R

J
INLEASHING THE POWER 0F

OMPUTER GHAPH

MORPHING
PALETTE MAPPING o 17 108 -
IMAGE PROCESSING
COLOR MODELS

JUR OWN |
INDOWS MULTIMEDIA
LASS LIBRARY

D-ROM
TENSIONS

EBUGGING
AL-TIME
OGRAMS

STRIBUTED
.ﬁ-
MPUTIP™ gy £

sdall
($4.95 CANADA)

Al U Al

LALGORITHMS
FOR DATA
COMPRESSION

0030#1’6 £600000HSM1

S6T86 11910~ uwxuwnx alrraxes § ‘ p
: _.l‘F
W

1 SAMSUNG 1020

¥

*

PROGRAMMER'S WORKBENCH

icrosoft Windows' Media

Control Interface (MCD is a

standard command language

for communicating with mul-

timedia devices—CD, Wave-
form and MIDI audio, AVI, videodiscs,
video overlay devices, audio mixers, and
the like. However, even though both
Microsoft and Borland provide with their
compilers large, comprehensive class li-
braries—the Microsoft Foundation Class
library and ObjectWindows Library, re-
spectively—neither provide object sup-
port for multimedia or Windows API
multimedia extensions.

This article addresses this gap by
showing how to design and implement
a comprehensive C++ class library that
enhances the MCI interface to multi-
media devices. This hierarchy employs
encapsulation, inheritance, and poly-
morphism to create a flexible and ex-
tensible framework for controlling mul-
timedia devices under Windows. The
result is a set of objects that make
programming multimedia easier, more
robust, concise, and maintainable. A
simple client program, MciMan, demon-
strates the use of the Waveform audio
and AVI video classes. The class library
and client program are compiler inde-
pendent and can be used with any Win-
dows 3.1 compatible C++ compiler, in-
cluding Borland’s C/C++ and Microsofi’s
Visual C++. The AVI portions of this
code require the digitalv.h #include file,
Video for Windows drivers, and runtime

Jobn is a senior developer at Personal
Media International, a startup special-
izing in multimedia entertainment sofi-
ware. He can be reached via Compu-
Serve at 70621, 1460,

84

Encapsulating the

Media Control Interface

John Musser

DLLs that come with the Video for Win-
dows package and its SDK. They're
available free of charge from the Win-
dows Extensions forum on CompuServe
(GO WINEXT). Vfwrun.zip contains the
runtime DLLs and viwdk.zip is the Video
for Windows Development Kit.

MCI Overview

The MCI specification, released in 1991
by Microsoft and IBM, defines a set of
base commands that can be applied to
any general device, and extended com-
mands for specific device types. The
specification is designed to be extensi-
ble so that other devices may be added.
For example, the AVI specification was

added in 1992. Another example is
MediaVision, which supplies an MCI
driver that provides audio-mixing ca-
pabilities using extended commands
specific to this device type. The speci-
fication as documented in the Windows
SDK identifies 11 device types. Some
drivers are supplied with either Win-
dows or the SDK, while others are pro-
vided by the device supplier. Table 1
describes most of the currently available
MCI drivers. As of this writing, howev-
er, not all the device types listed actu-
ally had MCI drivers available.

MCI divides all multimedia devices into
one of two device types: simple or com-
pound. The basic difference is that sim-

(flcrfl) files
Plays MacroMind Director
(.mmm) files
dat Controls Digital Audio Tape
digitalvideo Plays AVI video files
other An undefined MCI device
overlay Controls a video overlay
: device—analog video in a
e
sequencer Plays MIDI audio files
S C ottt A Video cassttie
recorder
videodisc Controls the Pioneer
LD-V4200 videodisc player
_ "
audio files

Plays and records waveform MCIWAVE.DRV Retail Windows

MCIMMP.DRV MDK, Visual Basic

MCICDA.DRV ~ Windows 3.1 SDK, MDK

MCIAVI.DRV Video for Windows

MCIVBLST.DRV Creative Labs

MCISEQ.DRV Retail Windows

MCIPIONR.DRV Windows 3.1 SDK, MDK

Table 1: Several Windows MCI devices.

Dr. Dobb’s Journal, July 1993

l

|
I

We slash interface
development time across
DOS, UNIX, POSIX, VMS...

(and we can prove it!)

The Designer: Easy
to use form builder,

Invofce Oreder Form

creates all objects
interactively without
coding.

Data fields:
Scrollable regions, memo
fields, ticker-tape fields.

Graphic-style fields:
Check boxes, push
buttons, radio buttons.

Shadow borders,
exploding windows.

C-Programmers:

See for yourself how
Vermont Views® can help
you create powerful user
interfaces—whatever your
environment!

If you want to create sophisticated
user interfaces—and save tremendous
time and effort doing it—Vermont
Views is exactly what you need.

Vermont Views isn’t just a

| common interface package.

It's a deep, flexible, menu-

| driven screen designer supported

by a C library of over 580 functions.
It lets you create the ultimate user
interfaces for complex database
applications - in a fraction of the time
it would take to code it yourself!

With Vermont Views, you create
screens interactively. Designing is fast
and creative. And changes—both tiny
adjustments and huge reworks—are
incredibly easy.

Pull down menus, window-based
data entry forms with tickertape or
memo fields, scrollable regions,

choice lists, context sensitive help

All these interface objects (and more)
are immediately accessible. Your

0w Shipped

Code Generator:
Creates data structures
and source code in C for
a complete and working
prototype.

