Marc Heyns (editor) Marc Meuris & Paul Mertens (co-editors)

1693

UC-NRLF

8 4 286 346

Proceedings of the Second International Symposium on Ultra-clean Processing of Silicon Surfaces

INTEL 1115

Marc Heyns (editor) Marc Meuris & Paul Mertens (co-editors)

Proceedings of the Second International Symposium on

Ultra-Clean Processing of Silicon Surfaces (UCPSS '94)

Acco Leuven / Amersfoort

Conference organized by IMEC

First Edition : 1994

TW. 250.00.0 32 012 3262

Published by Uitgeverij Acco, Tiensestraat 134-136, 3000 Leuven (België) For the Netherlands : Postbus 1285, 3800 BG Amersfoort / Hamersveldseweg 10a, 3833 GP Leusden

© 1994 by Acco (Academische Coöperatief c.v.), Leuven, (België)

No part of this book may be reproduced in any form, by mimeograph, film or any other means without permission in writing from the publisher.

D/1994/0543/216

NUGI 841

ISBN 90-334-3262-5

Table of Contents

Preface Marc Heyns	11
Trends in Wafer Cleaning Technology Takeshi Hattori Keynote Presentation	13
Recipes to Avoid Particle Contamination during Wet Cleaning Processes L. Mouche, B. Beneyton, C. Paillet, J.P. Joly, F. Tardif, D. Levy, K. Barla, P. Patruno, A. Tonti and W. Sievert	19
Summary of HF-Last Wet Processing Using Direct-Displacement Technology G.N. DiBello, S.T. Bay, C.F. McConnell, J.W. Parker and E.A. Cheney	23
The Impact of Integrated Pre-cleans on Gate Oxide Integrity S. O'Brien, G. Brown and C. Tipton	27
Marangoni Drying : a New Concept for Drying Silicon Wafers R. Schild, K. Locke, M. Kozak and M.M. Heyns	31
Particle Removal Efficiency from Native Oxides Using Dilute SC-1 Megasonic Cleaning S.L. Cohen, W. Syverson, S. Basiliere, M.J. Fleming, B. Furman, C. Gow, K. Pope, R. Tsai and M. Liehr	35
Metal Removal without Particle Addition : Optimization of the Dilute HCl Clean T.Q. Hurd, P.W. Mertens, L.H. Hall and M.M. Heyns	41
Diagnostics of Process-Hygiene in Large Scale Si-Manufacturing Using Trace-Analytical Tools L. Fabry, L. Köster, S. Pahlke, L. Kotz and J. Hage (Invited)	47
Ultra-Trace Metal Analysis of Si Wafer Surfaces Using Synchroton Radiation A. Fischer-Colbrie, S.S. Laderman, S. Brennan, N. Takaura, P. Pianetta, A. Shimazaki, K. Miyazaki, J. Kortright, D.C. Wherry	57
Quantitative Depth Analysis of Ultratrace Elements in Silicon Wafers M. Takenata, M. Hayashi, H. Matsunaga, Y. Honma, A. Kubota and Y. Matsushita	61
Characterisation of Oxides and Thin Films Using a Novel Scanning Kelvin Probe I.D. Baikie, G.H. Bruggink and S. Rival	65

TW. 250.00.0 32 012 3262 .

