Programmer’s Guide

Microsoft Video for Windows
Development Kit

For the Microsoft Windows Operating System

Microsoft Corporation

1 SAMSUNG 1007

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the
express written permission of Microsoft Corporation.

©1992, 1993 Microsoft Corporation. All rights reserved.

Microsoft, MS, and MS-DOS are registered trademarks, Windows and Visual Basic are trademarks
of Microsoft Corporation in the USA and other countries.

U.S. Patent No. 4955066

IBM is a registered trademark of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.
ToolBook is a registered trademark of Asymetrix Corp.

Printed in the United States of America.

Contents

Chapter 1 Introduction and Installation....................... 1-1
Installing the Software. 1-2
Documentation OVerview 1-2
Chapter 2 Using the Installable Compression Manager 2-1
Video Compression and Decompression Header Files. 2-1
ICM Architecture 2-1
Using ICM Services. 2-2
Error Returned from the ICM Functions 2-2
Locating and Opening Compressors and Decompressors. 2-2
Installing and Removing Compressors and Decompressors. 2-5
Configuring Compressors and Decompressors 2-7
Getting Information about Compressors and Decompressors. 2-8
Compressing ImageData. 2-11
Specifying the Input Format and Determining
the Compression Format. 2-11
Initialization for the Compression Sequence 2-13
Compressingthe Video. 2-13
DecompressingImageData., 2-15
Specifying the Input Format and Determining
the Decompression Format. 2-16
Initialization for the Decompression Sequence 2-17
Decompressing the Video. 2-18
Using Hardware Drawing Capabilities. 2-19
Specifying the Input Format. 2-20
Preparing to Decompress Video 2-20
Decompressingthe Video. 2-21
Controlling Drawing Parameters. 2-23
Video Compression and Decompression Function Reference............. 2-23
Video Compression and Decompression Functions 2-26
Video Compressor and Decompressor Data Structure Reference 2-45

Video for Windows Programmer's Guide

02/10/93

Chapter 3 Using the DrawDib Functions...................... 3-1
Drawing With the DrawDib Functions. 3-1
Supporting Palettes for the DrawDib Functions 3-3
Manipulating Palettes. 3-3
Optimizing DrawDibDraw 3-4
Profiling the Display Characteristics 3-5
DrawDib Application Reference. 3-5
DrawDib Function Reference 3-5
Chapter 4 AVIFiles. 4-1
AVIRIFF FOrm ... 4-1
Data Structures for AVIFiles 4-3
The Main AVIHeader LIST 4-3
The Stream Header (“strl”) Chunks 4-5
The LIST *movi” Chunk 4-7
The “idx1” Chunk. 4-8
OtherDataChunks 4-9
Special Information for Interleaved Files............................ 4-9
Using VidEdit With AVIFiles 4-10
Example Code for Writing AVI Files. 4-10
An Outline for Writing AVI Files. 4-10
Creating the File and “AVI” Chunk. 4-11
Creating the LIST “hdrl ” and “avih” Chunks. 4-11
Creating the “strl”, “strh”, “strf”, and “strd” Chunks 4-12
Creating the LIST “movi” and “rec” Chunks 4-12
Creating the “idx1” Chunk and Ascending From the “AVI ” Chunk 4-13
AVIRIFF File Reference. 4-14
Chapter 5 DIB Format Extensions for Microsoft Windows. 5-1
Windows Compression Formats 5-1
Existing Formats. 5-2
Extensionstothe Bl RGBFormat 5-2
Formats Using BI_BITFIELDS and Color Masks. 5-3
Custom Formats 5-4
Determining Display Driver Capabilities. 5-5
Inverted DIBS 5-6
Definition of the Flagsand Escape. 5-6
Chapter 6 Playing AVI Files With MCI 6-1
MCIOVEIVIEWo 6-1
Using the MCI Command Interface 6-2
Using the MCI String Interface. 6-3
Choosing the mciSendCommand or mciSendString Interface 6-5

Contents i

Handling MCI Notification......................... 6-6
Playing AVI fileswith MCI 6-7
Openingan AVIFile 6-7
Setting up the Playback Window 6-8
Playing the AVI Sequence. i, 6-10
Changing the Playback State. 6-10
Obtaining Playback Information.................................. 6-12
Closingthe AVIFile. 6-12
Chapter 7 MCI Command Strings for MCIAVI. 7-1
About the MCIAVI.DRV Driver 7-1
Custom Commands and Flags for MCIAVI.DRV........................ 7-1
MCI Command Strings 7-2
Chapter 8 MCI Command Messages for MCIAVI. 8-1
MCI Command MeSSages 8-1
Chapter 9 Video Capture Application Reference............... 9-1
Video Capture Function Reference. 9-1
Video Capture Function Summary, 9-1
Video Capture Function Alphabetic Reference....................... 9-3
Video Capture Data Structure Reference. 9-16
Video Capture Data Structure Alphabetic Reference 9-16
Chapter 10 Video Compression and Decompression Drivers. 10-1
Architecture of a Video Compression and Decompression Driver 10-1
The ICSAMPLE Example Driver. 10-3
The Structure of a Video Compression and Decompression Driver 10-3
Video Compression and Decompression Header Files............... 10-3
Naming Video Compression and Decompression Drivers 10-3
SYSTEM.INI Entries for Video Compression and
Decompression Drivers 10-4
The Module-Definition File., 10-5
The Module Name Line 10-5
The Installable Driver Interface 10-6
An Example DriverProc Entry-Point Function 10-6
Handling the DRV_OPEN and DRV_CLOSE Messages. 10-8
Compressor Configuration. 10-9
Configuration Messages Sent by the System 10-9
Messages for Configuring the Driver State. 10-10
Messages Used to Interrogate the Driver 10-11
Configuration Messages for Compression Quality 10-12
Configuration Messages for Key Frame Rate and Buffer Queue. 10-13

02/10/93

iv Video for Windows Programmer's Guide

Video Compression and Decompression Messages 10-14
Aboutthe AVIFileFormat 10-14
Identifying Compression Formats. 10-16
Decompressing VideoData. 10-17
Settingthe Driver State., 10-18

Specifying the Input Format and Determining
the Decompression Format. 10-18
Preparing to Decompress Video 10-19
Decompressing the Video.l 10-19
Ending Decompression. 10-20
Other Messages Received During Decompression 10-20
CompressingVideoData................, 10-20
Obtaining the Driver State 10-21

Specifying the Input Format and Determining
the Compression Format. 10-21
Initialization for the Compression Sequence 10-23
Compressingthe Video. 10-23
Ending Compression. 10-24
Decompressing Directly to Video Hardware 10-25
Setting the Driver State. 10-25
Specifying the Input Format. 10-25
Preparing to Decompress Video 10-26
Decompressing the Video. 10-27
Ending Decompression. 10-28
Renderingthe Data 10-28
Using Installable Compressors for Non-videoData 10-29
Testing Video Compression and Decompression Drivers 10-30
Video Compression and Decompression Driver Reference............. 10-30
Video Compression and Decompression Driver Message Reference .. 1 0 - 30
Video Compression and Decompression Driver Messages 10-33
Chapter 11 Video Capture Device Drivers................... 11-1
Architecture of a Video Capture Driver. 11-1
Video Capture Device Driver Channels. 11-2
The Video Capture Application. 11-3
Sample Device Drivers. i 11-3
The Structure of a Video Capture Device Driver 11-3

Combining Video Capture and Video
Compression/Decompression Drivers. 11-4
Video Capture Header Files. 11-4
Naming Video Capture Device Drivers 11-4
SYSTEM.INI Entries for Video Capture Device Drivers. 11-4
02/10/93

Contents \%

The Module-Definition File. 11-6
The Module Name Line 11-6
The Module Description Line 11-6

Considerations for Interrupt-Driven Drivers 11-7
Fixing Code and Data Segments 11-7
Allocating and Using Memory. 11-7
Calling Windows Functions at Interrupt Time. 11-8

The Installable Driver Interface, 11-8

An Example DriverProc Entry-Point Function 11-8

Handling the DRV_OPEN and DRV_CLOSE Messages. 11-10

Handling the DRV_ENABLE and DRV_DISABLE Messages. 11-14

Driver Configuration 11-15

Video Capture Driver MeSSageso 11-15

Configuring the Channels of a Video Capture Driver............... 11-15

Setting and Obtaining Video Capture Format 11-17

Setting and Obtaining the Video Source and Destination Rectangles.. 11 -19

Determining Channel Capabilities 11-21

Setting and Obtaining a Video Capture Palette 11-22

Obtaining the Device Driver Version............................ 11-25

Transferring Data From the Frame Buffer 11-25

Streaming Video Capture. 11-26

The Data Transfer Model For Streaming Video Input 11-26
Initializing the Data Stream 11-28
Preparing Data Buffers................ 11-28
Starting and Stopping Streaming.o 11-29
Ending Capture 11-29
Additional Stream Messages 11-30

Video Capture Device Driver Reference 11-31

Video Capture Device Driver Message Reference 11-31
Message SUMMANY it 11-32

Video Capture Device Driver Messages. 11-33

Video Capture Device Driver Data Structure Reference 11-47

02/10/93

CHAPTER 1

Introduction and Installation

The Microsoft® Video for Windows™ Development Kit provides the resources you need
to write applications that use the following services:

¢ Video Capture—These functions give your application easy access to video capture
drivers. Your application can use these functions to obtain video sequences that you
can use in AVI movies and in other applications using Video for Windows.

e Video Compression and Decompression—These functions give your application the
ability to access video compressors and decompressors that use industry standard
compression formats.

e AVI Playback with MCI—The MCI commands let your application use the AVI MCI
driver to play AVI movies and manage the playback window.

o Extended Display Services—These services augment the standard video services to
provide access to video decompressors, provide improved dithering of true-color
images to 256 colors, and dither 8-bit images to 16-color VGA displays.

¢ Read and Write AVI Files—The AVI file examples and information let you develop
routines to read and write AVI files.

This development kit also provides the resources needed by people developing video

capture device drivers, and video compression and decompression drivers.

The software support supplied in this development kit includes:

e A collection of sample applications and drivers that use and provide Video for
Windows services

o Header files defining the messages, data structures, and functions

o Documentation describing the features of the components of the development kit

Error! Main Document Only.-2 Video for Windows Programmer's Guide

Installing the Software

The distribution disks included with the development kit use a batch file to install the
software. The following procedure describes the installation process.

To install the Video for Windows Development Software:

1.

From the MS-DOS command prompt, change to the floppy drive you are installing
from and run the INSTALL batch file. The INSTALL batch file has the following
syntax:

INSTALL C:\VFWDK

Replace C:\VFWDK with disk and path for the destination of the files.

. When installation is complete, change your INCLUDE and LIB environment variables

to include the INC and LIB directories in your destination path. For example, if you
used C:\VFWDK as the path during installation, you could use the following:

SET INCLUDE=[previous include line];C:\VFWDK\INC
SET LIB=[previous lib line];C:\VFWDK\LIB

For these examples, replace [previous include line] and [previous lib line] with any
existing paths for these statements.

. You might also want to add the BIN directory to your PATH variable. The following

example shows the template for modifying your PATH statement to include the Video
for Windows BIN directory:

SET PATH=[previous path line];C:\VFWDK\BIN

As in the previous examples, replace [previous path line] with any existing path
statements.

Documentation Overview

The chapters included in this guide describe the development of applications accessing
Video for Windows services and development of drivers providing video capture, and
video compression and decompression services. This guide contains the following
chapters:

02/10/93

Chapter 1, “Introduction and Installation,” provides background information about the
contents of this guide.

Chapter 2, “Using the Installable Compression Manager,” describes how applications
use the Installable Compression Manager (ICM) functions for compressing or
decompressing video image data. The chapter also contains a reference to the ICM
functions.

Chapter 3, “Using the DrawDib Functions,” describes how applications can use the
DrawDib functions to access ICM services, and obtain improved support of low-end
VGA display adapters. These functions significantly improve the speed and quality of
displaying such images on display adapters with limited capabilities.

Introduction and Installation Error! Main Document Only.-3

Chapter 4, “AVI Files,” describes the AVI RIFF file format. The information in this
chapter applies to applications and drivers that use this file format.

Chapter 5, “DIB Format Extensions for Microsoft Windows,” describes the DIB
format extensions for Microsoft Windows that add new compression formats, custom
compression formats, and inverted DIBs. Information in this chapter applies to both
applications and video drivers.

Chapter 6, “Playing AVI Files With MCI,” describes how to play AVI files using the
MCI interface for Video for Windows.

Chapter 7, “MCI Command Strings for MCIAVI,” describes the MCI command strings
for the Microsoft MCI video driver (MCIAVI.DRV) that you can use with applications
that support the MCI command-string interface.

Chapter 8, “MCI Command Messages for MCIAVI,” describes the MCI command
messages for the Microsoft MCI video driver (MCIAVI.DRV) that you can use with
applications that support the MCI command-message interface.

Chapter 9, “Video Capture Application Reference,” describes functions available for
video capture.

Chapter 10, “Video Compression and Decompression Drivers,” describes the
installable driver interface used by video compressors and decompressors. This
information applies to developers creating these types of drivers. This chapter also
contains an alphabetical reference to the messages and data structures used to write
video compression and decompression drivers.

Chapter 11, “Video Capture Drivers,” describes the installable driver interface used by
video capture drivers. This information applies to developers creating these types of
drivers. This chapter also contains an alphabetical reference to the messages and data
structures used to write video capture drivers.

02/10/93

10

CHAPTER 2

Using the Installable
Compression Manager

The Installable Compression Manager (ICM) provides services for applications that want
to compress or decompress video image data stored in AVI files. This chapter explains the
programming techniques used to access these services. It covers the following topics:

e General information about the ICM and the Video for Windows architecture

e Information on how to compress and decompress video image data from your
application

e An alphabetic reference to the ICM functions and data structures

Before reading this chapter, you should be familiar with the video services available with
Windows. For information about these Windows topics, see the Microsoft Windows
Programmer’s Reference.

Video Compression and Decompression Header
Files

The function prototypes, constants, flags, and data structures applications use to access
the ICM services are defined in COMPMAN.H and COMPDDK.H.

ICM Architecture

The ICM is used by the Video for Windows editing tool (VidEdit) and the playback
engine (MCIAVI) to handle compression and decompression of image data. 1CM is the
intermediary between the application and the actual video compression and
decompression drivers. It is the video compression/decompression drivers that do the real
work of compressing and decompressing individual frames of data.

This chapter covers the ICM and the functions a video editing or playback application
uses to communicate with it. For information on the video compression and
decompression drivers, see Chapter 10, Video Compression and Decompression Drivers.

As the application makes calls to the ICM to compress or decompress data, the ICM
translates this to a message to be sent to the appropriate compressor or decompressor
which does the work of compressing or decompressing the data. The ICM gets the return
from the driver and then returns back to the application.

11

Error! Main Document Only.-2 Video for Windows Programmer's Guide

The ICMAPP sample application illustrates routines that compress data, decompress data,
and display a dialog box. You might find the helper functions defined in ICM.C useful in
developing your application.

Using ICM Services

In general, an application performs the following tasks to use ICM services:

e Locate, open, or install the appropriate compressor or decompressor

e Configures or obtains configuration information about the compressor or
decompressor

e Uses a series of functions to compress, decompress, and (for decompressors with
drawing capabilities) draw the data

These tasks are covered in the following sections. The sample application, ICMApp,
shows how to use the ICM services to do all of the above functions to compress and
decompress images.

Error Returned from the ICM Functions

For most ICM functions, return values of less than zero indicate an error. Your application
should check these return values to see if the ICM function encounters an error. To keep
the example fragments in this chapter simple, many of them do not check for errors. For
more complete examples, see the ICMAPP and ICM examples included with the
development kit.

Locating and Opening Compressors and Decompressors

To use ICM, an application must open a compressor or decompressor. If your application
does not know about the compressors or decompressors installed on a system, it must find
a suitable compressor to open. Once your application finishes with a compressor or
decompressor, it closes it to free any resources used for compression or decompression.
Your application can use the following functions for finding compressors and
decompressors, and opening and closing them:

ICInfo
This function obtains information about compressor or decompressor.

1COpen
This function opens a compressor or decompressor.

ICClose
This function closes a compressor or decompressor.

ICLocate
This function locates a specific type of compressor or decompressor.

If your application knows the compressor or decompressor it needs, it can open the
compressor with the ICOpen function. Your application uses the handle returned by this
function to identify the opened compressor or decompressor when it uses other ICM
functions. The 1COpen function has the following syntax:

02/10/93

12

Using the Installable Compression Manager Error! Main Document Only.-3

BOOL ICOpen(fccType, fccHandler, wMode)

The fccType and fccHandler parameters are four character codes used to describe the type
and handler type for the compressor. Compressor and decompressors are identified by two
four-character codes. Applications open a specific compressor or decompressor by using
the four-character codes for the type and handler. The first four-character code describes
the type of the compressor or decompressor. For video compressors and decompressors,
this is always 'vidc'. The second four-character code identifies the specific compression
handler type. For example, this value is 'msvc' for the Video 1 compressor. Your
application can use NULL if it does not know this four-character code.

Note: Inan AVI file, the stream header contains information about the stream type and
the specific handler for that stream. For video streams, the stream type is 'vidc' and the
handler type is the appropriate handler four-character code. As in the previous example,
Video 1 compressed streams use 'msvc'.

The wMode parameter specifies flags passed to the compressor or decompressor. For
ICOpen, these flags let the compressor or decompressor know why it is opened and they
can prepare for subsequent operation. The following flags are defined:

ICMODE_COMPRESS
Advises a compressor it is opened for compression.

ICMODE_DECOMPRESS
Advises a decompressor it is opened for decompression.

ICMODE_DRAW
Advises a decompressor it is opened to decompress an image and draw it directly to
hardware.

ICMODE_QUERY
Advises a compressor or decompressor it is opened to obtain information.

If your application does not know which compressors and deompressors are installed on a
system, it can use ICInfo to enumerate them. This function has the following syntax:

BOOL ICInfo(fccType, fccHandler, Ipicinfo)

The fccType parameter specifies a four-character code indicating the type of compressor
or decompressor. To enumerate the compressors or decompressors, your application
specifies an integer for fccHandler. Your application receives return information for
integers between 0 and the number of installed compressors or decompressors of the type
specified for fccType. The compressor or decompressor returns information about itself in
a ICINFO data structure pointed to by Ipicinfo. The ICInfo function returns TRUE if it
can locate the specified compressor or decompressor.

The following example enumerates the compressors or decompressors in the system to
find one that can handle the format of its images. (The example uses ICCompressQuery
and 1CDecompressQuery to determine if a compressor or decompressor supports the
image format. The use of these functions is described in “Compressing Image Data” and
“Decompressing Image Data.”)

02/10/93

13

Error! Main Document Only.-4 Video for Windows Programmer's Guide

02/10/93

for (i=0; ICInfo(p->fccType, i, &p->icinfo); i++)

{
hic = 1COpen(p->icinfo.fccType, p->icinfo.fccHandler, ICMODE_QUERY);
if (hic)
{
// skip this compressor if it can"t handle the specifed format
if (p->fccType == ICTYPE_VIDEO &&
p->pvin I= NULL &&
ICCompressQuery(hic, p->pvin, NULL) != ICERR_OK &&
ICDecompressQuery(hic, p->pvin, NULL) I= ICERR_OK)
{
ICClose(hic);
continue;
}
// find out the compressor name.
ICGetInfo(hic, &p->icinfo, sizeof(p->icinfo));
// stuff it into the combo box
n = ComboBox_AddString(hwndC,p->icinfo.szDescription);
ComboBox_SetltemData(hwndC, n, hic);
}
}

Applications can use ICLocate to find a compressor or decompressor of a specific type,
and to obtain a handle to it for use in other ICM functions. The ICLocate function has the
following syntax:

HIC ICLocate (fccType, fccHandler, Ipbiln, IpbiOut, wFlags)

The fccType and fccHandler parameters are four-character codes used to describe the type
and handler type for the compressor. Your application can specify NULL for fccHandler
if it does not know the handler type or if it can use any handler type.

The Ipbiln parameter contains a pointer to a BITMAPINFOHEADER structure describing
the input format the compressor or decompressor will handle. The IpbiOut parameter
contains a pointer to a BITMAPINFOHEADER structure describing the output format
desired by the application. If your application does not care what output format is returned
by a compressor or decompressor, you can set IpbiOut to NULL. The wFlags parameter
indicates the type of operation you want the driver to do: compress, decompress or
directly decompress and draw.

For example, the following fragment tries to find a compressor that can compress an 8-bit
per pixel bitmap:

14

Using the Installable Compression Manager Error! Main Document Only.-5

B1TMAP INFOHEADER bih;
HIC hicC

// inialize the Bitmap structure
bih_biSize = sizeof(BITMAPINFOHEADER);
ih_biWidth = bih._biHeight = 0;

o

bih.biPlanes = 1;

bih.biCompression = BI_RGB; // standard RGB bitmap
bih_biBitcount = 8; // 8bpp format
bih.biSizelmage = 0;

bih.biXPelsPerMeter = bih._biYPelsPerMeter = O;
bih.biClrUsed = bih.biClrimportant = 256;

hi1C = ICLocate (ICTYPE_VIDEO, OL,
(LPBITMAPINFOHEADER)&bih, NULL, ICMODE_COMPRESS);

The following fragment tries to locate a specific compressor to compress the 8-bit RGB
format to an 8-bit RLE format:

B1TMAP INFOHEADER bihIn, bihOut;
HIC hic

// initialize the Bitmap structure
bihIn_biSize = bihOut.biSize = sizeof(BITMAPINFOHEADER) ;
bihIn_biWidth = bihIn._biHeight = bihOut._biWidth = bihOut.biHeight = 0;
bihIn_biPlanes = bihOut.biPlanes= 1;
bihIn_biCompression = BI_RGB; //standard RGB bitmap for input
bihOut.biCompression = BI_RLES; // 8-bit RLE for output format
bihIn_biBitcount = bihOut.biBitCount = 8; // 8bpp format
bihIn._biSizelmage = bihOut.biSizelmage = O;
bihIn_biXPelsPerMeter = bih.biYPelsPerMeter =

bihOut._biXPelsPerMeter = bihOut.biYPelsPerMeter = O;
bihIn_biClrUsed = bih.biClrimportant =

bihOut.biClrUsed = bihOut.biClrimportant = 256;

h1C = ICLocate (ICTYPE_VIDEO, OL,
(LPBITMAPINFOHEADER)&bihlIn,
(LPBITMAPINFOHEADER)&bihOut, ICMODE_COMPRESS);

Installing and Removing Compressors and
Decompressors

There are three methods of installing compressors and decompressors. They might be
installed during the set-up of Video for Windows or other software relating to Video for
Windows. Users can also install compressors and decompressors with the Drivers option
of the Control Panel. Applications can also install custom compressors and decompressors
functions required for their operation. Most applications will not need to install or
remove compressors or decompressors. Your application can use the following functions
for installing and removing compressors and decompressors:

02/10/93

15

Error! Main Document Only.-6 Video for Windows Programmer's Guide

02/10/93

ICInstall
This function installs compressor or decompressor.

ICRemove
This function removes an installed compressor or decompressor.

Compressors and decompressor are usually installed by a setup program or by the user
with the Drivers option of the Control Panel. An application might, however, install a
compressor directly or install a function as a compressor. In these cases, the application
uses ICInstall and ICRemove.

The ICInstall function creates a new entry in the SYSTEM.INI for a compressor or
decompressor. After installation, the compressor or decompressor must still be opened.
The ICInstall function has the following syntax:

BOOL ICinstall (fccType, fccHandler, IParam, szDesc, wFlags)

The fccType and fccHandler parameters specify four-character codes describing the
compressor type and handler type. Flags set in wFlags specify the meaning of IParam.
The following flags are defined:

ICINSTALL_DRIVER
Indicates IParam points a null-terminated string containing the name of a compressor
or decompressor.

ICINSTALL_FUNCTION
Indicates IParam points to a compressor function.

If you are installing a driver, IParam specifies the name of the driver. If you are installing
a function as a compressor or decompressor, use IParam to specify a far pointer to your
function. This function should be structured like the DriverProc entry point function used
by installable drivers. For more information on the DriverProc entry point function, see
Chapter 10, “Video Compression and Decompression Drivers.”

Use the szDesc parameter for a descriptive name for the compressor or decompressor.
This information is not used and your application does not have to supply a name.

For example, the following fragment installs the ICSample driver:

result = ICInstall (ICTYPE_VIDEO, mmioFOURCC("s","a","m","p"),
(LPARAM) (LPSTR)"icsample.drv', "Sample Codec Driver", ICINSTALL_DRIVER)

The following fragment shows how an application would install a function as a
compressor or decompressor.

16

Using the Installable Compression Manager Error! Main Document Only.-7

// This function looks like a DriverProc entry point
LRESULT MyCodecFunction(DWORD dwlD, HDRVR hDriver, UINT uiMessage,
LPARAM IParaml, LPARAM IParam2);

// This function installs the MyCodecFunction as a compressor
result = ICInstall (ICTYPE_VIDEO, mmioFOURCC("s","a","m","p"),
(LPARAM) (FARPROC)&MyCodecFunction, NULL, ICINSTALL_FUNCTION);

Usually the Drivers option of the Control Panel is used to remove a compressor or
decompressor. Applications installing a function as a compressor or decompressor must
remove the function before the application terminates so other applications do not try to
use the function. Applications can use ICRemove to remove the function installed. The
ICRemove function has the following syntax:

BOOL ICRemove (fccType, fccHandler, wFlags)

The fccType and fccHandler parameters specify four-character codes describing the
compressor type and handler type. The wFlags parameter is not used.

Configuring Compressors and Decompressors

Applications can configure the compressor or have the compressor display a dialog box to
let the user to do the configuration. The following functions are available for these
operations:

ICQueryConfigure
Determines if the compressor or decompressor supports a configuration dialog box.

ICConfigure

Displays the configuration dialog box of the compressor or decompressor.
ICGetStateSize

Determines the size of the state data for the compressor or decompressor.
ICGetState

Obtains the state data from the compressor or decompressor.

ICSetState
Sends the state data to the compressor or decompressor.

If practical, your application should let the user configure the compressor with the
compressor’s configuration dialog box. Typically, this makes your application
independent of the compressor and you do not need to consider all the options available to
a compressor.

Your application uses ICQueryConfigure to determine if a compressor can display a
configuration dialog box. If the compressor can display a configuration dialog box, your
application uses ICConfigure to display it. Both of these functions use the handle your
application obtained when it located the compressor. The ICConfigure function also
requires a handle to the parent window. Your application can use the following fragment
to test for support of the configuration dialog box and display it:

02/10/93

17

Error! Main Document Only.-8 Video for Windows Programmer's Guide

it (1CQueryConfigure(hlC)){

// 1f compressor handles a configuration dialog box, display it
// using our app window as the parent window.
ICConfTigure(hIC, hwndApp);

Your application might also directly get and set the state information for a compressor. If
your application creates or modifies the state data, it must know the actual layout of the
compressor data before restoring a compressor state. Alternatively, if your application
obtains state data from a compressor and uses it to restore the state in a subsequent
session, it must make sure that it only restores state information obtained from the
compressor it is currently using. The following fragments show how to obtain the state
data:

if (size > 0) {

dwStateSize = ICGetStateSize(hlC); // get size of buffer required
h = GlobalAlloc(GHND, dwStateSize); // allocate data buffer
IpData = GloballLock(h); // lock data buffer

1CGetState(hlIC, (LPVOID)IpData, dwStateSize); // get the state data

// Store the state data as required

}

The following fragments show how to restore state data:

ICSetState(hIC, (LPVOID)IpData, dwStateSize); // set the new state data
GlobalUnlock(h);

Getting Information about Compressors and
Decompressors

02/10/93

The following functions can be used to get information about a compressor or
decompressor:

ICGetiInfo
Obtains general information about the compressor or decompressor.

ICGetDefaultKeyFrameRate
Determines the default key frame rate of a compressor or decompressor.

ICGetDisplayFormat
Determines the 'best’ format a compressor or decompressor has for displaying on the
screen.

ICGetDefaultQuality
Determines the default quality value of a compressor or decompressor.

To obtain information about a compressor or decompressor, your application can use
ICGetInfo. This function fills an ICINFO structure with information about the
compressor or decompressor. Your application must allocate the memory for the ICINFO

18

Using the Installable Compression Manager Error! Main Document Only.-9

structure and pass a pointer to it in ICGetInfo. The ICINFO structure has the following
definition:

typedef struct {
DWORD dwSize;
DWORD fccType;
DWORD fccHandler;
DWORD dwFlags;
DWORD dwVersion;
DWORD dwVersionlICM;

char szName[16] ;
char szDescription[128];
char szDriver[128];

} ICINFO;

The dwsSize field contains the size of the ICINFO structure.
The fccType field contains the four-character code 'vidc' for image compression.

The fccHandler field identifies the compressor or decompressor with its four-character
code.

The dwVersion field contains the version number of the compression driver.

The dwVersionlCM field will contain the ICM version number supported by the
compressor or decompressor. This is 1.0 (0x00010000) if the compressor or decompressor
is written for Video for Windows 1.0.

The szName field contains the short name of the compressor or decompressor. The name
is used in list-boxes for choosing compression methods.

The szDescription field contains the long description for the compressor or
decompressor.

The szDriver field contains the actual module name that contains the compressor or
decompressor.

The dwFlags field contains flags indicating capabilities of the compressor or
decompressor. The following flags are defined:

VIDCF_QUALITY
Indicates the compressor or decompressor supports quality levels.

VIDCF_CRUNCH

Indicates a compressor supports compressing to an arbitrary frame size.
VIDCF_TEMPORAL

Indicates the compressor or decompressor supports inter-frame compression.

VIDCF_DRAW
Indicates decompressor can draw to hardware. (These decompressors support the
ICDraw functions.)

02/10/93

19

Error! Main Document Only.-10 Video for Windows Programmer's Guide

02/10/93

VIDCF_FASTTEMPORAL
Indicates a compressor can do temporal compression but it doesn't need previous
frame.

Unless your application is looking for a particular compressor or decompressor, the flags
give your application the most useful information. Your application can check the flags to
determine the capabilities of the compressor or decompressor. For example, if quality is
supported, your application might enable a quality selection control in a compression
dialog box.

The following fragment shows how to obtain the ICINFO information from a compressor
or decompressor:

ICINFO ICInfo;
ICGetInfo(hIC, &ICInfo, sizeof(ICInfo));

The ICGetDefaultKeyFrameRate and 1CGetDefaultQuality functions let your
application determine the default key frame rate and default quality value. Both of these
functions require only the handle to the compressor or decompressor. The following
fragment uses both functions to obtain the default values:

DWORD dwKeyFrameRate, dwQuality;

dwKeyFrameRate = ICGetDefaultKeyFrameRate(hlIC);
dwQuality = ICGetDefaultQuality(hlIC);

Your application can use the following functions to display the about dialog box of a
compressor or decompressor:

ICQueryAbout
Determines if a compressor or decompressor supports an about dialog box.

