US005710895A

United States Patent 9 11 Patent Number: 5,710,895
Gerber et al. 451 Date of Patent: Jan. 20, 1998
s
[54] METHOD AND APPARATUS FOR 5471,577 11/1995 Lightbody et al. ...vmvereervrenee 395/340
CAPTURING AND COMPRESSING VIDEO 5,502,503 3/1996 Koz 348/552
DATA IN REAL TIME 5,508,940 4/1996 Rossmere et al. ...corvemveersee 395/806 X
[75] Inventors: Richard Gerber, Hillsboro; Joshua OTHER PUBLICATIONS
Herman, Beaverton, both of Oreg. Roberts, “Putting Pictures in PCs”, Tech PC User, Apr., 7,
1989.
[73] Assignee: Intel Corporation, Santa Clara, Calif. Leonard, “Compression Chip Handles Real-Time Video and
Audio”, Electronic Design, Dec. 1990.
[21] Appl No.: 742,261 Floyd, “Data Compression and the AVK”, Dr. Dobb’s Jour-
" al, Jul. 1992.
2] Filed: Oct. 31, 1996 08
(221 File ct. 31, Green, “Capturing Digital Video Using DVL; Multimedia
Related U.S. Application Data and the i750 Video Processor”, Dr. Dobb’s Journal, Jul.
1992,
63] Continuati f Ser. No. 215,918, Mar. 22, 1994, aban-
[63] d::ed-u on of wer JO . an Primary Examiner—Raymond J. Bayerl
[51] Int. CLS GO6T 1/20: GOGF 3/14 Attorney, Agent, or Firm—Blakely, Sokoloff, Taylor &
@ sevscasscssnrannctanscannesanconn Py Zafrnan
[52] W.S: CL: soosmsscsssosias 395/327; 395/972; 395/503;
395/504; 395/520; 348/552 [57] ABSTRACT
[58] Field of Seal3'c9]:; /328 340806807 530935/231’ 2’5(2), Operating in cooperation with a shared software interface, a
’ ’ 51’1 5121 52,6' 3 4’8 ’s 5?: driver controls the operations of a video hardware device
> ’ > that captures and compresses video data in real time. This
. driver controls capture and compression of the video data in
1361 References Cited response to a capture message call through control of a
U.S. PATENT DOCUMENTS handshaking scheme between a host processor within the
4668770 1071987 Raiten et al S9STE9D computer system and an auxiliary processor located in a
5.191,645 3/1993 Carucci et al. .. 7 30s/3p8 Video hardware device.
5208,745 5/1993 Quentin et al. 395/806 X
5,355,450 10/1994 Garmon et al. ...ccerrenreenseeneas 395/501 15 Claims, 6 Drawing Sheets

HOST

PROCESSOR
AN
\
35
42 4 .
g @ YIDEQ BUS ﬂ ﬁ)
. . . AUXILARY
First |Second | Third |Fourth Temp First Second
Capture |Capture |Capture {Capture Storage|Compression|Compression] PROCESSOR DIGITIZER
Storage | Storage |Storage |Storage Storage Storage
[Element |El nti{Element {Element ! Element E;ement COMPRESSION
VRAM TR
REGISTER L
52, 36
FIRST BUFFER —\’37
39a 39b 39¢] 39d 38 53 40a 40b 50
SECOND BUFFER
51
Ay
VIDEO HARDWARE L 41

\ \V’
17 18
10 DEVICE

1 SAMSUNG 1005

U.S. Patent Jan. 20, 1998 Sheet 1 of 6 5,710,895

START

Initialize the
capture driver.
\

Step 102 |Set format for the
captured video data.

Step 101

Transmits the message
call concerning the
capture format to the
capture driver.

Step 103 ;
" Customize Y 4\
= capture Step 104
Step 105 Signal capture
/ driver to unload
video data? information
therein.
_ Step 106
Transmit
capture frame Si
gnal capture
» me;sage call driver to power
an) down video
predetermined hardware
parameters. .
ra— v Step 107
Transmit BI¥D

capture stream
Step 110 jmessage call
and
predetermined
parameters.

Step 111 Start stream.

Step 112

Figure 1
Prior Art

U.S. Patent Jan. 20, 1998 Sheet 2 of 6 5,710,895

MEMORY

|

I

, i

]

HOST I
PROCESSOR)| , & \ MAIN U I,2

7 [

1

COMPUTER SYSTEM

L,

VIDEO HARDWARE

[-

I/0 DEVICE

I
I
I
|
I
I
I
I
I
|
|
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
|
|
!
!
|
{
!