a, 3833 GP Leusden

any other means without

ISBN 90-334-3262-5

6	
Reoxidation Kinetics of HF-Etched Si(100), Si(110) and Si(111) Surfaces in Air J.T. Beechinor, P.V. Kelly, G.M. O'Connor and G.M. Crean	69
A Comparative Study of Measurements of Roughness of Silicon and SiO ₂ Surfaces and Interfaces Using Scanning Probe Microscopy, Neutron and X-Ray Reflectivity A. Crossley, C.J. Sofield, J. Goff, A.C.I. Lake, M.T. Hutchings, A. Menelle and M.P. Murrell	75
In situ Monitoring of the Effect of Oxygen and Hydrogen Plasmas on the Passivation Level of Silicon Surfaces <i>H. Li, E.A. Ogryzlo and J.G. Cook</i>	79
Effect of Dynamical Plasma Cleaning on Si-SiO ₂ Structures V.M. Maslovsky and G.Y. Pavlov	83
Adsorption and Desorption Studies of U-238 on Silicon Surfaces G. Mainka, S. Metz, A. Fester, H. Ochs and B.O. Kolbesen	87
A UHV Compatible Plasma Chemical Cleaning Procedure for Low Temperature Epitaxial Growth on Patterned Silicon Substrates E. Beck, A. Dommann, I. Eisele, W. Hansch, N. Korner, D. Krüger and J. Ramm	91
Soft Cleaning by in Vacuo Ultraviolet Radiation before MBE G. Lippert and H.J. Osten	95
The Effect of Various Processing and Hardware Parameters on the Decomposition of H_2O_2 in APM 4. <i>Philipossian and R. Wilkinson</i>	99
SCA Determination of Charges in Oxide after Metallic Contamination K. Barla, F. Tardif, D. Walz and C. d'Assenza	103
Calibration of TXRF Equipment Knoth, H. Schwenke and P. Eichinger	107
Fransfer Behavior of Metallic Contaminants from Solutions to Wafers J. Keller, W. Aderhold and E.P. Burte	111
Low Temperature Oxides Deposited by Remote Plasma Enhanced CVD LÅ. Ragnarsson, S. Bengtsson, M.O. Andersson and U. Södervall	117
H ₂ O Microcontamination Generated by Reaction between Anhydrous IBr Gas and Transition Metal Oxides 1. Boireau, H. Chevrel, N. Uchida, K. Miyazaki, E. Ozawa and J.M. Friedt	121
J.V. Activated Cleaning Using NO, HCl and NO/HCl C. Elsmore, R. Gluck, P. Carr, M. Meuris, P.W. Mertens and M.M. Heyns	125

dy, e

The Influence of Different Si(100) Surface Cleaning Procedures on Residual Contamination and Some Electrical Properties K. Blum, G. Lippert, R. Sorge, D. Krüger and K. Höppner	131
MOS Generation Lifetime for Measuring Metal Contamination in Silicon D. Walz, J.P. Joly and F. Tardif	139
Effect of Different Chlorine Sources during Gate Oxidation B. Vermeire, P.W. Mertens, M.J. McGeary, K. Kenis, M.M. Heyns, M. Schaekers and A. Lubbers	143
Kinetics and Morphology of Copper Deposition on Hydrogen-Passivated Silicon Surfaces from Dilute HF Solutions J.A. Sees, L.H. Hall, O.M.R. Chyan, JJ. Chen and H.Y. Chien	147
A New Wet Cleaning Strategy M. Jolley	151
Characterization Methods of cSi/aSi Interface for Heterojunction Solar Cells F. Roca, D. Della Sala, G. Fameli, P. Grillo and F. Pascarella	155
The Impact of Ca, Cu, Zn Silicon Surface Contamination on the Yield of a MOS DRAM Test Process W.R. Aderhold, N. Streckfuß, E.P. Burte and U. Keller	159
UV/Ozone Pre-Treatment on Organic Contaminated Wafer for Complete Oxide Removal in HF Vapour Cleaning L. Li, J. Alay, P.W. Mertens, M. Meuris, W. Vandervorst, M.M. Heyns, R. de Blank and E. Schuivens	163
Improvement and Evaluation of Drying Techniques for HF-Last Wafer Cleaning L. Li, G. Zou, H. Bender, P.W. Mertens, M. Meuris, H.F. Schmidt and M.M. Heyns	167
Quantification Issues for VPD/TXRF R.S. Hockett, J.M. Metz and S. Tan	171
Elimination of HF-Last Cleaning Related CoSi ₂ Defects Formation G. Zou, F. Jonckx, R. Donaton, W. Küper, K. Maex, P.W. Mertens, M. Meuris, M.M. Heyns, K. Locke, M. Korac and R. Schild	177
The Use of Deep Ultraviolet Photons to Remove Surface Contaminants A.C. Engelsberg	181
UV-Enhanced Etching of Silicon Oxide by Chlorine Trifluoride C.F. Hiatt, J.W. Butterbaugh and D.C. Gray	185
A New Method for In-Line, Real-Time Monitoring of Wafer Cleaning Operations E. Kamieniecki, P. Roman, D. Hwang and J. Ruzyllo	189