ROUBUREEY DUKBUAREAVER
NHRUBNEEE NRAANANRALER
RUHRHNGHN RUNEHNNRARGER

ithiatal

| HEARNHEMUE

[ouit |

DOS applications can have full mouse
control, and work in graphics as well
as text modes! And with Vermont

Views, even terminal-based applica-
tions can have the elegant features
usually found only on micros.

Create prototypes fast,
applications even faster.

With most systems, you have to
throw away your prototypes when
coding begins. But with Vermont
Views, prototypes become the actual
application.

Menus, data-entry forms, and all
screen features are usable in the final
applications without change.

NEW! Vermont Views PLUS

An enhanced version of Vermont
Views for DOS. Vermont Views
PLUS provides the interface power
needed for developing multi-mega-
byte, graphic-enhanced C applica-
tions. Best of all it supports all
popular DOS extenders and graphics
libraries, VVPLUS also includes full
source code for all libraries.

It's the universal solution.

Vermont Views operates com-
pletely independent of hardware,
operating system, and database.

pRARmBRARENR
anuEnn

Scroll Bars:
Horizontally, vertically,
full mouse support.

PO Number @
99999999991

Status Line: Optional

lines for helpful information
when using the Designer—
may be disabled for
advanced users.

Any interface you create can be
ported easily among DOS, UNIX,
XENIX, POSIX, QNX, 0S/2, and
VMS.

You can use Vermont Views with
any database that has a C-language
interface (including Oracle, Informix,
db_Vista, and C-Tree). You can run
on PCs, DEC, NCR, HP, AT&T, and
other systems.

No runtime fees or royalties.

Don’t take our word for it—put
Vermont Views to the test. Call or
fax now for your personal, free
demonstration kit. Or order Vermont
Views with our 60-day, money back
guarantee.

Either way, you’ll immediately see
how Vermont Views can slash your
interface development time.

For MS/PCDOS, Vermont Views is $495, Vermont Views
PLUS with MemEx, GraphEx and full source code is $795.
For UNIX, POSIX, and VMS, prices start at $1,795,
depending on machine class.

Creative
Software
1 Pinnacle Meadows, Richford, VT 05476

Phone (802)-848-7731 FAX (802)-848-3502
Please Mention "Offer 396"

Call 1-800-848-1248 for a free demo of the ultimate application interface!

CIRCLE NO. 529 ON READER SERVICE CARD

PROGRAMMER'S WORKBENCH

(continued from page 84)
ple devices do not use data files, where-
as compound devices usually do. CD au-
dio and videodisc players are simple de-
vices; waveform audio, MIDI sequencers,
and AVI are all compound devices.
MCI provides two basic programming
interfaces: a command-string interface
that allows the use of ordinary text
strings such as play cdaudio to control
multimedia devices (this very open ap-
proach is well suited to scripting and
authoring applications); and a command-
message interface that uses C-language
structures and a Windows-style message-
passing model for device control. The
MCI classes I describe here use the com-

mand-message interface because it's
more efficient and better suited to gen-
eral programming,.

A single function, mciSendCom-
mand(), is used along with a set of
“polymorphic” arguments to access the
command-message interface. The mci-
SendCommand() function takes:

e A WORD device identifier (analogous
to a handle).

* A message-type constant prefixed with
MCI_ (such as MCI_PLAY).

e« A DWORD value set to one or more
flags usually specifying which ele-
ments of a given structure contain
valid values.

ANGUAGE

-lint

5.0 presents
C Bug # 502

int main()
{
char chl = "\x0F';
char ch2 = '\xFF';

PC-lint will catch this and many other
C bugs. Unlike your compiler, PC-lint
looks across all modules of your
application for bugs and inconsistencies.

More than 330 messages. Includes
optional Strong Type Checking and
flow of control analysis. More than 105
options for complete customization.
Suppress error messages, locally or
globally, by symbol name, by message
number, by filename, etc. Check for
portability problems. Alter size of
scalars. Adjust format of error
messages. Automatically generate ANSI
prototypes for your K&R functions.

PA add 6% sales tax.

unsigned u = (chl << 8) | ch2;
/* some computation */

u =u & “cha;
printf("%x\n", u);
return 0;

}

It was the programmer’s intent to form a byte pair, do some computation,
and then remove the second byte; but it’s not working. Why does this
program not print “F00"? Call if you need a hint. Refer to Bug #502.

Gimpel Software

3207 Hogarth Lane, Collegeville, PA 19426
CALL TODAY (215) 584-4261 Or FAX (215) 584-4266
30 Day Money-back Guarantee.

Attn: Power users with huge programs.

PC-lint 386 uses DOS Extender
Technology to access the full storage
and flat model speed of your 386.

PC-lint 386 — $239
PC-lint DOS - OS/2 - $139

PC-lint and FlexeLint are

A far pointer to a data structure con-
taining values to be sent or returned.
(The structure is often specific to each

message type.)

Nearly all the member functions in
this library make at least one call to
mciSendCommand(). But don’t be
fooled by its simplicity: It has many op-
tions, constants, flags, messages, struc-
tures, and return values (and our goal
is to hide these).

MCI Class Library
The MCI class hierarchy is designed to
encapsulate and enhance the MCI in-
terface and to get the most benefit from
the least code. It is part of a C++ library
that will be used as part of the basis for
the commercial multimedia products we
are currently developing. As such, it was
designed for a specific immediate pur-
pose, but also had to be capable of han-
dling unknown future requirements.
This influenced both the design and the
implementation. The design had to be
flexible, extensible, and (most of all)
practical. Because our needs are for spe-
cific devices only, not all MCI devices
are directly implemented although
adding support for additional devices is
a short process. Figure 1 diagrams the
MCI class hierarchy, giving an overview
of this single-inheritance tree.

