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Hypoxia-inducible factor 1: master regulator of O, homeostasis

Gregg L Semenza

Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that
mediates essential homeostatic responses to reduced O,
availability in mammals. Recent studies have provided insights
into the O,-dependent regulation of HIF-1 expression, target
genes regulated by HIF-1, and the effects of HIF-1 deficiency
on cellular physiology and embryonic development.
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Abbreviations

ARNT  aryl hydrocarbon nuclear translocator
bHLH  basic helix-loop-helix

EPO erythropoietin

HRE hypoxia-response element

TADs  transcriptional activation domains
VEGF vascular endothelial growth factor
Introduction

Humans and other mammals have a constant and absolute
requirement for O,. In mammals, more O, is consumed
than any other inorganic or organic substance and there is
no substance which when witheld causes death faster.
Prior to birch, humans develop complex respiratory and
circulatory systems to ensure delivery of O; sufticient to
meet the metabolic requirements of each of the ~10+cells
of the adult organism. In many discase states, these sys-
tems fail and hypoxia 1s a major factor contributing to the
pathophysiology of heart attack, stroke, pulmonary hyper-
tension, and other significant causes of mortality.

Converscely, cancer cells adapt to hypoxia — utilizing these
same physiological systems during the processes of tumor

growth, invasion, and metastasis.

In this review, I summarize recent investigations which
provide evidence that a single factor, HIF-1, plays a major
role in essential adaptive responses to hypoxia. This tran-
seriptional activator 1s at the center of complex pathways
that  bridge biology, embrvology, and
cellular/systemic physiology (Figure 1). Recent efforts to
delincate scveral of these pathways are described. Finally,
because HIF-1 plays a central role in O, homeostasis, 1t is
critical to determine the mechanisms by which HIF-1
activity is regulated by O, concentration and recent data
addressing this issue are presented.

molecular

Isolation of HIF-1 coding sequences
Studies of the ervthropoietin gene (EPO) led to the
identification of a ¢s-acting hypoxia-response element
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The central role of HIF-1 in O, homeostasis.

(HRE) in the 3’-flanking region [1-3]. HI¥F-1 was iden-
tified as a hvpoxia-inducible HRE-binding activity [4].
The HIF-1 binding site in the £P0O HRE was used for
purification of the HIF-lao and HIF-18 subunits by
DNA affinity chromatography [5]. ¢cDNA cloning
revealed that both subunits were basic helix-loop-helix
(bHLLHD-PAS proteins: HIF-1a was a novel protein,
whereas HIF-1B was identical to the aryl hvdrocarbon
nuclear translocator (ARNTY) protein [6]. HIF-1 DNA-
binding activity and HIF-1a protein expression were
rapidly induced by hypoxia [6.7] and the magnitude of
the response was inversely related to the cellular O con-
centration [8]. Dimerization with HIF-1B induced a
conformational change in HIF-1a, possibly mediated by
the chaperone HSP90, which was required for high-
atfinity DNA binding [9°].

Mouse and rat HIF-Tor amino acid sequences share 95%
identity with the human sequence, providing evolutionary
evidence for the functional importance of HIF-1o
[10°,11,12°,13]. Despite the conservation of amino acid
sequence, only the mouse and rat Hifla genes appear
contain an alternative first ¢xon that encodes a HIF-1a
1soform lacking the first 12 amino acids following the ini-
tiator methionine [10°,13.14°-16°). 'T'he shorter isoform
contains just 4 amino acids prior to the bHLH domain,
which could potentially affect the affinicy and/or specifici-
ty of dimerization andfor DNA binding. HIF-1o and
HIF-1f mRNAs are expressed ubiquitously in human and

rodent tissues [13,15%,17].
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Table 1
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Figure 2

Functional categorization of HIF-1 target genes.

Increased O, delivery

Erythropoiesis
Erythropoietin (EPQO) [1-4,22]
Transferrin [51°]
Increased vasodilation or vascularization
Vascular endothelial growth factor (VEGF) [19+%,36,52-54]
Inducible nitric oxide synthase (NOS2) [65,56°]
Heme oxygenase 1 (HO1) [67°]

Decreased O, consumption

Glycolysis/energy metabolism
Glucose transporters (GLUT1, GLUT3) [19°+,33**,58]
Glycolytic enzymes (Figure 2) [18,19°°,33**,59-61]
Adenylate kinase 3 [33°]

HIF-1 target genes identified to date

HREs containing functionally-essential HIF-1-binding
sites were identified in genes encoding vascular endothe-
lial growth factor (VEGF), glucose transporter 1 (GLU'T'T),
and the glvcolytic enzymes aldolase A, enolase 1 (ENOT),
lactate dehvdrogenase A, and phosphoglycerate kinase 1
(Table 1). HIF-1 has also been shown to activate transcrip-
tion of genes encoding inductble nitric oxide synthase
(i-NOS) and heme oxvgenase 1 (HO1) — which are
responsible for the synthesis of the vasoactive molecules
NO and CO, respectively — and transferrin — which, like
EPO, is essental for erythropoiesis. Each of these genes
contains an HRE sequence of <100 bp that includes one or
more HIF-1-binding sites containing the core sequence
5-RCGTG-3 [18].