Ľ

Si Surface Charge Imaging Using a High Resolution Scanning Kelvin Probe G.H. Bruggink and I.D. Baikie	193
Recombination Activity of Iron-Related Complexes in Silicon Studied with Microwave and Light-Induced Absorption Techniques A. Kaniava, A.L.P. Rotondaro, J. Vanhellemont, E. Simoen, E. Gaubas, J. Vaitkus, T.Q. Hurd, P.W. Mertens, C. Claeys and D. Graf	197
Improved Rinsing Efficiency after SPM (H_2SO_4/H_2O_2) by Adding HF S. Verhaverbeke, R. Messoussi and T. Ohmi	201
Fundamental Metallic Issues for Ultraclean Wafer Surfaces from Aqueous Solutions C.R. Helms, HS. Park, S. Dhanda, P. Gupta and M. Tran (Invited)	205
Electrochemical Aspects of Noble Metals Related to Silicon Wafer Cleaning O.M.R. Chyan, JJ. Chen, H.Y. Chien, L. Hall and J. Sees	213
Metallic Particle Growth and Metal Induced Pitting (MIP) on Silicon Surfaces in Wet Processing and its Prevention H. Morinaga, M. Suyama, M. Nose, S. Verhaverbeke and T. Ohmi	217
Metal Adsorption on Silicon Surfaces from Wet Wafer Cleaning Solutions G.J. Norga, K.A. Black, H. M'saad, J. Michel and L.C. Kimerling	221
A Novel Approach for Studying the Iron Absorption and Desorption Mechanisms on Silicon Surfaces during Wet Chemical Treatments H. Schäfer and K. Budde	225
Recent Results of Ultraviolet-Initiated Processes for Cleaning and Etching of Silicon J.W. Butterbaugh, D.C. Gray, C.F. Hiatt, H.H. Sawin and A.S. Lawing	229
Cleaning Performance of a Cryogenic Aerosol System P. Sferlazzo, A. Dart, B.K. Libby, P.H. Rose, W. Scheer and R.G. van der Heide	235
The Resurgence of Mechanical Brush Scrubbing W.C. Krusell and J. Pollick	241
In-situ Rinse HF-Last for Pre-Epitaxy Cleaning P. Patruno, A. Fleury, E. Andre and F. Tardif	247
Etching of SiO_2 with Anhydrous HF and Organic Solvent Vapors K. Torek, J. Ruzyllo and R. Grant	251
In situ Remote Hydrogen Plasma Cleaned Si(100) for Gate Oxidation Formation : Correlation of Surface and Device Properties J.S. Montgomery, J.P. Barnak, H. Ying, J.R. Hauser and R.J. Nemanich	255