All MCI commands are classified into
one of four categories: system, required,
basic, and extended. Commands spec-
ified for the first two types (such as
open, close, and status) require support
by all device types and are good can-
didates for member-function definitions
in the base class(es) of the MCI class hi-
erarchy. The basic commands, includ-
ing play, stop, and seek, are supported
by most device types and can also be
placed at or near the top of the tree.
Extended commands that support spe-
cific devices can be implemented farther
down the hierarchy.

The root node for the MCI class hi-
erarchy, MCIDevice, serves as the base
class for both the CompoundDeuvice class

rks of Gimpel S

Figure 1: MCI class b.ierarcby,

Dr. Dobb’s Journal, July 1993

IBM
PS/2,

Intel =&
x86-Pentium

Extended DOS » Windows » NT
Solaris « UNIX SVR3-4 + OSF

Multi-

IBM
ESA

MIPS

Embedded Applications
BSD UN]

Motorola
680x0

Embedded Applications » Sun0OS

Intel

ATET {860
Hobbit ~=+- HP-PA

Pen Point HP/UX * CenterLine

Am29K

Embedded Applications

Professional developers today know that portability and
superior code quality are more than luxuries — they’re a s un
matter of survival. Better, faster chips and more robust
operating environments are making their appearance on
4 A e, So Gk Dot AN 7 3 SunOS » Solaris 1, 2 » CenterLine
what seems to be a daily basis. MetaWare has a solid Bmbedded Apglicidons

understanding of how these issues affect your business.
Our 32-bit high-performance multi-platform compilers

ensure that investments you make with us today will be ®
safe for you tomorrow. High C/C++ ™ and Professional Mﬁggﬂgre
Pascal ® are the clear choices for multi-platform software
development. Call today! Multi-Language, Multi-Platform
Compiler Products for
CIRCLE NO. 158 ON READER SERVICE CARD Professional Software Developers

2161 Delaware Avenue Santa Cruz, CA 95060-5706 e (408) 429-META (6382) * FAX (408) 429-WARE (9273)

MetaWare, the MetaWare logo, and High C and Professional Pascal, are registered trademarks, and High C/C++ and High C#++ are trademarks, of MetaWare Incorporated.
Other names are trademarks of their respective companies, © Copyright 1993 MetaWare Incorporated

PROGRAMMER'S WORKBENCH

(continued from page 86)

and all simple device classes. It provides
the basic open/close/play type com-
mands, status commands for querying
a device's state, set commands to con-
figure devices, and a number of other
miscellaneous functions. The data items
needed (all private) are:

* An integer device id.
* An error-status value.
A string pointer to the device name.
* An optional handle to a parent window,

The constructor (see Listing One,
page 102) does not automatically open
the device—doing so would mean that
the device would be opened and po-
tentially unavailable to other applica-
tions from the time this object is con-
structed until it's destroyed. This is also
true for all the derived classes: A de-
vice is not opened until explicitly told
to do so with an Open() call. It is closed
either through a call to the Close()
member function or when the object is
destroyed and the destructor is invoked.
(Constructing a CompoundDevice with
a filename is treated as if it were an
Open() call and that file is immediate-
ly opened.) Keeping devices open only
as long as necessary is generally polite
behavior in a multitasking environment
such as Windows.

The constructor for MCIDevice and
any derived simple device (such as
CDAudio) takes a single argument, a
string value specifying the appropriate
MCI device name. A default value is pro-
vided for each of the simple device
types so that an application will rarely
have to explicitly provide this value. The
only exception might be on a system
using nonstandard or additional device
names that do not match the usual MCI
device-name strings defined in the /mci/
section of the SYSTEM.INI file. MCI-
Device is not an abstract class and can
therefore be constructed and used di-
rectly. It is designed, however, to serve
as the basis for derived classes sup-
porting unique device types.

Most of the member functions have
a direct mapping to a corresponding
MCI command. These functions almost
always require fewer arguments than
either the command-message or the
command-string interfaces because
some of the necessary information has
been encapsulated in the object. Each
member function first initializes any nec-
essary data structures, sets the appro-
priate flags and arguments, and calls
mciSendCommand(), occasionally more
than once.

The function’s return code is passed
back to the object’s client and is also
saved in order to maintain an error state

88

for later reference. The ErrorMessage()
member function calls meiGetError-
String() to get the error description, and
displays a standard Windows error-
message dialog box to the user. This
class and all derived classes highlight
one of the benefits of using C++: the
ability to use destructors to perform
automatic cleanup. It is important that
applications properly close all MCI de-
vices and files they have opened. By
utilizing the C++ destructor mechanism
we can automatically trigger the closing
of any open devices before an applica-
tion exits and thereby improve reliabil-
ity and robustness (not to mention
avoiding any extra general-protection-
fault-type messages).

A sampling of functions built upon
the MCI set, status, and capability com-
mands are implemented to show how
these access operations can be imple-
mented. MCIDevice provides the virtu-
al functions Sei(), Status(), and GerDev-
Caps() for this purpose, but makes
these protected because they are not
intended to be directly called. Making
these public forces the user to be fa-
miliar with the numerous MCI_SET and
MCI_STATUS constant values needed
for each specific option. Instead, these
are used as the mechanism within pub-
licly defined inline functions defined
for each of the set and status options.
For example, the Length() function,
which returns the length of the current
device, uses the Status() function with
the MCI_STATUS_LENGTH option to
get its value. (It should be pointed out
that a type of simple runtime type iden-
tification can be achieved by using in-
formation functions such as Device-
Type() and CompoundDevice(). The
DeviceType() function returns a unique
constant identifier for each device type,
and therefore each class. Compound-
Device() returns a Boolean value of
True if the given object is a compound
device.)

