
Near Shannon Limit Performance of Low Density

Parity Check Codes

David J.C. MacKay

Cavendish Laboratory, Cambridge, CB3 0HE,

United Kindom. mackay@mrao.cam.ac.uk

Radford M. Neal

Depts. of Statistics and Computer Science, Univ. of Toronto,

M5S 1A4, Canada. radford@stat.toronto.edu

July 12, 1996—To be published in Electronics Letters

Indexing terms: Error-correction codes, probabilistic decoding.

Abstract

We report the empirical performance of Gallager’s low density parity check codes on Gaus-

sian channels. We show that performance substantially better than that of standard convolu-

tional and concatenated codes can be achieved; indeed the performance is almost as close to

the Shannon limit as that of Turbo codes.

A linear code may be described in terms of a generator matrix G or in terms of a parity check
matrix H, which satisfies Hx = 0 for all codewords x. In 1962, Gallager reported work on binary
codes defined in terms of low density parity check matrices (abbreviated ‘GL codes’) [5, 6]. The
matrix H was defined in a non-systematic form; each column of H had a small weight (e.g., 3) and
the weight per row was also uniform; the matrix H was constructed at random subject to these
constraints. Gallager proved distance properties of these codes and described a probability-based
decoding algorithm with promising empirical performance. However it appears that GL codes have
been generally forgotten, the assumption perhaps being that concatenated codes [4] were superior
for practical purposes (R.G. Gallager, personal communication).

During our work on MN codes [8] we realised that it is possible to create ‘good’ codes from very
sparse random matrices, and to decode them (even beyond their minimum distance) using approx-
imate probabilistic algorithms. We eventually reinvented Gallager’s decoding algorithm and GL
codes. In this paper we report the empirical performance of these codes on Gaussian channels. We
have proved theoretical properties of GL codes (essentially, that the channel coding theorem holds
for them) elsewhere [9]. GL codes can also be defined over GF (q). We are currently implementing
this generalization.

We created sparse random parity check matrices in the following ways.
Construction 1A. An M by N matrix (M rows, N columns) is created at random with weight
per column t (e.g., t = 3), and weight per row as uniform as possible, and overlap between any
two columns no greater than 1. (The weight of a column is the number of non-zero elements; the
overlap between two columns is their inner product.)

1

Apple 1109



Construction 2A. Up to M/2 of the columns are designated weight 2 columns, and these are
constructed such that there is zero overlap between any pair of columns. The remaining columns
are made at random with weight 3, with the weight per row as uniform as possible, and overlap
between any two columns of the entire matrix no greater than 1.
Constructions 1B and 2B. A small number of columns are deleted from a matrix produced by
constructions 1A and 2A, respectively, so that the bipartite graph corresponding to the matrix has
no short cycles of length less than some length l.

The above constructions do not ensure that all the rows of the matrix are linearly independent,
so the M × N matrix created is the parity matrix of a linear code with rate at least R ≡ K/N ,
where K = N −M . We report results on the assumption that the rate is R. The generator matrix
of the code can be created by Gaussian elimination.

We simulated a Gaussian channel with binary input ±a and additive noise of variance σ2 = 1.
If one communicates using a code of rate R then it is conventional to describe the signal to noise
ratio by Eb

N0

= a
2

2Rσ2 and to report this number in decibels as 10 log10 Eb/N0.

Decoding. The decoding problem is to find the most probable vector x such that Hxmod2 = 0,
with the likelihood of x given by

∏
n fxn

n
where f1

n
= 1/(1 + exp(−2ayn/σ2)) and f 0

n
= 1 − f 1

n
, and

yn is the channel’s output at time n.
Gallager’s algorithm (reviewed in detail in [9]) may be viewed as an approximate belief propa-

gation algorithm [10]. (The Turbo decoding algorithm may also be viewed as a belief propagation
algorithm (R.J.McEliece and D.J.C.MacKay, unpublished).)

We refer to the elements of x as bits and to the rows of H as checks. We denote the set of bits
n that participate in check m by N (m) ≡ {n : Hmn = 1}. Similarly we define the set of checks
in which bit n participates, M(n) ≡ {m : Hmn = 1}. We denote a set N (m) with bit n excluded
by N (m)\n. The algorithm has two alternating parts, in which quantities qmn and rmn associated
with each non-zero element in the H matrix are iteratively updated. The quantity qx

mn
is meant

to be the probability that bit n of x is x, given the information obtained via checks other than
check m. The quantity rx

mn
is meant to be the probability of check m being satisfied if bit n of x

is considered fixed at x and the other bits have a separable distribution given by the probabilities
{qmn′ : n′ ∈ N (m)\n}. The algorithm would produce the exact posterior probabilities of all the
bits if the bipartite graph defined by the matrix H contained no cycles [10].

Initialization. The variables q0
mn

and q1
mn

are initialized to the values f0
n

and f 1
n

respectively.

Horizontal step. We define δqmn ≡ q0
mn

− q1
mn

and compute for each m, n:

δrmn =
∏

n′∈N (m)\n

δqmn′ (1)

then set r0
mn

= 1
2
(1 + δrmn) and r1

mn
= 1

2
(1 − δrmn).