ICAbout
Displays the about dialog box of a compressor or decompressor.

The 1CQueryAbout function lets your application determine if a compressor or
decompressor can display the about dialog box. The ICAbout function actually displays
the dialog box. The following examples uses these two functions:

if (1CQueryAbout(hlC)){

// If the compressor has an about dialog box, show it
1CAbout(hIC, hwndApp);

20

Using the Installable Compression Manager Error! Main Document Only.-11

Compressing Image Data

Your application uses a series of functions to coordinate compressing video data. The
coordination involves the following activities:

e Specifying the input format and determining the compression format
e Preparing the compressor for compression

e Compressing the video

e Ending compression

Your application uses the following functions for these activities:

ICCompress
Compress data.

ICCompressBegin
Prepare compressor driver for compressing data.

ICCompressEnd
Tell the compressor driver to end compression.

ICCompressGetFormat
Determine the output format of a compressor.

ICCompressGetFormatSize
Get the size of the output format data.

ICCompressGetSize
Get the size of the compressed data.

ICCompressQuery
Deterimine if a compressor can compress a specific format.

Specifying the Input Format and Determining the

Compression Format

When your application wants to compress data and the output format is not important, it
must first locate a compressor that can handle the input format. When the output format is
not important to your application, it can use ICCompressGetFormat to have the
compressor suggest a format. If the compressor can produce multiple formats, it returns
the format that preserves the greatest amount of information rather than one that
compresses to the most compact size. This will preserve image quality if the video data is
later edited and recompressed. The ICCompressGetFormat function has the following
syntax:

LRESULT ICCompressGetFormat(hic, Ipbilnput, IpbiOutput)

The hic parameter specifies the compressor handle. The Ipbilnput parameter specifies a
far pointer to a BITMAPINFO structure indicating the format of the input data. The
IpbiOutput parameter specifies a far pointer to a buffer used to return the output format
suggested by the compressor. Your application can determine the size of the buffer
needed for the buffer with ICCompressGetFormatSize.

02/10/93

21

Error! Main Document Only.-12 Video for Windows Programmer's Guide

02/10/93

Your application can use the output format data as the 'strf' chunk in the AVI RIFF file.
This data starts out like a BITMAPINFOHEADER data structure. The compressor can
include any additional information required to decompress the file after this information.
A color table (if used) follows this information. If the compressor has format data
following the BITMAPINFOHEADER structure, it updates the biSize field to specify the
number of bytes used by the structure and additional data.

The following example fragment shows how an application can determine the output
format that a compressor wants to use.

LPBITMAPINFOHEADER Ipbiln, IpbiOut;
// *Ipbiln must be initialized to the input format

dwFormatSize = ICCompressGetFormatSize(hlIC, Ipbiln); // get output buffer size

h = GlobalAlloc(GHND, dwFormatSize); // allocate format buffer
IpbiOut = (LPBITMAPINFOHEADER)GlobalLock(h); // lock format buffer
ICCompressGetFormat(hIC, Ipbiln, IpbiOut); // fill the format information

If your application requires a specific output format, it should use ICCompressQuery to
interrogate a compressor to determine if it supports the output format your application
suggests. This function has the following syntax:

LRESULT ICCompressQuery(hic, Ipbilnput, IpbiOutput)

The hic parameter specifies the compressor handle. Your application typically obtains this
with ICLocate or ICOpen. The Ipbilnput and IpbiOutput parameters specify far pointers
to the data structures defining the input and output formats your application prefers. If the
compressor can handle both formats it returns ICERR_OK. If it cannot handle the
formats, it returns ICERR_BADFORMAT. If the compressor returns
ICERR_BADFORMAT and the output format is critical to your application, your
application will have to find an alternate compressor. If an alternate output format is
satisfactory, your application might choose to use ICCompressQuery with the alternate
formats to determine if the compressor can handle them. Or your application can use
ICCompressGetFormat to have the compressor suggest the output format.

If your application specifies NULL for the IpbiOutput parameter of ICCompressQuery,
the compressor will select the output format. Typically, your application specifies NULL
when it only wants to know if the compressor can handle the input format. The output
format information is not returned to your application.

The following fragment uses ICCompressQuery to determine if a compressor can handle
both the input and output format:

22

Using the Installable Compression Manager Error! Main Document Only.-13

LPBITMAPINFOHEADER Ipbiln, IpbiOut;

// Both *Ipbiln & *IpbiOut must be initialized to the respective formats
ifT (ICCompressQuery(hlC, Ipbiln, IpbiOut) == ICERR_OK){

// format is supported - use the compressor

¥

Your application will also need the size of the data returned from the compressor after
compression is complete. Use ICCompressGetSize to obtain the worst case (largest)
buffer required by the compressor. The number of bytes returned should be used to
allocate a buffer used for subsequent compression of images. The following example
determines the buffer size and allocates a buffer of that size:

// find the worst-case buffer size
dwCompressBufferSize = I1CCompressGetSize(hIC, Ipbiln, IpbiOut);

// allocate a buffer and get IpOutput to point to it
h = GlobalAlloc(GHND, dwCompressBufferSize);
IpOutput = (LPVOID)GlobalLock(h);

Initialization for the Compression Sequence

Once your application selects a compressor that handles the input and output formats it
needs, it can prepare the compressor to start compressing data. The ICCompressBegin
function initializes the compressor. This function requires the compressor handle and the
input and output format. It returns ICERR_OK if it initializes properly for the specified
formats. If the compressor cannot handle the formats, or if they are incorrect, it returns the
error ICERR_BADFORMAT.

Compressing the Video

The ICCompress function does the actual compression. Your application must use this
function repeatedly until all the frames are compressed. This function has the following
syntax:

LRESULT ICCompress(hic, dwFlags, IpbiOutput, IpData, Ipbilnput, IpBits,
Ipckid, IpdwFlags, IFrameNum, dwFrameSize,
dwQuality, IpbiPrev, IpPrev)

The hic parameter specifies the handle to the compressor.

The dwFlags parameter specifies any applicable flags for the compression. Your
application can use ICM_COMPRESS_KEYFRAME to have the compressor make the
frame a key frame. (A key frame is one that does not require data from a previous frame
for decompression.) When this flag is set, compressors use this image as the initial one in
a sequence.

The Ipbilnput and IpBits parameters specify far pointers to the data structure defining the
input format and the location of the input buffer. Similarly, the IpbiOutput and IpData
parameters specify far pointers to the data structure defining the output format and the
location of the buffer for the output data. Your application must allocate the memory for

02/10/93

23

Error! Main Document Only.-14 Video for Windows Programmer's Guide

02/10/93

these buffers. When control returns to your application, it typically stores the compressed
data in IpbiOutput and IpData in a subsequent operation. If your application needs to
move the compressed data, it can find the size used for the data in the biSizelmage field
in the BITMAPINFO structure specified for IpbiOutput.

The Ipckid and IpdwFlags are used for AVI file data returned by the compressor. The
Ipckid specifies a far pointer to a DWORD used to hold a chunk ID for data in the AVI
file. The IpdwFlags specifies a far pointer to a DWORD holding the return flags used in
the AVI index. The compressor will set this flag to AVIIF_KEYFRAME to correspond to
the ICM_COMPRESS_KEYFRAME flag. The AVIIF_KEYFRAME flag marks the key-
frames in the AVI file. If your application creates AV files, it should save the information
returned for these parameters in the file.

The IFrameNum parameter specifies the frame number. Your application provides and, if
necessary, increments this information. Compressors use this value to check if frames are
being sent out of order when they are doing fast temporal compression. If your application
has a frame recompressed, it should use the same frame number used when the frame was
first compressed. If your application compresses a still frame image, it can specify zero
for IFrameNum.

The dwFrameSize parameter specifies the requested frame size in bytes. If set to zero, the
compressor chooses the frame size. If set to a non-zero value, the compressor tries to
compress the frame to within the specified size. To obtain the size goal, the compressor
might have sacrificed image quality (or made some other trade-off). Compressors
recognize the frame size value only if they return the VIDCF_CRUNCH flag for
ICGetinfo.

The dwQuality parameter specifies the requested quality value for the frame. Compressors
support this only if they set the VIDCF_QUALITY flag for ICGetInfo.

The IpbiPrev and IpPrev parameters specify far pointers to the data structure defining the
format and the location of the previous uncompressed image. Compressors use this data if
they perform temporal compression (that is, they need the previous frame to compress the
current frame). Compressors need this information only if they return the
VIDCF_TEMPORAL flag. Compressors returning the VIDCF_FASTTEMPORAL flag
can perform temporal compression without the previous frame.

The ICCompress function returns ICERR_OK if successful. Otherwise, it returns an error
code.

After your application has compressed its data, it uses ICCompressEnd to notify the
compressor that it has finished. To restart compression after using this function, your
application must re-initialize the compressor with ICCompressBegin.

The following fragment compresses image data for use in an AVI file. It assumes the
compressor does not support VIDCF_CRUNCH or VIDCF_TEMPORAL flags but it does
support VIDCF_QUALITY.

24

Using the Installable Compression Manager Error! Main Document Only.-15

DWORD dwCkID;

DWORD dwCompFlags;

DWORD dwQuality;

LONG INumFrames, IFrameNum;

// assume dwNumFrames is initialized to the total number of frames

// assume dwQuality holds the proper quality value (0-10000)

// assume IpbiOut, IpOut, Ipbiln and Ipln are all initialized properly.
iT (1CCompressBegin(hlC, Ipbiln, IpbiOut) == ICERR_OK){

// 1f o.k. to start, compress each frame
for (IFrameNum = O; IFrameNum < INumFrames; IFrameNum++){

if (ICCompress(hiIC, 0, IpbiOut, IpOut, Ipbiln, Ipin,

&dwCkID, &dwCompFlags, IFrameNum,
0, dwQuality, NULL, NULL) == ICERR_OK){

// Write compressed data the AVI file.

// set Ipln to be the next frame in the sequence

} else {

// handle compressor error

I1CCompressend(hiC); // terminate compression

} else {

// handle error

3
Decompressing Image Data

Similar to compressing data, your application uses a series of functions to control the
decompressor used to decompress the video data. Decompressing data involves the
following activities:

e Specifying the input format and determining the decompression format

e Preparing to decompress video

o Decompressing the video

e Ending decompression

02/10/93

25

Error! Main Document Only.-16 Video for Windows Programmer's Guide

02/10/93

Your application uses the following functions for these activities:

ICDecompress
Decompress data.

ICDecompressBegin
Prepare decompressor for decompressing data.

ICDecompresseEnd
Tell decompressor to end decompression.

ICDecompressGetFormat
Determine the output format of a decompressor.

ICDecompressGetFormatSize
Get the size of the output data format.

ICDecompressGetPalette
Get the palette for the output format of a decompressor.

ICDecompressQuery
Determine if a decompressor can decompress a specific format.

Decompression is handled very much like compression except that the input format is a
compressed format and the output is a displayable format. The input format for
decompression is usually obtained from the video stream header in the AVI file. After
determining the input format, your application can use ICLocate or ICOpen to find a
decompressor that can handle it.

Specifying the Input Format and Determining the

Decompression Format

Because your application allocates the memory required for decompression, it needs to
determine the maximum memory the decompressor can require for the output format. The
ICDecompressGetFormatSize function obtains the number of bytes the decompressor
uses. This function has the following syntax:

DWORD ICDecompressGetFormatSize(hic, Ipbi)

The hic parameter specifies a handle to a decompressor. The Ipbi specifies a far pointer to
a BITMAPINFO structure indicating the format of the input data.

If your application wants the decompressor to suggest a format, it can use
ICDecompressGetFormat to obtain the format. This function has the following syntax:

DWORD ICDecompressGetFormat(hic, Ipbilnput, IpbiOutput)

Like ICDecompressGetFormatSize, the hic and Ipbilnput parameters specify a handle to
the decompressor and a far pointer to the structure indicating the format of the input data.
The decompressor returns its suggested format in the BITMAPINFO structure pointed to
by Ipbilnput. Your application should check that the decompressor returns ICERR_OK
for the return value before accessing the IpbiOutput information. If the decompressor
cannot handle the input format, it returns ICERR_BADFORMAT. The following
fragment shows how an application can use ICDecompressGetFormat:

26

Using the Installable Compression Manager Error! Main Document Only.-17

LPBITMAPINFOHEADER Ipbiln, IpbiOut;
// assume *Ipbiln points to the input (compressed) format

dwFormatSize = ICDecompressGetFormatSize(hlC, Ipbiln); // get output

// buffer size
h = GlobalAlloc(GHND, dwFormatSize); // allocate format buffer
IpbiOut = (LPBITMAPINFOHEADER)GIobalLock(h); /7 lock format buffer
ICDecompressGetFormat(hIC, Ipbiln, IpbiOut); /7 fill the format information

If your application needs a specific output format, in can use ICDecompressQuery to
determine if the decompressor can handle both the input and output format. This function
uses the same parameters as ICDecompressGetFormat except that your application sets
IpbiOutput to point at the structure defining the desired output format. If your application
is just determining if the decompressor can handle the input format, it can specify NULL
for IpbiOutput. The following fragment shows how an application can use this function:

LPBITMAPINFOHEADER Ipbiln, IpbiOut;

// assume both *Ipbiln & *IpbiOut are initialized to the respective formats
if (ICDecompressQuery(hiIC, Ipbiln, IpbiOut) == ICERR_OK){

// format is supported - use the decompressor

}

If your application creates its own format, it must also obtain a palette for the bitmap.
(Most applications use standard formats and do not need to obtain a palette.) Your
application can obtain the palette with ICDecompressGetPalette. This function has the
following syntax:

DWORD ICDecompressGetPalette(hic, Ipbilnput, IpbiOutput)

Like the other functions, hic and Ipbilnput specify a handle to a decompressor and point
to a BITMAPINFO structure indicating the format of the input data. The IpbiOutput
parameter points to a BITMAPINFO structure used to return the color table. The space
reserved for the color table must have an entire 256 color palette table reserved at the end
of the structure. The following fragment shows how to get the palette information:

ICDecompressGetPalette(hIC, Ipbiln, IpbiOut);

// move up to the palette
IpPalette = (LPBYTE)IpbiOut + Ipbi->biSize;

Initialization for the Decompression Sequence

Once your application selects a decompressor that handles the input and output formats it
needs, it can prepare the decompressor to start decompressing data. The
ICDecompressBegin function initializes the compressor. This function requires the
compressor handle and the input and output format. It returns ICERR_OK if it initializes
properly for the specified formats. If the compressor cannot handle the formats, or if they
are incorrect, it returns the error ICERR_BADFORMAT.

02/10/93

27

Error! Main Document Only.-18 Video for Windows Programmer's Guide

02/10/93

Decompressing the Video

The ICDecompress function does the actual decompression. Your application must use
this function repeatedly until all the frames are decompressed. This function has the
following syntax:

DWORD ICDecompress(hic, dwFlags, IpbiFormat, IpData, Ipbi, IpBits)
The hic parameter specifies the handle to the decompressor.

The dwFlags parameter specifies any applicable flags for decompression. If your video
presentation is starting to lag other components (such as audio), your application can use
ICM_DECOMPRESS_HURRYUP to have the decompressor decompress at a faster rate.
To speed up decompression, a decompressor might extract only the information it needs
to decompress the next frame and not fully decompress the current frame. Thus, when
your application uses this flag, it should not try to draw the decompressed data.

The IpbiFormat and IpData parameters specify far pointers to the data structure defining
the input format and the location of the input buffer. Similarly, the Ipbi and IpBits
parameters specify far pointers to the data structure defining the output format and the
location of the buffer for the output data. Your application must allocate the memory for
these buffers. When control returns to your application, it will use the information in Ipbi
and IpBits for subsequent processing of the decompressed data.

The ICDecompress function returns ICERR_OK if successful. Otherwise, it returns an
error code.

After your application has decompressed its data, it uses ICDecompressEnd to notify the
decompressor that it has finished. To restart decompression after using this function, your
application must re-initialize the decompressor with ICDecompressBegin. The following
fragment shows how an application can initialize a decompressor, decompress a frame
sequence, and terminate decompression:

LPBITMAPINFOHEADER lbpiln, IpbiOut;
LPVOID Ipin, 1pOut;
LONG INumFrames, IFrameNum;

// assume Ipbiln and IpbiOut are initialized to the input and output format
// and Ipln and IpOut are pointing to the data buffers.

iT (1CDecompressBegin(hIC, Ipbiln, IpbiOut) == ICERR_OK){
for (IFrameNum = 0; IFrameNum < INumFrames, IFrameNum++){
it (1CDecompress(hiC, 0, Ipbiln, Ipln, IpbiOut, IpOut) == ICERR_OK){

// frame decompressed OK so we can process it as required

28

Using the Installable Compression Manager Error! Main Document Only.-19

3} else {

// handle decompression error

}

ICDecompressEnd(hIC);
T else {
// handle error for decompression initialization
3
Using Hardware Drawing Capabilities

Some decompressors have the ability to draw directly to video hardware as they
decompress video frames. These decompressors return the VIDCF_DRAW flag in
response to ICGetInfo. When using this type of decompressor, your application does not
have to handle the decompressed data. It lets the decompressor retain the decompressed
data for drawing. The following functions are used to for decompressing and drawing
with decompressors that have drawing capabilities:

ICDrawBegin

This function prepares a decompressor for drawing.
ICDrawEnd

This function stops a decompressor’s drawing operations.
ICDrawFlush

This function flushes the buffers in the decompressor.
ICDrawQuery

This function determines if the decompressor can render data in a specific format.
ICDrawStart

This function starts the internal clock a decompressor uses for drawing.
ICDrawStop

This function stops the internal clock a decompressor uses for drawing.
ICGetBuffersWanted

This function determines the pre-buffering requirements of a compressor.

If your application uses a decompressor with drawing capabilities, it must handle the
following activities:

o find a decompressor that can decompress and draw a bitmap with the input format
specified

e prepare for decompression

e decompress data

e terminate the decompression process

02/10/93

29

Error! Main Document Only.-20 Video for Windows Programmer's Guide

Specifying the Input Format

Since your application no longer needs to draw the final data, it does not need to be
concerned with the output format. However, it must make sure the decompressor can draw
the input format. Your application can use ICDrawQuery to determine if a decompressor
can handle the input format. While this function can determine if a deompressor can
handle the format, it does not determine if the a decompressor has all the capablities
needed to draw a bitmap. If your application is uncertain if the decompressor can render
the bitmap as required, use this function with ICDrawBegin The following section
describes ICDrawBegin. The following fragment shows how to check the input format
with ICDrawQuery:

// lpbiln points to BITMAPINFOHEADER structure indicating the input format
it (ICDrawQuery(hIC, Ipbiln) == ICERR_OK){

// decompressor recognizes the input format
} else {

// we need a different decompressor

¥

Preparing to Decompress Video
The ICDrawBegin function initializes a decompressor and it informs the decompressor
about the destination of drawing. The ICDrawBegin function has the following syntax:

DWORD ICDrawBegin(hIC, dwFlags, hPal, hwnd, hdc, xDst, yDst, dxDst, dyDst,
Ipbi, xSrc, yScr, dxSrc, dySrc, dwRate, dwScale)

The hIC parameter contains the handle to the decompressor. The dwFlags parameter
specifies any applicable flags. The following flags are defined for this function:

ICDRAW_QUERY
Use to determine if the decompressor can handle the decompression. The
decompressor does not draw when this flag is used.

ICDRAW_FULLSCREEN
Indicates that the decompressor will draw to the full screen rather than to a window.

ICDRAW_HDC
Indicates that the decompressor will use a window and display context for drawing.

The hPal parameter specifies a handle to the palette used for drawing. Decompressor
ignore this information and your application can set it to null.

The hwnd and hdc parameters define the window and display context used for drawing.
Your application must set these values if it uses the ICDRAW_HDC flag.

The xDst, yDst, dxDst and dyDst parameters define the destination rectangle used for
drawing. Specify the destination rectangle values relative to the current window or display
context. Your application should set these parameters to the desired destination rectangle

02/10/93

30

Using the Installable Compression Manager Error! Main Document Only.-21

if it uses ICDRAW_HDC. It can set them to zero if it uses the ICDRAW_FULLSCREEN
flag.

The xSrc, ySrc, dxSrc, and dySrc parameters specify the source rectangle used for clipping
the frames of the image. The decompressor will stretch the rectangle specified as the
source into the rectangle specified by the destination when drawing.

The Ipbi parameter should contain a pointer to the BITMAPINFO structure for the input
format. Your application uses the dwRate and dwScale parameters to specify the
decompression rate. The integer value specified for dwRate divided by the integer value
specified for dwScale defines the play rate in frames per second. This is used by the
decompressor when it is responsible for timing of frames on playback.

The following fragment shows the initialization sequence to have the decompressor draw
full screen:

// assume Ipbiln has the input format, dwRate has the data rate
if (ICDrawBegin(hIC, ICDRAW_QUERY]ICDRAW_FULLSCREEN, NULL, NULL,
NULL, O, O, O, O, Ipbiln, O, O, O, O, dwRate, dwScale) == ICERR_OK){

// decompressor supports this drawing so set up to draw.
ICDrawBegin(hIC, ICDRAW_FULLSCREEN, hPal, NULL, NULL, O, O, O, O, Ipbiln,
0, 0, Ibpi->biWidth, Ipbi->biHeight, dwRate, dwScale);

// we"re ready to start decompressing and drawing frames now

// drawing done so terminate
ICDrawend(hIC);
} else {

// do drawing myself

}

Some decompressors buffer the compressed data for more efficient operation. Your
application can use ICGetBuffersWanted to determine how many data frames it should
send to the decompressor before it has the decompressor draw them.

Decompressing the Video

The ICDraw function has the decompressor do the actual decompression. This function
has the following syntax:

LRESULT ICDraw(hIC, dwFlags, IpFormat, IpData, cbData, ITime)

The hIC is the handle to the decompressor. The dwFlags are flags set by the application
and used by the decompressor. These flags can be:

ICDRAW_HURRYUP
Tell the decompressor to decompress at a faster rate.

02/10/93

31

Error! Main Document Only.-22 Video for Windows Programmer's Guide

ICDRAW_UPDATE
Tell the decompressor to update the screen based on the last data received. In this case
the IpData parameter should be NULL.

The IpFormat parameter specifies a pointer to the format of the input data. The IpData
parameter contains the actual data to be decompressed and later drawn.

The chData parameter specifies the number of bytes in IpData.

The ITime parameter specifies the time to draw this frame. The decompressor divides this
integer by the time scale specified with ICDrawBegin obtain the actual time. Time for the
ICDraw functions is relative to ICDrawStart. (That is, ICDrawStart sets the clock to
zero.) For example, if your applications specifies 1000 for the time scale and 75 for ITime,
the decompressor draws the frame 75 milliseconds into the sequence.

The decompressor starts decompressing data in response to ICDraw, however, it does not
start drawing data until your application calls ICDrawStart. (Your application should not
use ICDrawsStart until it has sent the number of frames the decompressor returned for
ICGetBuffersWanted.) When your application uses ICDrawStart, the decompressor
begins to draw the frames at the rate specified by dwRate specified with the
ICDrawBegin. Drawing continues until your application stops the decompressor drawing
clock with ICDrawStop. The following fragment uses the ICDraw functions:

DWORD dwNumBuffers;

// find out how many buffers need filling before drawing starts
ICGetBuffersWanted(hlC, &dwNumBuffers);

for (dw = 0; dw < dwNumBuffers; dw++){
ICDraw(hIC, 0, IpFormat, lIpData, cbData, dw); // fill the pipeline
// Point IpFormat and IpData to next format and data buffer
3
ICDrawStart(hlIC); // start the clock
while (fPlaying){
ICDraw(hIC, 0, IpFormat, lpData, chData, dw); // fill more buffers
// Point IpFormat and IpData to next format and data buffer, update dw

}

ICDrawStop(hlIC); // when done stop drawing and decompressing
ICDrawFlush(hIC); // flush any existing buffers
ICDrawend(hliC); // end decompression

02/10/93

32

Video Compression and Decompression Application Reference Error! Main Document Only.-23

Controlling Drawing Parameters

The following functions provide more control over decompressors that can draw the
decompressed data:

ICDrawGetTime
This function obtains the current time from the decompressor.

ICDrawRealize
This function has the decompressor realize the palette used for drawing.

ICDrawSetTime
This function sets the value of the internal clock for the decompressor.

ICDrawWindow
This function has the decompressor redraw the window.

If your application wants to monitor or change the clock of the decompressor, it can use

ICDrawGetTime and ICDrawSetTime. If your application wants to change the playback
position while the decompressor is drawing, it can use ICDrawWindow for repositioning
the decompressor. If the playback window gets a palette realize message, your application
must call ICDrawRealize to have the decompressor realize the palette again for playback.

Video Compression and
Decompression Application
Reference

This section is an alphabetic reference to the functions and data structures provided by
ICM for applications using video compression and decompression services. There are
separate sections for functions and data structures. The COMPMAN.H and COMPDDK.H
files define the functions and data structures.

Video Compression and Decompression Function
Reference

Applications use the following functions for compressing video data:

ICCompress
This function compresses a single video image.

ICCompressBegin
This functions prepares a compressor for compressing data.

ICCompressEnd
This function tells a compressor to end compression.

ICCompressGetFormat
This function determines the output format of a compressor.

ICCompressGetFormatSize
This function obtains the size of the output format data.

02/10/93

33

Error! Main Document Only.-24 Video for Windows Programmer's Guide

ICCompressGetSize
This function obtains the size of the compressed data.

ICCompressQuery
This function determines if a compressor can compress a specific format.

Applications use the following functions for decompressing video data:

ICDecompress
The function decompresses a single video frame.

ICDecompressBegin
This functions prepares a decompressor for decompressing data.

ICDecompressEnd
This function tells a decompressor to end decompression.

ICDecompressGetFormat
This function determines the output format of a decompressor.

ICDecompressGetFormatSize
This function obtains the size (in bytes) of the output format data.

ICDecompressGetPalette
This function obtains the palette for the output format of a decompression.

ICDecompressQuery
This function determines if a decompressor can decompress data with a specific
format.

ICDecompressQuery
This function determines if a decompressor can render a specific format.

Applications use the following functions to control video decompressors that draw
directly to the display:

ICDraw
This function decompresses an image for drawing.

ICDrawBegin
This function is used to start decompressing data directly to the screen.

ICDrawEnd
This function tells a decompressor to end drawing.

ICDrawFlush
This function flushes the image buffers used for drawing.

ICDrawGetTime
This function obtains the current value of the internal clock if the decompressor is
handling the timing of drawing frames.

ICDrawRealize
This function tells decompressor to realize its palette used while drawing.

02/10/93

34

Video Compression and Decompression Application Reference Error! Main Document Only.-25

ICDrawSetTime
This function sets the value of the internal clock if the decompressor is handling the
timing of drawing frames.
ICDrawStart
This function tells a decompressor to start its internal clock for the timing of drawing
frames.
ICDrawStop
This function tells a decompressor to stop its internal clock used for the timing of
drawing frames.
ICDrawWindow
This function tells a decompressor to redraw the window when it has moved.
ICGetBuffersWanted
This function obtains information about the pre-buffering needed by a compressor.

Applications use the following functions to obtain information about a compressor or
decompressor and display its dialog boxes:

ICQueryAbout

This function determines if a compressor supports an about dialog box.
ICAbout

This function instructs a compressor to display its about dialog box.
ICQueryConfigure

This functions determines if a compressor supports a configuration dialog box.
ICConfigure

This function displays the configuration dialog box of the specified compressor.
ICGetiInfo

This function asks a compressor for information about itself.
ICInfo

This function returns information about specific installed compressors, or it
enumerates the compressors installed.

ICGetDefaultKeyFrameRate
This function obtains the default key frame rate value.

ICGetDisplayFormat
Given an input format and optionally an open compressor handle, finds the "best"
format it can for displaying on the screen.

Applications use the following functions to set and retrieve the state information of a
compressor or decompressor:

ICGetState
This function gets the state of a compressor.

ICGetStateSize
This function gets the size of the state data used by a compressor.

02/10/93

35

Error! Main Document Only.-26 Video for Windows Programmer's Guide

ICSetState
This function sets the state of a compressor.

Applications use the following functions to locate, open, and close a compressor or
decompressor:

ICOpen
This function opens a compressor or decompressor.

ICClose
This function closes a compressor or decompressor.

ICLocate
This function finds a compressor with specific attributes.

Applications use the following functions to install and remove a compressor or
decompressor and send messages directly to it:

ICInstall
This function installs a new compressor.

ICRemove
This function removes a compressor function installed IClInstalled.

ICSendMessage
This function sends a message to a compressor.

Video Compression and Decompression
Functions

This section contains an alphabetical list of the functions applications can use for
compressing and decompressing video data. The functions are identified with the prefix

IC.
ICAbout
Syntax LRESULT ICAbout(hic, hwnd)
This function instructs a compressor or decompressor to display its about dialog box.
Parameters HIC hic
Specifies the handle to the installable compressor.
HWND hwnd
Specifies a handle to the parent window.
Return Value Returns ICERR_OK after the compressor or decompressor displays the about dialog box.

It returns ICERR_UNSUPPORTED if it does not support an about dialog box.

02/10/93

36

Video Compression and Decompression Application Reference Error! Main Document Only.-27

See Also ICQueryAbout

02/10/93

37

Error! Main Document Only.-28 Video for Windows Programmer's Guide

ICClose

Syntax LRESULT ICClose(hic)

This function closes a compressor or decompressor.
Parameters HIC hic

Specifies a handle to a compressor or decompressor.

Return Value Returns ICERR_OK if successful, otherwise it returns an error number.
See Also ICLocate ICOpen
|ICCompress
Syntax LRESULT ICCompress(hic, dwFlags, IpbiOutput, IpData, Ipbilnput, IpBits, lpckid,

IpdwFlags, IFrameNum, dwFrameSize, dwQuality, IpbiPrev, IpPrev)
This function compresses a single video image.

Parameters HIC hic
Specifies the handle of the compressor to use.

DWORD dwFlags
Specifies applicable flags for the compression. The following flag is defined:
ICM_COMPRESS_KEYFRAME
Indicates that the compressor should make this frame a key frame.

LPBITMAPINFOHEADER IpbiOutput
Specifies a far pointer to a BITMAPINFO structure holding the output format.

LPVOID IpData
Specifies a far pointer to output data buffer.

LPBITMAPINFOHEADER Ipbilnput
Specifies a far pointer to a BITMAPINFO structure containing the input format.

LPVOID IpBits
Specifies a far pointer to the input data buffer.

LPDWORD Ipckid
Specifies a far pointer to a DWORD used to hold a chunk ID for data in the AVI file.

