):647-657 (1992).
Muggleton, 5., Srinivasan, A., and Bain, M., Compression, Significance and Accuracy, in:
Proceedings of the 9th International Machine Learning Conference, M(}rgaa-i{gu‘fn;amn
San Mateo, CA, 1992,

Niblett, T., A Study of Generalisation in Logic Programs, in: Proceedings of the 3rd
European Workshop Session on Learning, Pitman, London, 1988,

Page. D., and Frisch, A, Generalization and Learnability: A Study of Constrained Atoms,
in: S. Muggleton (ed.), Inductive Logic Programming, Academic Press, London, 1992.
Pazzani, M., and Kibler, D., The Utility of Knowledge in Inductive Leaming, Machine
Learning 9 (1992).

Pereira, L. M., Calejo, M., and Aparicio, J. N, Refining Knowledge Base Updates,
Technical Report, Al Center/UNINOVA, Portugal, Nov. 7, 1989.

Piatetsky-Shapiro, G., and Frawley, W. (eds.), Knowledge Discovery in Databases, MIT
Press, 1991.

Plotkin. G., A Further Note on Inductive Generalization, in: Machine Intelligence, vol. 6,
Edinburgh University Press, 1971.

Plotkin. G. D.. A Note on Inductive Generalisation, in: B. Meltzer and D. Michie {(eds.),
Machine Intelligence 5, Elsevier North Holland, New York. 1970, pp. 153-163.
Plotkin. G. D.. Automatic Methods of Inductive Inference, Ph.D. Thesis, Edinburgh
University, Aug. 1971.

Quinlan, J. R., Induction of Decision Trees, Machine Learning 1:81-106 (1986).
(j.):.}mhm J. R.. Determinate Literals in Inductive Logic Programming. in: Proceedings
of the 12th International Joint Conference on Artificial Intelligence, Morgan-Kaufmann.
San Mateo, CA, 1991, pp. 746-750.

Quinlan, J. R., and Cameron-Jones, R. M. FOIL: A Midterm Report, in: P. Eraz‘:ii} {ed.),
f;f'r ceedings of the 6th European Conference on Machine Learning, vol. 667 of Lecture
Notes in A ;-rrfr“ri'uf Intelligence, Springer-Verlag, 1993, pp. 3-20. _ o
Quinlan, J. R .and Rivest, R. L., Inferring Decision Trees Using the }tininmzz‘. Description
Length Principle, Information and Computanon 80:227-248 (1989). o
(}m;-ul;m. R., I.c;lmi{xg Logical Definitions from Relations, Machine Learning e
(1990) e

De Raedt, L.. Inductive Logic Programming and Scientific Déscm"i‘f}\‘1_‘:‘35"‘5535'!{‘3?@]‘['
Department of Computing Science, Katholieke l_FL‘eiwr.siwii 1..1"-1&&'@. 1992, .‘»miw.n-ut%ai.‘ X
De Raedt. L., Inreractive Theory Revision: An Inductive Logic Programming Approach,

39266

Academic Press, 1992 0 5 ; < in: Proceedings
De Raedt, L., and Bruynooghe, M., Towards Friendly Concept-lLeamers, i £ 2

Jligence. Morgan Kaufmann,
of the 11th International Joint Conference on Artificial Intelligence. Morgan Kauima
1989, pp. 849-856.

De Raedt, L., and Bruynooghe. M., Indire
: . Aranisition 2:365-390 (1990).

Leaming, Knowledge Acquusiiion £.200-- _ i A
De R w;h .. and Bruynooghe, M. Belief Updating from Integrity Constraints ant
. i Rt ' &.” 7 3
Queries, Artificial Intelligence 53:291-307 ii"‘lf}. 4
De Raedt, L., and Bruynooghe, M., Interactive L.o;;;;,i}:— earning

ey i = Lol g 110072
Induction by Analogy, Machine Learning h.‘ i-{!?—:'lﬁﬁ {1 % R
De Raedt. L.. and Bruynooghe, M., A Unifying H"mwmzrk;:;ﬂ(iy o

; M e ! SIS T AT Y s ML)

rithms. The Knowledge Engineering Review fl\3-3-»~_\3’ E_‘ «f‘-} { i Precdins
De Raedt. L., and Bruynooghe, M., A Theory of Clausal Discovery, ; .

ct Relevance and Bias in Inductive Concept-

and Constructive

B Y AN Bt et

114,

116.

117,

118.

i19.
120.

123.

124.

128.

129.

130.

131.

132.

133.

134,

S. MUGGLETON AND L. DE RAEDT

of the 13th International Joint Conference on Artificial Intelligence, Morgan Kaufmann,
1993.

De Raedt, L., and Lavrad, L., The Many Faces of Inductive Logic Programming, in:
1. Komorowski (ed.), Proceedings of the 7th International Symposium on Methodologies

for Intelligent Systems: Lecture Notes in Artificial Intelligence, Springer-Verlag, 1993.

De Raedt, L., Lavrag, N., and DZeroski, S., Multiple Predicate Learning, in: Proceedings
of the 13th International Joint Conference on Artificial Intelligence, Morgan Kaufmann,
1993.

De Raedt, L., Sablon, G., and Bruynooghe, M., Using Interactive Concept-Learning
for Knowledge Base Validation and Verification, in: M. Ayel and J. P. Laurent (eds.),
Validation, Verification and Testing of Knowledge Based Systems, John Wiley and Sons.
1991, pp. 177-190.

Rice, H., Classes of Recursively Enumerable Sets and Their Decision Problems, Trans-
actions of the American Mathematical Society 83 (1953).

Richards, B. L., and Mooney, R. J., First Order Theory Revision, in: Proceedings of the
8th International Workshop on Machine Learning, Morgan Kaufmann, 1991, pp. 447-451.
Rissanen, J., Modeling by Shortest Data Description, Automatica 14:465-471 (1978).
Robinson, J. A., A Machine-Oriented Logic Based on the Resolution Principle, JACM
12(1):23-41 (Jan. 1965).

Rouveirol, C., Extensions of Inversion of Resolution Applied to Theory Completion, in:
S. Muggleton (ed.), Inductive Logic Programming, Academic Press, London, 1992,
Rouveirol, C., and Puget, J.-F,, A Simple and General Solution for Inverting Resolution,
in: Proceedings of the 4th European Workshop Session on Learning, Pitman, London,
1989, pp. 201-210.

Sammut, C., The Origins of Inductive Logic Programming: A Prehistoric Tale, in;
S. Muggleton (ed.), Proceedings of the 3rd International Workshop on Inductive Logic
Programming, 1993, pp. 127-147.

Sammut, C., and Banerji, R. B., Learning Concepts by Asking Questions, in: R. Michal-
ski, J. Carbonnel, and T. Mitchell (eds.), Machine Learning: An Artificial Intelligence
Approach, Vol 2, Kaufmann, Los Altos, CA, 1986, pp. 167-192.

Shapiro, E. Y., Algorithmic Program Debugging, MIT Press, 1983.

Shapiro, E. Y., Inductive Inference of Theories from Facts, in: J.-L. Lassez and G, Plotkin
{eds.), Computational Logic: Essays in Honor of Alan Robinson, MIT Press, 1991,
Silverstein, G., and Pazzani, M., Relational Cliches: Constraining Constructive Induc-
tion During Relational Learning, in: Proceedings of the 6th International Workshop on
Machine Learning, Morgan Kaufmann, Los Altos, CA, 1989,

Solomonoff, R. J., A Formal Theory of Inductive Inference, Information and Control
T:376-388 (1964).

Stahl, I., Constructive Induction in Inductive Logic Programming: An Overview, Tech-
nical Report, Fakultat Informatik, Universitat Stuttgart, 1992,

Stahl, I., Tausend, B., and Wirth, R., Two Methods for Improving Inductive Logic
Programming Systems, in: P. Brazdil (ed.), Proceedings of the 6th European Conference
on Machine Learning, vol. 667 of Lecture Notes in Artificial Intelligence, 1993
Sternberg, M., Lewis, R., King, R., and Muggleton, S., Modelling the Structure and Func-
tion of Enzymes by Machine Learning, Proceedings of the Royal Society of Chemistry:
Faraday Discussions 93:269-280 (1992),

Stickel, M., A Prolog Technology Theorem Prover: Implementation by an Extended
Prolog Compiler, Journal of Automated Reasoning 4(4):353-380 (1988).

Summers, P. D., Program Construction Sfrom Examples, Ph.D. thesis, Yale University,
New Haven, CT, 1975.

Tankitvanitch, S., and Shimura, M., Refining a Relational Theory with Multiple Faults
in the Concept and Subconcepts, in: Proceedings of the 9th International Workshop on
Machine Learning, Morgan Kaufmann, 1992, pp. 436444,

INDUCTIVE LOGIC PROGRAMMING

1335,

136.

137.

138.

139.

140).

146.

147

148.

149,

Tausend, B., A Unifying Representation for Language Restrictions, in: S. Muggleton
(ed.), Proceedings of the 3rd International Workshop en Inductive Logic ngmm&u’ng.
1905 ; s
Taylor, K., Inverse Resolution of Normal Clauses, in: S, Muggleton (ed.). Proceedings
of the 3rd International Workshop on Inductive Logic Programming, 1993, pp. 165-178.
Thieme, S., The Acquisition of Model-Knowledge for a Model-Driven Machine Learning
Approach, in: K. Morik (ed.), Knowledge Representation and Organization in Machine
Learning, Springer Verlag, 1989,

Tomasic, A, View Update Translation via Deduction and Annotation, in: Proceedings
2nd International Conference on Database Theory.vol. 326 of Lecture Notes in Computer
Science, Springer-Verlag, 1988, pp. 338-351.

Utgoff, P. E., and Mitchell, T. M., Acquisition of Appropriate Bias for Concept Leamn-
ing, in: Proceedings of the 2nd National Conference on Artificial Intelligence, Morgan-
Kaufmann, 1982, pp. 414-418.

Valiant, L. G., A Theory of the Learnable, Communications of the ACM 27:1134-1142
(1984).

Van Laer, W., Inductief Afleiden van Logische Regels. Master's thesis, Department of
Computing Science, Katholicke Universiteit Leuven, 1993 {in Dutch).

Vere, S. A.. Induction of Concepts in the Predicate Calenlus, in: Proceedings of the 4th
International Joint Conference on Artificial Intelligence. Morgan Kaufmann, 1975, pp.
282-287.

Wirth, R., Learning by Failure to Prove, in: Proceedings of the 3rd European Workshop
Session on Learning. Pitman, London, 1988, pp. 237-251.

Wirth. R., Completing Logic Programs by Inverse Resolution, in: Proceedings of the 4th
European Workshop Session on Learning, Pitman, London, 1989, pp. 239-250,

Wirth, R, and O'Rorke, P., Constraints on Predicate Invention, in: Proceedings of the Sth
International Workshop on Machine Learning, Morgan-Kaufmann. 1991, pp. 437461,
Wogulis, J., Revising Relational Theories., in: Proceedings of the 8th International
Workshop on Machine Learning, Morgan-Kaufmann, 1991, pp. 462-466.

Wrobel, S., Automatic Representation Adjustment in an Observational Discovery System,
in: Proceedings of the 3rd European Workshop Session on Learning, Pitman, London.
1988, pp. 253-262. -
Wrobel, S., On the Proper Definition of Minimality in Specialisation and Theory Revision,
in: Proceedings of the 6th European Conference on Machine Learning, vol. 667 of Lecture
Notes in Artificial Intelligence, Springer-Verlag, 1993, pp. 63-82. -

Yokomori, T., Logic Program Forms, New Generation Computing 4 (1986).

0695

0696

T N e s e S A e R

1. LOGIC PROGRAMMING 1994:19, 20:681-714 681

NATURAL LANGUAGE PROCESSING AND
LOGIC PROGRAMMING

VERONICA DAHL

b This paper examines the main points of contact between logic programming and
natural language processing, and covers some of the important issues that arise us-
ing logic programming techniques in natural language processing. It emphasizes
the importance of taking into account the most general analyses from linguistic
theory in building NLP systems, while also pointing out the need to adapt and
combine the different theories to our ends, given that no single one can offer all-
encompassing solutions. We concentrate on syntax, the most studied aspect of
language processing. Our presentation of different approaches is centered when-
ever possible around treatment of one particular phenomenon, which serves as
an axis of discussion throughout the article: long-distance dependencies between)
constifuents. <

1. INTRODUCTION

Of all the enterprises that have been attempted through logic programming, in particular,

and by artificial intelligence, in general, processing natural language 1s arguably one of the

most ambitious. -
Much has been written about the marvel and wonder of human language, that intncate

tool for communicating thoughts, feelings, and emotions, Or eXpressing human nature and
i belief. Unlike all other tools

society, and for transmitting and clarifying knowledge anc
used by humankind, it is also, in a very real sense, a living creature in constant ch;z?zgt:,
Even if it remained static, or when we slice (as we are forced to do) [!Ft‘,t‘i.\"t? ;‘smi_samphht‘d
subsets of it for the purpose of scientific exploration, we arc still left with a formidable

and intriguing set of linked systems: vocal systems whic h use sounds as building blocks

systems for combining phonemes 1nto words, systems for combining words and systematic

T - : Lo Denartment, Simon Fraser University,
\ddress correspondence to Veronica Dahl, Computing Sciences Department, Simon Fras -
Burnaby, B.C. V5A 186 Canada. Email: veroni ca@des.siu.ca,

Ri‘i‘vi\f{‘k! ?\"\1'\‘ 19973 ;}L'L"“]_!i\‘is ljl‘L‘s‘i]!hl‘i I()‘j‘-
THE JOURNAL OF LOGIC PROGRAMMING

© Elsevier Science Ing., 1994 ATAS 1 DAEOYST .00
- (743 1066/94/87.(K
655 Avenue of the Americas, New York, NY 100887

V. DAHL

traits such as stress and intonation into utterances, systems for interpreting the utterances
as symbols for meaning, and systems for representing utterances in written form.

I:-inguislic theories offer useful but incomplete organizing frameworks for dealing with
this complexity, and are by no means in agreement on all points. In addition, the activity
of computationally processing language often stresses different aspects than those stressed
by linguists. Thus, language processing problems have by necessity been addressed with-
out clear guidance from formal linguistics, with some people developing computational
linguistic theories of their own, and others adapting various pure linguistic theories for
computational use. Interesting mutual feedback between formal and computational lin-
guistics has ensued.

