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Hypoxia-inducible factor 1: master regulator of O2 homeostasis 
Gregg L Semenza 

Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that 

mediates essential homeostatic responses to reduced 0, 

availability in mammals. Recent studies have provided insights 

into the 02-dependent regulation of HIF-1 expression, target 

genes regulated by HIF-1, and the effects of HIF-1 deficiency 

on cellular physiology and embryonic development. 
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Abbreviations 

ARNT aryl hydrocarbon nuclear translocator 

bHLH basic helix-loop-helix 

EPO erythropoietin 

HRE hypoxia-response element 

TADS transcriptional activation domains 

VEGF vascular endothelial growth factor 

Introduction 
Humans and other mammals ha1.c a constant and absolute 

requirement for Oz. In niumnials. more 0, is consumed 

than any other inorganic or organic substance and there is 

no substance which \\hzn witheld CLIIISCS death f;lstcr. 

Prior to birth, humans dc~clop complex respirator?- and 

circulatory systems to ensure delivery of 0, sufficient to 

meet the mcwhotic rcqnircmcnts of each of the -1O~~cclls 

of the :idult orgunism. In many disease states, these sys- 

tenis t’,iil xid hypoxia is a major fiwtor contributing to the 

pathoph~siolc,g)- of heart attack. stroke. lpulmon:rr~ hypcr- 

tension. and other significant causes of mortalit\. 

(:on~crscl~. cancer cells ad2pt to hypo.\;ia - utilizing these 

wiiic physiological systems durin ,g the processes of tumor 

gro\vth, inV;ision, and metastasis. 

In this rc\icw, I summarize recent in\zstigations \\.hich 

pro\,ide e\,idence that ;I single klctor, HIF-1, plays a major 

role in essential adapti\~e responses to hypoxia. ‘I’his tran- 

scriptional acti\ator is ;lt the center of complex p:Kh\v2ys 

that bridge molecular bioIog)-, cnibr~olog)-, 2nd 

cellular/s~stemic physiology (Figure 1 ). Recent efforts to 

dclinwtc sc\w2l of these pathways are described. lTinall?;, 

hccausc HIF-1 plays a ccntr:ll role in O1 homeostasis, it is 

critical to determine the mech:lnisrns by which HIkT-1 
activity is regulated 1~ O1 concentration and rcccnt data 

addressing this issue are presented. 

Isolation of HIF-1 coding sequences 
Studies of the er)rthropoietin gene (EPO) led to the 

identification of a &-acting hypoxia-response element 

Figure 1 
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The central role of HIF-1 in 0, homeostasls 

(HRE) in the A’-flanking region [l-.3]. HIF-1 wts idcn- 

tified ~1s a h~posia-inducible HRE-binding acti\,it) [-I]. 

‘l‘he HIF-1 binding site in the 1?/‘0 HRE ~‘3s ~~scd for 

purification of the HIF-la and HII:-1P subunits h? 

I)KA affinity chromatography [.5]. cI>N.A cloning 

rclzaled that both subunits were t):lsic hcli~-lool,-hclis 

(bHI,H)-PAS proteins: HIF-~CX \\TI~ ;I no\.cI protein, 

whcress HIF-1P uw identical to the :lr\l h\dt-ocarhon 

nuclear tr~~nslocator (ARV’I’) protein [(,]I I-11.1;-1 I)%.-\- 

binding wti\ it!- ;lnd HIF-la protein expression \\crc 

r~rpidl) induced I,? h>.po\ia [6.7] and the magnitude of 

the response \\ as in\crsel~ related to the cellular 0, con- 

centration [t;]. IXnicrization \I ith I III;-1 p indiiAd ;I 

conformationll change in HIF-la, possibly mcdi;ltcd 1,) 

the chaperone HSPW, \vhich IV;IS required for high- 

Llffinity I1K.A binding [(‘I. 

