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although some abnormal event may be needed for pace-

CHAPTER
Multiple Mechanisms Causing
Ventricular Tachycardia
Andrew L. Wit & Mark E. Josephson
College of Physicians and Surgeons, Columbia University, New York, NY, USA; and Division of Cardiology,
peth Israel Hospital, flarvard University, Boston, MA, USA
Summary

) can be ca used by any of the
hythmogenesis. That different
hythmia has important

Ventricular tachycardia (VT
mechanisms responsible for arr
mechanisms can cause the same arr ;
yncerning therapy since some llu:rapeu.uc
an terminate some of electrophysiological

interventions © o
mechanisms and not others. Therefore, a mechanistic approach

to therapy is sometimes useful.

tosherpgome e

implications ¢

Classification of arrhythmogenic
mechanisms

The recording ol {ransmembranc pmcnlial% from heart cc!Ps
in vitre has led the way 1o the discovery of arrlfylhhnmgem_c
mechanisms. There arc two primary mcchan'-.sms‘: alm{lnl-‘
mal impulse generation and alnmrn.ml CUI]dllCl:lI(j‘il‘l; .I[I‘J.])L‘I. se
generation” indicates an eleatrical impulse ﬂl’lbl.[‘.l, in a ‘mn-
gle or group of closely coupled CC}PS "[!llegh spfmtanllo)us
depolarization of the membranc o lnl.lmtc an 'ElCtlfll.'l‘pO_‘Lil-
tial. Automaticity under {his heading, infers a specific mech-
anism for this depolarization hased on pacemchr mtl:m-
brane currents. Triggered activity, also um?cr this l‘le‘a‘dmg,]
is dependent on depolarizing after [mt-eml?ls..Ti)L.?Lf:,::l
primary mechanisnm, abnormal conduction causes recntra

excitation.

e ———
Automaticity

Automaticity is subdivided into normal and abnormal.
© -

d by normal Jutomaticity originate in

Arrhythmias causc )
! ‘ intrinsic pacemaker properties

cells that have normal

maker activity to be expressed. Abnormal automaticity
occurs in cells that do not have the normal property ol auto-
maticity but express automaticity when membrane proper-
ties are altered by discase.

Normal automaticity

Basic electrophysiology

Normal automaticity occurs in the sinus node, as well as
in subsidiary or latent pacemakers. The cause of normal
automaticity is a spontaneous decline in the transmem-
brane potential during diastole, referred to as the pace-
maker potential or spontaneous diastolic depolarization,
(Figure 13.1a, arrow), until it reaches threshold potential for
activating inward depolarizing current that causes the cell to
generate an action potential as compared to non pacemaker
cells where diastolic membrane potential is at a constant
negative value (Figure 13.1b, arrow). There are a number of
membrane currents that contribute to the pacemaker poten-
tial of the sinus node [1], some flowing inward (inward cur-
rents) [rom the extracellular space into the cell carrying posi-
tive charges that depolarize the cell membrane. Other mem-
brane currents consist of positive charges moving outward
from inside the cell to the extracellular space (outward cur-
rents), tending to move membrane potential in a negative
direction. The pacemaker current is a summation of all these
currents and is a net inward current [1].

In addition to the sinus node, myocytes with the property
ol normal automaticity occur in the right and lelt atria, pos-
sibly the pulmonary veins, the atrioventricular (AV) junc-
tion, and the His-Purkinje system [1,2]. There is a hierar-
chy of intrinsic rates ol these latent pacemakers with atrial
pacemakers having faster rates than AV nodal pacemakers,

Cardiac Mapping, Tour
© 2013 Blackwel

th Edition. iidited by Mohammad Shenasa, Gerhard Hindricks, Martin Borggrele, Giinter Breithardt, and Mark E. Josephson
| publishing Lid. Published 201 3 by Blackwell Publishing Lid.
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PART 1l Mapping in Experimental Models of Cardiac Arrhythmias

Sinus node
pacemaker

+40
+20

—80 1 L i 1 ' 1
Spontaneous diastolic

(a) depolarization

Working myocardial cell

]

(b) - : —

Figure 13.1 Comparison of transmembrane action potentials in a
normally autornatic sinus node cell (a) with spontaneous diastolic
depolarization (arrow) and a working atrial myocardial cell (b) without a
pacemaker potential (arrow).