One other notable method, SetPar-
ent(), is used to assign the handle of a
window designated as the parent of this
MCI object.. Play() checks to see if a
parent window has been assigned to it
and if so, stores this handle in the pa-
rameter block given to mciSendCom-
mand() and sets the MCI_NOTIFY bit
of the corresponding flags value. This
causes MCI to post the MM_MCINOTIFY
message to the specified window when
the operation is completed. When this
occurs, the window procedure’s [Param
is set to the device id that initiated the
callback, and the wParam gives the sta-
tus of the operation, which can be suc-
cess, failure, superseded, or aborted.
MCI allows the Notify option to be used
with all commands, and this library uses

it specifically as an option to the Play()
function. If needed, this option can be
added to any or all of the other func-
tions for these classes,

A Simple MCIDevice

CDAudio is a simple class for this “sim-
ple” device. In fact, all the basic func-
tionality for simple devices is provid-
ed in the MCIDevice base class.
Therefore, CDAudio doesn’t need to
provide additional functions of its own.
It can instead rely on the operations
inherited from its parent. The MCI com-
mand set for CDAudio defines a few
additional options for some of the base
commands, three of which are imple-
mented here. These are Eject() to eject
the disc, and SetTimeFormatMSF() and
SetTimeFormatTMSF() for setting the
time format (T=tracks, M=minutes,
S=seconds, F=frames). Each is imple-
mented as an inline function that pass-
es the appropriate flags to the Set()
function. By allowing just the time for-
mat to be set through these functions,
we can avoid inadvertently trying to
set a device to a time format that it will
not accept. This lets the programmer
know which formats are acceptable for
each device by looking at its class def-
inition, which cannot be determined
without the documentation using the
C interface.

This CDAudio device can be opened,
closed, played, stopped, queried for its
status, and so on. All common opera-
tions are inherited from the MCIDevice
base class. Other simple devices such as
Videodisc and VCR can be implement-
ed similarly by deriving from MCIDevice,
specifying the appropriate device-type
string for the constructor and adding any
device-specific operations.

CompoundDevice

A compound device is an MCI device
that uses files. Therefore, the Com-
poundDevice class and its descendants
must be able to handle a filename on
open. Keep in mind that the device id
is more like an element id, one of
which is allocated for each open com-
pound-device file. (A filename for a
compound device is known as the “de-
vice element.”) The constructor for
CompoundDevice takes two optional
arguments: the name of the file to open,
and the name of the device type to be
opened. The second argument is im-
mediately passed to the base-class con-
structor. The first argument, if given, is
stored internally and then used to open
the file. This approach follows the
iostream model, in which a filename
passed to the constructor automatical-
ly opens the file. The implementation
could easily be changed to not open

Dr. Dobb’s Journal, fuly 1993

file and require a subsequent call

Open(). Not requiring a filename al-

the object to be constructed first

later supply a filename on the call
p)

Open().
- The Open() and Close() virtual func-
are redefined in order to deal with
Open() saves the filename as
of the object’s data and then pass-
s this along in the IpstrElementName

of the mciOpenParms structure giv-
1 to meiSendCommand(). The Clme()
imand uses MCIDevice::Close to close
e device and then frees any memory
ciated with the filename.
~ An example of a straightforward
derivation from CompoundDevice is the
Vave class. Windows supports digital
audio through waveform audio files
that typically use the .WAV file exten-
sion. The MCI support for waveform
ud:o is fairly complete, allowing
ecording and playback of formats
from 8-bit mono at 11 KHz to
16-bit stereo at 44 KHz, depending on
Iheaudmcard installed. The Wave class
does not need to override most of the
virtual functions inherited from Com-
poundDevice. Functions such as Play,
&op, Patise, Resume, and Seek can all
e used as is. Three additional status
Euncuons have been added to allow
the user to query the format of the cur-
rent file: Channels(), which returns 1
ifthe ﬁle is mono and 2 if it is stereo;
B ample(), which returns either
8 or 16 and SamplesPerSecond(),
which returns 11025, 22050, or 44100
..=~ reflect the sampling rate. These func-
tions use extended MCI commands
added as part of the waveform audio-
and set.

o as a Data Type
io Video Interleaved (AVI) provides
scalable, software-only (with optional
hardware support), full-motion digital
0. The video sequences can con-
images, audio, and palettes. The
io can be synchronized with the
o within 1/30th of a second. Cur-
, application support for AVI play-
is only available through an MCI
ace—a low-level playback is pro-
ded in the Video for Windows De-
elopment Kit. Microsoft provides an
driver, MCIAVI.DRV, which imple-
s a subset of the MCI digital-video
and set for AVI.
“To support this new (and large) com-
d set, our AVI class implements a
nber of new functions. A Window()
inction was added, which takes a han-
: to a parent window to allow play-
ack as the child of a specific window
than the default behavior which
ﬁocrmte:tsownframewmdow Put-
wation() was added to allow the

[AITIES.

com

Dr. Dobb’s Journal, july 1993

playback window to be positioned at a
specific rectangle within the parent win-
dow. Other added functions include:
Step(), which moves forward or back-
ward a specified amount; Seek(), which
moves (o a given position; Update(),
which displays the current frame; and
Signal(), which notifies the parent when
a particular position has been reached.
This implementation could be further
enhanced to redefine some of the base-
class virtual functions for extensions that
cannot be handled by the inherited ver-
sions, such as having a Play() that han-
dles options to play back in a window
or full screen. (Alternatively, these can
be set using the Configure() function,

which pops up a dialog box to set these
and other options.)