Rlotise and rat fIIl;-la amino acid scc~u~~~ccs sh:trc 05% 

identity with the human sequence. pro\icling e\ olutionar!- 

e\.idence for the functional irnport;lnw of HIl;-1 cx 

[lO’,l 1,12*,13]. Despite the conser\~;ltion of umino acid 

sequence, onI> the IIIOIISC Hnd rat Hjf/n genes appwr to 

contl~in an aIternati\ e first coon that encodes ;I I~IIFla 

isoform lacking the first 12 amino acids follo\\ing the in- 

tiator methioninc [10’.1.3.14’-16’]. ‘l’hc shorter isoform 

contains just -l amino acids prior to the bHLH dom:iin. 

which could potentialI>- affect the affinity and/or specifici- 

ty of dirnerization and/or DN.4 binding. HIF-la and 

HIF-1P mRKAs ;lre expressed ubiquitously in hrlm:ln and 

rodent tissues [13,1.5’,17]. 
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Table 1 

Functional categorization of HIF-1 target genes. 

Increased 0, delivery 

Erythropoiesis 

Erythropoietin (EPO) [l-4,221 

Transferrin [51 ‘I 

Increased vasodilation or vasculanzation 

Vascular endothelial growth factor (VEGF) [19”,36,52-541 

Inducible nitric oxide synthase (NOS2) [55,56’] 

Heme oxygenase 1 (HOI) [57-l 

Decreased 0, consumption 

Glycolysis/energy metabolism 

Glucose transporters (GLUT1 , GLUTS) [i 9”,33”,581 

Glycolytic enzymes (Figure 2) [18,19”,33”,59-61 I 
Adenylate kinase 3 [33”] 

HIF-1 target genes identified to date 
HREs containing functionally-essential HIF-l-binding 

sites u’ere identified in genes encoding vascular endothe- 

lial growth factor (\.EC;F). glucose transporter 1 (GLlT’l‘l 1. 

and the glycolytic cnz)-mcs aldolase A, enolase 1 (EN01). 

lactate dehydrogcnasc A, and phosphoglyceratc kinase 1 
(‘I:,lble 1). HIT;-1 has also been shown to activate transcrip- 

tion of genes encoding inducible nitric oxide synthase 

(i-K(X) and hcmc oxygenase 1 (HOl) - which arc 

responsible for the synthesis of the vasoacti\,c molecules 

NO and (X1, resprcti\.ely - and transfcrrin - which, like 

EPO. is essential for erythropoicsis. Each of these genes 

contains an HRE sequence of <l(K) bp that includes one or 

more HIF-l-binding sites containing the core sequence 

.5’-R(XTG.3 [1X]. 

The recent analysis of embryonic stem cells that lack 

expression of HIF-la [19”] or HIF-1P [ZO”] has con- 

firmed the importance of HIF-1 for the expression of man) 

of these genes and, in the case of the gl!-colytic pathway, 

has re\.ealed that HIF-1 coordinately rcgulatcs transcrip- 

tion of almost cvcry gcnc in the pathwq (Figure 2). The 

known target genes demonstrate that HIF-1 facilitates 

both incrcascd O1 delivery. by promoting er);thropoiesis, 

angiogcncsis. and \wodilation, and decreased Or tltiliza- 

tion, by participating in the transition from oxidati\.e 

phosphorylation to glycolysis as 3 means of generating 

A’I’I? ‘l’hc genes listed in Table 1 represent only a fraction 

of all genes that are regulated by HIF-1. New techniques 

for global analysis of gene expression will probably enlarge 

this list by sueral orders of magnitude. 