Figure 2

U.S. Patent Jan. 20, 1998 Sheet 3 of 6 5,710,895

CONVENTIONAL '
VFW-BASED \/ 31
CAPTURE
APPLICATION

Yy

= 32
MSVideo

1

N

VEW Interface L 33

()

CC DRIVER L 34
AN
O\
35
VIDEO HARDWARE '\}7
p) 42\ ™ N
{ VIDEO BUS >
T.n T
[DRAM |
AUXILIARY
SROCEEST DIGITIZER
Ve
k-37 Lse
N
/O DEVICE

\}8

Figure 3

U.S. Patent

N

Jan. 20, 1998 Sheet 4 of 6 5,710,895
FIRST LAYER 45
Capture Messages
SECOND LAYER (46
Capture control and interrupt service routine
N 47

THIRD LAYER

Hardware communication

35

Figure 4

5,710,895

Sheet 5 of 6

Jan. 20, 1998

U.S. Patent

>

ADIAFA O/

Py

AN

5./

34 B AYVMAYYH OAAIA
N
TS
A4 d ANODHES
0g q0¥% 20v €9 8€ p6E 268 q6€ B6E
il q
bm\//(dHA409 LSYI
9g
J N Gg HHISTOHY . VA
NOISSHHINOD JuawIay pecliseling JUSUIS] | JUSWIS[|} UsWIs[H| UsWId[H
afeamg a8eimg o8ea0yg| 98ei103g | 9der101g | 938I01S
YAZLLIDIA uorssaxduro)) juorssaaduo)[aderns amjden| aanyden|aamyde)| eanjde)
mww‘m««ﬂ“uoxm puodseg 1811 durag, yamog | pIyy, | puodag | 9IsILg
) 1) g .
{ SO OHAdIA)
Y P 7
N Ngp
gg
N\
~J
HJOSSHDOUd
LSOH
) G unsg

U.S. Patent Jan. 20, 1998 Sheet 6 of 6 5,710,895

(" _START)

L
v
Flgure 6] Save all registers. | Step 200
| Clear PIC. l Step 201

Capture

interrupt? Step 202

Clear interrupting
condition reassert Step 203
hardware interrupts.

Capture even or
odd fields?

] Update stream time. J Step 204 Update stream time.
Step 210 Step 205

Time to
encode next
frame?

Step 206

Microcode? Step 211

Step 209

Y
|Update compression. |Step 207
1]

Hardware™~Step 208

performance
too slow,

Save state of
interrupt flag. Step 2l

| Enable interrupts. | Step 214

Compressed video data is | Qtep 215
read by the host processor. P

{ Restore interrupt flag| Step 216

| Pop registers. | Step 217

5,710,895

1
METHOD AND APPARATUS FOR
CAPTURING AND COMPRESSING VIDEO
DATA IN REAL TIME

This is a continuation of Application Ser. No. 08/215,
918, filed Mar. 22, 1994, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method and apparatus
for capturing and compressing video data. More particularly,
the present invention relates to a driver operating in coop-
eration with VIDEO FOR WINDOWS, a software interface
manufactured by Microsoft® Corporation, to drive specifi-
cally configured hardware to capture and compress video
data in real time.

2. Background of the Field

It is commonly known that video equipment (e.g., video
camcorders, video recorders, laser disks, etc.) has enabled
persons to record or “capture” video data (i.e., audio and
visual data) onto storage medium such as videotape. The
storage medium is commonly “played back” by the video
equipment which transmits the captured video data into a
cathode ray tube for viewing purposes. This captured video
data is affixed to the storage medium, thereby preventing any
alteration of the captured video data except, of course, by
erasing it completely from the storage medium.

Due to the growing popularity of video equipment and
multi-media products over the last few years, businesses
have begun to realize the commercial advantages in estab-
lishing an efficient interactive relationship between video
equipment and computers. Recently, Microsoft® Corpora-
tion has developed a software interface entitled VIDEO
FOR WINDOWS (the “VFW interface”) which enables
video equipment to operate in conjunction with computers
using a WINDOWS™ operating system. Thus, a software
capture application using the VFW interface (hereinafter
referred to as a “VFW-based capture application™) generates
and transmits a capture message call to the VFW interface
which, in turn, is usually routed to one of a plurality of
drivers, namely a capture driver.operating under software
control, to drive video hardware specifically configured to
capture video data.

As shown in FIG. 1, operational steps undergone by the
VFW-based capture application are illustrated, wherein cer-
tain VFW capture message calls associated with these opera-
tional steps are listed in Table 1 of the Appendix. Upon
activation by the user, the VFW-based capture application
initializes the capture driver through pre-selected initializa-
tion capture message calls (Step 101), including but not
limited to those listed in Table 1. Next, format for the
captured video data (i.e., capture format) is configured
according to predetermined default values (Step 102).
Thereafter, the VFW-based capture application performs one
of four user-selected alternatives; namely, customizing the
capture format (Step 104), terminating the video capture
application (Step 106-107), capturing video data video
frame-by-video frame (Steps 109) or capturing video data in
a stream of video frames (Steps 110-112).

To customize the capture format, the VFW-based capture
application generates and transmits a capture message call
(e.g., a “DVM__DIALOG” message call per Table 1) to the
capture driver in order to open a dialog box (Step 104). The
dialog box allows user-modification of video quality, key
frame rate and other custom video options.

The second alternative is to exit the VFW-based applica-
tion (Step 105). This causes a message to be sent to the

15

20

25

30

35

45

50

55

65

2

capture driver informing the capture driver to unload infor-
mation contained therein (Step 106) and power-down the
video hardware coupled to the computer system (Step 107).