LPDWORD IpdwFlags
Specifies a far pointer to a DWORD holding the return flags used in the AVI index.
The following flag is defined:

AVIIF_KEYFRAME
Indicates this frame is a key-frame.

LONG IFrameNum
Specifies the frame number.

DWORD dwFrameSize
Specifies the requested frame size in bytes. If set to zero, the compressor chooses the
frame size.

02/10/93

38

Video Compression and Decompression Application Reference Error! Main Document Only.-29

Return Value

Comments

See Also

DWORD dwQuality
Specifies the requested quality value for the frame.

LPBITMAPINFOHEADER IpbiPrev
Specifies a far pointer to a BITMAPINFO structure holding the previous frame's
format.

LPVOID IpPrev
Specifies a far pointer to the previous frame's data buffer.

This function returns ICERR_OK if successful. Otherwise, it returns an error code.

The IpData buffer should be large enough to hold a compressed frame. You can obtain the
size of this buffer by calling ICCompressGetSize.

Set the dwFrameSize parameter to a requested frame size only if the compressor returns
the VIDCF_CRUNCH flag in response to ICGetlnfo. Without this flag, set this
parameter to zero.

Set the dwQuality parameter to a quality value only if the compressor returns the
VIDCF_QUALITY flag in response to ICGetlInfo. Without this flag, set this parameter to
zero.

ICCompressBegin, ICCompressEnd, ICCompressGetSize, ICGetInfo

ICCompressBegin

Syntax

Parameters

Return Value

See Also

LRESULT ICCompressBegin(hic, Ipbilnput, IpbiOutput)
This function prepares a compressor for compressing data.
HIC hic

Specifies a handle to a compressor.

LPBITMAPINFOHEADER Ipbilnput
Specifies a far pointer to a BITMAPINFO structure holding the input format.

LPBITMAPINFOHEADER IpbiOutput
Specifies a far pointer to a BITMAPINFO structure holding the output format.

Returns ICERR_OK if the specified compression is supported, otherwise it returns
ICERR_BADFORMAT if either the input or output format is not supported.

ICCompress, ICCompressEnd, ICDecompressBegin, ICDrawBegin

ICCompresskEnd

Syntax

Parameters

Return Value

LRESULT ICCompressEnd(hic)
This function ends compression by a compressor.

HIC hic
Specifies a handle to the compressor.

Returns ICERR_OK if successful, otherwise it returns an error number.

02/10/93

39

Error! Main Document Only.-30 Video for Windows Programmer's Guide

See Also ICCompressBegin, ICCompress, ICDecompressEnd, ICDrawEnd

|ICCompressGetFormat

Syntax LRESULT ICCompressGetFormat(hic, Ipbilnput, IpbiOutput)
This function determines the output format of a compressor.

Parameters HIC hic

Return Value

See Also

The compressor handle.

LPBITMAPINFOHEADER Ipbilnput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the input
data.

LPBITMAPINFOHEADER IpbiOutput
Specifies a far pointer to a BITMAPINFO structure used to return the output format.

Returns the size of the output format.

ICCompressGetFormatSize

ICCompressGetFormatSize

Syntax

Parameters

Return Value

LRESULT ICCompressGetFormatSize(hic, Ipbi)
This function obtains the size of the output format data.
HIC hic

Specifies a handle to a compressor.

LPBITMAPINFOHEADER Ipbi
Specifies a far pointer to a BITMAPINFO structure indicating the format of the input
data.

Returns the size of the output data format structure.

Comments Use this function to determine the size of the output format buffer you need to allocate
when using ICCompressGetFormat.
See Also ICCompressGetFormat
|ICCompressGetSize
Syntax LRESULT ICCompressGetSize(hic, Ipbilnput, IpbiOutput)
This function obtains the size of the compressed data.
Parameters HIC hic
Specifies a handle to a compressor.
02/10/93

40

Video Compression and Decompression Application Reference Error! Main Document Only.-31

LPBITMAPINFOHEADER Ipbilnput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the input
data.

LPBITMAPINFOHEADER IpbiOutput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the

output format.
Return Value Returns the maximum number of bytes a single compressed frame can occupy.
See Also ICCompressQuery, ICCompressGetFormat

|ICCompressQuery

Syntax LRESULT ICCompressQuery(hic, Ipbilnput, IpbiOutput)
This function determines if a compressor can compress a specific format.
Parameters HIC hic

Specifies the compressor handle.

LPBITMAPINFOHEADER Ipbilnput
Specifies a far pointer to a BITMAPINFO structure indicating the input data.

LPBITMAPINFOHEADER IpbiOutput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the data
output. If NULL, then any output format is acceptable.

Return Value Returns ICERR_OK if the compression is supported, otherwise it returns
ICERR_BADFORMAT.

See Also ICCompressGetFormat

ICConfigure

Syntax LRESULT ICConfigure(hic, hwnd)
This function displays the configuration dialog box of a compressor.
Parameters HIC hic
Specifies a handle to the compressor.
HWND hwnd

Specifies a handle to the parent window.

Return Value Returns ICERR_OK after the configuration dialog box is displayed. It returns
ICERR_UNSUPPORTED if the compressor does not support a a configuration dialog
box.

See Also ICQueryConfigure

02/10/93

41

Error! Main Document Only.-32 Video for Windows Programmer's Guide

|ICDecompress

Syntax

Parameters

Return Value

LRESULT ICDecompress(hic, dwFlags, IpbiFormat, IpData, Ipbi, IpBits)
The function decompresses a single video frame.

HIC hic
Specifies a handle to the decompressor to use.

DWORD dwFlags
Specifies any applicable flags for decompression. The following flag is defined:

ICDECOMPRESS_HURRYUP
Indicates the decompressor should try to decompress at a faster rate. When an
application uses this flag, it should not draw the decompressed data.

LPBITMAPINFOHEADER IpbiFormat
Specifies a far pointer to a BITMAPINFO structure containing the format of the
compressed data.

LPVOID IpData
Specifies a far pointer to the input data.
LPBITMAPINFOHEADER Ipbi
Specifies a far pointer to a BITMAPINFO structure containing the output format.

LPVOID IpBits
Specifies a far pointer to a data buffer for the decompressed data.

Returns ICERR_OK on success, otherwise it returns an error code.

Comments The IpBits parameter should point to a buffer large enough to hold the decompressed data.
Applications can obtain the size of this buffer with ICDecompressGetSize.
See Also ICDecompressBegin, ICDecompressEnd, ICDecompressGetSize
ICDecompressBegin
Syntax LRESULT ICDecompressBegin(hic, Ipbilnput, IpbiOutput)
This function prepares a decompressor for decompressing data.
Parameters HIC hic

Return Value

See Also

02/10/93

Specifies a handle to a decompressor.

LPBITMAPINFOHEADER Ipbilnput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the input
data.

LPBITMAPINFOHEADER IpbiOutput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the
output data.

Returns ICERR_OK if the specified decompression is supported, otherwise it returns
ICERR_BADFORMAT if either the input or output format is not supported.

ICDecompress, ICDecompressEnd, ICCompressBegin, ICDrawBegin

42

Video Compression and Decompression Application Reference Error! Main Document Only.-33

ICDecompressiend

Syntax

Parameters

Return Value

See Also

LRESULT ICDecompressEnd(hic)
This function tells a decompressor to end decompression.

HIC hic
Specifies a handle to a decompressor.

Returns ICERR_OK if successful, otherwise it returns an error number.

ICDecompressBegin, ICDecompress, ICCompressEnd, ICDrawENd

ICDecompressGetFormat

Syntax

Parameters

Return Value

See Also

LRESULT ICDecompressGetFormat(hic, Ipbilnput, IpbiOutput)
This function determines the output format of a decompressor.
HIC hic

Specifies a handle to a decompressor.

LPBITMAPINFOHEADER Ipbilnput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the input
data.

LPBITMAPINFOHEADER IpbiOutput
Specifies a far pointer to a BITMAPINFO structure used to return the format of the
output data.

Returns the size (in bytes) of the output format.

ICDecompressGetFormatSize

ICDecompressGetFormatSize

Syntax

Parameters

Return Value

Comments

See Also

LRESULT ICDecompressGetFormatSize(hic, Ipbi)
This function obtains the size (in bytes) of the output format data.

HIC hic
Specifies a handle to a decompressor.

LPBITMAPINFOHEADER Ipbi
Specifies a far pointer to a BITMAPINFO structure indicating the format of the input
data.

Returns the size of the output data format structure.

Use this function before ICDecompressGetFormat to find the size needed to allocate the
output format buffer.

ICDecompressGetFormat

02/10/93

43

Error! Main Document Only.-34 Video for Windows Programmer's Guide

ICDecompressGetPalette

Syntax

Parameters

Return Value

LRESULT ICDecompressGetPalette(hic, Ipbilnput, IpbiOutput)
This function obtains the palette for the output format of a decompression.

HIC hic
Specifies a handle to a decompressor.

LPBITMAPINFOHEADER Ipbilnput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the input
data.

LPBITMAPINFOHEADER IpbiOutput
Specifies a far pointer to a BITMAPINFO structure used to return the color table. The
space reserved for the color table must be at least 256 bytes.

Returns the size of the output format or an error code.

See Also ICDecompressGetFormat
|ICDecompressQuery
Syntax LRESULT ICDecompressQuery(hic, Ipbilnput, IpbiOutput)
This function determines if a decompressor can decompress data with a specific format.
Parameters HIC hic

Return Value

Specifies a handle to to a decompressor.

LPBITMAPINFOHEADER Ipbilnput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the input
data.

LPBITMAPINFOHEADER IphiOutput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the
output data. If NULL, any output format is acceptable.

Returns ICERR_OK if the decompression is supported, otherwise it returns
ICERR_BADFORMAT.

See Also ICDecompressGetFormat
ICDecompressQuery
Syntax LRESULT ICDecompressQuery(hic, Ipbilnput)
This function determines if a decompressor can render a specific format.
Parameters HIC hic
Specifies a handle to a decompressor.
02/10/93

44

Video Compression and Decompression Application Reference Error! Main Document Only.-35

Return Value

See Also

LPBITMAPINFOHEADER Ipbilnput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the input
data.

Returns ICERR_OK if the decompression is supported, otherwise it returns
ICERR_BADFORMAT.

ICDecompressQuery

|ICDraw

Syntax

Parameters

Return Value

Comments

See Also

LRESULT ICDraw(hic, dwFlags, IpFormat, IpData, cbData, ITime)
This function decompress an image for drawing.

HIC hic
Specifies a handle to a decompressor.

DWORD dwFlags
Specifies any flags for the decompression. The following flags are defined:

ICDRAW_HURRYUP
Indicates the decompressor should try to increase its decompression rate.

ICDRAW_UPDATE
Tells the decompressor to update the screen based on data previously received. Set
IpData to NULL when this flag is used.

LPVOID IpFormat
Specifies a far pointer to a BITMAPINFOHEADER structure containing the input
format of the data.

LPVOID IpData
Specifies a far pointer to the actual input data.

DWORD cbData
Specifies the size of the input data (in bytes).

LONG ITime
Specifies the time to draw this frame based on the time scale sent with ICDrawBegin.

Returns ICERR_OK on success, otherwise an appropriate error number.

This function is used to decompress the image data for drawing by the decompressor.
Actual drawing of frames does not occur until ICDrawStart is called. The application
should be sure to pre-buffer the required number of frames before drawing is started (you
can obtain this value with ICGetBuffersRequired).

ICDrawBegin, ICDrawEnd, ICDrawStart, ICDrawStop, ICGetBuffersRequired

02/10/93

45

Error! Main Document Only.-36 Video for Windows Programmer's Guide

ICDrawBegin

Syntax

Parameters

02/10/93

LRESULT ICDrawBegin(hic, dwFlags, hpal, hwnd, hdc,
xDst, yDst, dxDst, dyDst, Ipbi, xSrc, ySrc, dxSrc, dySrc,
dwRate, dwScale)

This function starts decompressing data directly to the screen.

HIC hic
Specifies a handle to the decompressor to use.

DWORD dwFlags
Specifies flags for the decompression. The following flags are defined:

ICDRAW_QUERY
Determines if the decompressor can handle the decompression. The decompressor
does not actually decompress the data.

ICDRAW_FULLSCREEN
Tells the decompressor to draw the decompressed data on the full screen.

ICDRAW_HDC
Indicates the decompressor should use the window handle specified by hwnd and
the display context handle specified by hdc for drawing the decompressed data.

HPALETTE hpal

Specifies a handle to the palette used for drawing.
HWND hwnd

Specifies a handle for the window used for drawing.
HDC hdc

Specifies the display context used for drawing.
int xDst

Specifies the x-position of the upper-right corner of the destination rectangle.
int yDst

Specifies the y-position of the upper-right corner of the destination rectangle.
int dxDst

Specifies the width of the destination rectangle.

int dyDst
Specifies the height of the destination rectangle.

LPBITMAPINFOHEADER Ipbi
Specifies a far pointer to a BITMAPINFO structure containing the format of the input
data to be decompressed.

int xSrc
Specifies the x-position of the upper-right corner of the source rectangle.

int ySrc
Specifies the y-position of the upper-right corner of the source rectangle.

int dxSrc
Specifies the width of the source rectangle.

46

Video Compression and Decompression Application Reference Error! Main Document Only.-37

Return Value

Comments

See Also

int dySrc
Specifies the height of the source rectangle.

DWORD dwRate
Specifies the data rate. The data rate in frames per second equals dwRate divided by
dwScale.

DWORD dwsScale
Specifies the data rate.

Returns ICERR_OK if it can handle the decompression, otherwise it returns
ICERR_UNSUPPORTED.

Decompressors use the hwnd and hdc parameters only if an application sets
ICDRAW_HDC flag in dwFlags. It will ignore these parameters if an application sets the
ICDRAW_FULLSCREEN flag. When an application uses the ICDRAW_FULLSCREEN
flag, it should set hwnd and hdc to NULL.

The destination rectangle is specified only if ICDRAW_HDC is used. If an application
sets the ICDRAW_FULLSCREEN flag, the destination rectangle is ignored and its
parameters can be set to zero.

The source rectangle is relative to the full video frame. The portion of the video frame
specified by the source rectangle will be stretched to fit in the destination rectangle.

ICDraw, ICDrawEnd

|ICDrawEnd

Syntax

Parameters

Return Value

See Also

LRESULT ICDrawENd(hic)
This function tells a decompressor to end drawing.

HIC hic
Specifies a handle to a compressor.

Returns ICERR_OK if successful, otherwise it returns an error number.

ICDrawBegin, ICDraw, ICCompressEnd, ICDecompressEnd

ICDrawFlush

Syntax

Parameters

Return Value

See Also

LRESULT ICDrawFlush(hic)
Flush the image buffers used for drawing.

HIC hic
The compressor handle.

Returns ICERR_OK on success.
ICDraw, ICDrawBegin, ICDrawEnd, ICDrawStart, ICDrawStop

02/10/93

47

Error! Main Document Only.-38 Video for Windows Programmer's Guide

ICDrawGetTime

Syntax

Parameters

Return Value

LRESULT ICDrawGetTime(hic, IpITime)

This function obtains the current value of the internal clock if the decompressor is
handling the timing of drawing frames.

HIC hic
Specifies a handle to a decompressor.

LPLONG IplTime
Specifies a far pointer to a LONG buffer used to return the current time value. The
value will be in samples (frames for video).

Returns ICERR_OK if successful.

See Also ICDrawsStart, ICDrawStop, ICDrawSetTime
ICDrawRealize
Syntax LRESULT ICDrawRealize(hic, hdc, fBackground)
This function tells a decompressor to realize its palette used while drawing.
Parameters HIC hic
Specifies a handle to a decompressor.
HDC hdc

Return Value

See Also

Specifies the display context used to realize the palette.

BOOL fBackground
Specifies TRUE if the palette is to be realized in the background. It specifies FALSE if
it is to be realized in in the foreground.

Returns ICERR_OK if palette is realized. The compressor returns
ICERR_UNSUPPORTED if it doesn't support this function.

ICDrawBegin

ICDrawSetTime

Syntax

Parameters

Return Value

02/10/93

LRESULT ICDrawSetTime(hic, IpTime)

This function sets the value of the internal clock if the installable decompressor is
handling the timing of drawing frames.

HIC hic
Specifies a handle to a decompressor.

LPLONG IpTime
Specifies the current time that the compressor should be rendering. This value should
be in samples. For video, this corresponds to frames.

Returns ICERR_OK if successful.

48

Video Compression and Decompression Application Reference Error! Main Document Only.-39

See Also

ICDrawStart, ICDrawStop, ICDrawGetTime

|ICDrawStart

Syntax

Parameters

Comments

See Also

void ICDrawsStart(hic)

This function tells a decompressor to start its internal clock for the timing of drawing
frames.

HIC hic

Specifies a handle to a compressor.
This function should only be used with hardware decompressors that do their own
asynchronous decompression, timing and drawing.

ICDraw, ICDrawStop, ICDrawBegin, ICDrawEnd

|ICDrawStop

Syntax

Parameters

Comments

See Also

void ICDrawStop(hic)

This function tells a decompressor to stop its internal clock used for the timing of drawing
frames.

HIC hic

Specifies a handle to a decompressor.
This function should only be used with hardware decompressors that do their own
asynchronous decompression, timing and drawing.

ICDraw, ICDrawStart, ICDrawBegin, ICDrawEnd

|ICDrawWindow

Syntax

Parameters

Return Value

Comments

LRESULT ICDrawWindow(hic, prc)
This function has a decompressor redraw the window when is has moved.
HIC hic

Specifies a handle to a decompressor.

LPRECT prc
Specifies a pointer to the destination rectangle. The destination rectangle is specified
in screen coordinates.

Returns ICERR_OK if successful.

This function is only supported by hardware which does its own asynchronous
decompression, timing and drawing. The rectangle is set to empty if the window is totally
hidden by other windows.

02/10/93

49

Error! Main Document Only.-40 Video for Windows Programmer's Guide

|ICGetBuffersWanted

Syntax

Parameters

Return Value

Comments

LRESULT ICGetBuffersWwanted(hic, IpdwBuffers)
This function obtains information about the pre-buffering needed by a decompressor.
HIC hic

Specifies a handle to a decompressor.

LPDWORD IpdwBuffers
Specifies a far pointer to a DWORD used to return the number of samples the
decompressor needs to get in advance of when they will be rendered.

Returns ICERR_OK if successful, otherwise it returns ICERR_UNSUPPORTED.

This function is used only with a decompressor that uses hardware to render data and
wants to ensure that hardware pipelines remain full.

|ICGetDefaultKeyFrameRate

Syntax

Parameters

Return Value

LRESULT ICGetDefaultKeyFrameRate(hic)
This function obtains the default key frame rate value.

HIC hic
Specifies a handle to a compressor.

Returns the default key frame rate.

|ICGetDisplayFormat

Syntax

Parameters

02/10/93

HIC 1CGetDisplayFormat(hic, Ipbiln, IpbiOut, BitDepth, dx, dy)

This function returns the "best" format available for display a compressed image. The
function will also open a compressor if a handle to an open compressor is not specified.

HIC hic
Specifies the decompressor that should be used. If this is NULL, an appropriate
compressor will be opened and returned.

LPBITMAPINFOHEADER Ipbiln
Specifies a pointer to BITMAPINFOHEADER structure containing the compressed
format.

LPBITMAPINFOHEADER IpbiOut
Specifies a pointer to a buffer used to return the decompressed format. The buffer
should be large enough for a BITMAPINFOHEADER and 256 color entries.

int BitDepth
If non-zero, specifies the preferred bit depth.

int dx
If non-zero, specifies the width to which the image is to be stretched.

50

Video Compression and Decompression Application Reference Error! Main Document Only.-41

int dy
If non-zero, specifies the height to which the image is to be stretched.
Return Value Returns a handle to a decompressor if successful, otherwise, it returns zero.
ICGetInfo
Syntax LRESULT ICGetlnfo(hic, Ipicinfo, cb)

This function obtains information about a compressor or decompressor.

Parameters HIC hic
Specifies a handle to a compressor or decompressor.
ICINFO FAR * Ipicinfo
Specifies a far pointer to ICINFO structure used to return information about the
compressor or decompressor.

DWORD cb
Specifies the size of the structure pointed to by Ipicinfo.

Return Value Returns zero if successful.
|ICGetState
Syntax void ICGetState(hic, pv, cb)

This function gets the state of a compressor or decompressor.

Parameters HIC hic
Specifies a handle to the compressor or decompressor.
LPVOID pv
Specifies a pointer to a buffer used to return the state data.
DWORD cb
Specifies the byte count for state buffer.
Comments Use ICGetStateSize before calling ICGetState to determine the size of buffer to allocate
for the call.
See Also ICGetStateSize, ICSetState
|ICGetStateSize
Syntax LRESULT ICGetStateSize(hic)

This function gets the size of the state data used by a compressor or decompressor.

Parameters HIC hic
Specifies a handle to the compressor or decompressor.

Return Value Returns the number of byte used by the state data.

02/10/93

51

Error! Main Document Only.-42 Video for Windows Programmer's Guide

Comments Use this function to get the size of the state data for the ICGetState and 1CSetState
buffers.

See Also ICGetState, 1CSetState

ICInfo

Syntax BOOL ICInfo(fccType, fccHandler, Ipicinfo)
This function returns information about specific installed compressors and decompressors,
or it enumerates the compressors installed.

Parameters DWORD fccType

Return Value

Specifies a four-character code indicating the type of compressor or decompressor.

DWORD fccHandler
Specifies a four-character code identifying a specific compressor or decompressor, or a
number between 0 and the number of installed compressors of the type specified by
fccType.

ICINFO FAR * Ipicinfo
Specifies a far pointer to a ICINFO structure used to return information about the
Compressor.

Returns a compressor or decompressor handle if successful, otherwise, it returns zero.

IClInstall

Syntax

Parameters

02/10/93

BOOL IClnstall(fccType, fccHandler, IParam, szDesc, wFlags)
This function installs a new compressor.

DWORD fccType
Specifies a four-character code indicating the type of data used by the compressor. Use
'vidc' for video compressors.

DWORD fccHandler
Specifies a four-character code identifying a specific compressor.

LPARAM IParam
Identifies what to install. The meaning of this parameter is defined by the flags set for
wFlags.

LPSTR szDesc
Specifies a pointer to a null-terminated string describing the installed compressor.

UINT wFlags
Specifies flags defining the contents of IParam. The following flags are defined:

ICINSTALL_DRIVER
Indicates IParam is a pointer to a null-terminated string containing the name of the
compressor to install.

52

Video Compression and Decompression Application Reference Error! Main Document Only.-43

ICINSTALL_FUNCTION
Indicates IParam is a far pointer to an installable compressor function. This
function should be structured like the DriverProc entry point function used by
compressors and decompressors.

Return Value Returns a handle to a compressor or decompressor.

See Also ICRemove

ICLocate

Syntax HIC ICLocate(fccType, fccHandler, Ipbiln, IpbiOut, wFlags)

This function finds a compressor or decompressor that can handle images with the formats
specified, or it finds a decompressor that can decompress an image with a specified format
directly to hardware.

Parameters DWORD fccType
Specifies the type of compressor or decompressor the application wants to open. For
video, this is ICTYPE_VIDEO.

DWORD fccHandler
Specifies a single preferred handler of the given type that should be tried first.
Typically, this comes from the stream header in an AVI file.

LPBITMAPINFOHEADER Ipbiln
Specifies a pointer to BITMAPINFOHEADER structure defining the input format. A
compressor handle will not be returned unless it can handle this format.

LPBITMAPINFOHEADER IpbiOut
Specifies zero or a pointer to BITMAPINFOHEADER structure defining an optional
decompressed format. If IpbiOut is nonzero, a compressor handle will not be returned
unless it can create this output format.

WORD wFlags
Specifies any flags defining the use of the compressor or decompressor. This
parameter must contain one of the following values:

ICMODE_COMPRESS
Indicates the compressor should be able to compress an image with a format
defined by Ipbiln to the format defined by IpbiOut.

ICMODE_DECOMPRESS
Indicates the decompressor should be able to decompress an image with a format
defined by Ipbiln to the format defined by IpbiOut.

ICMODE_DRAW
Indicates the decompressor should be able to decompress an image with a format
defined by Ipbiln and draw it directly to hardware.

Return Value Returns a handle to a compressor or decompressor if successful, otherwise it returns zero.

02/10/93

53

Error! Main Document Only.-44 Video for Windows Programmer's Guide

ICOpen

Syntax

Parameters

Return Value

See Also

HIC ICOpen(fccType, fccHandler, wMode)
This function opens a compressor or decompressor.

DWORD fccType
Specifies the type of compressor or decompressor the application wants to open. For
video, this is ICTYPE_VIDEO.

DWORD fccHandler
Specifies a single preferred handler of the given type that should be tried first.
Typically, this comes from the stream header in an AVI file.

UINT wMode
Specifies any flags defining the use of the compressor or decompressor. This
parameter can contain the following values:

ICMODE_COMPRESS
Advises a compressor it is opened for compression.

ICMODE_DECOMPRESS
Advises a decompressor it is opened for decompression.

ICMODE_DRAW
Advises a decompressor it is opened to decompress an image and draw it directly to
hardware.

ICMODE_QUERY
Advises a compressor or decompressor it is opened to obtain information.

Returns a handle to a compressor or decompressor if successful, otherwise it returns zero.

ICClose ICLocate

ICQueryAbout

Syntax

Parameters

Return Value

See Also

02/10/93

BOOL ICQueryAbout(hic)
This function determines if a compressor or decompressor supports an about dialog box.

HIC hic
Specifies the handle to the installable compressor.

Returns TRUE if the installable compressor supports an about dialog box, otherwise it
returns FALSE.

ICAbout

54

Video Compression and Decompression Application Reference Error! Main Document Only.-45

ICQueryConfigure

Syntax BOOL 1CQueryConfigure(hic)
This function determines if a compressor or decompressor supports a configuration dialog
box.

Parameters HIC hic

Specifies a handle to the compressor or decompressor.

Return Value Returns TRUE if compressor supports a configuration dialog box, otherwise it returns
FALSE.

See Also ICConfigure

ICRemove

Syntax BOOL ICRemove(fccType, fccHandler, wFlags)

This function removes a compressor function installed with 1ClInstall.

Parameters DWORD fccType
Specifies a four-character code indicating the type of data used by the compressor. Use
'vidc' for video compressors.

DWORD fccHandler
Specifies a four-character code identifying a specific compressor.

UINT wFlags
Not used.
Return Value Returns TRUE if successful.
See Also IClInstall

ICSendMessage

Syntax LRESULT ICSendMessage(hic, wMsg, dwl, dw2)
This function sends a message to a compressor or decompressor.
Parameters HIC hic
Specifies the handle of the compressor or decompressor to receive the message.

UINT wMsg
Specifies the message to send.

DWORD dwl
Specifies additional message-specific information.

DWORD dw?2
Specifies additional message-specific information.

Return Value Returns a message-specific result.

02/10/93

55

Error! Main Document Only.-46 Video for Windows Programmer's Guide

|CSetState

Syntax

Parameters

See Also

void ICSetState(hic, pv, cb)
This function sets the state of a compressor or decompressor.
HIC hic

Specifies a handle to the compressor or decompressor.

LPVOID pv
Specifies a pointer to the state data to set.

DWORD cbh
Specifies the size (in bytes) of the buffer containing the state data.

ICGetState, ICGetStateSize

Video Compressor and Decompressor Data
Structure Reference

This section lists data structures used by video compressors and decompressors. The data
structures are presented in alphabetical order. The structure definition is given, followed
by a description of each field.

ICINFO

Fields

02/10/93

The ICINFO structure is filled by a video compressor when it receives the
ICM_GETINFO message.

typedef struct {
DWORD dwSize;
DWORD fccType;
DWORD fccHandler;
DWORD dwFlags;
DWORD dwVersion;
DWORD dwVersionlICM;
char szName[16];
char szDescription[128];
char szDriver[128];
} ICINFO;

The ICINFO structure has the following fields:
dwSize
Should be set to the size of an ICINFO structure.

fccType
Specifies a four-character code representing the type of stream being compressed or
decompressed. Set this to 'vidc' for video streams.

fccHandler
Specifies a four-character code identifying a specific compressor.

56

Video Compression and Decompression Application Reference Error! Main Document Only.-47

dwFlags
Specifies any flags. The following flags are defined for video compressors
(ICINFO.fccHandler == 'vidc'):

VIDCF_QUALITY
The compressor supports quality.

VIDCF_CRUNCH
The compressor supports crunching to a frame size.

VIDCF_TEMPORAL
The compressor supports inter-frame compression.

VIDCF_DRAW
The compressor supports drawing.

VIDCF_FASTTEMPORAL
The compressor can do temporal compression and doesn’t need the previous frame.

dwVersion
Specifies the version number of the compressor.

dwVersionlICM
Specifies the version of the ICM supported by this compressor; it should be set to 1.0
(0x00010000)

szName[16]
Specifies the short name for the compressor. The null-terminated name should be
suitable for use in list boxes.

szDescription[128]
Specifies a null-terminated string containing the long name for the compressor.

szDriver[128]
Specifies a null-terminated string for the module that contains the compressor.

02/10/93

57

CHAPTER 3

Using the DrawDib Functions

The DrawDib functions provide much of the functionality of StretchDIBits and adds
ICM support, improved stretching capabilities, and improved support of low-end display
adapters. If a display driver cannot stretch an image, the DrawDib functions can stretch it
more efficiently then StretchDIBits. The DrawDib functions also efficiently dither true-
color images to 256 colors, and dither 8-bit images on 16-color VGA displays. These
functions significantly improve the speed and quality of displaying such images on
display adapters with limited capabilities.

This chapter discusses the following topics:

o Drawing with the DrawDib functions
e Optimizing DrawDibDraw
o Profiling the display characteristics

The DrawDib functions and constants are defined in DRAWDIB.H. The ICMAPP sample
application shows how your application can use these functions.

Drawing With the DrawDib Functions

Your application uses the following functions with 8, 16, and 24 bit images to access the
basic DrawDib services:

DrawDibOpen
This function opens a DrawDib context for drawing.

DrawDibClose
This function closes a DrawDib context and cleans up.

DrawDibDraw
This function draws a device independent bitmap to the screen.

While your application can use DrawDibDraw as an almost one-to-one replacement for
StretchDIBIts, it has the following limitations:

e the DIB must have the DIB_RGB_COLORS format
e your application must use the simplest transfer mode, SRC_COPY

58

Error! Main Document Only.-2 Video for Windows Programmer's Guide

7/7/2016

That is, your application cannot use DrawDibDraw to, say, XOR a picture with the
screen.

Prior to using DrawDibDraw, your application must initialize the DrawDib library and
let it allocate the memory it needs by calling DrawDibOpen. This function returns a
DrawDib context handle your application uses for other DrawDib functions. If Windows
cannot create a DrawDib context, DrawDibOpen returns NULL.