With the advent of logic pmgramming circa 1972 [25], and of logic grammars in 1975
[24], concise logic-based prototypes for language processing became possible [24, 31].
The “parsing as deduction” [90] paradigm had been born, in which a parser is a specialized
theorem-prover that can deduce information about utterances in a language from a set of
axioms expressing knowledge about that language. Although stressing the parsing aspect
for historical reasons, it is clear that the parsing-as-deduction framework can be extended
into {anguaga-protrefssingﬁs-deduc:ion, in which other aspects of natural language process-
ing are treated through deduction as well (e.g., a specialized theorem-prover can generate
sentences in a language by deducing, from a set of axioms expressing knowledge about that
language, the form of the utterances in that language, that correspond to a given semantic
representation).

The attraction in using logic programming for processing language is threefold. In the
first place, many of its features are naturally adapted to deal with natural language processing
needs: knowledge about language is, in many linguistic frameworks, expressed as some sort
of deduction from general principles which can be expressed as axioms; partial, incremental
information is also typical in linguistics, and can be expressed through the logical variable;
the aims of conciseness and generality are also common to both the field of modern linguis-
tics and of logic programming; and the declarativeness inherent in logic programming is
also one of the aims of modern linguistics, important in particular for reversibility (i.e., for
using the same program/grammar for analysis as for synthesis). In the second place, logic
can provide a natural underpinning for natural language semantics. Third, different types
of logics have played important roles in linguistics and in natural language processing. By
choosing a logic-based formalism to process language, the implementation means become
closer to some of the representations manipulated in processing, thus minimizing the need
for interfaces by providing a uniform methodology: logic throughout, in one form or an-
other. Formal characterizations of the logic programming tools developed can also be done
in terms of some kind of logic.

This uniformity of methodology was evident from the first Prolog-based natural language
systems [25, 24, 31]: logic was used in Horn-clause form (via logic grammars) for program:
ming, and sentences were translated into some kind of logical representation, ¢.g., into a
three-valued logic system, the semantics of which corresponded to answer extraction from
an also logic-programmed relational database. Specialized logic systems have been incor
porated into several linguistic formulations, particularly regarding semantic representations
for natural language (e.g., situation semantics [9] and Montague semantics [42]). Higher-
order logics have been used for semantic interpretation [88]. Lambek calculus has been
used for inferring the syntactic categories of phrases [73, 74] and for handling paps'(e.g.

: A e .
fﬂ!tﬂgHLd!L)dIgﬁnﬁd gap denotes the position a moved constituent would have occupied had it nol
maved, e.g., when the abject noun phrase in “Jack built the house” moves to the front through relativization,

0698

NATURAL LANGUAGE PROCESSING

[54, 53]). An intuitionistic logic treatment of gaps was presented in [84],
has been used for a formal account of logic grammars [5].

In this article we present an overall view of the evolution and different expressions of the
language-processing-as-deduction framework, which as shall be seen, has manifestations
other than logic programming ones. We focus on approaches to the description of syntax,
while also giving some flavor of semantics and other aspects of processing language, Our
presentation of different approaches is centered, whenever possible, around the treatment
of one particular phenomenon, which serves as an axis of discussion throughout the article:
long-distance dependencies between constituents. We are more attentive to intuitive and
comparative explanations than to formalizations which can be found in the literature, and
we necessarily resort to simplifications, and sometimes incomplete pictures, for expository
purposes. We assume no previous knowledge of the subject.

The paper is organized as follows. Section 2 provides some background as well as some
preview for the rest of the paper. Section 3 exemplifies the kinds of problems faced. Section
4 surveys some formalisms and methodologies. Section 5 examines linguistically prinei-
pled approaches. Section 6 discusses applications, and Section 7 presents our concluding
remarks.

Relevance logic

2. BACKGROUND

The first language processing application of logic programming, written by Alain Colmer-
auer and his colleagues [25], was also the very first application of logic programming. In-
deed, it was around the needs of processing language that the very idea of Prolog emerged.
Its first version was developed not so much as a general purpose Al language, but as a
means for solving the deductive problems of a “system of man-machine communication in
French.”

Colmerauer next developed a grammatical formalism that could compile into Prolog,
metamorphosis grammars, with the aim of joining the advantages of the new language
with those of clarity and simplicity, where treatment of syntax 1s concerned, as exhibited
in his previous formalism, q-systems [23]. g-systems automate the analysis or synthesis of
structures according to a user-defined grammar based on complex- wmboi rewriting.

Metamorphosis grammars, or MGs [24], admit type-0-1 like rules”for rewriting symbols
(both terminal and nonterminal) which are Ewaa terms. Right-hand sides of rules can also
contan Prolog calls. The automatic analysis s and synthesis of sentences in the language
defined by a metamorphosis grammar are, in p!umpEL both possible (although in practice,
procedural concerns dictated separate formulations for analysis than for synthesis, except
for very simple grammars).

The first natural language application of met
{ kin relationships [24]. Then a Spanish and a French front
eveloped using metamorphosis

il%lii‘i']'*bi%é:\' oraminars was a conversation

system in French on social ang

end for the first database .-ey:»‘l-cm written in Prolog was d

grammars [31]. These first results were encourag ing: an English version of this front

' " 1X y with the
end, which was coded in a total of six pages, compared favorably in efficienc e
) Lunar system [91]. Soon this Spanish front

‘ * < 7 ;L }
end was adapted to several other languages, other logic-programming based systems tor

considerably larger (in the sense ol { code length

3 LA SRS TR B sepTsbins o oo S
as in “the house that Jack built,” it leaves a gap behind in the phrase Structure representing the sentenc

i !
Uhat is, rules with the same format as iype 0 rules, but in which syn
13 1 X
Prolog calls may be added. Type-0 rules are rewriting rules of the ““!'E : 5|
. i i ;e o i 1{! 1.
which. as is well known. can be used to defing any recursive Iy enumerable language {35}

\s*l\ may mJL;&\ arguments, and
\L_E

0699

V. DAHL

language processing applications started to emerge, and metamorphosis grammars inspired
the development of other types of what are now known as logic grammars [2].

Because the early logic grammars ultimately relied on Prolog’s depth-first strategy, which
created problems such as nontermination for left-recursive grammars, and in order to solve
other specific computational linguistics problems, other proposals emerged, e.g., those
based on tabular parsing [118, 4] or on bottom-up parsing [125]. Many evolving logic
programming techniques, such as higher-order logics, partial execution, memoing, sharing
techniques, constraint logic programming, concurrency, parallelism, and so on, have also
been finding application in language processing. For instance, memoization [121] allows
us to avoid infinite loops due to left recursion, given that subsumption-equivalent subgoals
are not evaluated. Another interesting approach proposed the elimination of left-recursion
from DCG rules through successive transformations into a generalized Greibach normal
form [43].

In parallel with these developments, many computational linguistics researchers were
turning more and more toward the models provided by formal linguistics, after a long period
of relying on relatively ad hoc frameworks for constructing their linguistic descriptions.

The transformational or generative paradigm [21] had provided an initial step toward
computationally usable linguistic models by viewing grammars as highly formalized en-
tities. These entities consisted of two components: a base component of context-free
rewriting rules, which described a “canonical” version of sentences (i.¢., in the active voice,
affirmative form, etc.), and a transformational component, which contained general rules
to convert these canonical representations into other possible variants (passive voice, inter-
rogative, or negative form, etc.).

While it was the most formalized linguistic paradigm until then, transformational theory
was not easily amenable to computational treatments, mainly due to the myriad of spe-
cific rules that it engendered. New theories emerged, all with the objective of brevity of
description in mind. Lexical functional grammar [14] was born under the explicit goals
of computational preciseness and psychological realism, and replaces transformations by
dealing with them in the lexicon. Generalized phrase structure grammars [49] aimed at
succinctness by providing higher level grammars that could be mechanically converted
into context-free grammars. Government and binding theory [22], as well as its successor,
barriers [20], replaced thousands of specific rules by the deductive interaction of a small
number of principles and constraints. HPSG [92], with similar aims, takes elements from
many of these theories, as well as from semantic and computational theories. Categorial
grammars analyze language expressions as the functional product of a functor applied to
a suitable set of simpler argument expressions [83]. The categorial grammar approach
lends itself very nicely for studying the relationship between the syntactic structures and
the semantics of language expressions. All these linguistic models strive in different ways
for the same objectives of principledness and succinctness, and in so doing have developed
similarities between themselves and also with logic programming. As an example, some
notion of unification is also present, although less crucially than in logic programming, in
most contemporary linguistic models,

Despite considerable progress made by modern linguistic theories toward formalized
accounts of human language, their adaptation for computational use remains difficult, for
reasons such as the following:

e Modern linguistics stresses competence (the tacit knowledge that a speaker has of
the structure of his/her language) over performance (how language is processed in
real time, why speakers say what they say, how language is used in various social

NATURAL LANGUAGE PROCESSING o

groups, etc.), while the latter considerations are more prominent in building natural
language systems. ..{
o Linguistic efforts for accounting for competence have, particularly in the past
yielded mostly explanations of language synthesis, whereas {:{}mg}uga;éﬁaai i%ngu%si
tics is often more interested in analyzing language than in synthesizing it}
e Formalizations of linguistics to the point that it is conceivable to ;f:é, them for
automatic processing are relatively recent and in constant evolution.

Thus, natural language processing is still an art, whose intersection with logic pro-
gramming is that of two highly promising and complementary, but also rapidly changing
scenarios. Cross-fertilization with each other and with other fields is only to be LK?&LEC&{E
and is indeed happening.

In trying to convey the complexities of this art, we shall aim at an intuitive understanding
of some of the main problems and solutions rather than at exhaustive coverage.

3. WHAT KINDS OF PROBLEMS DO WE FACE?

The most explored natural language processing application has been analysis or parsing of
individual sentences, to provide natural language front ends to knowledge-based systems.

Given a grammar and a presumed sentence in the language defined by that grammar, the
parsing problem is to obtain some representative structure(s) (e.g., a tree-form record of
the rules applied in order to obtain the sentence) if the sentence is indeed in the language,
and nothing if not (representations for the sentence are worth deriving since they will be
key to semantics). For instance, Figure 1 shows a simple phrase-structure grammar and the
tree structure for the sentence: “Maria laughs” Terminal symbols are enclosed in square

brackets.
sentence --> noun_phrase, verb phrase. sentence
noun_phra name. noun_phrase verb.phrase
verb phrase > yerb. ! h %
W namea verb
name -~> [marial. % ‘
verb ~-> [laughs]. [marial [laughs]

FIGURE 1. A sample grammar and parse tree.

infinite possible sentences of a natural
language through a finite device, such as a grammar, in 45 concise and feguim'z‘tyjr;1;*%12?:11'3:
lly believed to be too restricing to deal
are too computationally

The main problem in parsing is how to describe the

a way as possible. Context-free grammars are genera
with natural language syntax, and context-sensitive and type-Oones,
intractable, in general [55].

Another problem is that ot the ambiguity that plagues natura : Sexa
wematic clugs, mtonalion ¢ lues, etc.

» in which it is rot

| language, and 1s exacerbated

in written interactions with a computer by the lack of pr:
A well-known example is “I saw the boy in the park with a telescope

clear which phrases the prepositional phrases modity.

teclarativeness and fack of

A hh Wi f} } k i t‘ - . A Y it P
] ' #il ing, i 1 THORICT iSEC ERCOEIOS it L
’\ OUETE 15 18 Changing, 1 iii AL TR i lin i st %t’ Wi Are 1 ent upoi o ol .

{ i ‘ . " Al () - “\ 7 ,E‘.“;“
bias toward one processing direction, the change 15 notas swift as would be desirable (¢

0701

et

686

V. DAHL

The linguistically important problem of overgeneration (how to make a grammar de-
scribe only sentences in the language, and reject incorrect sentences) can and has been
overlooked in many analysis applications, but becomes important for generation, transla-
tion, and learning, as well as for descriptive adequacy in the more linguistically principled
approaches, and for plain efficiency.

Obtaining semantic representations for sentences is a crucial concern as well. Figure
2 shows a definite clause grammar [91] extension of the grammar in Figure 1, in which
nonterminal symbols have been augmented with one to two arguments which build semantic
structure. For “Maria laughs,” the structure “laughs(maria)” will be obtained—perhaps to
be used directly to query a database.

sentence (Sem} -->
noun_Phrase (X), verb_phrase (X, Sem) .

noun_phrase (X} --> name(X).
verb phrase(X,P) --> verb(X,P).

name (maria) --> [maria].
verb(X, laughs (X)) --> [laughs].

FIGURE 2. A DCG that builds semantic structures.

More specifically linguistic problems appear immediately when the linguistic coverage
becomes reasonably ambitious. For instance, when for emphasis we say “Logic, we love,”
rather than “We love logic,” a parser needs to somehow attach the dislocated constituent
“logic” to the gap, i.e., to the missing noun phrase that would have come after the verb. This
phenomenon, called the unbounded or long-distance dependency phenomenon, involves
constructions such as interrogatives (“Who do you think I saw?”), relatives (“the house that
Jack built”), and topicalization (“Friendships like this, one should cultivate,” “Logic, we
love™), in which some phrase is missing from its standard position in the main clause and a
corresponding “extra” phrase appears outside of it. The relation of dependency between the
“missing” and the “extra” positions is potentially unbounded, i.e., a string of any length can
intervene (e.g., consider “Logic, we love,” “Logic, I know we love,” “Logic, I suspected
he knew we love,” and so on). Study of such relations in different languages (e.g., in
the Scandinavian languages, where more than one constituent needs to be extracted [49])
suggests that a purely context-free analysis of such relations will not be sufficient.*

We will return to these kinds of problems from various different viewpoints, while
surveying different formalisms and approaches.

*The formal power needed 1o treat long-distance dependencies has long been a point of controversy. For
many years they were thought to be beyond the scope of a nontransformational (i.e., type-() grammar, How:
ever, context-free-based approaches, such as GPSG, provide some treatment of this phenomenon, through
augmenting a phrase-structure grammar such that it still remains a phrase-structure grammar, but it can
handle long-distance dependencies.