which have faster rates than His bundle pacemakers, which
have faster rates than Purkinje pacemakers in the distal
ventricular conducting system (rate is determined by the
time required for the pacemaker potential to decrease from
its maximum diastolic level to the threshold potential).
Because the sinus node has the fastest intrinsic rate, the
latent pacemakers are excited by propagated impulses from
the sinus node before they have sufficient time to depolar-
ize spontaneously to threshold potential. In addition sponta-
neous diastolic depolarization of latent pacemakers is inhib-
ited by being repeatedly depolarized by the impulses from
the sinus node, a phenomenon called overdrive suppres-
sion [2]. This repeated depolarization during sinus rhythm
increases Na* entering the latent pacemaker cell which in
turn stimulates the electrogenic Na*/K* which generates
outward pump current, I,. The enhanced I, decreases net
inward current during the pacemaker potential suppress-
ing spontaneous diastolic depolarization and hyperpolariz-
ing the membrane potential. Overdrive suppression can be
demonstrated by suddenly stopping the sinus node such
as by vagal activation. There ensues a period of quies-
cence caused by the continued generation of I, inhibiting
pacemaking that lasts until intracellular Na* concentration,
and hence I,, becomes small enough to allow the pace-
maker potential to depolarize spontaneously to threshold.

120

The quiescent period is [ollowed by resumption ol sponta-
neous activity at a slow rate that gradually speeds up to the
intrinsic rate as intracellular Na* concentration progressively
decreases and I, is reduced. Overdrive suppression is inten-
sified by increasing the amount of Na® entering the latent
pacemaker cell such as during sinus tachycardia.

A shift in the site of impulse initiation {rom the sinus node
to one of the regions where latent pacemakers with normal
automaticity are located results in arrhythmias caused by
normal automaticity. For ventricular tachycardia 1o occur,
pacemaker rate in the Purkinje or other ventricular ectopic
sites must increase above that of the sinus node and atrial
latent pacemakers. The most important cause is sympathetic
activation when it enhances the rate of spontancous dias-
tolic depolarization in latent ventricular pacemakers more
than in the sinus node.

Clinical electrophysiology

Fascicular ventricular tachycardia

Enhanced automaticity in Purkinje cells of the fascicles of
the ventricular conducting system can cause ventricular
tachycardia although it is not common [3]. Fascicular tachy-
cardia is associated with intraventricular conduction delay
or bundle branch block pattern on the electrocardiogram
(ECG). A His bundle electrogram has an HV interval that is
shorter than for conducted sinus beats since the His bundle is
activated retrogradely from the focus. Automaticity fascicu-
lar tachycardia may occur spontancously or during exercise
where adrenergic stimulation causes automaticity.

Exercise induced ventricular tachycardia

Automatic exercise induced VT can be distinguished
from triggered activity (delayed afterdepolarization [DAD])
induced VT by several characteristics: (i) Automatic VT can-
not be started or stopped by electrical stimulation (Fig-
ure 13.2a,b) although it is predicted to be transiently over-
drive suppressed by electrical stimulation. It is started by beta
adrenergic stimulation (Figure 13.2¢). DAD dependent trig-
gered activity can be started and terminated by overdrive
stimulation (sce next section). (ii) The onset ol automatic VT
has variable coupling intervals to the prior QRS whereas the
onset of DAD VT has coupling intervals inversely related to
the prior sinus cycle length. (iii) Automatic VT is transiently
slowed by adenosine but not terminated. Adenosine termi-
nates DAD dependent triggered activity. (iv) Automatic VT is
not terminated by L-type Ca** channel blocking drugs that
stop VT caused by DADs.

Automatic tachycardias olten originate endocardialy at
the entrance to the outflow tract on the interventricular sep-
tal surface. The electrophysiology of this region has not been
defined but RVOT myocytes may be related embryologically
to the Purkinje system.



CHAPTER 13 Muliiple Mcchanisms Causing Ventricular Tachycardia
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400 ms. After 3-adrenergic blockade with

intravenous propranolol (0.2 mg/kg), infusion A H
of isoproterenol does not provoke the HBE 100 \I
arrhythmia. (From Sung R, et al. J Clin Invest )

1988;81:688, with permission.)

Abnormal automaticity

Basic electrophysiology

Working atrial and ventricular myocardial cells do not
normally initiate spontancous impulses. When their rest-
ing potentials are reduced sulficiently (range between =70
and =30 mV from =80 1o =90 mV)), spontancous diastolic
depolarization may occur and cause impulse initiation and
arrhythmias. The rate is directly related to the amount of
membrane depolarization (Figure 13.3). Such depolariza-

AH AH AH
. 500 ms

tion may occur in a pathological environment [2]. Likewise,
cells in the Purkinje system that are normally automatic at
high levels of membrane potential also show abnormal auto-
maticity when the membrane potential is reduced.