Vertical step. For each n and m and for x = 0, 1 we update:

qx

mn
= αmn fx

n

∏

m′∈M(n)\m

rx

m′n
(2)

where αmn is chosen such that q0
mn

+q1
mn

= 1. We can also update the ‘pseudoposterior probabilities’
q0
n

and q1
n
, given by:

qx

n
= αn fx

n

∏

m∈M(n)

rx

mn
. (3)

2



1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
Eb/No (dB)

(7,1/2)

(7,1/2)C

(15,1/4)C

Turbo

Figure 1: GL codes’ performance over Gaussian channel (solid curves) compared with that of
standard textbook codes (dotted curves at right) and state-of-the-art codes (dotted curves at left).

These quantities are used to create a tentative bit-by-bit decoding x̂; if Hx̂ = 0 then the decoding
algorithm halts. Otherwise, the algorithm repeats from the horizontal step. A failure is declared if
some maximum number of iterations (e.g., 100) occurs without a valid decoding.

Results. Figure 1 compares the performance of GL codes with textbook codes and with state of
the art codes. The vertical axis shows the empirical bit error probability. Textbook codes: The
curve labelled (7,1/2) shows the performance of a rate 1

2
convolutional code with constraint length 7,

known as the de facto standard for satellite communications [7]. The curve (7,1/2)C shows the per-
formance of the concatenated code composed of the same convolutional code and a Reed-Solomon
code. State of the art: The curve (15,1/4)C shows the performance of an extremely expensive and
computer intensive concatenated code developed at JPL based on a constraint length 15, rate 1

4
con-

volutional code (data courtesy of R.J. McEliece.) The curve labelled Turbo shows the performance
of the rate 1

2
Turbo code described in [2]. (Better Turbo codes have since been reported [3].) GL

codes: From left to right the codes had the following parameters (N, K, R): (29507, 9507, 0.322)
(construction 2B); (15000, 5000, 0.333) (2A); (14971, 4971, 0.332) (2B); (65389, 32621, 0.499) (1B);
(19839, 9839, 0.496) (1B); (13298, 3296, 0.248) (1B); (29331, 19331, 0.659) (1B). It should be em-
phasised that all the errors made by the GL codes were detected errors: the decoding algorithm
reported the fact that it had failed.

Our results show that performance substantially better than that of standard convolutional and
concatenated codes can be achieved; indeed the performance is almost as close to the Shannon limit
as that of Turbo codes [2]. It seems that the best results are obtained by making the weight per
column as small as possible (construction 2A). Unsurprisingly, codes with larger block length are
better. In terms of the value of Eb/N0, the best codes were ones with rates between 1

2
and 1

3
.

Cost. In a brute force approach, the time to create the code scales as N3, where N is the block
size. The encoding time scales as N2, but encoding involves only binary arithmetic, so for the block
lengths studied here it takes considerably less time than the simulation of the Gaussian channel.
It may be possible to reduce encoding time using sparse matrix techniques. Decoding involves
approximately 6Nt floating point multiplies per iteration, so the total number of operations per

3



decoded bit (assuming 20 iterations) is about 120t/R, independent of block length. For the codes
presented here, this is about 800 operations.

This work not only confirms the assertion [1] that ‘we can think of good codes, and even decode
them’, but also that ‘we could think of them, and decode them, thirty-five years ago’.

Acknowledgements

DJCM is grateful to Robert McEliece and Roger Sewell for helpful discussions.

References

[1] G. Battail. We can think of good codes, and even decode them. In P. Camion, P. Charpin, and
S. Harari, editors, Eurocode ’92. Udine, Italy, 26-30 October, number 339 in CISM Courses
and Lectures, pages 353–368. Springer, Wien, 1993.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-correcting coding
and decoding: Turbo-codes. In Proc. 1993 IEEE International Conference on Communications,

Geneva, Switzerland, pages 1064–1070, 1993.

[3] D. Divsilar and F. Pollara. On the design of turbo codes. Technical Report TDA 42-123, Jet
Propulsion Laboratory, Pasadena, November 1995.

[4] G. D. Forney. Concatenated codes. Technical Report 37, MIT, 1966.

[5] R. G. Gallager. Low density parity check codes. IRE Trans. Info. Theory, IT-8:21–28, Jan
1962.

[6] R. G. Gallager. Low Density Parity Check Codes. Number 21 in Research monograph series.
MIT Press, Cambridge, Mass., 1963.

[7] S. W. Golomb, R. E. Peile, and R. A. Scholtz. Basic Concepts in Information Theory and

Coding: The Adventures of Secret Agent 00111. Plenum Press, New York, 1994.

[8] D. J. C. MacKay and R. M. Neal. Good codes based on very sparse matrices. In Colin
Boyd, editor, Cryptography and Coding. 5th IMA Conference, number 1025 in Lecture Notes
in Computer Science, pages 100–111. Springer, Berlin, 1995.

[9] D. J. C. MacKay and R. M. Neal. Good error correcting codes based on very sparse matrices.
Available from http://wol.ra.phy.cam.ac.uk/, 1996.

[10] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Mor-
gan Kaufmann, San Mateo, 1988.

Version 2.0

4


