United States Patent [19]

Sampat et al.

A0 0 0O O

T124A
(11 Patent Number: 5,557,724
451 Date of Patent: Sep. 17, 1996

[54] USER INTERFACE, METHOD, AND
APPARATUS SELECTING AND PLAYING
CHANNELS HAVING VIDEOQ, AUDIO,

[75]

(73]

{21]
[22]

(511
[52]
[58]

[56]

AND/OR TEXT STREAMS
Inventors: Ketan Sampat, Portland; John
Kembel, Lake Oswego, both of Oreg.

Assignee: Intel Corporation, Santa Clara, Calif.

Appl. No.: 133,614

Filed: Oct. 12, 1993

Int. CL® GO6F 3/14

US. CL ..oocverrrenenenn. 395/157; 395/155: 395/161

Field of Search ... 395/155, 156,

395/157, 158, 159, 161; 364/514
References Cited
U.S. PATENT DOCUMENTS

4,204,206 5/1980 Bakulaetal. ... 340/721
4,794,465 12/1988 Van Luyt et al. . 358/341
4,819,160 4/1989 Tanka et al. 395/600
4914571 4/1990 Baratz et al. . .. 395/600
4,942,574 71990 Zelle 370/85.15
4,974,149 11/1990 Valenti 395/650
5,005,167 4/1991 Arthurs et . 359/135
5,089,956 2/1992 MacPhail 395/600
5,179,556 1/1993 Tumer - 370/94.1
5202961 4/1993 Mills et al. 395/159
5,206,929 4/1993 Langford et al. . .. 395/159
5216427 6/1993 Yanetal. 342/352
5,247,678 9/1993 Littleton 395/700
5,257,369 10/1993 Skeenet al. .. . 395/650
5,287,530 2/1994 Davis et al. .ooeeeeeeeeeerererensnns 370/94.1
5,281,477 3/1994 Liew 370/54
5,291,601 3/1994 Sands 395/700
5,305,311 4/1994 Lyles 370/60
5,313,454 5/1994 Bustini et al. ..oooorvevrreeerresinneens 370/13
5,321,693 6/1994 Perlman 370/85.13
5,331,637 7/1994 Francis et al.occovevermmresrenee 370/54
5,339,392 8/1994 Risberg et al.coooeeverveene.. 395/161
5,341,474 8/1994 Gelman et al. ..coeoveveerrrenenne 395/200.09
5,374,952 12/1994 Flohr 348/12
5,375,068 12/1994 Palmeretal.cooeveennn.nn. 364/514
5,388,197 2/1995 REYDET ..ccovemecvcrsrrereersnscneenes 395/154

5,392,223 2/1995 Caci 364/514
FOREIGN PATENT DOCUMENTS
0529864 3/1993 European Pat. Off, GO6F 15/16

6373416 10/1989 Japan .
OTHER PUBLICATIONS

Bonet, Bernard A., “Progress in CD-ROM Publishing: a
Look at New Tools and Titles”, Seybold Report on Desktop
Publishing, v.8 n8, p. 15, Apr. 4, 1994,

Ripley, G. David, “DVI—a Digital Multimedia Technol-
ogy”, Communications of ACM, v32, n7, p. 811, Jul. 1989,
Cross, Jerry, “Playing Live Digital Video Under Windows”,
Windows-DOS Developer’s Journal, v3, n3, p. 39, Mar.
1992.

Little, T. D. C., et al., “Network Considerations for Distrib-
uted Multimedia Object Compostion and Communication,”
IEEE Network, The Magazine of Computer Communica-
tions, vol. 4, No. 6, Nov. 1990, New York, US, pp. 32-49,
XP172741. See p. 39, right column, line 1—p. 48, left
column, line 29.

(List continued on next page.)

Primary Examiner—Mark R. Powell

Assistant Examiner—V. Chauhan

Attorney, Agent, or Firm—Steve Mendelsohn; William H.
Murray

[57] ABSTRACT

A user interface is displayed on a computer system capable
of processing one or more data streams. The user interface
has one or more displayed representations, where each of the
displayed representations corresponds to one of the data
streams. A user of the computer system selectively adjusts
the processing of each of the data streams using the corre-
sponding displayed representation of the user interface. In a
preferred embodiment, in which the computer system is a
system for multicasting audio, video, andf/or text data
streams, the user interface has a video window for display-
ing the video stream, a set of audio controls for controlling
the play of the audio stream, and a text reader bar for
displaying the text stream.

30 Claims, 21 Drawing Sheets

202 ——=|

=] 200

204 — | Guide...

Options

206 ——

1 SAMSUNG 1004

5,557,724
Page 2

OTHER PUBLICATIONS

Vin, H. M., et al., “Multimedia Conferencing in the Ether-
phone Environment.” Computer, vol. 24, No. 10, Oct. 1991,
Los Alamitos, CA, US.

Rangen, V. P. et al., “Designing an On-Demand Multimedia
Service.” IEEE Communications Magazine, vol. 30, No. 7,
Jul. 1992, US pp. 56-64. See page 61, line 9—line 51.
Little et al, “Synchronization and Storage Models for Mul-
timedia Objects.” IEEE Journal on Selected Areas in Com-
munications, vol. 8, No. 3, Apr. 1990, pp. 413-427.
Rangan et al, “Designing an On-Demand Multimedia Ser-
vice.” TEEE Communications Magazine, Jul. 1992, PP,
56-64.

Vakalopoulou, Maria, “Multimedia-Endgerdte.” Nachricht-
entechnik Elektronik, vol. 42, No. 2, Mar. 1992, Berlin, pp.
56-58.

Fox, Edward A, “Advances in Interactive Digital Multime-
dia Systems.” Computer, vol. 24, No. 10, Oct. 1991. Long
Beach US, pp. 9-21.

Gopal, L, et al., “Multicasting to Multiple Groups over
Multicast Channels.” Computer Networking Symposium,
Apr. 1988, USA. See page 79, left column, line 21—page
80, left column, line 5.

Rangan, P. Venkat, et al., “Software Architectures for Inte-
gration of Video Services in the Etherphone System.” IEEE
Journal on Selected Areas in Communication, vol. 9, No. 9,
Dec. 1991, New York, US, pp. 1395-1404.

Douglas A. Young, “X Window Systems Programming and
Applications with Xt,” 1989 Prentice Hall, Englewood
Cliffs, New Jersey 07632, Chapter 11 Interclient Commu-
nications, pp. 265-283.

Lauren Weinstein, “Project Stargate,” 1985 The USENIX
Association, pp. 79-80.

Frequently Asked Questions on the Multicast Backbone
(MBone) by Steve Casner, Jan. 16, 1993.

5,557,724

Sheet 1 of 21

Sep. 17, 1996

U.S. Patent

90!

I 914

col

f

Z IN3ITI0

I ANZT7I0

el
Y

U.S. Patent Sep. 17, 1996 Sheet 2 of 21

202 — =

204 — | Guide... Options

208 <——

208 mite | vol VA IO]
—

210 [

FIG. 2

5,557,724

200

= Password

A password is required to
view the channel you have
selected.

N\, Password:

0K

|

Cancel

QL

o

FIG. 4

5,557,724

Sheet 3 of 21

Sep. 17, 1996

U.S. Patent

£ "OIA

908 —

[$1] A9LSN Wd00:10 GI das| | ~¥OE
T [JAY] NdS3 Hd00:S0 Ol Mmm
[AV] Ieaodsiq Wy0g:01 60 doS | =7
[LAV] Asusig WVO£:80 90 das i
"+ uoog butwoy A | 21NN
[2ouD) |
40 [d$1AV] AOLSW WdOL:€0 b 9aS
-+ -buimoyg moN
opInn weadold
suolldy " repIng
- wsLIg —

00£

U.S. Patent Sep. 17, 1996 Sheet 4 of 21 5,557,724
i Pay—Per—View
The channel you have selected is a 0K
Pay-Per-View Channel. Please enter
your credit card number below. Cancel |
N/e\P, Credit Card Number: Visa | Amex
(o' i
A Mc | Discover

FIG. 5

— MSTGv |~ |

Guide... QOptions

FIG. 6

=3 MSTGv

Guide... Options

e

wte Vol VA [0

FIG. 7

U.S. Patent

Sep. 17, 1996 Sheet 5 of 21
= MSTGv v
Guide... Options

FIG. 8

MSTGv -

Guide. ..

Options

Pause Services

Default Window Size
Hide Controls
Always On Top

v Video Window
v Audio Controls

Mute

Vol

v Reader Board

Remote Control

Configure. ..

FIG. 9

5,557,724

/900

U.S. Patent Sep. 17, 1996 Sheet 6 of 21 5,557,724

FIG. 10

FIG. 11

U.S. Patent Sep. 17, 1996 Sheet 7 of 21 5,557,724

= Remote Control
ch VA
a-|'p' Vol §§?2£§

Rev

1300
/

i

=i Configure

[Concel | 140

3
e
=
T
=N
—
=
o of

]._I_I_L_l_I_I_I_I_
—
||II
|

II'[IITIIIIE

II!IIITIIII

Cont _??;E_

mIIII!ILl__l tel e
Ii
IILJ_u_l_
K

—
w
5

(a]
-

Defaoult

FIG. 14

5,557,724

Sheet 8 of 21

Sep. 17, 1996

U.S. Patent

NSV i
V4015
SSVH
'y
i
wi
FASA! o
WLI0I0
3__2 wﬁm !
YHOMLIN | ovauaINT | EHWHHM% yarua o O MMMHH_HHU T|I|c82
oL Wi
OMLIN e orany | wioa oLy 00TVNY
: 0334
—
FIGT s NOISIA313L
|, 03014 h“w__”m__uwu 0301A
oa1A | 7wLora o O0TVNY
9067 : :
SREEHE YOST 20ST
2071
ST "Old

10

5,557,724

Sheet 9 of 21

Sep. 17, 1996

U.S. Patent

OISGT 909ST
YIATHQ 304N0S YIATHA ¥IATHO YIATHO 23000
AV1dSI0 1¥3L oIany orany AV14SI0 03GIA
oL HOY4 oL KoY 4 oL HoY4
VIGT FAASE! 02971 8197 9T9T V191
JOVAMIINI : : WH : _@
NHOMLIN . .
oL dSH dSH dSH dSH JSH dSH dlm 191
NIS 304N0S WNIS 304N0S WNIS 108105
13l 131 orany o1any 0301A 030IA
HIATHO _ | _ 1 _
0/1 2
YHOMLIN (1dV SKY) IOVAYIINI ONIWHVHOOMd NOILVOITddY SIDIAYIS VIGIN IWIL-1¥34 0197
: A _
HIOVNVH
8291 (WSH) YIOYNVK SIDTAYIS VIGIM = INAS
y | 80971 V103N
YIATHG
(I1dV HSH) :
114
9oty o 30V4YILNT ONIHNYHOOHd NOILYDITddY HIOVNVA SIDIAYIS VIOIN Hvog ¥Z297

|

9TSGT 1A
JOVHOLS SSVH
WO¥4 ONY OL

21513

NOILYOITddY ¥IAY3S

91 "9Id

22097

11

5,557,724

Sheet 10 of 21

Sep. 17, 1996

U.S. Patent

—— MHOMLIN
Hoy4

LT, 1A
39VY0LS
SSYH
YOLT y
Y ,_
80
__m I el
W1IOIa
VPILT
» YIATYO J
oL ¢
HRLEA AV1dSIQ
0
4 = m_xM%HMMM% IOVAYIINI
W1
Y11910 iy YORLIN
J4VHOYVH YIATHD |q OXO "
010NV orany WLI0Ia
CILT
: m_ 03017 4 0301A
2021 OTLT 410030 L dHOD
93000
904174 03a1A
yOT
LT "9l

12

5,557,724

Sheet 11 of 21

Sep. 17, 1996

U.S. Patent

VOLT OT.L1 VOLT
IATHO YIATHO Y3IATHO
AV1dSIQ orany Av1dsIa
oL 0L oL
P12 ﬁ ﬁ ﬁ
ERLANEIL)
NHOML3N s [W [N [
HOH4 WNIS cesl WNIS 8181 WNIS vist
IVEN o1any 0301A
YIATHO
o1 2
. (1dV SHY) FDVAYIINI ONINAVHOOYd NOTIVDITddY SIDIAYIS VIGIN INIL-T¥3Y 0I8T
: HIOVNVA
8c8l N (WSH) H3IOVNVA SIDIAY3S YIQIN e NAS
8087 VIO

HIATHE

9Z87T 2] o1 114

(1dV HSH)

FOVAYIINT ONIKAVHOOUd NOILVOITddY YIOVNVH SIDIAYIS VIQIN

’

vz87
|~y 087

9T LT IA

J0VHOLS SSYH
hOo¥4 NV 0L

NOLLYOI'lddV IN3ITD

z087

CTLY

81T "Old

13

5,557,724

Sheet 12 of 21

Sep. 17, 1996

U.S. Patent

()¥344n9Y31S193Y
|
dSH INIS [2- dSH 304n0s |-
8067 90671
I J A
| |
()3137dROOVLYQILIYN | ()4344n4310003Y |
g | b 41 2
| ()VLVOILINM : ()VLYOIATION
Y “ ¢
> YIOVNVH SIDIAYIS VIOIN ¥
YO6T
I
|
9| ()¥344ndaN3s
()3131dHODONS | £
I
“ '
¥IATHA 0/1
MUOMLIN g
2061
6T "OId

14

5,557,724

Sheet 13 of 21

Sep. 17, 1996

U.S. Patent

()4344ngY3LSI0Y
|
dSH ANIS [2-
80072
| /
|
()3131dHODVLYQILIYM |
61 b
h ()VLVaILIYMK
Y
YIOVNYHW SIDIAYIS VIO [
()¥344n91504 _ ¥00¢
2 i
I
9 ()4344ng3AI 10N
()4344n41S0d | £
“
Yy y
Y3AT¥A 0/1
YHOMLIN 2
2002
02 914

15

U.S. Patent Sep. 17, 1996 Sheet 14 of 21 5,557,724
FIG. 21
2100
210251 yeryone
INPUT/OUTPUT
L IBRARY
21 04—&_ DLM API
2106‘2_ DATA LINK
MANAGER (DLM)
LINK
2108 [oy por - PACKET
API
MANAGER (LPM)
211 0 MEDIA l'| | lf|
DEPENDENT 2112 2114
MODULE (MDM)

|

TO AND FROM
NETWORK
INTERFACE

16

U.S. Patent Sep. 17, 1996 Sheet 15 of 21 5,557,724

FIG. 22
2106
2202 2110
DLM_BEGINSESSION SESSION
DLM_ENDSESSION MANAGER j
A
ADDRESS
2204 MANAGER J‘L !
LY y 2206
A
DLM_REGISTERSOCKET PORT/SOCKET
DLM_UNREGISTERSOCKET MANAGER HEHD B LR (I
——p Jr—
N,
220&L - MEDIA
G T MESSAGE OUTPUT cocos DEPENDENT
= MANAGER = MODULE
\ J N (NDM)
221 Zlf———-ﬁ 2210
SEND COMPLETE ASYNCHRONOUS
DLM SEND COMPLETE
RA
LN HANDLER t FRAGMENTER
.
A A
RECEIVE QUEUE(S)
2216
RECEIVE BUFFER
W F
DLM_DGPOSTBUFFER —
2214
2218
DLM MESSAGE MESSAGE ASYNCHRONOUS
RECEIVE CALLBACK RECEIVER DE FRAGMENTER
. >,

U.S. Patent

2

MDM_BEGINSESSION
MDM_ENDSESSION

2304
MO REGISTER

MDM_UNREGISTER

2306,
HDM_DGSEND

2312
MOM_DGCLEARTOSEND

23147_

MDM MESSAGE
RECEIVE CALLBACK

2318,

MOM SEND COMPLETE
CALLBACK

Sep. 17, 1996

302

SESSION
MANAGER

ADDRESS
MANAGER

L
y

oo

LINK PACKET

Sheet 16 of 21

F1G. 23

5,557,724

2110

SEND QUEUE

QUTPUT MANAGER
Nt
2308

FLOW CONTROL
MANAGER

LINK PACKET
RECEIVER

SEND COMPLETE
HANDLER

I

EVENT CONTROL
BLOCK MANAGER

SEND PROCESS

18

RECEIVE PROCESS
MANAGER

MANAGER

NETHORK
INTERFACE

U.S. Patent

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

LEVEL 5

Sep. 17, 1996 Sheet 17 of 21

FIG. 24.