The VFW-based capture application offers two more
alternatives associated with capturing video data. These
alternatives demonstrate two different modes of capturing
video data; namely, a stream mode where multiple video
frames are being captured sequentially and a frame mode
where only one video frame of video data is captured at a
time. A video frame has a maximum height of 240 scan lines
according to NTSC standards. In step 108, the frame mode
is commenced upon receipt of a frame capture message call
(a “DVM_FRAME” capture message call per Table 1) and
parameters included with the frame capture message call
which provide the capture driver information relevant to its
operations, such as storage location information (Step 109).
In steps 110-112, the stream mode is commenced upon
receipt of a stream capture message call (a “DVM__
STREAM__INIT” capture message call per Table 1) and,
similar to the frame mode, pre-selected parameters neces-
sary to perform proper stream capture operations are trans-
mitted therewith.

In conventional interactive video computer systems,
video data is captured when the VFW-based capture appli-
cation transmits a capture message call having a number of
parameters through the VFW interface and into a conven-
tional capture driver. These parameters include information
necessary to properly capture video data including, but not
limited to, its capture mode (i.e., frame or stream), the video
frame size and a storage location for the captured video data.
Upon receipt of the capture message call, the conventional
capture driver initiates control signals to the specifically
configured hardware to capture the video data. Thereafter,
the VFW-based capture application writes the captured
video data to disk. Subsequently, the same or perhaps
another VFW-based application requests the captured video
data to be retrieved from disk, uses a compression driver to
encode (i.c., compress) the captured video data and then
writes the compressed video data back to the disk. This
conventional interactive video computer system has many
disadvantages.

A first disadvantage associated with the conventional
interactive video computer system is that video data is not
captured in real-time, but rather includes extraneous steps in
writing and retrieving the captured video data to and from
disk. As a result, this conventional interactive video com-
puter system experiences enormous time delays in the range
of several minutes to several hours caused by these extra-
neous steps.

Another disadvantage is that the conventional interactive
video computer system require a hard disk with a large
memory space, generally hundreds of megabytes, in order to
store the captured video data in uncompressed form. Due to
this large memory requirement, the overall costs associated
with the conventional interactive video computer systems is
quite substantial, making the systems unaffordable to a large
section of the public.

In an effort to overcome these disadvantages, prior to the
subject application, Intel Corporation of Santa Clara, Calif.
had designed and developed a driver for the VFW interface
which combined capture and compression operations
(hereinafter referred to as the “AVK driver”). However, the
AVK driver also had many disadvantages associated there-
with. One such disadvantage was that the AVK driver is
extremely complex and unreliable, requiring at least fifty
installation files to be installed in the interactive video

5,710,895

3

computer system before functioning. Another disadvantage
was that it was extremely costly to implement since it
required a relatively large memory space, approximately
two megabytes of main memory and two megabytes of
video random access memory (“VRAM™). This large
memory space was necessary to store a large number of
micro-code files therein. As a result, the AVK driver was
incapable of operating in real time. In fact, the AVK driver
was extremely slow, requiring up to five seconds before the
first picture was displayed because the loading of installation
files into the interactive video system was extremely time
consuming. Besides requiring a large memory space of main
memory and VRAM, the AVK driver also required EMS
memory space which is a scarce resource in typical micro-
computers.

BRIEF SUMMARY OF THE INVENTION

In light of the foregoing, it is appreciated that a simple
driver capturing and compressing data in real time and
requiring minimal memory would be advantages in the
marketplace by allowing any computer user to immediately
capture data without purchasing additional memory or a
computer system having large memory capabilities.

Therefore, present invention provides a driver under con-
trol by the VFW-based capture application to control the
capture of video data transmitted into video hardware by an
T/O device and to compress the video data in real time (a
“capture and compression driver”). One embodiment of the
present invention comprises a driver which controls video
hardware including an auxiliary processor to capture and
compress video data based on particular capture message
calls transmitted therein by a VFW-based capture applica-
tion. Such capture and compression of video data is accom-
plished through a handshaking scheme controlled by the
driver between a host processor within the computer system
and the auxiliary processor within the video hardware.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present invention will
become apparent from the following detailed description of
the present invention in which:

FIG. 1 is a flowchart of the operations of a VFW-based
capture application.

FIG. 2 is a block diagram of the interactive video com-
puter system employing the capture and compression driver.

FIG. 3 is a detailed block diagram of a communication
path of the capture message call being transmitted within the
interactive video computer system employing the capture
and compression driver.

FIG. 4 is a block diagram of the structural organization of
the capture and compression driver.

FIG. 5 is a block diagram of the auxiliary and host
processors undergoing handshaking operations being con-
trolled by the capture and compression driver.