The pacemaker mechanism at reduced membrane poten-
tials is not the same as the normal mechanism [1,2]. Depo-
larization of the membrane potential also inactivates Na+
channels leading to action potential upstrokes caused by
inward current carried by a combination of any remaining
Na* current and the L-type Ca ?* current |4].
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Figure 13.3 Normal automaticity in a Purkinje cell (a) and abnormal
automaticity caused by depolarization of the membrane potential with an
intracellular current pulse (arrow) (b). Abnormal automatic rate is directly
related to the amount of depolarization (b, 1, 2, 3). (From Wit AL,
Friedman PL. Arch Intern Med 1975;135:459, with permission.)

While normal It pacemaker channels occur in ventricular
muscle, they are expressed at lower levels than in normal
latent pacemaker cells, and are not functional at membrane
potentials near the resting potential. In pathological condi-
tions leading to hypertrophy, there may be an increase in
the expression of Iy channel mRNA and protein [5] leading
to an increase in an Iy pacemaker current that may cause
arrhythmias in heart failure and hypertrophic diseases.

At reduced levels of membrane potential less Na*t enters
the cell through partially inactivated Na* channels during
overdrive resulting in decreased stimulation of I,,. It would
therefore be expected that arrhythmias caused by abnormal
automaticity at a low level of membrane potential would not
be started or stopped by overdrive nor would they exhibit
overdrive suppression.

Clinical electrophysiology

Accelerated idioventricular rhythm (AIVR) that occurs 3-24
hours after myocardial infarction, is likely caused by abnor-
mal automaticity in Purkinje f{ibers surviving on the endo-
cardial surface of the infarct with partially depolarized
membrane potentials (Figure 13.4) [2]. It has a rate of
50-120 beats/min intermediate between idioventricular
escape rhythms (30-40/min) and VT (>100/min). The ECG
features of AIVR are consistent with an arrhythmia caused
by abnormal automaticity. The pacemaker is not overdrive
suppressed since it appears immediately upon sinus slow-
ing whereas a pacemaker with normal automaticity requires
a longer period of sinus slowing that decreases overdrive
suppression, During tachycardia [fusion beats may occur.
Tachycardia is terminated when sinus cycle length shortens
enough to capture the abnormal focus. AIVR is terminated
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by verapamil because of the involvement of the L-type Ca**
in abnormal automaticity (Figure 13.4b & ¢) [2,4].

Triggered activity

Triggered activity describes impulse initiation dependent on
alterdepolarizations [6,7], which are oscillations in mem-
brane potential that follow the upstroke ol an action
potential. There are two kinds of alterdepolarizations. One
occurs early during repolarization (carly afterdepolarizations
[EADs]), and the other is delayed uniil repolarization is
complete or nearly complete (delayed afterdepolarizations
[DADs]).

DADs and triggered activity

Basic electrophysiology

A DAD is an oscillation in membrane potential which occurs
after repolarization (arrow in Figure 13.5d). A triggered
impulse is initiated when a DAD depolarizes the membrane
potential to the threshold potential for activation of the
inward current responsible for the upstroke of the action
potential (arrow in Figure 13.5¢). A triggered action poten-
tial is also followed by a DAD that may or may not reach
threshold. When it does reach threshold a “train” of addi-
tional triggered action potentials occur cach arising from the
DAD caused by the previous action potential (Figure 13.5¢).

DADs occur when Ca** in the myoplasm and sarcoplas-
mic reticulum (SR} increases above normal levels (“calcium
overload”). Abnormalities in the sequestration and release
ol Ca** by the SR also may contribute to their occurrence,
When intracellular Ca** is elevated, Ca** in the SR may rise
during repolarization 10 a critical level at which a secondary
spontancous, release of Ca®* occurs alter the action poten-
tial and relaxation of contraction (calcium sparks), generat-
ing a transient inward (TI) current (the DAD) [2,6,7]. The TI
current may flow through a non-selective channel or may
be caused by clectrogenic exchange of Ca** lor Na*. The
increased intracellular Ca?* that causes DADs may result
[rom digitalis inhibition of the Na*-K* pump, catecholamine
enhanced L-type Ca®* current [2,6,7] or other effects of
pathology that increase calcium loading (e.g. heart failure,
hypertrophy) [2,6,7].