AUDIO MSP{ | VIDEO MSP

TEXT MSP

MEDIA SERVICES MANAGER

(MSM)

DATA LINK MANAGER (DLM)

MEDIA DEPENDENT MODULE

(MDM)

NETWORK INTERFACE

T0 & FROM
NETWORK

19

5,557,724

5,557,724

U.S. Patent Sep. 17, 1996 Sheet 18 of 21
| FIG. 25
2 BYTES 2048 BYTES
TIME STAMP AUDIO DATA
FIG. 26
28 BYTES | 4 BYTES UP TO 18 KBYTES
VIDEO FOR
ikt igie] TESERIED VIDEO DATA
FlG. 27

201 BYTES

TEXT DATA

20

U.S. Patent Sep. 17, 1996 Sheet 19 of 21 5,557,724

FI1G. 28
24 BYTES UP TO 1476 BYTES
DLM HEADER DLM DATA
Fl1G. 29

1 1 2 2 2
6 BYTES | BYTE| 6 BYTES |} BYTE| 4 BYTES| BYTES | BYTES | BYTES

DESTINATION | DEST| SOURCE | SRC | MESSAGE | OFFSET | SIZE | TOTAL

ADDRESS | PORT| ADDRESS | PORT | NUMBER SIZE
FIG. 30
6 BYTES | 6 BYTES |2 BYTES UP TO 1500 BYTES

DESTINATION| SOURCE PACKET

ADDRESS | ADDRESS | Tvee LINK PACKET

21

5,557,724

Sheet 20 of 21

Sep. 17, 1996

U.S. Patent

ANES

VIIE

S10TAH3S
a3avon

430v01

(3709} 319YLNI3X3

JIKYNAG V8019

91T€

SLNIOd A¥IN3

AHOHIH Olte :
. 2
SINIOd AYINT |
|
I
]
]
]
—
SIMNIS |
SHOONIH SINIOd AYLNI ONY
SATYVYEIT ¥04 SLSINDIY

1

80T¢€

90T E SHOONIM LI0SOMIIN

—— e e o m — — —

[

SINIOd AYLN3

(109) ¥3avol
JIHVNAQ Y4019

SINIOd AYLNI QNY
SITUYHEIT Y04 SLSINDIY

3109

T€ "Old

431S3N03Y

mszomrmF2umz< MUanmm
SITYVYAIT HO4 SLSINOIY
Noﬂm

FOTE NOLLYIIddY 1SVOLLINK

22

U.S. Patent Sep. 17, 1996 Sheet 21 of 21 5,557,724

FIG. 32
LIBRARY A LIBRARY B
TINE INITIALIZE LIBRARY A
l LOAD LIBRARY B

CALL TO INITIALIZE LIBRARY B

5 INITIALIZE LIBRARY B
RETURN

S

RETURN TO USER

4
<

START CLOSING LIBRARY A

TIME | CALL TO CLOSE LIBRARY B

» START CLOSING LIBRARY B

SYNCHRONOUS RETURN THAT
CLOSING OF LIBRARY B IS STARTED

i
*

TIME 2 SYNCHRONOUS RETURN TO
USER THAT CLOSING OF
LIBRARY A IS STARTED

T

CLOSE COMPLETE INTERRUPT

ASYNCHRONOUS NOTIFICATION THAT
CLOSE OF LIBRARY B IS COMPLETE

4
*

TIME 3 ASYNCHRONOUS NOTIFICATION
TO USER THAT CLOSING OF
LIBRARY A IS COMPLETE

+

RETURN FROM USER

a
L

TIME 4 RETURN FROM ASYNCHRONOUS NOTIFICATION

v

TIME X

23

5,557,724

1

USER INTERFACE, METHOD, AND
APPARATUS SELECTING AND PLAYING
CHANNELS HAVING VIDEOQ, AUDIO,
AND/OR TEXT STREAMS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to computer data processing,
and, in particular, to user interfaces and methods for pro-
cessing multiple data streams on a computer.

2. Description of the Related Art

In multicasting, one or more sources transmit a plurality
of data signals for potential receipt by one or more receivers
in a network. Only one copy of each data signal is trans-
mitted. Each receiver selects which if any of the plurality of
signals 1o receive and process.

Multicasting differs from point-to-point communication,
multipoint communication without multicasting, and broad-
casting. In point-to-point communication, one copy of data
is selectively transmitted from one source to one receiver. In
multipoint communication without multicasting, data is cop-
ied multiple times, one copy of which is transmitied to each
of a set of multiple receivers. In broadcasting, each data
signal is transmitied to every receiver in the network without
giving the receiver the ability to select only a subset of those
transmitted signals to be received.

It is desirable to provide multicasting on a computer
network. It is particularly desirable to provide a system for
transmitting audio, video, and text data streams for selective
receipt by one or more client computers of a computer
network. For example, a user would be able to select a
television channel comprising audio and video signals for
play on the client computer. The user would also preferably
be able to control certain aspects of the play of the selected
signal. For example, the user would be able to control the
volume of the audio component and the size of the display
of the video component. Moreover, the user would be able
to select a subset of the components of a selected channel for
play (e.g., playing only the audio component of a television
channel).

It is also desirable that the muliicast system support data
streams that are received from an external source (e.g., via
air transmission or cable) or from a local source (e.g., a
VCR). When the client computer provides a windowed
environment (such as that provided by Microsoft Windows),
the multicast system preferably allows a user to work in one
window while the selected video and/or text are displayed in
one or more other windows.

The Internet MBONE multicast backbone system is a
semi-permanent multicast testbed. MBONE is a virtual
network. It is layered on top of portions of the physical
Internet to support routing of multicast packets since that
function is not integrated into many production routers. The
network is composed of islands that can directly support
multicast, such as multicast local area networks (LANs) like
Ethernet, linked by point-to-point links called “tunnels”. The
tunnel endpoints are typically workstation-class machines
having operating system support for multicast and running
the multicast routing daemon.

However, the MBONE system does not provide high-
quality multicasting. Audio signals are subject to unaccept-
able delays that result in non-real-time play at the client
computers. In addition, audio and video signals are not
related. As a result, the play of audio signals is not synchro-

20

35

55

65

24

2

nized with the play of video signals. The multicasting is
therefore of low quality. Moreover, MBONE does not allow
the user to sclect components and control aspects of the
selected signal. Furthermore, MBONE does not support the
play of a selected signal in a windowed environment.

It is accordingly an object of this invention to overcome
the disadvantages and drawbacks of the known art and to
provide methods and apparatuses for multicasting multiple
signals on a computer network.

It is a further object of the present invention to provide
high-quality multicasting of audio, video, and text data
streams on a computer network.

It is a further object of the present invention to provide
multicasting on a computer network wherein a user may
select components of a selected channel for play.

It is a further object of the present invention to provide
multicasting on a computer network wherein a user may
control certain aspects of the play of a selected channel.

It is a further object of the present invention to provide
multicasting on a computer network having client computers
that operate in a windowed environment.

Further objects and advantages of this invention will
become apparent from the detailed description of a preferred
embodiment which follows.

SUMMARY OF THE INVENTION

According to a preferred embodiment, the present inven-
tion is a user interface for display on a computer system
capable of processing one or more data streams. The user
interface comprises one or more displayed representations,
where each of the displayed representations corresponds to
one of the data streams. A user of the computer system may
selectively adjust the processing of each of the data streams
using the corresponding displayed representation.

According to an alternative preferred embodiment, the
present invention is a method and system for controlling the
processing of one or more data streams by a computer
system. A user interface comprising one or more displayed
representations is generated, where each of the displayed
representations corresponds to one of the data streams. The
processing of at least one of the data streams is selectively
adjusted using the corresponding displayed representation.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects, features, and advantages of the present
invention will become more fully apparent from the follow-
ing detailed description of the preferred embodiment, the
appended claims, and the accompanying drawings in which:

FIG. 1 is a representation of a multicast system for
multicasting multiple, related data sireams on a computer
network, according to a preferred embodiment of the present
invention;

FIG. 2 shows a preferred embodiment of the user interface
as displayed on the monitor of a client of the multicast
system of FIG. 1;

FIG. 3 shows an example of a preferred embodiment of
the Program Guide window displayed when the user selects
the Guide option in the channel controls of the user interface
of FIG. 2;

FIG. 4 shows a preferred embodiment of the Password
window created when the user selects a channel that requires
the entry of a password;

5,557,724

3

FIG. 5 shows a preferred embodiment of the Pay-Per-
View window created when the user selects a channel that
requires payment;

FIGS. 6, 7, and 8 show preferred embodiments of the user
interface of FIG. 2 for selected channels consisting of only
video, only audio, and only text, respectively;

FIG. 9 shows a preferred embodiment of the Options
menu created when the user selects the Options option in the
channel controls of the user interface of FIG. 2;

FIGS. 10, 11, and 12 show preferred embodiments of the
user interface of FIG. 2 when video and text, video only, and
text only, respectively, are selected for display with controls
hidden;

FIG. 13 shows a preferred embodiment of the remote
control window that is created when the Remote Control
item of the Options menu of the user interface of FIG. 2 is
selected;

FIG. 14 shows a preferred embodiment of the configure
window that is created when the Configure . . . item of the
Options menu of the user interface of FIG. 2 is selected;

FIG. 15 is a block diagram of the server subsystem of the
multicast system of FIG. 1;

FIG. 16 is a block diagram of the software architecture of
the server subsystem of FIG. 15;

FIG. 17 is a block diagram of the client subsystem of the
multicast system of FIG. 1;

FIG. 18 is a block diagram of the software architecture of
the client subsystem of FIG. 17;

FIG. 19 is a representation of the flow of data through the
server software architecture of FIG. 16;

FIG. 20 is a representation of the flow of data through the
client software architecture of FIG. 18;

FIG. 21 is a block diagram of the software architecture of
the network input/output (I/O) driver of the server software
architecture of FIG. 16 and the client software architecture
of FIG. 18;

FIG. 22 is a block diagram of the data link manager of the
network I/O driver of FIG. 21;

FIG. 23 is a block diagram of the media dependent
module of the network I/O driver of FIG. 21;

FIG. 24 is a representation of the data flow through each
server and client of the multicast system of FIG. 1;

FIGS. 25, 26, and 27 are representations of Level 1 audio,
video, and text data packets, respectively, of the multicast
system of FIG. 1;

FIG. 28 is a representation of a Level 3 data packet of the
multicast system of FIG. 1;

FIG. 29 is a representation of the 24-byte DLM header of
the Level 3 data packet of FIG. 28;

FIG. 30 is a representation of a Level 5 data packet of the
multicast system of FIG. 1;

FIG. 31 is a block diagram of the software architecture of
each of the server and clients of the multicast system of FIG.
1 for loading and unloading of service libraries; and

FIG. 32 is a diagram of the timing of function calls when
a user opens/closes one module, which in turn opens/closes
another module, under the traditional method of using
straight calls to the Windows LoadLibrary and FreeLibrary
functions.

DESCRIPTION OF THE PREFERRED
EMBODIMENT(S)

Referring to FIG. 1, there is a representation of multicast
system 100 for multicasting multiple, related data streams

10

15

30

35

45

50

55

65

25

4

on a computer network, according to a preferred embodi-
ment of the present invention. Multicast system 100 com-
prises a single server 102 and multiple clients 104 linked by
network 106. Server 102 captures and posts data on network
channels, with any number of clients 104 independently
selecting channels for receipt and play.

Server 102 is capable of capturing analog audio and video
signals from three different sources: (1) signals generated
locally by camera 108, (2) signals received by antenna 110
from a remote source, and (3) recorded signals from VCR
112. In addition, server 102 may receive digital text signal
from a remote source (not shown) (e.g., via modem). Server
102 may receive multiple signals of each type (i.e., audio,
video, or text) from one or more sources at the same time.

For example, server 102 may receive via antenna 110 a
first television program consisting of three signals: video,
English langnage audio, and Spanish language audio. At the
same time, server 102 may receive a second television
program consisting of video and English language audio
from VCR 112. Server 102 may also concurrently receive
the audio signal for a radio station via antenna 110 and a text
stream via modem.

Server 102 digitizes the received analog audio and video
signals to generate digital audio and video data streams.
Server 102 selectively relates the digital andio, video, and
text data streams together to form specified channels. A
channel is a logical representation of a specific collection of
data streams transmitted over the network. For example, the
video and English audio data streams of the first television
program may be related together to form a first channel. That
same video data siream may be related to the Spanish audio
data stream to form a second channel. In addition, the video
and English audio data streams of the second television
program and the text data stream may be related to form a
third channel. The audio data stream for the radio station
may constitute a fourth channel by itself.

Server 102 fragments each data stream into network data
packets for transmission over network 106. Server 102
transmits a single copy of each of the network data packets
for all four channels over network 106 for potential receipt
by clients 104. Each client 104 independently and optionally
selects any one of the four channels. When a client 104
selects a channel, the client may receive and process the
network data packets corresponding to the data streams of
the selected channel. Thus, system 100 is a multicasting
system that provides multicasting of one or more channels
from server 102 to one or more clients 104. A preferred
embodiment of a user interface for multicast system 100 as
well as the options provided to a user via that interface are
described in further detail later in this specification in
conjunction with FIG. 2.

Server 102 and clients 104 may be any suitable computers
and are preferably personal computers having an Intel®
i486-based central processing unit (CPU) running Microsoft
Windows. Server 102 and clients 104 are preferably sound
enabled with a SoundBlaster Pro from Creative Labs, net-
work enabled with an Intel® Ether Express 16 card, and
video enabled with Intel® SmartVideo® Recorders (ISVR).
Network 106 is preferably an Ethernet network.

User Interface

Referring now to FIG. 2, there is shown a preferred
embodiment of the user interface 200 that is displayed on the
monitor of a client 104 of the multicast system 100 of FIG.
1. In a preferred embodiment, client 104 operates in a

5,557,724

5

windowed environment, such as that provided by Microsoft
Windows. User interface 200 is a window frame comprising
window controls 202, channel controls 204, video display
206, audio controls 208, and text reader bar 210.

The video component (if any) of a selected channel is
displayed in video display 206 and the text component (if
any) of the selected channel is displayed in text reader bar
210. Preferably using a computer mouse, a user may use
audio controls 208 to control the play of the audio compo-
nent (if any) of the selected channel. Controlling the audio
play includes increasing or decreasing the volume or muting
the sound completely. Audio controls 208 also displays a
volume meter for depicting the current volume level.

Those skilled in the art will understand that a user may use
window controls 202 to close (i.e., terminate the display of)
user interface 200 and to control the size and position of user
interface 200, User interface 200 may be moved around the
display raster by dragging either window controls 202, video
display 206, or text reader bar 210 using the mouse. Channel
controls 204 provides the user with the ability to select a
channel and to control certain aspects of the play of the
selected channel.

Multicast system 100 supports three types of data streams
(audio, video, and text). A channel may comprise any
combination of data streams. The user is able to select how
to configure the play of a selected channel (e.g., play only
the audio component of a channel having both audio and
video components). Moreover, the user may change the
selected channel configuration and various aspects of the
channel (e.g., size of video display 206 or volume of audio
play) at any time. Certain channels may be marked as
password protected and/or as pay-per-view. In those cases,
the user would have to enter the correct password and/or a
valid credit card number depending upon the nature of the
channel.

Program Guide of the User Interface

Referring now to FIG. 3, there is shown an example of a
preferred embodiment of the Program Guide window 300
created when the user selects the Guide option in channel
controls 204 of user interface 200 of FIG. 2. Program Guide
window 300 comprises a list 302 of the channels currently
being transmitted over the computer network and a list 304
of the channels to be transmitted over the computer network
in the future. Program Guide window 300 also preferably
displays the current time in clock 306.

Each entry in lists 302 and 304 of Program Guide window
300 identifies the date, start time, and name (e.g., television
channel name or program name) of the transmission. The
entry also provides (in brackets) information about the
components of the channel, where the letters A, V, and T
indicate that the channel has audio, video, and text compo-
nents, respectively.

The letter P indicates that the user must enter a special
password in order to play the selected channel. Referring to
FIG. 4, there is shown a preferred embodiment of the
Password window created when the user selects a channel
that requires the entry of a password. The user uses the
Password window to enter the special password for the
program.

The symbol $ indicates that the user must pay in order to
play the selected channel. Referring to FIG. 5, there is
shown a preferred embodiment of the Pay-Per-View window
created when the user selects a channel that requires pay-
ment. The user uses the Pay-Per-View window to enter a

15

20

25

30

35

50

55

65

26

6

credit card number to which to charge the payment for the
program.

After the user selecis a desired channel, the Program
Guide window 300 is closed and user interface 200 is
configured in accordance with the components of the
selected channel. For example, referring now to FIGS. 6, 7,
and 8, there are shown preferred embodiments of the user
interface 200 for selected channels consisting of only video,
only audio, and only text, respectively.

Options Menu of the User Interface

Referring now to FIG. 9, there is shown a preferred
embodiment of the Options menu XM created when the user
selects the Options option in channel controls 204 of user
interface 200 of FIG. 2. Options menu 900 provides controls
for the user 1o customize the component configuration and
other aspects of the window.

When selected, the Pause Services item of Options menu
900 pauses reception of all currently active data streams all
the way down to the network level. When implemented in
the preferred windowed environment, multicast system 100
allows a client 104 to play a selected channel in one window,
while the client 104 concurrently works in another window.
Pause Services allows a user to suspend the multicasting
functions performed by client 104 in order to accelerate a
network, disk, or CPU intensive job also being handled by
client 104.

When Pause Services is selected, many of the channel and
audio controls are preferably disabled, although the user
may change the position of the user interface and perform
other window-related operations. The Pause Service menu
item toggles the application back and forth between paused
and unpaused states. A check mark is preferably displayed
next to the menu item to indicate that service is paused.