0702

v—"‘— i

NATURAL LANGUAGE PROCESSING

687

4. FORMALISMS AND METHODOLOGIES

4.1. Earlier Approaches

The earlier formalisms for logi&pmglmmming-based computational linguistics incorpo-
rated a numbe-r of nad hoc methodologies, which were basically clever ways of exploiting
the features of logic programming. For instance, some cases of ambiguity and of seman-
tic anomaly were_dealt with by attaching semantic types to the logic terms induced by a
grammar, and letting unification decide whether two types were compatible or not. Thus,
by a parser attaching the type “human” to the subject of “speak.” a sentence such as Which
dogs speak Larin? could be rejected on the basis of semantic anomaly detected through
syntactic (un)matching of types. Similarly, the ambiguity in Where does Georgia live?,
where Georgia denotes either a woman or a place, could be similarly resolved by requir-
ing an “animate” type for the subject of “live.” Types were represented by terms such that
even set inclusion verifications could basically reduce to unification. Further extensions,
such as logic grammar formalisms for automating semantic structure buildup, treatments
of coordination, or quantifier scoping [76, 36, 1, 57} provided further perspicuity.

These initial, ad hoc approaches were succeeded by more linguistically and/or logically
justified formulations, such as the type treatments of [79, 78, 3, 34, 17] or the higher-order
logic formulation of semantic structure buildup in [80].

In the remainder of this section, we present some early formalisms around the axis of
one particular type of linguistic phenomenon: that of relating long-distance constituents.

4.1.1. DEFINITE CLAUSE GRAMMARS (DCGS) [91]. DCGs have already been infor-
mally introduced through the example in Figure 2. DCG rules have the general form

8l -->» s82,..., sn.

where s1 is a complex grammar symbol (i.e., may be aterm) and s2,....sn are either complex
grammar symbols or Prolog calls. If the latter is true, they are enclosed in curly brackets.
Terminal symbols are noted between square brackets and can also contain arguments {al-
though this is unusual). DCG rules compile into Prolog by adding two drguments IF} czicfz
symbol: one with the string to be analyzed, and another one with what remains of it after
the predicate corresponding to the symbol has perhaps consumed a part of zi

While following the general context-free format, the arguments allowed in the grammar
symbols endow them with type-0 power: they can be used to carry any context-sensitive or
movement information that, in a grammar with only simple symbols, would appear through
additional left-hand-side symbols instead. - :

Figure 3, for instance, shows a DCG (taken from [B5]) whisb descnbg:s the ?ongmdzst::mcc
dependency between a pronoun and a missing noun phrase in 2 relative ciau&e?.t‘mwg?
carrying in an extra argument information on when the noun ;fhrzme v-:ﬂl be missing. t
moreover illustrates the difficult art of arriving at a grammar formulation that nwmtmm?
generality and conciseness while ruling out incorrect sentences. The Tﬁ{ﬂ for s btmks
movement out of subject noun phrases (which would, mna iargcr‘g:‘azn:.n:}r. resui? l.ﬂ §wtttn'r=cut
noun phrases such as *the lost puppy that a reward for was (Zgﬁe’ft’d.‘) bv z‘tqa;na% 15{&3&:2
noun phrases to be complete. However, it has the uugicsxrah'lc side effect of b oc m;}
relative clauses where the whole subject np is missing, as in; the puppy that was founc

. e : setice in lineuistic literature.
SWe precede ill-formed sequences of words by an ¥, as is common practice if L

0703

V. DAHL

yesterday. The second rule for relative is introduced solely to correct this side effect. The
, same analysis can also be found in some versions of GPSG, and represents a reasonable
i compromise solution for the problem.

' sentence --> s(complete).
i s(E) --> noun_phrase(complete), verb phrase(E).

noun_phrase (complete) --> determiner, noun, relative.
noun_phrase (complete) --> name.
noun_phrase(missing np)} --> [1].

verb_phrase (complete) --> verb.
verb phrase (E) --> verb, noun phrase(E).

relative --> pronoun, s(missing np).
relative --> pronoun, verb phrase(complete).

FIGURE 3. A DCG for relativization.

In most contemporary implementations, DCGs also allow for more than one grammar
symbol in their left-hand side, provided that the first left-hand-side symbol is a nonterminal.
This full version was first developed by Alain Colmerauer under the name of metamorphosis
grammars (MGs) [24], but the name DCG has become prevalent since. Using metamor-
phosis grammars, movement rules can be directly expressed rather than conveyed through
argument manipulation. A subject-verb inversion, as occurs in interrogative sentences in
some romance languages, can be described by MG rules such as

interrogative_marker, noun _phrase, verb --> verb, noun_phrase.,
where “interrogative_marker” has been introduced by rules such as

sentence(interrogative) --> interrogative marker, s.
sentence (affirmative) --> s.

Notice that records of rule application for MGs are no longer trees, as in DCGs, but
graphs, owing to the right-hand-side symbols having more than one parent. Any MG has an
equivalent “normalized” formulation, in which all nonleading left-hand-side symbols are
(perhaps pseudo-) terminals (most implementations only accept normalized formulations).
However, this equivalence is weak, in the sense that while both grammars will analyze the
same set of sentences, in normalized MGs the rules added for normalization will alter the
structural description corresponding to those sentences. Normalized MGs may also generate
spurious sentences besides those of the intended language, owing to the pseudoterminals
introduced. Normalized MG rules compile into Horn clauses in the same way as those rules
with only one left-hand side symbol, with the nonleading terminal symbols being recorded
inside the string-manipulation arguments,

4.1.2. EXTRAPOSITION GRAMMARS (XGs) [85]. XGs allow us to refer to unspecified
strings of symbols in a rule, thus making it easier to describe left extraposition of con-
stituents. Left extraposition refers to a view of the genesis of a sentence as a process during
which, for instance, a relative pronoun introducing a relative clause is seen as having been
moved from the position of a subject or an object in the clause. Thus, in

The house [that; Jack built [t;]] was comfortable. |

0704

NATURAL LANGUAGE PROCESSING o

we have bracketed the relative clause and indicated the gap (the position in which the obiec
would have appeared in a main sentence) with a trace, #;. The trace is coindexed wimj?i: E
pronoun to express that they both refer to the same entity. i
The following sample XG rule allows for a noun phrase which would normally he
expected somewhere at the right of its subject to be left-extraposed to the position of a
pronoun representing that subject, and subsumed by it, its index I becoming §haf of ﬂte
pronoun®: i

rel marker(I), skip(X), trace(I) --> rel pronoun(I). skip!X)

For uniformity of exposition, we adopt above the notation skip(X) for any unspecified
string of symbols X, instead of the origmal notation ... " rel_marker is introduced for
identifying a sentence as a relative clause, and a trace is introduced by one of the noun
phrase rules:

relative --> rel marker, sentence.

In XGs, the skipped substrings must always follow the remaining right-hand-side sym-
bols in their original order; thus they are left implicit on the right-hand side in the original
notation. XGs are furthermore constrained in the nesting of skipped substrings: two skips
must either be independent, or one skip must lie entirely within the other.

Nonlogic-based approaches to long-distance dependencies have also been explored. For
instance, following Woods’ treatment [124] using augmented transition networks [123],
material corresponding to “the house™ in “the house that Jack built was comfortable” would
be remembered in a global register called HOLD, {rom which the relevant information
would be retrieved upon detecting a missing noun phrase.

4.2. A Cross-Disciplinary Methodology—Chart Parsing and Earley Deduction

Perhaps one of the most interesting examples of cross-disciplinary feedback in our areas of
concern is the relationship between parsing, logic programming, and deductive databases.

Chart parsers [69, 71] remember substructures parsed by noting them in a chart which
{ backtracking. This is useful for mstance when

remains available even after failure anc 4
principle in the SIXUCs. For the

trying to parse “Alan Robinson discovered the resolution
verb phrase, the following two rules may be tried in order:

VE == V¥, nbi
vp > W, TiD. pPh

act that wdiscovered” is a verb and “‘the

| il fails, we will still be able to use that
resolution principle” 1s a noun phrase, when that rule fails, we will :xi.iH be able 1o use A
rather than parsing these subphrases

If in trying the first rule, we record in a chart the 1

immediate knowledge upon trying the second rule,

e _ 2 s . o et 1 oone would have
SNotice that in order to obtain coindexing m the 500 ISR f\m.:‘;‘(;n} :;[i 5»[1?";« constiuent,
to unnaturally pass on the argument containing the index from the pronoun o the ROUR PAFE

through other symbols such as 8,

0705

V. DAHL

again.

An ingenious chart parsing algorithm was developed by Earley [44], in which the chart
can store unfinished constituents as well as completely parsed ones. Just as in the magic set
models of deductive databases, it uses a combination of top-down processing (by construct-
ing from old chart entries, new chart entries in which constituents are expanded, e.g., “vp”
is expanded into “v, np”) and bottom-up processing (by looking for constituents that have
just been completely recognized and using them to complete higher-level constituents).
Loops are avoided by ensuring that no entries in the chart are duplicated. Backtracking
never occurs—instead, the parser pursues all alternatives concurrently, and at the end, all
alternative parses are in the chart. For grammars in which constituents have no arguments,
sentences of length n are parsed in, at most, time proportional to n.

This theoretically encouraging result is, however, less interesting in practice, owing to
the overhead of the necessary bookkeeping and loop-checking operations, and to the fact
that we are often interested in allowing constituents with arguments. Spacewise, chart
parsing techniques have been developed which can encode all possible parses as a data
structure with size polynomial in the length of the sentence. However, as noted in [13],
sophistication in chart parsing schemata may reduce time and space efficiency instead of
improving it.

In an unpublished 1975 note, David D. H. Warren proposed the transfer of the Earley
algorithm ideas about parsing into logic programming proper. Memoization, or the storing
of lemmas in order to avoid repetition of proofs upon backtracking, has since been inves-
tigated within “Earley deduction™ [90, 89] and incorporated into other logic programming
settings, such as constraint logic programming [62, 59, 121].

Just as its parsing analogue, Earley deduction avoids loops because it never stores a
lemma which is already on the chart, or which is subsumed by a lemma already stored.
Similarly, although avoiding exponential search for restricted classes of programs (the
task of deduction, of course, remaining undecidable in general), it does so at the cost of
subsumption checking and of managing the alternative binding environments associated (o
stored lemmas.

These kinds of problems, of course, are not exclusive to Earley deduction or parsing,
but arise in all logic programming frameworks that depart from the standard WAM-based
implementation by using structure sharing to simultaneously maintain several computation
branches (e.g., parallel models [40, 52, 119] and magic set models [7, 100, 112]). Work by
Lang and his collaborators 75, 117, 13] proposes interesting solutions to those problems.
For instance, the structure-sharing framework called layer sharing [117] allows multiple
environment management, and can cleanly join two computation paths (the current one and
the reused one) while renaming to avoid variable clashes. Variables are accessed and bound
in constant time, and time overhead seems to be kept minimal. Although these results are
preliminary, done with a prototype implementation, it would be interesting to investigate
how well they transfer to natural language applications of logic programming.

5. LINGUISTICALLY PRINCIPLED APPROACHES

As mentioned in the introduction, computational linguistics concepts are merging more and
more with concepts from linguistic theories. This is sometimes the surprisingly converging
result of an independent evolution, as in the case of the unification-based formalisms that
have mushroomed in linguistic theories independently of, but closely resembling, the logic
programming notion of unification.

0706

NATURAL LANGUAGE PROCESSING AT e

691

Together wnlf’{ the idea o t' inferencing, the ideas of unification and constraints are perhaps
ihe'mcast p{)wcrt'ul Lranner{t'lcknlbt?iwccn the areas of natural language processing through
logic programming and linguistic theory. However, these notions often havt::wdif?crgﬁg
connotations in each of these fields,

This section presents lhrca important families of linguistically principled approaches to
natural language processing: unification-based (also known as constraint-based), logico-
mathematical, and principles-and-parameters. This classification is far from u-aivti;zﬁlv
agreed upon, being just our own modest attempt to organize the vast material in the Eizemmr;:
around the language-processing-as-deduction axis, for expository purposes. It is moreover
not a clearly disjoint classification: as shall be seen, some of the approaches described
under a specific family also partake of some features of another family, but for our purposes
here, this rough classification will hopefully suffice.

5.1. Unification-Based Approaches

Unification in linguistic theories often refers to the combmation of compatible feature
structures rather than of first-order terms. Feature structures are representations of partial
information made in terms of features or attributes and their values. A value can be either
undefined (roughly corresponding to a variable in logic programming) or another feature
structure. Unification combines two feature structures into another if the information con-
veyed in both is consistent. For instance, the unification of feature structures (1) and (2)
below produces the new feature structure (3):

- - .
agreement : Eﬂ [number ; singular] s
= Sl | P S ¢ I &
: : ,
subject : [agreement : | 1]]
; ¥ ; el
subject : [agreement : [person : third]] } : (<)
e — | number : singular |
agreement . \ ! ’
e '| person : third | (3
_subject : [agreement : | 1 |] i

Shared information is marked by numeric labels rather than by shared variables; ihm‘
the value of the agreement feature of the subject is understood to be the same as that of

the whole structure’s agreement feature (i.¢., the feature-value pair ‘number:singular”),

| As in logic programming, the information flow is two-way
ber feature, while the
ing of partial

because they share label | 1 |
(e.g., one of the structures unified contributes the value for the num
other one does so for person). However, unlike logic Programming, ihr:_ h;tm‘ii ng of part
information does not necessitate explicit arguments or any other explicit position __!’f"rjhc
unkown information: it is simply omitted when not there and added on when unification
calls for its addition.

We next show a sample feature-based grammar fr _
use variables instead of labels, and we associate ¢ach syntacti

asment in which, for copvenience, we
¢ category with the list ot 1ts

feature-value pairs:
8 : NP VE
[num: X, [num: X

.
rasenom|

NP i nama

0707

V. DAHL

num: X, fnum: X,
case: Y} case:Y]
NP 2 Pronoun
fnum: X, [num:X,
case:Y] case:Y]
VP i v
[num:X] [num:X,

subcat:1]

num: X, [case:acc]

--> Maria v -=> laughs
[num:sing,
subcat:1]

~=» them v --> designs

With respect to this grammar, we can analyze the sentence “Maria designs them,” for
instance, as in Figure 4 (note that the direction of analysis—top-down or bottom-up—is
irrelevant).