Physico Chemical Aspects of Hydrogen Peroxide Based Silicon Wafer Cleaning Solutions H.F. Schmidt, M. Meuris, P.W. Mertens, A.L.P. Rotondaro, M.M. Heyns, T.Q. Hurd and Z. Hatcher (Invited)	259
An HF-O3 Aqueous Solution for Silicon Wafer Cleaning Y. Fukazawa, K. Sanpei, T. Nakajima, K. Takase and K. Miyazaki	267
Metal Addition of the RCA-1 Chemistry as a Function of Blend Ratio and Temperature K.K. Christenson, S. Smith and D. Werho	271
TiN Etch Rate and H_2O_2 Decomposition Studies in the $H_2O_2/NH_4OH/H_2O$ System A. Philipossian and J. Magana	275
Reaction Limited Controlled Etch in Diluted HF Aqueous Solution with HNO ₃ G. Seo, H. Kim, S. Kang, D. Kim, K. Ryoo and P. Hong	279
The Contrastive Behavior of COP/FP and SEP Defects in CZ Silicon Crystals T. Abe (Invited)	283
Roughening during Wet Processing Studied by AFM of Stepped Surfaces S. Verhaverbeke, R. Messoussi and T. Ohmi	289
Pitting on Wafers by Ag Trace in Diluted HF D. Lévy, P. Patruno, L. Mouche and F. Tardif	293
AFM Characterization of Thermal Oxide Formed on Atomically Flat Si(111) Surfaces M. Fukuda, C.H. Bjorkman, T. Yamazaki, S. Miyazaki and M. Hirose	297
Interaction of the Sulphuric Acid Hydrogen Peroxide Mixture with Silicon Surfaces A.L.P. Rotondaro, H.F. Schmidt, M. Meuris, M.M. Heyns, C. Claeys and J. Mulready	301
Different Reaction of O_2 and Oxygen Radicals with Si under Critical Conditions for Growth of SiO ₂ K. Hayama, T. Tougun, M. Ishida and T. Nakamura	305
Performances of Usual Wet Cleanings and Study of their Coupling with 7 nm Gate Oxidation Parameters F. Tardif, T. Lardin, C. Paillet, D. Bremond, J.P. Joly, F. Martin, P. Mur, L. Mouche, P. Patruno, A. Tonti, D. Levy, K. Barla and W. Sievert	309
The Impact of LOCOS Formation on the Gate Oxide Integrity M. Dohmen, R. Wijburg and R. Girisch	315

Ι

10	
Defect Density of Ultra-Thin Gate Oxides Grown by Conventional Oxidation Processes M. Depas, B. Vermeire, P.W. Mertens, M. Schaekers, M. Meuris and M.M. Heyns	319
Adsorption Behavior of Nonionic Surfactants onto Silicon J.S. Jeon and S. Raghavan	323
Perfect Cleaning Technology and Analysis for Organic Contaminants on Si Wafer Surface N. Yonekawa, S. Yasui and T. Ohmi	327
Ashing without Acid : an Assessment of Modern Photoresist Strippers L.M. Loewenstein and G. Brown	331
Characterization of the Removal of HMDS Monolayers N. Porfiris, J. Newby, A.M. Gundlach, R. Pethrick, S. Affrossman and A. Tannahill	335
Effect of Chlorine Contaminated Organic Solvent Photoresist Stripper on Post-Metal Etch Corrosion A. Philipossian, J. Fadden, L. Roe and E. Krosche	339
Removal of Polymer Following Reactive Ion Etching D.K. Hwang, B.P. Luther, J. Ruzyllo and D. Mount	345
Initial Stage of Oxidation of Hydrogen-Terminated Silicon Surfaces T. Hattori (Invited)	349
Comparison of the Stability of the Surface Structure and H-Termination of H_2 Annealed and HF-Last Cleaned (100) Silicon H. Bender, L. Li, P. Mertens, M. Caymax and M.M. Heyns	355
Thermal Desorption from and Chemical Stability of Hydrogen-Terminated Si Surfaces Studied by HREELS H. Nishimura, T. Yamazaki, S. Miyazaki and M. Hirose	359
Electronic Properties of HF-Treated Si(111) Surfaces during Native Oxide Growth H. Angermann, Th. Dittrich and H. Flietner	363
Degradation of Clean Si-Surfaces due to Storage in Clean (?) Wafer Boxes W. Storm, W. Vandervorst, J. Alay, M. Meuris, A. Opdebeeck, M.M. Heyns, C. Polleunis and P. Bertrand	367
Chemically Treated Stepped Silicon {100} Surfaces V. Nayar, A.J. Pidduck, M. Idrees and B.E.J. Dew	371
Selective Etching of Phosphorous Doped Oxides over Undoped Oxides in a Low Pressure HF Vapor Process R.J. Wilhelm, W.J.C. Vermeulen and H. Watanabe	375