The amplitude of DADs is dependent on the cycle length
at which action potentials are occurring; triggered activity
can be induced by a critical decrease in the drive cycle (Fig-
ure 13.5¢). A premature impulse also increases the ampli-
tude of the DAD that follows the premature cycle. Decreas-
ing the drive cycle length or premature stimulation also
tends to decrease the coupling interval of DADs 1o the action
potential upstroke. As a result there is a direct relation-
ship between the drive cycle length or premature coupling
interval at which triggered impulses are initiated, and the
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Figure 13.4 Accelerated idioventricular rhythm in a patient with a
myocardial infarct (top 3 electrocardiogram [ECG] traces). The top trace
shows the ECG prior to administration of verapamil (middle trace which
restores sinus rhythm). The third trace shows that the abnormal imulse
initiation that caused tachycardia is not present when sinus rate is slowed
by carotid sinus massage {(CSM). Below are shown action potentials

0 —
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Figure 13.5 (a) Early afterdepolarization I
(EAD) (arrow) leading to a single (b) or multiple
triggered impulses (¢) (arrows). (d) Delayed
afterdepolarization (DAD) (arrow) leading to

triggered activity (e, arrow) when stimulus cycle
length is decreased from 1009 to 750 ms. (d)

1000 ms
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recorded from an abnormally automatic Purkinje cell surviving in a
24-hour-old canine infarct causing accelerated idioventricular rhythm
(AIVR) (top trace) and a normal Purkinje fiber adjacent to the infarct
(bottom trace). (ECGs from Sclerovsky S, et al. Am J Cardiol 1983;52:43,
with permission.)
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Figure 13.6 Induction of delayed afterdepolarization (DAD) dependent ventricular tachycardia (VT) by ventricular pacing. (a) Pacing at a cycle length (5-5)
of 700 ms initiates no VT. (b-d) Pacing at cycle lengths of 630, 630 and 500 ms, respectively, initiates VT. (e) Pacing at a cycle length of 480 ms initiates no
VT. Note that the interval between the first beat of VT and its preceding ventricular paced beat gradually shortens pacing rate progressively increases. This
direct relationship is plotted in the graph in the lower right corner. (Reproduced from Sung R, et al. J Clin Invest 1983;72:350, with permission.}

coupling interval between the first triggered impulse and the
last stimulated impulse. This is one of the ways that trig-
gered activity can sometimes be distinguished from reen-
trant activity induced by a decrease in the drive cycle length
or premature impulse which shows the opposite (inverse)
relationship (Figure 13.6) [3]. Increased rate or premature
stimulation increases intracellular Ca®*, thereby increas-
ing the current that causes DADs. Intracellular Na® may
also rise at rapid rates increasing intracellular Ca** through
Na*-Ca?* exchange [2,6,7].

Triggered activity can be stopped by overdrive stimu-
lation because of enhanced activity of the electrogenic
sodium pump. Premature stimuli may also terminate trig-
gered rhythms although termination is less frequent than by
overdrive [7]. Effects of premature stimuli that [ail to termi-
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nate rescmble the elfects of premarture impulses on abnor-
mal automaticity [7]. Sometimes the triggered rhythm may
be accelerated transiently.

Clinical VT caused by DADs

The most common VT due to DAD triggered activity is one
form of exercise induced idiopathic VT. VT results from cat-
echolamine stimulation of adenyl cyclase formation that
enhances intracellular Ca?*. VT olften arises in the right
(RVOT) and left ventricular outflow tract (LVOT). Triggered
VTs also arise around the mitral annulus [3]. Interventions
which decrease catecholamine increased cyclic AMP can stop
VT such as paraympathetic activation (carotid sinus pres-
sure or Valsalva maneuver), and adenosine. Calcium chan-
nel blockers prevent or stop tachycardia by reducing influx
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ol Ca*f, sodium channel blockers may stop tachycardias by
reducing the transient inward current 13,7].

The arrhythmia characteristics are consistent with a DAD
mechanism and not with reentry [3]. Atrial or ventricular
pacing at a critical rate initiates VT. Isoproterenol infusion
may be required (Figure 13.6). VT is more dilficult to initiate
with programmed premature ventricular stimulation. The
coupling interval between the last stimulated impulse and
the first tachycardia impulse is sometimes directly related
to the pacing cycle length (shorter cycle length with more
rapid pacing) although the coupling interval can also remain
constant.