FIG. 6 is a flowchart of the interrupt service routine
supporting the handshaking operations iliustrated in FIG. S.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention describes a driver, operating in
cooperation with the VFW interface, which captures and
compresses video data in real time to enhance system
performance. The detailed description which follows is
presented largely in terms of tables and algorithms which are
the means used by those skilled in the art to most effectively

15

20

25

30

35

45

50

55

65

4

convey the substance of their work to others skilled in the
art. An algorithm is generally conceived to be a series of
steps leading to a desired result. These steps require physical
manipulations of physical quantities. Usually, although not
necessary, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred,
combined, compared or otherwise manipulated. It further
should be noted that there exist some instances where
well-known steps are not set forth in detail in order to avoid
unnecessarily obscuring the present invention.

Referring to FIG. 2, an embodiment of an interactive
video computer system 10 utilizing the present invention is
illustrated in which the present invention may be best
described as an ISA plug-in adapter for an IBM® compatible
personal computer with an INTEL® 80X86 processor. The
computer system 10 generally comprises a system bus 11
including address, data and control buses for communicating
information between a plurality of bus agents, including at
least a host processor 12. The host processor 12 is an Intel®
80x86-compatible processor; however, the present invention
may be utilized in any type of processor. Although only the
host processor 12 is illustrated in this embodiment, it is
contemplated that multiple processors could be employed
within the computer system 10.

As further shown in FIG. 2, the system bus 11 provides
access to a memory subsystem 13, video subsystem 14 and
an input/output (“TO”) subsystem 15. The memory sub-
system 13 includes a memory element 16 such as a dynamic
random access memory (“DRAM?”) 16 in FIG. 2, but such
memory element may include any type of memory such as
read only memory (“ROM?”), static random access memory
(“SRAM™) and the like. The memory element 16 stores
programs executed by the host processor 12 such as the
VFW-based capture application. It is contemplated that a
memory controller could be used as an interface between the
system bus 11 and a variety of memory elements to control
access thereto.

The video subsystem 14, shown coupled to the system bus
11 but may be coupled to an I/O bus 20, includes a video
hardware device 17 coupled to both the host processor 12
and a video input device 18 which enables video data to be
inputted into the computer system 10. Such video input
device 18 may include a video camcorder, laser disk player,
video recorder and any other similar video devices. A
preferred embodiment of the video hardware device 17 is
illustrated in FIG. 3 discussed below.

The I/O subsystem 15 may include an I/0 bridge 19 as an
interface between the O bus 20 and the system bus 11
which provides a communication path (i.e., gateway) for the
computer system 10 to transfer information to peripheral
devices on the I/O bus 20 including, but not limited to a
display device 21 (e.g., cathode ray tube, liquid crystal
display, etc.) for displaying images; an alphanumeric input
device 22 (e.g., an alphanumeric keyboard, etc.) for com-
municating information and command selections to the host
processor 12; a cursor control device 23 (e.g., a mouse, track
ball etc.) for controlling WINDOWS™ placement; a mass
data storage device 24 (e.g., magnetic tapes, hard disk drive,
floppy disk drive, etc.) for storing information and instruc-
tions; and a hard copy device 25 (e.g., plotter, printer, etc.)
for providing a tangible, visual representation of the infor-
mation. It is contemplated that the computer system shown
in FIG. 2 may employ some or all of these components or
different components than those illustrated.

Referring to FIG. 3, the propagation of a capture message
call through the interactive video computer system 10 of the

5,710,895

5

present invention is illustrated in detail. In order to capture
video data, a VFW-based capture application 31 (e.g., a
published application entitled VIDCAP™ by
MICROSOFT® Corporation), is executed by the host pro-
cessor to generate a capture message call. The capture
message call is transmitted to a library “MSVIDEO™ 32
and then through the VFW interface 33 to a capture and
compression driver (hereinafter referred to as the “CC
driver”) 34.

Monitoring the VFW interface 33 in a periodic or con-
tinuous manner, the CC driver 34 receives the capture
message call and outputs an appropriate control signal along
a bi-directional communication path 35 to the video hard-
ware 17 (e.g., an ACTIONMEDIA™ TI card or an INTEL®
SMART VIDEO RECORDER™), being coupled to the
video input device 18. This communication path 35 is
bi-directional to allow the video hardware 17 to return result
codes such as error codes, acknowledgment signals, and the
like to the VFW-based capture application 31.

As further shown in FIG. 3, the video hardware 17
comprises a digitizer 36 (e.g., an IBM® CS2™), an auxil-
iary processor 37 such as an INTEL® pixel processor
(i750PB™) having dynamic random access memory 41 and
video random access memory (“VRAM™) 38, coupled
together through a video bus 42. These components are
provided within the ACTIONMEDIA™ II card or the
INTEL® SMART VIDEO RECORDER™ (ISRV™,) cur-
rently being sold by Intel Corporation. In response to a
control signal by the CC driver 34, the digitizer 36 captures
the video data from the video input device 18 and stores the
captured video data in a first storage element 39a of a
plurality of linked-list capture storage elements 392-39d
(e.g., bitmaps, buffers, etc.) located within the VRAM 88. In
this embodiment, there exists four (4) linked-list capture
storage elements 39a-394, although any number of capture
storage elements may be used, depending on a particular
interactive video computer system design. After the first
capture storage element 39¢ is full, the digitzer 36 alterna-
tively stores the captured video data in a successive capture
storage element 395, for example, and proceeds to store the
captured video in another capture storage element 39¢ when
the successive capture storage element 395 is full and so on.
The digitizer 36 reverts back to the first capture storage
element 39« after a last of the capture storage elements 394
is full. Such storage is generally continuous and repetitions
in nature.