Because feature structures have a natural representation as graphs, the linguistic notion
of unification is often that of graph unification.

A variety of unification-based formalisms has independently sprung from different
fields—linguistics, computational linguistics, and artificial intelligence. This diversity re-
sulted in a variety of names and definitions. Thus, the unification-based framework can
also be found in the literature under the names constraint-based or information-based. The
most specific definitions (e.g., [26]) characterize these formalisms as those in which:

e Complex feature structures encode partial information about constraints.
o Features are given values only through unification, and not through any other kind
of computation.

A more abstract characterization has been given in [103], in terms of information and
constraints on it. In this view, information is described through desired properties rather
than through their concrete incarnations. These properties are:

e Modularity (information must be partitioned into different, declarative modules)

o Partiality (information does not need to be complete at all times, but can arise from
the combination of partial information available from a variety of sources)

¢ Equationality (informational constraints interact to place strong limits on the distn
bution of a phrase, rather than giving information about that phrase directly)

A grammar formalism can then be described through logical constraints over information
associated with phrases.

Attribute value-based grammars have been formally described as systems of logic by
Johnson [60]. More recently, Carpenter provided theoretical foundations for the specifica
tion and implementation of systems using feature structures, and examined their applications
to unification-based grammars, logic programming, and constraint resolution [17]. John

0708

E—
NATURAL LANGUAGE PROCESSING

/\

nuim ; ‘si;w

case : nom num - sing]
Maria num © g 1 [y
AT AR SE : ing | | ’ i
. sing | | num piu ?
| subcat 2 _] | case acc |
Pronoun
designs f num : plu _]
| case + acc |
- P §
them

FIGURE 4. A sample feature-based analysis.

son has also shown how to express a vanety of different types of feature structures and
s-thereof [61. 39].

constraints using predicate logic, or stan wdard nonmonotonic gxtensions
Shieber has developed foundations for constraint-based or unt ification-based formalisms
with a strong pivotal point on PATR-11 [103].

logic programming, feature-structure unification
Also as in logic programming,

Just as 1s the case \\ilh unification 1n

can be seen as a specifi ¢ kind of constraint enforcement.

other methods for constraint enforcement are used as well. Some of these are adaptations
of constraint logic programming fr: ameworks. tailored to natural language applications,
including, for instance, equational constrainis, of constraints requiring the existence of

onstraints are in one way of another present
lexical functional grammars (641,

he generall red phrase-

values, set membership constraints, etc. Suc he

in formalisms like augme nted E:,nm;imﬂ networks [123],1
. logic grammars, g% ammars in

functional unification PTAMmIMme \r ‘ W
48], and the PATR-II formalism 95]. It

structure grammar frame swork, as eve olved from
ructures may be essentially

{ number of the arguments {€.£. (81, 17]). Natut al language

sation within CI P{59], constrainl
gclure constraints

q »d as Worms
has !L‘n_‘i‘HEi\ heen shown that feature st }i%.!j‘hl&\§ 1S erms

allowing freedom of order anc
tailored CLP technigues have heen studied, such as memat?
extensions of 1 .H'ii"\' deduct tion “‘- '. and the “hlgfn\sg 1§ 8] inE feature-st

into logic programming [191 "
Other linguistically motty ated constraints that have been argued as necessary INCIUG

0709

V. DAHL

constraints on parse histories. An axiomatization of contraints in first-order predicate
calculus is provided as part of Stabler’s axiomatization of Chomsky’s barriers theory [107].
Disjunction, negation, and conditional descriptions in unification systems have also been
argued as necessary, and have been incorporated in various approaches [66, 88, 17, 67, 68,

45].
We next briefly present two unification-based approaches to natural language processing.

5.1.1. LexicaL FUNCTIONAL GRAMMAR (LFG). LFG was developed in the late 1970s
by Joan Bresnan and Ron Kaplan, with the specific goal of providing a computationally
precise and psychologically realistic model of language. It includes an enriched lexicon
which characterizes, for instance, the relationship between active and passive constructions
as well as that information which other theories view as strictly lexical information.

Lexical items from this enriched lexicon are inserted into c-structures, or constituent
structures, which express language-dependent properties such as word order and phrasal
structure. The invariant grammatical constraints, e.g., on agreement, are mostly stated on a
third component of LFG called f-structures, or functional structures. These different levels
have different kinds of representations and obey their own constraints.

This organization into just three levels of representation has interesting implications.
For instance, long distance dependencies, or the relating of two positions which may be
arbitrarily separated from one another, were previously accounted for in terms of two
successive structures. Thus, to relate “Which principle” with“_" in

Which principle did John believe __ had been discovered 7
the transformational analysis has one level of structure in which “which principle” is in the
position of *“ __ 7, and another one in which it has moved by transformation into its final
position.

Because LFG postulates a single phrase structure level (namely, c-structure), this analysis
is not possible. In the 1982 version of LFG, a mechanism called functional control was
used instead, which allows “which principle” to belong in the f-structure representations of
both positions simultaneously, once under the FOCUS function, and next under the TOPIC
function. Recent proposals for the treatment of unbounded dependency in LEG make use
of functionality uncertainty, which allows the expression of regular paths in functional
descriptions (see, for example, [65]).

Functions are also useful to resolve the conflict between the intuition that coordination
takes place between phrases “of the same kind” and the existence of counterexamples,
such as “Mario was asleep and causing a traffic stoppage” [101], in which an adjective
phrase (AP) is conjoined with a verb phrase (VP). The LFG analysis retains identity of the
conjoined phrases, but identity of function, not of category. Both conjoined phrases have a
function called XCOMP, which may be realized by either an AP or a VP.

A more detailed discussion of these issues can be found for instance in [101].

5.1.2. GENERALIZED PHRASE STRUCTURE GRAMMAR (GPSG) [49], GPSG takes cate:
gories to be sets of feature-value pairs. Their rules are of two kinds:

1. ID/LP rules, which factor out information on immediate dominance (1D) and of
linear precedence (LLP). A rule’s right-hand side is a multiset rather than a list of
symbols, and LP rules indicate precedence requirements. For instance, the 1D rule
§ —-> a, b, ¢ together with the linear precedence rule a < c (“a precedes ¢”) 15 &
shorthand for the context-free rules: 8 ——> a,b,c;s --> b,a,c: s S Wen o)

2. Metarules, which derive alternate forms of sentences from a basic core of description.

0710

NATURAL LANGUAGE PROCESSING

695

For instance, a metarule for passivization will generate, from a rule for VP in the
active form, a corresponding passive form rule.

A related framework, head-driven phrase-structure grammar (HPSG), expresses metarules
as lexical rules, eliminating lexical ID rules as such and stating subcategorization as prz}p-l
erty of lexical heads (i.e., lexical items that head a phrase make explicit in the lexicon what
modiﬁ::rs they require) [92]. It includes such general principles as the head feature principle
(HFP)’ which requires the head features of a phrase to be shared with its head daughter (e.g.,
the case of a noun phrase is determined by the case of its head noun). The HPSG a;;g:«feaih
could be grouped with the unification-based approaches, but probably fits better under the
principles-and-constraints family (see Section 5.3.1).

5.2. Logico-Mathematical Approaches

52.1. HiGHER ORDER LoGics. Intuitionistic and linear logic treatments of computa-
tional linguistics issues such as long-distance dependencies have been proposed for instance
in [84, 80, 88, 53], mostly within the general GPSG framework.

The relativization process, for instance, can be expressed in intuitionistic logic through
the inference rule of implication introduction

g ~ w B
R e WL =

in which clauses in D are only available during the proof of G.

Pareschi and Miller [84] propose using this rule, rather than the extra argument technique
of Figure 3, in order to control when the empty noun phrase is used. Instead of having an
independent rule that makes a noun phrase empty, we can simply incorporate it as the D
part of an implication introduction rule which specifically introduces a relative clause, 0
that a noun phrase can only be made empty while parsing a relative clause.

For instance, the first grammar rule for relafive in Figure 3 can be represented as t'uiimlvs in
A-Prolog (input and mxtpﬁl string arguments, which logic grammars usually make invisible,
need to be explicit in this formulation—they are noted with no commas):

s o~ e t1 12
relative (that::Ll}) L2 - (np 2 2y => s Ll ba.

The np clause stretching between the string Z and the same string Z (1.€., és:jscnbmg 371
empty np) is only available during the proof that there isa sentence E)ei:wocn strings [i M&,}
L2, within the proof that there is a relative clause between a string L1 rrknénizcd b\ .[.hi,ﬁ smd‘ 1
string L2. This prevents empty noun phrases from being generated Qliis;de fCF;II'!\-’C‘L %éma;i

This approach, however, still admits incorrect Sentences, the a\-‘{\:da:—z‘ce of w?mb u‘op‘;
involve cumbersome additions. In particular, the freely available F'u&“ of wc;;knﬁmg, Mﬂ?é
allows unused assumptions to be simply discarded, results i Z”L‘lil[.i\;'ﬁ;‘ rkms:?a‘ mih m'w unpi‘.
k built the house]). Lincar logic [33] has heen

noun phrase (as in * the house [that Jac : .
5 jy other problems, involving both

proposed to remedy this problem, but it does not reme
over- and undergeneration.

Other treatments of Jong-distance dependencies mclude t
5.3.3), which has been given a relevance logic charactenization
wistics purposes, sue

hat of SDGs [33] (cf. Section
{5]. Variants of lincar iogic
| i as inferring the syntactic
have been used for other computational ing ha

: i + fi in GPSG.
"The HEP is an adaptation of a similar principle which can be found i1

0711

V. DAHL

categories of phrases [73, 74].

599 CATEGORIAL GRAMMARS. The line of work starting with Lambek [73, 74] and
leading to modern categorial grammar [114, 82, 115], which has close relations with lambda
calculus and with noncommutative linear logic, is an important instance of the “parsing as
deduction” paradigm. Categorial grammars are grammars in which information about all
possible combinations of constituents is embedded in their categories. They are based on
the idea that language expressions can be analyzed as the functional product of a functor
applied to a suitable set of simpler argument expressions [83].

Categories are divided into basic and derived. Basic categories are just category symbols,
Derived categories, noted A/B, where A and B are (simple or derived) categories, may be
identified with functions which map expressions of category B into the set of expressions
of category A. The concatenation of an expression E; of category A/B with an expression
E; of category B is an expression of category A. When E; is expected at the left of the
function rather than the right, the function is noted A\B.

For instance, if our basic categories are N and S, we can define the category for “likes™ as
the derived category (S\N)/N. Then if we attach the category N to the lexical items “Maria”
and “Caitlin,” we can analyze “Maria likes Caitlin” as an S, as follows:

Thus, a categorial grammar is defined by specifying the categories of basic expressions.
The language generated by such a grammar is the closure of the set of basic expressions
under functional product. Our ubiquitous example, long-distance dependencies, can be
analyzed as involving categories produced under a composition operator [108].

Since functions and arguments need not be restricted to those that have only syntac
tic properties, categorial grammars can be used to study the composition of grammatical
expressions across a variety of domains: syntactic, semantic, phonological, etc.

Various extensions of categorial grammar have been proposed. Flexible categorial gram-
mars, including rules for “type change” of expressions have been studied for instance in
[114]. Ways of merging the categorial and the unification grammar framework have been
studied, for instance, in [113, 126]. We next briefly exemplify such merges by describing
the latier approach.

Unification categorial grammar (UCG) [126] is a computationally motivated extension
of categorial grammar which incorporates elements from PATR-II It evolved from a concern
to integrate syntax and semantics as tightly as possible, and to use results from Kamp's work
on discourse representation [63] while preserving compositionality.

UCG defines a sign as a (complete or incomplete) list of the following representations
for an expression:

W (the expression’s phonology)
C (its syntactic category)

S (a semantic representation)

O (its order)

e & & @

0712

NATURAL LANGUAGE PROCESSING e

697
also written: W:C:S:0.
Function application involves two steps, exemplified below in the application of a sien
¥ Oy = e -y T - E b i =]
as a functor, to an argument sign. Unspecified attributes are omitted (e.g., “order”), a {g
i Vg s Ak

left-associativity of /" is assumed:

Step 1. Unify the active sign of the functor (its portion after */”) with the argument. In our
example, the active sign of the functor becomes

Step 2: Obtain a new sign by:

(a) Stripping its category down, from A/B to just A. In our example, we get:

and
(b) Replacing its phonology by that of the functor concatenated with that of B. In
our ;A.\\\mpic‘ this yields

In practice, a more complex lexical entry for “John,” combined with an appropriate use
sf the variable O (order), yields the correct ordering “John walks.”

Even in this very simplified example, it is clear that semantic restrictions are, just as the
syntactic ones, imposed through unification: ifitis not possible 1o construct a new semantics
through unification, the derivation is ‘mhwku Thus different levels of representation—
semantic, syntactic, and phonological—are built up simul ltancously by the uniform device
of unification.

Feature percolation from implementing univers: il princip
UCG: these principles can be har j-wired in a

les as the head-feature structure,
it 1s argued, is no longer needed when using
lations. UCG allows simplification of the

categorial setting, with no need for additional stipu
lication typically depends

set of categories used, since the category identity ofa function app
on the makeup of the argument: the same functor applied to two different arguments s will

yield different results

5.3. Principle-and-Constraints Approaches

X wing, barriers, and
Approaches based on principles and ¢ .onstraints. such as government-bind

o wcing them
HPSG, move away from construction-specific and language particular rules, replact : <
frants, irom
by a small set of universally valid principles plus a
whose deductive interactions the necessary consie

set of language-specific constr

HeLons follow.

0713

V. DAHL

53 1. HEAD-DRIVEN PHRASE-STRUCTURE GRAMMAR (HPSG) [92]. HPSG is based on
the intuition that each phrase contains a central word, called its lexical head, which deter-
mines many of the syntactic properties of that phrase (e.g., for a verb phrase, the verb; for
a prepositional phrase, the preposition; etc.).

This framework brings together ideas from various syntactic, semantic, and computa-
tional theories.

From situation semantics [9] it derives an adaptation of the Saussurean definition for
a sign [98]: a sign is a meaning relation (constraint) between two components called the
signifier or utterance situation (e.g., one in which the word “moon” is uttered) and a certain
property of things in the world (e.g., the property of being the celestial object referred to
by the word “moon”).