A polymorphic VT dependent on DADs also results [rom a
mutation of the ryanodine receptor of the SR that results in
leakage of calcium into the myoplasm [8].

Early afterdepolarizations and
triggered activity

Basic electrophysiology

Early alterdepolarizations (EADs) occur when repolarization
ol an action potential does not follow the normal smooth
trajectory but suddenly shifts in a depolarizing direction
(Figure 13.5a, dashed line, arrow). An EAD occurs when the
current voltage relationship is altered to cause outward cur-
rent during repolarization to approach or attain 0, at least
transiently. Such a shift can be caused by a decrease in out-
ward current or increase in inward current (Figure 13.5D,
arrow). EADs generated at membrane voltages negative 10
I, activation are likely caused by Ca **-activated inward
current (Iyex) resulting from the secondary “spontancous”
Ca’t release from the SR [6,9,10].

Triggered activity is initiated when the depolarization
reaches threshold to activate an inward current causing an
action potential upstroke. It may consist of only a second
upstroke or it may be more sustained (Figure 13.5b & ¢).
When it persists, the mechanism for the perpetuation is
uncertain. It may involve the same membrane currents that
cause cither abnormal automaticity or delayed afterdepolar-
izations [6]. Triggered action potentials occurring during the
plateau and carly during phase 3 when most fast Na* chan-
nels are inactivated, have upstrokes caused by the inward
L-type calcium current (Iey ). At higher membrane poten-
tials during late phase 3, where there is partial reactivation
ol the last Na® channels, action potentials caused by Iy,
predominate. Current flowing through both L-type calcium
channels and partially reactivated fast Na* channels occur
over intermediate ranges ol membrane potential.

EADs occur under conditions that delay repolarization
(prolong action potential duration) by increasing inward
current or decreasing outward current. They occur more
readily in Purkinje fibers than in ventricular or atrial mus-
cle although it has been proposed that M cells in the ven-
tricle may be prone to develop EADs. Antiarrhythimic drugs

that prolong the duration ol the action potental ol Purk-
inje fibers (e.g. class T drugs such as sotalol and doletilide
or class TA drugs such as quinidine) can cause carly EADs
and triggered activity by inhibiting the 1, component ol the
repolarizing K" current, Iy [11]. Hypoxia, the combination
of hypoxia and acidosis, with or without catecholamine, as
well as stretch can induce EADs in Purkinje libers [2,6].

Mutations in genes controlling ion channel lTormation,
translocation and function can cause action potential pro-
longation, EADs and triggered activity, K channel muta-
tions causc some of the long QT syndromes (LQT, and LQT,)
by decreasing outward current. Mutations that cause an
increase in inward Na*® or Ca** current during repolariza-
tion also prolong action potential duration to cause EADs
and triggered activity (LQT3; Timothy syndrome) [12,13].

Because prolongation ol action potential duration lavors
the occurrence ol EADs and triggered activity, interventions
that shorten action potential duration prevent them. There-
fore, overdrive or premature stimulation, both of which
accelerate repolarization do not initiate EAD triggered activ-
ity but might prevent its occurrence.

EADs and triggered activity can occur in the absence ol
action potential prolongation in atrial muscle at the antrum
ol the pulmonary veins and the pulmonary vein myocar-
dial sleceve where action potential duration is short. Under
conditions when acetylcholine (vagal activation) maintains a
short action potential duration, catecholamines can increase
Ica, maintaining an elevated [Ca’*]y alter repolarization is
completed and membrane potential is negative to the equi-
librium potential of the Na*/Ca’t exchanger. This in turn
activates inward Iyex that causes EADs [14].

Clinical arrhythmias caused by EADs

EAD triggered activity causes a polymorphic VT called 1or-
sades des pointes. Many causes ol torsades have in com-
mon that they prolong QT interval on the ECG. Since
action potentials are prolonged at slow heart rates, torsades
sometimes occurs in patients with complete heart block
and a slow idioventricular rhythm. Long pausces, particu-
larly those associated with short=long=short cycle length
sequences related 1o premature ventricular depolarizations,
can also prolong action potential duration and lead 10 VT
that might be due to EADs [3]. Such pauses can also prolong
relractoriness heterogencously facilitating the occurrence of
reentry which may be involved in initiation of polymorphic
VT-VF [3].