Your application can use DrawDibOpen to create multiple DrawDib contexts. This lets
your application work with several DrawDib contexts that have different characteristics.

The DrawDibDraw function draws a device independent bitmap to the screen. This
function replaces StretchDIBits and it provides transparent support of installable
compressors for decompressing the bitmaps. This function has the following syntax:

BOOL DrawDibDraw(hdd, hdc, xDst, yDst, dxDst, dyDst,
Ipbi, IpBits, xSrc, ySrc, dxSrc, dySrc, wFlags)

The hdd parameter specifies a handle to a DrawDib context. The hdc parameter specifies a
handle to the display context.

Your application uses the Ipbi and IpBits parameters to specify information about the
bitmap drawn. The Ipbi parameter points to the BITMAPINFOHEADER structure for
the bitmap and the IpBits parameter points to the buffer containing the bitmap.

Your application specifies the source rectangle and destination rectangle with two sets of
parameters. The xDst, yDst, dxDst, and dyDst parameters specify the X and Y coordinates
of the origin of the destination rectangle, and its width and height. The xSrc, ySrc, dxSrc,
and dySrc parameters specify the X and Y coordinates of the origin of the source
rectangle, and its width and height.

The wFlags parameter specifies any applicable flags for drawing. The following flags are
defined:

DDF_UPDATE
Indicates the last bitmap is to be redrawn. Your application can specify NULL for
IpBits when it uses this flag.

DDF_SAME_HDC
Uses the handle to the display context specified previously. When used, DrawDib
skips preparing the display context and assumes the correct palette has already been
realized (possibly by DrawDibRealize). Your application should not use this flag until
it uses a DrawDib function that specifies the display context. Your application must
still specify a handle for hdc when it uses this flag.

DDF_SAME_DRAW
Uses the drawing parameters previously specified for this function. Use this flag only
if Ipbi, dxDst, dyDst, dxSrc, and dySrc have not changed since last using
DrawDibDraw.

DDF_DONTDRAW
Indicates the frame is only to be decompressed and not drawn. Your application can
use the DDF_UPDATE flag to draw the image later with DrawDibDraw.

59

Using the DrawDib Functions Error! Main Document Only.-3

DDF_ANIMATE
Allows palette animation. If this flag is present, the palette DrawDib creates will have
the PC_RESERVED flag set for as many entries as possible, and your application can
subsequently animate the palette with DrawDibChangePalette. The DrawDibDraw
function passes this flag to DrawDibBegin implicitly.

When your application has finished using the DrawDib context it uses DrawDibClose to
close the context and clean up. This function uses the handle to the DrawDib context as its
only argument. It returns TRUE if the context closed successfully, otherwise it returns
FALSE.

Supporting Palettes for the DrawDib Functions

If your application uses DrawDib, it should be palette-aware. That is, it must respond to
WM_QUERYNEWPALETTE and WM_PALETTECHANGED messages. If your
application does not already use palettes, it will need two short message handlers for these
messages. In response to WM_PALETTECHANGED, your application should invalidate
the destination window to let DrawDib redraw. In response to
WM_QUERYNEWPALETTE, your application uses the following function to respond to
this message:

DrawDibRealize
This function realizes palette for drawing.

This function has the following syntax:
UINT DrawDibRealize(hdd, hdc, fBackground)

The hdd parameter specifies a handle to a DrawDib context and the hdc parameter
specifies a handle to the display context. The fBackground parameter specifies whether
the logical palette is always to be the background palette. If this parameter is nonzero, the
selected palette is always a background palette. If this parameter is zero and the device
context is attached to a window, the logical palette is a foreground palette when the
window has the input focus. It returns number of entries in the logical palette that were
mapped to different values in the system palette.

Manipulating Palettes

Applications use the following functions for handling palettes associated with a DrawDib
context:

DrawDibSetPalette
This function sets the palette used for drawing device independent bitmaps.

DrawDibChangePalette
This function sets the palette entries used for drawing device independent bitmaps.

DrawDibGetPalette
This function obtains the palette used by a DrawDib context.

7/7/2016

60

Error! Main Document Only.-4 Video for Windows Programmer's Guide

If your application is already palette-aware, it might already have realized a palette and it
needs to prevent DrawDib from realizing its own palette. Your application can use
DrawDibSetPalette to notify DrawDib of the palette it would like to use. If your
substitute palette does not contain the colors required by images displayed other
applications, color shifts will appear in those images. This function has the following
syntax:

BOOL DrawDibSetPalette(hdd, hpal)

The hdd parameter specifies a handle to a DrawDib context. The hpal parameter specifies
a handle to the palette your application wants to use.

If your application wants to modify the colors in the DrawDib palette, it can use
DrawDibChangePalette. This function has the following syntax:

BOOL DrawDibChangePalette(hdd, iStart, iLen, Ippe)
The hdd parameter specifies a handle to a DrawDib context.

The iStart parameter specifies the starting palette entry number and the iLen specifies the
number of palette entries to change. The Ippe parameter specifies a pointer to an array of
palette entries.

If the DDF_ANIMATE flag was not set in the previous call to DrawDibBegin, this
function will not animate the palette. In this case, use DrawDibRealize to realize the
updated palette.

If your application needs the current palette, it can use DrawDibGetPalette to obtain a
handle to the palette. If you want to realize the correct palette in response to a window
message, just use DrawDibRealize instead of using this function to obtain the pallette and
resending it. If your application uses this function, it should remember that it does not
have exclusive use of the handle. Thus, your application should not free the palette when
it is done and it should anticipate that some other application can invalidate the handle.
Your application should rarely need to use DrawDibGetPalette.

Optimizing DrawDibDraw

If your application uses DrawDibDraw to display a series of bitmaps with the same
dimensions and formats, it can use the following function to improve the efficiency of
DrawDibDraw.

DrawDibBegin
This function prepares DrawDibDraw for drawing.

If your application does not use DrawDibBegin, DrawDibDraw implicitly executes it
prior to drawing. When your application uses DrawDibBegin prior to DrawDibDraw,
DrawDibDraw does not have to take the time to process the function and wait for it to
complete. The DrawDibBegin function has the following syntax:

BOOL DrawDibBegin(hdd, hdc, dxDest, dyDest, Ipbi, dxSrc, dySrc, wFlags)

7/7/2016

61

Using the DrawDib Functions Error! Main Document Only.-5

The hdd parameter specifies a handle to a DrawDib context and the hdc parameter
specifies a handle for the display context. Your application should use the values
specified for these parameters in DrawDibDraw. When your application subsequently
uses DrawDibDraw, it should set the DDF_SAME_HDC flag to indicate the handle to
the display context has not changed.

The dxDest, dyDest, dxSrc, and dySrc parameters specify the width and height of the
destination rectangle. The Ipbi parameter points to the BITMAPINFOHEADER structure
indicating the format of the image. Your application needs to use this same information
when it specifies the parameters for DrawDibDraw. If your application changes these
values, DrawDibDraw will sense the changes and implicitly use DrawDibBegin again.
While your application must specify the width and height of the source and destination
rectangles, it does not need to specify the origins. Thus, your application can redefine the
origins in DrawDibDraw to use different portions of the image or update different
portions of the display.

The wFlags parameter specifies applicable flags for the operation. Your application can
use the DDF_ANIMATE if it will animate the palette.

Profiling the Display Characteristics

The very first time an application uses DrawDib capabilities, Windows displays a clock
face and executes a series of tests to determine the display characteristics. Once the
DrawDib libraries characterize the display, they will not run the tests again unless the
information is removed (for example, by reinstalling Windows) or the user changes the
display driver.

DrawDib Application Reference

This section is an alphabetic reference to the functions provided by Windows for
applications using the DrawDib functions. The DRAWDIB.H file defines the functions,
constants, and flags used by the DrawDib functions.

DrawDib Function Reference

Applications use the following functions for basic DrawDib operation:

DrawDibOpen
This function opens a DrawDib context for drawing.

DrawDibDraw
This function draws a device independent bitmap to the screen.

DrawDibClose
This function closes a DrawDib context and cleans up.

7/7/2016

62

Error! Main Document Only.-6 Video for Windows Programmer's Guide

Applications use the following functions to improve the efficiency of DrawDibDraw
when they draw a series of images:

DrawDibBegin
This function prepares DrawDibDraw for drawing.

DrawDibEnd
This function frees the resources allocated by DrawDibBegin.

Applications use the following functions for handling palettes associated with a DrawDib
context:

DrawDibChangePalette
This function sets the palette entries used for drawing device independent bitmaps.

DrawDibGetPalette
This function obtains the palette used by a DrawDib context.

DrawDibRealize
This function realizes palette for drawing.

DrawDibSetPalette
This function sets the palette used for drawing device independent bitmaps.

DrawDib Functions

This section contains an alphabetical list of the functions applications can use for
accessing the DrawDib services. The functions are identified with the prefix DrawDib.

DrawDibBegin

Syntax

Parameters

7/7/2016

BOOL DrawDibBegin(hdd, hdc, dxDest, dyDest, Ipbi, dxSrc, dySrc, wFlags)
This function prepares DrawDibDraw for drawing.

HDRAWDIB hdd
Specifies a handle to a DrawDib context.

HDC hdc

Specifies a handle for the display context.
int dxDest

Specifies the width of the destination rectangle.
int dyDest

Specifies the height of the destination rectangle.

LPBITMAPINFOHEADER Ipbi
Specifies a pointer to a BITMAPINFOHEADER structure containing the format of
the data to be drawn.

int dxSrc
Specifies the width of the source rectangle.

63

Using the DrawDib Functions Error! Main Document Only.-7

Return Value

Comments

See Also

int dySrc
Specifies the height of the source rectangle.

UNIT wFlags
Specifies applicable flags for the operation. The following flags are defined:

DDF_ANIMATE
Allows palette animation.

Returns a handle to a DrawDib context if successful, otherwise it returns NULL.
This function prepares to draw a bitmap specified by Ipbi to the display context hdc with

stretching to the size dxDest and dyDest. If dxDest or dyDest is set to -1, the bitmap is
drawn to a 1:1 scale with no stretching.

If dxSrc or dySrc is set to -1, DrawDibDraw uses the whole width or height of the source
bitmap.

Use this function only if you want to prepare for drawing an image before you actually
have data to draw. If you do not use this function, DrawDibDraw implicitly uses it when
it draws the image.

DrawDibEnd, DrawDibDraw

DrawDibChangePalette

Syntax

Parameters

Return Value

Comments

See Also

BOOL DrawDibChangePalette(hdd, iStart, iLen, Ippe)
This function sets the palette entries used for drawing device independent bitmaps.
HDRAWDIB hdd

Specifies a handle to a DrawDib context.

int iStart
Specifies the starting palette entry number.

int iLen
Specifies the number of palette entries to change.

LPPALETTEENTRY Ippe
Specifies a pointer to an array of palette entries.

Returns TRUE if successful, otherwise it returns FALSE.

If the DDF_ANIMATE flag was not set in the previous call to DrawDibBegin or
DrawDibDraw, this function will not animate the palette. In this case, use
DrawDibRealize to realize the updated palette.

DrawDibSetPalette, DrawDibGetPalette

DrawDibClose

Syntax

BOOL DrawDibClose(hdd)

This function closes a DrawDib context and cleans up.

7/7/2016

64

Error! Main Document Only.-8 Video for Windows Programmer's Guide

Parameters

Return Value

HDRAWDIB hdd
Specifies a handle to a DrawDib context.

Returns TRUE if the context closed successfully, otherwise it returns FALSE.

Comments Use this function to free the HDRAWDIB handle and clean up after you have finished
drawing.
See Also DrawDibOpen
DrawDibDraw
Syntax BOOL DrawDibDraw(hdd, hdc, xDst, yDst, dxDst, dyDst, Ipbi, IpBits, xSrc, ySrc,
dxSrc, dySrc, wFlags)
This function draws a device independent bitmap to the screen.
Parameters HDRAWDIB hdd
Specifies a handle to a DrawDib context.
HDC hdc
Specifies a handle to the display context.
int xDst
Specifies the x-coordinate of the origin of the destination rectangle.
int yDst
Specifies the y-coordinate of the origin of the destination rectangle.
int dxDst
Specifies the width of the destination rectangle.
int dyDst
Specifies the height of the destination rectangle.
LPBITMAPINFOHEADER Ipbi
Specifies a pointer to the BITMAPINFOHEADER structure for the bitmap.
LPVOID IpBits
Specifies a pointer to the buffer containing the bitmap bits. A null value indicates a
packed-DIB. The data bits for a packed-DIB follow the color table in the
BITMAPINFOHEADER structure pointed to by Ipbi.
int xSrc
Specifies the x-coordinate of the source rectangle.
int ySrc
Specifies the y-coordinate of the source rectangle.
int dxSrc
Specifies the width of the source rectangle.
int dySrc
Specifies the height of the source rectangle.
UINT wFlags
Specifies any applicable flags for drawing. The following flags are defined:
7/7/2016

65

Using the DrawDib Functions Error! Main Document Only.-9

DDF_UPDATE
Indicates the last bitmap is to be redrawn. If this flag is used, IpBits can be NULL.

DDF_SAME_HDC
Uses the handle to the display context specified previously. When used, DrawDib
skips preparing the display context and assumes the correct palette has already been
realized (possibly by DrawDibRealize). Your application should not use this flag
until it uses a DrawDib function that specifies the display context. Your application
must still specify a handle for hdc when it uses this flag.

DDF_SAME_DRAW
Uses the drawing parameters previously specified for this function. Use this flag
only if the data specified for the Ipbi structure, and the dxDst, dyDst, dxSrc, and
dySrc parameters has not changed since last using DrawDibDraw.

DDF_DONTDRAW
Indicates the frame is only to be decompressed and not drawn. The DDF_UPDATE
flag can be used later to actually draw the image.

DDF_ANIMATE
Allows palette animation. If this flag is present, the palette DrawDib creates will
have the PC_RESERVED flag set for as many entries as possible, and the palette
can be animated by with DrawDibChangePalette. The DrawDibDraw function
passes this flag to DrawDibBegin implicitly.

Return Value Returns TRUE if successful, FALSE otherwise.

Comments This function replaces StretchDIBits and allows decompression of bitmaps by installable
compressors. The function will dither true color bitmaps properly on 8-bit display devices.

DrawDibEnd

Syntax BOOL DrawDibEnd(hdd)
This function frees the resources allocated by DrawDibBegin.
Parameters HDRAWDIB hdd
Specifies the handle to the DrawDib context to free.
Return Value Returns TRUE if successful, otherwise it returns FALSE.
Comments Applications do not need to use this function.
DrawDibGetPalette
Syntax HPALETTE DrawDibGetPalette(hdd)
This function obtains the palette used by a DrawDib context.
Parameters HDRAWDIB hdd
Specifies a handle to a DrawDib context.
Return Value Returns a handle for the palette if successful, otherwise it returns NULL.

7/7/2016

66

Error! Main Document Only.-10 Video for Windows Programmer's Guide

Comments

See Also

If you want to realize the correct palette in response to a window message, use
DrawDibRealize instead of this function. You should rarely need to call this function.

DrawDibSetPalette, DrawDibRealize

DrawDibOpen

Syntax

Return Value

HDRAWDIB DrawDibOpen()
This function opens a DrawDib context for drawing.

Returns a handle to a DrawDib context if successful, otherwise it returns NULL.

Comments Call this function to obtain a handle to a DrawDib context before drawing DIBs.
See Also DrawDibClose
DrawDibRealize
Syntax UINT DrawDibRealize(hdd, hdc, fBackground)

This function realizes the palette of hdc into the DrawDib context specfied by hdd.
Parameters HDRAWDIB hdd

Return Value

Specifies a handle to a DrawDib context.

HDC hdc
Specifies a handle to the display context.

BOOL fBackground
Specifies whether the logical palette is always to be the background palette. If this
parameter is nonzero, the selected palette is always a background palette. If this
parameter is zero and the device context is attached to a window, the logical palette is
a foreground palette when the window has the input focus.

Returns number of entries in the logical palette that were mapped to different values in the
system palette. If an error occurs, it returns 0.

DrawDibSetPalette

Syntax

Parameters

7/7/2016

BOOL DrawDibSetPalette(hdd, hpal)
This function sets the palette used for drawing device independent bitmaps.

HDRAWDIB hdd
Specifies a handle to a DrawDib context.

HPALETTE hpal
Specifies a handle to the palette.

67

Using the DrawDib Functions Error! Main Document Only.-11

Return Value Returns TRUE if successful, otherwise it returns FALSE.

Comments Use this function when the application needs to realize an alternate palette. The function
forces the DrawDib context to use the specified palette, possibly at the expense of image
quality.

See Also DrawDibGetPalette

7/7/2016

68

CHAPTER 4

AVI Files

AVI RIFF

The Microsoft Audio/Video Interleaved (AVI) file format is a RIFF file specification used
with applications that capture, edit, and playback audio/video sequences. In general, AVI
files contain multiple streams of different types of data. Most AV sequences will use both
audio and video streams. A simple variation for an AVI sequence uses video data and
does not require an audio stream. Specialized AVI sequences might include a control
track or MIDI track as an additional data stream. The control track could control external
devices such as an MCI videodisc player. The MIDI track could play background music
for the sequence. While a specialized sequence requires a specialized control program to
take advantage of all its capabilities, applications that can read and play AVI sequences
can still read and play an AVI sequence in a specialized file. (These applications ignore
the non-AVI data in the specialized file.) This chapter primarily describes AV files
containing only audio and video data.

This chapter covers the following topics:

e The required chunks of an AVI file

e The optional chunks of an AVI file

¢ Developing routines to write AV files

For additional information about RIFF files, see the Microsoft Windows Multimedia
Programmer’s Guide and Microsoft Windows Multimedia Programmer’s Reference.

For additional information about installable compressors and decompressors, see chapter
10, “Video Compression and Decompression Drivers.”

Form

AVI files use the AVI RIFF form. The AVI RIFF form is identified by the four-character
code “AVI . All AVI files include two mandatory LIST chunks. These chunks define the
format of the streams and stream data. AVI files might also include an index chunk. This

69

Error! Main Document Only.-2 Video for Windows Programmer's Guide

optional chunk specifies the location of data chunks within the file. An AVI file with
these components has the following form:

RIFF (AVI *
LIST (*hdrl®

)
LIST (“movi®

))
["1dx1"<AVI Index>]
))

The LIST chunks and the index chunk are subchunks of the RIFF “AVI1 ” chunk. The
“AV1 ” chunk identifies the file as an AVI RIFF file. The LIST “hdrl” chunk defines the
format of the data and is the first required list chunk. The LIST “movi” chunk contains the
data for the AVI sequence and is the second required list chunk. The “idx1” chunk is the
optional index chunk. AVI files must keep these three components in the proper sequence.

The LIST “hdrl” and LIST “movi” chunks use subchunks for their data. The following
example shows the AVI RIFF form expanded with the chunks needed to complete the
LIST “hdrl” and LIST “movi” chunks:

RIFF ("AVI *
LIST (“hdrl*
"avih®"(<Main AVl Header>)
LIST ("strl*
"strh*®(<Stream header>)
"strf"(<Stream format>)
"strd”(additional header data)
)
))
LIST ("movi*
{SubChunk | LIST("rec *
SubChunk1
SubChunk2

02/10/93

70

AVI Files Error! Main Document Only.-3

)

[1dx1"<AVIIndex>]
)

The following sections describe the chunks contained in the LIST “hdrl” and LIST
“movi” chunks as well as the “idx1” chunk.

Data Structures for AVI Files

Data structures used in the RIFF chunks are defined in the AVIFMT.H header file. The
reference section at the end of this chapter describes the data structures that can be used
for the main AVI header, stream header, AVIIndex, and palette change chunks.

The Main AVI Header LIST

The file begins with the main header. In the AVI file, this header is identified with “avih”
four-character code. The header contains general information about the file, such as the
number of streams within the file and the width and height of the AVI sequence. The main
header has the following data structure defined for it:

typedef struct {
DWORD dwMicroSecPerFrame;
DWORD dwMaxBytesPerSec;
DWORD dwReservedl;
DWORD dwFlags;
DWORD dwTotalFrames;
DWORD dwlnitialFrames;
DWORD dwStreams;
DWORD dwSuggestedBufferSize;
DWORD dwWidth;
DWORD dwHeight;
DWORD dwScale;
DWORD dwRate;
DWORD dwStart;
DWORD dwLength;

} MainAVIHeader;

The dwMicroSecPerFrame field specifies the period between video frames. This value
indicates the overall timing for the file.

The dwMaxBytesPerSec field specifies the approximate maximum data rate of the file.
This value indicates the number of bytes per second the system must handle to present an

02/10/93

71

Error! Main Document Only.-4 Video for Windows Programmer's Guide

02/10/93

AVI sequence as specified by the other parameters contained in the main header and
stream header chunks.

The dwFlags field contains any flags for the file. The following flags are defined:

AVIF_HASINDEX

Indicates the AVI file has an “idx1” chunk.
AVIF_MUSTUSEINDEX

Indicates the index should be used to determine the order of presentation of the data.
AVIF_ISINTERLEAVED

Indicates the AVI file is interleaved.
AVIF_WASCAPTUREFILE

Indicates the AV file is a specially allocated file used for capturing real-time video.
AVIF_COPYRIGHTED

Indicates the AVI file contains copyrighted data.

The AVIF_HASINDEX and AVIF_MUSTUSEINDEX flags applies to files with an index
chunk. The AVI_HASINDEX flag indicates an index is present. The
AVIF_MUSTUSEINDEX flag indicates the index should be used to determine the order
of the presentation of the data. When this flag is set, it implies the physical ordering of the
chunks in the file does not correspond to the presentation order.

The AVIF_ISINTERLEAVED flag indicates the AVI file has been interleaved. The
system can stream interleaved data from a CD-ROM more efficiently than non-interleaved
data. For more information on interleaved files, see “Special Information for Interleaved
Files.”

The AVIF_WASCAPTUREFILE flag indicates the AV file is a specially allocated file
used for capturing real-time video. Typically, capture files have been defragmented by
user so video capture data can be efficiently streamed into the file. If this flag is set, an
application should warn the user before writing over the file with this flag.

The AVIF_COPYRIGHTED flag indicates the AVI file contains copyrighted data. When
this flag is set, applications should not let users duplicate the file or the data in the file.

The dwTotalFrames field of the main header specifies the total number of frames of data
in file.

The dwlnitialFrames is used for interleaved files. If you are creating interleaved files,
specify the number of frames in the file prior to the initial frame of the AVI sequence in
this field.

The dwStreams field specifies the number of streams in the file. For example, a file with
audio and video has 2 streams.

The dwSuggestedBufferSize field specifies the suggested buffer size for reading the file.
Generally, this size should be large enough to contain the largest chunk in the file. If set to

72

AVI Files Error! Main Document Only.-5

zero, or if it is too small, the playback software will have to reallocate memory during
playback which will reduce performance. For an interleaved file, the buffer size should be
large enough to read an entire record and not just a chunk.

The dwWidth and dwHeight fields specify the width and height of the AVI file in pixels.

The dwScale and dwRate fields are used to specify the general time scale that the file
will use. In addition to this time scale, each stream can have its own time scale. The time
scale in samples per second is determined by dividing dwRate by dwScale.

The dwStart and dwLength fields specify the starting time of the AVI file and the length
of the file. The units are defined by dwRate and dwScale. The dwStart field is usually
set to zero.

The Stream Header (“strl”) Chunks

The main header is followed by one or more “strl” chunks. (A “strl” chunk is required for
each data stream.) These chunks contain information about the streams in the file. Each
“strl” chunk must contain a stream header and stream format chunk. Stream header
chunks are identified by the four-character code “strh” and stream format chunks are
identified with the four-character code “strf”. In addition to the stream header and stream
format chunks, the “strl” chunk might also contain a stream data chunk. Stream data
chunks are identified with the four-character code “strd”.

02/10/93

73

Error! Main Document Only.-6 Video for Windows Programmer's Guide

02/10/93

The stream header has the following data structure defined for it:

typedef struct {
FOURCC fccType;
FOURCC fccHandler;
DWORD dwFlags;
DWORD dwReservedl;
DWORD dwlnitialFrames;
DWORD dwScale;
DWORD dwRate;
DWORD dwStart;
DWORD dwLength;
DWORD dwSuggestedBufferSize;
DWORD dwQuality;
DWORD dwSampleSize;

} AVIStreamHeader;

The stream header specifies the type of data the stream contains, such as audio or video,
by means of a four-character code. The fccType field is set to “vids” if the stream it
specifies contains video data. It is set to “auds” if it contains audio data.

The fccHandler field contains a four-character code describing the installable compressor
or decompressor used with the data.

The dwFlags field contains any flags for the data stream. The AVISF_DISABLED flag
indicates that the stream data should be rendered only when explicitly enabled by the user.
The AVISF_VIDEO_PALCHANGES flag indicates palette changes are embedded in the
file.

The dwlinitialFrames is used for interleaved files. If you are creating interleaved files,
specify the number of frames in the file prior to the initial frame of the AVI sequence in
this field.

The remaining fields describe the playback characteristics of the stream. These factors
include the playback rate (dwScale and dwRate), the starting time of the sequence
(dwsStart), the length of the sequence (dwLength), the size of the playback buffer
(dwSuggestedBuffer), an indicator of the data quality (dwQuality), and sample size
(dwSampleSize). See the reference section for more information on these fields.

Some of the fields in the stream header structure are also present in the main header
structure. The data in the main header structure applies to the whole file while the data in
the stream header structure applies only to a stream.

A stream format (“strf””) chunk must follow a stream header (“strh™) chunk. The stream
format chunk describes the format of the data in the stream. For video streams, the
information in this chunk is a BITMAPINFO structure (including palette information if
appropriate). For audio streams, the information in this chunk is a WAVEFORMATEX or
PCMWAVEFORMAT structure. (The WAVEFORMATEX structure is an extended
version of the WAVEFORMAT structure.) For more information on this structure, see the
New Multimedia Data Types and Data Techniques Standards Update.

The “strl” chunk might also contain a stream data (“strd”) chunk. If used, this chunk
follows the stream format chunk. The format and content of this chunk is defined by
installable compression or decompression drivers. Typically, drivers use this information

74

AVI Files Error! Main Document Only.-7

for configuration. Applications that read and write RIFF files do not need to decode this
information. They transfer this data to and from a driver as a memory block.

An AVI player associates the stream headers in the LIST “hdrl” chunk with the stream
data in the LIST “movi” chunk by using the order of the “strlI” chunks. The first “strl”
chunk applies to stream 0, the second applies to stream 1, and so forth. For example, if the
first “strl” chunk describes the wave audio data, the wave audio data is contained in
stream 0. Similarly, if the second “strl” chunk describes video data, then the video data is
contained in stream 1.

The LIST “movi” Chunk

Following the header information is a LIST *“movi” chunk that contains chunks of the
actual data in the streams; that is, the pictures and sounds themselves. The data chunks
can reside directly in the LIST “movi” chunk or they might be grouped into “rec ” chunks.
The “rec ” grouping implies that the grouped chunks should be read from disk all at once.
This is used only for files specifically interleaved to play from CD-ROM.

Like any RIFF chunk, the data chunks contain a four-character code to identify the chunk
type. The four-character code that identifies each chunk consists of the stream number and
a two-character code that defines the type of information encapsulated in the chunk. For
example, a waveform chunk is identified by a two-character code of “wb”. If a waveform
chunk corresponded to the second LIST “hdrl” stream description, it would have a four-
character code of “01wb”.

Since all the format information is in the header, the audio data contained in these data
chunks does not contain any information about its format. An audio data chunk has the
following format (the ## in the format represents the stream identifier):

WAVE Bytes “#Hwb "
BYTE abBytes[];

Video data can be compressed or uncompressed DIBs. An uncompressed DIB has
Bl_RGB specified for the biCompression field in its associated BITMAPINFO structure.
A compressed DIB has a value other than BI_RGB specified in the biCompression field.
For more information about compression formats, see the description of the
BITMAPINFOHEADER data structure in the Microsoft Windows Programmers
Reference and Chapter 5, “DIB Format Extensions for Microsoft Windows.”

A data chunk for an uncompressed DIB contains RGB video data. These chunks are
identified with a two-character code of “db” (db is an abbreviation for DIB bits). Data
chunks for a compressed DIB are identified with a two-character code of “dc” (dc is an
abbreviation for DIB compressed). Neither data chunk will contain any header
information about the DIBs. The data chunk for an uncompressed DIB has the following
form:

DIB Bits “##db*
BYTE abBits[];

02/10/93

75

Error! Main Document Only.-8 Video for Windows Programmer's Guide

The “idx1”

02/10/93

The data chunk for a compressed DIB has the following form:

Compressed DIB “##dc*
BYTE abBits[];

Video data chunks can also define new palette entries used to update the palette during an
AVI sequence. These chunks are identified with a two-character code of “pc” (pc is an
abbreviation for palette change). The following data structure is defined palette
information:

typedef struct {

BYTE bFirstEntry;
BYTE bNumEntries;
WORD wFlags;

PALETTEENTRY peNew;
} AVIPALCHANGE;

The bFirstEntry field defines the first entry to change and the bNumEntries field
specifies the number of entries to change. The peNew field contains the new color entries.

If you include palette changes in a video stream, set the AVITF_VIDEO_PALCHANGES
flag in the dwFlags field of the stream header. This flag indicates that this video stream
contains palette changes and warns the playback software that it will need to animate the
palette.

Chunk

AVI files can have an index chunk after the LIST “movi” chunk. The index chunk
essentially contains a list of the data chunks and their location in the file. This provides
efficient random access to the data within the file, because an application can locate a
particular sound sequence or video image in a large AVI1 file without having to scan it.

Index chunks use the four-character code “idx1”. The following data structure is defined
for index entries:

typedef struct {
DWORD ckid;
DWORD dwFlags;
DWORD dwChunkOffset;
DWORD dwChunkLength;
} AVIINDEXENTRY;

The ckid, dwFlags, dwChunkOffset, and dwChunkLength entries are repeated in the
AV file for each data chunk indexed. If the file is interleaved, the index will also have
these entries for each “rec” chunk. The “rec” entries should have the AVIIF_LIST flag set
and the list type in the ckid field.

The ckid field identifies the data chunk. This field uses four-character codes for
identifying the chunk.

The dwFlags field specifies any flags for the data. The AVIIF_KEYFRAME flag
indicates key frames in the video sequence. Key frames do not need previous video
information to be decompressed. The AVIIF_NOTIME flag indicates a chunk does not

76

AVI Files Error! Main Document Only.-9

affect the timing of a video stream. For example, changing palette entries indicated by a
palette chunk should occur between displaying video frames. Thus, if an application
needs to determine the length of a video sequence, it should not use chunks with the
AVIIF_NOTIME flag. In this case, it would ignore a palette chunk. The AVIIF_LIST flag
indicates the current chunk is a LIST chunk. Use the ckid field to identify the type of
LIST chunk.