The user may shrink or enlarge video display 206 of user
interface 200 by selecting and dragging a corner or side of
video display 206 with the mouse. When selected, the
Default Window Size item of Options menu 900 returns user
interface 200 to its specified default window size as dictated
by the default size for video display 206 (preferably 160
pixels wide by 120 pixels high). The maximum size of video
display 206 is preferably 320 pixels wide by 240 pixels high
and the minimum size is preferably 120 pixels wide by 90
pixels high. The aspect ratio of video display 206 is pref-
erably always preserved.

When selected, the Hide Controls item of Options menu
900 hides (i.e., terminates the display of) window controls
202, channel controls 204, and audio controls 208 of user
interface 200. The controls are redisplayed by double click-
ing on either video display 206 or text reader bar 210. As
such, the Hide Controls menu item is only enabled when at
least one of video display 206 and text reader bar 210 is
displayed. Referring now to FIGS. 10, 11, and 12, there are
shown preferred embodiments of the user interface 200
when video and text, video only, and text only, respectively,
are selected for display with controls hidden.

The Always On Top item of Options menu 900 toggles the
application to and from being TopMost in the Microsoft
Windows Z-Order. When a window is TopMost, it always
remains in view on top of all other open windows. The user
may select Always On Top when the user does not want the
multicasting application to be buried by other windows. A
check mark is displayed next to the menu item when the
Always On Top item is selected.

5,557,724

7

The Video Window item of Options menu 900 is used to
display or hide video display 206 of user interface 200. For
example, the user may choose to play only the audio
component of a selected channel having both video and
audio components. A check mark is displayed next to the
Video Window menu item when video display 206 is visible.

The Audio Controls item of Options menu 900 is used to
display or hide audio controls 208 of user interface 200.
Audio controls 208 preferably cannot be hidden when
neither video display 206 nor text reader bar 210 is visible,
since nothing would be visible other than the window frame.
As depicted in FIG. 7, audio controls 208 preferably has a
fixed height, but may be sized from a minimum width of 120
pixels to a maximum width of 320 pixels. A check mark is
displayed next to the Audio Controls menu item when audio
controls 208 is visible.

The Reader Board item of Options menu 900 is used to
display or hide text reader bar 210 of user interface 200. For
example, the user may choose play only the audio and video
components of a selected channel having audio, video, and
text components. A check mark is displayed next to the
Reader Board menu item when text reader bar 210 is visible.

Referring now to FIG. 13, there is shown a preferred
embodiment of the remote control window 1300 that is
created when the Remote Control item of Options menu 900
is selected. Remote control window 1300 is a dialog window
that provides functions analogous to those of a standard
television remote control. Remote control window functions
include changing channels; changing audio volume; and
playing, recording, or rewinding the audio, video, or text
components of the current channel. The Remote Control
menu item is preferably disabled when a remote control
window 1300 is open to prevent multiple instances of
remote control windows for the same channel at the same
time.

Referring now to FIG. 14, there is shown a preferred
embodiment of the configure window 1400 that is created
when the Configure . . . item of Options menu 900 is
selected. Configure window 1400 is a dialog window that
provides specific video controls such as saturation level,
brightness, contrast, and tint. In an alternative preferred
embodiment, configure window 1400 also provides specific
audio controls such as mix and quality settings and specific
text controls such as scroll speed and freeze scroll. The
Configure . . . menu item is preferably disabled when a
configure window 1400 is open to prevent multiple instances
of configure windows for the same channel at the same time.

Server Subsystem

Referring now to FIG. 15, there is shown a block diagram
of server 102 of multicast subsystem 100 of FIG. 1, accord-
ing to a preferred embodiment of the present invention.
Server 102 receives analog audio and video signals and
digital text signals and transmits digital data packets corre-
sponding to those signals over the network for receipt by
clients 104.

In particular, tuner 1502 of server subsystem 102 reccives,
demodulates, and splits one or more analog television feed
signals into their constituent analog audio and video signals.
Video capture component 1504 captures and converts the
analog video signals into digital video data streams. Simi-
larly, audio capture component 1508 captures and converts
the analog audio signals into digital audio data streams.
Those skilled in the art will understand that the source of the
analog audio and video signals may vary depending on the

5

10

15

20

35

45

50

35

60

63

27

8

particular embodiment of the present invention. Possible
sources of analog signals include cable television, radio or
television air-wave signals, video cameras, and VCRs, It
will also be understood that, in alternative preferred embodi-
ments, server 102 may receive, capture, and convert analog
text signals into digital text streams.

Video codec 1506 compresses the digital video data
streams and transmits the compressed video data streams to
server software architecture 1512. Audio driver 1510 places
the audio data into buffers and transmits the audio data
buffers to server software architecture 1512. Server software
architecture 1512 receives the audio, video, and text data
streams, relates selected data streams together to form
channels, fragments each data stream into network data
packets, and transmits the network data packets to network
interface 1514 for transmission over the network.

Server 102 also supports the recording of data to mass
storage device 1516 with or without concurrent multicasting
of the data to the network. In addition, server 102 supports
multicasting of recorded data previously stored in mass
storage device 1516.

Tuner 1502 may be any suitable device for demodulating
and splitting analog television feed signals and is preferably
a VCR. Video capture component 1504 and codec 1506 may
be any suitable hardware/software device or devices for
capturing and compressing video and are preferably com-
ponents of an Intel® SmartVideo® Recorder (ISVR). Audio
capture component 1508 may be any suitable device for
capturing and digitizing analog audio signals and is prefer-
ably a Creative Labs SoundBlaster Pro.

Audio driver 1510 may be any suitable hardware/software
device for processing audio data and is preferably a
Microsoft Wave Driver (i.e., a Microsoft Windows Audio
Device Driver corresponding to the Microsoft .\WAV Speci-
fication). Server software architecture 1512 is implemented
on any suitable computer such as a personal computer with
an Intel® 1486 microprocessor. Server software architecture
1512 is described in further detail later in this specification
in conjunction with FIG. 16. Network interface 1514 is any
compatible device for interfacing with the network. For
example, when the network is an Ethernet network, network
interface 1514 may be an Intel® Ether Express 16 card with
suitable software (e.g., Novell Link Support Layer (LSL)
under the Novell Open Data-Link Interface (ODI)).

Server Subsystem Software Architecture

Referring now to FIG. 16, there is shown a block diagram
of server software architecture 1512 of server 102 of FIG.
15, according to a preferred embodiment of the present
invention. Server software architecture 1512 comprises
server application 1602, media services manager (MSM)
1608, media sync manager 1624, file input/output (1/O)
driver 1626, network I/O driver 1628, and a plurality of
media service providers (MSPs) 1612-1622. Server appli-
cation 1602 and MSM 1608 communicate using the system-
level protocol MSM application programming interface
(API) 1604. MSM 1608 and the MSPs communicate using
the system-level protocol real-time media services API
1610.

Server application 1602 of server software architecture
1512 allows an administrator of multicast system 100 to
define the configuration and destinations of channels. That
is, server application 1602 is used to select:

which data streams are to be related together as channels,

5,557,724

9

whether to transmit the channels to the network or store
the channels to mass storage device 1516 or both,

whether to transmit channel programs stored in mass
storage device 1516, and

whether to play any of the selected data streams locally to
monitor the multicasting services.

Server application 1602 asks media services manager
(MSM) 1608 to gather and deliver various types of data on
one or more channels over the network.

Media services manager (MSM) 1608 manages the flow
of data through server software architecture 1512 as speci-
fied by server application 1602. Data may flow through
MSM 1608 over the following data paths:

From a source media service provider (MSP) to the
network (for multicasting of data received from an
external source),

From a source MSP to a local sink MSP (for monitoring
the processing of data received from an external
source),

From a source MSP to mass storage device 1516 (for
storage of data received from an external source for
subsequent processing),

From mass storage device 1516 to the network (for
multicasting of locally recorded data), and

From mass storage device 1516 to a local sink MSP (for
monitoring the processing of locally recorded data).

MSM 1608 recognizes the available source and sink MSPs
and is responsible for initializing and configuring the MSPs
for the defined channels. MSM 1608 has no knowledge
about the actual type or format of the data flowing through
it. Server application 1602, MSM 1608, and the MSPs
provide channel configuration capabilities both before and
during channel transmission. MSM 1608 is designed to be
modified to support new features without significant changes
in the rest of server software architecture 1512.

There are (at least) two types of media service providers
(MSPs): source MSPs and sink MSPs. A source MSP is a
media service provider that assists in the receipt of a data
stream from an external source or local mass storage device.
A sink MSP is a media service provider that assists in the
local playing or recording of a data stream. MSPs are further
categorized by media type. Thus, multicast system 100
supports audio, video, and text source MSPs and audio,
video, and text sink MSPs. MSM 1608 may be modified to
support MSPs in addition to audio, video, and text MSPs.

Video source MSP 1612 receives a video data stream from
video codec 1506 of FIG. 15 and transmits the video data to
MSM 1608. Similarly, audio source MSP 1616 and text
source MSP 1620 receive audio and text data streams from
audio driver 1510 and the text source, respectively, and
transmit the audio and text data to MSM 1608. Server
software architecture 1512 also preferably has video, audio,
and text sink MSPs 1614, 1618, and 1622 to provide local
monitoring capabilities. The processing of sink MSPs is
described in further detail later in this specification in
conjunction with FIG. 18 and the discussion of the client
software architecture.

Server application 1602 communicates with MSM 1608
using application-level MSM application programming
interface (API) 1604. MSM API 1604 supports the follow-
ing function calls by server application 1602:

MSM_ InitServices(): Initializes and configures media
service providers (MSPs) to be used; initializes either
file or network input/output (I/O) system; specifies
whether application is a server or a client,

MSM _ StartServices(): Starts (or unpauses) any or all of
the MSPs that were initialized.

10
MSM _StopServices(): Stops (or pauses) any or all of the
MSPs that were initialized.
MSM__TerminateServices(): Terminates all of the MSPs
that were initialized; terminates network or file /O in
5 use.

MSM__ConfigureServices(): Dynamically configures any
or all of the MSPs in use.
MSM API 1604 allows new applications to be developed on
top of MSM 1608.

10 MSM 1608 uses file I/O driver 1626 to store and retrieve
data to and from mass storage device 1516. File I/O driver

1626 supports the following function calls:
InitFileOut(): Called by the MSM to prepare for sending
data packets to a data file in mass storage device 1516.

‘WriteFile(): Posts data packets to the FilelOWndProc()
function to write a data packet to the data file at task
time. Since data cannot be written to a file in interrupt
context, the WriteFile() function posts data packets to
a file-IO window. When Windows gives the file-IO
window a chance to process its messages, the data
packets will be written to the file by the FilelOWnd-
Proc() function.

FilelOWndProc(): Writes data packets to the file at task

25 time.

RecycleBuffer(): Called by file I/O driver 1626 to give
MSP buffers back to the MSM after the data have been
written to the data file. This function preferably resides
in the MSM.

30 TerminateFileOut(): Closes the output file.

InitFileIn(): Called by the MSM to prepare for reading
data packets from a data file in mass storage device
1516.

ReadFileTimerProc(): Called by Windows to read a new
data packet from the file. File /O driver 1626 creates
a system time to cause data packets to be read from the
file on a regular interval.

WriteBuffer(): Called by file /O driver 1626 to inform the

40 MSM that a new data packet has been read from the

file. This function preferably resides in the MSM. In

response, the MSM delivers the new data packet to the

appropriate MSP to be played. ’
TerminateFileln(): Closes the input file.

45 The data file format for multicast system 100 includes a file
header and some number of data blocks. Each data block
comprises a block header (specifying the type and size of the
data) and a data packet of the specified size. Only the MSPs
know the format of the data packets. A data file may contain

50 any number of data blocks of different types and sizes. Those
skilled in the art will understand that data is written to and
from mass storage device 1516 via sink and source MSPs.

MSM 1608 and an MSP communicate using real-time
media service (RMS) API 1610. RMS API 1610 is a

55 system-level protocol used by MSM 1608 to control the
acquisition, synchronization, and playing of data via the
MSPs. Any element in server software architecture 1512
capable of capturing, playing, transporting, or storing some
form of data, in real time, is considered to be a media service

60 provider if it conforms to the RMS API standard. RMS API
1610 consists of one group of function calls that an MSP
exports for the MSM to call and two groups of function calls
that the MSM exports for MSPs to call (media synchroni-
zation calls anti buffer management calls).

65 When the server application calls the MSM InitServices
function, the MSM uses the global dynamic loader (GDL) to
load each MSP that will be used during the multicast session.

20

35

28

5,557,724

11

The GDL resolves the RMS API entry points in an MSP and
stores the procedure addresses in a different MSP control
structure for each instance of every MSP. The GDL is
.described in further detail later in this specification in
conjunction with FIGS. 31 and 32.

RMS API 1610 supports the following function calls by
MSM 1608 into an MSP (either source or sink):

OpenService(): Initializes/configures an MSP for MSM

1608 to use.

StartService(): Starts (or unpauses) an MSP,

StopService(): Stops (or pauses) an MSP.

CloseService(): Terminates an MSP when no longer
needed.

ConfigureService(): Configures an MSP as specified by
the application.

RecycleBuffer(): Notifies a source MSP that MSM 1608
has completed sending one of the source MSP’s buff-
ers.

WriteData(): Notifies a sink MSP that MSM 1608 has data
for the sink MSP to play.

RMS API 1610 supports the following media synchroniza-
tion function calls by an MSP to MSM 1608:

NewSyncStamp(): Source MSP requests the current time
from MSM 1608.

StartSyncClock(): Sink MSP informs MSM 1608 that the
sink MSP is running and valid for synchronization.

StopSyncClock(): Sink MSP informs MSM 1608 that the
sink MSP is not valid for synchronization.

TestSyncState(): Sink MSP requests MSM 1608 to deter-
mine whether a data packet is early, in sync, or late.
RMS API 1610 supports the following buffer management
function calls by an MSP to MSM 1608:

ReceiveData(): Source MSP informs MSM 1608 that
there is new data to send to the network.

RegisterBuffer(): Sink MSP registers all of the sink MSP
buffers with MSM 1608 as available at time of initial-
ization.

WriteDataComplete(): Sink MSP informs MSM 1608 that
the sink MSP has completed playing a buffer and that
the buffer is therefore available to receive new data.

In addition, MSPs can use custom window messages to
communicate with the application.

Media sync manager 1624 provides time stamps for the
comporent data streams. Any type of data may be synchro-
nized with any other type as long as the source MSPs stamp
their data with the appropriate capture time. Although it is
possible to synchronize multiple media types (i.e., data
streams), preferably only one sink MSP is defined to be the
sync target, to which the other MSPs of the channel are
related. Media synchronization is described in further detail
later in this specification in a section entitled Media Syn-
chronization.

Network I/O driver 1628 receives the related data streams
from MSM and transmits data packets corresponding to
those data streams to the network via network interface
1514. Network I/O driver 1628 is described in further detail
later in this specification in conjunction with FIGS. 21, 22,
and 23.

Operational Overview of the Server Software
Architecture

The basic operations of the server software architecture
are to initialize the server subsystem, start the server ser-
vices, transmil data to the network (and/or write data to a

5

35

45

50

55

65

29

12

file), stop the server services when the session is complete,
and terminate the server subsystem.,

Server subsystem initialization is implemented as fol-

lows:

The system operator asks the server application to initial-
ize the server subsystem to transmit selected data
streams on specified logical channels.

The server application passes the channel information
(with the selected data streams for the multicast ses-

sion) to the media services manager (MSM) (using the
MSM InitServices function).

The MSM asks the global dynamic loader (GDL) to load
the appropriate media service providers (MSPs), as
well as the network I/O drivers.

The GDL loads the specified MSPs and saves the proce-
dure addresses for all real-time media services (RMS)
API entry points, along with other MSP control infor-
mation, into a unique structure for each MSP instance.

MSM opens the specified MSPs (using the OpenService
function) and initializes the network and/or file ser-
vices. When an MSP is opened, the MSP is initialized
into a paused state. Using the OpenService function,
the MSM passes to each MSP various initialization and
configuration information instructing the MSP what to
do and how to behave. The MSM also passes its
entry-point proc addresses (i.e., the RMS API) to each
MSP to enable the MSP to communicate with the
MSM.

Starting or resuming (i.e., unpausing) a multicast session

by the server is implemented as follows:

The system operator asks the server application to start
processing specified data streams. In an alternative
preferred embodiment, the server application starts the
processing automatically as part of initialization and
does not require a separate request from the system
operator.

The server application passes the MSM a list of the data
streams to be started (using the MSM__StartServices
function).

The MSM tells each appropriate MSP to start transferring
captured data to the MSM (using the StartService
function).

Steady state server processing is implemented as follows:

Upon capturing new data, the MSP asks the MSM for an
appropriate time stamp value for the MSP’s new data
packet (using the NewSyncStamp function). All MSP
data packets are preferably time stamped even if they
are not being synchronized with other data from other
MSPs.