The auxiliary processor 37, in fact the video hardware 17
in general, is controlled by the CC driver 34 in its allocation
of storage elements for captured video data as well as
compression of the video data through handshaking with the
host processor 12. Briefly, in the preferred embodiment, the
auxiliary processor 37 compresses the captured video data
stored in the plurality of capture storage elements 39a-394
within VRAM 38 upon signaling by the host processor 12
after detection of a capture interrupt as shown in FIG. 6. The
auxiliary processor 37 places the resulting compressed video
data in one of at least two compression storage elements 40a
and 400 in the VRAM 38. These plurality of compression
storage elements 40 and 40% are also accessible by the host
processor 12.

Referring now to FIG. 4, a more-detailed illustration of
the CC driver 34 is illustrated. The CC driver 34 is a
combination of software programs forming at least three
separate layers. A first layer 45 comprises a program respon-
sive to numerous capture message calls from the VFW-
based capture application 31, including opening a dialog box
(i.e., a control panel, video effects, etc.). Basically, this

10

15

20

25

30

35

45

50

55

65

6

program is a switch statement initiating procedural calls to
various procedures within the second and third layers 46 and
47 of the CC driver 34 and for maintaining and filling the
linked-list of capture storage elements 39a-394 used in
capturing video data.

A second layer 46 is used to store capture control pro-
grams including, but not limited to, an interrupt service
routine which is discussed below in more detail. Moreover,
the second layer 46 further includes control structures which
maintain the capture storage elements 39a-39d where the
captured video data is being saved.

A third layer 47 of the CC driver 34 includes those
programs needed for the CC driver 34 to directly commu-
nicate with the video hardware 17 through control signals
corresponding to the capture message calls received from
the video capture application 31. These control signals
signal the video hardware 17 where to place the captured
video data in VRAM 38 and when the auxiliary processor 37
should begin compressing the captured video data.

In the preferred embodiment of the present invention, the
CC driver 34 provides stream and frame capture modes
under two control methods, namely host processor control
having subsampled compression only and auxiliary proces-
sor control which uses micro-code for additional compres-
sion purposes as illustrated in Table 2 immediately below. In
determining which control method to employ, the CC driver
34 needs to ascertain from the capture message call whether
the video data (in video image form) to be captured has a
height greater than 240 scan lines equivalent to one video
field defined by NTSC standards.

TABLE 2
AUXILIARY
PROCESSOR HOST PROCESSOR
CONTROLLED CONTROLLED
STREAM @ Digitize every frame @® Digitize the video
of video data and data as fast as possible.
store in VRAM. @ Transfer multiple
@® Compress the frames frames of video data
of video data at a from VRAM at the
frame rate set by the frame rate
user.
FRAME @ Digitize the video ® Digitize the video
data as fast as possible. data as fast as possible.
Compress the frame @ Transfer the video
of video data at a frame only after a
frame rate of 30 fps. capture frame
message has been
received.
Referring back to FIG. 3 with reference to Table 2, if the

CC driver 34 determines that a capture message call is
directed toward video data being a video image less than one
video field in size, the capture and compression process is
under auxiliary processor control. In this event, if a single
video frame is selected to be captured indicating that the
VFW-based capture application 31 generated a capture
frame message (e.g., “DVM__FRAME?”), the CC driver 34
digitizes the video data comprising the single video frame
and stores the digitized video data into one of the plurality
of capture storage elements 39a-39d. The digitized video
data within the capture storage elements 39a-39d is com-
pressed by the auxiliary processor 37 in accordance with a
conventional compression algorithm at a frame rate of
approximately thirty (30) video frames per second (“fps”)
although any frame rate supported by the auxiliary processor
37 may be chosen. On the other hand, if the VFW-based
capture application 31 initiates a capture stream message

10

5,710,895

7
(e.g., “DVM_STREAM_ INIT”) indicating that streaming
mode is desired, the CC driver 34 controls the video
hardware so that every video frame is captured and stored in
the VRAM 38 upon receipt so that compression is accom-
plished at a frame rate set by the user.

If the CC driver 34 determines that video data to be
captured involves a video image larger than a single video
frame, the video data is captured in the plurality of capture
storage elements 39a-39d and then is transmitted directly to
main memory for use by the host processor 12. More
specifically, upon detection of the frame capture message
from the VFW-based capture application 31, the CC driver
34 signals the digitizer 36 to capture a single video frame of
video data. This single video frame is digitized as fast as
possible according to the limitations of the digitizer 36 and
is stored in one of capture the plurality of storage elements
392-39d in VRAM 38 to be transmitted to main memory
upon indication by the host processor 12. The latency
involved is greater than the auxiliary processor controlled
operations because the time delay in transmitting the video
frame to the host processor greatly increases because no
decompression is used. In regards to the streaming method,
video frames are copied from VRAM 38 at the frame rate
selected by the user, which is, of course, limited by the
capability of the digitizer 36.