The dwChunkOffset and dwChunkLength fields specify the position of the chunk and
the length of the chunk. The dwChunkOffset field specifies the position of the chunk in
the file relative to the 'movi' list. The dwChunkLength field specifies the length of the
chunk excluding the eight bytes for the RIFF header.

If you include an index in the RIFF file, set the AVIF_HASINDEX in the dwFlags field
of the AVI header. (This header is identified by “avih” chunk 1D.) This flag indicates that
the file has an index.

Other Data Chunks

If you need to align data in your AVI file you can add a “JUNK” chunk. (This chunk is a
standard RIFF type.) Applications reading these chunks ignore their contents. Files played
from CD-ROM use these chunks to align data so they can be read more efficiently. You
might want to use this chunk to align your data for the 2 kilobyte CD-ROM boundaries.
The “JUNK” chunk has the following form:

AVl Padding " JUNK™
Byte data[]l

As with any other RIFF files, all applications that read AV files should ignore the non-
AVI chunks that it does not recognize. Applications that read and write AV files should
preserve the non-AVI chunks when they save files they have loaded.

Special Information for Interleaved Files

Files that are interleaved for playback from CD-ROM require some special handling.
While they can be read similarly to any other AVI files, they require special care when
produced.

The audio has to be separated into single-frame pieces, and audio and video for each
frame needs to be grouped together into “rec ” chunks. The record chunks should be
padded so that their size is a multiple of 2 kilobytes and so that the beginning of the actual
data in the LIST chunk lies on a 2 kilobyte boundary in the file. (This implies that the
LIST chunk itself begins 12 bytes before a 2 kilobyte boundary.)

To give the audio driver enough audio to work with, the audio data has to be skewed from
the video data. Typically, the audio data should be moved forward enough frames to allow
approximately 0.75 seconds of audio data to be preloaded. The dwlinitialRecords field of
the main header and the dwinitialFrames field of the audio stream header should be set
to the number of frames the audio is skewed.

Additionally, you must ensure that CD-ROM drive is capable of reading the data fast
enough to support your AVI sequence. Non-MPC CD-ROM drives can have a data rate of
less than 150 kilobytes per second.

02/10/93

77

Error! Main Document Only.-10 Video for Windows Programmer's Guide

Using VidEdit With AVI Files

VidEdit lets you create and edit audio-visual sequences consisting of a series of frames
that contain digital audio and video data. You can use VidEdit to create and edit AVI files
that contain one audio and one video stream. Each stream in the file must start at the
beginning of the file (that is, the dwStart field in each stream header must be zero).

Example Code for Writing AVI Files

The WRITEAVI.C and AVIEASY .C files contain example code for writing AV files.
For simplicity, the examples assume that all video frames are uncompressed DIBs of the
same size. While the DIBS can have any bit depth; 8, 16, and 24 bits are preferred.

These examples also assume all wave data is in memory. A more generalized procedure
should work with wave data that is in memory as well as in a disk file. These examples do
not restrict wave data to PCM. It should work with any format.

An Outline for Writing AVI Files

02/10/93

Like other RIFF files, AVI files are created with the mmioOpen, mmioCreateChunk,
mmioWrite, mmioAscend, and mmioClose functions. These functions have the
following definitions:

mmioOpen

Opens a file for reading or writing, and returns a handle to the open file.
mmioCreateChunk

Creates a new chunk in a RIFF file.
mmioWrite

Writes a specified number of bytes to an open file.
mmioAscend

Ascends out of a RIFF file chunk to the next chunk in the file.
mmioClose

Closes an open file.

In addition to these functions, you can use mmioFOURCC to convert four individual
characters into a four-character code. For more information on these functions and
macros, see the Microsoft Windows Multimedia Programmer’s Guide and Microsoft
Windows Multimedia Programmer’s Reference.

78

AVI Files Error! Main Document Only.-11

The AVIFMT.H file contains macro definitions for creating the two- and four-character
codes described in this chapter. It also defines the aviTWOCC and
TWOCCFromFOURCC macros. These macros create two-character codes from
individual characters or from four-character codes.

Unlike many other RIFF files, AVI files use many nested chunks and subchunks. This
makes them more complicated than most RIFF files. Use the following tables as a
checklist to help you decide when to create a chunk, when to write data to a chunk, and
when to ascend from a chunk. The tables do not include information about writing non-
AVI data chunks to the file. The information in the chunk column of the table mirrors the
example in the “AVI RIFF Form” section presented previously.

Creating the File and “AVI ” Chunk

The “AVI1 ” chunk is the first chunk in the file. You will not ascend from this chunk until

all other chunks have been created.

Chunk

How to Handle

RIFF (AVI'

Use mmioOpen to open the file. Seek to the
beginning of the file with mmioSeek. Create the
AVI chunk with mmioCreateChunk. (Use the
“AV1 ” four-character code and the
MMIO_CREATERIFF flag.) Do not ascend from
this chunk in preparation for writing the remaining
chunks.

Creating the LIST “hdrl ” and “avih” Chunks

The LIST “hdrl ” chunk contains the stream format header chunks. Because it contains
other chunks, you will not ascend from it until the other header chunks are created.

The “avih” chunk contains the main header list. This is written as a complete chunk.

Chunk

How to Handle

LIST (hdrl

‘avih'(<Main AVI Header>)

Create the LIST “hdrl” chunk with
mmioCreateChunk. (Use the “hdrl” four-
character code and the MMIO_CREATELIST
flag.)

Create the Main AVI Header chunk with
mmioCreateChunk. (Use the “avih” four-
character code.) Write the header information with
mmioWrite. Ascend from the “avih” chunk with
mmioAscend. Do not ascend from the LIST
“hdrl” chunk.

02/10/93

79

Error! Main Document Only.-12 Video for Windows Programmer's Guide

Creating the “strl”, “strh”, “strf”’, and “strd” Chunks

The “strl”, “strh”, “strf”, and “strd” chunks are written as complete chunks. You write a
set of the “strh”, “strf”, and “strd” chunks for each stream in the file. After all the stream
descriptions are written, you ascend from LIST “hdrl” chunk.

Chunk How to Handle

LIST ('strl' Create the LIST “strl” chunk with
mmioCreateChunk. (Use the “strl” four-character
code and the MMIO_CREATELIST flag.)

'strh'(<Stream header>) Create the stream header chunk with
mmioCreateChunk. (Use the “strh” four-character
code.) Write the stream header information with
mmioWrite. Ascend from the “strh” chunk with
mmioAscend.

'strf'(<Stream format>) Create the stream format chunk with
mmioCreateChunk. (Use the “strf” four-character
code.) Write the stream format information with
mmioWrite. Ascend from the “strf” chunk with
mmioAscend.

'strd'(additional header data) If needed, create chunks for any additional header
data with mmioCreateChunk. (Use the “strd”
four-character code.) Write the additional header
data with mmioWrite. Ascend from the “strd”
chunk.

If needed, add stream header, stream format, and
additional header data chunks for other streams in
the file.

) Ascend from the LIST “strl” chunk with
mmioAscend.

Ascend from the LIST “hdrl” chunk with
mmioAscend. If needed, create and write padding
chunks or other data chunks.

Creating the LIST “movi” and “rec ” Chunks

The LIST “movi” chunk contains other chunks. After you create this chunk, you will not
ascend from it until the other chunks are written.

02/10/93

80

AVI Files Error! Main Document Only.-13

You can write the data as an individual chunk or as part of a “rec ” chunk. Like the LIST
“movi” chunk, you will not ascend from a “rec ” chunk until you write all of its

subchunks.

Chunk

How to Handle

LIST (‘'movi’

{ SubChunk |
LIST(rec'
SubChunkl
SubChunk2

Create the LIST “movi” chunk with
mmioCreateChunk. (Use the LIST “movi” four-
character code and the MMIO_CREATELIST
flag.)

You can add your movie data directly at this point
in a subchunk or include it in a “rec ” chunk. The
following steps summarize creating these chunks:
Create a data chunk with mmioCreateChunk.
(Use the four-character code appropriate for the
data chunk and stream.) If you are adding an index
chunk to the end of the file, save the location of the
subchunks for it.

Ascend from the LIST “movi ” chunk.

Creating the “idx1” Chunk and Ascending From the “AVI

Chunk

The optional index chunk is written as a complete chunk. After you have completed this
chunk, you can ascend from the “AV1 ” chunk and close the file.

Chunk

How to Handle

['idx1'<AVIindex>]

If used, create the AVI index chunk with
mmioCreateChunk. (Use the “idx1” four-
character code.) Write the index information with
mmioWrite. Ascend from the “idx1” chunk with
mmioAscend. Although the “idx1” is the last
chunk used in an AVI sequence, you can add non-
AVI chunks after it. These subchunks will still be
part of the “AVI ” chunk.

Ascend from the “AVI ” chunk with mmioAscend.
Close the file with mmioClose.

02/10/93

81

Error! Main Document Only.-14 Video for Windows Programmer's Guide

AVI RIFF File Reference

This section lists data structures used to support AVI RIFF files. (These structures are
defined in AVIFMT.H.) The data structures are presented in alphabetical order. The
structure definition is given, followed by a description of each field.

AVIINDEXENTRY

02/10/93

The AVI file index consists of an array of AVIINDEXENTRY structures contained
within an 'idx1' chunk at the end of an AVI file. This chunk follows the main LIST 'movi'
chunk which contains the actual data.

typedef struct {
DWORD ckid;
DWORD dwFlags;
DWORD dwChunkOffset;
DWORD dwChunkLength;
} AVIINDEXENTRY;

Fields
The AVIINDEXENTRY structure has the following fields:

ckid
Specifies a four-character code corresponding to the chunk ID of a data chunk in the
file.

dwFlags
Specifies any applicable flags. The flags in the low-order word are reserved for AVI,

while those in the high-order word can be used for stream- and
compressor/decompressor-specific information.

The following values are currently defined:

AVIIF_LIST
Indicates the specified chunk is a 'LIST' chunk, and the ckid field contains the list
type of the chunk.

AVIIF_KEYFRAME
Indicates this chunk is a key frame. Key frames do not require additional preceding
chunks to be properly decoded.

82

AVI Files Error! Main Document Only.-15

AVIIF_FIRSTPART
Indicates this chunk needs the frames following it to be used; it cannot stand alone.

AVIIF_LASTPART
Indicates this chunk needs the frames preceding it to be used; it cannot stand alone.

AVIIF_NOTIME
Indicates this chunk should have no effect on timing or calculating time values
based on the number of chunks. For example, palette change chunks in a video
stream should have this flag set, so that they are not counted as taking up a frame’s
worth of time.

dwChunkOffset
Specifies the position in the file of the specified chunk. The position value includes the
eight byte RIFF header.

dwChunkLength
Specifies the length of the specified chunk. The length value does not include the eight
byte RIFF header.

AVIPALCHANGE

The AVIPALCHANGE structure is used in video streams containing palettized data to
indicate the palette should change for subsequent video data.

typedef struct {
BYTE bFirstEntry;
BYTE bNumEntries;
WORD wFlags;
PALETTEENTRY peNew;
} AVIPALCHANGE;

Fields
The AVIPALCHANGE structure has the following fields:
bFirstEntry

Specifies the first palette entry to change.

bNumEntries
Specifies the number of entries to change.

wFlags
Reserved. (This should be set to 0.)

peNew
Specifies an array of new palette entries.

02/10/93

83

Error! Main Document Only.-16 Video for Windows Programmer's Guide

AVIStreamHeader

02/10/93

The AVIStreamHeader structure contains header information for a single stream of an
file. It is contained within an 'strh’ chunk within a LIST 'strl' chunk that is itself contained
within the LIST 'hdrl’' chunk at the beginning of an AVI RIFF file.

typedef struct {
FOURCC fccType;
FOURCC fccHandler;
DWORD dwFlags;
DWORD dwReservedl;
DWORD dwlnitialFrames;
DWORD dwScale;
DWORD dwRate;
DWORD dwStart;
DWORD dwLength;
DWORD dwSuggestedBufferSize;
DWORD dwQuality;
DWORD dwSampleSize;

} AVIStreamHeader;

Fields

The AVIStreamHeader structure has the following fields:

fccType
Contains a four-character code which specifies the type of data contained in the
stream. The following values are currently defined for AVI data:
'vids'
Indicates the stream contains video data. The stream format chunk contains a
BITMAPINFO structure which can include palette information.

‘auds'
Indicates the stream contains video data. The stream format chunk contains a
WAVEFORMAT or PCMWAVEFORMAT structure.

Other four-character codes can identify non-AVI data.

fccHandler
Optionally, contains a four-character code that identifies a specific data handler. The
data handler is the preferred handler for the stream.

dwFlags
Specifies any applicable flags. The bits in the high-order word of these flags are
specific to the type of data contained in the stream. The following flags are currently
defined:

AVISF_DISABLED
Indicates this stream should not be enabled by default.

AVISF_VIDEO_PALCHANGES
Indicates this video stream contains palette changes. This flag warns the playback
software that it will need to animate the palette.

dwReservedl
Reserved. (Should be setto 0.)

84

AVI Files Error! Main Document Only.-17

dwlnitialFrames
Specifies how far audio data is skewed ahead of the video frames in interleaved files.
Typically, this is about 0.75 seconds.

dwsScale
This field is used together with dwRate to specify the time scale that this stream will
use.

Dividing dwRate by dwScale gives the number of samples per second.
For video streams, this rate should be the frame rate.

For audio streams, this rate should correspond to the time needed for nBlockAlign
bytes of audio, which for PCM audio simply reduces to the sample rate.

dwRate
See dwScale.

dwsStart
Specifies the starting time of the AVI file. The units are defined by the dwRate and
dwScale fields in the main file header. Normally, this is zero, but it can specify a delay
time for a stream which does not start concurrently with the file.

Note: The 1.0 release of the AVI tools does not support a non-zero starting time.

dwlLength
Specifies the length of this stream. The units are defined by the dwRate and dwScale
fields of the stream’s header.

dwSuggestedBufferSize
Suggests how large a buffer should be used to read this stream. Typically, this contains
a value corresponding to the largest chunk present in the stream. Using the correct
buffer size makes playback more efficient. Use zero if you do not know the correct
buffer size.

dwQuality
Specifies an indicator of the quality of the data in the stream. Quality is represented as
a number between 0 and 10000. For compressed data, this typically represent the value
of the quality parameter passed to the compression software. If set to -1, drivers use
the default quality value.

dwSampleSize
Specifies the size of a single sample of data. This is set to zero if the samples can vary
in size. If this number is non-zero, then multiple samples of data can be grouped into a
single chunk within the file. If it is zero, each sample of data (such as a video frame)
must be in a separate chunk.

For video streams, this number is typically zero, although it can be non-zero if all
video frames are the same size.

For audio streams, this number should be the same as the nBlockAlign field of the
WAVEFORMAT structure describing the audio.

02/10/93

85

Error! Main Document Only.-18 Video for Windows Programmer's Guide

MainAVIHeader

02/10/93

The MainAVIHeader structure contains global information for the entire AVI file. It is
contained within an ‘avih' chunk within the LIST 'hdrl' chunk at the beginning of an AVI
RIFF file.

typedef struct {
DWORD dwMicroSecPerFrame;
DWORD dwMaxBytesPerSec;
DWORD dwReservedl;
DWORD dwFlags;
DWORD dwTotalFrames;
DWORD dwlnitialFrames;
DWORD dwStreams;
DWORD dwSuggestedBufferSize;
DWORD dwWidth;
DWORD dwHeight;
DWORD dwScale;
DWORD dwRate;
DWORD dwStart;
DWORD dwLength;

} MainAVIHeader;

Fields
The MainAVIHeader structure has the following fields:

dwMicroSecPerFrame
Specifies the number of microseconds between frames.

dwMaxBytesPerSec
Specifies the approximate maximum data rate of file.

dwReservedl
Reserved. (This field should be set to 0.)

dwFlags
Specifies any applicable flags. The following flags are defined:

AVIF_HASINDEX
Indicates the AVI file has an 'idx1' chunk containing an index at the end of the file.
For good performance, all AVI files should contain an index.

AVIF_MUSTUSEINDEX
Indicates that the index, rather than the physical ordering of the chunks in the file,
should be used to determine the order of presentation of the data. For example, this
could be used for creating a list frames for editing.

AVIF_ISINTERLEAVED
Indicates the AVI file is interleaved.

AVIF_WASCAPTUREFILE
Indicates the AVI file is a specially allocated file used for capturing real-time
video. Applications should warn the user before writing over a file with this flag set
because the user probably defragmented this file.

86

AVI Files Error! Main Document Only.-19

AVIF_COPYRIGHTED
Indicates the AVI file contains copyrighted data and software. When this flag is
used, software should not permit the data to be duplicated.

dwTotalFrames

Specifies the number of frames of data in file.

dwlnitialFrames

Specifies the initial frame for interleaved files. Non-interleaved files should specify
zero.

dwStreams

Specifies the number of streams in the file. For example, a file with audio and video
has 2 streams.

dwSuggestedBufferSize

Specifies the suggested buffer size for reading the file. Generally, this size should be
large enough to contain the largest chunk in the file. If set to zero, or if it is too small,
the playback software will have to reallocate memory during playback which will
reduce performance.

For an interleaved file, this buffer size should be large enough to read an entire record
and not just a chunk.

dwWwidth

Specifies the width of the AVI file in pixels.

dwHeight

Specifies the height of the AVI file in pixels.

dwScale

This field is used with dwRate to specify the time scale that the file as a whole will
use. In addition, each stream can have its own time scale.

Dividing dwRate by dwScale gives the number of samples per second.

dwRate

See dwScale.

dwsStart

Specifies the starting time of the AVI file. The units are defined by dwRate and
dwScale. This field is usually set to zero.

dwLength

Specifies the length of the AVI file. The units are defined by dwRate and dwScale.
This length is returned by MCIAVI when using the frames time format.

02/10/93

87

88

89

90

91

92

93

CHAPTER 6

Playing AVI Files With MCI

This chapter describes how to play Video for Windows AV files using the MCI interface.
It contains the following topics:

e MCI Overview

e Using the MCI Command Interface

e Using the MCI String Interface

e Handling MCI notification

e Playing AVI files using MCI

Sample code for AVI playback is in the MOVPLAY1.C and MOVPLAY2.C files.
MOVPLAY1.C uses the MCI command interface while MOVPLAY2.C uses the string

interface. Both applications look the same to the end user, they just illustrate the different
methods of using MCI to send commands.

MCI Overview

MCI provides a high-level interface to control various media devices through generalized
commands such as play, pause and stop as well as through specific command sets defined
for different device types. MCI uses the MCIAVI.DRYV driver to handle AVI playback.

Your application uses MCI commands from the Digital Video Command Set to control
MCIAVI.DRV. Since most of the work is done by the commands and not by MCI
directly, the interface to MCI itself is very simple and just passes commands down to
MCIAVI. In fact, MCI only has five functions that applications use for MCI operation. Of
these five functions, the following two functions are commonly used for sending
commands:

mciSendCommand
Sends a command message to MCI.

mciSendString
Sends a string command to MCI.

Your application must link with MMSYSTEM.LIB to use MCI. It must also include the
MMSYSTEM.H and DIGITALV.H files. The MMSYSTEM.H file included with the
SDK for Microsoft Windows defines the prototypes for these functions and defines the
messages, flags, constants, and data structures needed for their use. The DIGITALV.H file

94

Error! Main Document Only.-2 Video for Windows Programmer's Guide

defines the digital video command set specifically used to control MCIAVI. For a
summary of the command messages and command strings used with MCIAVI, see
Chapter 7, “MCI Command Strings for MCIAVI” and Chapter 8, “MCI Command
Messages for MCIAVI.”

For full information on the MCI commands see the Microsoft Multimedia Programmer's
Reference and the Microsoft Multimedia Programmer's Guide of the Windows 3.1
Software Development Kit. For full information on the MCI Digital Video Command Set
see the Digital Video Command Set for the Media Control Interface standards update.

Using the MCI Command Interface

02/10/93

One method of sending MCI commands to MCIAV I uses mciSendCommand to send a
command message. Command messages include a message corresponding to the
command, a set of flags, and a data structure defining the parameters for that command.
This function has the following syntax:

DWORD mciSendCommand(wDevicelD, wMessage, dwParaml, dwParam?2)

The wDevicelD parameter defines the device ID of the MCI device that will receive the
command. (This parameter is returned for the open command, which does not require the
device ID.) The wMessage parameter specifies the message your application wants to
send. The dwParaml parameter defines the flags for the command, and dwParam2 points
to a data structure for the command. This function returns 0 on success or an MCI error
code on failure.

The programming example for sending a command message has MCIAVI.DRYV play an
AVI file. The command message for playing an AVI file is MCI_PLAY . For this
command, MCIAVI1.DRYV accepts the following flags in dwParam1:

MCI_FROM
Indicates the dwFrom field of the structure identified by dwParam2 specifies a
starting position for the file.

MCI_TO
Indicates the dwTo field of the structure identified by dwParam?2 specifies an ending
position for the file.

MCI_DGV_PLAY_WINDOW
Indicates playing should occur in the window associated with a device instance (the
default).

MCI_MCIAVI_PLAY_FULLSCREEN
Indicates playing should use a full-screen display, typically with a 320x200 resolution.

95

Playing AVI Files With MCI Error! Main Document Only.-3

The MCI_PLAY command uses the following data structure to pass information
(dwParam2 points to this structure):

typedef struct {
DWORD dwCallback;
DWORD dwFrom;
DWORD dwTo;

} MCI_DGV_PLAY_PARMS;

Prior to using mciSendCommand to send the MCI_PLAY message, your application
allocates the memory for the data structure, initializes the fields it wants to use, and sets
the flags corresponding to the fields used in the data structure. (If your application does
not set a flag for a data structure field, MCI drivers ignore the data structure field.) For
example, the following function plays a movie from the starting position specified by
dwFrom to the an ending position specified by dwTo (if either position is 0 then it is
considered not used):

DWORD PlayMovie(WORD wDevID, DWORD dwFrom, DWORD dwTo)

{
MCI_DGV_PLAY_PARMS mciPlay; // play params

DWORD dwFlags = O;

// check dwFrom, if it is = O then set parameters and flags
if (dwFrom){

mciPlay.dwFrom = dwFrom; // set parameter

dwFlags |= MCI_FROM; // set corresponding flag to validate field
3

// check dwTo, if it is I= 0 then set parameters and flags
if (dwTo){

mciPlay.dwTo = dwTo; // set parameter

dwFlags |= MCI_TO; // set corresponding flag to validate field
}

// send the PLAY command and return the result
return mciSendCommand(wDevID, MCI_PLAY, dwFlags,
(DWORD) (LPVOID)&mciPlay);

}

Using the MCI String Interface

Another method of sending MCI commands to MCIAVI uses mciSendString to send a
command string. This function uses text strings to represent the command. It has the
following syntax:

DWORD mciSendString(IpstrCommand, IpstrReturnString, wReturnLength,
hCallback)

The lpstrCommand parameter specifies a far pointer to the actual command string. Each
command string includes a command, a device identifier, and command arguments.
Arguments are optional on some commands and required on other commands. A
command string has the following form:

command device_id arguments

02/10/93

96

Error! Main Document Only.-4 Video for Windows Programmer's Guide

02/10/93

The command parameter represents the command name (for example, open, close, or
play). The device_id parameter identifies the MCI driver or a file. The arguments
parameter indicates any flags and values associated with the command.

When your application opens MCIAVI, it uses a device name, a keyword from the [MCI]
section of the SYSTEM.INI file, or filename as the device_id used to identify the MCI
device. Your application can avoid using the formal device_id argument in subsequent
commands by specifying the alias flag when it opens MCIAVI. (The alias your
application wants to use in subsequent commands is specified after the alias flag.) Most
string examples in this section use an alias.

The IpstrReturnString parameter of mciSendString specifies a far pointer to a buffer for
return information. (Your application can set it NULL if a command does not return
information.) The wReturnLength parameter specifies the size of the return buffer, or O if
no buffer is specified. The hCallback parameter specifies a window handle if your
applications wants to receive MCI notify messages.

For example, the string play command used with MCIAVI.DRV has the following
definition and arguments:

play items Starts playing the video sequence. The following optional items
modify the command:

from position Specifies a starting position for the play.

to position Specifies an ending position for the play.
fullscreen Specifies playing should use a full-screen display.
window Specifies playback should be in the window

associated with the device instance (the default).

The following example uses the string interface to send the play command with the from
and to flags:

DWORD PlayMovie(LPSTR IpstrAlias, DWORD dwFrom, DWORD dwTo)

{
char achCmndBuff[128];
wsprintf(achCmndBuff, “play %s from %u to %u', IpstrAlias, dwFrom, dwTo);
return mciSendString(achCommandBuff, NULL, O, NULL);

}

When using the string interface, all values passed with the command and all return values
are text strings so your application needs conversion routines to translate from variables to
strings or back again. For example, the following fragment gets the size of an AVI
seqguence and uses the size to allocate memory for a RECT structure:

97

Playing AVI Files With MCI Error! Main Document Only.-5

void GetSourceRect(LPSTR lIpstrAlias, LPRECT IpRect)

{
char achRetBuff[128];
char achCommandBuff[128];
// build the command string "where name source"
sprintf(achCommandBuff, "where %s source', lpstrAlias);
SetRectEmpty(IpRect); // clear the RECT
// send the command
if (mciSendString(achCommandBuff, achRetBuff,
sizeof(achRetBuff), NULL)== 0){
// The rectangle is returned in our buffer as '"x y dx dy" and we
// know that x and y are both O since this is the source rectangle.
// The following lines translate the string into the RECT structure.
char *p;
p = achRetBuff; // point to the return string
while (*p = " ") p++; // go past the x (0)
while (*p == " ") p++; // go past spaces
while (*p 1= " ") p++; // go past the y (0)
while (Cp == " ") p++; // go past spaces
// now get the width
for (; *p I= " "; p++)
IpRect->right = (10 * IpRect->right) +
Cp - "0%);
while (*p == " ") p++; // go past spaces
// now get the height
for (; *p 1= " "; p++)
IpRect->bottom = (10 * IpRect->bottom) +
Cp - "07);
3
}

Choosing the mciSendCommand or mciSendString
Interface

Since there are two interfaces to send commands to MCIAVI, you must select the most
appropriate one for your application’s needs. With the command interface, your
application must fill a data structure and make sure that the flags it sets match the data
structure fields it uses. With the string interface, however, your application must handle
the conversion of string data for anything that might be variable within the application.
Your application might choose to mix the two methods for the most efficient operation.

02/10/93

98

Error! Main Document Only.-6 Video for Windows Programmer's Guide

For straightforward commands your application might use the string interface, and for
commands that return information or commands your application passes information
(such as window or palette handles), it might use the command interface.

You will probably find the string interface the easiest command set to understand and
read. While the structure of the string commands is simple, it still retains the capabilities
of the message commands to control MCI devices. This makes the command set
extremely useful in planning your application and discussing the MCI capabilities of your
application.

The examples in the rest of this chapter use a combination of the string and command
interfaces. You can find other examples of using MCI with the digital video command set
in the MOVPLAY1.C and MOVPLAY?2.C files. For examples using command messages,
see MOVPLAY1.C. For examples using command strings, see MOVPLAY2.C.

Handling MCI Notification

02/10/93

Whichever interface your application uses, it can have MCI send notification messages
when an action completes. With the string interface, your application requests notification
by adding the notify flag to the string command it sends. It prepares to receive the
notification messages by setting the hCallback parameter to its window handle. With the
command interface, your application requests notification by adding MCI_NOTIFY to
the flags sent in dwParaml. It prepares to receive the notification messages by setting the
dwCallback field associated with dwParam?2 to the callback window handle. In both
cases the callback window procedure must be able to handle the MM_MCINOTIFY
message.

An MCI notification message indicates one of the following results:

e The command completed successfully—MCI_NOTIFY_SUCCESSFUL
e The command was superseded—MCI_NOTIFY_SUPERCEDED

e The command was aborted—MCI_NOTIFY_ABORTED

e The command fails—MCI_NOTIFY_FAILURE

The MOVPLAY sample applications uses notification on the play command to determine
when playing stops at the end of the sequence. Once started this way, the sequence plays
independently of MOVPLAY and MCI notifies MOVPLAY when the sequence
completes. MOVPLAY uses the notification message to rewind the sequence. The main
window procedure of MOVPLAY includes the following fragment to handle the
notification:

99

Playing AVI Files With MCI Error! Main Document Only.-7

case MM_MCINOTIFY:
// Check the status of an AVI movie that might have been playing.
// By using MCI_NOTIFY, we will get the MCI_NOTIFY_SUCCESSFUL flag
// if the play completes on it"s own.
switch(wParam){
case MCI_NOTIFY_SUCCESSFUL:
// Playing finished, let"s rewind and clear our flag
fPlaying = FALSE;
mciSendCommand(wMCIDevicelD, MCI_SEEK,
MCI_SEEK_TO_START, (DWORD)(LPVOID)NULL);
return O;

The following fragment shows how the notify flag is used with the play command. To use
the previous fragment to process the notification message, the handle to the window
procedure containing it is specified in hwnd.

MCI_DGV_PLAY_PARMS mciPlay;
DWORD dwFlags;

mciPlay.dwCallback = MAKELONG(hwnd, 0);
dwFlags = MCI_NOTIFY;

mciSendCommand(wMCIDevicelD, MCI_PLAY, dwFlags, (DWORD)(LPSTR)&mciPlay);

For the string interface, the following line uses mciSendString to send the play command
and request notification. The hwnd parameter in it would also specify the handle to the
window procedure containing the handler for notification.

mciSendString(“'play movie notify'", NULL, O, hwnd);

Playing AVI files with MCI

To play an AVI file, your application will perform the following actions:
1. Open the AVI file
Set up the playback window
Play the AVI sequence

2
3
4. Optionally change the playback state
5. Optionally get playback information
6

Close the AVI file

Opening an AVI File

To open an AVI file, your application sends the open command to MCIAVI. This
command lets your application specify the file. If desired, your application can also
specify information about the window used for playback.

02/10/93

100

Error! Main Document Only.-8 Video for Windows Programmer's Guide

If your application plans on opening multiple AVI files, it might open the MCIAVI driver
initially by specifying the driver identifier and then open each file separately. This saves
time because MCI will not load the MCIAVI driver for each file open command.

If your application will open multiple files, it should include routines like initAVI and
termAVI found in MOVPLAY?2.C. The application would use initAVI during its
initialization and termAVI during its termination.

