		Page 1
1		
2	UNITED STATES PATENT AND TRADEMARK OFFICE	
3	BEFORE THE PATENT TRIAL AND APPEAL BOARD	•
4		
5	BAKER HUGHES INCORPORATED,	
6	Petitioner,	
7	v.	
8		
9	LUBRIZOL SPECIALTY PRODUCTS, INC., Patent Owner.	
10		
11	Case IPR2016-00734 U.S. Patent No. 8,022,118	
12		
13		
14		
15		
16	DEPOSITION OF THOMAS H. EPPS, III	
17	Chicago, Illinois	
18	Wednesday, November 30, 2016	
19		
20		
21		
22		
23		
24	Reported by: PAULA CAMPBELL, CSR, RDR, CRR, CRC	
25	Job No: 115404	

		Page 49
1	T. EPPS	
2	necessary is shear resistance for the polymer to	11:12
3	effectively function as a drag reducing polymer in	11:12
4	crude oil.	11:12
5	Q. And why is that the case?	11:12
6	A. I believe that's known to someone of	11:12
7	ordinary skill in the art.	11:12
8	Q. Explain why shear resistance is needed for	11:12
9	a polymer to effectively function as a drag reducing	11:12
10	polymer in crude oil.	11:12
11	A. So the problem relates to transport of a	11:13
12	fluid or flow of a fluid in a pipeline. There is	11:13
13	friction between the fluid and the walls of the	11:13
14	pipeline, and that can lead to shear.	11:13
15	Q. Can you explain what you mean by "shear"?	11:13
16	A. A standard indication or definition of	11:14
17	shear for a person of ordinary skill in the art	11:14
18	would be flow/movement of one reference point of a	11:14
19	fluid relative to another.	11:15
20	Q. Are you talking about shearing of the drag	11:15
21	reducing polymer?	11:15
22	A. In what sense?	11:15
23	Q. Well, earlier you testified that shear	11:15
24	resistance is needed for a polymer to effectively	11:15
25	function as a drag reducing agent in crude oil;	11:15

		Page 52
1	T. EPPS	
2	affinity with a crude oil in order to act as a drag	11:19
3	reducer in that crude oil?	11:19
4	MR. HART: Objection. Scope.	11:19
5	A. I have no opinion on that.	11:19
6	Q. Are you familiar with the concept of	11:19
7	affinity in the context of the '118 patent?	11:19
8	MR. HART: Objection. Scope.	11:19
9	A. I have no opinion on that.	11:19
10	Q. Can you identify any specific polymer that	11:20
11	would actually cause drag reduction in a heavy	11:20
12	asphaltenic crude oil?	11:20
13	MR. HART: Objection. Scope.	11:20
14	A. I have no opinion on that question.	11:20
15	Q. If you could look back at the '118 patent,	11:20
16	looking at claim 1 of the '118 patent, if you look	11:21
17	at column 19, line 35, it says "such that the	11:21
18	friction loss associated with the turbulent flow	11:21
19	through the pipeline is reduced by suppressing the	11:21
20	growth of turbulent eddies."	11:21
21	Do you see that?	11:21
22	A. I see the sentence, yes, "such that such	11:21
23	that the friction loss associated with the turbulent	11:21
24	flow through the pipeline is reduced by suppressing	11:21
25	the growth of turbulent eddies."	11:21

		D 122
1		Page 133
1	T. EPPS	
2	3:22 P.M.)	03:16
3	BY MR. McCLELLAN:	03:22
4	Q. Sir, are you aware of any person anywhere	03:22
5	that ever attempted to design a DRA polymer based on	03:23
6	the asphaltene content of a crude oil prior to the	03:23
7	filing of the '118 patent?	03:23
8	MR. HART: Objection. Scope.	03:23
9	A. I have no opinion on that question.	03:23
10	Q. Is it true that compositions A and B in	03:24
11	Eaton were prepared using a Ziegler-Natta	03:24
12	polymerization process as described in Eaton?	03:24
13	A. Eaton indicates that a Ziegler-Natta	03:26
14	polymerization process was used.	03:26
15	Q. And that Ziegler-Natta process from Eaton	03:26
16	doesn't work for DRA polymers with heteroatoms, does	03:26
17	it?	03:26
18	MR. HART: Objection. Scope.	03:26
19	A. I have no opinion on that question.	03:27
20	Q. So I'm handing you what's been previously	03:27
21	marked as Exhibit 2012. Do you see that	03:27
22	Exhibit 2012 is an excerpt from a publication by	03:27
23	Zerong Wang? It's entitled Comprehensive Organic	03:27
24	Name Reactions and Reagents.	03:27
25	A. Volume 3.	03:27