C. Fred Hiatt, Jeffery W. Butterbaugh and David C. Gray

FSI International, 322 Lake Hazeltine Drive, Chaska, MN 55318

1. INTRODUCTION

In semiconductor device processing, silicon oxides are used in many forms for many different applications. Dense thermally grown silicon oxide is used as the gate dielectric film in MOS transistors. Steam grown thermal silicon oxide is used as a field oxidation dielectric layer. Doped silicon oxides such as phosphosilicate glass (PSG) and borophosphosilicate glass (BPSG) are used as intermetal dielectrics because they can be easily planarized through reflow. During the processing of silicon based semiconductor devices, other types of silicon oxide films may be formed as the result of exposure of silicon surfaces to chemical processing step, or to the ambient environment. In many cases, these residual oxides are considered surface contaminants since they must be removed to allow the formation of a high quality electrical interface. Often, it is necessary to remove a chemical or native oxide, along with associated residues and contamination from a pattern feature bottom in the presence of one or more of the silicon oxides mentioned above. Oxide etching selectivity is of paramount importance in these cases since different oxides may be etched at drastically different rates.

A current trend in semiconductor wafer processing is towards using gas vapors or all dry gas processes in a cluster tool environment to remove residual oxides and contaminants. It has long been known that vapors of HF/water mixtures will etch various silicon oxide films, and this technology has been well studied [1,2] and commercialized. Etching of oxide films with anhydrous HF has also been well studied [3] and has been found to be affected by the quantity of residual water in the process environment and in the oxide film itself, such that the etching mechanisms appear to be similar to those for HF/water mixtures. A limitation encountered in the use of HF vapor phase etching of oxide films is the low etching rates for native and chemical silicon oxide films relative to doped silicon oxides

Wong et al. [1] have studied the selectivity of the HF vapor etching processes to many different types of oxide films. The results show that native, chemical, and thermal oxides are typically removed at rates up to 10 times slower than the removal rates of PSG and BPSG doped silicon oxides. This is problematic in several common processing circumstances. First of all, it is commonly necessary to clean native oxide and other contaminant from the bottom of contact holes through dielectric layers of BPSG. Using the current vapor phase processes, several hundred angstroms of the BPSG can be removed before the silicon oxides and contamination in the contact hole are removed. Secondly, it is common to use sandwich structures of different types of silicon oxide films. For instance, a BPSG layer between two undoped oxide layers is sometimes used as the intermetal dielectric film in the above mentioned contact application. Cleaning of contact or other topographic features through this type of composite film with the current HF vapor technology causes enhanced lateral etching of the BPSG layer relative to the undoped oxide layers. This results in an undercut profile which is difficult to fill with subsequent films without forming voids

Here, we describe the application of photochemical (UV-enhanced) processes for the rapid etching of doped and undoped oxide films, and the removal of thin chemical oxide surface layers. Previous work with ClF_3 reported enhanced selectivity of native oxide over silicon under UV irradiation [4]. The processes reported here employ ClF_3 gas in a dry nitrogen carrier stream and simultaneous UV irradiation. Doped and undoped oxides are observed to be removed at nearly identical rates in a large process window (pat. pending).