// Initialize the MCIAVI driver. This returns TRUE if OK, FALSE on error.
BOOL initAvI(void)

{
return mciSendString(*'open avivideo'™, NULL, O, NULL) == O;

}

// Close the MCIAVI driver
void termAVI(void)

{
mciSendString(‘'close avivideo™, NULL, 0, NULL);

}

When your application uses a filename to open a device, MCI uses the file extension to
locate the driver. For example, the following fragment opens MCIAVI using the file
"YOSEMITE.AVI" and the alias movie. Subsequent commands for this file can use the
alias movie to reference it.

if (mciSendString("'open yosemite.avi alias movie'™, NULL, O, NULL) == 0){
// open is OK
} else {

// handle the error

The open command has options to set some playback window characteristics. These
options are covered in the next section. For a full example of using the open command,
see the fileOpenMovie function in MOVPLAY1.C and MOVPLAY2.C.

Setting up the Playback Window

02/10/93

Your application can specify several options to define the playback window for playing
the AVI sequence. The following options are available to your application:
e Use the default pop-up window of MCIAVI for playing

e Specify a parent window and window style that MCIAVI can use create the playback
window

o Specify a playback window for MCIAVI to use for playback
e Play the AVI sequence on a full screen display

101

Playing AVI Files With MCI Error! Main Document Only.-9

If your application does not specify any window options, MCIAVI creates a default
window for playing the sequence. MCIAVI creates this playback window for the open
command but it does not display the window until your application either sends a
command to display the window or sends a command to play the file. This default
playback window is a sizable pop-up window with a caption, a thick frame, a system
menu, and a minimize box.

The application can also specify a parent window handle and a window style when it
opens MCIAVI. When opened this way, MCIAVI creates a window based on these
specifications instead of the default pop-up window. Your application can specify any
window style available for the CreateWindow function. Those styles that require a parent
window, like WS_CHILD, should include a parent window handle. The following
fragment shows how to use the open command to set a parent window and create a child
of that window:

MCI_DGV_OPEN_PARMS mciOpen;

mciOpen. IpstrElementName = IpstrFile; // set the file name
mciOpen.dwStyle = WS_CHILD; // set the style
mciOpen.hWndParent = hwWnd; // give a window handle

it (mciSendCommand(0, MCI_OPEN,
(DWORD) (MC1_OPEN_ELEMENT|MCI_DGV_OPEN_PARENT|MCI_DGV_OPEN),
(DWORD) (LPSTR)&mciOpen) == 0){

// open is OK, continue operation

}

Your application can also create its own window and supply the handle to MCIAVI with
the window command. MCIAVI uses this window instead of the one it might have
created for playback. The following fragment finds the dimensions needed to play an AVI
file, creates a window corresponding to that size, and has MCIAVI to play the file in the
window:

HWND hwnd;
MCI_DGV_RECT_PARMS mciRect;

// Get the movie dimensions with MCI_WHERE
mciSendCommand(wDevicelD, MCI_WHERE, MCI_DGV_WHERE_SOURCE,
(DWORD) (LPSTR)&mciRect);

// Create the playback window. Make it bigger for the border.

hwndMovie = CreateWindow("'mywindow", "Playback",
WS_CHILD|WS_BORDER, 0,0,
mciRect.rc.right+(2*GetSystemMetric(SM_CXBORDER)),
mciRect.rc.bottom+(2*GetSystemMetric(SM_CYBORDER)),
hwndParent, hilnstApp, NULL);

02/10/93

102

Error! Main Document Only.-10 Video for Windows Programmer's Guide

it (hwndMovie){
// Window created OK, make it the playback window.

MCI_DGV_WINDOW_PARMS mciWindow;

mciWindow.hWnd = hwndMovie;
mciSendCommand(wDevicelD, MCI_WINDOW, MCI_DGV_WINDOW_HWND,
(DWORD) (LPSTR)&mciWindow) ;

}

When MCIAVI creates the playback window or obtains window handle from your
application, it does not display the window until your application either plays the
sequence or sends a command to display the window. Your application can use the
window command to display the window without playing the sequence. The "window
movie state show" command displays the window using the command string interface.
The following fragment shows how to display the window using the command message
interface:

MCI_DGV_WINDOW_PARMS mciWindow;

mciWindow.nCmdShow = SW_SHOW; // set command - see ShowWindow()
mciSendCommand(wDevicelD, MCI_WINDOW, MCI_DGV_WINDOW_STATE,
(DWORD) (LPSTR)&mciWindow;

Your application can also play an AVI sequence full screen instead of in a window. To
play full screen, modify the play command with the fullscreen flag. (Use the
MCI_MCIAVI_PLAY_FULLSCREEN flag for the message interface.) When your
application uses this flag, MCIAVI uses a 320x240 full screen format for playing the
sequence. For example, "play movie fullscreen" plays a movie full screen.

With the fullscreen flag, movies with 160x120 dimensions play back centered in the
320x240 screen. If your application wants to play these moves in a full 320x240 screen, it
can use "play movie fullscreen by 2" command to stretch the 160x120 movie to full
screen.

Playing the AVI Sequence

Playing an AVI sequence is straightforward using the MCI play command. This
command can play the entire sequence or portions of it. The previous examples show how
use the play command with mciSendString and mciSendCommand.

Changing the Playback State

02/10/93

Your application can control many of the play back capabilities of MCIAVI. The pause,
resume, stop, and seek commands let your application control the video sequence. Using
these, the application can pause a play in progress, seek to a location within the video
sequence, and resume play from that point. The following string command examples show
how to use these commands:

103

Playing AVI Files With MCI Error! Main Document Only.-11

// assume the file was opened with the alias "movie*®

// pause playing
mciSendString(“'pause movie'™, NULL, O, NULL);

// resume play
mciSendString(*'resume movie', NULL, O, NULL);

// stop play
mciSendString(*'stop movie'™, NULL, O, NULL);

// seek to the beginning
mciSendString('seek movie to start', NULL, O, NULL);

Your application can use the seek command to move the play position to the beginning,
the end, or an arbitrary position in the AVI file. There are two seek modes for the
MCIAVI driver—exact or non-exact—which affect the seek position. When seek exactly
is enabled (seek exactly on), MCIAVI seeks exactly to the frame your application
specifies. This might cause a delay if the file is temporally encoded and your application
does not specify a key frame. With seek exactly disabled (seek exactly off), MCIAVI
seeks to the nearest key frame in a temporally encoded file. Your application can change
the seek mode with the set command. The following example shows how to use the string
interface to change the seek mode:

// Set seek mode with the string interface
// assume the file was opened with the alias "movie”
void SetSeekMode(BOOL fExact)

{
if (fExact)
mciSendString(‘'set movie seek exactly on', NULL, O, NULL);
else
mciSendString(*'set movie seek exactly off'", NULL, O,
NULL);
}

Other MCI commands let your application alter the play other than altering the control
flow of the play. For example, an AVI sequence by default plays at its normal rate of
speed. Your application can change the play rate to speed up or slow down the playback.
The speed flag for the set command lets your application control the play rate. For AVI
sequences, a speed value of 1000 is considered normal. Thus, to play a movie at half-
speed, your application can use the command string "set movie speed 500." Alternatively,
it can use "set movie speed 2000" to play the sequence at twice the normal rate.

The setaudio command lets your application control the audio portion of an AVI
sequence. You application can mute audio during playback, or in the case of multiple
audio stream files, select the audio stream played. For example, the "setaudio movie off"
command string turns audio off during playback. The “setaudio movie stream to n"
command string specifies the audio stream number (specified by n) played for the
sequence.

02/10/93

104

Error! Main Document Only.-12 Video for Windows Programmer's Guide

MCIAVI has a dialog box to control some of its playback options. Some of the important
option available to the user include selection of windowed or full screen playback,
selection of the seek mode, and zooming the image. Your application can have MCIAVI
display this dialog box with the configure command. For more information on this dialog
box, see “MCI String Messages for MCIAVI.”

Obtaining Playback Information

Your application can get the status on the playback of an AVI sequence with the status
command. This command obtains information on the state of the audio, state of the video,
mode of the play, position of the play, seek mode, as well as other parameters. Your
application might monitor playback so that it can update the state and position of the play
in a routine that gets called through a timer call-back. The information returned by the
status command can depend on the time format used. The device can specify the return
values for position, length, and start in milliseconds or frames. Your application can use
the set command to set alternate time formats and modes. The following fragment shows
an example of such a function:

MCI_DGV_SET_PARMS mciSet;
MCI_DGV_STATUS_PARMS mciStatus;

// put in frame mode

mciSet.dwTimeFormat=MCIl_FORMAT_FRAMES;

mciSendCommand(wDevicelD, MCI_SET,
MCI_SET_TIME_FORMAT,
(DWORD) (LPSTR)&mciSet);

mciStatus.dwltem = MCI_STATUS_MODE;
mciSendCommand(wDevicelD, MCI_STATUS,
MCI_STATUS_ITEM,
(DWORD) (LPSTR)&mciStatus);

// Update mode based on mciStatus.dwReturn
// If it is playing then get the position
if (nciStatus.dwReturn == MCI_MODE_PLAY){
mciStatus.dwltem = MCI_STATUS_POSITION;
mciSendCommand(wDevicelD, MCI_STATUS, MCI_STATUS_ITEM,
(DWORD) (LPSTR)&mciStatus);

// update the position from mciStatus.dwReturn

Closing the AVI File

When finished with a file, your application closes it with the close command. With the
string interface a "close movie" command is sent, with the command interface a
MCI_CLOSE command is used and all parameters may be NULL.

02/10/93

105

CHAPTER 7

MCI Command Strings for
MCIAVI

Applications such as Visual Basic™ and Asymetrix ToolBook use MCI command
strings to provide control for MCI devices. This chapter describes the MCI command
strings for the Microsoft MCI video driver (MCIAVI.DRV) that you can use with
applications that support the MCI command-string interface. (Applications with this
interface send the command strings to MCI with the mciSendString function.) For
more information on using command strings and the command-string interface, see
the Multimedia Programmer's Guide and Multimedia Programmer's Reference in the
Microsoft Windows Software Development Kit. The same information is also available in
the Multimedia Programmer's Workbook and Multimedia Programmer's Reference in
the Microsoft Windows Multimedia Development Kit.

The following list summarizes the MCI command strings supported by MCIAVI. This
command set is taken from the digital-video command set for MCI. Any device-
specific behavior affecting the MCI commands is also noted in this chapter.

About the MCIAVI.DRYV Driver

The MCIAVI.DRYV driver plays video sequences under the control of MCI
commands. These video sequences can contain images, audio, and palettes. The image
data is implemented either with color palettes or true-color information.

MCIAVI.DRV supports 11, 22, or 44 kHz audio in an 8- or 16-bit format. Audio is
synchronized with the video within 1/30 of a second. However, if audio hardware is
not available, the driver will silently play the video sequence. MCIAVI.DRV can drop
video frames, if necessary, to play a sequence without audio interruption.

Custom Commands and Flags for MCIAVI.DRV

MCIAVI.DRYV uses a subset of the digital-video command set except for the
configure command and two custom flags used by the play command. The configure

106

Error! Main Document Only.-2 Video for Windows Programmer's Guide

command displays a dialog box for setting the operating options of the MCIAVI. This
dialog box contains the following selections:

Option Description
Window Displays the video in a window.
Full Screen Displays the video using the full screen

with 320-by-240 resolution. This allows a
256-color display on 16-color devices.

Zoom By 2 Stretches the video to twice its normal
size.
Skip Video Frames If Behind Specifies to drop frames if the video falls

behind. If this isn't selected, all the video
frames will be shown and the audio will
break up as necessary.

Seek To Nearest Full Frame Specifies to go to the nearest frame on a
seek. If this isn't selected, seek will go to
the closest key frame prior to the specified
frame.

Play Only If Audio Device Available Returns an error if an audio device is not
available to play wave data. If this isn't
selected and there isn't a wave-audio
device available, audio data is ignored and
the video is played.

Don't Buffer Offscreen Specifies that a copy of the display
window should not be maintained.

The custom flags used by the play command are fullscreen and window. These flags
specify the display mode used for playing a video sequence. These flags are described
with the play command.

MCI Command Strings

In general, a command string has another field following the command verb not
explicitly indicated in the descriptions below. For most commands, this field contains
a device name or alias as specified by a prior open command. The device name is used
by MCI to route the command to the appropriate device driver and device-driver instance.

All commands accept the optional items wait and notify, although they are not
explicitly listed in the command-string table. All commands, except open and close,
also accept the optional item test.

The MCIAVI driver uses the AVIVideo keyword to identify the driver type.

02/10/93

107

MCI Command Strings for MCIAVI

Error! Main Document Only.-3

The MCIAVI driver supports the following command set:

Command

Description

capability item

close

configure

cue items

Fills an application-supplied buffer with a string containing
additional information about the capabilities of MCIAVI. The
following optional items modify capability:

can eject
can freeze
can lock
can play
can record
can reverse
can save
can stretch

can stretch
input

can test

compound
device

device type
has audio
has still

has video
uses files
uses palettes

Returns false.
Returns false.
Returns false.

Returns true.

Returns false.
Returns false.
Returns false.

Returns true.

Returns false.

Returns true.
Returns true.

Returns digitalvideo.

Returns true.
Returns false.
Returns true.
Returns true.
Returns true.

Closes this instance of the MCIAVI and releases all resources
associated with it.

Displays a dialog box used to configure MCIAVI.

Prepares MCIAVI for playback and leaves it in a paused state. This
command is modified by the following optional items:

Prepares MCIAVI for playing.
Positions the workspace to the specified

output
to position

108

position.

02/10/93

Error! Main Document Only.-4

Video for Windows Programmer's Guide

Command

Description

info items

open items

pause

play items

02/10/93

Fills a user-supplied buffer with a string containing information
about MCIAVI. The following optional items modify info:

file
product
version

window text

Initializes MCIAVI.

alias alias

elementname

parent hwnd
style stylevalue

type AVIVideo

Returns the name of the file currently loaded.
Returns Video for Windows.
Returns the release level of MCIAVI.

Returns the text string in the title bar of the
window associated with MCIAVI.

The following items modify open:

Specifies an alias used to reference this
instance of MCIAVI.

Specifies the name of the device element (file)
loaded when MCIAVI opens.

Specifies the parent of the default window.

Specifies the style used for the default
window. The following constants are defined
for stylevalue: overlapped, popup, and child.

Specifies the device type of the device
element.

Pauses the playing of motion video or audio.

Starts playing the video sequence. The following optional items
modify play:
from position

to position
fullscreen

window

109

Specifies the position to seek to before
beginning the play.

Specifies the position at which to stop playing.

Specifies playing should use a full-screen
display.

Specifies that playing should use the window
associated with a device instance (the default).

MCI Command Strings for MCIAVI Error! Main Document Only.-5

Command Description
put items Specifies a rectangular region that describes a cropping or scaling
option. One of the following items must be present to indicate the
specific type of rectangle:
destination Specifies that the full client window
associated with this instance of MCIAVI is
used to show the image or video.
destination at Specifies which portion of the client window
rectangle associated with this instance of MCIAVI is
used to show the image or video.
source Specifies that the full frame buffer is scaled to
fit in the destination rectangle.
source at Specifies which portion of the frame buffer, in
rectangle frame-buffer coordinates, is scaled to fit in the
destination rectangle.
realize items Tells MCIAVI to select and realize its palette into a display context
of the displayed window. One of the following items modifies
realize:
background Realizes the palette as a background palette.
normal Realizes the palette normally used for a top
level window (the default).
window at Changes the size and location of the display
rectangle window. The rectangle specified with the at
flag is relative to the parent window of the
display window (usually the desktop).
resume Specifies that operation should continue from where it was
interrupted by a pause command.
seek items Positions and cues the workspace to the specified position showing

the specified frame. One of the following items modifies seek:

to position
to end

to start

Specifies the desired new position, measured
in units of the current time format.

Moves the position after the last frame of the
workspace.

Moves the position to the first frame of the
workspace.

02/10/93

Error! Main Document Only.-6

Video for Windows Programmer's Guide

02/10/93

Command

Description

set items

setaudio items

setvideo items

Sets the state of various control items. One of the following items
must be included:

seek exactly on Selects one of two seek modes. With seek

seek exactly off exactly on, seek will always move to the
frame specified. With seek exactly off, seek
will move to the closest key frame prior to
frame specified.

speed factor Sets the relative speed of video and audio
playback from the workspace. Factor is the
ratio between the nominal frame rate and the
desired frame rate where the nominal frame
rate is designated as 1000.

time format Sets the time format to format. The default

format time format is frames. Milliseconds can be
abbreviated as ms. MCIAVI supports frames
and milliseconds.

audio off Disables audio.
audio on Enables audio.
video off Disables video.
video on Enables video.

Sets various values associated with audio playback and capture.
Only one of the following items can be present in a single
command, unless otherwise noted:

off Disables audio.
on Enables audio.

volume to factor Sets the average audio volume for both audio
channels.

Sets various values associated with playback. The following items
modify setvideo:

off Disables video display in the window.
on Enables video display in the window.
palette handle Specifies the handle to a palette.

to handle

111

MCI Command Strings for MCIAVI

Error! Main Document Only.-7

Command Description
signal items Marks a specified position in the workspace. MCIAVI supports
only one active signal at a time. The following items modify
signal:
at position Specifies the first frame to be marked.
cancel An optional parameter which indicates that the
signal indicated by the uservalue should be
removed from the workspace.
every interval Specifies the period in the current time format
after which the succeeding marks should be
placed.
return position An optional parameter which indicates that the
MCIAVI should send the position value
instead of the uservalue value in the Window
message.
uservalue id Specifies a value associated with this signal
request that is reported back with the
Windows message.
status item Returns status information about this instance MCIAVI. One of the

following items modifies status:

audio

forward
length

media present
mode

monitor

nominal frame
rate

number of
tracks

palette handle
position

ready

reference frame

112

Returns on if either or both speakers are
enabled, and off otherwise.

Returns true.

Returns the length of the loaded video
sequence in the current time format.

Returns true.

Returns one of the following: not ready,
paused, playing, recording, or stopped.

Returns file.

Returns the nominal frame rate associated
with the file in units of frames per second
times1000.

Returns the number of tracks in a video
sequence (normally 1).

Returns the palette handle.

Returns the current position in the workspace
in the current time format.

Returns true if this instance of MCIAVI is
ready accept another command.

Returns the nearest key-frame number that
precedes frame.

02/10/93

Error! Main Document Only.-8

Video for Windows Programmer's Guide

02/10/93

Command Description
seek exactly Returns on or off indicating whether or not
seek exactly is set.
speed Returns the current playback speed.
start position Returns the start of the media.
time format Returns the current time format (frames or
milliseconds).
unsaved Returns false.
video Returns on or off depending on the most
recent setvideo.
window handle Returns the ASCII decimal value for the
window handle associated with this instance
of MCIAVI.
window visible Returns true if the window is not hidden.
window Returns true if the window is minimized.
minimized
window Return true if the window is maximized.
maximized
step items Advances the sequence to the specified image. This command is
modified by the following options:
by frames Specifies the number of frames to advance
before showing another image. You can
specify negative values for frames.
reverse Requests that the step be taken in the reverse
direction.
stop item Stops playing.

update items

Repaints the current frame into the specified display context. The
following items modify update:

at rect
hdc hdc

paint

113

Specifies the clipping rectangle relative to the
client rectangle.

Specifies the handle of the display context to
paint.

An application uses the paint flag with update

when it receives a WM_PAINT message

intended for a display DC.

MCI Command Strings for MCIAVI Error! Main Document Only.-9

Command

Description

where items

window items

Returns the rectangular region that has been previously specified,
or defaulted, using the put command. The following items modify
where:

destination Returns a description of the rectangular region
used to display video and images in the client
area of the current window.

destination max Returns the current size of the client rectangle.

source Returns a description of the rectangular region
cropped from the frame buffer which is
stretched to fit the destination rectangle on

the display.
source max Returns the maximum size of the frame buffer.
window Returns the current size and position of the

display-window frame.
window max Returns the size of the entire display.

Provides an instance of MCIAVI with a window handle to the
window that will be used to display images or motion video. The
following items modify window:

handle hwnd Specifies a window to be used with this
instance.

handle default Specifies that the window associated with this
instance should be the default window created
during the open.

state showvalue This command issues a ShowWindow call for
the current window. The following constants
are defined for showvalue:
hide
minimize
restore
show
show maximized
show minimized
show min noactive
show na
show noactivate
show normal.

text caption Specifies the text placed in the title bar of the
window.

02/10/93

114

CHAPTER 8

MCI Command Messages for

MCIAVI

This chapter describes the MCI command messages for the Microsoft MCI video
device driver (MCIAVI.DRV) that you can use with the mciSendCommand function
that supports the MCI command-message interface. For more information on using
command messages, see the Microsoft Multimedia Programmer's Guide and the
Microsoft Multimedia Programmer’s Reference in the Microsoft Windows Software
Development Kit. The same information is also available in the Multimedia
Programmer's Workbook and Multimedia Programmer's Reference in the Microsoft
Windows Multimedia Development Kit.

The following list summarizes the MCI command messages supported by MCIAVI.
This command set is taken from the digital-video command set for MCI. Any device-
specific behavior affecting the MCI commands is also noted in this appendix.

MCI Command Messages

All commands accept the optional flags MCI_NOTIFY, MCI_WAIT, and MCI_TEST
flags as described in the digital-video command set.

MCIAVI.DRYV uses the AVIVideo keyword to identify the driver type.

MCI_CLOSE

Parameters

This message releases access to a device or device element.

DWORD IParam1l
Specifies the MCI_NOTIFY or MCI_WAIT flag.

LPMCI_GENERIC_PARMS IParam2
Specifies a far pointer to the MCI_GENERIC_PARMS data structure.

115

Error! Main Document Only.-2 Video for Windows Programmer's Guide

MCIl_CONFIGURE

This message displays a dialog box for setting the operating options.
Parameters DWORD IParaml
Specifies the MCI_NOTIFY, MCI_WAIT, and MCI_TEST flags.

LPMCI_GENERIC_PARMS IParam2
Specifies a far pointer to the MCI_GENERIC_PARMS data structure.

This message prepares a device instance so that it can begin playback with minimum
delay.
Parameters DWORD IParaml

The following flags apply to MCIAVI.DRV:

MCI_DGV_CUE_OUTPUT
Specifies an instance should be cued for playing.
MCI_TO
Specifies that a workspace position is included in the dwTo field of the data structure
identified by IParam2.
LPMCI_DGV_CUE_PARMS IParam2
Specifies a far pointer to the MCI_DGV_CUE_PARMS data structure.

MCIl_GETDEVCAPS

This message obtains static information about a device.
Parameters DWORD IParam1l
The following flags apply to the MCIAVI:

MCI_GETDEVCAPS_ITEM
Specifies that the dwltem field of the data structure identified by IParam2
contains a constant indicating which device capability to obtain. The following
constants are recognized by MCIAVI.DRV:

MCI_GETDEVCAPS CAN_EJECT

MCIAVI.DRYV sets the dwReturn field to FALSE.
MCI_GETDEVCAPS_CAN_PLAY

MCIAVI.DRYV sets the dwReturn field to TRUE.
MCI_GETDEVCAPS CAN_RECORD

MCIAVI.DRYV sets the dwReturn field to FALSE.
MCI_GETDEVCAPS_CAN_SAVE

MCIAVI.DRYV sets the dwReturn field to FALSE.
MCI_GETDEVCAPS_COMPOUND_DEVICE

02/10/93

116

MCI Command Messages for MCIAVI Error! Main Document Only.-3

MCIAVI.DRV sets the dwReturn field to TRUE.
MCI_GETDEVCAPS DEVICE_TYPE

MCIAVI.DRYV sets the dwReturn field to
MCI_DEVTYPE_DIGITAL_VIDEO.

MCI_GETDEVCAPS_HAS_AUDIO
MCIAVI.DRYV sets the dwReturn field to TRUE.
MCI_GETDEVCAPS_HAS_VIDEO
MCIAVI.DRYV sets the dwReturn field to TRUE.
MCI_GETDEVCAPS_USES FILES
MCIAVI.DRYV sets the dwReturn field to TRUE.
MCI_DGV_GETDEVCAPS_CAN_FREEZE
MCIAVI.DRYV sets the dwReturn field to FALSE.
MCI_DGV_GETDEVCAPS CAN_LOCK
MCIAVI.DRYV sets the dwReturn field to FALSE.
MCI_DGV_GETDEVCAPS_CAN_REVERSE
MCIAVI.DRYV sets the dwReturn field to FALSE.
MCI_DGV_GETDEVCAPS CAN_STRETCH
MCIAVI.DRYV sets the dwReturn field to TRUE.
MCI_DGV_GETDEVCAPS _CAN_STR_IN
MCIAVI.DRYV sets the dwReturn field to FALSE.
MCI_DGV_GETDEVCAPS CAN_TEST
MCIAVI.DRYV sets the dwReturn field to TRUE.
MCI_DGV_GETDEVCAPS HAS STILL
MCIAVI.DRYV sets the dwReturn field to FALSE.
MCI_DGV_GETDEVCAPS PALETTES
MCIAVI.DRYV sets the dwReturn field to TRUE.

LPMCI_GETDEVCAPS_PARMS IParam2
Specifies a far pointer to the MCI_GETDEVCAPS_PARMS data structure.

MCI_INFO

This message obtains string information from a device.
Parameters DWORD IParam1l
The following flags apply to MCIAVI.DRV:

MCI_INFO_PRODUCT
MCIAVI.DRV returns Video for Windows.

MCI_DGV_INFO_TEXT
Returns the text string in the title bar of the window associated with the device
instance.

02/10/93

117

Error! Main Document Only.-4 Video for Windows Programmer's Guide

MCI_INFO_FILE
Obtains the path and filename of the last file specified with the MCI_OPEN
command.

MCI_INFO_VERSION
Returns the release level of the device driver and hardware.

LPMCI_DGV_INFO_PARMS IParam?2
Specifies a far pointer to the MCI_DGV_INFO_PARMS data structure.

MCI_OPEN

This message initializes an instance of the device or device element.

Parameters DWORD IParaml
The following flags apply to MCIAVI.DRV:

MCI_OPEN_ALIAS
Specifies that an alias is referenced in the IpstrAlias field of the data structure
identified by IParam2.
MCI_OPEN_TYPE
Specifies that a device-type constant or a pointer to a device-type name is included
in the IpstrDeviceType field of the data structure identified by IParam?2.
MCI_OPEN_TYPE_ID
Specifies that the IpstrDeviceType field of the data structure identified by IParam2

contains a standard MCI device-type ID and the optional ordinal index for the
device.

MCI_OPEN_ELEMENT
Specifies that an element name is included in the IpstrElementName field of the
data structure identified by IParam2.

MCI_OPEN_ELEMENT_ID
Specifies that the IpstrElementName field of the data structure identified by
IParam2 has meaning defined by the device.

MCI_DGV_OPEN_PARENT
Indicates the parent window handle is specified in the hwWndParent field of the
data structure identified by IParam2.

MCI_DGV_OPEN_WS
Indicates a window style is specified in the dwStyle field of the data structure
identified by IParam2.

LPMCI_DGV_OPEN_PARMS IParam2
Specifies a far pointer to the MCI_DGV_OPEN_PARMS data structure.

02/10/93

118

MCI Command Messages for MCIAVI Error! Main Document Only.-5

MCIl_PAUSE

This message pauses the current action.

Parameters DWORD IParaml
Specifies the MCI_NOTIFY, MCI_TEST, and MCI_WAIT flags.

LPMCI_DGV_PAUSE_PARMS IParam2
Specifies a far pointer to the MCI_DGV_PAUSE_PARMS data structure.

MCI_PLAY

This message begin play of the audio and video.

Parameters DWORD IParaml
The following flags apply to MCIAVI.DRV:

MCI_FROM
Specifies that a starting position is included in the dwFrom field of the data
structure identified by IParam2.

MCI_TO
Specifies that an ending position is included in the dwTo field of the data structure
identified by IParam2. MCIAVI.DRV returns an error if the “to” position is less
than the “from” position.

MCI_DGV_PLAY_WINDOW
Specifies that playing should occur in the window associated with a device instance
(the default). (This flag is specific to the MCIAVI.DRV.)

MCI_MCIAVI PLAY_FULLSCREEN
Specifies that playing should use a full-screen display, typically, with a 320-by-200
resolution. The full-screen display takes over the entire desktop. (This flag is
specific to MCIAVI.DRV.)

LPMCI_DGV_PLAY_PARMS IParam2
Specifies a far pointer to an MCI_DGV_PLAY_PARMS data structure.

MCI_PUT

This message specifies a rectangular region that describes a cropping or scaling option.

Parameters DWORD IParaml
The following flags apply to MCIAVI.DRV:

MCI_DGV_RECT
Specifies that the rc field of the data structure identified by IParam2 contains a
valid rectangle.

MCI_DGV_PUT_DESTINATION
Indicates the rectangle defined for MCI_DGV_RECT specifies a destination
rectangle. The destination rectangle specifies the portion of the client window
associated with this device driver instance that shows the image or video.

02/10/93

119

Error! Main Document Only.-6 Video for Windows Programmer's Guide

MCI_DGV_PUT_SOURCE
Indicates the rectangle defined for MCl_DGV_RECT specifies a source rectangle.
The source rectange specifies which portion of the frame buffer is to be scaled to fit
into the destination rectangle.

MCI_DGV_PUT_WINDOW
Indicates that the rectangle defined for MCI_DGV_RECT applies to the display
window. This rectangle is relative to the parent window of the display window
(usually the desktop). If the window is not specified, it defaults to the initial
window size and position.

LPMCI_DGV_PUT_PARMS IParam2
Specifies a far pointer to a MCI_DGV_PUT_PARMS data structure.

MCI|_REALIZE

This message tells MCIAVI to select and realize its palette into a display context of the
displayed window. You should use this message when your application receives the
WM_QUERYNEWPALETTE message from Windows.

Parameters DWORD IParaml
The following flags apply to MCIAVI.DRV:

MCI_DGV_REALIZE_BKGD
Realizes the palette as a background palette.

MCI_DGV_REALIZE_NORM
Realizes the palette normally (the default).

LPMCI_GENERIC_PARMS IParam?2
Specifies a far pointer to a MCI_GENERIC_PARMS data structure.

MCl_RESUME

This message resumes MCIAVI operation when it is paused .

Parameters DWORD IParaml
Specifies the MCI_NOTIFY, MCI_WAIT, and MCI_TEST flags.

LPMCI_GENERIC_PARMS IParam?2
Specifies a far pointer to the MCI_GENERIC_PARMS data structure.

MCI_SEEK

This message positions and cues the workspace to the specified position showing the
specified frame.

Parameters DWORD IParaml
The following flags apply to MCIAVI.DRV:

MCI_SEEK_TO_END
Specifies the seek should move to the end of the workspace.

02/10/93

120

MCI Command Messages for MCIAVI Error! Main Document Only.-7

MCI_SEEK_TO_START
Specifies the seek should move to the beginning of the workspace.

MCI_TO
Specifies a position is included in the dwTo field of the MCI_SEEK_PARMS
data structure.

LPMCI_SEEK_PARMS IParam2
Specifies a far pointer to the MCI_SEEK_PARMS data structure.