Regulation of HIF-1 activity by O2 
concentration 
\Yhereas HIF-lb is present in excess and is a common sub- 

unit for multiple transcription t’dctors (see belo\v), HIF-~CX is 

unique to HIF-1 and the level of its expression is the prima0 

determinant of HIF-1 DNA-binding and transcriptional 

activity [8,1X.21 1. Induction of HIF-la thus appears to be a 

critical step in the hypoxic response and occurs \,ia increased 

Figure 2 
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Coordinate regulation of genes encodlng glucose transporters and 

glycolytic enzymes by HIF-1. Genes encoding enzymes shown In bold 

are regulated by HIF-I as determined by analysis of mRNA expression 

in HIF-1 a-deficient cells [19”, 33*-l. GLUT1 and GLUTB, glucose 

transporters 1 and 3; HKl and HK2, hexokinase 1 and 2; GPI, 

glucosephosphate isomerase; PFKL, phosphofructokinase L; ALDA 

and ALDC, aldolase A and C; TPI, triosephosphate isomerase; 

GAPDH, glyceraldehydephosphate dehydrogenase; PGKl, 

phosphoglycerate kinase 1; PGM, phosphoglucomutase; ENOl, 

enolase 1; PKM, pyruvate kinase M; LDHA, lactate dehydrogenase A. 

stability of the protein and increased activity of its transcrip- 

tional activation domains (TADS) (Figure 3). 

\Yhen cells exposed to hypoxia were reoxygenated, 

HIF-la was rapidly degraded \vith a half-life of <5 min [6]. 

The carbox~-terminal sequence of I-III~-~cx contains two 
IPR2016-01315    

GSK Ex. 1008, pg 181



590 Differentiation and gene regulation 

Figure 3 
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70 amino acid scqucnccs (W-518 and 5X1-600) thar each 

cont;lin 1.5 I’ES’I’ (prolinc. h 4ulilni;\Tc, scrinc. thrconine) 

residues, b hich ha\ c been implicated in prorein instabili- 

ty rhc ftlnction of rhesr scc~ue~ices. how3 er. remains 

unpro\.cn. ‘litrncation of HIF-la at amino acid 390 t-csult- 

cd in ;I consGruri\el) stal,le protein [ZS]. ‘I‘hcsc results 

suggcsr rhar die FIIF-la half-life i\ modulated by cellular 

0, conccnTr;llion and thar this regularion 

scCliuw3 carbos~-rcriiiili~lt I0 amino acid 300. 

rtxl~iires 

Kxposiirc of cells I0 the protcasomc inhibitors lactacystin 

or \I(;132 rcsultccl in detectable lebels of HIF-1 I>iX,\- 

binding acri\.ity iindcr non-h>-po\;ic conditions and ;I 

dccrcwxi raw of HIF-1 dcgradarion under post-hypoxic 

conditions [Li”]. Inculxition of rs20 cells, containing 3 

ICliiperattirC-ceilsiti\ c niulation in chc El lihicluitin- 

acri\ating cnzynic, aI the non-permissi\ e temperatiire 

rcstllrcd in cspres~ion of HIF-1 activity under non-h?poxic 

cclnclitions [13”]. ‘l‘hcx rcsulrs suggest rhat rdtes of uhicl- 

uilinarion 2nd protcasomal degradation of HIP-1 ma> Ix 

modulated Iq ccllulx 0, concentration. 

In addition ro mediating 01-dcpcndcnt modulation ofpro- 

win half-lift, the c;trbou~-rcrti~ili~lt half of HII:-Ia is dso 

rcciuircd for h~l,oxia-inclucil,le transcriptional acti\it> [72]. 

Anal>,si\ of chimeric proteins conraining the (;;\I,4 

I)kr\-binding domain and I III:-la carbox\ -rcrniinal 

seclucncrs re\aled the prcscncc of wo pcn\ck~~l ‘l’;\Ih 

(amino acids .5.31-j7.5 and 7X6-826) scparared hv 3 domain 

(amino acids 570-7853 that inhibitcd ‘I‘AI) function under 

non-hypoyic conditions [Z-l “,L5*‘]. ‘Ii-~tns~riptional acti\ it\ 

mccliatcci by the ‘I:AI>s \\a h~l”)~ia-inclli~iI,lc in the 

abscncc of changes in steady-start ltxcl\ of the cliinlci-ic 

proteins. Both protein srabilit? :~ncl ‘I’.-\11 function \\ crc 

dso induced lw rreatment of cells v ith colxilr chloride 01 

dcsfcrriosan~inc. which also indiicc rhc cxprcssion of 

HIF-1-rcgulatcd do\T.nsucam gcncs. 