The MSP delivers the time-stamped data packet to the
MSM (using the ReceiveData callback function).

If data is to be transmitted to the network, then the MSM
sends a copy of the new data to the network 1/O driver
(using the WriteNet function).

If data is to be recorded locally, then the MSM sends a
copy of the new data to the mass storage device driver
(using the WriteFile function).

If local monitoring is selected, then the MSM sends a
copy of the new data to the appropriate server sink MSP
(using the WriteData function).

After receiving confirmations from the network and the
mass storage device driver (via RecycleBuffer function
calls) and from the sink MSP (via a WriteDataComplete
function call) that the data have been processed, the

5,557,724

13

MSM recycles the buffer to the appropriate source MSP
(using the RecycleBuffer function). The source MSP is
then free to refill the buffer with new data to repeat the
process.
Stopping or pausing a multicast session by the server is
implemented as follows:

The system operator asks the server application to stop
processing specified data streams.

The server application passes the MSM the data streams
to be stopped (using the MSM _ StopServices function).

The MSM tells each appropriate MSP to stop service
(using the StopService function).

Each MSP will generally stop sending data to the MSM
once it is stopped (i.e., paused). However, an MSP may
continue to send data, if, for example, the MSP needs
to maintain the signal. Even if an MSP stops sending
data to the MSM, the MSP may continue to capture
data, depending upon the specific requirements of the
MSP.

Server subsystem shutdown (i.c., termination) is imple-

mented as follows:

The system operator asks the server application to termi-
nate the multicast session.

The server application telis the MSM to terminate ser-
vices (using the MSM__ TerminateServices function).

The MSM closes each MSP instance (using the CloseSer-
vice function).

Each MSP performs functions such as closing drivers or
freeing buffers, as necessary.

After the MSPs are closed, the MSM shuts down the
network stack and closes any other non-MSP services.

Client Subsystem

Referring now to FIG. 17, there is shown a block diagram
of client 104 of multicast subsystem 100 of FIG. 1, accord-
ing to a preferred embodiment of the present invention.
Client subsystem 104 receives from the network, and then
processes, the data packets corresponding to a selected
channel. Server processing may include playing and/or
recording the selected channel program.

Network interface 1714 of client subsystem 104 receives
audio, video, and text network data packets from the net-
work and transmits the data packets to client software
architecture 1712. Client software architecture 1712 recon-
structs the audio, video, and text data streams from the
network data packets. Client software architecture 1712
transmits the audio data stream to audio driver 1710, which
in turn processes and transmits the audio data to audio
hardware 1702 for play. Client software architecture 1712
transmits the compressed video data stream to video codec
1706 for decompression and transmission back to client
software architecture 1712. Client software architecture
1712 then transmits the decompressed video data stream as
well as the text data stream to display driver 1704 for
processing and display on monitor 1708.

Client 104 also supports the recording of data from the
network to mass storage device 1716 with or without
concurrent playing of the multicast data. In addition, server
102 supports the playing of recorded data previously stored
in mass storage device 1716.

Network interface 1714 is any compatible device for
interfacing with the network. For example, when the net-
work is an Ethernet network, network interface 1714 may be
an Intel® Ether Express 16 card with suitable software (e.g.,

10

13

20

25

30

35

40

435

50

55

65

30

14

Novell Link Support Layer under the Novell ODI). Client
software architecture 1712 is implemented on any suitable
computer such as a personal computer with an Intel® 486
microprocessor. Client software architecture 1712 is
described in further detail later in this specification in
conjunction with FIG. 18. Audio driver 1710 may be any
suitable hardware/software device for processing audio data
and is preferably a Microsoft Wave Driver. Audio hardware
1710 may be any suitable device for playing digital audio
data. Display driver 1704 may be any suitable driver for
displaying video and text data and is preferably Microsoft
Video for Windows. Monitor 1708 may be any suitable
device for displaying video and text.

Client Subsystem Software Architecture

Referring now to FIG. 18, there is shown a block diagram
of client software architecture 1712 of client 104 of FIG. 17,
according (o a preferred embodiment of the present inven-
tion,

Client application 1802 of client software architecture
1712 allows an user of multicast system 100 to select a
multicast channel to receive and process, where processing
may include playing the data, recording the data, or both.
That is, client application 1802 is used to select:

which data streams are to be processed and

where to get the data streams (i.e., from the network or
from mass storage device 1716.

Client application 1802 asks media services manager
(MSM) 1808 to collect data from a selected network channel
and play it for the user as appropriate.

Client application 1802 asks the media services manager
(MSM) 1808 to initialize and start a sink media service
provider (MSP) for each selected data stream. The user uses
the user interface of client application 1802 to configure the
channels as described earlier in this specification in con-
junction with FIGS. 2-14.

Network 1/0 driver 1828 rececives network data packets
from the network via network interface 1714 and transmits
data streams corresponding to those data packets to media
services manager (MSM) 1808. Network I/O driver 1828 is
described in further detail later in this specification in
conjunction with FIGS. 21, 22, and 23. MSM 1808 manages
the flow of data through client software architecture as
specified by client application 1802. Data may flow through
MSM 1808 over the following data paths:

From the network to a sink media service provider (MSP)

(for playing multicast data),

From the network to mass storage device 1716 (for
recording of multicast data for subsequent processing),
and

From mass storage device 1716 to a sink MSP (for
playing of locally recorded multicast data).

MSM 1808 recognizes the available sink MSPs and is
responsible for initializing and configuring the MSPs for the
defined channel. MSM 1808 has no knowledge about the
actual type or format of the data flowing through MSM
1808. Client application 1802, MSM 1808, and the MSPs
provide channel configuration capabilities both before and
during channel play. MSM 1808 is designed to be modified
to support new features without significant changes in the
rest of client software architecture 1712.

Video sink MSP 1814 and text sink MSP 1822 receive a
video data stream and a text data stream, respectively, from
MSM 1808 and transmits the video and text data to display
driver 1704 of FIG. 17 for display on monitor 1708. Simi-

5,557,724

15

larly, audio sink MSP 1818 receives an audio data stream
from MSM 1808 and transmits the audio data to audio driver
1710 for play on audio hardware 1702.

Client application 1802 communicates with MSM 1808
using application-level MSM application programming
interface (API) 1804, which preferably supports the same
function calls as MSM API 1604. MSM 1808 uses file /O
driver 1826 to store and retrieve data to and from mass
storage device 1716. File /O driver 1826 preferably sup-
ports the same function calls as file I/O driver 1626. MSM
1808 and a sink MSP communicate using RMS AP 1810,
which preferably supports the same function calls as RMS
API 1610. MSM API 1604, file /O driver 1626, and RMS
API 1610 of server software architecture 1512 were
described earlier in this specification in conjunction with
FIG. 16.

Media sync manager 1824 determines whether the time
stamp pulled from a data packet is “in sync” with the
designated sync target data type. Designated sync target data
are played as soon as they are received. Media sync manager
1824 keeps track of whether the sync target is running (i.e.,
whether there is data to which to sync) and, if so, media sync
manager 1824 keeps track of the last time stamp of that data
type. When a non-target MSP asks whether it is in sync with
the sync target MSP, media sync manager 1824 responds by
telling the non-target MSP to wait, play now, hurry (i.e., the
packet is behind schedule), or that there is an error. The
non-target MSP decides how to respond to these various
messages. Media synchronization is described in further
detail later in this specification in a section entitled Media
Synchronization.

Operational Overview of the Client Software
Architecture

The basic operations of the client software architecture
are to initialize the client subsystem, start the client services,
receive channel data from the network (or read data from a
file), stop the client services when the session is complete,
and terminate the client subsystem.

Client subsystem initialization is implemented as follows:

The user asks the client application to initialize the client
subsystem with specified channels.

The client application passes the channel information to
the media services manager (MSM) (using the MSM__
InitServices function), also specifying which data
streams to play and how to initialize them.

The MSM asks the global dynamic loader (GDL) to load
the appropriate media service providers (MSPs), as
well as the network I/O drivers.

The GDL loads the specified MSPs and saves the proce-
dure addresses for all real-time media services (RMS)
API entry points, along with other MSP control infor-
mation, into a unique structure for each MSP instance.

MSM opens the specified MSPs (using the OpenService
function) and initializes the network and/or file ser-
vices. The OpenService function is used to instruct an
MSP how to initialize and configure itself. OpenService
also delivers RMS entry points into the MSM for the
MSP 1o use.

Each client sink MSP posts its sink buffers to the MSM to
be filled with data from the network or from a file.
‘When an MSP is opened, the MSP is initialized into a
paused state.

Starting or resuming (i.c., unpausing) a multicast session

by the client is implemented as follows:

5

25

3

(=]

35

45

50

55

60

65

31

16

The user asks the client application to start processing
specified data streams. In a preferred embodiment,
when the client subsystem is initialized, the client
application automatically starts data stream processing
without requiring a separate request from the user.

The client application passes the MSM a list of the data
streams to be started (using the MSM_ StartServices
function).

The MSM tells each appropriate MSP to start receiving
and playing data (using the StartService function).
Steady state client processing is implemented as follows:
Upon receiving new data from the network, the MSM
transmits the data to the appropriatc MSP (using the

WriteData function).

The MSP asks the media sync manager how the data
should be handled (e.g., based on whether the data is in
sync with the sync target).

The MSP processes the data according to the instructions
from the media sync manager. Processing may include
waiting before playing the data, playing the data right
away, or dropping the data.

After completing the processing of the data, the MSP
recycles the buffer back to the MSM (using the Writ-
eDataComplete function) for use with new data.

The MSM then posts the buffer back to the network I/O
driver to be filled with new data from the network to
repeat the process.

Stopping or pausing a multicast session by the client is

implemented as follows:

The user asks the client application to stop processing
specified data streams.

The client application passes the MSM a list of the data
streams to be stopped (using the MSM__StopServices
function).

The MSM tells each appropriate MSP to stop service
(using the StopService function).

Each MSP stops playing data. Note that incoming data
will still be sent to the MSPs so that they can decide
how to handle the data while in the paused state. For
cxample, a video MSP may need to continue to decom-
press video flames to be able to resume (i.e., unpause)
services in the future.

Client subsystem shutdown (i.e., termination) is imple-

mented as follows:

The user asks the client application to terminate the
multicast session.

The client application tells the MSM to terminate services
(using the MSM__TerminateServices function).

The MSM closes each MSP instance (using the CloseSer-
vice function).

Each MSP performs functions such as closing drivers or
fleeing buffers, as necessary.

After the MSPs are closed, the MSM shuts down the
network stack and closes any other non-MSP services.

Buffer Management

Referring now to FIG. 19, there is shown a representation
of the flow of data through server software architecture 1512
of FIG. 16, according to a preferred embodiment of the
present invention. Data flow from a source MSP 1906
through the MSM 1904 to the network input/output (I/O)
driver 1902. If the server is monitoring the data being
multicast over the network, then data also flow from the

5,557,724

17

MSM 1904 to a sink MSP 1908. The source and sink MSPs
own (i.e., allocate and free) the data buffers, because only
the MSPs know the size and format of the data. Neither the
MSM or any of the media-independent services (e.g., the
network 1/O drivers) monitor or alter data buffers, although
data may be appended for service processing as in the
network 1/O driver.

As represented in FIG. 19, the flow of data through server
software architecture 1512 proceeds as follows:

1. If the server application selects monitoring of the data
being multicast over the network, then sink MSP 1908
allocates and registers sink buffers with MSM 1904 (using
the RMS API function RegisterBufTer). This occurs when
sink MSP 1908 is opened and before any data has been
captured by source MSP 1906.

2. Source MSP 1906 allocates source buffers, fills them with
data (on some regular interval for real-time data), and tells
MSM 1904 when there is new data for MSM 1904 to
receive (using the RMS API function ReceiveData).

3. After MSM 1904 receives a source buffer, it sends the
source buffer data to the network I/O driver 1902 for
transmission over the network (using MSM API function
SendBuffer).

. If the appropriate sink MSP 1908 is open, MSM 1904 will
copy the source buffer data into the next available sink
buffer, and write the sink buffer to be played by sink MSP
1908 (using the RMS API function WriteData).

5. After sink MSP 1908 plays a sink buffer, sink MSP 1908
informs MSM 1904 that the sink buffer can be reused
(using the RMS API function WriteDataComplete).

6. After the source buffer data has been transmitted over the
network, network I/O driver 1902 informs MSM 1904
that the source buffer can be reused (using the MSM API
function SendComplete).

7. After network 1/0 driver 1902 and sink MSP 1908 have
released the source buffer back to MSM 1904, MSM 1904
returns the source buffer to source MSP 1906 for reuse
(using the RMS API function RecycleBuffer).

Referring now to FIG. 20, there is shown a representation
of the flow of data through client software architecture 1712
of FIG. 18, according to a preferred embodiment of the
present invention. Data flow from the network input/output
(I/O) driver 2002 through the MSM 2004 to a sink MSP
2008. The flow of data through client software architecture
1712 proceeds as follows:

1. Sink MSP 2008 allocates and registers sink buffers with
MSM 2004 (using RegisterBuffer). This occurs when sink
MSP 2008 is opened and before any data has been
received from the network.

2. When MSM 2004 initializes network I/O driver 2002, the
MSM specifies the data streams to be received (i.e., which
sink MSPs are open). MSM 2004 then posts all of the
appropriate sink buffers to the network (using the MSM
API function PostBuffer).

3. When data is received by network I/O driver 2002 from

the network, network I/O driver 2002 fills a sink buffer

and passes it to MSM 2004 (using the MSM API function

ReceiveBuffer).

MSM 2004 then writes the sink buffer data to the sink

MSP that owns the buffer (using the WriteData function).

5. After sink MSP 2008 plays the sink buffer data, sink MSP
2008 informs MSM 2004 that the sink buffer can be
reused (using the WriteDataComplete function).

6. After sink MSP 2008 informs MSM 2004 that the sink
buffer data has been played, MSM 2004 re-posts the
buffer to network I/O driver 2002 to be reused (using the
PostBulffer function).

4.

10

15

30

35

45

50

35

65

32

18

FIGS. 19 and 20 apply to writing data to a network and
receiving data from a network, respectively. Those skilled in
the art will understand that writing data to a file and reading
data from a file are implemented using analogous process-

ing.

Network Input/Output Driver

Referring now to FIG. 21, there is shown a block diagram
of the software architecture of network I/O driver 2100,
according to a preferred embodiment of the present inven-
tion. In a preferred embodiment, network 1/O driver 2100
comprises the functionality of both network 1/O driver 1628
of server software architecture 1512 of FIG. 16 and network
1/O driver 1828 of server software architecture 1712 of FIG.
18.

In a server, network I/O driver 2100 receives related,
time-stamped data streams from the server media services
manager and transmits data packets corresponding to those
dala streams to the network for multicasting. In a client,
network I/O driver 2100 receives related, time-stamped data
packets from the network and transmits data streams corre-
sponding to those data packets to the client media services
manager for display and/or recording of the multicast chan-
nel data.

Network I/O library, 2102 of network I/O driver 2100
provides a high level network interface to the modules of
multicast system 100. The MSM uses the following network
1/0 library functions to communicate with network I/O
driver 2100:

InitNetOut(): Called by the MSM to prepare for trans-
mitting data packets on the network.

WriteNet(): Transmits the specified data packet on the
network using the appropriate socket ID.

RecycleBuffer(): Called by network I/O module 2100 to
give MSP buffers back to the MSM after the data have
been transmitted on the network. This function prefer-
ably resides in the MSM.

TerminateNetOut(): Terminates the network output ses-
sion.

InitNetIn(): Called by the MSM to prepare for receiving
data packets from the network.

NetPostBufifer(): Called by the MSM to register an MSP
buffer with the network for receiving new data. MSP
buffers are loaded into different socket queues based
upon data types.

WriteBuffer(): Called by network I/O driver 2100 to
inform the MSM that a new data packet has been
received into one of the socket queues. This function
preferably resides in the MSM. In response, the MSM
delivers the new data packet to the appropriate MSP to
be played.

TerminateNetIn(): Terminates the network input session.

Data link manager (DLM) 2106 orchestrates the flow of

one or more channels over one or more transport media (e.g.,
Ethernet network), where each channel comprises one or
more types of data streams (i.e., audio, video, text). DLM
2106 provides fragmentation and re-assembly (i.e., de-frag-
mentation) of large data messages. Network I/O library 2102
and DLM 2106 communicate with one another using DLM
application programming interface (API) 2104. DLM 2106
and DLM API 2104 are described in further detail later in
this specification in conjunction with FIG. 22.

Media dependent module (MDM) 2110 provides all trans-

port media specific functionality. There is one MDM 2110

5,557,724

19

for each transport medium/transport protocol pair (e.g.,
Ethernet network with Novell ODI-compliant driver running
on an Intel Ether Express 16 network card). MDM 2110
provides functionality for address manipulation and data
transfer. DLM 2106 and MDM 2110 communicate with one
another using MDM API 2108. MDM 2110 and MDM API
2108 are described in further detail later in this specification
in conjunction with FIG. 23,

Link packet manager (LPM) 2114 orchestrates the flow of
link packets to and from data link manager (DLM) 2106 and
media dependent module (MDM) 2110. Link packet man-
ager (LPM) 2114 creates, destroys, and allocates link pack-
ets for network I/O driver 2100. A link packet is a data
structure shared between DLM 2106 and MDM 2110, Link
packets provide efficient transfer of data between DLM 2106
and MDM 2110. DLM 2106 and MDM 2110 communicate
with LPM 2114, and vice versa, using LPM API 2112. The
link packet structure is defined later in this specification in
conjunction with FIGS. 28 and 29.