MCI_SET

This message sets device information.

Parameters DWORD IParaml
The following flags apply to MCIAVI.DRV:

MCI_SET_AUDIO
Specifies an audio-channel number is included in the dwAudio field of the data
structure identified by IParam2. This flag must be used with MCI_SET_ON or
MCI_SET_OFF. Specify the constant MCI_SET_AUDIO_ALL for the channel
number.

MCI_SET_TIME_FORMAT
Specifies a time-format parameter is included in the dwTimeFormat field of the
data structure identified by IParam2. Constants defined for time formats include:

MCI_FORMAT_FRAMES
Specifies frames.

MCI_FORMAT_MILLISECONDS
Specifies milliseconds.

MCI_SET_VIDEO
Sets the video signal on or off. This flag must be used with either MCI_SET_ON or
MCI_SET_OFF.

MCI_SET_ON
Enables the video or audio channel, or enables the seek-exactly mode.

MCI_SET_OFF
Disables the video or audio channel, or disables the seek-exactly mode.

MCI_DGV_SET SEEK EXACTLY
Sets the format used for positioning. This flag must be used with MCI_SET_ON or
MCI_SET_OFF.

MCI_DGV_SET_SPEED
Specifies that a speed parameter is included in the dwSpeed field of the data
structure identified by IParam2.

LPMCI_DGV_SET_PARMS IParam?2
Specifies a far pointer to the MCI_DGV_SET_PARMS data structure.

02/10/93

121

Error! Main Document Only.-8 Video for Windows Programmer's Guide
MCI_SETAUDIO

This messageets various values associated with audio playback and capture.

Parameters DWORD IParaml
The following flags apply to MCIAVI.DRV:

MCI_DGV_SETAUDIO_ITEM
Indicates an audio constant is specified in the dwAdustParm field of the data
structure identified by IParam2. The following constant is supported by
MCIAVI.DRV:
MCI_DGV_SETAUDIO_VOLUME

Indicates that the audio level is specified as a factor in the dwValue field of the
data structure identified by IParam2. The volume level ranges between 0 and
1000.

MCI_DGV_SETAUDIO_VALUE

Indicates that an audio value is specified in the dwValue field of the data
structure identified by IParam2.

MCI_SET ON
Enables the audio channel.

MCI_SET_OFF
Disables the audio channel.

LPMCI_DGV_SETAUDIO_PARMS IParam?2
Specifies a far pointer to the MCI_DGV_SETAUDIO_PARMS data structure.

MCI_SETVIDEO

This message sets various values associated with video playback.

Parameters DWORD IParaml
The following flags apply to MCIAVI.DRV:

MCI_DGV_SETVIDEO_ITEM
Indicates a video constant is specified in the dwAdustParm field of the data
structure identified by IParam2. MCIAVI.DRV supports the following constant:

MCI_DGV_SETVIDEO_PALHANDLE

Indicates that a palette-handle value is specified in the dwValue field of the
data structure identified by IParam2.

MCI_DGV_SETVIDEO_SRC_VALUE
Specifies a value is included in the dwValue field of the data structure identified by
IParam?2.

MCI_SET _ON
Enables video output.

MCI_SET_OFF
Disables video output.

02/10/93

122

MCI Command Messages for MCIAVI Error! Main Document Only.-9

LPMCI_DGV_SETVIDEO_PARMS IParam?2
Specifies a far pointer to the MCI_DGV_SETVIDEO_PARMS data structure.

MCI_SIGNAL

This message sets a specified position in the workspace. MCIAVI.DRV supports only one
active signal at a time.

Parameters DWORD IParaml

The following flags apply to all devices supporting MCI_SIGNAL :

MCI_DGV_SIGNAL_AT
Specifies a signal position is included in the dwPosition field of the data structure
identified by IParam2.

MCI_DGV_SIGNAL_EVERY
Specifies a signal-period value is included in the dwEvery field of the data
structure identified by IParam2.

MCI_DGV_SIGNAL_USERVAL
Specifies a data value is included in the dwUserParm field of the data structure
identified by IParam2. The data value associated with this request is reported back
with the Windows message.

MCI_DGV_SIGNAL_CANCEL
Removes the signal position specified by the value associated with the
MCI_DGV_SIGNAL_USERVAL flag.

MCI_DGV_SIGNAL_POSITION
Specifies that the device should send the position value with the Windows message
instead of the user-specified value.

LPMCI_DGV_SIGNAL_PARMS IParam2
Specifies a far pointer to the MCI_DGV_SIGNAL_PARMS structure.

MCI_STATUS

This message obtains information about an instance of an MCI device.

Parameters DWORD IParaml
The following flags apply to MCIAVI.DRV:

MCI_STATUS_ITEM
Specifies that the dwltem field of the data structure identified by IParam2 contains
a constant specifying which status item to obtain. MCIAVI.DRV supports the
following constants:

MCI_STATUS_LENGTH

MCIAVI.DRYV sets the dwReturn field to the media length. (It returns an error
for any track but 1.)

MCI_STATUS _MODE
MCIAVI.DRV sets the dwReturn field to the current mode of the device.

02/10/93

123

Error! Main Document Only.-10 Video for Windows Programmer's Guide

02/10/93

MCI_STATUS NUMBER_OF TRACKS
MCIAVI.DRYV sets the dwReturn field to 1.
MCI_STATUS_POSITION

MCIAVI.DRYV sets the dwReturn field to the position of the track.
(It returns an error for any track but 1.)

MCI_STATUS_READY

MCIAVI.DRYV sets the dwReturn field to TRUE if the device is ready to accept
another command.

MCI_STATUS_TIME_FORMAT
MCIAVI.DRV sets the dwReturn to the current time format.
MCI_DGV_STATUS_AUDIO

MCIAVI.DRYV sets the dwReturn field to MCI_ON or MCI_OFF, depending
on the most recent MCI_SET_AUDIO option for the MCI_SET command.

MCI_DGV_STATUS_FILEFORMAT

MCIAVI.DRYV returns the constant for AVI RIFF in the dwReturn field.
MCI_DGV_STATUS FORWARD

MCIAVI.DRYV sets the dwReturn field to TRUE.
MCI_DGV_STATUS_MEDIA_PRESENT

MCIAVI.DRYV sets the dwReturn field to TRUE.
MCI_DGV_STATUS_MONITOR

MCIAVI.DRYV sets the dwReturn field to MCI_DGVY_MONITOR_FILE.
MCI_DGV_STATUS_HPAL

MCIAVI.DRYV sets the dwReturn field to the current palette handle.
MCI_DGV_STATUS HWND

MCIAVI.DRYV sets the dwReturn field to the window handle.
MCI_DGV_STATUS_NOMINAL_RATE

MCIAVI.DRYV sets the dwReturn field to the nominal frame rate associated
with the file.

MCI_DGV_STATUS SIZE
MCIAVI.DRYV sets the dwReturn field to zero.
MCI_DGV_STATUS SEEK EXACTLY

MCIAVI.DRYV sets the dwReturn field to TRUE or FALSE indicating whether
or not seek exactly is set.

MCI_DGV_STATUS_SPEED

MCIAVI.DRYV sets the dwReturn field to the current playback speed.
MCI_DGV_STATUS_UNSAVED

MCIAVI.DRYV sets the dwReturn field to FALSE.

124

MCI Command Messages for MCIAVI Error! Main Document Only.-11

MCI_DGV_STATUS_VIDEO

MCIAVI.DRYV indicates whether the video is enabled or disabled in the
dwReturn field.

MCI_DGV_STATUS WINDOW _VISIBLE

MCIAVI.DRYV sets the dwReturn field to TRUE if the window is not hidden.
MCI_DGV_STATUS_WINDOW_MINIMIZED

MCIAVI.DRYV sets the dwReturn field to TRUE if the window is minimized.
MCI_DGV_STATUS WINDOW_MAXIMIZED

MCIAVI.DRYV sets the dwReturn field to TRUE if the window is maximized.

MCI_STATUS_START
Obtains the starting position of the media. To get the starting position, combine this
flag with MCI_STATUS_ITEM and set the dwltem field of the data structure,
identified by IParam2, to MCI_STATUS_POSITION.

MCI_DGV_STATUS_REFERENCE
The dwReference field returns the nearest previous keyframe.

LPMCI_DGV_STATUS_PARMS IParam?2
Specifies a far pointer to the MCI_DGV_STATUS_PARMS data structure.

MCI_STEP

This message steps the player one or more frames.

Parameters DWORD IParaml
The following flags apply to MCIAVI.DRV:

MCI_DGV_STEP_FRAMES
Indicates that the dwFrames field of the data structure identified by IParam2
specifies the number of frames to advance before displaying another image.

MCI_DGV_STEP_REVERSE
Steps in reverse.

LPMCI_DGV_STEP_PARMS IParam?2
Specifies a far pointer to the MCI_DGV_STEP_PARMS data structure.

MCI_STOP

This message stops all play sequences and ceases display of video images.

Parameters DWORD IParaml
Specifies the MCI_NOTIFY, MCI_WAIT, and MCI_TEST flags.

LPMCI_DGV_STOP_PARMS IParam?2
Specifies a far pointer to the MCI_DGV_STOP_PARMS data structure.

02/10/93

125

Error! Main Document Only.-12 Video for Windows Programmer's Guide

MCI_UPDATE

This message repaints the current frame into the specified display context.

Parameters DWORD IParaml
The following flags apply to MCIAVI.DRV:
MCI_UPDATE_HDC
Specifies that the hDC field of the data structure identified by IParam2 contains a
valid window of the display context to paint.
MCI_DGV_UPDATE_PAINT

An application uses this flag when it receives a WM_PAINT message that is
intended for a display DC. A frame-buffer device will usually paint the key color.
If the display device does not have a frame buffer, it might ignore the
MCI_UPDATE message when the MCI_DGV_UPDATE_PAINT flag is used,
because the display will be repainted during the playback operation.
LPMCI_DGV_UPDATE_PARMS IParam2
Specifies a far pointer to a MCI_DGV_UPDATE_PARMS data structure.

MCI_WHERE

This message returns the rectangular region that has been specified with the MCI_PUT
command.
Parameters DWORD IParaml
The following flags apply to MCIAVI.DRV:
MCI_DGV_WHERE_DESTINATION

Obtains a description of the rectangular region used to display video and images in
the client area of the current window.

MCI_DGV_WHERE_SOURCE

Obtains a description of the rectangular region (cropped from the frame buffer) that
is stretched to fit the destination rectangle on the display.

MCI_DGV_WHERE_MAX

When used with MCI_DGV_WHERE_DESTINATION or

MCI_DGV_WHERE_SOURCE, the rectangle returned indicates the maximum
width and height of the specified region.

MCI_DGV_WHERE_WINDOW
Obtains a description of the display window frame.

LPMCI_DGV_RECT_PARMS IParam2
Specifies a far pointer to a MCI_DGV_RECT_PARMS data structure.

02/10/93

126

MCI Command Messages for MCIAVI Error! Main Document Only.-13

MCIl_WINDOW

This message specifies the window and the window characteristics for graphic devices.

Parameters DWORD IParam1l
The following flags apply to MCIAVI.DRV:
MCI_DGV_WINDOW_HWND
Indicates that the handle of the window needed for use as the destination is
included in the hWnd field of the data structure identified by IParam2.
MCI_DGV_WINDOW_STATE
Indicates the nCmdShow field of the MCI_DGV_WINDOW_PARMS data
structure contains parameters for setting the window state.
MCI_DGV_WINDOW_TEXT

Indicates the IpstrText field of the MCI_DGV_WINDOW_PARMS data

structure contains a pointer to a buffer containing the caption used in the window
title bar.

LPMCI_DGV_WINDOW_PARMS IParam2
Specifies a far pointer to a MCI_DGV_WINDOW_PARMS data structure.

MM_MCISIGNAL

This messag is sent to a window to notify an application that an MCI device has reached a
position defined in a previous MCI_SIGNAL to the device.

Parameters WORD wParam
Contains the ID of the device initiating the signal message.

LONG IParam

Normally this contains the value passed in dwUserParm when the MCI_SIGNAL
message has defined this callback. Alternatively, it might contain the position value.

02/10/93

127

Error! Main Document Only.-14 Video for Windows Programmer's Guide

Data Structures for MCI Command Messages

The following data structures are used by the MCI command messages for
MCIAVI.DRV.

MCI_DGV_CUE_PARMS

Fields

The MCI_DGV_CUE_PARMS structure contains parameters used by the MCI_CUE
message for digital video devices. When assigning data to the fields in the following data
structure, set the corresponding MCI flags in the IParaml parameter of
mciSendCommand to validate each field:

typedef struct {
DWORD dwCallback;
DWORD dwTo;

} MCI_DGV_CUE_PARMS;

The MCI_DGV_CUE_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwTo
Specifies the cue position.

MCI_DGV_INFO_PARMS

Fields

02/10/93

The MCI_DGV_INFO_PARMS structure contains parameters used by the MCI_INFO
message for digital video devices. When assigning data to the fields in the following data
structure, set the corresponding MCI flags in the IParam1 parameter of
mciSendCommand to validate each field:

typedef struct {
DWORD dwCallback;
LPSTR IpstrReturn;
DWORD dwRetSize;

3} MCI_DGV_INFO_PARMS;

The MCI_DGV_INFO_PARMS structure has the following fields:
dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

IpstrReturn
Specifies a long pointer to a user-supplied buffer for the return string.

dwRetSize
Specifies the size in bytes of the buffer for the return string.

128

MCI Command Messages for MCIAVI Error! Main Document Only.-15
MCI_DGV_OPEN_PARMS

The MCI_DGV_OPEN_PARMS structure contains information used by MCI_OPEN
message for digital video devices. When assigning data to the fields in the following data
structure, set the corresponding MCI flags in the IParaml parameter of
mciSendCommand to validate each field:

typedef struct {
DWORD dwCal Iback;
WORD wDevicelD;
WORD wReservedO;
LPSTR IpstrDeviceType;
LPSTR IpstrElementName;
LPSTR IpstrAlias;
DWORD dwStyle;
WORD hWndParent;
WORD wReservedl;

} MCI_DGV_OPEN_PARMS;

Fields The MCI_DGV_OPEN_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

wDevicelD
Contains the device ID returned to user.

wReserved0
Reserved.

IpstrDeviceType

Specifies the name or constant ID of the device type.
IpstrElementName

Specifies the device-element name (usually a path).
IpstrAlias

Specifies an optional device alias.
dwStyle

Specifies the window style.
hWndParent

Specifies the handle to use as the window parent.

wReservedl
Reserved.

MCIl_DGV_PAUSE_PARMS

The MCI_DGV_PAUSE_PARMS structure contains information used by the
MCI_PAUSE command. When assigning data to the fields in the following data
structure, set the corresponding MCI flags in the IParaml parameter of
mciSendCommand to validate each field:

02/10/93

129

Error! Main Document Only.-16 Video for Windows Programmer's Guide

Fields

typedef struct {
DWORD dwCallback;
} MCI1_DGV_PAUSE_PARMS;

The MCI_DGV_PAUSE_PARMS structure has the following field:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

MCI_DGV_PLAY_ PARMS

Fields

The MCI_DGV_PLAY_PARMS structure contains parameters use by the MCI_PLAY
message for digital video devices. When assigning data to the fields in the following data
structure, set the corresponding MCI flags in the IParaml parameter of
mciSendCommand to validate each field:

typedef struct {
DWORD dwCallback;
DWORD dwFrom;
DWORD dwTo;

3} MCI_DGV_PLAY_PARMS;

The MCI_DGV_PLAY_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrom
Specifies the position to play from.

dwTo
Specifies the position to play to.

MCIl_DGV_PUT_PARMS

Fields

02/10/93

The MCI_DGV_PUT_PARMS structure contains parameters used by the MCI_PUT
message for digital video devices. When assigning data to the fields in the following data
structure, set the corresponding MCI flags in the IParaml parameter of
mciSendCommand to validate each field:

typedef struct {
DWORD dwCallback;
RECT rc;

3} MCI_DGV_PUT_PARMS;

The MCI_DGV_PUT_PARMS structure has the following fields:

dwcCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Specifies a rectangle.

130

MCI Command Messages for MCIAVI Error! Main Document Only.-17

MCI_DGV_SIGNAL_PARMS

Fields

The MCI_DGV_SIGNAL_PARMS structure contains parameters for the
MCI_SIGNAL message used by digital video devices. When assigning data to the fields
in this data structure, set the corresponding MCI flags in the IParaml parameter of
mciSendCommand to validate each field.

typedef struct {
DWORD dwCallback;
DWORD dwPosition;
DWORD dwPeriod;
DWORD dwUserParm;
} MCI_DGV_SIGNAL_PARMS;

The MCI_DGV_SIGNAL_PARMS structure has the following fields:
dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwPosition
Specifies the position to be marked.

dwPeriod
Specifies the interval of the position marks.

dwUserParm
Specifies a value associated with the signals being set.

MCI_DGV_RECT_PARMS

Fields

The MCI_DGV_RECT_PARMS structure contains parameters used by the
MCI_FREEZE, MCI_PUT, MCI_UNFREEZE, and MCI_WHERE messages for
digital video devices. When assigning data to the fields in the following data structure, set
the corresponding MCI flags in the IParam1 parameter of mciSendCommand to validate
each field:

typedef struct {
DWORD dwCal lback;
RECT rc;

} MCI_DGV_RECT_PARMS;

The MCI_DGV_RECT_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Specifies a rectangle.

02/10/93

131

Error! Main Document Only.-18 Video for Windows Programmer's Guide

MCI_DGV_SET_PARMS

Fields

The MCI_DGV_SET_PARMS structure contains parameters used by the MCI_SET
message for digital video devices. When assigning data to the fields in the following data
structure, set the corresponding MCI flags in the IParaml parameter of
mciSendCommand to validate each field:

typedef struct {
DWORD dwCallback;
DWORD dwTimeFormat;
DWORD dwAudio;
DWORD dwFileFormat;
DWORD dwSpeed;

} MCI1_DGV_SET_PARMS;

The MCI_DGV_SET_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwTimeFormat
Specifies the time format used by the device.

dwAudio
Specifies the channel used for audio output.

dwFileFormat
Specifies the file format.

dwSpeed
Specifies the playback speed.

MCIl_DGV_SETAUDIO_PARMS

Fields

02/10/93

The MCI_DGV_SETAUDIO_PARMS structure contains parameters used by the
MCI_SETAUDIO message for digital video devices. When assigning data to the fields in
the following data structure, set the corresponding MCI flags in the IParaml parameter of
mciSendCommand to validate each field:

typedef struct {
DWORD dwCallback;
DWORD dwltem;
DWORD dwValue;
DWORD dwOver;
LPSTR IpstrAlgorithm;
LPSTR IpstrQuality;

} MCI_DGV_SETAUDIO_PARMS;

The MCI_DGV_SETAUDIO_PARMS structure has the following fields:

dwcCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

132

MCI Command Messages for MCIAVI Error! Main Document Only.-19

dwltem
Specifies the constant indicating the target adjustment.

dwValue
Specifies the adjustment level.

dwOver
Specifies the transition-length parameter.

IpstrAlgorithm
Specifies a long pointer to a null-terminated string containing the name of the audio-
compression algorithm.

IpstrQuality
Specifies a long pointer to a null-terminated string containing a descriptor of the
audio-compression algorithm.

MCI_DGV_SETVIDEO_PARMS

Fields

The MCI_DGV_SETVIDEO_PARMS structure contains parameters used by the
MCI_SETVIDEO message for digital video devices. When assigning data to the fields in
the following data structure, set the corresponding MCI flags in the IParaml parameter of
mciSendCommand to validate each field:

typedef struct {
DWORD dwCallback;
DWORD dwltem;
DWORD dwvalue;
DWORD dwOver;
LPSTR IpstrQuality;
LPSTR IpstrAlgorithm;
DWORD dwSourceNumber;
} MCI_DGV_SETVIDEO_PARMS;

The MCI_DGV_SETVIDEO_PARMS structure has the following fields:
dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwltem
Specifies the constant indicating the target adjustment.

dwValue

Specifies the adjustment level.
dwOver

Specifies the transition-length parameter.
IpstrQuality

Specifies a long pointer to a null-terminated string containing a descriptor of the
video-compression algorithm.

IpstrAlgorithm

Specifies a long pointer to a null-terminated string containing the name of the video-
compression algorithm.

02/10/93

133

Error! Main Document Only.-20 Video for Windows Programmer's Guide

dwSourceNumber
Specifies the index of input source.

MCI_DGV_STATUS PARMS

Fields

The MCI_DGV_STATUS_PARMS structure contains parameters used by the
MCI_STATUS message for digital video devices. When assigning data to the fields in
the following data structure, set the corresponding MCI flags in the IParaml parameter of
mciSendCommand to validate each field:

typedef struct {
DWORD dwCallback;
DWORD dwReturn;
DWORD dwltem;
DWORD dwTrack;
LPSTR IpstrDrive;
DWORD dwReference;

3} MCI_DGV_STATUS_PARMS;

The MCI_DGV_STATUS_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwReturn
Contains the return information on exit.

dwltem
Identifies the capability being queried.

dwTrack
Specifies the length or number of tracks.

IpstrDrive
Specifies the approximate amount of disk space that can be obtained by a
MCI_RESERVE command.

dwReference
Specifies the approximate location of nearest, previous intraframe-encoded image.

MCI_DGV_STEP_PARMS

02/10/93

The MCI_DGV_STEP_PARMS structure contains parameters used by the MCI_STEP
message for digital video devices. When assigning data the fields in the following data
structure, set the corresponding MCI flags in the IParaml parameter of
mciSendCommand to validate each field:

typedef struct {
DWORD dwCallback;
DWORD dwFrames;

3} MCI_DGV_STEP_PARMS;

134

MCI Command Messages for MCIAVI Error! Main Document Only.-21

Fields

The MCI_DGV_STEP_PARMS structure has the following fields:
dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrames
Specifies the number of frames to step.

MCI_DGV_STOP_PARMS

Fields

The MCI_DGV_STOP_PARMS structure contains the information used by
MCI_STOP command message for digital video devices. When assigning data to the
fields in the following data structure, set the corresponding MCI flags in the IParam1
parameter of mciSendCommand to validate each field:

typedef struct {
DWORD dwCal lback;
} MCI_DGV_STOP_PARMS;

The MCI_DGV_STOP_PARMS structure has the following field:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

MCI_DGV_UPDATE_PARMS

Fields

The MCI_DGV_UPDATE_PARMS structure contains parameters used by the
MCI_UPDATE message. When assigning data to the fields in the following data
structure, set the corresponding MCI flags in the IParaml parameter of
mciSendCommand to validate each field:

typedef struct {
DWORD dwCal lback;
RECT rc;
HDC hDC;
WORD wReservedO;
} MCI_DGV_UPDATE_PARMS;

The MCI_DGV_UPDATE_PARMS structure has the following fields:
dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Specifies a rectangle.

hDC
Specifies a handle to a display context.

wReserved0
Reserved.

02/10/93

135

Error! Main Document Only.-22 Video for Windows Programmer's Guide

MCIl_DGV_WINDOW _PARMS

Fields

The MCI_DGV_WINDOW_PARMS structure contains parameters used by the
MCI_WINDOW message for digital video devices. When assigning data to the fields in
the following data structure, set the corresponding MCI flags in the IParaml parameter of
mciSendCommand to validate each field:

typedef struct {
DWORD dwCallback;
WORD hWnd;
WORD wReservedl;
WORD nCmdShow;
WORD wReserved2;
LPSTR IpstrText;

3} MCI_DGV_WINDOW_PARMS;

The MCI_DGV_WINDOW_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

hwnd

Specifies a handle to the display window.
wReservedl

Reserved.
nCmdShow

Specifies how the window is displayed.
wReserved?

Reserved.

IpstrText
Specifies a long pointer to a null-terminated string containing the window caption.

MCl_GENERIC_PARMS

Fields

02/10/93

The MCI_GENERIC_PARMS structure contains the information used by MCI
command messages that have empty parameter lists. When assigning data to the fields in
the following data structure, set the corresponding MCI flags in the IParaml parameter of
mciSendCommand to validate each field:

typedef struct {
DWORD dwCallback;
} MCI_GENERIC_PARMS;

The MCI_GENERIC_PARMS structure has the following field:

dwcCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

136

MCI Command Messages for MCIAVI Error! Main Document Only.-23

MCI_GETDEVCAPS_PARMS

Fields

The MCI_GETDEVCAPS_PARMS structure contains parameters for the
MCI_GETDEVCAPS message. When assigning data to the fields in the following data
structure, set the corresponding MCI flags in the IParaml parameter of
mciSendCommand to validate each field:

typedef struct {
DWORD dwCallback;
DWORD dwReturn;
DWORD dwltem;

} MCI_GETDEVCAPS_PARMS;

The MCI_GETDEVCAPS_PARMS structure has the following fields:
dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwReturn
Contains the return information on exit.

dwltem
Identifies the capability being queried.

MCl_SEEK_PARMS

Fields

The MCI_SEEK_PARMS structure contains parameters used by the MCI_SEEK
message. When assigning data to the fields in the following data structure, set the
corresponding MCI flags in the IParam1 parameter of mciSendCommand to validate
each field:

typedef struct {
DWORD dwCallback;
DWORD dwTo;

} MCI_SEEK_PARMS;

The MCI_SEEK_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwTo
Specifies the seek position.

02/10/93

137

CHAPTER 9

Video Capture Application
Reference

This section is an alphabetic reference to the functions and data structures provided by
Video for Windows for use by video capture applications. There are separate sections for
functions, messages, and data structures. The messages and data structures are defined in
MSVIDEO.H.

Extensions are being added to the video capture functions to make it easier for
applications to access video capture drivers. If your application needs video capture
services, it should use the extensions rather than these functions. If you are developing
video capture device drivers, you might use these functions for testing your drivers.

If you need information on the video capture extensions to develop your application, you
can request the latest information from the following group:

Microsoft Corporation
Multimedia Systems Group
Product Marketing

One Microsoft Way
Redmond, WA 98052-6399

FAX: (206) 93MSFAX

Video Capture Function Reference

This section contains a listing of the functions used by video capture applications. The
function definition is given, followed by a description of each parameter.

Video Capture Function Summary

The following function operates on a single frame:

videoFrame
This function transfers a single frame from or to a video device channel.

138

Error! Main Document Only.-2 Video for Windows Programmer's Guide

The following functions are used to open, close, and communicate with a video capture
device:

videoClose
This function closes the specified video device channel.

videoGetErrorText
This function retrieves a description of the error identified by the error number.

videoMessage
This function sends messages to a video device channel.

videoOpen
This function opens a channel on the specified video device.

The following functions control the configuration of a video capture device:

videoConfigure
This function sets or retrieves a configurable driver option.

videoConfigureStorage
This function saves or loads all configurable options for a channel.

videoDialog
This function displays a channel specific dialog box used to set configuration
parameters.

videoGetChannelCaps
This function retrieves a description of the capabilities of a channel.

videoGetNumbDevs
This function returns the number of MSVIDEO devices installed.

videoUpdate
This function directs a channel to repaint the display.

The following functions control video capture streaming:

videoStreamAddBuffer
This function sends a buffer to a video device channel.

videoStreamFini
This function terminates streaming from the specified device channel.

videoStreamGetError
This function returns the most recent error encountered.

videoStreamGetPosition
This function retrieves the current position of the specified video device channel.

videoStreamlInit
This function initializes a video device channel for streaming.

videoStreamPrepareHeader
This function prepares a buffer for video streaming.

02/10/93

139

Video Capture Application Reference Error! Main Document Only.-3

videoStreamReset
This function stops streaming on the specified video device channel, returns all video
buffers from the driver, and resets the current position to zero.

videoStreamStart
This function starts streaming on the specified video device channel.

videoStreamStop
This function stops streaming on a video channel.

videoStreamUnprepareHeader
This function cleans up the preparation performed by videoStreamPrepareHeader.

Video Capture Function Alphabetic Reference

videoClose

Syntax

Parameters

Return Value

DWORD videoClose(hVideo)
This function closes the specified video device channel.

HVIDEO hVideo
Specifies a handle to the video device channel. If the function is successful, the handle
will be invalid after this call.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:

DV_ERR_INVALHANDLE
Specified device handle is invalid.

DV_ERR_NONSPECIFIC
The driver failed to close the channel.

Comments If buffers have been sent with videoStreamAddBuffer and they haven’t been returned to
the application, the close operation fails. You can use videoStreamReset to mark all
pending buffers as done.

See Also videoOpen, videoStreamlInit, videoStreamFini, videoStreamReset

videoConfigure

Syntax DWORD videoConfigure(hVideo, msg, dwFlags, IpdwReturn,

IpDatal, dwSizel, IpData2,
This function sets or retrieves a configurable driver option.

Parameters HVIDEO hVideo

Specifies a handle to the video device channel.

UINT msg
Specifies the option to set or retrieve.

02/10/93

140

Error! Main Document Only.-4 Video for Windows Programmer's Guide

DVM_PALETTE
Indicates a palette is being sent to the driver or retrieved from the driver.

DVM_PALETTERGB555
Indicates an RGB555 palette is being sent to the driver.

DVM_FORMAT
Indicates format information is being sent to the driver or retrieved from the driver.

DWORD dwFlags
Specifies flags for configuring or interrogating the device driver. The following flags
are defined:

VIDEO_CONFIGURE_SET
Indicates values are being sent to the driver.

VIDEO_CONFIGURE_GET
Indicates values are being obtainded from the driver.

VIDEO_CONFIGURE_QUERY
This flag is used to determine if the driver supports the option specified by msg.
This flag should be combined with either the VIDEO_CONFIGURE_SET or
VIDEO_CONFIGURE_GET flag. If this flag is set, the IpDatal, dwSizel, IpData2,
and dwsSize2 parameters are ignored.
VIDEO_CONFIGURE_QUERYSIZE
Returns the size, in bytes, of the configuration option in IpdwReturn. This flag is
only valid if the VIDEO_CONFIGURE_GET flag is also set.
VIDEO_CONFIGURE_CURRENT
Requests the current value. This flag is only valid if the
VIDEO_CONFIGURE_GET flag is also set.

VIDEO_CONFIGURE_NOMINAL
Requests the nominal value. This flag is only valid if the
VIDEO_CONFIGURE_GET flag is also set.

VIDEO_CONFIGURE_MIN
Requests the minimum value. This flag is only valid if the
VIDEO_CONFIGURE_GET flag is also set.

VIDEO_CONFIGURE_MAX
Get the maximum value. This flag is only valid if the VIDEO_CONFIGURE_GET
flag is also set.

LPDWORD IpdwReturn
Points to a DWORD used for returning information from the driver. If the
VIDEO_CONFIGURE_QUERYSIZE flag is set, IpdwReturn is filled with the size of
the configuration option.

LPVOID IpDatal

Specifies a pointer to message specific data.
DWORD dwSizel

Specifies the size of the IpDatal buffer in bytes.