This class could be modified to use
three different window handles: one for
the recipient of the MM_MCINOTIFY
notify message after Play(), one to re-
ceive the MM_MCISIGNAL message
when a Signal() position is reached,
and another to be used as the parent
window for display purposes using the
Window() function. The present design
uses up to two concurrent window han-
dles: One is used for the Window() par-
ent—this value is not stored as class
data; the other, the hWndParent data
member, is used for receiving both types
of notification messages.

CIRCLE NO. 144 ON READER SERVICE CARD

PROGRAMMER'S WORKBENCH

MciMan

I've included a sample client applica-
tion, MciMan, which is available elec-
tronically (see “Availability,” page 5).
MciMan shows how an application
might use the MCI class library. Specif-
ically, MciMan uses the AVI and Wave
classes to allow the user to work with
either type of device. A simple menu
interface allows you to select, play back,
pause, resume, and stop the device type.
A Notify toggle under the Command
menu causes the user to be notified by
a modal message box when the next
Play command is completed. (This uses
the MCI_NOTIFY option.) One file of
each type can be open simultaneously.

MciMan works by creating one in-
stance each of the Wave and AVI class-
es as global objects. When the user se-
lects which type to make currently active
from the MCI Device menu, a pointer
to that global object is assigned to a
CompoundDevice* variable. This point-
er is then used for all subsequent op-
erations and relies on the virtual-function
mechanism to invoke the appropriate
class function based upon the current
selected type. Therefore, when the Play
menu item is selected, the Play() func-
tion is invoked using this pointer and
either the Wawve::Play() or the AVE:Play()
function will be executed. When the
program is exited, the destructors for

these two objects are invoked, and all
devices and files are automatically
closed—no special cleanup is needed
in the WM_DESTROY or other similar
code block.

Future Directions

Although the current implementation of
the MCI class hierarchy is fairly com-
prehensive, it does not cover all devices
nor does it implement all of the com-
mands and their variants. In addition to
MCI's large command set, the number
of MCI devices is also increasing. You
can, in fact, write your own MCI device
drivers with the Microsoft Device Driv-
er Kit (DDK). And as with any software
library, there’s always room for one
more feature.

A good example of an additional de-
vice is the MCI driver that Apple is ex-
pected to supply for playing QuickTime
for Windows video clips. Depending on
the command set this driver supports,
it may make sense to create a Digital-
Video class which could serve as the
parent to both AVI and QuickTime sub-
classes. This class could be used to pro-
vide a set of functions common to these
two specific devices, thus sharing code
and giving a standard API for both types.
(Client programs could then use these
interchangeably.)

In any case, you now have a class li-
brary that uses C++ and the MCI com-
mand set to build a solid framework of
multimedia objects for Windows. The
MCI class library hides the arcane syn-
tax of the MCI command-message in-
terface (the messages, ids, structures,
double casts, and flags) and instead pro-
vides a set of objects that give applica-
tions a cleaner, more flexible, and ro-
bust interface for controlling a variety
of multimedia devices.

LLL-—CLH:L

!nrl!!le'ri \Dﬂwlare enctyp
the Hatdlm,k . h1m| yiof ¢
pruli‘chundp N‘\xm

\
d'nétwork IIIII]I|PmBM"! 1017

Mg‘me] tlh_A_

DDJ

(Listing begins on page 102.)

Vote for your favorite feature/anticle,
Circle Reader Service No. 8.

P]'H

Fax

Contact us for the name of the distributor in your country.

Dr. Dobb’s Journal, July 1993

PROGRAMMER'S WORKBENCH

. ;

Listing One (7ext begins on page 84.)

I+ #\
* Mci.cpp: C++ class hierarchy for Windows multimedia objects using MCI.
* SAuthor: John Musser

* SDate: 24 Peb 1993 19:37:@2 §

* $Copyright: Personal Media International Inc.. 1993 §

Degcription: A set of classes to psulate the ge interface
* to MCI. Currently implemented: CDAudio, Waveform audio, AVI.
Two base classes MCIDevice and CompoundDevice provide most of
the basie functionality needed for derived MCI types.

..

5 i
include "MCI.h"

#include <memory.h>

#include <string.h>

Wdefine MCI_BUFSIZE 128 // used for char array sizing
fHmmmmnn # MCIDevice functions # ------ &

MCIDevice: :MCIDevice(LESTR lpszDevice)

L

wheviceID =
hWndParent = NULL:
dvErrState =
lpszDeviceType =
if (lpszDevice)

: SetDeviceType(lpszDevice) ;

HCIDevice: :“MCIDevice()

if (wDeviceID)
Close() ;
if (lpszDeviceType)
delete [] lpszDeviceType:
¥
LESTR
P;szvice: +Info(DWORD dwFlags)

MCI_INFO_PARMS mcilnfoParms;:
static char cBuf [MCI_BUFSIZE];
if (lwDevicelD)

return (LESTR)NULL:
meilnfoParms.lpstrReturn = cBu
meilnfoParms.dwRetSize = MCI. BT.!I’SIZE
dwErrState = mciSendCommand (wDeviceID, MCI_INFO, dwFlags,

(DWORD) (LPMCI_INFO_PARMS) &mcilnfoParms):

return mcilnfoParms.lpstrReturn;

}

DWORD

MCIDevice: : Set (DWORD dwFlags, DWORD dwExtra)
MCI_SET_PARMS mciSetParma:

Real-Time Multitasking

for Microsoft C, Borland C, Turbo Pascal

Develop Real-Time Multitasking Applications with RTKernel!
RTKernelis a pmbsaonai h@gerlom'lanoe real-time mu ".' : i kemeérﬁ:km under