A sign such as the lexical sign moon can be described by a feature structure with attributes
PHON (phonology), SYN (syntax), and SEM (semantics). Syntactic features are further
classified as LOC (local) and BIND (binding).

Local features, in general, specify inherent syntactic properties of a sign (e.g., part of
speech, inflection, case, etc.) and lexicality (whether a sign is lexical or phrasal). Bind-
ing features are nonlocal in the sense that they provide information about long-distance
dependencies.

Local syntactic features are further classified into head features, subcategorization fea-
tures (SUBCAT), and lexical features (LEX). Head features specify syntactic properties
that a lexical sign shares with its projections (i.e., the phrasal signs headed by a lexical
sign). Subcategorization features express what kinds of phrasal signs the sign in question
typically combines with (e.g., for walk, the SUBCAT list is < N P[NOM]>, indicating
that walk must combine with a single NP in the nominative case). LEX is a binary feature
which distinguishes between lexical and nonlexical signs. Feature structures of nonlexical
signs have a fourth attribute, daughters (DTRS), which is further described below. Binding
features include SLASH, which provides information about gaps and their binding to an
appropriate dislocated constituent (as in “Which principle did John believe __ had been dis-
covered,” in which “Which principle” must be bound to the gap, represented *__|"), REL,
which give informat

ion about unbound relative elements in the sign, and QUE, which performs the same
function about interrogative elements.

Thus the overall structure of a sign can be depicted as

rPHON 7
. HEAD i
LOC [SUBCAT}
; LEX
SYN A
BINDE:REL }
QUE
| SEM]

Subcomponents of such structures can be indicated through paths along them, e.g.,
SYN/LOC/HEAD indicates the phrase’s head. DTRS in phrasal signs are further clas-
sified into HEAD-DTR (head daughter—these share their head features with the mother),
COMP-DTR (complements—these discharge subcategorization requirements on the head),
FILLER_DRT (fillers—these discharge binding requirements on the head), etc.

Principles of universal grammar (those which are language-independent, i.e., apply on all

0714

NATURAL LANGUAGE PROCESSING

699

human languages) can be expressed in terms of feature structure descriptions. For instance
the head feature principle (HFP) which, as we have seen, requires for the head features of
a phrase to be shared with its head daughter, can be stated as Bl

I. DT R'Shcad:d-slmctun: [] i —

{SYN,/LOC;HEA{)E} 1
DTRS/HEAD-DTR/SYN/LOC/HEAD(1]]

(if a phrase has a head daughter, then they share the same head features). The feature
information can be thought of as flowing from the head daughter to the phrase, through
unification.

HPSG treatments of long-distance dependencies also use this “flowing” mechanism,
through transmitting a gap’s feature specifications more or less freely from arbitrary daugh-
ters (not just head daughters) to their mothers, until they can be unified with the appropriate
dislocated constituent.

For instance, in “Logic, I know we like __", the gap position is described with the aid
of a feature SLASH with value NP (where SLASH stands for “missing™). The description
NP[SLASHNP] (noun phrase missing a noun phrase) is associated with the gap, after
being determined by the subcategorization restriction exerted on the gap position by the
lexical head like. The “missing NP" information encoded as NP[SLAS HNP] is transmitted
up to the larger signs that contain it (thus for instance “we like - is characterized as
VP[SLAS HNP] (a verb phrase missing a noun phrase), and so on until we reach a pointin
the structure in which a suitable mechanism (the grammar rule responsible for topicalization)
recognizes logic as the missing noun phrase and identifies its local syntactic features with
those of the missing noun phrase.

A simplified HPSG sample analysis for this type of sentences [92] is shown in Figure 5.
HPSG-inspired approaches include those discussed in the following paragraphs.

Constraint logic grammars (CLGs) [6, 39] were inspired in the CLP paradigm[58]. They
are implemented in Prolog and use delayed evaluation of noneguational constraints which
are represented in a slightly restricted form of first-order predicate calculus. Two prototypes
have been extensively tested with nontrivial grammars of several European languages. \

Constraints are of two types: (i) complex constraints, which are nonatomic t"{smmla;; {:}‘f
the constraint language, and (ii) global constraints, which encode HPSG types of linguistic
principles under the general form

Partial specification --> constraints

: : i ooy e et and high level
These facilities allow us to code hngustic principles tn a fairly direct and high lLE
; ; . SR P . T S ictie to : W, When
manner. For instance, the head feature principle. described 1n linguistic erms above
encoded in CLG, looks like
(head_drr= [_]] « gyn.logal head= head.dtr. 8y
; ‘ . : S S AC OS> where the first argument
I";”“df L!l'xili!l‘““u-ﬂ for %(_‘\E(Lll \2}‘1‘”\ hll\'i.‘ {h{- ;iii n .—__i-};\(l.{_.bl , \\h(t{.; L il ;ﬁhé‘; i 1
: : ; : rensityies andd the second argument 15 88
is a directed acyclic graph representing & feature structure and the second arg

e
: : L o are expressed through CLGZ
of complex constraints, Partial deseriptions of phrasal signs are €}

0715

V. DAHL

[SLASH
/ \
N [SLASH {NP}]
/\
logic NP VP [SLASH { NP }]
/ \
I know [SLASH { NP} |
/ \
NP VP [SLASH {NP} |
/ \
we [SLASH { NP } |
like []

FIGURE 5. A sample HPSG analysis.

rules, which support a number of different, equivalent rule formats. Type information is
used both to structure the grammatical information and for efficiency.

The comprehensive unification formalism (CUF) [41] is a logical language for the ex-
pression of linguistic information, based on equations over feature structures. It is used
as an intermediate level between linguistic theories, such as HPSG, and their algorithmic
interpretation. A Prolog III implementation of CUF has been described in [99], which al-
lows functional notation and indexing of shared structures, as well as statement of negative
or disjunctive information, thus making it possible to compress linguistic information (for
instance, when the equivalent positive formulation is longer than the negative one).

Principle formulations are also close in CUF to their linguistic expressions, Taking the
same example as before, the head feature principle can be encoded

head feature_principle
ders : head dtr ; syn : loc : head : X

f

syn : loc : head : X,

CU-Prolog [111] is a CLP language for parsing, in which constraints are user-defined
predicates which constrain symbolic objects, The rule format is
HeBi - H) o BaaCL CZ0 o Cm,
The H and the Bs are, respectively, the head and the body as in regular Prolog, while the

0716

NATURAL LANGUAGE PROCESSING
701

Cs are c:nnst'r;u'mg on the variables occurring in the rest of the clause. Constraints must ohey
certain restrictions: all arguments must be variable; no variable can occur in two {ﬁff&rc;;t
places, etc.

CU-Prolog has been used to develop a Japanese grammar theory called JPSG (511, hased
on the linguistic HPSG theory . * e

Typed unification grammars (TUG) [46] represent an object-oriented approach to com-
putational linguistics, in which a type-inheritance mechanism allows us to define s:'z:&;acs
and subclasses of objects, and a corresponding evaluation mechanism can compute relations
between classes of objects.

TUG are in the class of logic formalisms and can be used both for parsing and for gen-
eration. Here again, most HPSG principles are described fairly directly in TUG. 'Pm\,’;éﬁsz
is made for more complex operations than the simple combination of information. For
instance, the subcategorization principle is written in terms of “append.”

5372 CHOMSKIAN APPROACHES. Good introductions to Chomskian theories can be
found in [116, 27]. Simplifying somewhat the presentation of van Riemsdijk and Williams

[116], we can view the principal components of a GB grammar [22] as consisting of three

rule systems and a set of modules which define well-formedness conditions on each of four
levels of representation.
The levels of representation are given in the following hist.

e D-structure (DS), which reflects the thematic structure of the utterance {(basically,
“who did what to whom™).

e An intermediate level, called S-structure (S8), representing its surface grammat-
ical structure and related to D-structure by the displacement of NPs from their
D-structure positions.

e lLogical form, (LF), in which meaning is most explicitly represented and related to
S-structure by the displacement of certain phrases.

e Phonological form, (PF), where phonological properties are defined and related to
S-structure by a phonological mapping.

For instance, following [61], the PF representation “Everybody 1s loved” together with
the D-structure, S-structure, and LF repr esentations shown below might constitute a well-

formed representation quadruple for English:

INFL'’
FL 2
i!\ s y Y T
i/) N NP, INFI
T e
£ everybody %,\-;1 o
NE e | -
17\; 1 /\ s\ L v
be V NP ; | §
loved &

/ \

loved every body

D-structure

S-siructure

V. DAHL

INFL’’
P
NP; INFL’
o i " G, %
everybody NP; ;NFL\
/
€ INFL VP
I AN
be V NP;
l
loved €
LF

Of the three rule systems that relate these levels, the one that will most occupy us is the
movement rule called “move-a.,” which is used to obtain SS from DS and to obtain LF from
SS.

The modules act as conditions on rule application, or as well-formedness conditions on
representations or on rules. Some important modules are listed:

X-bar theory, which places constraints on phrase structure at DS.

6-theory, which restricts the roles that arguments can play.

Bounding theory, which restricts movements.

Binding theory, which rules binding relations between noun phrases (overt and
empty).

Case theory, which specifies the environment where overt noun phrases may appear.
e The empty category principle, which specifies the environments where traces may
appear.

* & @ @

Figure 6 shows the form levels or representation as nodes, the main rules generating
them as labels, and the modules constraining them in boxes.

The principles of grammar, it is hypothesized, are innate and, therefore, true of any
language. Language-specific values for a set of parameters, together with a specific lexicon,
specialize the set of structures admitted into those of the corresponding specific language.

We shall exemplify this principle-and-parameters notion for X-bar theory. This theory
generalizes head categories (such as “noun,” “verb,” and “adjective”) into an abstract cat-
egory called X, by means of which it collapses all rules describing phrases with a specific
head (i.e., all noun phrases, adjective phrases, verb phrases, etc.) into basically just two
rules describing X-phrases in general: the X-bar rule, which combines a head with a com
plement, and the XP (or X-double-bar) rule, which combines a specifier with an X-bar. This
can be depicted with the following ID (i.e., where order of constituents is not specified)

rules:
¥p(Category) --> specifier(Category), x_bar (Cat egory) .
* bar (Category) ~>» % (Category), complement (Category) .

The category x refers to phrasal heads (e.g., nouns, verbs, adjectives): x_bar describes

0718

B
NATURAL LANGUAGE PROCESSING
703

X-theory |
]

¥
_____ » DS
E—Thcory e movea «---| Bounding Theory |
N T S y e
R S :
y e

move-a an Case Theory |

(Bl ‘
| ECT other rule :
* phonological rules

deletion, filters

e
5 LF PF

‘ Binding Theory

FIGURE 6. Simplified model of GB theory.

the level above the lexical one in a parse tree, and xp corresponds to the phrasal level.
Nontraditional heads, such as inflection, are also represented; their phrases are covered by
the same two rules. Sample specifiers are articles in the case of noun phrases, adverbs for
adjective phrases, and negation for verbs.

In order to specialize these language-indepe
set the value of the parameters “head” and “'spec” to
settings can describe heads appearing before specifiers or after complements.

We have included this summary of one of the models of GB to provide some context
for our discussion, but we shall not attempt to cover all its aspects here. We shall instead
presents some insights on this theory’s approach to the problem of overgeneration, which
ndencies which has been a leitmotif throughout

ndent rules into English, all we have todo is
“first.” For other languages, alternative

relates to the problem of long-distance depe
this paper.

Chomskian solutions to overgeneration. In Sectior
additions to prevent overgeneration may induce bad sid
ad hoc additions, and so on. More expressive formalisms
do not solve this problem. For instance, the rules that exemplity

14.1.1, we got a taste of how grammar
e effects, which in turn require more
than DCGs, such as MGs or XGs.
XGs in Section 4.1.2,

), skip(X}.

(1) rel_marker(I), skip(X), trace(I} =-7 rel_pronoun{l).

(2) relative --> rel_marker. S.
(3) np --> trace(.).
¢ I I 3 M g =% + Lo W o A >E§
allow for the relative pronoun to be coindexed with a trace outside the relative clause, as 1
the incorrect sentence

(4) * the house [that; Jack built the house] costs {4 I
nted, as suggested by
use, so that elements
However, this brac

Pereira [83], by adding
outside the relative
keting technique

This type of overgeneration can be circumve
extraneous symbols to “bracket” the relative cla
clause cannot be coindexed with elements inside it.

0719

T —

T

V. DAHL

cannot prevent other types of undesirable movement, as in:
(5) * Who; do you wonder why John likes [t;]7 ,

In these cases, as noted in [104], if we used bracketing to disallow movements that cross

verb phrase boundaries, we would be also disallowing acceptable sentences such as
What; did they learn [t;]? .

Chomsky’s GB theory [22] elegantly captures all cases above, by forbidding movement
exactly in those cases in which it would result in incorrect sentences. This is done through
bounding theory, which restricts movements, and binding theory, which rules coreference
relations between noun phrases.

For instance, a simplified version of bounding theory [104]: A moved constituent must
c-command its trace, where a node o c-commands a node $ if and only if & does not
dominate #, but the first branching node that dominates o dominates .

This rules out sentences such as (4) above, since in any usual syntactic analysis of it,
the first branching node that dominates “that” does not dominat= anything after the relative
clause.

Similarly, the binding rule known as subjacency-—no rule can relate a constituent X to
constituents Y or Z in a structure of the form

B 5T A s L a0 B e
where « and 8 are “bounding nodes” (this is a language-dependent concept; in English, the
bounding nodes are taken to be s and np)—rules out sentences such as (5) above,
* Who [5 do you wonder why [John likes [t;]]]7 .
since “Who” does c-command the trace, but it does so across two bounding nodes.

5.3.3. LoGic PROGRAMMING INCARNATIONS OF CHOMSKYAN SOLUTIONS TO OVERGEN-
ERATION. The problem of overgeneration in implementing Chomskian theories has been
attacked in logic programming through a variety of resources, some of which we survey
in this section, all aiming at dynamically choosing the earliest possible moment in which
the principles that rule out incorrect sentences can detect their incorrectness. The earliest
approaches were those of [122, 102].

There is a growing concensus toward formulating constraints at the level of S-structure
itself (cf. the levels of representation described in Section 6.2) rather than explicitly com-
puting them via derivations from D-structure to S-structure to LE. This declarative approach
seems to be more computationally tractable [12]. The D-structure information, although
factored into the parsers, is not actually computed. Efficiency can be further improved by
interleaving structure building and constraint-and-principle application.