The recent analvsis of embryvonic stem cells that lack
expression of HIF-1o [19°°] or HIF-1B [20*°] has con-
firmed the importance of HIF-1 for the expression of many
of these genes and, in the case of the glycolytic pathway,
has revealed that HIF-1 coordinately regulates transcrip-
tion of almost every gene in the pathway (Figure 2). The
known rtarget genes demonstrate that HIF-1 facilitates
both increased O, delivery, by promoting ervthropoiesis,
angiogenesis, and vasodilation, and decreased O, utiliza-
tion, by participating in the transition from oxidative
phosphorvlation to glvcolysis as a means of generating
A'TP. The genes listed in Table 1 represent only a fraction
of all genes that are regulated by HIF-1. New techniques
for global analvsis of gene expression will probably enlarge
this list by several orders of magnitude.

Regulation of HIF-1 activity by O,
concentration

Whereas HIF-1B is present in excess and is a common sub-
unit for multiple transcription tactors (see below), HIF-1a s
unique to HIF-1 and the level of its expression is the primary
determinant of HIF-1 DNA-binding and transcriptional
acaviey [8,18,21]. Induction of HIF-1a thus appears to be a
crigeal step in the hypoxic response and occurs via increased
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Coordinate regulation of genes encoding glucose transporters and
glycolytic enzymes by HIF-1. Genes encoding enzymes shown in bold
are regulated by HIF-1 as determined by analysis of mMRNA expression
in HIF-1o-deficient cells [19¢*, 33¢*]. GLUT1 and GLUTS3, glucose
transporters 1 and 3; HK1 and HK2, hexokinase 1 and 2; GP,
glucosephosphate isomerase; PFKL, phosphofructokinase L; ALDA
and ALDC, aldolase A and C; TPI, triosephosphate isomerase;
GAPDH, glyceraldehydephosphate dehydrogenase; PGK1,
phosphoglycerate kinase 1; PGM, phosphoglucomutase; ENO1,
enolase 1; PKM, pyruvate kinase M; LDHA, lactate dehydrogenase A.

stability of the protein and increased activity of its transcrip-
tional activation domains (TADs) (Figure 3).

When cells exposed to hvpoxia were reoxygenated,
HII-1e was rapidly degraded with a half-life of <5 min [6].
The carboxy-terminal sequence of HIF-1a contains two
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Figure 3
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Hypoxia signal transduction. Reduction of
cellular O, concentration is associated with
redox changes that lead to altered
phosphorylation of HIF-1c, which increases its
stability and transcriptional activity, resulting in
the induction of downstream gene expression.
Putative inducers (horizontal arrows) and
inhibitors (blocked arrows) of different steps in
the proposed pathway are indicated.

20 amino acid sequences (499-518 and 581-600) that each
contain 15 PEST (proline, glutamate, scrine, threonine)
residues, which have been implicated in protein instabili-
ty: the function of these sequences, however, remains
unproven. Truncation of HIF-Tot at amino acid 390 resule-
cd in a constitutively stable protein [22]. These results
suggest that the HIF-1o half-life is modulated by cellular
), concentration and that this regulation requires
sequences carboxy-terminal to amino acid 390.

Exposure of cells to the proteasome inhibitors lactacystin
or MG132 resulted in detectable levels of HIF-1 DNA-
binding activity under non-hypoxic conditions and a
decreased rate of HIF-1 degradation under post-hypoxic
conditions [23*°].
temperature-sensitive mutation in the E1 ubiquitin-
activating ¢nzyme, at the non-permissive temperature
resulted in expression of HIF-1 activity under non-hypoxic

Incubation of 520 cells, containing a

conditions [23%°]. These results suggest that rates of ubiqg-
uitination and proteasomal degradation of HIF-1 may be
modulated by cclular O5 concentration.