A global dynamic loader (GDL) (not shown) is respon-
sible for bringing DLMs and MDMs into the system as
needed and for discarding them when they are no longer
needed. The GDL is described in further detail later in this
specification in conjunction with FIGS. 31 and 32.

Data Link Manager

Referring now to FIG. 22, there is shown a block diagram
of data link manager (DLM) 2106 of network 1/O driver
2100 of FIG. 21, according to a preferred embodiment of the
present invention. DLM 2106 is configured for only con-
nectionless data transfers. DLM 2106 supports data transfers
of up to 64 K bytes per data message. The network may not
be able to support data packets of up to 64 K bytes. In that
case, in the server, DLM 2106 fragments data messages as
necessary for transmission on the network. In a client. DLM
2106 re-assembles (de-fragments) the network data packets
received from the neiwork into the original data messages.
DLM 2106 preserves message boundaries (i.e., the data
messages re-assembled by DLM 2106 in a client are the
same as the data messages given to DLM 2106 in a server).

DLM 2106 also manages sockets. A socket is a logical
combination of a network address and a port number. The
network address is passed through DLM 2106 to MDM 2110
for processing. The ports on the network address are main-
tained by DLM 2106. In a server, DLM 2106 is responsible
for multiplexing the ports onto the correct network
addresses. This multiplexing of ports onto addresses is
similar to the multiplexing of channels onto connections in
a connection-oriented environment.

Data is sent from a server (i.e., source) sockel to a client
(i.e., destination) socket. Before the data is sent, the server
source socket must be registered with the server DLM. The
client socket is not registered with the server DLM. For
packel reception at the client, the address and port of the
client destination socket must be regisiered with the client
DLM. The server socket is not registered with the client
DLM. The client may receive data from any network node.

DLM 2 106 is also responsible for maintaining a priority-
based queue between all sockets on the same address. The
priority-based queue allows packets from high priority sock-
els 1o be placed in an address queue ahead of packets from
lower priority sockets. In a client, when a packet arrives on
a particular address, DLM 2106 is responsible for determin-
ing the correct socket via the port number contained within
the packet.

15

20

45

50

55

60

65

33

20

Session manager 2202 of DLM 2106 defines the network
transport to use for data transfers using the functions DLM__
BeginSession and DLM__EndSession to begin and end
sessions, respectively. These functions and other functions
and data structures identified in this section are described in
further detail in this specification in the following sections.

Port/socket manager 2204 is responsible for maintaining
user sockets. Port/socket manager 2204 uses the functions
DLM_ RegisterSocket and DLM__UnRegisterSocket to reg-
ister and unregister sockets, respectively.

Address manager 2206 maintains the network addresses
specified within the sockets. When the user requests a socket
with a previously undefined network address, address man-
ager 2206 opens the address with the MDM and adds it to
its table of current addresses.

Message output manager 2208 maintains the queue of
buffers waiting to be output to the network. A queue is
maintained for each MDM address. The function call
DLM__dgSend causes message output manager 2208 to
place the received buffer into the queue in order of priority.
The message output manager 2208 then instructs asynchro-
nous fragmenter 2210 to output one or more fragments (i.c.,
data packets containing portions of the data message stored
at the head of the buffer queue) to the network.

In a server, asynchronous fragmenter 2210 performs the
actual transmission of data to the MDM. Fragmenter 2210 is
called for every network event (i.e., transmission-completed
event or packet-received event) or whenever a buffer is
placed onto the queue. Fragmenter 2210 gets an empty link
packet from link packet manager 2114, checks the flow
control with the MDM, copies the next fragment from the
buffer at the head of the queue into the link packet for the
address that triggered the event, and transmits the filled,
addressed packet to the MDM. When the buffer at the head
of the queue has been completely fragmented and transmit-
ted to the MDM, fragmenter 2210 instructs send complete
handler 2212 to call the DLM Send Complete Callback
function to inform network I/O library 2102 that DLM
processing of the buffer is complete.

In a client asynchronous de-fragmenter 2214 re-as-
sembles (i.e., defragments) the data packets received from
the network. When a data packet arrives, the MDM calls
de-fragmenter 2214 which checks the queue of receive
buffers for the correct address. At the head of the queue,
there is a distinguished element that is currently being built.
De-fragmenter 2214 verifies that the incoming data packet
should be placed at the next expected offset within the buffer
under construction and, if so, copies the data into the buffer,
If the receive buffer is complete, de-fragmenter 2214
instructs message receiver 2218 to transmit the completed
buffer to network I/O library 2102 using the DLM Message
Receive Callback function.

If there is no receive buffer currently under construction
and if the received data packet should begin a new buffer,
then de-fragmenter 2214 removes receive buffers from the
head of the queue until a buffer is found that is large enough
to contain the entire arriving data message. Receive buffers
that are too small are returned to network I/O library 2102
using E_TOOSMALL error code of the DLM Message
Receive Callback function call. If the queue empties before
a receive buffer of sufficient size is found, then de-frag-
menter 2214 drops the received packet and enters the
dropping state. Data will be dropped for this socket until a
packet that begins a new data message arrives on the same
address.

Receive buffer manager 2216 maintains the queues of
receive buffers that the user has posted using the DLM__

21

dgpostBuffer function call. One receive queue is maintained
fear each socket being serviced.

To establish a connectionless data transfer session, the
server and a client each call the DLM_ BeginSession and
DLM_ RegisterSocket functions to their respeclive local
DLMs. The local DLM responds by calling the DLM
Session Callback function with the REGISTER_COM-
PLETE event to notify, the server/client that the socket has
been successfully registered. The server sends data over the
network by calling the DLM__dgSend function to the server
DLM. Upon receipt of the data, the client DLM notifies the
client of receipt of the data by calling the DLM Message
Receive Callback function specified for this socket.

To close a socket, the server calls the DLM__ UnReg-
isterSocket function to which the server DLM responds by
calling the DLM Session Callback function with the
UNREGISTER _ COMPLETE event. The server then calls
the DLM _ EndSession function to which the server DLM
responds by calling the DLM Session Callback function
with the SESS_ CLOSED event. The client and client DLM
implement an identical sequence of function calls.

The following sections provide further information
regarding the data structures and functions for interfacing a
DLM with a connectionless network.

Data Structures of the Data Link Manager
This section describes the data structures that the DLM
presents externally.

Session information is contained in a DLM session ID
word, a 32-bit unsigned integer with bits as defined below:

31 28 27 22 21 16 15 8 7 0
D Session
Type Reserved Index DLMID Reserved

Bits 0-7 of the session ID are reserved and are not used by
the DLM. Bits 8-15 represent the DLM ID, given in

5,557,724

20

30

35

DLM_ BeginSession (described below). Bits 16-21 repre- 40

sent the session index. The session index preferably begins
at 0 for the first session and is incremented for each
additional session opened on the DLM. There are a maxi-
mum 64 sessions on any one DLM. Bits 22-27 are also
reserved. Bits 28-31 represent the identifier type.

Socket information is contained in a DLM socket ID
word, a 32 -bit unsigned integer with bits defined as follows:

31 2827 23 22 18 17 12 11 6

45

5

22

MaxSessions Maximum number of sessions that the DLM
can support.

MaxConnections Maximum number of simultaneous con-
nections that the DLM can support. For a DLM that
supports only connectionless data transfers, this value
is preferably 0.

MaxChannels Maximum number of simultancous chan-
nels that the DLM can support on any given connec-
tion. For a DLM that supports only connectionless data
transfers, this value is preferably 0.

MaxAddresses Maximum number of simultaneous, dif-
ferent network addresses that the DLM can support.

MaxPorts Maximum number of simultaneous ports that
the DLM can support on any given network address.

MaxSockets Maximum number of simultaneous sockets
that the DLM can support.

When a socket is opened via DLM_ RegisterSocket, the
following requested characteristics of the network services
to be provided are specified using the address characteristics
structure ADDRCHAR:

BitRate Network services must support at least this bit

rate for the operation to be useful.

Priority Requested priority of the socket. This may range
from 0 to MAX_PRIORITY, where 0 is the lowest
priority and MAX__PRIORITY is the highest.

For connectionless data transfers, a socket specifies
source and destination points for data. A socket consists of
both a network address and a port.

ADLM_ dgEvent structure is used in session callbacks to
indicate that an event has taken place on the network. The
following events are preferably supported:

SESS_ CLOSED Network session is closed.

REGISTER _COMPLETE Network socket registration is
complete.

UNREGISTER _COMPLETE Network socket has been
de-registered.

DG__ERROR An error event has occurred.

DLM Interface Functions for Connectionless
Networks

Before data transfer begins, the DLM is initialized and the
network access is established. This section describes the
functions for setting up network access in multicast system

0

D
Type

Address
Index

Session
Index

Port

D DLM ID

Reserved

Bits 0-5 of the socket ID are reserved and are not used by
the DLM. Bits 6-11 represent the DLM ID, given in
DLM_ BeginSession (described below). Bits 12-17 repre-
sent the session index for the session on which this socket is
defined. Bits 18-22 represent the internal address index of
the network address. The internal address index preferably
begins at O for the first address and is incremented for each
additional address. Bits 23-27 represent the port identifier of
the socket. Bits 28-31 represent the identifier type.

The DLM characteristics structure DLMCHARS contains
relevant data about the following limitations and parameters
of a given DLM:

Dlmld ID given to this DLM on DLM_ BeginSession.

60

65

34

100. The following functions support setup/teardown and
data transport at the DLM layer:

DLM_ BeginSession Begins a network session.
DLM__RegisterSocket Registers a network address with
the network.

DLM__dgSend Queues a buffer for sending data over the
network.

DLM__dgPostBuffer Makes a buffer available for receiv-
ing data over the network.

DLM__Pause Pauses a network session.
DLM_ UnPause Unpauses a network session.

5,557,724

23

DLM__UnRegisterSocket Unregisters a previously regis-
tered network socket.

DLM__EndSession Closes a network session.

Several of the functions of the DLM complete asynchro-
nously. These functions generate callbacks to the user at a
later time. The following callback function types are used by
the DLM to notify the user of asynchronous events:

DLM Session Callback Called upon the completion of an
asynchronous DLM event on this session (e.g., REG-
ISTER_COMPLETE).

DLM Send Complete Callback Called upon the comple-
tion of a send on this socket.

DLM Message Receive Callback Called upon receiving
data on this socket.

The DLM Session Callback function notifies the user that

a network socket has been registered or unregistered. The
DLM Send Complete Callback function is activated when-
ever data has been extracted from a user’s buffer and
enqueued for transmission. It is not a guarantee that the data
has actually been delivered to a client. The entry point for
the DLM Send Complete Callback function is the specified
SendCallback parameter to the DLM_ RegisterSocket func-
tion. The DLM Message Receive Callback function is
activated when data has arrived on the network for a
particular socket.

The DLM__BeginSession function prepares the DLM for
subsequent network access. DLM_ BeginSession has no
local callbacks and no peer callbacks.

The DLM__EndSession function ends the specified ses-
sion. Any data arriving at an outstanding socket is ignored.
All outstanding buffers are returned to the user via the
Message Receive Callback function with the status set to
indicate that the socket closed while the buffer was out-
standing. All outstanding network sockets on this session are
implicitly unregistered by this function.

The DLM_ RegisterSocket function is called to open a
communication socket as requested by the user. The user can
request that a specific address and port ID be opened as a
socket or that the DLM should select an address and port ID.
The user can either request an address with a specific value
or have one assigned. The address is then registered and a
handle returned to the user in the callback data (i.e., the
DLM address ID). The address handle is used in all other
calls when a reference to the network address is required. A
synchronous return from this function call with a good status
indicates that the request for a new address has been
successfully submitted. It does not indicate that the address
can be used. The session callback with the REGISTER
COMPLETE event type signals the completion of the reg-
istration process.

The DLM_dgSend function is called by the user to send
buffers of data over the communication network. A synchro-
nous return from this function with a good status indicates
that the buffer was accepted for transmission and will be
enqueued in the future. A synchronous return with a bad
status indicates that the bulfer will not be queued up and that
the callback function will not be activated. The callback
SendComplete from this function guarantees that the buffer
has been posted to the network queue. There is no guarantee
that the buffer was actually sent. The send complete callback
function SendComplete is called when the buffer is posted to
the network.

The DLM_ dgPostBuffer function is called to make
empty buffers available to the DLM in which incoming data
may be placed. A synchronous return from this function with
a good status indicates that a buffer has been posted to the
network to receive data. A synchronous return with a bad

30

35

45

50

55

63

35

24

status indicates that the buffer was never posted and that the
callback function will not be activated. The data received
callback ReceiveComplete from the DLM indicates that a
new buffer that arrived over the network is now available.
The receive complete callback function ReceiveComplete is
called when DLM has filled the buffer with data from the
network.

The DLM__UnRegisterSocket function deletes the socket
from the DLM. DLM__UnRegisterSocket may make a local
callback to UNREGISTER _COMPLETE.

The DLM_ Pause function stops network operations at
the DLM level. Until the user calls DLM_ UnPause, all
incoming data will be lost and all calls to DLM__dgSend will
return a paused status. Buffers may still be posted to the
network with DLM__dgPostBuffer, but they will not be filled
with data and returned to the user until after the call to
DLM__UnPause. Multiple calls to DLM _ Pause have no
effect.

The DLM__UnPause function resumes network opera-
tions at the DLM level. After this call, data will be sent and
received normally. Multiple calls to DLM__UnPause, as well
as calls without a previous call to DLM_ Pause, have no
effect.

Media Dependent Module

Referring now to FIG. 23, there is shown a block diagram
of media dependent module (MDM) 2110 of network I/O
driver 2100 of FIG. 21, according to a preferred embodiment
of the present invention. MDM 2110 hides the network
specifics from DLM 2106 and other higher layers of network
I/O driver 2100. MDM 2110 is the only module of network
/O driver 2100 that is affected by a change in the physical
network. MDM 2110 conforms to a single API, independent
of the physical medium in use. If a network implementation
does not support a particular MDM function, MDM 2110
returns an error specifying that the requested function is not
available. In FIG. 23, all dotted lines indicate function calls
through the Microsoft Windows DPMI host to the network
interface (preferably a Novell LSL and a Novell ODI-
compliant driver). MDM 2110 recognizes network addresses
for data transport, but has no knowledge of the defined
ports/sockets.

Session manager 2302 of MDM 2110 has two external
entry points: the MDM__BeginSession function call and the
MDM__ EndSession function call. Session manager 2302 is
responsible for installing and removing the MDM as an ODI
protocol stack. MDM 2110 allows only one active session.
When a session is opened, if there is no active session,
MDM 2110 locates the network interface and registers itself
as a protocol stack. This operation is defined in Novell
documentation entitled “Open DataLink Interface Develop-
er’s Guide for DOS Workstation Protocol Stacks.”

The protocol ID to service is extracted from the local
address parameter of the MDM__ BeginSession function call.
If a session is already active and the user calls the MDM__
BeginSession function, the parameters are checked to deter-
mine if they match the currently active session. If the
parameters match, then the reference count on the session is
incremented and MDM 2110 returns the session ID of the
currenily active session. If the parameters do not match, an
error is returned. To end a session, the user calls the
MDM__EndSession function. If there are open addresses on
the current session, an error is returned. Otherwise, the
reference count on the current session is decremented. If the
reference count reaches zero, then MDM 2110 removes
itself as a protocol stack.

3,557,724

25

Address manager 2304 is responsible for maintaining a
list of the currently active network addresses and for veri-
fying the validity of any given address. When a new address
is given to MDM 2110 via the MDM_ Register function call,
the new address is entered into the list of active addresses.
If the new address is a multicast address, then MDM 2110
notifies the network interface of the new multicast address
via a function call to the network interface. When the user
calls the MDM__ UnRegister function, the given address is
removed from the list of currently active addresses.

In a server, link packet output manager 2306 orchestrates
the transmission of data packets from DLM 2106 to the
network. Link packet output manager 2306 receives a link
packet from DLM 2106 via the MDM_ dgSend function
call. Link packet output manager 2306 verifies the address
and, if verified, places the packet into the send queue for
subsequent transmission to the network.

In a server, send process manager 2310 transmits packets
from the send queue to the network. Send process manager
23 10 is governed by a timer. Each time the timer interrupts
the send process, send process manager 2310 gets an event
control block (ECB) from ECB manager 2308. Send process
manager 2310 then removes a link packet from the head of
the send queue and copies the data from the link packet into
an ECB fragment. A copy is implemented for the ECB
fragment to reside in low DOS memory for communication
with the network interface. When the transmission of the
link packet to the network is complete, the network interface
instructs send complete handler 2318 to identify which link
packet was completed and to notify the user via the MDM
Send Complete Callback function specified in the MDM __
Register call. Send complete handler 2318 then frees the
indicated ECB.