2. **EXPERIMENTAL**

The full-wafer reactor used in these studies was an experimental single wafer vacuum cluster module capable of conducting photochemical processing of 100, 150, or 200 mm wafers. The module was attached to a vacuum cluster The reactor module was constructed of hardcoated 6061 robotic handler. aluminum. A dry rough pump was used to pump the vacuum reactor to a base pressure below 10 mtorr. High purity sapphire windows were used to allow UV light exposure of the wafer front side. Gases were introduced in a uniform radial laminar flow, to enhance the transport of etching products away from the wafer surface. High intensity (~200-300 mW/cm² at 200-400 nm), broad band UV irradiation was achieved with a commercially available 300 W/inch, medium pressure mercury arc discharge lamp. The wafer pre-process temperature was controlled using a proximity heater. During the period of UV exposure the wafer temperature was transient due to IR output from the UV lamps. However, the wafer temperature typically did not exceed 300°C during processing. Process pressure was monitored and controlled using a capacitance manometer in a feedback loop with a downstream throttle valve.

Substrates used in this study were 150-mm p<100> silicon wafers, 1-5 ohm-cm. Oxide films were prepared by growing 4000Å of silicon oxide in a steam oxidation process at 1000 °C. 5000Å BPSG (3% B, 3% P) films were deposited by CVD over 1000Å of thermal oxide. The gases used C.P. grade (99.0%) ClF₃ and VLSI grade (99.998%) Cl₂. Dry N₂ from a liquid N₂ vapor delivery system was used as a diluent gas.

Thermal oxide and BPSG removal rates were measured by comparing the film thickness, measured by spectroscopic reflectometry, before and after

processing. Silicon removal rates were measured by stylus profilometry on wafers partially covered by a patterned oxide layer.

3. **RESULTS AND DISCUSSION**

Rates for etching of thermal silicon oxide and BPSG in UV/ClF₃ processes are shown in Figure 1 for an initial wafer temperatures of 150°C as a function of ClF₃ concentration. Total flow was maintained at 1000 sccm using dry N₂ as a diluent, and total pressure was maintained at 100 Torr. Thermal oxide and BPSG were found to etch at similar rates with a selectivity of better than 1.5 (BPSG:thermal oxide).

The removal of 10-20Å chemical oxide layers using UV/ClF₃ and UV/(ClF₃+Cl₂) processes was also investigated. Oxide patterned p<100> wafers, comprising 1-5µm lines and vias, were subjected to an RCA-type wet chemical clean to produce the chemical oxide layer in the unpatterned regions. The wafers were then processed with UV/ClF₃ or UV/(ClF₃+Cl₂). The ClF₃ only process used 2.5 sccm ClF₃ with 997.5 sccm N₂. The ClF₃+Cl₂ process used 2.5 sccm ClF₃, 50 sccm Cl₂ and 947.5 sccm N₂. Both processes were run at 100 torr with an initial wafer temperature of 100°C. Several wafers were exposed to UV for time periods ranging from 0.5 minutes to 3 minutes. The oxide pattern mask was subsequently stripped, and the depth of etching into the silicon substrate was measured using a

stylus profilometer. The results of these experiments are summarized in Figure 2. Regression of the time series back to a zero (undetectable silicon etch depth) indicates that the chemical oxide was removed after approximately 30 seconds of UV exposure under the experimental conditions. Comparison of the silicon surface roughening after chemical oxide removal for the two processes revealed that the UV/ClF₃ process resulted in a visually rough surface, while the UV/(ClF₃+Cl₂) process left the silicon surface substantially smoother. This process is expected to be applicable as a dry contact clean.

Figure 2. Silicon removal as a function of UV exposure time for UV/ClF3 and UV/(Cl2 + ClF3) processes indicating the time to remove 10-20Å of chemical oxide.

REFERENCES

- 1. M. Wong, M. Moslehi and D. Reed, J. Electrochem. Soc. 138(6), 1799(1991).
- M. Wong, M. Moslehi and R. Bowling, J. Electrochem. Soc. 140(1), 205(1993)
- 3. C. Helms and B. Deal, Journal of the IES, 21(1992).
- 4. Y. Saito, O. Yamaoka, amd A. Yoshida, Appl. Phys. Lett. 56(12), 1119(1990).