In addition to mediating O,-dependent modulation of pro-
tein halt-lite, the carboxy-terminal half of HIF-1¢ is also
required for hypoxia-inducible transcriptional activity [22].
Analysis of chimeric proteins containing the GAL4

DNA-binding domain and HIF-l1oo carboxy-terminal
sequences revealed the presence of two powertul "TADs
(amino acids 531-575 and 786-826) scparated by a domain
(amino acids 576-785) that inhibited "TAD funcuon under
non-hypoxic conditions [24°¢,25]. "Transcriptional activity
mediated by the TADs was hyvposia-inducible in the
absence of changes in steadv-state levels of the chimeric
proteins. Both protemn stabilicy and "TAD function were
also induced by treatment of cells with cobalt chlonde or
desferrioxamine, which also induce the expression of
HIF-1-regulated downstream genes.

How do cells sense O, concentration and transduce this
signal to HIF-1o? Induction of HIF-1a can be blocked by
the tyrosine Kinase inhibitors genistein and herbimvein A
and bv the serine-threonine phosphatase inhibitor sodium
fluoride [26]. implving the existence of a kinase/phos-
phatase cascade. Changes in cellulur redox state have also
been implicated in hvpoxia signal transduction leading to
HIF-1 expression [21,23%*.27]. HIF-1 activity was induced
by exposure of non-hypoxic cells to the thiol reducing
agent N-(2-mercaptopropionyh-glveine (NNIPG)Y or the
oxygen radical scavenger 2-acetamidoacrvlic acid [23°°].
Both NMPG and catalase, which catalyvzes the degradation
of 11,0, to H,O and O, also induced cexpression of a
gene  containing  the /PO HRE  [23°°].
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Over-expression of either thioredoxin or REF-1 (redox fac-
tor-1) also increased transcription of an HRE-containing
reporter gene [21]. [t is not known whether the stimulato-
ry effect of redox-modulating factors occurred upstream or
downstream of HIF-1o protein expression.

These results suggest that O, concentration is sensed by
conversion to reactive oxvgen species (ROS) such as
superoxide, hydrogen peroxide, and hydroxyl radical,
possibly via the action of a tlavoprotein NADPH oxidore-
ductase [28%,29°]. Diphenvlene iodonium (DPI), an
inhibitor of flavoproteins, blocked the induction of HIF-1
and downstream genes in hvpoxic cells [30], which is the
opposite of what is predicted on the basis of the model of
O,-concentration-dependent production of ROS by
NADPH oxidase. Furthermore, H>0, production in
menadione-treated exponentially
between ~4% and ~11% O, [31], whereas induction of
HIF-1 was exponential between 6% and 0.5% O, [8].
Alternative hypotheses have been proposed, including
the hypothesis that the mitochondrial O, acceptor

cells  increased

cytochrome oxidase functions as a cellular O, sensor
[32°]. No single model of O, sensing is consistent with all
of the experimental data regarding inducers and
inhibitors of HIF-1. It is possible that O; is sensed by
mammalian cells via multiple mechanisms, some of

which may even be cell-tvpe-specific. A genctic approach

cells with mutations in hypoxia signal transduction has
reccently been described [33°°].

Involvement of HIF-1 in (patho)physiology
When near-term feral sheep were subjected to chronic
anemia by daily isovolemic hemorrhage, the hematocrit
and arterial O, content decreased 3-fold within one week
[34]. Concomitantly, the fetuses underwent remarkable
physiological adaptation: cardiac output increased by 50%
and the heartbody weight ratio incrcased by 30%. “To
maintain mvocardial oxvgenation under these circum-
stances, myocardial blood flow increased 5-fold [34].
Capillary morphometry revealed signficantly increased
capillary density and minimal capillary diameter and
decreased intercapillary distance in the hearts of anemic
fetuses [35°°]. In the same samples, VEGFE protein and
mRNA were increased 4.5- and 3.2-fold respectively, and
HIF-la protein expression was increased 3.8-fold. There
was thus a striking correlation between increased myocar-
dial vascularization and expression of VEGE and HI-1o
The physiological pathwayv described above (increased
0O, consumption—hypoxia—HIF-1>VEGF—vasculariza-
tion) is clearly adaptive for the organism as, in its absence,
cardiac output could not increase sufficiently to compen-
sate for decreased blood Os-carrying capacity and/or fatal
mvocardial ischemia would ensue.

Adapuation of cancer cells to hypoxia is also critical for
tumor progression — a process that is decidedly not in
the organism’s best interests. ARNT (HIF-1§)-deficient
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mouse C4 hepatoma cells demonstrated markedly
reduced induction of VEGF mRNA in response to
hypoxic culture conditions {36-38]. When injected into
nude mice, the mutant C4 cells formed tumors at a sig-
nificantly reduced rate relative to wild-type Hepal cells,
whereas partially revertant RB13 cells with intermediate
levels of HIF-1 expression demonstrated an intermediate
rate of tumor growth [39°*,40°*]. Capillary density was
increased in tumors derived from Hepal compared to C4
cells and necrotic areas of Hepal tumors were surround-
ed by high tevels of VEGF and GLUT1 mRNA
expression which was not detected in corresponding areas
of C4 tumors [40*°].