HTKemelmi:’ fibrary fink “maﬁ..f* Uik mncnons*;f
a you can linl r application. i
procedures asparallel tasks. ATKemel offers these advag
* pre-emptive, event-/ interrupt-driven inte rdand COM
schedul code
*number of tasks only imited by RAM ports
+ task-switch time of 65ecs (33-MHz 486) ess boards
 speedindependsntof the numberoftasks FGINS 16550 UART chip
-;ph&#pﬂoriﬂaa(d\angmbbmm orkcommunication using
stimerinterruptrate of 0.1t055 MM‘&DOS&DbB 0,0R-DOS,
-mgn-reaoiuuonmm system
adivaleorwspendmb problems
‘ + resident multi-tasking applications (TSRs)
° * runs Windows or DOS Extenders asa task
a& +supports CodeView and Turbo Debugger
-Imarhsk *ROMabie
phores, mailboxes,’ +full sourcecodeavailable
+keyboard, hard disk, *norun-time royalties
usable by other tasks +free technical support by phone or fax
RTKernel-C (MSC6.07.0/8.0, BC++1.02.003.) ... $495 (Source Code: add $445)
mm—mw (TP/BPS. nvsmn.sapsx} .. $445 (Source Code: add $375)
Fy l orders, add $30for
W@memm CODaccepled.

OnTlme.—
MARKETING

Professional Programming Tools

Karolinensirasse 32 - 20357 Hamburg - Gemany
Phone +49 - 40 - 4374 72« Fax +49 - 40 - 4351 96 - CompuServe 100140,633

CIRCLE NO. 622 ON READER SERVICE CARD
102

if (lwDevicelID)
return MCI_ERE_NOT_OPEN:
if (dwFlags & MCI_SET_TIME_FORMAT)
mciSetParms, dwTimeFormat = dwExtra: /{ dwExtra is format
dwErrState = meiSendCommand (wDevicelID, MCI_SET, dwFlags,
(DNORD) (LPMCI_SET_PARMS) &mciSetParms);
3 return dwBrrState;
DWORD
MCIDevice::Status (DWORD dwFlags. DWORD dwItem, DWORD dwExtra)
{
MCI_STATUS_PARMS meciStatusParms;
if (IwDeviceID)
return MCI_ERR_NOT_OPEN:
meiStatusParms.dwitem = dwitem;
// Determine which extra struct fields to set based on flags.
if (dwFlags & MCI_TRACK)
meiStatusParme.dwTrack = dwExtra;
dwEreState = meiSendCommand (wDevicelID, MCI_STATUS, dwFlags,
(DWORD) (LPMCI_STATUS_PARMS) &mciStatusParms);
return mciStatusParms. dwReturn;
)
DWORD
MCIDevice: :GetDevCaps (DWORD dwItem)
{

MCI_GETDEVCAPS_PARMS mciGetDevCapsParms;
if (lwDevicelD)
return MCI_ERR_NOT_OPEN;
mciGetDevCapsParma,dwitem = dwltem;
dwErrState = mciSendCommand (wDeviceID, MCI_GETDEVCAPS, WCI_GETDEVCAPS_ITEM,
(DHORD) (LEMCI_GETDEVCAPS PARMS) &mciGetDevCapsParms);
3 return mciGetDevCapsParms.dwReturn;
void
I{?CIDevice ::SetDeviceType (LPSTR lpszDevice)

if (lpszDeviceType)

delete [] lpszDeviceType;
1pszDeviceType = new __far :h&r[lstrlen(lpsz.nevlce)*‘ll
lgrrepy(lpszDeviceType, lpszDevice):

void
MCIDevice: :ErrorMessageBox()
{

char szBrrorBuf [MAXERRORLENGTH] ;
if (meiGetErrorString(dwErrState, {Um]izﬁrmzﬂnf

MAXERRORLENGTH))
MeseageBox (hWndParent, szErrorBuf, "MCI Error", MB_ICONEXCLAMATICN):
else
MessageBox (hWndParent. "Unknown MCI Error”. "MCI Error".
ME_ICONEXCLAMATION) ;

)

DWORD

MCIDevice::Open(LPSTR lpszDeviee f* = NULL /)
(

MCI_OPEN_PARMS mciOpenParms;
if (whevicelD)

return MCI_WARN_ALREADY_ OPEN;
if (lpszDevice)

SetDeviceType(lpszDevice):
elge

if (!lpszDeviceType) // Make sure we have a type to open,

return MCI_ERR_NO_DEVICENAME; // had to given here or in ctor.
mciOpenParme. lpstrDeviceType = lpszDeviceType:
dwBrrState = mciSendCommand (NULL, MCI_OPEM, MCI_OPEN_TYPE,
(DWORD) (LPMCI_OPEN_PARMS) &mciOpenParms);

/{ Already cpen don't do it again

/1 Type given, save it in private data

if (ldwErrState)
wheviceID = mciOpenParms.wDeviceID;
return dwBrritate;

DWORD
)l!'CIDavice: ;Close()

MCI_GENERIC_PARMS meciGenericParme:
if (IwDevicelD)
return MCI_ERR_NOT_OPEN:
if (1 (dwErrState = meiSendCommand (wDevicelD, MCI_CLOSE, MCI_WAIT,
(DWORD) (LPMCI_GENERIC_PARMS) &mciGenericParms)))
wheviceID = NULL;
return dwErrState;

DWORD
MCIDevice::Stop()
{

MCI_GENERIC_PARMS meiGenericParms:
if (lwDeviceID)
return MCI_ERR_NOT_OFEN;
return dwBrrState = mciSendCommand (wDeviceID, MCI_STOP, MCI_WAIT,
(DWORD) (LPMCI_GENERIC_PARMS) &mciGenericParms):
1