HOD do cells scnsc 0, c.onccnuaCon and tl-anscltlcc thib 

signal to HIF-la! Induction of HIF-la can be blockccl Ix 

the tyrosinc kinax inhibitors gcnistcin and hcrbiniycin .\ 

and b! rhe serine-rhrconine phosphatasc inhibirol- sodium 

tluoridc [%], implying the c\;istcncc of ;I kinasc/pho+ 

pharkse casc3de. (:h:inges in cellular rcdox stale hx\ c 31~0 

Ixxn implicated in hyoxia signal transduction Icding ro 

HlF-1 c\pression [ll_2.3”.2 71. HIF-I actix,itb \\a4 indLlccd 

b! exposure of non-hypoxic cells to the rhiol reducing 

agcnr N-(Z-mercal,toproI,ion)-l)-gl~ciiic (iX\11’(9 or the 

ox!-gen radical SC‘;I\ cnger ,7-ll~etamidoacr\ lit acid II.?“]. 

Both NJIPG and cawlase. v hich coral! 03 rhc dc,gr:iclarion 

of I I,(>, I0 tI,O 2nd 01, _ _ :tlso induced c\prcssion of :I 

reporter gene containing the /:/‘O f IKE [Z.i”]. 
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Over-expression ofeirhcr thioredoxin or REF-1 (redox fac- 

tor-l) also increased transcription of an HRE:-containing 

reporter gene [21]. It is not known Lvhether the stimrllato- 

r); effect of redox-modulating factors occurred upstrum or 

downstream of HIF-la protein expression. 

‘I’hesc results suggest that 0, concentration is sensed b! 

conversion to reacri\,e oxygen species (ROS) such as 

superoxide. hydrogen peroxide, :tnd hydroxyl radical, 

possibly \-ia the action of :I fla\q~rokn iXAl)I’lI oxidore- 

dllctasc [2H’,W]. 11’1 1 13 ien)-lcnc iodoniiim (DPI), an 

inhibiwr of flalwproteins, blocked the induction of HIF-1 

and downstream genes in hypoxic cells [?I()]. which is the 

opposite of uhat is predicted on rhe basis of the model of 

O,-concentration-dependent production of ROS b\ 

iX.AlIPH osidase. Furthermore. fllO, production in 

menadionc-treated cells increased exponentiall>~ 

betuccn -4%’ and -11% OL [.31]. whrreas induction of 

HIF-1 ~3s esponcntial beta-ccn 6% and 0.5% 0, [S]. 

,Wrernari\,e hypotheses ha\.e ken proposed, including 

the hypothesis that the mitochondrial O2 acceptor 

c) tochromc oxidase functions as a cellular 0: sensor 

[32’]. No single model of 0, sensing is consistent 11 ith dl 

of the experimental dat3 regarding inducers and 

inhibitors of HIF-I. It is possible that O1 is sensed b) 

mammalian cells \,ia mulriplc mechanisms, some of 

which may e\‘en bc cell-t!,pe-specific. A generic approach 

to this prol)leni is nccessar) und :I system for selecting 

cells \\.ith mutations in h)posia signal transduction has 

rcccnrl> been described [M”]. 