HIF-1a expression, HIF-1 DNA-binding activity, and
transcriptional activation of HIF-1 regulated genes such as
VEGE and ENO/ were also induced in non-hypoxic cells
transformed by V-SRC, the oncogene of Rous sarcoma
virus, thus establishing another link between HIF-1 and
tumor progression [39**]. Constitutive expression of HIF-1
may contribute to the aerobic glycolysis that is one of the
first signs of V-SRC-mediated cellular transformation.
Cells transformed by overexpression of H-RAS also
demonstrated increased VEGE promoter activity that was
dependent upon an intact HIF-1 binding site [41°].

Involvement of HIF-1 in embryogenesis

T'he essential role of HIF-1 in embryonic development has
bcen demonstrated by the analysis of mice that lack
expression of HIF-1or [19°°] or ARNT/HIE-1p [20°°.42°*].
A= mice manifested developmental delay, neural tube
defecets, abnormal vascularization of the volk sac, embryo,
and placenta, and died by embryvonic day (E) 10.5
[20%°42°*]. Given the essential role of HIF-1 in activating
VEGE wranscription in hvpoxic cells [36], these data sug-
gested that HIF-1 deficiency was responsible for the
observed pathology. However, ARNT dimerizes with sev-
cral other mammalian bHILLH-PAS transcription factors in
addition to HIF-10. including the aryl hydrocarbon recep-
tor [43], singleminded-2 [44], and HIF-2a (also known as
EPAST. HLE HRF, and MOP2) [45°—48°]. Loss of activity
of one or more of these factors could therefore contribute
to the observed phenotype. Furthermore, the Arwr2 gene
encodes a protein with a high degree of sequence similari-
tv to ARN'T" which is expressed primarily within the
central nervous svstem {49]. If ARNT2 can dimerize with
HIF-1a, then ARN'T=deficient embryvos may have mani-
fested only a partial deficiency of HIF-1.

In light of these issues, it was not surprising that HIF-1o
and ARNT (HIF-1B) deficiency resulted in overlapping
but distinct embryonic phenotvpes. Hifla/~ embrvos suf-
fered developmental arrest at E8.5-8.75 and died at E10.5
[19°°]. Analysis of viable embrvos at E9.75-E10.0 revealed
tailure of neural tube closure with massive death of cephalic
mesenchvmal cells and the appearance of markedly
enlarged/dilated vascular structures. Vascularization and
development at E8.5-8.75 ;Illgvcurcd normal, whereas one

R2016-01315
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day later the entire vascular system of the branchial/cephal-
ic region was disrupted. In contrast to the demise of the
cephalic vasculature and mesenchyme, the presumptive
mvocardium of Hifla- embryos was strikingly hyperplas-
tic, resulting in obliteration of the heart lumen. Neither the
cephalic nor myocardial defects were observed in Arur’/-
embryos. Yolk sac vascularization and placental develop-
ment in the growth-arrested Hifa7/~ embryos and
stage-matched Hifat* embryos were not significantly dif-
ferent. The analysis of Hifla/- embryos demonstrated that
HIF-1 is required for the establishment of the embryonic
cardiovascular system. Taken together with the fetal sheep
studies described above, these resules indicate that HIF-1o
is required both for the formation of key physiological sys-
tems during embryonic development and for their
subsequent utilization and thus represents a master regula-
tor of O, homeostasis.

Conclusion

HIF-1 plays essential roles in embryonic development, cel-
lular and svstemic physiology. Manipulation of HIF-1
activity — either pharmacologically or by gene therapy —
may represent a novel approach to the treatment of cancer,
cerebral and myocardial ischemia. In cancer cells, inhibition
of HIF-1 activity (e.g. by expression of a virallv-transduced
dominant-ncgative form of HIF-1a [22,36]) may prevent
tumor adapration to hypoxic conditions. Anti-HIF-1a ther-
apy might be particularly efficacious when administered in
concert with anti-angiogenic therapy. Conversely, expres-
sion of wild-tvpe HIF-1a in 1schemic tissue may stimulate
angiogenesis, as has been demonstrated for gene therapy
with VEGF and other angiogenic factors [50] but may also
promote survival of ischemic cells during the period when
vascularization is in progress. Research in this field thus
holds out the prospect of understanding fundamental
aspects of development and physiology while, at the same
time, providing novel therapeutic approaches to the most
common causes of mortality in the western world.
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