DWORD
MCIDevice: : Pause()
{

MCI_GENERIC_PARMS mciGenericParms;
if (lwDevicelID)
return MCI_ERR_NOT_OFEN;
return dwBrrState = mciSendCommand (uﬂeﬂcem. MCI_PAUSE, MCI_WAIT,
(DWORD) (LPHCI_GENERIC_PARMS) &mciGenericParms):

]

DWORD

MCIDevice: :Resume()
£

MCI_GENERIC_PARMS mciCenericParms;
if (!wDevicelID)
return MCI_ERR_NOT_OPEN:
return dwErrState = mciSendCommand (wDeviceID, MCI_RESUME, MCIWAIT,
(DWORD) (LPMCI_GENERIC_PARMS) &mciGenericParms):
4

DWORD
MGIDevice: :Play (LONG 1From, LONG 1Te)
MCI_PLAY_PARMS mciPlayParms;

Dr. Dobb’s Journal, July 1993

DWORD dwFlags = @L;

if (lwDevicelID)
return MCI_ERR_NOT_OPEN;

if (hWndParent) (
mciPlayParms.dwCallback = (DWORD) (LFVOID) hWndParent;
dwFlags |= MCI_NOTIFY:

)

if (1From != current) {
mciPlayParms,dwFrom = 1From:
dwFlage |= MCI_FROM;

1

if (1To 1= end) (
meiPlayParms.dwTo = 1To;
dwFlags 1= MCI_TO:

duErrState = mciSendCommand (wDevicelD, MCI_PLAY, dwFlags,
(DWORD) (LPMCI_PLAY_PARMS) &mciFlayParms):
return(dwErcState) ;

DWORD
MCIDevice: :Seek (LONG 1To) o
(

)

MCI_SEEK_PARMS mciSeekParms;
DWORD dwFlags = OL:
if (lwDeviceID)
return MCI_ERR_NOT_OPEN:
switch(1To) (
case start:
dwFlags = MCI_SEEK_TO_START:
break;
cage end:
dwFlags = MCI_SEEK_TO_END;
break;

default:
meiSeekParms.dwTo = (DWORD)1To:
dwFlags = MCI_TO;

]
dwErcState = mciSendCommand (wDeviceID, MCI_SEEK, dwFlags,

(LONG) (LPMCI_SEEK_PARMS) &mciSeekParms):
return dwErrState;

DWORD
MCIDevice: :StopAll()
8

return mciSendCommand (MCI_ALL_DEVICE_ID, MCI.STOP, @, NULL):

6 cﬂwﬂ“ﬂd.buice functions # ======= +/
dDevice (LPSTR lpszFile, LPSTR lpszDevice)

)
CompoundDevice: :
(

i H(:Ibnv;\cn (!.pa :.Devicd

1pszFileName = NULL;
if {lpszFile)
Open(lpszFile);

~CompoundDevice()

if (wDeviceID)
Close();
if (lpszFileName)
delete [] lpszFileMame:

IWORD
GompoundDevice: :Open(LPSTR 1pszFile)
(

}

MCI_OPEN_PARMS meiOpenParms;
DWORD dwFlags = @L:
if (wDevicelID)

return MGI_WARN_ALREADY_OPEN:
IpszFileName = new __far char[lstrlen(lpszFile)+1]:
1strepy(lpszFileName, lpszFile);
mcilpenParms.lpstrElementName = lpszFileName:
mciOpenParms. lpetrDeviceType = lpszDeviceType;
dwFlags = MCI_OPEN_ELEMENT | MCI_OPEN_TYPE;

/I If we're already open don't do it again

dwErcState = mciSendCommand (NULL, MCI_OPEN, dwFlags,
(DWORD) (LPMCI_OPEN_PARMS) &mciOpenParms) ;
if (ldwErrState)
whevicelD = mciOpenParms.wDevicelID;
retucn dwBErcState:

DWORD
CompoundDevice: :Close()

{

MCIDevice: :Close():

if (1pszFileName) (
delete [] lpszFileName;

g lpszFileName = NULL;

return dwErrState:

f#e==== ® AVI functions * =-----%/

DWORD
AVI::Update (HDC hde)
{

1

MCI_DGV_UPDATE_PARMS mcilUpdateParms;
DWORD dwFlags;
if (lwhDevicelD)

return MCI_ERR_NOT_OPEN:
meilipdateFarms.hDC = hdc:
dwFlags = MCI_DGV_UPDATE_HDC | MCI_DGV_UPDATE_PAINT:
dwErrState = mciSendCommand (wDeviceID, MCI_UPDATE, dwFlags,

(LONG) (LPMCI_DGV_UPDATE_PARMS) &mciUpdateParms):

return dwBreState:

DWORD
_?’I::?ﬂtDﬂtinltion (RECT &rect)

HCI_DGV_PUT_PARMS mciPutParms:
DWORD dwFlags;

(continued on page 106)

TCP/ IPfoerdows

Requires only 6KB of base memory
Implemented as 100% Windows DLL (not a TSR)

® All applications are both client and server
® Works concurrently with Netware, LAN Manager, Vines etc.
= Up to 64 concurrent sessions

m Extensible SNMP Agent
Developer Tools: .
tho%ket OO /4l \VFS Client & Server
Berkeley 4.3 Socket API
ONC RPC/XDR
WinSNMP API For overnight delivery call:
Applications: [NETMANAGE”
TELNET (VT100, VT220),
e

2 & ! 20823 Stevens Creek Blvd.
PING, BIND, Statistics, Cupertino, CA 95014 USA
and Custom Fax (408) 257-6405

Ii . Dr. Dobb’s Journal, July 1993

CIRCLE NO. 805 ON READER SERVICE CARD

ic

& Windo (DhL)Sup rt

ThuitinIathrm
nd offer full netw rk supportgL
mmza-aua‘ Doc hﬂ 869823

| ernqtlohc\l td.

lingis 60187 | 708/682-8898
| | |

10

103

106

Special Offer!