Involvement of HIF-1 in (patho)physiology 
\\~hen near-term fetal sheep were subjected to chronic 

anemia by dail? iso\,olemic hemorrhage, the hematocrit 

and arrcrial 0, content dccrcased .i-fold lvithin one \\ eek 

[.3-I]. (:c,ncom;t-antI\; the fetuses undcr\vcnt remarkable 

physiological adaptation: cardiac oiiq~iit increased Iy 50% 

md ttic hc:irt:t)ody weight ratio incrcascd I,!, 30%. ‘lb 

maintain m)ocarclial oxygrnation under these circum- 

stances. ni~ucarciial blood flow increased S-fold [3-k]. 

(kipillary morphonictr>- rc\~ealed signficantly increascci 

capillur) density and minimal capillary diameter and 

decreased intcrcapillary distance in the hearts of anemic 

fetuse\ [,3.5**1. In the sinic samples. \7EGF protcin and 

niKN.-\ \f.crc incrc~~sed 4.5 and 3.2-fold respcctivcly and 

I-III--la prorcin expression was increxed 3.X-fold. ‘I’here 

wis thw a striking correlation hctween increased myocar- 

dial \ascularization and esprcssion of \.EGF and Hll:-la. 

‘I‘he physiological path\Iay described abo\-c (increased 

O1 conaumption~h~~~o~i~~~Hll~-l~\‘E:~~F~~~asculariza- 

tion) is clrarl) aclapti~-c for the organism 3s. in its absence. 

cardiac ourput coirld no1 increase sufficicntl? to compen- 

ute for dwrcascd blood (I,-carr)-ing c:ipacity and/or fatal 

m~ocardial ischemin \voi~ld cnsuc. 

Adapt:ition of cancer cells I0 hypoxia is also crirical for 

tumor progression - ;I process that is dccidetil~- not in 

the organism’s beqr interests. ARNT (HIl;-lp)-deficient 

moust: (:-I hepatoma cells demonstrated markedly 

reduced induction of \‘EGF mRNA in response to 

hgwxic ciiltiirc conditions [X-.%3]. Lf7ieii injecwd into 

nude mice. the mutant (2-b cells formed tumors 3t a sig- 

nificantly reduced rate rclatiwz to \vild-type Hepal cells. 

whereas parCally re\‘ertunt RR13 cells \\:ith intermediate 

le\~els of Hit:-I expression demonstrated an intermediate 

ralte of tumor gro\vth (.3~“,-lO”]. (Zapillary density was 

increased in Iumors derived from Hepal compared to (2-l 

cells and necrotic areas of Hcpal tumors were surround- 

ed by high levels of \.17GF and GLI”l’1 mRNX 

expression which was not detected in corresponding areas 

of C-1 tumors [-NY]. 

HIF-la esprcssion. HIF-1 DNA-binding activity, and 

transcriptional acti\xtion of HIF-1 regulated genes such 3s 

I%:Gb‘ and E,‘,VOI wcrc dso induced in non-hypoxic cells 

transformed by \‘-SRC, the oncogene of ROLIS sarcoma 

virus. thus establishing another link het\vern HIF-1 and 

tllmor progression [.W”]. Constitutivc expression of HIF-1 

ma)- contribute to the aerobic glycolysis that is one of the 

first signs of I’-SRC-mediated cellular transformation. 

Cells rransformed t>y o\,erespression of H-RAYS also 

demonstrated increased I%:GF pronio[er activity that was 

dcpcndcnt upon an intact HIF-1 binding site [Al’]. 

Involvement of HIF-1 in embryogenesis 
‘t’hc essential role of H I F-l in embryonic de\,elopmcnt. has 

ken dcmonstratcd by the analyis of mice that lack 

cspression of HI F-1 a [ lc)“] or ARN’I‘/HI F-l p [20”.42”]. 