In a client, receive process manager 2316 orchestrates the
reception of data packets from the network. The network
interface informs receive process manager 2316 that data is
available. Receive process manager 2316 gets an event
control block (ECB) from ECB manager 2308 and passes
the ECB to the network interface for data reception. When
the network interface has filled the ECB with data, the
network interface passes the filled ECB back to receive
process manager 2316. Receive process manager 2316 cop-
ies the network data from the ECB into a link packet, flees
the network ECB, and instructs link packet receiver 2314 to
pass the link packet to the user via the MDM Message
Receive Callback function specified in the MDM _ Register
call.

Flow control manager 2312 ensures that the upper layers
do not overfill MDM 2110 with data. The upper layers calls
the MDM dgClearToSend function, before sending a
packet. Flow control manager 2312 checks the number of
outstanding ECBs and the size of the send queue.

The following sections provide further information
regarding the data structures and functions for interfacing an
MDM with a connectionless network.

Data Structures of the Media Dependent Module

This section describes the data structures that the MDM
presents externally.

50

60

36

26

Session information is contained in an MDM session ID
word, a 32-bit unsigned integer with bits as defined below:

31 28 27 22 21 16 15 8 7 0
D Session
Type Reserved Index DLMID MDM ID

Bits 0-7 contain the MDM ID, given in MDM _ BeginSes-
sion. Bits 8-15 represent the DLM ID, also given in MDM__
BeginSession. Bits 16-21 represent the session index. The
session index preferably begins at 0 for the first session and
is incremented for each additional session opened on the
MDM. There are a maximum 64 sessions on any one MDM.
Bits 22-27 are reserved. Bits 28-31 represent the identifier
type.

Address information is contained in an MDM address 1D
word, a 32-bit unsigned integer with bits as defined below:

31 28 27 22 21 16 15 8 7 0
D Address Session
Type Index Index DLMID MDM ID

Bits 0-7 contain the MDM 1D, given in MDM__ BeginSes-
sion. Bits 8-15 represent the DLM ID, also given in MDM__
BeginSession. Bits 16-21 represent the session index for the
session on which this network address is defined. Bits 22-27
represent the address index of the network address. The
address index preferably begins at 0 for the first address and
is incremented for each additional address. There are a
maximum of 64 open addresses on any one MDM. Bits
28-31 represent the identifier type.

Since a DLM is able to operate with one or more MDMs,
the DLM is preferably able o adapt to the characteristics of
a particular MDM. The MDM characteristics structure
MDMCHARS is used by MDM GetCharacteristics to report
the following relevant data about the MDM:

Mdmld MDM identifier used to refer to this MDM.

PacketSize Most efficient packet size for transmission on
the network.

MaxSessions Maximum number of simultaneous sessions
that the MDM can support.

MaxConnections Maximum number of simultaneous con-
nections that the MDM can support. Preferably 0 for
connectionless data transfers.

MaxAddresses Maximum number of simultaneous net-

work addresses that the MDM can support.

When a network address is opened via MDM_ Register,
the minimum bit rate of the network services to be provided
is specified using the address characteristics structure
ADDRCHAR.

A TADDR structure is used to represent a network
address. For the Novell ODI implementation of connection-
less data transfers, the first six bytes of the address field of
the TADDR structure represent the value of the network
address.

An MDM__dgEvent structure is used in the callback to
indicate that an event has taken place on the network. This
structure is used for all event callbacks except for the data
send and data receive callbacks. The following events use
the datagram specific event structure MDM _ dgEvent:

SESS__CLOSED Network session is closed.

REGISTER COMPLETE Address registration is com-
plete.

UNREGISTER_COMPLETE Address has been de-reg-
istered.

5,557,724

27
DG_ERROR An error event has occurred.

MDM Interface Functions for Connectionless
Networks

As with the data link manager (DLM), the media depen-
dent module (MDM) is initialized and the network access is
established before data transfers begin. The following are
the MDM functions related to connectionless data transfer:

MDM_ BeginSession Begins a network session.

MDM__Register Opens and registers a network address.

MDM__dgSend Queues a buffer for sending data over the
network.

MDM __UnRegister Unregisters a previously registered
address.

MDM_ dgClearToSend Allows the user of MDM (e.g., a
DLM) to perform flow control by verifying that the
lower level network queue is not choked.

MDM__Pause Pauses a network session.

MDM__UnPause Unpauses a network session.

MDM__EndSession Closes a network session.

Certain MDM functions complete asynchronously. These
functions begin an action and the user is called back when
that action completes. The following callback functions are
used by the MDM layer to communicate with the calling
DLM:

MDM Session Callback Called upon the completion of an
asynchronous MDM event on this session, e.g., REG-
ISTER_COMPLETE.

MDM Send Complete Callback Called upon the comple-
tion of a send on a given network address.

MDM Message Receive Callback Called upon receiving

data on this network address.

The MDM Session Callback function notifies the user that
a network address has been registered or unregistered.

The MDM Send Complete Callback function is activated
whenever data has been extracted from a link packet and
enqueued for transmission. There is no guarantee on the
delivery of data on the network. The entry point for the
MDM Send Complete Callback function is defined in the
SendCallback parameter to the MDM_Register function.

The MDM Message Receive Callback function is acti-
vated when data has arrived on the network and has been
copied into a link packet for the DLM. At the completion of
the callback, the MDM assumes that it can free the link
packet back to the link packet pool. The DLM copies any
data that it intends to use after the callback. The entry point
for the MDM Message Receive Callback function is defined
in the ReceiveCallback parameter to MDM__Register func-
tion.

The MDM__BeginSession function prepares MDM for
subsequent network usage before connectionless operations
begin. Bytes 6-11 of the address field of the local address
parameter for the MDM__BeginSession function contain the
protocol ID to use. Session IDs are unique across all MDMs.
MDM__BeginSession returns synchronously and has no
local or peer callbacks.

The MDM__EndSession function ends the specified ses-
sion. MDM __EndSession makes no peer callbacks, but may
make a local SESS CLOSED callback.

The MDM__Register function is called by a DLM to open
an address at the MDM level. If the address has not been
previously registered, the MDM opens the network address
to allow data sends and receives. The MDM then returns a
new MDM address ID to be used on all sends and receives

10

20

35

45

50

55

60

37

28

for this address. If the address has been previously regis-
tered, the MDM will return the previously allocated MDM
address ID. It is up to the DLM to correctly respond to the
user.

A synchronous return from this function call with a good
status indicates that the request for a new address has been
successfully submitted. It does not indicate that the address
is ready for use. The event callback with the REGISTER _
COMPLETE event type signals the completion of the reg-
istration process.

The status of the REGISTER_COMPLETE callback
specifies whether the address has been previously registered.
If the Status field in the MDM_dgEvent structure is good,
then the address has not previously been seen. If the Status
field in the MDM _dgEvent structure indicates that the
address has been previously registered, then the address ID
returned is the same value as the address retuned previ-
ously. MDM_ Register may make a local REGISTER
COMPLETE callback.

The function MDM__dgClearToSend verifies that a link
packet of the given size can currently be sent on the network
on the specified MDM address. The DLM uses this function
to perform flow control. MDM _ dgClearToSend returns one
of the following status indication values:

TRUE Data can currently be sent.

FALSE Sending the indicated data is not currently pos-
sible.
MDM_dgClearToSend makes no local or peer callbacks.

The MDM__dgSend function is called by the DLM to
send link packets over the communication network. The
DLM is responsible for ensuring flow control by calling
MDM_ dgClearToSend prior to this call. A synchronous
return from this function with a good status indicates that the
link packet was accepted for transmission and will be
enqueued in future. A synchronous return with a bad status
indicates that the link packet will not be queued up and the
callback function will not be activated.

The callback from this function guarantees that the link
packet has been posted to the network queue. There is no
guarantee that the link packet was actually sent. The MDM
will transmit the packet on the network address correspond-
ing to the given MDM address ID. In order for the link
packet to arrive at the correct network address, and be
handled by the receiving DLM, the caller of MDM _ dgSend
(e.g., the server DLM) must initialize the header fields of the
link packet with both the server (i.e., source) and client (i.e.,
destination) sockets. The Send Complete callback function
is called when the link packet is posted to the network.

The MDM __UnRegister function disables the address for
sending or receiving data, and frees up any resources asso-
ciated with the address. MDM_ UnRegister may make a
local UNREGISTER__ COMPLETE callback.

The MDM_ Pause function stops network send opera-
tions at the MDM level. Until the user calls MDM__
UnPause, all incoming data will be lost. Calls to MDM__
dgSend are still allowed and will operate normally in order
to drain send queues of other network layers. Multiple calls
to MDM__Pause have no effect.

The MDM _UnPause function resumes network opera-
tions at the MDM level. After this call, data will be received
normally. Multiple calls to MDM__UnPause, as well as calls
without a previous call to MDM_Pause, have no effect.

Data Packet Formats

Referring now to FIG. 24, there is shown a representation
of data flow through each server and client of multicast

5,557,724

29

system 100 of FIG. 1, according to a preferred embodiment
of the present invention. Data is transmitted between a
media service provider (MSP) and the media services man-
ager (MSM) in data packets that conform to the appropriate
Level 1 format. Similarly, data transmitied between the
MSM and the data link manager (DLM) conforms to the
Level 2 data packet format; data transmitted between the
DLM and a media dependent module (MDM) conforms to
the Level 3 data packet format; data transmitted between an
MDM anti the appropriate network interface conforms to the
Level 4 data packet format; and data transmitted by the
network interface to the network and received by the net-
work interface from the network conforms to the Level 5
data packet format.

At a server, audio, video, and text MSPs receive audio,
video, and text data streams from the appropriate media
capture subsystems and transmit Level 1 data packets (i.e.,
data messages) to the MSM. The MSM generates and
transmits Level 2 data packets to the DLM, which in tum
generates and transmits Level 3 data packets to the appro-
priate MDM. The MDM generates and transmits Level 4
data packets to the network interface, which in tun gener-
ates and transmits Level 5 data packets over the network to
the clients.

At a client, the process is reversed. The network interface
receives Level 5 data packets from the network and gener-
ates and transmits Level 4 data packets to the MDM. The
MDM generates and transmits Level 3 data packets to the
DLM, which in turn generates and transmits Level 2 data
packets to the MSM. The MSM generates and transmits
Level 1 data packets to the appropriate MSPs, which recon-
struct the data streams for play in the appropriate media
playback subsystems.

There are three different Level 1 data packet (i.e., data
message) formats corresponding to the three different media
types (audio, video, and text) handled by the MSPs of
multicast system 100. Each Level 1 data packet contains
media-specific header information and media-specific raw
information.

Referring now to FIG. 25, there is shown a representation
of a Level 1 andio data packet. A Level 1 audio data packet
comprises a two-byte time stamp followed by 2048 bytes of
audio data. The time stamp is attached to each Level 1
packet as it is captured in the server. The client uses the time
stamp to update the synchronization clock when playing the
data. Audio data is preferably captured continuously in
2048-byte messages conforming to the Microsoft Wave
audio format defined in the Microsoft Multimedia Program-
mer’s Reference.

Referring now to FIG. 26, there is shown a representation
of a Level 1 video data packet. A Level 1 video data packet
comprises a standard 28-byte Microsoft Video for Windows
header, a four-byte reserved value, and up to 18 kilobytes of
data. The data area size limit of 18 kilobytes is based on
video data rates that are themselves governed by the video
processing algorithm implemented in multicast system 100
of FIG. 1. Those skilled in the art will understand that
alternative preferred embodiments of the present invention
that implement other video processing algorithms may sup-
port higher data rates and therefore greater data area sizes in
Level 1 video data packets.

Referring now to FIG. 27, there is shown a representation
of a Level 1 text data packet. A Level 1 text data packet
comprises up to 200 bytes of text data followed by a
specified string termination character (e.g., the NULL char-
acter).

15

20

25

30

50

38

30

The MSM preferably does not interpret or modify the data
packets that it receives. In the server, the MSM forwards
Level 1 data packets to the DLM. In the client, the MSM
forwards Level 2 data packets to the appropriate MSPs. As
such, Level 1 and Level 2 data packets are preferably
identical.

Referring now to FIG. 28, there is shown a representation
of a Level 3 data packet (i.e., link packet) comprising a
24-byte DLM header and up to 1476 bytes of data. In the
server, the DLM is capable of receiving Level 2 data packets
of up to 65,536 bytes (64 K bytes) in size. Without inter-
preting the Level 2 data, the DLM fragments the Level 2
data packets into data segments of up to 1476 bytes. To each
data segment, the DLM adds a 24-byte DLM header to
generate the Level 3 data packet or link packet.

Thus, for example, the server DLM may receive a 2050-
byte Level 2 audio data packet (see FIG. 25) and generate
two Level 3 data packets: one 1500-byte Level 3 packet
(comprising a 24-byte DLM header followed by the first
1476 bytes of the Level 2 audio packet) and one 598-byte
Level 3 packet (comprising a 24-byte DLM header followed
by the last 574 bytes of the Level 2 audio packet). Similarly,
the server DLM may receive a 201-byte Level 2 text data
packet (see FIG. 27) and generate one 225-byte Level 3 data
packet (comprising a 24-byte DLM header followed by the
201 bytes of the Level 2 text packet).

Referring now to FIG. 29, there is shown a representation
of the 24-byte DLM header of a Level 3 data packet. The
DLM header is defined as follows:

Destination Address Network address (a 6-byte unsigned
integer) of the destination for the packet.

Destination Port Port number (a 1-byte unsigned integer)
of the destination for the packet.

Source Address Network address (a 6-byte unsigned
integer) of the source of the packet.

Source Port Port number (a 1-byte unsigned integer) of
the source of the packet.

Message Number DLM sequence number (a 4-byte
unsigned integer) of the message on the given source
socket. DLM uses this field to reconstruct messages
from connectionless datagram link packets.

Offset Offset in the message of the first byte of the link
packet. The source socket, message number, and offset
uniquely determine the location of the bytes of this link
packet in the message. This allows the DLM to recon-
struct messages on a per-socket basis. Offset is a 2-byte
unsigned integer.

Size Number of bytes in the data part of the link packet.
Size is a 2-byte unsigned integer.

Total Size Total number of bytes of the user’s message
that is being transmitted. Total Size is a 2-byte unsigned
integer.

The destination address and destination port comprise the
destination socket. Similarly, the source address and the
source port comprise the source socket. Since the packet is
transmitted between the machines, Destination Address,
Destination Port, Source Address, and Source Port are
expressed as the real network addresses and port numbers,
not the local ID values.

At a client, the DLM receives link packets (i.e., Level 3
data packets) from the MDM anti reconstructs the Level 2
data packets (i.e., data messages) for transmission to the
MSM. The destination port ID in the DLM header is used by
the client DLM to distinguish data from multiple source
channels.

5,557,724

31

The MDM preferably does not interpret or modify the
data packets that it receives. In the server, the MDM
forwards Level 3 data packets to the network interface. In
the client, the MDM forwards Level 4 data packets to the
DLM. As such, Level 3 and Level 4 data packets are
preferably identical. The MDM is a pass-through layer that
provides a common interface for the DLM for all network
protocols.

Referring now to FIG. 30, there is shown a representation
of a Level 5 data packet comprising a 14-byte network
header and up to 1500 bytes of data. In the server, the
network interface receives Level 4 data packets (i.c., link
packets) of up to 1500 bytes in size. Without interpreting the
Level 4 data, the network interface preappends the network
header to create a network packet (i.c., Level 5 data packet)
compatible with the corresponding communication medium.
For example, when the network interface is a Novell ODI-
compliant driver, the network interface creates an IEEE
802.3 Ethernet II frame by preappending the 14-byte net-
work header of FIG. 30 to the Level 4 (link) packet. The
destination and source addresses are standard 6-byte Ether-
net MAC addresses. The 2-byte packet type for multicast
system 100 is preferably the hexadecimal value 8442. The
Ethernet IT frame is handed to the ODI-compliant driver and
transported over the physical medium. The DLM link packet
header is transmitted on the network along with the network
header and the DLM data since the DLM header contains
information to be used for reconstructing the message on the
receiving channel.

At the client, the network interface receives Level 5 data
packets (e.g., Ethemnet II flames), strips off the network
headers, and transmits the resulting Level 4 data packets
(i.e., link packets) to the MDM for transmission to the DLM
for eventual reconstruction of the application data streams,

Those skilled in the art will understand that alternative
preferred embodiments of the present invention may employ
transport media other than, or in addition to, the Ethernet
network. In these alternative embodiments, the sizes of the
Level 3, 4, and 5 data packets may vary depending upon the
requirements of the particular transport media employed.
The 24-byte Level 3 DLM header is preferably the same,
however, for all preferred embodiments of the present
invention.