Referring to FIG. 8, in its preferred embodiment, the CC
driver 34 controls capture and compression of video data
under auxiliary processor control by employing a handshak-
ing mechanism between the host and auxiliary processors 12
and 37 utilizing a plurality of shared memory locations. In
its preferred embodiment, at least three shared handshaking
memory locations are used; namely, a first and a second
buffer 50 and 51 and a compression register 52 which are
stored in DRAM 41 located within the auxiliary processor
37. The compression register 52 is used to signal the
auxiliary processor 37 to begin compression of a particular
video frame being stored in one of the plurality of capture
storage elements 394-39d according to a predetermined
compression algorithm. The first and second buffers 50 and
51 are used as semaphores indicating whether its corre-
sponding compression storage elements 40a and 405 are full
or empty. Once compression is complete, the auxiliary
processor 37 sets the appropriate buffer 50 or 51, signaling
to the host processor 12 that compressed data is ready to be
copied to the main memory from VRAM 38.

The CC driver 34 controls the host processor 12 and the
auxiliary processor 37 with a handshaking scheme as illus-
trated by the pseudo code in Table 3 located in the Appendix.
The first step in the handshaking scheme is for the auxiliary
processor 37 to read a particular value stored in the com-
pression register 52 and to store the particular value within
a temporary storage element 53 (e.g., register, buffer, etc.)
located within DRAM 41 as shown or any other memory
source accessible by the auxiliary processor 37. Thereafter,
the auxiliary processor 37 periodically compares the com-
pression register 52 with this temporary storage element 53
to determine if any changes have been made to the com-
pression register by the host processor 12.

Operating concurrently with the anxiliary processor 37,
the host processor 12, after being interrupted by the digitizer
36, alters the compression register 52 to signal that the
captured video data needs to be compressed. After altering
the compression register 52, the host processor 12 periodi-
cally and alternatively checks the first and second buffers S0
and 51 to determine which buffer, if any, is active (performs
a “callback routine™). An active first buffer 50 indicates that
compressed video data unread by the host processor 12 is

10

15

20

25

30

35

45

50

55

65

11

8

being stored within the first compression storage element
40q and an active second buffer 51 indicates that compressed
video data is within the second compression storage element
405.

Once the compression register 52 is changed by the host
processor 12, the CC driver 84 generates a first control
signal to the digitizer 36 to continue sequentially storing
video data in any of the remaining plurality of capture
storage elements in VRAM 38, for example capture storage
elements 395, 39¢ or 394 in the event that video data was
being captured and stored in a first capture storage element
39q. In addition, the CC driver 34 generates a second control
signal to the auxiliary processor 37 to begin compression of
the captured video data within the first capture storage
element 39a and store the result in a first of the plurality of
compression storage elements 40a. Thereafter, the CC driver
34 signals the auxiliary processor 37 to attach a frame header
to the compressed video data in order to provide information
regarding its video frame size, and the CC driver 34 also sets
the first buffer 50 to indicate that the first compression
storage elements 404q is full. After setting the first buffer 50,
the host processor 12 will then read compressed video data
from the first compression storage element 404 and clears
the first buffer 50 after completing the read operation.
Besides a one-to-one relationship between the first capture
and first compression storage elements, it is contemplated
that identical handshaking operations as above could occur
for any ratio of capture and compression storage elements.

Referring to FIG. 6, a detailed flowchart of the interrupt
service routine of the capture and compression driver is
illustrated. The interrupt service routine within the CC driver
34 enables the host and auxiliary processors 12 and 37 to
operate in a handshaking relationship to capture and com-
press video data in real time for a streaming mode. In Step
200, the interrupt service routine saves the contents of the
internal host processor registers (“register values”) in order
to temporarily pause the host processor for servicing the
interrupt. In Step 201, a programmable interrupt controller is
cleared for reasons as known by persons skilled in the art.

In Step 202, the interrupt service routine determines
whether the interrupt was a result of a capture interrupt by
the digitizer in storing captured video data into VRAM. If
the interrupt is not a capture interrupt, then the register
values are “popped” (i.e., placed on top of stack memory)
and copied back into the internal host-processor registers
and the interrupt service routine continues monitoring for
another interrupt (Step 217). If the interrupt is a capture
interrupt, then the interrupt is cleared and the hardware
interrupts are reasserted so as to allow the next interrupt to
be received (Step 203).

In step 204, the interrupt service routine then determines
whether even or odd fields of the video data are to be capture
because the video data comprises sixty interlaced video
fields and thirty video fields still provide good picture
quality. As a result, a divide-by-two compression can be
performed without sacrificing any video quality. When an
odd field is encountered, the host processor determines
whether a next video frame should be encoded (Step 206)
and if so, the host processor updates the compression
register to begin compression (Step 207). Thereafter, inter-
nal system performance is monitored (Step 208). If it is not
time to encode the next video frame, the interrupt service
routine is exited (Step 209) and the system continues moni-
toring for another capture interrupt (Step 217).