Thus, for instance, Johnson describes formulations in which the knowledge about a
level of representation is used without necessarily constructing an explicit representation
at that level, and coroutines between the principles of grammar, which ensure that all
existing nodes are well-formed before constructing any new nodes [61]. Crocker [28] uses
multiple metainterpreters, coroutined using the goal-freezing mechanisms of constraint
logic programming. Fong [47] provides a static and dynamic ordering of principles, and
interleaves them with phrase structure construction (this approach involves logic grammars
as well: rules are represented as DCG rules with language parameters, while principles
are represented as Prolog commands that are close to linguistic formulations, plus Prolog
definitions). Stabler [105] proposes interleaving even semantic and syntactic interpretation
by using a control regime that gives precedence to those statements dealing

with semantic interpretation, so that partially known structures can be interpreted early.
A PARLOG implementation of GB theory was proposed in [72].

Among the approaches that use logic grammars, there are two basic approaches to

0720

| e

NATURAL LANGUAGE PROCESSING

~3
o]
LA

incorporating principles such as c-command and subjacency:

(i) Modifying logic grammars so that these principles are automatically enforced in a
standard way.

(i) Endowing logic grammars with constraining primitives that a user can tailor to
different linguistic proposals.

The first approach is exemplified by restricted logic grammars [104], which are an exten-
sion of left extraposition grammars, which automates c-command and subjacency into the
grammar’s specification of movement, by restricting the access {o the extraposition list so
the parser will allow traces only in the positions allowed by Chomsky’s constraints. The
equivalent RLG rule for the XG rules (1) and (2) above 18

relative «< trace ~--> rel pronoun, s,
where the skipped substring is indicated by “«<", and a similar treatment of right extrapo-
sition (in which a trace is left behind at the left after a constituent is moved to the right) can
be obtained using the functor: “«<", instead. This allows for sentences such as

[The woman [t;1] is here [that Jill saw];.
A related proposal is that of government binding logic grammars (GBLG) [18], which were
also designed for a symmetric treatment of both left and right extraposition within GB
theory. Their rules are DCG-like rules with single-argument grammar symbols, some of
which are reserved for special GB treatment (e.g. “trace”). The direction of movement is,
as in RLGs, indicated by the operators “«<" and “«<.” GBLGs are implemented through
a bottom-up parser.

The second approach is exemplified by static discontinuity grammars (SDGs) [32, 33
35, 37, 38, 5], which provide primitives to constrain movement according to different types
of GB theories, and which express movement and coreference through bunches of DCG-
like rules related by common substitutions and which must all apply together, albeit to
discontinuous constituents (this allows for tree-like representations of derivations, while
retaining the expressive power of type-0 rules).

SDG rules allow a concise implementation of the move- prine
nto any empty position, modulo constraints

iple, which basically
states that any constituent is allowed to move |
such as expressed by binding and bounding theories.

For instance, the following SDG rule (an instance of move-a) allows relating an NP
trace with an empty np position at the time that it coindexes them (trace is now noted as a
feature of an np; +wh and empty are other possible features):

<np{J, empty) =--> np(J,*twi.

np {(J, +wh) -5 nplJ, trace).>

SDG grammars also automatically build up syntactic structure and can dynamically

consult the structure built so far in order to enforce linguistic constr
hin a parse uee status. They
overnment binding |

aints that are statically
have been used for

expressed in terms of node domination wil ‘
22] and barriers

applications implementing the linguistic theories of g
[20]. .

Constraining mechanisms are described in terms of calls to a few ill'”m“{'\"“f“h as
“dominates(N L.N2)" (with the meaning “N 1 dominates N2 in the parse tree SO 1ar), or of
definitions of the form

constraint(Path, Node, Root):- body. . " o
bing the constraint, Path describes a pR

where body is any Prolog goal relevant to desert L
7 ’ Q hich no clement can move out

in the derivation, Node describes a node in that path uader w
of a given zone, and Root is the root of that zone,

0721

oty

V. DAHL

S
COMP S
| P
NP(I,empty) AUX NP VP
\ | | e \ ,
do you vy bounding node

!
wonder (ow ./
s i S
why NP VP
! i
john vV NP(Il+wh)
|
likes

XK

FIGURE 7. Move-a is blocked by subjacency.

Subjacency, for instance, can be described as

constraint([A...[B...]...].B,A):- bounding(A), bounding(B).

Figure 7 exemplifies: the path on which the constituent NP(I1,+wh) appears contains
two bounding nodes (A=B=S), so move-« is blocked: NP(I1,+wh) is not allowed to move
to (relate to) the posi sition NP(I,empty). Thus the incorrect sentence “Who do you wonder
why John likes7” is rejected.

This approach allows for manipulation of both structure and control at the user’s level,
while nevertheless automating most procedural concerns.

SDGs have been used in two language processing applications: an automatic generator
of machine error messages and a grammar of Spanish with clitic treatment. Material related
to these applications is covered in [16, 15, 32]. SDG variants for generation using GB theory
have also been examined [97]. An SDG formulation of barriers has been proposed, in which
D-structure and S-structure are merged [38] into a single level of representation in which all
principles and constraints are applied. This results in less duplication of information, easier
mteraction betweeen levels (since all constraints are on the same level), and the possibility

of

constructing from it the original levels of representation

Yet another approach is that of Stabler [107], which axiomatizes many aspects of GB
theory®in first-order logic by using proof and transformation techniques that result in ex
ecutable while elegant and transparent formulations. This transparency also facilitates the

initial assessment of correctness and provides flexibility in the face of hange, thus increas

ing the linguist’s confidence in the correspondence between intentions and results, Further,
Stabler shows how these techniques can result in some provably correct and complete
applications.

The disadvantages of first-order logic are also discussed: it does not allow one to state
that some (unspecified) relation 18 symmetric, or that there are only finitely many strings;

SR bl e’ s 13 4 TN 3 v
stabler’s linguistic focus is actually on the more recent Chomskian theory barriers, whose definitions
differ from GB ones, but which also have many points in common. A full des ription can be found in [20]

0722

NATURAL LANGUAGE PROCESSING

07

some facts are awkward to represent (e.g., that there are exactly 100 things); some can be
represented with great computational problems (e.g., gquamy}":?f.;ﬁwﬂ%s s e i%zé%
despite these drawbacks, we can get transparent representations of GB principles with 3
relatively tractable equality theory.

6. APPLICATION

Some of the systems developed around specific applications have as their main goal to
advance the state of knowledge, whereas others aim at carrving out practical natural language
processing tasks. For the former, elegance and theoretical basis are paramount, whereas the
latter are mostly concerned with coverage and efficiency—although both types of systems
can exhibit, of course, both kinds of concerns to a certain extent.

The theoretically oriented systems include those which make extensive use of linguistic
theory, such as Fong’s [47], which correctly accounts for hundreds of different constructions
from an introductory linguistics textbook [47], and those which develop new representa-
tional devices. such as Candide [86], a knowledge acquisition system for the incremental
interpretation of utterances in context, which aims at accounting for the influences of con-
text on the combinatorial aspects of interpretation, while preserving compositionality as
much as possible.

Practically oriented systems include database interfaces such as [31], CHAT-80 [120],
message-understanders such as PUNDIT (29, 30), and sizeable systems such as LMT, a
lexicalist machine translation system with one of the widest coverage English analyzers in
existence. in which transformations can be described in terms of an input tree, an output
tree, and conditions [77, 10], the core language engine [4], or systems being used everyday.
such as TAUM-METEOQ for weather forecast, which uses ¢-systems [23].

Many other specific applications have been explored. For instdnce, logic grammar aided
ng grammatical mistakes of a student learning French,

learning of lexicons [93]; detecti :
) mixed (bottom-up, top-down) strategy [8]; assisted

through a Prolog-based analyzer witt
sentence composition applications to language interfaces [96]; applications for communi-
cating with handicapped persons [50]; machine translation for agricultural ﬂ-‘;@v;:»i‘is_i 561 afzd
reversible language processors (those which can be easily adapted both for analysis and for
synthesis), e.g., [56, 109, 94, 37, 43]). o

Let us also mention that some of the formalisms developed with computational Esn%Ujs't.afs
in mind have found applications outside of it. For nstance, DCSGs [110], a E}L_i%r-)tixt“
- erammar rules are viewed as defimtions

formalism for free word order languages in whic finitions
Ivine as well; and DCTGs [1]

for set conversions, has applications to general problem so

. H
are being used in software specihication problems.”

7. CONCLUDING REMARKS

vint at which the advances of logic progrant-

We find ourselves at the exciting historical pe s
oo ey - ;;pp.imseusas;m natural

olv ambitious
ming make it possible (o address the needs ol growingly ambitio

i E

nwhich most 1o

logic,

are als s true of Horn clause] g
hich are alsc hey are in the full first

srogramming as ey s
: lass of minimal modeis.

"These weaknesses 11 CXpression, W for logi
formalisms are based, are not as limiting in 1ogic | :
formulation of Stabler, since the former allows us 1o identify a ¢

0 e
Oyames Hanlon, personal conmunic pliog

0723

P R b Mo

V. DAHL

mggmguxmmmmgﬁﬂhhmmsm%mmmmMecmcmmw(medmﬂﬁﬂ)amﬁnwhdnhm»
retical linguistics results are coincidentally developing in directions that are more and more
compatible with computational linguistics needs.

Advances in logic programming can be applied to the use of one linguistic theory or
another. For instance, the problem of coreference of long-distance constituents, as seen
in Section 5.2.1, has been attacked using higher-order logics both in GPSG-like frame-
works (intuitionistic, linear logics) and in Chomskian frameworks (relevance logic). From
the discussion of that section and of Section 5.3.2, it should be clear that a use of these
techniques which is merely inspired in linguistic theory is not enough: problems of over-
and undergeneration immediately appear when we want to extend the linguistic coverage.
Minimizing these problems requires all the interdependent threads of our chosen theory to
be delicately woven.

However, linguistic theory, while having developed remarkable insights on some very
complex linguistic phenomena, does not have as its goal or method to provide immediate
comprehensive descriptions of actual natural language. A natural language processing
system that must process actual text (say, spontaneous speech or news reports) with a
minimum of coverage and accuracy must solve many problems for which linguistic theory
does not have, even in principle, solutions. Moreover, when building actual language
pﬂxfsﬂﬁgﬁyskanJﬂaﬂyinﬁanca&mefbundin\thhrhcanah&esofhnguﬁﬂctheomwu@
contradicted by data.

The general analyses from linguistic theory provide, as we have seen, important insights
for natural language systems. While no single linguistic theory has all the answers, all of
them have contributed to natural language processing, in general, and to logic program-
ming ques&ugs.nnparﬂaulan‘éﬁkqﬂingthca:gcncralanaiygeﬂ;uu!ineighistfnnxIingu%xu:
theory into actual language processing systems with the help of recent logic programming
developments is a challenging task, which is already yielding useful feedback to linguistic
theory (e.g., [106], p. 259) and which is likely to continue motivating, in turn, further
developments in logic programming itself.

am indebted to Jo Calder, Andrew Fall, Eli Hagen, Chris Mellish, Paul Tarau, and the anonymous referees
for their most helpful comments on this article's first draft. This research was supported by NSERC Operating
Grant 31-611024 and by NSERC CSS and SFU PRG Infrastructure and Equipment grants
and Functional Pro

riven to the Logi

amiming Laboratory at SFU, in whose facilities this work was developed. 1 am also
grateful to the Centre for Systems Science, LCCR, and the School of Computing Sciences at Simon Fraser

University for the use of their facilities.

REFERENCES

. Abramson, H,, Definite Clause Translation Grammars, in; Proceedings of the IEEE Logi
Programming Symposium, Atlantic City, NJ, February 1984

2. Abramson, H., and Dahl, V., Logic Grammars, Symbolic Computation Al Series, Springer,
New York, 1980,

3, Ait-Kaci, H., and Nasr, R, Login: A Logical Programming Language with Built-In
Inheritance, J. Logic Program, 3187215 (1986)

4. Alshawi, H., The Core Language Engine, MIT Press, Cambridge, MA, 1992

5. Andrews, J., Dahl, V., and Popowich, F., A Relevance Logic Characterization of Static

Discontinuity Grammars, in: Workshop on Linear Logic and Logic Programming, 1992,
6. Balari, 5., and Varile, G. B., CLG(n): Constraint Logic Grammars, in: Proceedings of
the International Conference on Computational Linguistics, 1990, pp. 1-6

0724

NATURAL LANGUAGE PROCESSING

9.
10.

29

0

Bancilhon, F., Maier, D., Sagiv, Y., and Ullman, J., Magic-Sets and Other Strange Ways to
Implement Logic Programs, in: Proceedings of the Fifth ACM Symposium on Pri;z{;péef
of Database Systems, 1986.

Barchan, J., Woodmansee, B., and Yazdani, M., A Prolog-Based Tool for French Grammar

Analysis, Instructional Science 15, 1985.

Barwise. J., and Perry, 1., Situations and Attitudes, MIT Press, Cambridge, MA, 1983
Bernth. A., and McCord, M., LMT for Danish-English Machine "frazﬁslaz‘mn in: €.
Brown and G. Koch, (eds.). Natural Language Understanding and Logic Programming,
II1. North-Holland, Amsterdam, 1991, pp. 179-194.

Berwick, R. C., Principle-Based Parsing. in: The Processing of Linguistic Structure, MIT
Press, Cambridge, MA, 1987.

Berwick,R.C., Abﬁcy, S.P.and Tenny, C., (eds.), Principle-Based Parsing: Computation
and Psycholinguistics, Kluwer Academic Publishers, Dordrecht, 1991.