Torsades des pointes is also associated with QT interval
prolongation caused by genetic changes in channel function,
Triggers [or torsades differ among the three major genotypes
ol LQTS [15,16]. In the LQT, variant (I, loss of functiony,
exercise is a trigger for greater than 60% ol tachyarrhyl-
mias, while barely 3% are triggered while at rest, In e
LQT, variant, many cvents occur due to emotional stress or
while at rest, while exercise is a trigger inonly 13%. In LQT,,
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the majority of events occur during sleep or at rest. Abnor-
malities of the autonomic nervous system have also been
proposed to be responsible for LQT,. Stellectomy or beta-
receptor blocking drugs has sometimes prevented arrhyth-
mias in these patients [3].

Polymorphic VT, resembling torsades de pointes, is also a
feature of toxicity ol some drugs that prolong action poten-
tial duration. Some patients are more prone to this ellect
owing to a mutation in a K* channel subunit that controls
Ik, function. Arrhythmias may occur at drug levels that are
not much elevated above normal [11,12]

Polymorphic VT-VF associated with acquired or congen-
ital LQTS cannot be reproducibly initiated by overdrive or
premature stimulation because both patterns of stimula-
tion decrease action potential duration which decreases EAD
amplitude [3]. It has been proposed that patterns of stimu-
lation with short cycles followed by long cycles might some-
times cause EAD dependent tachycardia but this is usu-
ally not successful. Pacing can prevent the occurrence of
bradycardic-dependent arrhythmias associated with long QT
intervals [3]. Torsades associated with chronic A-V block or
sinus bradycardia can be prevented by ventricular pacing or
dual-chamber pacing. Occasionally, long-term suppression
by pacing has been shown in patients with acquired brady-
cardia abnormalities or polymorphic VT associated with con-
genital long QT [3]. Whether overdrive or premature stimu-
lation can terminate on going triggered activity has not been
studied. However, based on the cellular electrophysiology, it
is unlikely that the arrhythmias can be terminated by this
approach.

Reentrant excitation

Basic electrophysiology

Abnormal impulse conduction causes reentrant excitation.
For reentry to occur, a region of block must be present, at
least transiently which is necessary to launch propagation
of the impulse in one direction and to prevent excitation
of the return pathway that the impulse eventually uses to
reenter the region it is to reexcite. Transient block can occur
after rapid repetitive activation or after premature excitation
during electrophysiological study. Reentry also may occur
when there is permanent unidirectional block.

In addition, for reentry to occur, the impulse conducting
through the reentrant pathway (circuit) must find excitable
tissue. This requires that conduction time around the cir-
cuit be longer than the effective refractory period of the
cardiac fibers that comprise it; the wavelength of the reen-
trant impulse which is the product of the conduction veloc-
ity and the effective refractory period, must be shorter than
the length of the reentrant pathway. If it is not, conduction
would block in the circuit. Conduction velocity and refrac-
tory period may vary from site to site in a reentrant circuit,
causing changes in the wavelength in different locations.

126

However, the average wavelength must still be less than
the path length. Slowed conduction and/or short refrac-
tory periods permits reentry 1o occur and are often a conse-
quence ol pathology (sce below). Programmed stimulation
during ongoing reentry can terminate it by pre excitation ol
myocardium in the reentrant circuit.

The reentrant circuit can have an anatomical structure
with a central obstacle that prevents the impulse [rom taking
a “short-cut” that would stop reentry. It may also be [unc-
tional, its existence, size and shape determined by its electro-
physiological properties. The central inexcitable region ol a
functional circuit can be the result of refractoriness of cells in
the center such as in the leading circle model or the inability
of the curved reentrant wavefront to excite such as in the
spiral wave model. The size and location ol an anatomically
defined reentrant circuit remains fixed (“ordered reentry”)
while the size and location of functional circuits may change
(random reentry). Random reentry is probably most often
associated with atrial or ventricular fibrillation, whercas
ordered reentry can cause most other types of arrhythmias.

Arrhythmogenic substrate in structural

heart disease

Reentry causes VT in both ischemic (coronary artery
discase, dilated cardiomyopathy) and non ischemic car-
diomyopathies (dilated and hypertrophic cardiomyopathy,
arrhythmogenic right ventricular cardiomyopathy). There
are common structural alterations that form an arrhythmo-
genic substrate with the necessary properties ol slowed con-
duction and conduction block.

A low conduction velocity and block can be a consequence
of alterations ol active membrane properties (ion channels)
or alterations in passive properties governing the flow of cur-
rent between cells [17]. Here, we focus on how structural
alterations lead to reentrant ventricular tachycardia.