When an even field is encountered, the host processor
determines whether micro-code is being used indicating

5,710,895

9

video compression is desired (Step 211). If micro-code is not
being used, video frames are only read from VRAM on odd
fields since the operation is synchronous with the old fields
and therefore, the interrupt service routine is exited in a
manner similar to step 209 (Step 212). If micro-code is being
used, video frames may be read from VRAM during odd or
even fields so that the internal system performance is
monitored (Step 208). Since, unlike other systems, the
capture and compression is accomplished in real time,
internal system performance needs to be monitored in the
event that the video hardware (e.g., auxiliary processor,
digitizer, etc.) is too slow. Thus, the interrupt service routine
will exit if the hardware is not fast enough to capture and
compress in real time.

If the system performance is sufficient, the state of the
interrupt flag is set (Step 213) so that additional processing
can occur. Thereafter, the interrupts are enabled to allow
parallel operations (Step 214). Next, the compressed video
data is read from the host processor (Step 215), interrupt flag
is restored to allow signaling no interrupt in process (Step
216) and interrupt service routine is exited (Step 217).

The present invention described herein may be designed
in many different embodiments evident to one skilled in the
art than those described without departing from the spirit
and scope of the present invention. The invention should,
therefore be measured in terms of the claims which follow.

APPENDIX A
TABLE 1
MESSAGES FROM THE VIDEO CAPTURE APPLICATION
Description

Initialization Messages
DRV_LOAD Load driver
DRV_ENABLE Enable driver
DRV_OPEN Open video channel

DRV_GETVIDEOAPIVER

DRV_GET_CHANNEL.__CAPS
DVM_STREAM__INIT
Customizing The Capture Format

DVM_FORMAT
DVM_DST_RECT
DVM_SRC_RECT

Exiting the Video Capture Application

DVM_STREAM_FINI
DRV_CLOSE
DRV_DISABLE
DRV_FREE

Capture Stream Mode

DVM_STREAM_ADDBUFFER
DVM_STREAM__FIN
DVM_STREAM,_GETERROR
DVM_STREAM_GETPOSITION
DVM_STREAM__INIT
DVM_STREAM_PREPAREHEADER
DVM_STREAM_RESET
DVM_STREAM_ START
DVM_STREAM__STOP

DVM_STREAM__UNPREPAREHEADER

Capture Frame Mode

DVM_FRAME

Get API Version being a
default

Get chammels capabilities
Initializes a stream

Video format request
Get destination rectangle
Get source rectangle

Finishes a stream
Close video channel
Disable driver

Free driver

Adds a buffer
Finishes a stream
Gets error code
Gets position

Inits stream
Prepares header
Resets stream
Starts stream
Stops stream
Unprepares header

Capture 2 video frame

5

10

15

20

25

30

35

45

65

12

10

TABLE 3

Auxiliary Processor

/* Store contents of the
compression register in
a temporary variable */
/* Comparison to
determine if there has
been any changes to the
compression register */
3 /* Wait until the host
processor alters the
compression register */
/* Allow digitizer to
begin filling another
capture storage element
since prior one is filled
7

/* If the buffer is are set,
do not add any more
information. */

Loop 1:

temporary variable = compression
register

while (compression register ==
temporary variable)

Set digitizer to begin filling next
capture storage element

while (corresponding data buffer)

compress the video frame
add frame header

/* Begin compression */
1* Begin post
compression duties */
/* Tndicate that the
compression storage
element corresponding
to the data buffer is
filled with compressed
data */

/* Begin looking for
another capture
message call needing
compression */

CC driver sets corresponding data
buffer

return to Loop 1;

Host Processor

if (time to encode next video frame)
alter the compression register;

1* If host processor is
ready to support
compression, alter (i.e.,
increment or

decrement) the
compression register */
/* Check whether any of
the data buffers are the
set */

/* if a data buffer is set,

if (data buffer [0 or 1])

read data from compression storage

element corresponding to the data read contents of its
buffer corresponding storage

element and clear that
clear data buffer [0 or 1] data buffer */

‘What is claimed is:

1. In an interactive video system comprising a host
processor and a driver controlling a video hardware device
including an auxiliary processor to capture and compress
video data, a method comprising the steps of:

(a) receiving by the driver the capture message call; and

(b) determining from the capture message call whether the

auxiliary processor is selected to modify the video data,
wherein when selected,
(i) controlling capturing said video data by the driver,
and
(ii) controlling handshaking between the host processor
and the auxiliary processor by the driver so that the
auxiliary processor compresses the video data gen-
erally in real time, the controlling handshaking step
includes the steps of
retrieving the video data from a first storage element,
compressing the video data by the auxiliary
Pprocessor,
storing the compressed video data by the auxiliary
processor in a second storage element accessible
by the host processor,
signaling the host processor that the auxiliary pro-
cessor has completed compressing the video data,
and

5,710,895

11

reading said compressed video data by the host
processor from the second storage element.

2. The method according to claim 1, wherein said cap-
turing step comprises the steps of:

digitizing the video data being inputted into the video

hardware device by an input/output device; and

storing said digitized video data in at least a first storage
element.