Billot, S., and Lang, B., The Structure of Shared Forests in Ambiguous Parazrﬁ’s in: 27th

Annual Meeting of the Association for Computational Linguistics, 1989. pp. 1 5t

Bresnan, J., The Mental Representation of Grammatical Relations. MIT ?usai.ambnsgc.
MA, 1982,
Brown, C., Generating Spanish Clitics Using Static Discontinuity Grammar, Ph.D. Thesis.
School of Computing Sciences, Simon Fraser University, 1987.
Brown. C.. Dahl. V., Massam, D., Boyer, M., and Pattabhiraman, T., Tailoring GB Theory
for a Useful Subset of Error Messages, Technical Report LCCR 86-14, Simon Fraser
University, Burnaby. B.C., 1986.
Carpenter, B., The Logic of Typed Feature Structures with Applications to Unification
Grammars, Logic Programs and Constraint Resolution, Cambridge University Press,
1992,
Chen. H.-H.. Lin, L-P., and Wu, C.-P., A New Design of Prolog-Based Bottom-Up Parsing
System with Government-Binding Theory, in: fz;;f*rzze;;;rvrzf,{. Conference on Compuia-
tional Linguistics 88, 1988, pp. 112-116.
Chen. W.. and Warren, D. S., C-Logic of Complex Objects, Technical Report, Department
of ("'umputcz' Science. State University of New York at Stony Brook. 1989,

Chomsky, N., Barriers, MIT Press, Cambridge. MA, 1986.
Chomsky, N., Syntactic Structures, Mouton, The Hague, 1957.
Chomsky, N., Lectures on Government and Binding, Foris Publications, Dordrecht,
Holland, 1981
Colmerauer, A., Les Systemes-q ou un Formalisme pour Analyser el Synthétiser des
Phrases sur Ordinateur, Technical Report 43, Département d '[nformatique, Universite de
Montreal, Québec, 1970

Natural Language Com-

Colmerauer, A., Metamorphosis Grammars, in: L. Bolc (ed.). ¢
133-187.

munication with Computers, Springer, New York. 1978, pp.
Colmerauer. A.. Kanoui, H., Pasero, R., and Roussel. P Un Systéme de L-j*}mmlgéw'll
tion Homme-Machine en Frangais. Technical Report, Groupe d'Intelligence Artificielle.
Université d’ Aix-Marseille 11, Marseille, 1973,
Covington, M., Natural Language Processing for Prolog Programmers, Prentice-Hall
Englewood Cliffs, NJ, 1994, .

Cowper, E. AL A Ci netse Introduction to Syntachic Theory, University of Chicago Press,
1992

Crocker, M., A Principle-Base d System ftor Syntact
36(1):1-26 (1 t_m!

Dahl. D.. Palmer. M., S., and Passonneau, R. 1., Focussing
Pundit, in: Proceedings of AAALSH, 1986, pp. 10831088,
Dahl, D, Palmer, M. S, 11‘113 Passonneau, R 1, Nominalizations i Pundit, in: ¥ .
of 25th Annual Meeting of the Assoc fation for (r"”"“f-*’“”"“ Linguistics. 1987, pp. 131-
139,

¢ Analysis, Canadian J. Linguishcs
and Reference Resolution in

oo
roceedingy

0725

710

9

£

45.

46,

47.

48.

49.

50.

53

V. DAHL

Dahl, V., Translating Spanish into Logic through Logic, Coemputational Linguistics
7(3):149-164 (1981).

Dahl, V., Representing Linguistic Knowledge through Logic Programming, in: Proceed-
ings of the Fifth International Conference/Symposium on Logic Programming, Seattle,
August 1988,

Dahl, V., Discontinuous Grammars, Computational Intelligence 5(4).161-179 (1989).
Dahl, V., Incomplete Types for Logic Databases, Appl. Math. Lett., 4(3):25-28 (1991).
Dahl, V.. and Massicotte, P., Processing Techniques for Discontinuous Grammars, in: H.E.
A. Abramson (ed.), Meta-Programming for Logic Programming, MIT Press, Cambridge,
MA, 1988, pp. 141-156.

Dahl, V., and McCord, M. C., Treating Coordination in Logic Grammars, Amer. J.
Computational Linguistics 7(3):149-164 (1983).

Dahl, V., and Popowich, E., Parsing and Generation with Static Discontinuity Grammars,
New Generation Computing 8(3):245-274 (1990).

Dahl, V., Popowich, F., and Rochemont, M., A Principled Characterization of Dislo-
cated Phrases: Capturing Barriers with Static Discontinuity Grammars, Linguistics and
Philosophy 16:331-352 (1993).

Damas, L., and Varile, G. B., CLG: A Grammar Formalism Based on Constraint Resolu-
tion, in: Proceedings of the EPIA 1989,E. M. Morgado and J. P. Martins (eds.), Lecture
Notes in Artificial Intelligence 390, Springer, New York, 1989.

De Groot, D., Restricted And-Parallelism, in: Proceedings of the International Conference
on Fifth Generation Computer Systems, 1984.

Dérre, I, and Eisele, A., A Comprehensive Unification Based Grammar Formalism,
Dyana Report R3.1.B, Centre for Cognitive Science, Edinburgh University, 1991.
Dowty, D. R., Wall, R. E., and Peters, S., Introduction to Montague Semantics, D. Reidel
Publishing Company, Dordrecht, 1981,

Dymetman, M., Transformation de Grammaires Logiques et Reversibilité en Traduction
Automatique, Technical Report, Université Joseph Fourier (Grenoble 1) and CNRS, 1992
(Thése d’état).

Earley, J., An Efficient Context-Free Parsing Algorithm, Commun. ACM 13(2):94-102
(1970).

Eisele, A, and Dérre, J., Unification of Disjunctive Feature Descriptions, in: Proceedings
of the 1988 Conference of the Association for Computational Linguistics, 1988, pp. 286
294.

Emele, M., and Zajac, R., Typed Unification Grammars, in: Proceedings of the 13th
International Conference on Computational Linguistics, 1990, vol. 3, pp. 293-298.
Fong, S., Computational Properties of Principle-Based Grammatical Theories, Ph.D.
Thesis, MIT Al Lab, 1991.

Gazdar, G., Phrase Structure Grammar, in: P. Jacobson and G. K. Pullum (eds.), The
Nature of Syntactic Representation, D. Reidel, Dordrecht, Holland, 1982,

Gazdar, G., Klein, E., Pullum, G, and Sag, 1., Generalized Phrase Structure Grammar,
Harvard University Press, Cambridge, MA, 1985.

Guenthner, F., Pasero, R., and Sabatier, P., Communicating with My Handicapped Friends,
Technical Report, Groupe d’Intelligence Artificielle, Aix-Marseille Il University, 1993.
Gunji, T., Japanese Phrase Structure Grammar, D. Reidel Publishing Co., Dordrecht,
1986.

Hermenegildo, M., and Greene, K., Prolog and Its Performance: Exploiting Independent
And Parallelism, in: Proceedings of the Seventh International Conference on Logic
Programming, 1990, pp. 253268,

Hodas, J., Specifying Filler-Gap Dependency Parsers in a Linear Logic Programming
Language, in: K. Apt (ed.), Proceedings of the 1992 Joint International Conference and
Symposium on Logic Programming, MIT Press, Cambridge, MA, 1992, pp. 622-636.

0726

—rr

NATURAL LANGUAGE PROCESSING =

ta
o

L
LA

1=
L=

60.

62

63.

60.

68

16

Hodas, J., and Miller, D., Logic Programming in a Fragment of Intuitionistic Linear Logic,
J. Inform. Computation. 1992. '
Hopcroft, 1., and Ullman, J., Introduction to Automata Theory, Languages and Computa-
tion, Addison-Wesley, Reading, MA, 1979,

Isabelle, P. M. D., Critter: A Translation System for Agricultural Market Reports, in:
International Conference on Computational Linguistics, Budapest, 1988 vol 1, pp. 261~
266.

Ishikawa, A.. and Akama. S., A Semantic Interface for Logic Grammars and Its Appli-
cation to DRT, in: C. Brown and G. Koch (ed.). Natural Language Understanding and
Logic Programming, I1l, North-Holland, Amsterdam, 1991, pp. 281-292.

Jaffar, J., and Lassez, J.-L., Constraint Logic Programming, in: Proceedings of the 14th
ACM Symposium on Principles of Programming Languages, Munich, 1987, pp.‘! =
Johnson, M., Memoization in Constraint Logic Programming, Technical Report. Brown
University, 1983,

Johnson, M., Atribute-Value Logic and the Theory of Grammar, CSLI Lecture Notes 14.
Center for the Study of Language and Information, Stanford, 1988.

Johnson, M., Deductive Parsing: The Use of Knowledge of Language. in: R. C. Berwick,
S. P. Abney, and C. Tenny (eds.), Principle-Based Parsing: Computation and Psycholin-
guistics, Kluwer Academic Publishers, Dordrecht, 1991, pp. 39-64.

Johnson. M., Constraints and the Chart, unpublished manuscript.

Kamp, H.. A Theory of Truth and Semantic Representation, in: J. Groenendijk, T. M. V.
Janssen. and J. Stokhof (eds.). Formal Methods in the Study of Language, Mathematical
Centre Tracts, Amsterdam, 1981, pp. 277-322.

Kaplan, R., and Bresnan, J.. Lexical Functional Grammar: A Formal System for Gram-
matical Representation, in: J. Bresnan (ed.), The Mental Representation of Grammatical
Relations, MIT Press, Cambridge, MA 1982.

Kaplan, R. M, and Maxwell, J. T, An Algorithm for Functional Uncertainty, in: Pro-
ceedings of the 1988 Conference of the Assoctation for Computational Linguistics. 1988,
PP 297-302

Karttunen, L.. Features and Values, in: XX Annual Meeting of the Assoctation for Com-
putational Linguistics and Xth International Conference on Computational Linguistics,
California, 1984,

Kasper, R. T.. Conditional Descriptions in Functional Unification Grammar, in: Proceed-
ings of the 25th Annual Meeting of the Association for Computational Linguistics, 1987,
pp. 233-240

Kasper, R. T., A Unification Method for Disjunctive Feature Descriptions. in: Proceedings
of the 26th Annual Meeting of the Association for Computarional Linguistics, 1988, pp
235-242

Kay, M., Experiments with a Powerful Parser, in: Dewxieme Conference International
sur le Traitement Automatique des Langages, Grenoble, France, 1967.

Kay, M., Pa

pp. 251-278

12 in Functional Unification Grammar, Cambridge University Press, 1985,

Kay, M., Algorithm Schemata and Data Structures in Syntactic Processing. Rea
Natural Language Proc essing, Morgan Kaufmann, Los Altos, CA, 1986.

=
ings of the International Conference on Computational Linguistics-9(0. 1990, pp.
Lambek. J., The Mathematics of Sentence Structure, Amer Math. Monthly 6512
(1958)
Lambek. J., Multicategories Revisited, Categories Comput. Sci. Contemporary
92:217-239 (1987)
Lang, B, Complete Evaluation of Horn Clauses: An Automata Theoretic Approach
Rapport de Recherche 913, INRIA, Rocquencourt, France, 1988.
McCord, M. C., Focalizers, the Scoping Problem, and Semantic Interpretation Rules in

0727

~J
~J

~1
o0

~J
o

94,

V. DAHL

Logic Grammars, in: D. H. D. Warren and M. van Caneghem (eds.), Logic Programming
and its Applications, Academic Press, New York, 1981
McCord, M. C., Design of LMT: A Prolog-Based Machine Translation System, Compu-
tational Linguistics 15:33-52 (1989).
Mellish, C. S., The Description Identification Problem, Artificial Intelligence 52(2).151-
168 (1991).
Mellish, C. S., Implementing Systemic Classification via Unification, Computational
Linguistics 14(1):40-51 (1988).
Miller, D., and Nadathur, G., Some Uses of Higher-Order Logic in Computational Lin-
guistics, in: Pm(eedings of the 24th Annual Meeting of the Association for Computational
Linguistics, 1986, pp. 247 >
Moens, \i Cmdcr J., Klein, E., Reape, M., and Zeevat, H., Expressing Generalizations
in L-m.i‘;c&z;(}n-ﬂﬂsm Grammar Formalisms, in: European Association for Computational
Linguistics 89, 1989, pp. 174-181.
Moortgat, M., Categorial Investigations: Logical and Linguistic Aspects of the Lambek
Calculus, Ph.D). Thesis, University of Amsterdam, Amsterdam, The Netherlands, October
1988.
Oechrle, R. T., Bach, E., and Wheeler, D., (eds.), Categorial Grammars and Natural
Language Structure, Reidel, Dordrecht, The Netherlands. 1988,

schi, R., and Miller, D., Extending Definite Clause Grammars with Scoping
structs, %n; D. H D \Mz“.,ﬂ and P Szeredi rLda), International Conference in Logic
73-389.

~d
b2

ollack, M., Incremental Interpretation, Artificial Intelligence

, Prolog and Natural Language Analysis: Into the Third Decade. in: S.

Debray and M. Hu’m*f"c;ﬂh;n (eds.), Proceedings of the 1990 North American Conference

on Logic Programming, 1990, pp. M 3-832

E C. N., Semantic Interpretation as Higher-Order Deduction, Proceedings of the

1 European Workshop on Logics and Al ‘-apmam‘r New York, 1990,

ra, F.C. N., and Shieber, S. M., Prolog and Natural Language Analysis, CSLI Lecture
tes 10), Centre for the Study of Language and Information, Stanford, 1987

Pereira, F. C. N, and Warren, D. H. D., Parsing as Deduction, in: Proceedings of the 2 1st

Annual Mf’f.’fff?g of the Association for Computational Linguistics, 1983

Pereira, F. C. N., and Warren, D. H. D., Definite Clause Grammars for Language

Analysis—A Survey of the Formalism and a Comparison with Augmented Transition

Networks, Artificial Intelligence 13:231-278 (1980).

F‘«')lihrf‘f C., and Sag, 1., Information-Based Syntax and Semantics, Technical Report

LI Notes 13, Center for the Study of [anguage and Information, Stanford, 1987
Rﬂ";r’fl’{’»f M., Hugosson, A., and Hagert, G., Using a Logic Grammar to Learn a Lexicon,

n: Proceedings of the (’.un_frfn:frr e on (m-u;mr.-;mm_f Linguistics, Budapest, 1988, vol. 1,
pp. 124-129
1, R.. and Sabatier, P., Using the Same System for Analysing and for Synthesiz-

ing Sentences, in: Proceedings of the | 3th International Conference on Computational
Linguistics, 1990, pp. 440-442,

Rosenschein, S. J., and Shieber, §. M., Translating English into Logical Form, in
Proceedings of the 20th Annual Meeting for Computational Linguistics, University of
Toronto, Toronto, Ontario, 1982, ;‘;(J] -8

Sabatier, P, Interfaces en Langage Naturel: Du Traitement du non Attendu a la Compo-
sition de Phrases Assisiee, Ann. !r'h*r ommunications 4401-2):77-84 (1989)
Saint-Dizier, P., Contextual Discontinuous Grammars, in. Natural Language Under
standing and Logic Programming I, North-Holland, Amsterdam, 1988,

0728

T g g =
NATURAL LANGUAGE PROCESSING

98.
98,
100.
101.
102.
103.