Connectivity of cardiac myocytes

During conduction of the impulse, axial current flows [rom
one myocardial cell to another through gap junctions in
the intercalated disks [18]. An increased resistance to axial
current flow caused by pathological structural alterations
decrcases the magnitude and spread of current along a
myocardial bundle which can decrease conduction velocity
and cause conduction block.

Gap junctions are specialized regions of close interac-
tion between the sarcolemmata ol neighboring myocytes in
which clusters of transmembrane channels bridge the paired
plasma membranes [19]. Because gap-junctional membrane
is several orders ol magnitude more permeable than non-
junctional plasma membrane, it provides low resistance
pathways for current [low between cells that is important
for propagation. The primary proteins that form the chan-
nels of the gap junctions are called connexins. Connexind3
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(Cx43) is the primary connexin isolorm found in the ventri-
cles [20021].

Gap junctions are mainly at the ends of the myocytes
in the intercalated disks rather than along their sides but
the overlapping nature of the junctions effectively connects
myocytes in the transverse as well as the longitudinal direc-
tion [22]. Ventricular myocardium is better coupled in the
direction of the long axis of its cells and bundles than in the
dircction transverse to the long axis. This is reflected in a
lower axial resistivity in the longitudinal direction than in
the ransverse direction [23]. Therefore conduction through
ventricular myocardium is more rapid in the longitudinal
direction owing to the lower resistivity than in the trans-
verse, a property termed anisotropic conduction [24]. This
property can be altered by fibrosis and remodeling of gap
junctions.

Fibrosis occurs in both ischemic and non-ischemic car-
diomyopathies. The pattern and extent of fibrosis may range
from paichy in some forms of heart [ailure to extensive
fibrotic scars in myocardial infarction. Fibrosis affects con-
duction, by several mechanisms. It may increase the extra-
cellular resistivity of myocyte bundles [18]. Fibrosis can also
distort size and shape of myocardial bundles trapped in scar
tissue. In ischemic cardiomyopathy, fibrosis that is replac-
ing necrotic regions, often extends into non ischemic bor-
dering regions. The number of cell-to-cell contacts may be
reduced with side-to-side connections selectively aflected
[25,26]. In healing infarct border zones, increased inter-
stitial collagen disrupts the long transversely oriented gap
junctions in interplicate segments of the disks enhancing
anisotropy by increasing the axial resistivity transverse 1o
the long fiber axis [26]. Plicate segment gap junctions,
embedded entirely within the adhesive components of inter-
calated disks and concentrated at the ends of myocytes,
undergo fewer changes. Thus the normal property of uni-
form anisotropy is converted to non-uniform anisotropy;
tight electrical coupling between cells in the longitudinal
direction, but recurrent arcas in the transverse direction in
which side-to-side electrical coupling ol adjacent groups of
parallel fibers is absent [25,26]. There is no evidence that
fibroblasts make electrical connections with myocytes in the
i situ ventricles.

When there is a large scar such as in hearts with myocar-
dial infarcts, “peninsulas” and bridges ol intact myocytes,
can project into or completely across arcas of fibrosis (called
“channels” by clinical electrophysiologists). Myocytes in
these bridges sometimes link with normal myocytes on
the lateral border of the infarct [27]. This likely results in
impedance mismatch where small bundles constricted by
fibrotic scar tissue make connections with larger bundles not
alfected as much by the fibrosis. Axial current flow from
small bundles may not be sullicient to rapidly depolarize
larger bundles, resulting in slow conduction or block. Appar-
ent slow conduction may also result from circuitous propa-

gation through myocardial bundles trapped in scar tissue.
Conduction velocity within the individual liber bundles may
not be slowed but the complex patterns of activation around
fibrous tissue barricrs may slow activation of the arrhythmo-
genic substrate (Figure 13.7). Some of these ellects of fibro-
sis involve the disruption of gap junciion connections |28].
These elfects of fibrosis on conduction is olten detectable
by low amplitude, long duration, Iractionated clectrograms
with delayed activation, the basis for substrate mapping lor
ablation of ventricular tachycardia.