LPVOID IpData2
Specifies a pointer to message specific data.

02/10/93

141

Video Capture Application Reference Error! Main Document Only.-5

Return Value

See Also

DWORD dwsSize2
Size of the IpData2 buffer in bytes.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:
DV_ERR_INVALHANDLE

Specified device handle is invalid.

DV_ERR_NOTSUPPORTED
Function is not supported.

videoOpen, videoMessage

videoConfigureStorage

Syntax

Parameters

Return Value

DWORD videoConfigureStorage(hVideo, Ipstrident, dwFlags)

This function saves or loads all configurable options for a channel. Options can be saved
and recalled for each application or each application instance.

HVIDEO hVideo
Specifies a handle to the video device channel.

LPSTR Ipstrident
Identifies the application or instance. Use an arbitrary string which uniquely identifies
your application or instance.

DWORD dwFlags
Specifies flags for the storage. The following flags are defined:

VIDEO_CONFIGURE_GET
Requests that the values be loaded.

VIDEO_CONFIGURE_SET
Requests that the values be saved.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:

DV_ERR_INVALHANDLE
Specified device handle is invalid.

DV_ERR_NOTSUPPORTED
Function is not supported.

Comments The method used by a driver to save configuration options is device dependent.
See Also videoOpen

videoDialog

Syntax DWORD videoDialog(hVideo, hWndParent, dwFlags)

This function displays a channel-specific dialog box used to set configuration parameters.

02/10/93

142

Error! Main Document Only.-6 Video for Windows Programmer's Guide

Parameters

Return Value

HVIDEO hVideo
Specifies a handle to the video device channel.

HWND hwWndParent
Specifies the parent window handle.

DWORD dwFlags
Specifies flags for the dialog box. The following flag is defined:

VIDEO _DLG_QUERY
If this flag is set, the driver immediately returns zero if it supplies a dialog box for
the channel, or DV_ERR_NOTSUPPORTED if it does not.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:

DV_ERR_INVALHANDLE
Specified device handle is invalid.

DV_ERR_NOTSUPPORTED
Function is not supported.

Comments Typically, each dialog box displayed by this function lets the user select options
appropriate for the channel. For example, a VIDEO_IN channel dialog box lets the user
select the image dimensions and bit depth.

See Also videoOpen, videoConfigureStorage

videoFrame

Syntax DWORD videoFrame(hVideo, IpVHdr)

This function transfers a single frame from or to a video device channel.

Parameters HVIDEO hVideo

Return Value

Comments

See Also

02/10/93

Specifies a handle to the video device channel. The channel must be of type
VIDEO_IN or VIDEO_OUT.

LPVIDEOHDR IpVHdr
Specifies a far pointer to an VIDEOHDR structure.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following error is defined:
DV_ERR_INVALHANDLE

Specified device handle is invalid.

Use this function with a VIDEO_IN channel to transfer a single image from the frame
buffer. Use this function with a VIDEO_OUT channel to transfer a single image to the
frame buffer.

To determine the size of the buffer needed for capturing data, use videoConfigure. Set
the size of the buffer in the dwBufferLength field of the VIDEOHDR structure. If the
buffer size is not large enough, the function can fail.

videoOpen

143

Video Capture Application Reference Error! Main Document Only.-7

videoGetChannelCaps

Syntax DWORD videoGetChannelCaps(hVideo, IpChannelCaps, dwSize)

This function retrieves a description of the capabilities of a channel.

Parameters HVIDEO hVideo
Specifies a handle to the video device channel.

LPCHANNEL_CAPS IpChannelCaps

Specifies a far pointer to a CHANNEL_CAPS structure.
DWORD dwSize

Specifies the size of the CHANNEL_CAPS structure.

Return Value Returns zero if the function was successful. Otherwise, it returns an error number. The
following error is defined:

DV_ERR_UNSUPPORTED
Function is not supported.

Comments The channel capabilities structure returns the capability information. For example,
capability information might include whether or not the channel can crop and scale
images.

videoGetErrorText

Syntax DWORD videoGetErrorText(hVideo, wError, IpText, wSize)

This function retrieves a description of the error identified by the error number.

Parameters HVIDEO hVideo
Specifies a handle to the video device channel. This might be NULL if the error is not
device specific.
UINT wError
Specifies the error number.

LPSTR IpText
Specifies a far pointer to a buffer which is filled with a null-terminated string
corresponding to the error number.

UINT wSize
Specifies the length of the buffer pointed to by IpText.
Return Value Returns zero if the function was successful. Otherwise, it returns an error number. The

following error is defined:

DV_ERR_BADERRNUM
Specified error number is out of range.

Comments If the error description is longer than the buffer, the description is truncated. The returned
error string is always null-terminated. If wSize is zero, nothing is copied and the function
returns zero.

02/10/93

144

Error! Main Document Only.-8 Video for Windows Programmer's Guide

videoGetNumDevs

Syntax

Parameters

Return Value

DWORD videoGetNumDevs()
This function returns the number of MSVIDEO devices installed.
None

Returns the number of MSVIDEO devices listed in the [drivers] section of the
SYSTEM.INI file.

See Also videoOpen

videoMessage

Syntax DWORD videoMessage(hVideo, wMsg, dwP1, dwP2)
This function sends a message to a video device channel.

Parameters HVIDEO hVideo

Return Value

Specifies the handle to the device.

UINT wMsg
Specifies the message to send.

DWORD dwP1
Specifies the first parameter for the message.

DWORD dwP2
Specifies the second parameter for the message.

Returns the message specific value returned from the driver.

Comments This function is used for configuration messages such as DVM_SRC_RECT and
DVM_DST_RECT and device specific messages.
See Also videoConfigure
videoOpen
Syntax DWORD videoOpen(Iphvideo, dwDevicelD, dwFlags)
This function opens a channel on the specified video device.
Parameters LPHVIDEO Iphvideo
Specifies a far pointer to a HVIDEO handle. The video capture driver uses this
location to return a handle that uniquely identifies the opened video device channel.
Use this handle to identify the device channel when calling other video functions.
DWORD dwDevicelD
Identifies the video device to open. The value of dwDevicelD varies from zero to one
less than the number of video capture devices installed in the system.
02/10/93

145

Video Capture Application Reference Error! Main Document Only.-9

Return Value

Comments

See Also

DWORD dwFlags
Specifies flags for opening the device. The following flags are defined:

VIDEO_EXTERNALIN
Specifies the channel is opened for external input. Typically, external input
channels capture images into a frame buffer.
VIDEO_EXTERNALOUT
Specifies the channel is opened for external output. Typically, external output
channels display images stored in a frame buffer on an auxiliary monitor or
overlay.
VIDEO_IN
Specifies the channel is opened for video input. Video input channels transfer
images from a frame buffer to system memory buffers.
VIDEO_OUT
Specifies the channel is opened for video output. Video output channels transfer
images from system memory buffers to a frame buffer.
Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:

DV_ERR_BADDEVICEID
Specified device ID is out of range.

DV_ERR_ALLOCATED
Specified resource is already allocated.

DV_ERR_NOMEM
Unable to allocate or lock memory.

At a minimum, all capture drivers support a VIDEO_EXTERNALIN and a VIDEO_IN
channel. Use videoGetNumDevs to determine the number of video devices present in the
system.

videoClose, videoGetNumDevs

videoStreamAddBuffer

Syntax

Parameters

Return Value

DWORD videoStreamAddBuffer(hVideo, IpvideoHdr, dwSize)

This function sends a buffer to a video device channel. After the buffer is filled by the
device, the device sends it back to the application.

HVIDEO hVideo
Specifies a handle to the video device channel.

LPVIDEOHDR IpvideoHdr
Specifies a far pointer to a VIDEOHDR structure that identifies the buffer.

DWORD dwsSize
Specifies the size of the VIDEOHDR structure.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:

02/10/93

146

Error! Main Document Only.-10 Video for Windows Programmer's Guide

DV_ERR_INVALHANDLE
The device handle specified is invalid.

DV_ERR_UNPREPARED
The IpvideoHdr structure hasn’t been prepared.

Comments The data buffer must be prepared with videoStreamPrepareHeader before it is passed to
videoStreamAddBuffer. The VIDEOHDR data structure and the data buffer pointed to
by its IpData field must be allocated with GlobalAlloc using the GMEM_MOVEABLE
and GMEM_SHARE flags, and locked with GloballLock.

To determine the size of the buffer needed for capturing data, use videoConfigure. Set
the size of the buffer in the dwBufferLength field of the VIDEOHDR structure. If the
buffer size is not large enough, the driver might return DV_ERR_NONSPECIFIC.

See Also videoStreamPrepareHeader

videoStreamFini

Syntax DWORD videoStreamFini(hVideo)

This function terminates streaming from the specified device channel.

Parameters HVIDEO hVideo

Return Value

Comments

See Also

Specifies a handle to the video device channel.
Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:
DV_ERR_INVALHANDLE

The device handle specified is invalid.

DV_ERR_STILLPLAYING
There are still buffers in the queue.

If there are buffers that have been sent with videoStreamAddBuffer that haven’t been
returned to the application, this operation will fail. Use videoStreamReset to mark all
pending buffers as done.

Each call to videoStreamlInit must be matched with a call to videoStreamFini.

For VIDEO_EXTERNALIN channels, this function is used to halt capturing of data to
the frame buffer.

For VIDEO_EXTERNALOUT channels that support overlay, this function is used to
disable the overlay.

videoStreamlInit

videoStreamGetError

Syntax

02/10/93

DWORD videoStreamGetError(hVideo, IpdwErrorID, IpdwErrorValue)

This function returns the error most recently encountered.

147

Video Capture Application Reference Error! Main Document Only.-11

Parameters

Return Value

Comments

See Also

HVIDEO hVideo
Specifies a handle to the video device channel.

LPDWORD IpdwErrorID
Specifies a far pointer to the DWORD to be filled with the error ID.

LPDWORD lpdwErrorValue
Specifies a far pointer to the DWORD to be filled with the number of frames skipped.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following error is defined:

DV_ERR_INVALHANDLE
The device handle specified is invalid.

While streaming video data, a capture driver can fill buffers faster than the client
application can save the buffers to disk. In this case, the DV_ERR_NO_BUFFERS error
is returned in IpdwErrorID and IpdwErrorValue contains a count of the number of frames
missed. After receiving this message and returning the error status, the driver should reset
its internal error flag to DV_ERR_OK and the count of missed frames to zero.

Applications should send this message frequently during capture since some drivers
which do not have access to interrupts use this message to trigger buffer processing.

videoOpen

videoStreamGetPosition

Syntax

Parameters

Return Value

Comments

DWORD videoStreamGetPosition(hVideo, IpInfo, dwSize)
This function retrieves the current position of the specified video device channel.

HVIDEO hVideo
Specifies a handle to the video device channel.

LPMMTIME Iplnfo
Specifies a far pointer to an MMTIME structure.

DWORD dwsSize
Specifies the size of the MMTIME structure.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following error is defined:
DV_ERR_INVALHANDLE

Specified device handle is invalid.

Before using videoStreamGetPosition, set the wType field of the MMTIME structure to
indicate the time format you desire. After videoStreamGetPosition returns, check the
wType field to determine if the your time format is supported. If not, wType will specify
an alternate format. Video capture drivers typically provide the milliseconds time format.

The position is set to zero when streaming is started with videoStreamStart.

02/10/93

148

Error! Main Document Only.-12 Video for Windows Programmer's Guide

videoStreaminit

Syntax

Parameters

Return Value

Comments

Callback

02/10/93

DWORD videoStreamlInit(hVideo, dwMicroSecPerFrame, dwCallback,
dwCallbackinstance, dwFlags)

This function initializes a video device channel for streaming.

HVIDEO hVideo
Specifies a handle to the video device channel.

DWORD dwMicroSecPerFrame
Specifies the number of microseconds between frames.

DWORD dwCallback
Specifies the address of a callback function or a handle to a window called during
video streaming. The callback function or window processes messages related to the
progress of streaming.

DWORD dwcCallbacklInstance
Specifies user instance data passed to the callback function. This parameter is not used
with window callbacks.

DWORD dwFlags
Specifies flags for opening the device channel. The following flags are defined:

CALLBACK WINDOW
If this flag is specified, dwCallback is a window handle.

CALLBACK_FUNCTION
If this flag is specified, dwCallback is a callback procedure address.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:

DV_ERR_BADDEVICEID
The device ID specified in hVideo is not valid.

DV_ERR_ALLOCATED
The resource specified is already allocated.

DV_ERR_NOMEM
Unable to allocate or lock memory.

If a window is chosen to receive callback information, the following messages are sent to
the window procedure function to indicate the progress of video input:
MM_DRVM_OPEN at the time of videoStreamInit, MM_DRVM_CLOSE at the time
of videoStreamFini, MM_DRVM_DATA when a buffer of image data is available,
MM_DRVM_ERROR when an error occurs.

If a function is chosen to receive callback information, the following messages are sent to
the function to indicate the progress of video input: MM_DRVM_OPEN,
MM_DRVM_CLOSE, MM_DRVM_DATA, MM_DRVM_ERROR. The callback
function must reside in a DLL. You do not have to use MakeProclnstance to get a
procedure-instance address for the callback function.

void CALLBACK videoFunc(hVideo, wMsg, dwlinstance, dwParaml, dwParamz2)

149

Video Capture Application Reference Error! Main Document Only.-13

Callback
Parameters

Callback
Comments

See Also

videoFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the DLL’s module-
definition file.

HVIDEO hVideo
Specifies a handle to the video device channel associated with the callback.

DWORD wMsg
Specifies the MM_DRVM _ message.

DWORD dwlnstance
Specifies the user instance data specified with videoOpen.

DWORD dwParaml
Specifies a parameter for the message.

DWORD dwParam2
Specifies a parameter for the message.

Because the callback is accessed at interrupt time, it must reside in a DLL and its code
segment must be specified as FIXED in the module-definition file for the DLL. Any data
that the callback accesses must be in a FIXED data segment as well. The callback may not
make any system calls except for PostMessage, timeGetSystemTime, timeGetTime,
timeSetEvent, timeKillEvent, midiOutShortMsg, midiOutLongMsg, and
OutputDebugStr.

For VIDEO_EXTERNALIN channels, this function is used to initiate capturing of data
to the frame buffer.

For VIDEO_EXTERNALOUT channels which support overlay, this function is used to
enable the overlay.

videoOpen, videoStreamFini, videoClose

videoStreamPrepareHeader

Syntax

Parameters

DWORD videoStreamPrepareHeader(hVideo, IpvideoHdr, dwSize)
This function prepares a buffer for video streaming.

HVIDEO hVideo
Specifies a handle to the video device channel.

LPVIDEOHDR IpvideoHdr
Specifies a pointer to a VIDEOHDR structure that identifies the buffer to be prepared.

DWORD dwsSize
Specifies the size of the VIDEOHDR structure.

02/10/93

150

Error! Main Document Only.-14 Video for Windows Programmer's Guide

Return Value

Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:

DV_ERR_INVALHANDLE
Specified device handle is invalid.

DV_ERR_NOMEM
Unable to allocate or lock memory.

Comments Use this function after videoStreamInit or after videoStreamReset to prepare the data
buffers for streaming data.
The VIDEOHDR data structure and the data block pointed to by its IpData field must be
allocated with GlobalAlloc using the GMEM_MOVEABLE and GMEM_SHARE flags,
and locked with GlobalLock. Preparing a header that has already been prepared will have
no effect and the function will return zero. Typically, this function is used to insure that
the buffer will be available for use at interrupt time.

See Also videoStreamUnprepareHeader

videoStreamReset

Syntax DWORD videoStreamReset(hVideo)
This function stops streaming on the specified video device channel and resets the current
position to zero. All pending buffers are marked as done and are returned to the
application.

Parameters HVIDEO hVideo

Return Value

Specifies a handle to the video device channel.
Returns zero if the function was successful. Otherwise, it returns an error number. The
following error is defined:

DV_ERR_INVALHANDLE
The device handle specified is invalid.

See Also videoStreamReset, videoStreamStop, videoStreamAddBuffer, videoStreamClose
videoStreamStart
Syntax DWORD videoStreamStart(hVideo)
This function starts streaming on the specified video device channel.
Parameters HVIDEO hVideo
Specifies a handle to the video device channel.
02/10/93

151

Video Capture Application Reference Error! Main Document Only.-15

Return Value

Returns zero if the function was successful. Otherwise, it returns an error number. The
following error is defined:

DV_ERR_INVALHANDLE
The device handle specified is invalid.

See Also videoStreamReset, videoStreamStop, videoStreamAddBuffer, videoStreamClose
videoStreamStop
Syntax DWORD videoStreamStop(hVideo)
This function stops streaming on a video channel.
Parameters HVIDEO hVideo

Return Value

Comments

See Also

Specifies a handle to the video device channel.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following error is defined:

DV_ERR_INVALHANDLE
Specified device handle is invalid.

If there are any buffers in the queue, the current buffer will be marked as done (the
dwBytesRecorded field in the VIDEOHDR header will contain the actual length of
data), but any empty buffers in the queue will remain there. Calling this function when the
channel is not started has no effect, and the function returns zero.

videoStreamStart, videoStreamReset

videoStreamUnprepareHeader

Syntax

Parameters

Return Value

DWORD videoStreamUnprepareHeader(hVideo, IpvideoHdr, dwSize)
This function cleans up the preparation performed by videoStreamPrepareHeader.

HVIDEO hVideo
Specifies a handle to the video device channel.

LPVIDEOHDR IpvideoHdr
Specifies a pointer to a VIDEOHDR structure identifying the data buffer to be
cleaned up.

DWORD dwsSize
Specifies the size of the VIDEOHDR structure.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:

DV_ERR_INVALHANDLE
The device handle specified is invalid.

DV_ERR_STILLPLAYING
The structure identified by IpvideoHdr is still in the queue.

02/10/93

152

Error! Main Document Only.-16 Video for Windows Programmer's Guide

Comments

See Also

This function is the complementary function to videoStreamPrepareHeader. You must
call this function before freeing the data buffer with GlobalFree. After passing a buffer to
the device driver with videoStreamAddBuffer, you must wait until the driver is finished
with the buffer before calling videoStreamUnprepareHeader. Unpreparing a buffer that
has not been prepared has no effect, and the function returns zero.

videoStreamPrepareHeader

videoUpdate

Syntax

Parameters

Return Value

Comments

DWORD videoUpdate(hVideo, hwnd, hDC)

This function directs a channel to repaint the display. It applies only to
VIDEO_EXTERNALOUT channels.

HVIDEO hVideo
Specifies a handle to the video device channel.

HWND hwnd

Specifies the handle of the window to be used by the channel for image display.
HDC hDC

Specifies a handle to a device context.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following error is defined:

DV_ERR_UNSUPPORTED
Specified message is unsupported.

This message is normally sent whenever the client window receives a WM_MOVE,
WM_SIZE, or WM_PAINT message.

Video Capture Data Structure Reference

This section lists data structures used by video capture applications. The data structures
are presented in alphabetical order. The structure definition is given, followed by a
description of each field.

Video Capture Data Structure Alphabetic Reference

CHANNEL_CAPS

02/10/93

The CHANNEL_CAPS structure is used with videoGetChannelCaps to return the
capabilities of a channel to an application.

153

Video Capture Application Reference Error! Main Document Only.-17

Fields

typedef struct channel_caps_tag {
DWORD dwFlags;
DWORD dwSrcRectXMod;
DWORD dwSrcRectYMod;
DWORD dwSrcRectWidthMod;
DWORD dwSrcRectHeightMod;
DWORD dwDstRectXMod;
DWORD dwDstRectYMod;
DWORD dwDstRectWidthMod;
DWORD dwDstRectHeightMod;

} CHANNEL_CAPS;

The CHANNEL _CAPS structure has the following fields:

dwFlags
Returns flags giving information about the channel. The following flags are defined:
VCAPS_OVERLAY

Indicates the channel is capable of overlay. This flag is used only for
VIDEO_EXTERNALOUT channels.

VCAPS_SRC_CAN_CLIP
Indicates that the source rectangle can be set smaller than the maximum
dimensions.

VCAPS_DST_CAN_CLIP
Indicates that the destination rectangle can be set smaller than the maximum
dimensions.

VCAPS_CAN_SCALE
Indicates that the source rectangle can be a different size than the destination
rectangle.
dwSrcRectXMod
Returns the granularity allowed when positioning the source rectangle in the horizontal
direction.
dwSrcRectYMod
Returns the granularity allowed when positioning the source rectangle in the vertical
direction.
dwSrcRectWidthMod
Returns the granularity allowed when setting the width of the source rectangle.
dwSrcRectHeightMod
Returns the granularity allowed when setting the height of the source rectangle.
dwDstRectXMod
Returns the granularity allowed when positioning the destination rectangle in the
horizontal direction.
dwDstRectYMod
Returns the granularity allowed when positioning the destination rectangle in the
vertical direction.
dwDstRectWidthMod
Returns the granularity allowed when setting the width of the destination rectangle.

02/10/93

154

Error! Main Document Only.-18 Video for Windows Programmer's Guide

Comments

dwDstRectHeightMod
Returns the granularity allowed when setting the height of the source rectangle.

Some channels can only use source and destination rectangles which fall on 2, 4, or 8
pixel boundaries. Similarly, some channels only accept capture rectangles widths and
heights that are multiples of a fixed value. Rectangle dimensions indicated by modulus
operators are considered advisory. When requesting a particular rectangle, the application
must always check the return value to insure the request was accepted by the driver. For
example, if dwDstRectWidthMod is set to 64, the application might try to set destination
rectangles with widths of 64, 128, 192, 256, ..., and 640 pixels. The driver might actually
support a subset of these sizes and indicates the supported sizes with the return value of
the DVM_DST_RECT message. If a channel supports arbitrarily positioned rectangles,
with arbitrary sizes, the values above should all be set to 1.

VIDEOHDR

02/10/93

The VIDEOHDR structure defines the header used to identify a video data buffer.

typedef struct videohdr_tag {
LPSTR IpData;
DWORD dwBufferLength;
DWORD dwBytesUsed;
DWORD dwTimeCaptured;
DWORD dwUser;
DWORD dwFlags;
DWORD dwReserved[4];

} VIDEOHDR;

The VIDEOHDR structure has the following fields:

IpData
Specifies a far pointer to the video data buffer.

dwBufferLength
Specifies the length of the data buffer.

dwBytesUsed
Specifies the number of bytes used in the data buffer.

dwTimeCaptured
Specifies the time (in milliseconds) when the frame was captured relative to the first
frame in the stream.

dwUser
Specifies 32 bits of user data.

dwFlags
Specifies flags giving information about the data buffer. The following flags are
defined for this field:

VHDR_DONE
Set by the device driver to indicate it is finished with the data buffer and it is
returning the buffer to the application.

155

Video Capture Application Reference Error! Main Document Only.-19

VHDR_PREPARED
Set by Windows to indicate the data buffer has been prepared with
videoStreamPrepareHeader.

VHDR_INQUEUE
Set by Windows to indicate the data buffer is queued for playback.

VHDR_KEYFRAME
Set by the device driver to indicate a key frame.

dwReserved[4]
Reserved for use by the device driver. Typically, these maintain a linked list of buffers in
the queue.

02/10/93

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

NOTE: MCIwnd is an unsupported API for the Video for Windows 1.0
Developer's Kit and is included as a sample only. Your application is free to
use mciwnd.lib and the APIs for mciwnd but you do so at your own risk and
PSS will not answer questions about this component if you ask.

Using MCIWND to Make Developing MCI Applications Easier
Overview

Using the MCI interface to allow your application to play MCI device files can
sometimes be confusing and complicated, especially with all of the different
commands that a device might support. Also, there is no user interface built in to
MCI to let the user control the playback of files - an application must provide its
own scrollbar and buttons for the user to play, pause, rewind, or seek through a file,
or not provide this service at all.

MCIWND is a library that your application can link to that will create a new class of
window. Your application needs only to create a window of this class, and then
send it a message to open an MCI file. It can then send other messages to control
the playback of the file, or give the user this control with the built in toolbar,
scrollbar and menus.

MCIPLAY.C is sample code of an Multiple Document Interface (MDI) application that
uses this window class to allow the playback and control of multiple MCI
devices/files.

Services of the MCIWND window class
o A Toolbar with a PLAY, PAUSE and STOP button

e A Trackbar (scrollbar) to allow seeking within a file

e A Pop-Up Track Menu with some common commands when the right mouse button
is clicked over the window

e Simple single-command macros for many of the common MCI commands which
eliminates the need for longer, multi-line mciSendCommand or mciSendString
calls.

Using MCIWND

264

Include the file VFW.H in your application's source files to give you access to
function prototypes and Macros and defines you will need.

Link your application with MCIWND.LIB to get the new functionality.

Call MCIWndRegisterClass(HINSTANCE hlnst) to register the new Window
Class "MCIWND_WINDOW _CLASS". This function returns TRUE if
successful.

Use the standard windows function CreateWindow() to create a window to play an
MCI file inside of.

or...

Use the MCIWndCreate(HWND hwndParent, HINSTANCE hinst, DWORD
dwStyle, LPSTR szFile) function. This takes the place of CreateWindow() and has
the advantage of being able to open an MCI device in the same call as the window is
created in. NOTE: You do not need to call MCIWndRegisterClass() if you use this
function, only if you use CreateWindow().

For non-windowed devices, you will need a window to hold the toolbar and
trackbar. If there will be no controls, and you are playing a non-windowed device
(EG playing a Sound file) you may want to leave the window invisible.

For both of these calls, you have some new styles you can choose from as well as
the standard window styles. They are as follows:

e MCIWND_NOAUTOSIZE Let the app size the window. The default is to
automatically size the created window to a default size big enough for the window
and the playbar (if used).

« MCIWND_NOPLAYBAR Do not put a playbar (Toolbar and Trackbar) in the
window. By default, a playbar appears. It provides a PLAY, PAUSE and a STOP
button, as well as a Trackbar to seek through the file.

e MCIWND_NORESIZETOWINDOW For MCI devices that can window
(have video to display), MCIWND will ordinarily resize the image to any size you
make the window. This flag inhibits that action. (The image is a constant size
regardless of the size of the window containing it).

e MCIWND_NOTRACKMENU Do not provide a pop-up menu. Normally,
pressing the right mouse button over the window will bring up a track menu with
commands for Play, Pause, Stop, Rewind, Volume, Speed, and for windowed
devices, a Window (zoom) command.

265

e MCIWND_NOTIFYSTATE Whenever the state of the device changes
(eg. from Stop to Play) the parent window will receive a
MCIWNDM_NOTIFYSTATE msg with an IParam of the new state of the device
(eg. MCI_MODE_STOP).

« MCIWND_NOTIFYPOS Whenever the position of the device changes (eg. as
it's playing) the parent window will receive a MCIWNDM_NOTIFYPOS msg with
an IParam of the new position in the media.

e MCIWND_SHOWNAME Sets the window text of the window to the filename
of any MCI file you open in this window.

Open an MCI file or device using the macro MCIWndOpen(HWND hwnd,
LPSTR sz, UINT f). Hwnd is the window you have created, and sz is the name of
the file or device to open. F is currently unused and should be set to 0.

Send the window a command using one of the following macros. Unless otherwise
specified, the return code is the same as you would get from mciSendString() using
the same command.

« MCIWndClose(hwnd) Close the MCI file. You can then re-open
another file in the same window, or just call open again and the currrent file will
close automatically.

« MCIWndPlay(hwnd) Play the file from the current position.
o MCIWndStop(hwnd) Stops the device.

o MCIWndPause(hwnd) Pauses the device.

o« MCIWndResume(hwnd) Resumes playing (after a pause).

o« MCIWndSeek(hwnd, IPos) Seeks to a specified position in the file. If Ipos ==
MCIWND_SEEKSTART it will seek to the beginning. If Ipos ==
MCIWND_SEEKEND it will seek to the end.

« MCIWndPlayReverse(hwnd) Play the file backwards starting at the
current position.

« MCIWndGetMode(hwnd) Returns the current mode of the device (eg.
MCI_MODE_PLAY.

e MCIWndGetDevicelD(hwnd) Gets the devicelD of the open file which

you will need if you wish to call mciSendCommand or mciSendString to do any
commands that are not supported by this interface.

266

o« MCIWndGetStart(hwnd) Returns the starting position of the file.
Seeking here will place the file at the beginning

o MCIWndGetLength(hwnd) Returns the length of the file. The start plus the
length will give you the end of the media.

e MCIWndGetEnd(hwnd) Returns the end position of the file.

o MCIWndStep(hwnd, n) Steps n frames or milliseconds, depending
on the time format of the device. A positive value is a step forward. A negative
value is a step backwards.

o MCIWndDestroy(hwnd) Destroys the window. No return code.

e MCIWndSetZoom(hwnd, n) For windowed devices, sets the size of the
window to n percent of the original size of the window.

o MCIWndSetVolume(hwnd, n) Sets the volume of audio playback (if
supported) to n. 1000 is normal volume. Higher numbers are louder. Lower
numbers are quieter.

e MCIWndGetVolume(hwnd) Gets the current volume.

o MCIWndSetSpeed(hwnd, n) Sets the playback speed of the device (if
supported) to n. 1000 is normal speed. Higher numbers are faster. Lower numbers
are slower.

o MCIWndGetSpeed(hwnd) Gets the playback speed of the device.

o MCIWndRealize(hwnd, f) Tells MCI to realize the palette of the image it is
displaying in the window. fis TRUE if the window is in a background application.
You should call this function in your app's WM_PALETTECHANGED and
WM_QUERYNEWPALETTE code, instead of using the standard windows function
RealizePalette. This MCIWnd function will use the palette of the MCI device and
call RealizePalette for you. On the other hand, you could just pass the
WM_PALETTECHANGED or WM_QUERYNEWPALETTE msg on to the MCI
window and this will happen automatically.

o MCIWndSendString(hwnd, sz) Takes the place of mciSendString(sz,
NULL, 0, NULL). Simply give the string to send to the window. Leave out the
alias after the first word. (eg. sz = "set time format frames" is a valid command).

e MCIWndUseTime(hwnd)

¢ MCIWndUseFrames(hwnd)Sets the time format of the device to either
milliseconds or frames mode. This determines how to interpret a position in the

267

file. By default, when you open a file in an MCI Window, the device will be set to
frames mode. If that fails, it will try millisecond mode.

« MCIWndValidateMedia(hwnd) If you ever do anything to a device that
changes the time format of the media (like changing time formats in some other way
than by using an MCIWnd macro) the starting and ending position of the media, as
well as the trackbar will still be using the old values, and need to be updated. Send
this message to update these values. Normally, you should not need to use this
macro.

268

	Prorammer's Guide
	Ch 1
	Ch. 2
	Ch. 3
	Ch. 4
	Ch. 5
	Ch. 6
	Ch. 7
	Ch. 8
	Ch. 9
	Ch. 10
	Ch. 11
	MCIWND