104.

106.

107.
108,

109.

110

111.

118,
119,

Saussure, F. D., Course in General Linguistics, McGraw-Hill, New York, 1959. Originally
published in French in 1919,

Schatz, U., and Lehner, C., Implementation of the Comprehensive Unification Formalism,
Technical Report 90-31, University of Munich, 1990.

Seki, H., On the Power of Alexander Templates, in: Proceedings of the Eighth ACM
Symposium on Principles of Database Systems, 1989.

Sells, P, Lectures on Contemporary Syntactic Theories, CSLI Lecture Notes 3, Centre
for the Study of Language and Information, Stanford, 1985.

Sharp, R., A Model of Grammar Based on Principles of Government and Binding, Master’s
Thesis, University of British Columbia, 1985.

Shieber, S., Constraint-Based Grammar Formalisms—~Parsing and Type Inference for
Natural and Computer Languages, A Bradford Book: MIT Press, Cambridge, MA, 1992,
Stabler, E. J., Restricting Logic Grammars with Government-Binding Theory, J. Compu-
tational Linguistics 13(1-2), pp. 1-10 (1987).

Stabler, E. J., Avoiding the Pedestrian’s Paradox, in: R. Berwick, 5. P. Abney, and
C. Tenny (eds.), Principle-Based Parsing: Compuration and Psycholinguistics, Kluwer
Academic Publishers, Dordrecht, 1991, pp. 199-238§.

Stabler, E. J., Implementing Government-Binding Theories. in: R. Levine (ed.), Formal
Grammar: Theory and Implementation, Vancouver Studies in Cognitive Science, Oxford
University Press, 1992, pp. 243-275.

Stabler, E. J., The Logical Approach to Syntax, ACL-MIT Press Series in Natural Language
Processing, MIT Press, Cambridge, MA, 1992

Steedman, M., Dependency and Coordination in the Grammar of Dutch and English,
Language 61:523-568 (1985).

Strzalkowski, T., Automated Inversion of Logic Grammars for Generation, in; Proceed-
i!‘!g.\' of the 28th .“-fi’(’;’;’!ig of the ACL, Pé[[s{ﬂ_]r};h_ PA. 1960,

Tanaka, T., Definite-Clause Set Grammars: A Formalism for Problem Solving, J. Logic
Program. 10(1):1-18 (1991).

Tuda, H., Hasida, K., and Sirai, H., JPSG Parser on Constraint Logic Programming, in:
Proceedings of the European Chapter of the Association for Computational Linguistics,
1989, pp. 95-102

Uehara, K., Ochitani, R.. Kashusho, O.. and Tovoda, J.. A Bottom-Up Parser Based
on Predicate Logic: A Survey of the Formalism and its Implementation Technique, in:
Proceedings of the 1984 International Symposium on Logic Programming, 1984.
Uszkoreit, H., Categorial Unification Grammars, in: Proceedings of the International
Conference on Computational Linguistics 86, 1986, pp. 187-194

van Benthem, J., The Lambek Calculus, in: Categorial Grammars and Natural Language
Structure, Reidel, Dordrecht, The Netherlands, 1988

van Benthem,)., Language in Action—Categories, Lambdas and Dynamic Logic, Studies
in Logic and the Foundations of Mathematics 130, North-Holland, Amsterdam, The
Netherlands, 1991

van Riemsdijk, H., and Williams, E.. Introduction to the Theors of Grammar, MIT Press.
Cambridge, MA, 1986,

Villemonte de la Clergerie, E.. Layer Sharing: An Improved Structure-Sharing Frame-
work, in; ACM Symposium on the Principles of Programming Languages. Association
for Computing Machinery, New York, 1993, pp. 345-358.

Warren, D. H. D, Earley Deduction, unpublished note. 1975,

Warren, D. H. D., The SRI Model for OR-Parallel Execution of Prolog, Abstract Design
and Implementation Issues, in: Proceedings of the Fourth Symposium on Logic Program-
ming, San Francisco, 1987, pp. 46-53

Warren, D. H. D, and Pereira, F. C. N, An Efficient Easily Adaptable System for In-
terpreting Natural Language Queries, Technical Report, Dept of Artificial Intelligence,
University of Edinburgh, 1982

0729

V. DAHL

121,

129

i oy

123.

124,

NENVAIWVYHI YNYEHN 140 N AHvHEST

Warren. D. S., Memoing for Logic Programs, Commun. ACM, 35(3):94-111 (1992),
Wherli. E.. A Modular Parser for French, in: Proceedings of the 8th International Joini
Conference on Artificial Intelligence, Karlsruhe, 1983, pp. 686-689.

Woods. W., Transition Network Grammars for Natural Language Analysis, Commun
ACM 13:591-596 (1970).

Woods. W.. An Experimental Parsing System for Transition Network Grammars, in:
R. Rustin (ed.), Natural Language Processing, Algorithmic Press, New York, 1973, pp,
145-149.

Matsumoto, Y., Tanaka, H., Hirakawa, H., Miyoshi, H., and Yasukawa, H., BUP— A
Embedded in Prolog, New Generation Computing 1:145-158 (1983)

Bottom-Up Parser
Unification Categorial Grammar, Lingua e Stile

Zeevat. H., Klein, E., and Calder, ¥
I6(4):499-527 (1991).

0730

-3
& |1

TITLE INDEX TO VOLUMES 19/20

Constraint Logic Programming: A Survev, 503

Environments: Dynamic Proy
ging, Logic Prog

* Proyoramming
4 F.":U';:'\;if. 1FEERES

AMIMIng,

g
Inductive Logic Programming: Theory
629 \
ms, The

Integration of Functions into Logic Programming
From Theory to Practice, The. 583
Introduction, Guest Editors’. 1

Introduction: 10th Birthdav Special ssite-of the Tour Fermination of Logic 5 The Never-i
LRI F i uc ol Nne Our
nal of Logic Programming, 5 Story, 199
I'r i Logie Programs: Foundations and
4 3
Knowledge Representation, Logic 1 O
& |
3% 3
‘ The s of
Logic Program Synthesis. 321 Atutic

0731

0732

LIBRARY U, OF I. URBANA-CHAMPAICN

AUTHOR INDEX TO VOLUMES 19/20

Apt, Krzysztof R, 9

Baral, Chitta, 73

Bol, Roland N., 9
Bossi, Annalisa, 149
Bruynooghe, M., |
Bughesi, Michele, 443

Dahl, Veronica, 681

De Raedt, Luc, 629
Debray, S., |

De Schreye, Danny, 199
Decorte, Stefaan, 199
Deville, Yves, 321

Ducassé, Mireille, 351

Grabbrielli, Maurnizio, 149
Gelfond, Michael, 73

Hanus, Michael, 583
Hermenegildo, M., |

Jaffar, Joxan, 503

[amma, Evelina,
Lau, Kung-Kiu, 321
Levi, Giorgio, 149

Maher, Michael 1., 1, 303
Martelli, Maurizio, 149
Mello, Paola, 443

Muggleton, Stephen, 629
Noyé, Jacques, 351

Pettorossi, Alberto, 261
Proietti, Maunzio, 261

Robinsen, J. A, 5

Van Roy, Peter. 385

0733

LIBRARY U. OF I. URBANA-CHAMPARIGN

THE JOURNAL OF
LOGIC PROGRAMMING

VOLUMES 19/20, 1994

CONTENTS

GUEST EDITORS’ INTRODUCTION
M. Bruynooghe, S. Debray, M. Hermenegildo, and M. Maher

INTRODUCTION: 10TH BIRTHDAY SPECIAL ISSUE OF THE JOURNAL OF

LOGIC PROGRAMMING
J. A. Robinson

LOGIC PROGRAMMING AND NEGATION: A SURVEY
Krzysztof R. Apt and Roland N. Bol

LOGIC PROGRAMMING AND KNOWLEDGE REPRESENTATION
Chitta Baral and Michael Gelfond

THE s-SEMANTICS APPROACH: THEORY AND APPLICATIONS
Annalisa Bossi, Maurizio Gabbrielli, Giorgio Levi, and Maurizio Martelli

ITERMINATION OF LOGIC PROGRAMS: THE NEVER-ENDING STORY

Danny De Schreye and Stefaan Decorte

TRANSFORMATION OF LOGIC PROGRAMS: FOUNDATIONS
AND TECHNIQUES
Alberto Pettorossi and Maurizio Proietti

LOGIC PROGRAM SYNTHESIS
Yves Deville and Kung-Kiu Lau

LOGIC PROGRAMMING ENVIRONMENTS: DYNAMIC PROGRAM
ANALYSIS AND DEBUGGING
Mireille Ducassé and Jacques Noyé

1983-1993: THE WONDER YEARS OF SEQUENTIAI
PROLOG IMPLEMENTATION

Peter Van Roy

MODULARITY IN LOGIC PROGRAMMING
Michele Bugliesi, Evelina Lamma, and Paola Melo

CONSTRAINT LOGIC PROGRAMMING: A SURVEY
Joxan Jaffar and Michael J. Maher

0735

i

-l
L

149

199

351

503

NOTVAWYHI-YNVEH 140 N Auvaari

FROM THEORY TO PRACTICE
Michael Hanus

INDUCTIVE LOGIC PROGRAMMING: THEORY AND METHODS
Stephen Muggleton and Luc De Raedt

NATURAL LANGUAGE PROCESSING AND LOGIC PROGRAMMING
Veronica Dahl

TITLE INDEX TO VOLUMES 19 & 20

AUTHOR INDEX TO VOLUMES 19 & 20

0736

THE INTEGRATION OF FUNCTIONS INTO LOGIC PROGRAMMING:

629

681

~3
ot
o

ATTENTION ALP MEMBERS

ALP members will receive a personal copy of this special issue of Journal of
Logic Programming: Ten Years of Logic Programming when they subscribe at

the low society rate.

JLP Editor-in-Chief, Maurice Bruynooghe and guest editors, S. Debray, M.
Hermenegildo, and M. Maher have compiled a volume that will be the standard
reference for Logic Programming for years to come.

This special volume will include an introduction by the editors, plus the following
chapters:

J. A. Robinson - Preface; K.R. Apt and R. Bol - Logic Programming and Negation: A Survey;
C. Baral and M. Gelfond - Logic Programming and Knowledge Representation; A. Bossi, M.
Gabrielli, G. Levi, and M. Martelli - The S-Semantics Approach: Theory and Applications; D.
De Schreye and S. Decorte - Termination of Logic Programs: the never-ending story; A.
Pettorossi and M. Proietti - Transformation of Logic Programs: Foundations and Techniques;
Y. Deville and K.K. Lau - Logic Program Synthesis; M. Ducassé and J. Noyé - Logic
Programming Environments: Dynamic Program Analysis and Debugging; P. Van Roy -
1983-1993: The Wonder Years of Sequential Prolog Implementation; M. Bugliesi, E. Lamma,
and P, Mello - Modularity in Logic Programming; J. Jaffar and M. J. Maher - Constraint Logic
Programming: A Survey, M. Hanus - The Integration of Functions into Logic Programming:
from theory to practice; S. Muggleton and L. De Raedt - Inductive Logic Programming: Theory
and Methods: V. Dahl - Natural Language Processing and Logic Programming. Additional
survey articles are pianned for publication in 1995.

ALP members can subscribe to JLP (Vols. 18-21, 12 issues, 1994) at the special
rate of $75 (plus shipping and handling for non-North American subscriptions)
and receive Ten Years of Logic Programming as part of their subscriptions.

To subscribe, please send a check or money order for $75 in US Dollars (plus
$38 shipping and handling for non-North American subscriptions) to:

ELSEVIER SCIENCE INC.
DEPT. PSJ
655 AVENUE OF THE AMERICAS
NEW YORK, NY 10010

ons to American EXpress. VISA, or

lhose interested in charging their subscripti :
above address or at

MasterCard should contact David Reis at the
<d.reis@elsevier.com > for information.

er nugntber on Your check. All subscriptions
eceipt of payment. Please
rates valid until Decemoer

Ordering information: Please include your ALP memb
begin with the first issue of the calendar year and are entered uponr
allow 4-6 weeks for delivery of your first journal issue.
31, 1994,

Subscription

0737 —

ey ol

NIV YD CNVEHI 1 40 1

Enhanced
Author Control:
THE JOURNALOF NN Macros

LOGIC PROGRAMMING i
o

UPDATE

[ATpX Manuscript Files
Now Accepted

Eisevier now accepts I£IgX manuscript files on diskette for The Journal of
Logic Programming. Recognizing that IKIEX is quickly becoming the preferred
word processing program for mathematicians, Elsevier is one of the first pub-
lishers to offer this service.

The company’s ability to accept I&TpX ’ﬂéiﬂiii&‘ﬁ{‘l'\' will benefit both author
and reader. Eliminating the need for typesetting will give the author greater
control over both the guality of his or her work because the need for rekeying
15 greatly reduced. This is especially welcome for mathematical formulae.

Bn addition to The Journal of Logic Programming, Elsevier is also accepting
ATpX files for these journals:

Applied Mathematics and Computation

Information Sciences

International Journal of Approximate Reasoning

Linear Algebra and Its Applications

Wising any of the standard readil y available versions, authors should submit

their accepted final ISTpX manuscript file on diskette along with three (3) hard
copies to Editor-in- (.hjti M. Bruynooghe

A thors 1 requiring further technical information should contact

Victor van Beuren

Editor, Physical Sciences Journals Group
Elsevier Science Inc.

655 Avenue of the America

Mew York, NY 10010

Telephone: 1-212-633-3932
Fax: 1-212-633-3913

fi-{‘fu-ﬂﬁ V ’:"p':ll'£§'i31=i??"_g;{!’fﬂr‘:‘-‘i"-f‘-"? Oom

00 T M

073807465~ 1066 199406319:1-3/20:1-3%;1-C