Media Synchronization

In multicast system 100, data streams may be related in
two different ways. First, iwo or more data streams may be
related by being components of the same channel. Second,
two or more data streams may be related by being time
stamped for synchronization. Data streams are related as
channels to provide clients with the ability to receive and
process all of the data streams that constitute a program
(e.g., the audio and video components of a television pro-
gram). Data streams are related by time stamping to provide
clients with the ability to synchronize the playing of the data
streams.

Time stamping is not always necessary. For example, in a
channel comprising the audio and video components of a
television signal and text of stock market quotes, the text
data stream need not be time stamped, since the play of the
text data stream by a client does not have to be synchronized
with the play of the audio and video data streams.

Two characteristics of multicast system 100 make media
synchronization desirable. First, video capture component

20

45

50

55

65

1504 and audio capture component 1508 of server 102 of .

FIG. 15 may capture data at different rates. For example,

39

32

video data may be captured at a rate of ten video messages/
second, while audio data may be captured at a rate of eight
audio messages/second. Second, data is transmitted from the
server to clients via connectionless data transfer, in which
data typically arrives at clients in an asynchronous fashion.

In the server, when a source MSP (1612, 1616, or 1620 of
FIG. 16) receives new data, the MSP asks MSM 1608 for a
new time-stamp from media sync manager 1624, which the
MSP adds to the data header before sending the data to MSM
1608 for transmission to the network and/or storage to mass
storage device 1516.

‘When time stamping is performed, one of the data streams
in the channel is designated as the sync target. A client plays
data corresponding to the sync target as soon as the data are
received from the network. The client attempts to synchro-
nize the playing of all of the other time-stamped data streams
with the playing of the sync target.

In the client, media sync manager 1824 of FIG. 18 keeps
track of the designated sync target and orchestrates the
playing of data for the other time-stamped data streams.
Assume, for example, that the audio data stream of a channel
having audio and video components is the designated target
sync. When audio sink MSP 1818 receives new audio data
from the network, MSP 1818 asks sync manager 1824 for
playing instructions. Since the audio data stream is the sync
target, sync manager 1824 instructs MSP 1818 to play the
audio data when MSP 1818 is available to play the data.

Continuing with the same example, when video sink MSP
1814 receives new video data from the network, MSP 1814
asks sync manager 1824 for playing instructions. Sync
manager 1824 determines how to instruct MSP 1814 by
comparing the time stamp T, for the new video data with the
time stamp T, of the last audio data. If the magnitude of the
difference between T, and T, is less than a first threshold
(preferably 200 milliseconds), then sync manager 1824
instructs video sink MSP 1814 to play the new video data
when MSP 1814 is available to play the data.

If the video data leads the audio data by more than the first
threshold, but less than a second threshold (preferably 1500
milliseconds), then sync manager 1824 instructs video sink
MSP 1814 to wait before playing the video data. Video sink
MSP 1814 preferably places the video data in a queue for
later playing.

If the video data lags the audio data by more than the first
threshold, but less than the second threshold, then sync
manager 1824 instructs video sink MSP 1814 to hurry. Video
sink MSP 1814 preferably performs processing to attempt to
catch up to the audio sync target (e.g., some form of backoff
strategy in which one or more video flames are skipped).

If the video data leads or lags the audio data by more than
the second threshold, then sync manager 1824 informs video
sink MSP 1814 that an error has occurred. If the video data
lags time audio data by more than the second threshold, then
video sink MSP 1814 preferably drops the video data. If the
video data leads the audio data by more than the second
threshold, then video sink MSP 1814 preferably saves the
video data in a queue to await the corresponding audio data.
If the queue becomes full, then video sink MSP 1814
overwrites the oldest video data with the newest video data.

Media synchronization may be used to synchronize mul-
tiple independent data streams in any multipoint computer-
based network, not just in a multicasting environment. It
also applies where data streams are sent on different network
channels, to different network addresses, and/or on different
networks.

5,557,724

33
Global Dynamic Loading

Referring now to FIG. 31, there is shown a block diagram
of the software architecture of each of server 102 and clients
104 of multicast system 100 of FIG. 1 for loading and
unloading of service libraries, according to a preferred
embodiment of the present invention. In FIG, 31, service
requester 3102 represents any software module of the mul-
ticast application program 3104 of server 102 or client 104
that uses sets of functions stored as function libraries in
memory 3110. Windows services 3108 is part of the
Microsoft Windows application 3106.

Global dynamic loader (GDL) 3116 is part of the execut-
able of multicast application program 3104. GDL 3116
receives all requests to load and unload service libraries
from service requester 3102 and posts the requests to global
dynamic loader executable (GDLE) 3112, a separate execut-
able running in the system alongside the multicast applica-
tion program 3104 and the Microsoft Windows application
3106. GDLE 3112 receives and processes the requests for
loads and unloads from GDL 3116. In the case of a library
load request, GDLE 3112 hands GDL 3116 the entry points
for the requested library of loaded services 3114, which
GDL 3116 in turn passes back to service requester 3102.

More particularly, service requester 3102 of multicast
application 3104 begins the process of loading a library by
calling the GDL function GDL_ LoadDLL, specifying:

The name of the library to load;

A first pointer to an array of pointers to null terminated

strings specifying the entry points to return; and

A second pointer to an array of pointers to receive the

entry points. The second pointer must point to a block

of memory large enough to contain all of the entry

points that the caller expects to receive.
The GDL_ LoadDLL function determines whether GDLE
3112 is already running. If not, then GDL 3116 starts GDLE
3112 via a call to the Windows entry point WinExec and
saves the handle to the GDLE window. If GDLE 3112 is
already executing, GDL 3116 retrieves the handle to the
GDLE window via a call to the Windows entry point
FindWindow.

GDL 3116 encapsulates all of the parameters into the
tLoadDLL structure. GDL 3116 passes the address of the
tLoadDLL structure to GDLE 3112 via a call to Windows
entry point SendMessage with the GDLE window as the
destination window and a pointer to the structure as the
1Param of the message.

Upon receipt of the message from GDL 3116, GDLE 3112
determines if the requested library is new or if it has already
been loaded. If it is new, then GDLE 3112 reserves space in
its internal load table for the new library, resets a reference
count for this library to 0, and calls the Windows entry point
LoadLibrary to load the requested library. If the load fails,
then GDLE 3112 frees the internal table entry and returns 0
as the handle to the library. If the requested library has
already been loaded, then GDLE 3112 increments the ref-
erence count for this library in its internal load table and uses
the handle to the library stored in its internal load table.

For each function in the list of indicated function names,
GDLE 3112 then calls the Windows entry point GetProcAd-
dress and stores the returned address into the papFunct area
of the given tLoadDLL structure. After completing the
message, GDLE 3112 sends the Windows handle for the
loaded library back to GDL 3116 as the return value of the
SendMessage call. Control, which was blocked in the Send-
Message call, is then returned to GDL 3116, which has the
entry points available. Since GDL 3116 passes its papFunct

15

35

45

50

55

65

40

34
parameter to GDLE 3112 as the location to store the entry
points, GDLE 3112 has automatically loaded the caller’s
memory with the requested entry points. GDL 3116 simply
passes the return value from GDLE 3112 as its return value.

To unload a library, service requester 3102 makes a call to
the GDL entry point GDL_ UnloadDLL, specifying the
handle to the previously loaded window. GDL 3116 then
performs a Windows PostMessage to GDLE 3112 specifying
a request to unload a library and the handle of the library to
load.

GDLE 3112 examines its internal load table to determine
if the specified library has been loaded. If the library has
been loaded and its reference count is greater than 1, GDLE
3112 simply decrements the reference count and returns. If
the reference count is 1, then GDLE 3112 cails the Windows
function FreeLibrary to unload the given library from
memory. GDLE 3112 then frees its internal load table entry
for this library and returns an errors code indicating success
or failure.

When GDL 3116 uses the Windows PostMessage func-
tion to instruct GDLE 3112 to unload a library, the message
is placed onto the messages queue for the GDLE main
window for processing in the future. Since Windows does
not use a preemptive scheduling algorithm, at the call to the
PostMessage function, control is not passed immediately to
GDLE 3112. The thread from the service requester 3102 to
GDL 3116 to unload the library is not preempted but is
allowed to complete before the message to GDLE 3112 is
processed. Once this thread is complete, Windows gives
some execution time to GDLE 3112 and the message is
processed, the library is unloaded, and multicast application
3104 is free of the loaded library.

GDL 3116 is also responsible for cleaning up any libraries
that have been loaded, if multicast application 3104 should
terminate abnormally. When multicast application 3104 ter-
minates, Windows calls the GDL WEP function. GDL 3116
posts a message instructing GDLE 3112 to terminate. GDLE
3112 then prompts the user for the libraries that it should free
from its internal load table, frees the indicated libraries, and
terminates itself, thereby freeing all memory that it uses.
GDL 3116 then completes its termination sequence and is
unloaded by Windows.

Those skilled in the art will understand that the global
dynamic loading (GDL/GDLE) scheme of multicast system
100 provides certain advantages over traditional solutions to
loading libraries. These advantages include reduced memory
usage, increased flexibility, and efficient unloading of librar-
ies in the presence of asynchronous callbacks. These advan-
tages are particularly evident when multicasting information
whose content is not fixed when the program is loaded as in
multicast system 100. For example, one channel may con-
tain audio, video, and text data streams, while another may
contain only audio. In addition, different channels may be
transmitted over different network transport media at differ-
ent times.

Traditional methods for loading libraries include (1) the
monolithic model (i.e., using one monolithic executable file
containing code to process all functionality necessary), (2)
the Windows dynamically linked library (DLL) model (i.e.,
using dynamically linked libraries and letting the underlying
operating system swap the libraries in and out of memory as
necessary) and (3) using straight calls under program control
to the Windows LoadLibrary and FreeLibrary functions. The
GDL/GDLE scheme of multicast system 100 provides
advantages over each of these traditional solutions.

Because multicast system 100 is driven by interrupts in
the DOS/Window environment, it cannot be swapped to

5,557,724

35

disk. Therefore, it is important to keep the memory usage of
the program small in order to avoid over-use of scarce
resources. In the GDL/GDLE scheme of multicast system
100, the GDLE application determines what services are
required. It then loads the services and initializes them.
When a service is no longer needed, the GDLE application
is able to purge it from memory thereby reclaiming the
storage space and reducing overall memory usage. Thus, the
GDL/GDLE scheme of multicast system 100 uses memory
efficiently.

In addition, multicast system 100 is flexible, because the
main application program does not have to be re-written and
re-linked when a new media type (i.e., 2 new type of data
stream) is added to the system. In the GDL/GDLE scheme
of multicast system 100, the user or the application specifies
the module to load. The GDLE is then responsible for
loading and executing the specified module. When the
service is no longer needed, the application is able to remove
the module from memory. With this model of program
organization, the application is not changed to experiment
with new services. The user simply passes the names of the
new services to the application when prompted. In the case
where two modules are tested but both cannot be resident in
memory at the same time, the application need not be
changed. The user enters the name of the first module, tests
it, and unloads it. The user is then free to enter the name of
the second module, test it, and unload it. There are no
conflicts since the two modules are never resident in
memory at the same time.

Similarly, the monolithic model of a single executable
uses memory less efficiently and is more inflexible than the
GDL/GDLE scheme of multicast system 100. Under the
monolithic model, all of the functions (i.e., audio, video, and
text) are loaded as part of the single executable, even when
only a subset of those functions (e.g., audio only) are
required for a particular multicast session. As such, the
monolithic model uses memory inefficiently.

In addition, the monolithic model is inflexible. The mono-
lithic model would require that the system be re-compiled
and/or re-linked, and that a separate executable be built to
test each new media type. For example, if several new video
algorithms were being tested, several distinct applications
would need to be generated and managed.

Similarly, the Windows dynamically linked library (DLL)
model uses memory less efficiently and is more inflexible
than the GDL/GDLE scheme of multicast system 100. The
Windows DLL model cannot necessarily unload a sub-
system when channel selection changes. There is no mecha-
nism in Windows to inform it that an automatically loaded
library, is no longer needed. For example, if a user begins by
watching a program containing audio, video, and text, the
three modules are brought into memory when they are first
referenced. If the user should then switch to a program
containing only text, Windows cannot unload the audio and
video libraries since Windows cannot be informed that those
libraries are no longer being used. As a result, the unused
libraries continue to occupy memory.

The Windows dynamically linked library model is also
inflexible in that the application program must be informed
of any new modules to load. The new modules may be
brought into memory automatically by Windows, but the
name of the library files must still be embedded in the main
executable. This would require re-linking the system for
each new combination of libraries. If two new modules
could not both be resident in memory at the same time, two
new versions of the system would need to be built, since a
dynamically loaded library cannot be unloaded automati-

10

15

20

30

35

45

50

55

65

41

36

cally. Two code segments would have to be written—one to
interface with each of the mutually exclusive libraries.

Although the problems of memory usage and flexibility
can be solved by the traditional method of using straight
calls to the Windows LoadLibrary and FreeLibrary func-
tions, there remain problems related to the unloading of
libraries in the presence of asynchronous callbacks. The
application is preferably able to unload a module during an
asynchronous callback or execution thread from that mod-
vle. The monolithic model and the standard Windows
dynamically linked library model are impractical, since
neither of them allows the user to unload libraries on the fly.
For the following reasons, using straight calls to the Win-
dows LoadLibrary and FreeLibrary functions are also inad-
equate.

Referring now to FIG. 32, there is shown a diagram of the
timing of function calls when a user opens/closes one
module (associated with function library A), which in turn
opens/closes another module (associated with function
library B), under the traditional method of using straight
calls to the Windows LoadLibrary and FreeLibrary func-
tions. In FIG. 32, time increases from top to bottom.

When a user opens library A, library A initializes itself,
loads library B, and calls the function that instructs library
B to initialize. When library B has completed its initializa-
tion, library B returns to library A, which then returns to the
user.

When the user calls the function to close library A, library
A calls the function that instructs library B to close (at time
1 of FIG. 32). Since the close operation may be time
consuming, it is preferably implemented asynchronously.
Thus, library B returns synchronously to library A that the
close operation is staried (at time 2) and then starts the time
consuming asynchronous process of closing itself. Library A
returns to the user that the synchronous part of the close
operation is started.

Some time later, library B receives an interrupt that the
close operation is complete. Library B then calls into library
A to inform library A that the close operation is complete
(time 3). Library A then informs the user that the close
operation is complete. The user does everything that it needs
to do with the notification and retumns to library A (time 4),
which then returns to library B when library A is finished
with its clean-up.

To complete the process of closing library B, library A
also preferably unloads library B. It is assumed that when a
library is unloaded it is removed from memory and any
subsequent execution in the library is a fatal error. At time
1 of FIG. 32, library A cannot unload library B since library
A is about to call into library B to start the close operation.
At time 2, library A cannot unload library B since the close
operation has only started. Library B must still execute to
finish the close operation, and, in fact, library B must be
available as the target from an interrupt when the close
operation is complete. So library A cannot unload B during
the close call.

At times 3 and 4, library A cannot unload library B since
library A is on an execution thread that will return to library
B when the processing of the asynchronous close notifica-
tion is complete. Library A would generate a fatal error if
library A were to unload library B and then return to library
B. Therefore, at no time along this thread of execution has
library A been able to unload library B. In fact, the only safe
place is at time X in the time line. Unfortunately, library A
has, to its user, been closed by this time and library A will
not receive any further cycles in which to execute. Thus,
under the traditional method of using straight calls to the

5,557,724

74

Windows LoadLibrary and FreeLibrary functions, library A
cannot efficiently unload library B.

Under the GDL/GDLE scheme of multicast system 100,
library A signals the GDLE with a message that instructs the
GDLE to unload library B as soon as the current execution
thread completes. This message is preferably sent at time 4
in FIG. 32. Thus, the current invention avoids the problems
relating to the unloading of libraries in the presence of
asynchronous callbacks. An advantage of the GDL/GDLE
scheme of multicast system 100 is that it allows the user to
unload libraries at any time, even from execution threads
within the same library. GDL signals GDLE to unload the
library with the understood semantics of “As soon as you
can, after this thread completes, unload this library.” The
GDL/GDLE implementation under Windows makes use of
the fact that Windows will not preempt a thread that is
executing. The delay until afier the thread is complete is
automatic in the call to PostMessage.

Those skilled in the art will understand that the GDL/
GDLE scheme of multicast system 100 is applicable to
operating systems other than Microsoft Windows. In apply-
ing the GDL/GDLE scheme in other operating environ-
ments, one must look at what functionality is already pro-
vided by the operating sysiem. In an operating system that
can preempl an executing thread at any time, other mecha-
nisms are preferably used to ensure that all execution in the
library is complete. For example, the unload of a library is
usually executed just before a return. Even though the thread
returns to the unloaded library,, it is not long.

Referring again 1o FIG. 32, library A would execute an
unload at time 4 and immediately return to library B. Library
B would then immediately return out of the interrupt con-
text. Execution would occur in library B but it is on the order
of about 10 machine instructions. In an operating system that
supports messages scheduled to be picked up after a speci-
fied time, the GDL could schedule the message to the GDLE
at a time far enough in the future where the thread would
have to have completed (e.g., 500 milliseconds).