,1/-u+ mice manifested dc~xzlopnientul delay neural tube 

dcfccrs, ~rbnornial \.HsCill3riZ;itiori of the yolk sac. embryo, 

rind placenta, and did by cmbqonic clay (E:) 10.5 

[_?0”,42”]. <;i\.en the essential role of HIF-1 in acti\xting 

I’t?‘GF winscription in hypoxic cells [36], these data sug- 

gested that HIF-1 dcficicncy VW responsible for the 

observed pathology. Ho\vc\ cr. XRNT dimerizes kvith sev- 

o-al other mammalian bHI,H-PAS transcription factors in 

addition to HIF-1 a. including the a-y1 hydrocarbon recep- 

tor [43]. singlcmincicd-2 [1-k], and IIIF-70. (dso knon-n as 

EP:\Sl. HLF, HRF, and RIOPZ) [4.5*4X’]. Loss of acti\.iq 

of one or more of thcsc factors would therefore contribute 

to the obscr~ui phenot) pe. Furthermore. the .\/;i/C2 gcnc 

encodes ;I protein I\ ith ;I high degree of sequence similari- 

t) co ARN’I \\.hich is expressed primaril!; within the 

central ncr\uus s)-srcm [AC,]. If AlINT can dimerize with 

IllF-la. then ARK’kicficient embryos may ha\.e mani- 

fested only ;I partial ctcficiency of HIF-1. 

In lighr of these issues, it was not surprising that HIF-la 

and ,ARk’l’ (HIF-1 p) deficiency resulted in o\,erlapping 

but distinct emhr)onic phcnotypcs. H(f/r- embryos suf- 

fered dcvclopmcntal ;Lrrcst at- EK-8.7.5 and died at FClO.5 

[lS”]. Analysis of viable embrys ar E9.75-ElO.0 revealed 

failure of neural tube closure \rith massi\,e death of cephalic 

mesenchymal cells and the appearance of markedt) 

enlarged/dilated vascular structures. \‘ascul3rization And 

cte~~elopment at EX.i-8.7.5 appeared normal, whereas one 
IPR2016-01315    

GSK Ex. 1008, pg 183



592 Differentiation and gene regulation 

day later the entire vascular system of the branchial/cephal- 

ic region ~vas disrupted. In contrast to the demise of the 

cephalic vasculature and mesenchyme, the presumpti\-e 

myocardium of H!‘fld embryos was strikingly hyperplas- 

tic, resulting in obliteration of the heart lumen. Neither the 

cephalic nor myocardial defects \vere observed in .4;lr-u~‘- 

embryos. Yolk sac vascularization and placental develop- 

ment in the growth-arrested HI@- embryos and 

stage-matched H$iz+l+ embrvos were not significantly dif- 

ferent. The analysis of Hjfl& embryos demonstrated that 

HIF-1 is required for the establishment of the embryonic 

cardiovascular system. Taken together with the fetal sheep 

studies described abo\,e, these results indicate that HIF-1~ 

is rcclrlired both for the formation of key phyiological sys- 

terns during embryonic development and for their 

subsequent utilization and thus represents a master regula- 

tor of O2 homeostasis. 

Conclusion 
HIF-1 plays essential roles in embryonic development, cel- 

lular and systemic physiolog);. hlanipulation of HIF-1 

activity - either pharmacologically or by gene therapy - 

may represent a no\,el approach to the treatment of cancer, 

ccrcbral and myocardial ischcmia. In cancer cells, inhibition 

of HIF-1 activity (e.g. by expression of a virally-transduced 

dominant-negative form of HIF-~CX [22,36]) ma): prevent 

tumor adaptation to hypoxic conditions. Anti-HIF-la ther- 

apy might be particularly efficacious when administered in 

concert with anti-angiogenic therapy Conversely expres- 

sion of wild-type HIF-la in ischemic tissue ma) stimulate 

anglogenesls, as has been demonstrated for gent therap) 

with \‘EC;F and other angiogenic factors [SO] but ma)- also 

promote survival of ischemic cells during the period when 

vascularization is in progress. Research in this field thus 

holds out the prospect of understanding fundamental 

aspects of development and physiology u,hile. at the same 

time, providing novel therapeutic approaches to the most 

common causes of mortality in the western \+w-Id. 
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