Buy SlickEdit for DOS
01 |'\1II||“ |,|
indows and receive the nev

I SlickEdit for Windows 3.1

(919)

CIRCLE NO. 160 ON READER SERVICE CARD

vith our \I\\l Edit for OS/

alone

11

PROGRAMMER'S WORKBENCH

Listing One (Listing continued, text begins on page 84.)

if (lwDevicelD)
return MCI_ERR_NOT_OPEN:
meiPutParms.re = rect;
dwFlags = MCI_DGV_PUT_DESTINATION | MCI_DGV_RECT
dwErrState = lciSendComnd(ul}evice‘lD MCI_PUT. éw?lngn
LONG) (LPMCI_DGV_PUT_PARMS) &mciPutParms):
return duErrState;

1

DWORD

AVI::Signal (DWORD dwPosition)
(2

MCI_DGV_SIGNAL_PARMS meiSignalParme:
DWORD dwFlags;
if (lwDevicelID)

return MCI_ERR_NOT_CPEN;
if (IhWndParent)

return MCI_ERR_NO_PARENT:
mciSignalParms.dwCallback ={DWORD) (LEVOID)hWndParent; // MCI_SIGNAL recipient
mciSignalParms. dwPosition =dwPosition; // when to send
meiSignalParms. dwlgerParm ECDWRD)(LWOID)\'.his: // self will be 1Param
dwPlags = MCI_DGV_SIGNAL_AT | MCI_DGV_SIGNAL_USERVAL:
dwErrState = mciSendCommand (wDeviceID, MCI_SIGHAL, dwFlags,

(LONG) (LPMCI_DGV_SIGNAL_PARMS) &mciSignalParms);

// we need a parent to get the message

return dwErcState;
]

DWORD
?\H : sConfigure ()

GENERIC_PARMS meiGenericParms;
if {1wDeviceID)
return MCI_ERR_NOT_OPEN;
return dwErrState = mciSendCommand (wDeviceID, MCI_CONFIGURE, @.
5 (DWORD) (LPMCI_GENERIC_PARMS) &mciGenericParms);
DWORD
?VI; :Cue (DWORD dwTo)

MCI_DGV_CUB_PARMS meiCuePacma:

DWORD dwFlags:

if (lwDevicelD)

return MCI_ERR_NOT_OPEN;

meiCueParms.dwTo = dwTo;

dwFlags = MCI_DGV_CUE_OUTPUT | MCI_TO:

dwErrState = mciSendCommand (wDeviceID, MCI_CUE. dwFlags,

(LONG) (LPMCI_DGV_CUE_PARMS) &mciCueParms);

g return dwBrrState;
DWORD
AVI::Step (DWORD dwFrames, BOOL bReverse)
[

MCI_DGV_STEP_PARMS mciStepParms;
DWORD dwFlags:
if (lwDevicelD)
return MCI_ERR_NOT_OPEN:
mciStepParme. dwframes = dwFrames;
dwFlags = MCI_DGV_STEP_FRAMES;
if (bReverse)
dwFlags |= MCI_DGV_STEP_REVERSE:
dwErrState = mciSendCommand (wDevicelD, MCI_STEP, dwFlags
{LONG) (LPMCI_DGV_STEP_PARMS) &mciStepParms);
return dwErrState:

D
+:SetAudioVolume (DWORD dwVolume)

MCI_DGV_SETAUDIO_PARMS mciSetAudioParms;
DWORD dwFlags;
if (lwDevicelD)
return MCI_ERR_NOT_OPEN:
meiSetAudioParms.dwValue = duVolume:
meiSetAudioParms.dwitem = MCI_DGV_SETAUDIO_VOLUME:
dwFlags = MCI_DGV_SETAUDIO_ITEM | MCI_DGV_SETAUDIO_VALUE;
dwErrState = meiSendCommand (wDeviceID, MCI_SETAUDIO, dwFlags,
(LONG) (LPMCI_DGV_SETAUDIO_PARMS) &mciSetAudioParms):
5 return dwErrState:

DWORD
AVI: :SetSpeed (DWORD dwSpeed)
{

MCI_DGV_SET_PARMS mciSetParms:
DWORD dwFlags:
if (IwDeviceID)
return MCI_ERR_NOT_OPEN:
meiSetParms.dwSpeed = dwSpeed:
dwFlags = MCI_DGV_SET_SPEED:
dwErrState = mciSendCommand (wDeviceID, MCI_SET, dwFlag:
(LONG) (LPMCI_DGV_SET.. PMHS) &mciSetParms);
3 return dwBrrState:

DWORD
AVI::Window(HWND hWnd)
{

MCI_DGV_WINDOW_PARMS meiWindewParms:
DWORD dwFlags:
if (twDeviceID)

return MCI_ERR_NOT_OPEN:
meiWindowParms.hWnd = hind:
dwFlags = MCI_DGV_WINDOW_HWND;
dwBrrState = mciSendCommand (wDeviceID, MCI_WINDOW, d\-r?lau.

(LONG) (LPMCI _DGV_WINDOW_PARMS) &mciWindowParms);

End Listing

return dwErrState;

Dr. Dobb’s Journal, July 1993