3. The method according to claim 1, wherein the driver is
one of software and hardware.

4. The method according to claim 1, wherein prior to step
(i) , said determining step further includes the steps of
ascertaining size information pertaining to the video data,
and selecting the auxiliary processor to modify the video
data when the size of video data is less than or equal to one
video frame.

5. The method according to claim 1, wherein said step of
signaling the host processor includes the step of setting a
buffer corresponding to said second storage element by the
driver to indicate that said second storage element is storing
said compressed video data.

6. The method according to claim 1, wherein prior to said
retrieving step, said method further comprises the step of
signaling the auxiliary processor to begin compression of the
video data. :

7. The method according to claim 6, wherein said step of
signaling the auxiliary processor to begin compression
includes the step of altering a third storage element which is
accessible by both the host processor and the auxiliary
Processor.

8. In an interactive video system comprising a host
processor, a video hardware device including an auxiliary
processor, and a driver controlling the video hardware
device to capture and compress video data in response to a
specific capture message call transmitted through a shared
software interface from a capture software application, a
method comprising the steps of:

(a) capturing the video data;

(b) determining whether the auxiliary processor is to be

used to compress said video data; and

(c) controlling a handshaking scheme between the host

processor and the auxiliary processor generally in real

time with the capturing of the video data when the
auxiliary processor is being used, said handshaking
scheme includes the steps of:

(i) signaling the auxiliary processor to begin
compression,

(i) retrieving the video data from a first storage
clement,

(iii) compressing the video data by the auxiliary
processor,

(iv) storing said compressed video data by the auxiliary
processor in a second storage element accessible by
the host processor,

(v) signaling the host processor that the auxiliary
processor has completed compressing the video data,
and

(vi) reading said compressed video data by the host
processor from said second storage element.

9. The method according to claim 8, wherein said cap-
turing step comprises the steps of:

digitizing the video data being inputted into the video

hardware device by an input/output device; and

storing said digitized video data in at least said first
storage element.

10. The method according to claim 8, wherein said
determining step includes the steps of ascertaining size

10

20

25

30

50

55

65

12
information pertaining to the video data, and utilizing the
auxiliary processor to compress the video data when the size
of video data is less than or equal to one video frame.

11. The method according to claim 8, wherein said step of
signaling said auxiliary processor to begin compression
includes the step of altering a third storage element which is
accessible by both the host processor and the auxiliary
PEOCESSOT.

12. The method according to claim 8, wherein said step of
signaling the host processor includes the step of setting a
buffer corresponding to said second storage element by the
driver to indicate that said second storage element is storing
said compressed video data.

13. An interactive video computer system comprising:

a video transceiving device to receive and transmit video

data;

a video hardware device coupled to said video transceiv-
ing device, said video hardware device including a
digitizer to digitize said video data, an auxiliary pro-
cessor to compress said video data and a storage device
to temporarily store said video data;

a storage element that contains at least a capture software
application;

a host processor that processes said capture software
application and transmits a capture message call;

a driver that receives said capture message call from said
host processor and transmits at least one control signal
to said video hardware device in response to said
capture message call to perform capture and compres-
sion operations generally in real-time, said at least one
control signal includes
(i) a capture control signal to said digitizer to capture

said video data and to store said captured video data
within a particular address in said storage device,
and (ii) a compression control signal to said auxiliary
processor to retrieve said captured video data from
said particular address in said storage device, to
commence compression of said captured video data
and to store said compressed video data within a
predetermined address in said storage device; and

a plurality of buses that enables communication between
said video transceiving device, said video hardware
device, said storage element, said host processor and
said driver.

14. Operating in response to a capture message call
transmitted by a host processor executing a capture video
software application, a driver for controlling capture and
compression of video data obtained from an input/output
device coupled to a video hardware device including an
auxiliary processor, the driver comprising:

means for generating at least one capture control signal
responsive to the capture message call in order to
control capturing of the video data; and

means for generating a plurality of compression control
signals to control compression of the video data by the
auxiliary processor of the video hardware device gen-
erally in real-time with capturing of the video data
when the video data is less than or equal to one video
frame in size, said plurality of compression control
signals including (i) a first compression control signal
transmitted to the auxiliary, processor to begin com-
pression of the video data, (ii) a second compression
control signal transmitted to the video hardware device
to continue storing video data, (iii) a third compression
control signal transmitted to the auxiliary processor to
begin compression of the video data and to store said
compressed video data in a first of a plurality of

13

5,710,895

13

compression storage elements, said compression is
operating concurrently with storing video data, and (iv)
a fourth compression control signal transmitted to the
auxiliary processor to set a buffer associated with said
first of said plurality of compression storage elements
to signify to the host processor that said first of said
plurality of compression storage elements contains said
compressed video data.

5

14

14

15. The driver according to claim 14, wherein said at least
one capture control signal is transmitted to a digitizer within
the video hardware device requesting said digitizer to digi-
tize the video data and to store said digitized video data into
a first storage element of a plurality of linked-list capture
storage elements.