Gap junction remodeling

The turnover ol connexins that lorm gap junction channels,
is a highly dynamic process with a half-life in the order ol
three hours for Cx43 [29]. Diseasc processes may influence
the conductance properties ol gap junctions by alfecting con-
nexin turnover, influencing gap junctional size, number and
distribution. The primary changes in the arrhythmogenic
substrate in structural heart disease are a decrease in Cx43
quantity and occurrence of increased amounts of Cx43 on
lateral sarcolemma where it is not normally present (lat-
eralization). The molecular mechanisms include unhook-
ing of Cx43 from anchoring proteins in the intercalated
disks which allows it to move into lateral membranes [rom
which it is sequestered intracellularly and destroyed. Cx43
on lateral membranes represents protein that has not formed
functional gap junctions [30]. Alterations in phosphorylated
state ol the connexin molecule also affects targeting and
docking of Cx43 at normal disk locations, reducing channel
function [31].

Reentrant ventricular tachycardia in structural
heart disease

Ischemic cardiomyopathy

Healed myocardial infarction is a frequent clinical setting
for the development ol reentrant sustained VT. Endocar-
dial and epicardial border zones along with fiber bundles
trapped in the scar form reentrant circuits. Both functional
and anatomical reentrant pathways have been documented
by mapping and unique electrograms leatures (low ampli-
tude, [ractionation, delayed activation). Tachycardias can be
started and stopped by electrical stimulation [3].

Dilated cardiomyopathy

A common leature ol dilated cardiomyopathy {(DCM) irre-
spective of the underlying cause is ventricular arrhythmias
and sudden death [32]. Although bundle branch reentram
VT is one mechanism, tachycardia caused by reenwry in
scarred, fibrotic regions also occurs [33,34]. Typical cleciro-
grams characteristic of structurally remodeled arrhythmo-
genic substrate (low amplitude, long duration, fractionated,
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Figure 13.7 Myocardial fiber bundles (arrows) trapped in the scar of a healed canine infarct (E is epicardial surface). Action potentials and isochronal maps
from a 2-week and 2-month-old infarct with extracellular ’:'lr_’r.‘rerJrE”“B at the top of each pdnr_al Fractionated elec trograms occur in healed infarct border
zone associated with normal action potentials. Two models showing propagation patterns in myocardial bundles trapped in scar tissue that might give rise

to fractionated electrograms (From Gardner P, et al. Circulation 1985;72:596, with permission).

long delays) occur on both endocardial and epicardial sur-
faces of the ventricles. The isthmus ol reentrant circuits
in the arrhythmogenic substrate have been identified and
ablated [34].

Arrhythmogenic right ventricular
cardiomyopathies

The most [requently encountered form ol arrhythmo-
genic right ventricular cardiomyopathy is arrhythmogenic
right ventricular dysplasia (ARVD) [35]. Polymorphic and
monomorphic ventricular tachycardias that can sometimes
be initiated and terminated by programmed stimulation are
characteristic ol this syndrome.

The arrhythmogenic substrate has the features described
above, e.g. fibrosis, gap junction remodeling, but also unique
characteristics; genetic abnormalities in the desmosomal
proteins plakoglobin or plakophilin which are involved in
the transmission of mechanical [orces among myocytes, and
the transcriptional switch from myogenesis to adipogene-
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sis through suppression of the Wnt pathway. The epicardial
and intra mural layers of right ventricular myocardium can
be replaced by fat and librosis. Fibrosis generally borders or

embeds surviving fibers [35].

Hypertrophic cardiomyopathy

Ventricular tachyarrhythmias are a prominent feature and
likely related to SCD that occurs in a subgroup ol patients
[36]. They probably emanate from an arrhythmogenic sub-
strate created by the disorganized lelt ventricular myocar-
dial architecture, which features ischemia induced myocyte
necrosis and repair by replacement [ibrosis and scarring
that can lead to impedance mismatch and non-uniform

anisotropy.

Heart failure
A majority ol sudden deaths in heart lailure are from ven-
tricular tachyarrhythmias [37,38]. These arrhythmias can

result from DAD induced triggered activity and reentrani
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excitation. The remodeled arrhythmogenic substrate has all
ol the components discussed above necessary lor reentry
including fibrosis and remodeling of gap junctions.

Conclusion

Ventricular tachycardia can be caused by any of the
mechanisms responsible for arrhythmogenesis. These
mechanisms include abnormal impulse generation and
abnormal impulse conduction. Abnormal impulse generation
includes automaticity, normal and abnormal, and triggered
activity, caused by DADs and early afterdepolarizations. Each
mechanism has specific characteristics that can be used 1o
identily the mechanism of VT in the clinical electrophysiological
laboratory. These mechanisms and example arrhythmias caused
by each ol them are described in this chaprer.
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