In an alternative preferred embodiment of the present
invention, each library determines if there are any threads
executing in it. In FIG. 32, library B would determine that
there is a thread in it before it calls library A with the close
complete notification. Library A would call the GDL to
unload library B at time 4 as before and the GDL may
immediately send a message to the GDLE. The GDLE
would then ask library B if there is an active thread before
unloading it.

In this preferred embodiment, every library that is load-
able with GDL/GDLE has an entry point named ActiveTh-
read that returns “TRUE” if there is an active thread and
“FALSE” if only the current call is active. The GDLE is then
responsible for polling the library until it reports that there
are no active threads before actually unloading the library.
When the GDLE receives a message to unload a library, the
GDLE begins another process that repeatedly polls the
library to determine if it has an active thread. If the library
is active, this process blocks for some time giving the thread
a chance to complete. This process continues until the
library reports that it is inactive.

In addition, the GDLE preferably unloads a library imme-
diately in the case of abnormal termination of the applica-
tion. A thread may be active in a library when the application
“crashes.” Because of the abnormal behavior, the thread may
never complete and the GDLE preferably does not wait on
it. If so instructed, the GDL may inform the GDLE not to
wait on the completing thread.

In general, the GDL/GDLE scheme of the present inven-
tion may be implemented in any application that needs to

20

25

35

45

50

55

63

42

38

load various services that are not known when the program
is built. When the user requests new functionality that is not
currently supported by the image in memory, the application
loads the library via the GDL. The library and the entry
points may be specified by the application or the application
may prompt the user for this information.

Under a preferred embodiment, neither the application,
the GDL, nor the GDLE make any assumptions about the
internals of the libraries. Under an alternative preferred
embodiment where the environment requires library sup-
port, the application does not change actions based on the
functionality of the library. For example, the GDL and
GDLE may isolate the application frown needing to be
aware of the fact that a library may close down asynchro-
nously and cannot be unloaded. The GDL and GDLE
provide an interface to the application where the loads and
unloads of libraries are essentially atomic. The application is
therefore freed from needing to know specific behavior of
the library.

Those skilled in the art will understand that alternative
embodiments of the multicast system of the present inven-
tion may support data types other than or in addition to
audio, video, and text, such as graphics, vibration, or smell.
In alternative embodiments, some or all of the different data
types may be compressed for transmission over the network.

Alternative embodiments of the text reader bar of the
present invention may have a single line of horizontally
sliding text, one or more lines of vertically scrolling text, or
one or more lines of statically displayed text (e.g.; as in
subtitles).

Alternative embodiments of the multicast system of the
present invention may support clients that may receive and
process more than one multicast channel at a time. Alterna-
tive embodiments may have more than one server. Prefer-
ably, each server has all the functionality of a client to
provide monitoring capabilities.

Alternative embodiments of the network topology of the
present invention may include transport media other than
Ethernets and local area networks (LANs), such as combi-
nations of LANSs and wide area networks (WANSs) connected
by T1 lines and routers.

The user interface of the present invention may be used
for systems other than those providing multicast services. In
general, the user interface may be used in any system that
receives and processes multiple data types, including sys-
tems that support point-to-point communication (i.e., one
copy of data selectively sent to one client), broadcasting
(i.e., indiscriminately sending daia to every client on the
network), and multipoint communication without multicast-
ing (i.e., same data copied multiple times—one copy sent to
each selected receiver). Moreover, the data need not be
transmitted over a computer network. For example, the data
could be played from a local storage device such as a
CD-ROM.

Those skilled in the art will understand that multicast
system AA may be used to provide real-time or non-real-
lime transmission of one or more data streams over the
network. Real-time transmission implies that the rate of
transmission is roughly equivalent to the rate of playing. A
client may receive and play real-time transmitted data in real
time. Non-real-time transmission implies that the rate of
transmission is less than the rate of playing. A client may
receive and record non-real-time transmitted data for future
playback at a real-time rate.

It will be further understood that various changes in the
details, materials, and arrangements of the parts which have
been described and illustrated in order to explain the nature

5,557,724

39

of this invention may be made by those skilled in the art
without departing from the principle and scope of the
invention as expressed in the following claims.
‘What is claimed is:
1. A user interface for display on a computer-based
multicasting system, comprising:
a multicast window for playing one or more data streams
of a multicast channel selected by a user from a
plurality of available multicast channels, wherein:

the selected multicast channel comprises any combination
of a video stream, an audio stream, and a text stream;
and

the multicast window comprises any combination of:
(a) a video subwindow for displaying the video stream;
(b) an audio subwindow for displaying audio control
functions for controlling the play of the audio
stream; and
(c) a text subwindow for displaying the text stream,
wherein:

the computer-based multicasting system automatically

determines which data streams are part of the selected

multicast channel and generates the multicast window

accordingly, such that:

if there is no video stream in the selected multicast
channel, then the multicast window does not include
the video subwindow;

if there is no audio stream in the selected multicast
channel, then the multicast window does not include
the audio subwindow; and

if there is no text stream in the selected multicast
channel, then the multicast window does not include
the text subwindow.

2. The user interface of claim 1, further comprising a
program guide pop-up window for identifying one or more
multicast channels that are currently available for selection
by the user and one or more multicast channels that will be
available in the future.

3. The user interface of claim 2, wherein the program
guide pop-up window identifies the current time, the date
and start time of each multicast channel, the data streams
included in each multicast channel, which multicast chan-
nels are password protected, and which multicast channels
have a fee for playing.

4. The user interface of claim 1, further comprising an
options pop-up window for presenting options for the user to
control the play of the selected multicast channel.

5. The user interface of claim 4, wherein the options
pop-up window allows the user to control which data
streams of the selected multicast channel are played.

6. The user interface of claim 4, wherein the options
pop-up window allows the user to temporarily pause play of
the selected multicast channel to free processing power for
another application running on the computer system.

7. The user interface of claim 1, further comprising a
remote control pop-up window to control selection and play
of the multicast channels, wherein the remote control pop-up
window allows the user to change the selected multicast
channel, to change the volume level of the audio stream of
the selected multicast channel, and to independently record,
play, and rewind any of the data streams of the selected
multicast channel.

8. The user interface of claim 1, wherein:

the user can change the size and position of the video

subwindow; and

the user can change the size and position of the text
subwindow.

20

30

35

45

50

60

65

43

40

9. The user interface of claim 1, further comprising:
a program guide pop-up window for identifying one or
more multicast channels that are currently available for
selection by the user and one or more multicast chan-
nels that will be available in the future, wherein the
program guide pop-up window identifies the current
time, the date and start time of each multicast channel,
the data streams included in each multicast channel,
which multicast channels are password protected, and
which multicast channels have a fee for playing;
an options pop-up window for presenting options for the
user to control the play of the selected multicast chan-
nel, wherein:
the options pop-up window allows the user to control
which data streams of the selected multicast channel
are played; and

the options pop-up window allows the user to tempo-
rarily pause play of the selected multicast channel to
free processing power for another application run-
ning on the computer system; and

a remote control pop-up window to control selection and
play of the multicast channels, wherein the remote
control pop-up window allows the user to change the
selected multicast channel, to change the volume level
of the audio stream of the selected multicast channel,
and to independently record, play, and rewind any of
the data streams of the selected multicast channel,
wherein:
the user can change the size and position of the video

subwindow; and
the user can change the size and position of the text
subwindow.

10. The user interface of claim 9, wherein:

the audio subwindow displays current volume level of the
audio stream, allows the user to turn the audio stream
off and on, and allows the user to control the current
volume level of the audio stream; and

the multicast window further comprises:

(d) a window control subwindow for displaying win-
dow control functions for the user to control the
display of the multicast window, wherein the win-
dow control subwindow allows the user to close the
multicast window, minimize the multicast window,
and change the size and position of the multicast
window; and

(e) achannel control subwindow for displaying channel
control functions for the user to control the selection
and play of the multicast channel, wherein the chan-
nel control subwindow allows the user to access the
program guide pop-up window and the options pop-
up window and the options pop-up window allows
the user to access the remote control pop-up window.

11. A computer-implemented method for processing mul-

ticast channels in a computer-based multicasting system,
comprising the steps of:

(1) receiving a multicast channel selection from a user
using a user interface displayed on a computer monitor
to select a multicast channel from a plurality of mul-
ticast channels; and

(2) generating a multicast window for playing one or
more data streams of the selected multicast channel,
wherein:

the selected multicast channel comprises any combination
of a video stream, an audio stream, and a text stream;
and

the multicast window comprises any combination of:

5,557,724

41

(a) a video subwindow for displaying the video stream;

(b) an audio subwindow for displaying audio control
functions for controlling the play of the audio
stream; and

(c) a text subwindow for displaying the text stream,
wherein:

the computer-based multicasting system automatically
determines which data streams are part of the selected
multicast channel and generates the multicast window
accordingly, such that:
if there is no video stream in the selected multicast
channel, then the multicast window does not include
the video subwindow;

if there is no audio stream in the selected multicast
channel, then the multicast window does not include
the audio subwindow; and

if there is no text stream in the selected multicast
channel, then the multicast window does not include
the text subwindow.

12. The method of claim 11, further comprising the step
of generating a program guide pop-up window for identi-
fying one or more multicast channels that are currently
available for selection by the user and one or more multicast
channels that will be available in the future.

13. The method of claim 12, wherein the program guide
pop-up window identifies the current time, the date and start
time of each multicast channel, the data streams included in
each multicast channel, which multicast channels are pass-
word protected, and which multicast channels have a fee for
playing.

14. The method of claim 11, further comprising the step
of generating an options pop-up window for presenting
options for the user to control the play of the selected
multicast channel.

15. The method of claim 14, wherein the options pop-up
window allows the user to control which data streams of the
selected multicast channel are played.

16. The method of claim 14, wherein the options pop-up
window allows the user to temporarily pause play of the
selected multicast channel to free processing power for
another application running on the computer system.

17. The method of claim 11, further comprising the step
of generating a remote control pop-up window to control
selection and play of the multicast channels, wherein the
remote control pop-up window allows the user to change the
selected multicast channel, to change the volume level of the
audio stream of the selected multicast channel, and to
independently record, play, and rewind any of the data
streams of the selected multicast channel.

18. The method of claim 11, wherein:

the user can change the size and position of the video
subwindow; and

the user can change the size and position of the text
subwindow.

19. The method of claim 11, further comprising the steps

of:

(3) generating a program guide pop-up window for iden-
tifying one or more multicast channels that are cur-
rently available for selection by the user and one or
more multicast channels that will be available in the
future, wherein the program guide pop-up window
identifies the current time, the date and start time of
each multicast channel, the data streams included in
each multicast channel, which multicast channels are
password protected, and which multicast channels have
a fee for playing;

(4) generating an options pop-up window for presenting
options for the user to control the play of the selected
multicast channel, wherein:

42

the options pop-up window allows the user to control
which data streams of the selected multicast channel
are played; and
the options pop-up window allows the user to temporarily
5 pause play of the selected multicast channel to free
processing power for another application running on
the computer system; and

(5) generating a remote control pop-up window to control
selection and play of the multicast channels, wherein
the remote control pop-up window allows the user to
change the selected multicast channel, to change the
volume level of the audio stream of the selected mul-
ticast channel, and to independently record, play, and
rewind any of the data streams of the selected multicast
channel, wherein:
the user can change the size and position of the video

subwindow; and

the user can change the size and position of the text
subwindow.

20. The method of claim 19, wherein:

the audio subwindow displays current volume level of the
audio stream, allows the user to turn the audio stream
off and on, and allows the user to control the current
volume level of the audio stream; and

the multicast window further comprises:

(d) a window control subwindow for displaying win-
dow control functions for the user to control the
display of the multicast window, wherein the win-
dow control subwindow allows the user to close the
multicast window, minimize the multicast window,
and change the size and position of the multicast
window; and

(e) achannel control subwindow for displaying channel
control functions for the user to control the selection
and play of the multicast channel, wherein the chan-
nel control subwindow allows the user to access the
program guide pop-up window and the options pop-
up window and the options pop-up window allows
the user to access the remote control pop-up window.

21. An apparatus for processing multicast channels in a

computer-based multicasting system, comprising:

(1) means for receiving a multicast channel selection from
a user using a user interface displayed on a computer
monitor to select a multicast channel from a plurality of
multicast channels; and

(2) means for generating a multicast window for playing
one or more data streams of the selected multicast
channel, wherein:

the selected multicast channel comprises any combination
of a video stream, an audio stream, and a text stream;
and

the multicast window comprises any combination of:
(a) a video subwindow for displaying the video stream;
(b) an audio subwindow for displaying audio control

functions for controlling the play of the audio
stream; and

(c) a text subwindow for displaying the text stream,
wherein:

the computer-based multicasting system automatically
determines which data streams are part of the selected
multicast channel and generates the multicast window
accordingly, such that:
if there is no video stream in the selected multicast

channel, then the multicast window does not include
the video subwindow;

if there is no audio stream in the selected multicast
channel, then the multicast window does not include
the audio subwindow; and

20

30

35

40

45

50

55

60

65

44

5,557,724

43

if there is no text stream in the selected multicast
channel, then the multicast window does not include
the text subwindow.

22. The apparatus of claim 21, further comprising means
for generating a program guide pop-up window for identi-
fying one or more multicast channels that are currently
available for selection by the user and one or more multicast
channels that will be available in the future.

23. The apparatus of claim 22, wherein the program guide
pop-up window identifies the current time, the date and start
time of each multicast channel, the data streams included in
each multicast channel, which multicast channels are pass-
word protected, and which multicast channels have a fee for
playing.

24. The apparatus of claim 21, further comprising means
for generating an options pop-up window for presenting
options for the user to control the play of the selected
multicast channel.

25. The apparatus of claim 24, wherein the options pop-up
window allows the user to control which data streams of the
selected multicast channel are played.

26. The apparatus of claim 24, wherein the options pop-up
window allows the user to temporarily pause play of the
selected multicast channel to free processing power for
another application running on the computer system.

27. The apparatus of claim 21, further comprising means
for generating a remote control pop-up window to control
selection and play of the multicast channels, wherein the
remote control pop-up window allows the user to change the
selected multicast channel, to change the volume level of the
audio stream of the selected multicast channel, and to
independently record, play, and rewind any of the data
streams of the selected multicast channel.

28. The apparatus of claim 21, wherein:

the user can change the size and position of the video
subwindow; and

the user can change the size and position of the text
subwindow.

29. The apparatus of claim 21, further comprising:

(3) means for generating a program guide pop-up window
for identifying one or more multicast channels that are
currently available for selection by the user and one or
more multicast channels that will be available in the
future, wherein the program guide pop-up window
identifies the current time, the date and start time of
each multicast channel, the data streams included in
each multicast channel, which multicast channels are

10

20

25

35

40

45

44

password protected, and which multicast channels have
a fee for playing; :
(4) means for generating an options pop-up window for
presenting options for the user to control the play of the
selected multicast channel, wherein:
the options pop-up window allows the user to control
which data streams of the selected multicast channel
are played; and
the options pop-up window allows the user to tempo-
rarily pause play of the selected multicast channel to
free processing power for another application run-
ning on the computer system; and
(5) means for generating a remote control pop-up window
to control selection and play of the multicast channels,
wherein the remote control pop-up window allows the
user to change the selected multicast channel, to change
the volume level of the audio stream of the selected
multicast channel, and to independently record, play,
and rewind any of the data streams of the selected
multicast channel, wherein:
the user can change the size and position of the video
subwindow; and
the user can change the size and position of the text
subwindow.
30. The apparatus of claim 29, wherein:
the audio subwindow displays current volume level of the
audio stream, allows the user to turn the audio stream
off and on, and allows the user to control the current
volume level of the audio stream; and

the multicast window further comprises:

(d) a window control subwindow for displaying win-
dow control functions for the user to control the
display of the multicast window, wherein the win-
dow control subwindow allows the user to close the
multicast window, minimize the multicast window,
and change the size and position of the multicast
window; and

(e) a channel control subwindow for displaying channel
control functions for the user to control the selection
and play of the multicast channel, wherein the chan-
nel control subwindow allows the user to access the
program guide pop-up window and the options pop-
up window and the options pop-up window allows
the user to access the remote control pop-up window.

e & ¥ dn oW

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,557,724
DATED . September 17, 1996
INVENTOR(S) : Ketan Sampat and John Kembel

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

Title page, Ttem [54]

Before “CHANNELS”, insert -MULTICAST—.

Column 1, line 3:
Before “CHANNELS”, insert --MULTICAST--.

Signed and Sealed this
First Day of April, 1997

G @«44 Z&/cmw\

BRUCE LEHMAN

Attesting Officer Cammissioner of Putents and Tradenarks

46

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,557,724
DATED . September 17, 1996
INVENTOR(S) : Ketan Sampat and John Kembel

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

Title page, Ttem [54]

Before “CHANNELS”, insert -MULTICAST—.

Column 1, line 3:
Before “CHANNELS”, insert --MULTICAST--.

Signed and Sealed this
First Day of April, 1997

G @«44 Z&/cmw\

BRUCE LEHMAN

Attesting Officer Cammissioner of Putents and Tradenarks

47

